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Abstract

The thesis presents the modeling and simulation of three types of lasers namely;
Semicondoctor laser, Solid state laser and CO2 laser. The rate equations were
derived and simulated to examine the dynamic behaviour of the three types of
lasers under investigation.
The result shows that the Semicondoctor laser has the longest latency period,
highest intensity spikes and takes a longer time to come to relaxation oscillation
(RO) while the CO2 laser has the shortest latency time, the lowest intensity spikes
and takes a shorter time to come to relaxation oscillation (RO). The solid state
laser lies between the semiconducor laser and the CO2 laser.
It was also observed from the results that as the pump power A increases the
latency time decreases, the intensity increases and it takes a shorter time for the
laser to come to relaxation oscillation.
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Chapter 1

Introduction

1.1 Lasers

The origin of laser can be traced back to the Einstein’s concept of stimulated
emission. The presence of a photon, with appropriate frequency, can stimulate
an excited atom to emit a photon, with identical phase, frequency and propaga-
tion direction than the incident one [2]. Three components are fundamental in
any laser: a medium proving gain/amplification, a pump generating population
inversion, and a cavity confining the optical field. The first population inver-
sion was attained in ammonia molecules passing through an electrostatic focuser
by Townes and Shawlow [3] in 1958. The constructed device, originally called
MASER, emitted light in the microwave range. The first successful laser, oper-
ating in the visible spectrum, was constructed by Maiman [4] and consisted of a
ruby crystal surrounded by a helicoidal flash tube. This advert was followed, at
the ends of the same year, by experimental demostration of working He-Ne gas
laser.

Lasers have important applications in communications signal processing and
medicine, including optical interconnects, RF links, CD ROM, gyroscopes, surgery,
printers and photocopying (to mention but a few). Compared with other optical
sources, lasers have a high bandwidth and higher spectral purity, they function
as bright cohenrent sources. These properties allow laser emission to be tightly
focused, with minimum divergence. Solid state, semiconductor and gas lasers are
just a few of the many different types of lasers available in the market. Each of
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these different types of lasers are important for different applications based upon
desired result and cost.

The word laser is an acronym composed of the initial letters of “light amplifi-
cation by stimulated emission of radiation”. The laser principle emerged from the
MASER principle. The word maser is again an acronym standing for “microwave
amplification by stimulated emission of radiation”. Light is amplified through the
properties of active medium, optical gain, population inversion. The aim of this
thesis is to study the dynamical behavior of laser emission and the laser systems.
Understanding the dynamical nature of laser will lead to accurate predictions of
the emitted irradiance of the laser, which is necessary when studing more complex
system with feedback and coupling.

1.1.1 Concept of stability

Stability is an important concept when studying systems over a given time inter-
val. A system is considered stable when a condition converges towards a single
point within a set range. On the other hand, a system becomes unstable when
conditions diverge from a fixed point and depart from this range. Further, when
the system diverge and splits, creating a more complicated system. The locations
of these splits are called bifurcation points. These special points can be related
to the chaotic behavior of two synchronized lasers systems. This phenomenon of
bifurcation points from synchronization may be modeled by Quaratic Maps. In
order to find predictions in the system a concentration must be formed between
the initial conditions and stability of the system. Further details can be found in
a number of books and papers devoted on nonliner science and Chaos theory, see
for example [1] and [11].

1.2 Aims of the Thesis

Lasers have a wide range of applications as highlighted above. As such, they
underwent an intensive research and development since the time of their first
operational regime was achieved.
This thesis aims at studying in detail the rate equations for various types of lasers,

2
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including their phase portrates. The classical approach was used to derive the rate
equations for different lasers. In their simplest version, they apply to an idealized
active system consisting of only two energy levels coupled to a reservoir. The rate
equations will help to explain the stability of a laser (regular or irregular, damped
or undamped) intensity spikes commonly seen with the solid states lasers.
The significant of this thesis is that it will help to predict the behavior of lasers.

1.3 Overview of the Thesis

Chapter two reviews the basic processes involved in laser operation. The processes
discussed include active materials, spontaneous emission, stimulated emission, op-
tical absorption, population inversion, threshold condition for lasing, optical feed-
back and pumping.
Chapter three presents a detailed derivation of the rates equations for different
lasers followed by brief description of the numerical solution and linear approxi-
mation.
In chapter four, the results obtained from the numerical solution were presented
and discussed. Followed by the conclusion and recommendation.

