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Abstract

This thesis deals with the control of non linear oscillations in plasma governed by a classical

Van der Pol equation . The main interest devoted to such an investigation is that non linear

oscillations in plasma is essential in industry.

In chapter 1 , we present some generality on the dynamical systems .

Chapter 2 is focussed on the analytical study of the Van der Pol equation in autonomous

regime . The amplitude and the phase of the stable limit cycle are derived using the Averaging

Method .

In chapter 3 , we investigate the oscillations in plasma .
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Introduction

The dynamical systems constitute a very large field of science [1, 2, 3, 4, 5]. They are generally

represented by a non linear equations . A phenomenon is non linear when his evolution don’t

obey to a linear Mathematic law . The non linear electric oscillators are those whom the one

of the constitutive elements to the characteritics intensity - tension is of the non linear form

. We can mention (diode , transistor , operational amplifier , etc) The presence of the non

linear components is in the beginning of many observed phenomena .We can also mention

(hystheresis , resonance [6, 7]) Another important phenomenon resulting of the presence of

non linear components is the apparition of chaos , curious phenomenon , rich and complex met

almost in all branches of instruction :electronic , astronomy , biology , chemistry , economy ,

etc Particularly in electronic , it is known the works of a Dutch electrical engineer Balthazar

Van der Pol on an oscillator presenting a various mode[8] whom equation is :

ẍ+ x− µ(1− x2)ẋ = 0

A classical Van der Pol oscillator is an example of the most studied self-maintained oscillators.

Since his introduction in 1922 , he had the object of many studies ; firstly by Van der Pol

himself who has established a good part of his own research on the experimental and theoret-

ical analysis of that oscillator in the electrical circuits , secondly by many others searchers.

This dissertation is composed of three chapters .

In chapter 1 , the generality on the dynamical system is presented .

In chapter 2 , we investigate the analytical study case of the Van der Pol equation in the

autonomous regime . Here , we derive the amplitude and the phase of the stable limit cycle

in the autonomous regime .

Chapter 3 deals essentially with the oscillations in a plasma .
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Chapter Premier

GENERALITY ON THE

DYNAMICAL SYSTEMS

The dynamical systems constitute a vast field for science and study . Thus , their study is

very important and it generates some interesting phenomena. And then , we will study some

of the dynamical systems which are involved along the work.

1.1 Definition

• A dynamical system is one of which the state is described by a vector ~x with n components

and of which the evolution is governed by a simple differential equation of the type :

~̇x =
−→
F (~x) (1.1)

For example, the Hamilton system is a dynamical system . In fact , in compact notation , we

have:

~̇x = J

(
∂H

∂~x

)
=

−→
F (~x). (1.2)

with

Fi(~x) =
+∞∑
j=1

Jij
∂H

∂xj

and

J =

(
0 I

−I 0

)
Where J is the Jacobian matrix and I the unit matrix of n order.

• The solution ~x(t) such that ~x(t = 0) = −→x0 is called a flood and it is written down like this:−→
Φt(

−→x0)
• A fix point (or equilibrium point or singular point) of a system described by the equa-

tion(1.1) is a −→xe which is solution of the equation:−→
F (−→xe) =

−→
0

A fix point −→xe is called well if all the values of the Jacobian matrix of the flood linearized

around this fix point have their real part negative.
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NOTION OF STABILITY 8

Similarly, if all the values of the Jacobian matrix have their real part positive , then the fix

point is called source.

• A phase space can help define the state of a system by associating its coordinates such

as its position and its speed.The trajectory of the phase space is a curve of the same space

representing an evolution of the system . A set of trajectories constitutes a portrait of phase.

• An autonomous system is a system in which time doesn’t intervene in the equation of mo-

tion explicitly , i.e the system of the form for which independent variable doesn’t appears

explicitly ẍ = f(x, ẋ) . On the contrary , we have to deal with a forced system.

• The self-maintained oscillations are oscillations in which the lost energy is recorvered during

the following cycle in order to maintain these oscillations.

• Hysteresis is a phenomenon during which there is a jump from a great amplitude to a

smaller one for a solution and this , vice-versa.

• A system to approach a periodic behavior which will thus appear as a closed curve in phase

space is called a limit cycle .

• A limit cycle is a closed orbit in the phase space such that no other closed orbit can be

found arbitrary close to it . It’s a characteristic for a periodic regime.

• A close trajectory C of a dynamical system which has nearby open trajectories spiraling

towards it both from inside and outside as t→ ∞ is called stable limit cycle .

• If they spiral towards it from one side and spiral out from the other side , it is semi - stable

limit cycle .

• If nearby open trajectories spiral away from C on both side the C is unstable limit cycle .

• If nearby trajectories neither approach nor recede from C, it is Neutrally-stable limit cycle.

• An attractor is an invariable set towards which all the trajectories of the dynamical system

are turned and by which they are attracted. It’s included in a field of an existent volume

which constitutes its attracting pool . Thus , we can have : single attractors (punctual attrac-

tors, periodic attractors , biperiodic attractors or quasi-periodic attractors) and the strange

attractors ( non periodic attractants , fractal attractants , chaotic attractants ). The attract-

ing point is a single point corresponding to a stationary solution of the equation of motion.

The periodic behaviour is associated with a single steady attractor called limit cycle which

is characterized by its amplitude and period. The third type of single attractor is the tore

T r(r ≥ 2) and it corresponds to a quasi-periodic regime having r frequences of independent

basis. The strange attractors characterised a chaotic movement.

• The attracting pool of an attractor is the location(setting) of the phase space formed by

the set of initial conditions and from which this attractor is obtained.

1.2 NOTION OF STABILITY

The notion of stability is very important and fundamental in the study case of any system.A

fix point must satisfy certain criteria among which the one of stability. For a state to be

observable,it must be stable,i.e this state must find an initial state after being subject to a
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NOTION OF STABILITY 9

perturbation.Now , we’re going to consider a fix point
−→
X0 belonging to a system of which the

evolution is generated by the following equation:

−̇→
X =

−→
F (

−→
X ) (1.3)

This point verifies :
−̇→
X0 =

−→
F (

−→
X0) =

−→
0 . There are two different approaches ( global and local)

for the study case of the stability of the fix point.As far as the global approach is concerned,

let’s say that there is no condition for the form and the amplitude of the perturbations ;

whereas the local approach is limited to infinitesimal perturbations.

1.2.1 GLOBAL APPROACH

The concept of stability used in this study case is the one of A.M.LYAPUNOV.Thus,we speak

of LYAPUNOV’s notion of stability.The Mathematician A.M.LYAPUNOV in his PhD thesis

in 1892,found an interesting criterion allowing the study of stability [9] . It’s a generalization

according to which, for a well,there is a norm for <n so as ‖
−→
X −

−→
X0‖ decreases for the

neighbourhood solutions of
−→
X0 .LYAPUNOV showed that a number of a functions would be

used as guaranty of stability in the place of the norm [9] . These are called the functions of

LYAPUNOV (V).The functions of LYAPUNOV are defined as positive ones. The following

theorem shows the stability conditions of
−→
X0 :

• THEOREM:( STABILITY CONDITIONS OF LYAPUNOV [9])

Suppose that
−→
X0 is a fix point of the equation(1.2) and (V) a positive function of the class

C1 defined on the neighbourhood Q of
−→
X0 :

(i) if V̇ (
−→
X ) ≤ 0 for

−→
X ∈ Q− {0} , then

−→
X0 is stable.

(ii) if V̇ ( ~X) < 0 for
−→
X ∈ Q− {0} , then

−→
X0 is asymptotically stable.

(iii) if V̇ (
−→
X ) > 0 for

−→
X ∈ Q− {0} , then

−→
X0 is unstable.

There is no general rule to determine the function of LYAPUNOV. So , we often use the local

approach in order to study the stability of a fix point.

1.2.2 LOCAL APPROACH

Now ,we are going to consider the evolution of the infinitesimal perturbations . When the

perturbation
−→
X ′ intervenes around the fix solution

−→
X0 , we have:

−→
X =

−→
X0 +

−→
X ′. (1.4)

From the combination of the equations (1.2) and (1.3),we have the following variational equa-

tion of the linear regime:
−̇→
X ′ =

D
−→
F

D
−→
X

(
−→
X0)

−→
X ′ + ... (1.5)

Then we have the equation of evolution of
−→
X :

−̇→
X ′ = A

−→
X ′. (1.6)
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The concept of bifurcation 10

With

A =
D
−→
F

D
−→
X

(
−→
X0)

where the elements Aij of the A matrix are defined by:

Aij =
∂Fi

∂Xj

(
−→
X0) .

The solution to this equation is:

−→
X ′(t) = exp(At)

−→
X ′(0). (1.7)

Suppose that the A matrix is diagonalizable and let’s consider aj, j = 1, 2, 3, ..., n , its eigen-

values which are complex numbers , and −→yj , j = 1, 2, ..., n ,its associated eigenvectors. Its

general solution in Cn is:

~y =
n∑

j=1

Cj(0) exp(ajt)
−→yj . (1.8)

As A is a real matrix , if ~y is solution , the real part Re(~y) of ~y is also a solution. Then the

general solution in <n is:
−→
X ′ = Re

(
n∑

j=1

Cj(0) exp(ajt)
−→yj

)
(1.9)

We can notice that the real part of aj is equivalent to the increasing rate of the perturbation.

So the stability depends on the signs of the real parts of aj.Then , we can conclude:

• If Re(aj) < 0 , for any j , the perturbation decreases , the fix point
−→
X0 is asymptotically

stable.

• If Re(aj) > 0 , for at least a value of j , the perturbation increases ,
−→
X0 is unstable.

• If Re(aj) = 0 , the perturbation neither increases nor decreases ,
−→
X0 is neutral or marginal.

1.3 The concept of bifurcation

The study of the stability of the dynamical system has showed that the nature of the fix

points depends on the control parameter of the system (for example , we have the control

of non linearity for the Van der Pol oscillator ) . According to the control parameter value ,

the dynamic of the system has proved to be more or less complexe . It may be an fix point

attractor , a periodic attractor or a quasi - periodic attractor , a chaotic regime characterized

by a strange attractor . The objectives of the bifurcation theory are to study the transitions

between the different regimes when the control parameters are modified . When a solution

changes qualitatively , we say that there is bifurcation . A point of the parameter space where

such a phenomenon happens is defined as bifurcation point and from this point emerges

many branches which are solutions ; they may be either stable or unstable . The notion of

codimension is the number of parameter which is necessary to vary so as to get a stable
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situation , and this vice - versa . The representation of any property but characteristic of the

solution(s) in function of bifurcation parameter constitute a bifurcation diagram . There are

many types of bifurcation . For example , the bifurcation of types fix point → limit cycle and

limit cycle → tore are called Hopf’s bifurcations . In a physical system , a series of bifurcations

provocated by the variation of the control parameter is called a jumping . The bifurcation

diagram is very important in the study of the transition of systems from the order towards

the chaos and this vice - versa .

1.4 Notion of chaos

It would be very difficult to define a chaos in general . A chaos is a persistent instability.Its

main characteristics is the sensibility of the solutions with initial conditions , which is due to

the non-linearity of the systems . A chaos was discovered in 1961 . Edward N. LORENTZ

discovered the consequences to long period of time of slight variations of the initial conditions

of numerical integration of a nonlinear differential equation . We often say that a chaotic sys-

tem is a system without memory :The coming evolution of a flow is not predictable . Initially

considered to be destroyable , a chaos has revealed to be useful with the discovering of its

practical applications . We have for example , securing information as far as telecommunica-

tions are concerned . A regular chaotic regime can become an irregular chaotic one through

many routes (by duplication of frequence , by quasi- periodicity) . The only way to determine

the chaos are based on the numerical simulation . There are many litteral indicators of the

chaos among which we have the Lyapunov exponent , which is the more reliable .

1.5 Notion of the Lyapunov exponent

The Lyapunov exponent is a concept of the SOVIET SCHOOL on the dynamical systems

theory . Lyapunov’s number gives a measure of the precise topological properties correspond-

ing to notions such as stability or previsibility . The Lyapunov exponent of a system help

determine the antagonistic effects of the extension and the contraction of an attractor in the

phase space . This give an image of all the characteristics of a system conducting to stability

or instability . An exponent greater than zero corresponds to an extension or to the separation

of initially neighbouring points in the phase space . In this case , the system has a chaotic

behaviour . On the contrary , an exponent less than zero corresponds to a contraction of

initially neighbouring points , that is to say a contraction of points towards an oscillatory

state : It’s the periodicity or quasi - periodicity . In order to explain the Lyapunov exponent

measurement , we consider a bidimensional flow defined by :

d
−→
φ

dt
=

−→
F (

−→
φ ) (1.10)
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With
−→
φ (t) =

(
X(t), V (t) = dX

dt

)
The linearization of the flow around its solution

−→
φ (t) consists in this equation :

−→
φ0(t) =

−→
φ (t) + δ

−→
φ (t) (1.11)

With δ
−→
φ (t) being the perturbation .

Let’s replace the expression(1.11) into the expression (1.10) , we have the generalized form of

the variational equation of the flow as follows :

d[δ
−→
φ ]

dt
=
∂
−→
F (

−→
φ )

∂
−→
φ

|−→
φ (t)

(
δ
−→
φ (t)

)
(1.12)

The matrix ∂
−→
F (

−→
φ )

∂
−→
φ

|−→
φ (t)

corresponds to the Jacobian matrix of the system .

If δ
−→
φ0(t) = (εx(t), εv(t)) is solution of the equation (1.12) by a period of time t , the Lyapunov

exponent is defined by the following formular :

λmax = lim
t→+∞

1

t
ln ‖δ

−→
φ0(t)‖ (1.13)

Thus , we have :

λmax = lim
t→+∞

1

t
ln
(
ε2x + ε2v

) 1
2 (1.14)

We also have the following equation which is used more often :

λmax = lim
t→+∞

1

t
ln (|εx|+ |εv|) (1.15)

We can notice that we have asymptotically the following equation

|εx|+ |εv| = exp (λmaxt) (1.16)

If λmax > 0 , the perturbation increases exponentially with time . This confirms the notion of

extension inside the attractor in a chaotic regime . In the contrary ,

If λmax < 0 , |εx|+|εv| −→ 0 , then we have a contraction in the phase space . This contraction

conducts towards a fix point or towards a regular state .

1.5.1 Application to a logstic map

The Lyapunov exponent λ , of the Logistic map is used to obtain a measure of the very sensitive

dependence upon initial conditions that is characteristic of chaotic behavior . Consider a

general 1-dimensional map

Xn+1 = f(Xn). (1.17)

Let X0 and Y0 be two nearby initial points in the phase space and consider n iterations with

the map to form

Xn = f (n)(X0) (1.18)
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Yn = f (n)(Y0) (1.19)

For a chaotic situation , nearby initial points will rapidly separate , while for a periodic solution

the opposite will occur . Therefore assume , for large n , an approximatively exponential

dependence on n of the separation distance ,

|Xn − Yn| = |X0 − Y0| exp(λn) (1.20)

with λ > 0 for the chaotic situation and λ < 0 for the periodic case . Taking n large (limit as

n→ ∞) , λ can be extrated from (1.20)

λ = lim
n→+∞

1

n
ln

|Xn − Yn|
|X0 − Y0|

(1.21)

However , for trajectories confined to a bounded region such as in our logistic map , such

exponential separation for the chaotic case cannot occur for very large n , unless the initial

points X0 and Y0 are very close . Therefore , the limit |X0 − Y0| → 0 must also be taken .

Modifying (1.21), we have

λ = lim
n→∞

1

n
lim

|X0−Y0|→0
ln

|Xn − Yn|
|X0 − Y0|

(1.22)

Substituting (1.18) and (1.19) into (1.22) we get

λ = lim
n→∞

1

n
lim

|X0−Y0|→0
ln

|f (n)(X0)− f (n)(Y0)|
|X0 − Y0|

(1.23)

Or

λ = lim
n→∞

1

n
ln

|df (n)(X0)|
|dX0|

(1.24)

Now , f(X0) = X1 , f(X1) = X2 or f (2)(X0) = X2 , so that for example

df (2)(X0)

dX0

=
df(X1)

dX1

dX1

dX0

=
df(X1)

dX1

df(X0)

dX0

(1.25)

Generalizing (1.25) , we have

df (n)(X0)

dX0

=
n−1∏
k=0

df(Xk)

dXk

(1.26)

and the Lyapunov exponent λ is given by

λ = lim
n→∞

1

n

n−1∑
k=0

ln
|df(Xk)|
|dXk|

(1.27)

For periodic solutions , which starting point X0 is chosen doesn’t matter , but for chaotic

trajectories , the precise value of λ will depend on X0, i.e., in general λ = λ(X0) . One can ,

if desired , define an average λ , averaged over all starting points . Whether this is done or

not , λ > 0 should correspond to chaos , λ < 0 to periodic behavior . Figure shows λ (vertical

axis) as a function of a for the logistic map for the starting point X0 = 0.2 . The figure was

generated using the Mathematica File , MF38 .

GBEDO Yemalin Gabin, yggbedo@yahoo.fr ,AUST 2011



Chapter Deux

ANALYTICAL STUDY OF THE

VAN DER POL EQUATION IN THE

AUTONOMOUS REGIME

In this chapter , we are going to describe the Van der Pol oscillator . With the link’s law ,

we’re going to establish the differential equation of Van der Pol . This differential equation

will then be studied analytically in this chapter.

2.1 Descripion Van der Pol oscillator

The Van der Pol oscillator is a self-maintained electrical circuit made up of an inductor (L) ,

a capacitor initially charged with a capacitance (C) and of a non linear resistance (R) ; all of

them connect up in series as indicated by the figure (2.1) below. This oscillator was invented

by VAN DER POL while he was trying to find out a new way to modelize the oscillations

of a self-maintained electrical circuit.Here is the characteristics intensity-tension of the non

linear resistance (R):

UR = −R0i0

[
i

i0
− 1

3

(
i

i0

)3
]

(2.1)

With: i0 and R0 being the current and the resistance of normalization , and this respectively.

This non linear resistance can be obtained by using the operational amplifier(op-amp)[10].

By applying the link’s law to the figure 2.1 , we have :

R

C

L

Figure 2.1: Electric circuit modelizing the Van der Pol oscillator in an autonomous regime.
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Descripion Van der Pol oscillator 15

UL + UR + UC = 0 (2.2)

with UL being the tension to the limits of the inductor and UC being the tension to the limits

of the capacitor.

UL = L
di

dτ

UC =
1

C

∫
idτ (2.3)

By replacing the equation (2.3) in the equation (2.2) ,we have :

L
di

dτ
−R0i0

[
i

i0
− 1

3

(
i

i0

)3
]
+

1

C

∫
idτ = 0 (2.4)

By deriving the equation (2.4) with respect to τ ,we have :

L
d2i

dτ 2
−R0

(
1− i2

i20

)
di

dτ
+

i

C
= 0 (2.5)

By processing the change of variables below:

x =
i

i0
(2.6)

t = ωeτ (2.7)

Where ωe =
1√
LC

is an electric pulsation , we have:

d

dτ
=

d

dt

dt

dτ
= ωe

d

dt
(2.8)

d2

dτ 2
= ω2

e

d2

dt2
(2.9)

By replacing the expressions (2.8) and (2.9) in the equation (2.5) ,we have:

d2x

dt2
−R0

√
C

L
(1− x2)

dx

dt
+ x = 0 (2.10)

By setting µ = R0

√
C

L
, the equation (2.10) take the adimensional form as follows :

ẍ− µ(1− x2)ẋ+ x = 0 (2.11)

Where µ(µ > 0) is the nonlinear control parameter for the different solutions of the equation.

That equation is called the Van der Pol equation and it represents a paradigm in oscillations

theory and nonlinear dynamics The classical Van der Pol oscillator as described by equation

(2.11) has been subject to many studies,theoretical as well as experienced ones. From these
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studies ,we can notice that in the absence of any exterior excitation , the wave generated by

this oscillator is periodic with sinusoidal form for the weak values of µ(µ << 1) ;it is quasi-

sinussoidal for the intermediate values of µ (for example: for the unit order) or relaxative for

the large values of µ (µ>5)[11] with a fix amplitude equal to 2 , indicating the character of

a self-maintained oscillator. Morever , we can deduce from those studies , the existence of a

single stable limit cycle which is almost circular when the values of µ are very small . It’s

almost rectangular for the great values of µ . When the values of µ are very small , we can use

this oscillator for the realization of continuous supplying , these continuous supplying being

very stable . It’s also valuable for the generation of an impulsion;the amplitude of which is

very stable . The relaxative state of the oscillator is suited to the control of systems in which

the entry impulsion generates a response of fix amplitude with ajustable frequence . This

corresponds to the cardiac beats (or heart beats) where every contraction of the ventriculus

is stimulated by the nervous impulsion on the contraction of the auriculus .

2.2 Analytical study

2.2.1 Fixed Points and Stability

The stationary state (x0, y0) are fix solutions for the equation (2.11) . So , by operating the

following change of variable ẋ = y , we have this system as follows :{
ẋ = y = f1(x, y)

ẍ = ẏ = −x+ µ(1− x2)y = f2(x, y)

A fix point is a point so as we have (ẋ = 0, ẏ = 0). Then , we have a single fix point

(x0, y0) = (0, 0) which is independent of µ. The stability of the point (x0, y0) depends on the

eigenvalues of the Jacobian matrix .Now we are going to proceed by introducing the expression

of the Jacobian matrix which is :

J =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


Then

J =

(
0 1

−1− 2xyµ (1− x2)µ

)
For the fix point(0, 0) , we have:

J(0, 0) =

(
0 1

−1 µ

)
The stability of this fix point depends on the signs of the eigenvalues of the Jacobian matrix.

The eigenvalues λ are solutions for the characteristic equation:

λ2 − µλ+ 1 = 0 (2.12)
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∆ = µ2 − 4 where µ>0

• If 0<µ<2 , then the solutions of the equation (2.12) are complex numbers :

λ1 =
µ+ i

√
µ2 − 4

2

λ2 =
µ− i

√
µ2 − 4

2
The fix point (0 , 0) is an unstable centre .

• If µ = 2 , the equation (2.12) has a double solution :

λ = 1

The fix point is then unstable .

• If µ>2 , the equation (2.12) has two real solutions :

λ1 =
µ+

√
µ2 − 4

2

λ2 =
µ−

√
µ2 − 4

2
The fix point (0 , 0) is an unstable node . We conclude that the single fix point (0,0) is

unstable whatever the value of the control parameter µ

2.2.2 Existence of the limit cycles

We analytically study the amplitude of the limit cycle by using the average method[12]. This

is applied to the equations of the following type :

ẍ+ x = µf(x, ẋ, t)

where µ is the perturbation parameter and f(x, ẋ, t) being an integrable arbitrary function

In general , we proceed with the following transformations :

x(t) = A(t) cos(t+ ϕ(t)) = A cosψ (2.13)

ẋ(t) = −A(t) sin(t+ ϕ(t)) = −A sinψ (2.14)

Where A(t) is the amplitude , ϕ(t) being the phase and with :

ψ(t) = ϕ(t) + t

By Supposing that the amplitude and the phase feebly vary during a period T ' 2π ,we have

the fundamental equations of the average method as follows :

Ȧ = − µ

2π

∫ 2π

0

f(A cosψ,−A sinψ) sinψdψ (2.15)

ϕ̇ =
µ

2πA

∫ 2π

0

f(A cosψ,−A sinψ) cosψdψ (2.16)

The equations help to determine the amplitude A(t) and the phase ϕ(t) of the oscillator .

Now , we can apply this method to the equation (2.11) for which :

f(x, ẋ, t) = (1− x2)ẋ

Then , we have :

f(A,ψ) = −A sinψ + A3 sinψ cos2 ψ
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By replacing the last expression above in the equations (2.15) and (2.16) , we get :

Ȧ = − µ

2π

∫ 2π

0

(−A sin2 ψ + A3 sin2 ψ cos2 ψ)dψ (2.17)

ϕ̇ =
µ

2πA

∫ 2π

0

(−A sinψ cosψ + A3 sinψ cos3 ψ)dψ (2.18)

The integration of the relations (2.17) and (2.18) help to obtain the evolution equation of the

amplitude A(t) and the phase ϕ(t):

Ȧ(t) =
µA(t)

2

(
1− A2(t)

4

)
(2.19)

ϕ̇(t) = 0 (2.20)

The average method state : The amplitude and the phase are feebly vary during a period .

Therefore Ȧ(t) = 0 , and the amplitude is eventually : A(t) = 2

Analytically , the amplitude A(t) of the Van der Pol oscillator limit cycle is equal to 2 .
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Chapter Trois

Oscillations in plasma

In what follows , we are dealing with oscillations in plasma which can be defined as the fourth

state of the matter . Interests according to such state of matter are due to their potential

applications . Indeed , radio - wave propagation in the ionosphere was really an early stimulus

for the development of the theory of plasma . Nowadays , plasma processing is viewed as a

critical technology in a large number of industries , whilst semiconductor device fabrication

for computers may be the best known . It is also important in order sectors such as bio

- medecine , automobiles , defence , aerospace optics , solar energy , telecommunications ,

textiles , papers , polymers and waste managment [13].

3.1 The classical Van der Pol equation

For this survey , we consider the two - fluid model which treats the plasma as two inter

penetrating conducting fluids . The Eulerian equations of motion in electric field E and

magnetic field B are given as follows [14] :

nκMκ
dυκ
dτ

= nκqκ(E + υκ ×B − ηJ)−∇pκ (3.1)

dnκ

dτ
+5.(nκυκ) = S (3.2)

d(pκn
−γ
κ )

dτ
= 0 (3.3)

Where S is the source term due to ionization or to large amplitude oscillations present in

the plasma . The suffix “κ“ stands to label the species and it will be denoted by i and

respectively for positive ions with charge +e and for the negative ions (electron) with charge

−e. nκ represents the number density of the species , υκ their velocity , pκ their pressure , γ

the usual specific heat ratio and η the resistive collision which is defined as :

η =
Mνκ
ne2

(3.4)
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Where νκ is the collision frequency of the speciesκ . The electric charge density ρ and current

J are given by :

ρ =
∑
κ

nκqκ (3.5)

J =
∑
κ

nκqκυκ (3.6)

These quantities are the source terms for Maxwell’s equations :

∇.B = 0 (3.7)

∇.E =
ρ

ε0
(3.8)

∇×B = µ0J + µ0ε0Ė (3.9)

∇× E = −Ḃ (3.10)

In order to deal with small amplitude waves , we consider a “ background” situation repre-

senting a uniform infinite plasma . The values of nκ , υκ , pκ , E and B for this will be denoted

by n0κ , υ0κ, p0κ ... ; however , here we shall take υκ = E = 0 in the unperturbated state .

We then have J = 0 and all of equations(3.1) - (3.10) are satisfied except equations (3.5) and

(3.6) which requires ρ = 0 , hence : ∑
κ

nκqκ = 0 (3.11)

For our simple two - species plasma , that condition of charge neutrality becomes :

n0κ = n0i = n0 We now consider the Me = 0 ion sound instability and introducing perturba-

tions terms which are denoted by the suffix 1 , namely

ni = n0 + n1 (3.12)

pi = p0 + p1 (3.13)

B = B0 +B1 (3.14)

Let us note that for other variables which vanish at the unperturbated state , the labels 0

and 1 are not necessary . We then insert the expressions (3.12) - (3.14) into equations (3.1)

-(3.3) and after all of the second order perturbative terms have been discarded , we obtain

the following equations :

n0Mi
dυi
dτ

= n0e(E + υi ×B0 − ηJ)−∇p1 (3.15)

dn1

dτ
+ n0∇.υi = S (3.16)

p1
p0

= γ
n1

n0

(3.17)
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In dealing with equation(3.3) and taking each species to be a perfect gas with unperturbed

temperature T (which could be different for each species) , we have p0 = n0kBT ( kB is

Boltzmann’s constant) and equation (3.15) can be rewritten as follows :

n0Mi
dυi
dτ

= n0e(E + υi ×B0 − ηJ)− γkBTi∇n1 (3.18)

To investigate the two - fluid model , we assume that E = −∇φ (φ is the potential perturba-

tion) and consider the Boltzmann distribution equation of electron given as follows :

n1

n0

=
eφ

kBTe
(3.19)

By deriving equation (3.16) with respect to τ , we get :

dS

dτ
=
d2n1

dτ 2
+ n0∇.(

dυi
dτ

) (3.20)

From equation (3.18) . we have :

dυi
dτ

=
e

Mi

(−∇φ+ υi ×B0 − ηJ)− γkBTi
n0Mi

∇n1 (3.21)

From equation (3.6) ,we have :

J = niυie (3.22)

From equation (3.19) ,we have :

φ =
kBTen1

en0

(3.23)

Plugging equations (3.4) , (3.22) and (3.23) into equation (3.21) , we get :

∇.(dυi
dτ

) = − kB
n0Mi

(Te + γTi)∇2n1 +
e

Mi

∇.(υi ×B0)− νi(∇.υi) (3.24)

Plugging ∇.υi =
1

n0

(S − dn1

dτ
) into equation (3.24) we have :

∇.(dυi
dτ

) = − kB
n0Mi

(Te + γTi)∇2n1 +
e

Mi

∇.(υi ×B0)−
νi
n0

(S − dn1

dτ
) (3.25)

Plugging equation (3.25) into equation (3.20) we get the following equation :

dS

dτ
=
d2n1

dτ 2
− kB
Mi

(Te + γTi)∇2n1 +
en0

Mi

∇.(υi ×B0)− νi(S − dn1

dτ
) (3.26)

If we now choose the source term to be of the form :

S = σn1 − ζn3
1 + ξn5

1 − %n7
1 (3.27)
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and that n1 is proportional to the quantity e−j~k.~r (where j is a complex number , ~k and~r are

tridimensional vectors) , equation(3.26) becomes :

d2n1

dτ 2
− kB
Mi

(Te + γTi)∇2n1 +
en0

Mi

∇.(υi ×B0)− νiS + νi
dn1

dτ
− dS

dn1

dn1

dτ
= 0 (3.28)

From equation (3.27) we obtain :

dS

dn1

= σ − 3ζn2
1 + 5ξn4

1 − 7%n6
1 (3.29)

Plugging equation (3.29) equation (3.28) we get

d2n1

dτ 2
+(νi−σ+3ζn2

1−5ξn4
1+7%n6

1)
dn1

dτ
+
kB~k

2

Mi

(Te+γTi)n1−νi(σn1−ζn3
1+ξn

5
1−%n7

1)−
ejn0

Mi

(υi×B0).~k = 0

(3.30)

If one considers the case νi → 0 and uses the slab geometry for which densi varies in the

x-direction and the z - axis coincides with the magnetic field direction , equation(3.30) takes

the following expression :

d2n1

dτ 2
+ (−σ + 3ζn2

1 − 5ξn4
1 + 7%n6

1)
dn1

dτ
+ ω2

0n1 = 0 (3.31)

where

ω0 = kzCκ (3.32)

Cκ =

[
kB(Te + γTi)

Mi

] 1
2

(3.33)

Following the rescaling

t = ω0τ , n1 =
(

σ
3ζ

) 1
2
x , µ = σ

ω0
, α = 5σξ

9ζ2
and β = 7σ2%

27ζ3

the equation that governs the system is :

d2x

dt2
− µ(1− x2 + αx4 − βx6)

dx

dt
+ x = 0 (3.34)

When α = β = 0 equation (3.34) yields the classical Van der Pol equation which has also

been used to investigate nonlinear resonance effects in a plasma by Keen and Fletcher in 1969

[15]

GBEDO Yemalin Gabin, yggbedo@yahoo.fr ,AUST 2011



Conclusiom

In this thesis , we have studied the nonlinear oscillations in a plasma governed by the Van der

Pol equation . For that goal , it has been given in chapter 1 some generality on the dynamical

system . In chapter 2 , the first part has been focussed on the description of the Van der

Pol oscillator . As concerning the description of the Van der Pol oscillator , the Van der

Pol equation has been established . The second part of this chapter has been devoted to the

analytically study of the Van der Pol equation . As concerning the analytical study amplitude

and phase of the limit cycle oscillation have been established using the averaging method in

the autonomous regime . Chapter 3 has been devoted to the oscillations in a plasma .
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