3



Chapter 2

Laser operation

2.1 How Laser Emits Light

The basic components of the laser are current source, an active material and
the resonator. Each of these components controls the stimulated emission of the
laser and need to be understood in order to perform well-founded computational
analysis.

2.2 Active Material

The materials that can be used as the active medium of a laser are so varied that a
listing is hardly impossible. Gases, liquid and solids of every sort have been made
to lase. The origin of laser photons, is most often in a transition between discrete
upper and lower energy states in the medium, regardless of its state of matter.
He-Ne, ruby, CO2 and dye lasers are familiar examples, but different materials are
frequently used: the excimer laser has an unbound lower state, the semiconductor
diode laser depends on the transition between electron bands rather than discrete
states and understanding the free-electron laser does not require quantum state.
All these materials provide optical gain in the cavity

2.2.1 Gain

Gain is a quantity that is determined by the length of the optical cavity and the
number of reflected passes through the active material. For each pass through the

4
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optical cavity a loss occurs due to the mirrors that is proportional to the gain.
When pumping is applied to the active material, the gain increases for each pass
through the optical cavity. Population inversion occurs when the gain reaches a
value higher than the loss from reflections [5].

2.3 Spontaneous Emission

Spontaneous emission is the process by which a light source in an excited state
undergoes a transition to a state with a lower energy, with the emission of photon.
This process occurs spontaneously without any external influence [2],figure 2.1.

Spontaneous emission of light is a fundamental process that plays an essential
role in lasers. If the number of light sources in the excited state is given by N ,
the rate at which N decays is

dN

dt
= −A21N (2.1)

where A21 is the rate of spontaneous emission. The rate of spontaneous emission
depends on two factors: an atomic part, which describes the internal structure of
the light source and a field part which describes the electromagnetic modes of the
the environment. The atomic part describes the strength of transition moment.

2.4 Absorption

Absorption of electromagnetic radiation is the way in which the energy of a photon
is taken up by matter, typically the electron of an atom. Thus, the electromagnetic
energy is transformed to other forms of energy for the example, heat.
In the absorption of photon of energy, hν = E2 − E1, the atom jumps up from
level 1 to the higher level 2. The process is induced by an incident photon as
shown in figure 2.2.

5
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Figure 2.1: Spontaneous emission of a photon of energy hν

Figure 2.2: Absorption
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2.5 Population Inversion

In order for the laser to emit light, population inversion must be created in the
system. Population inversion occurs when the initial carrier density is less than
the final carrier density, and when the initial energy is less than the final energy.
This process occurs from the consquences of pumping in the optical cavity. An
optical cavity is necessary to produce a stimulated emission through pumping.
This cavity is a region composed of two approximatelly parallel mirrors separated
by a define distance.

2.6 Non Radiactive Deexcitation

In this process the atom jumps down from level 2 to the lower level 1, but no
photon is emitted so the energy E2 − E1 must appear in some other form [e.g
increased vibrational or rotational energy in the case of a molecule, or rearrange-
ment (shakeup) of other electron in the atom].

2.7 Pumping

Pumping in laser is the act of energy transfer from an external source into the
gain medium of a laser. The energy absorbed in the medium, producing excited
state in its atoms. When the number of particles in one excited state exceeds the
number of particles in the ground state or a lower-energy-level state, population
inversion is achieved. In this condition, the mechanism of stimulated emission can
take place and the medium can act as a laser or an optical amplifier. The pump
power must be higher than the lasing threshold of the laser.

The pump energy is usually provided in the form of light or electric current,
but more exotic sources have been used , such as chemical or nuclear reaction.

7
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Figure 2.3: Stimulated Emission

2.8 Stimulated Emission

Stimulated emission is the process by which an atom interacting with an electro-
magnetic wave of a certain frequency may drop to a lower energy level, tranferring
its energy to that field. A photon created in this manner has the same phase, fre-
quency, polarization and direction of travel as the photon of the incident wave.
This is in contrast to spontaneous emission which occurs without regard to the
ambient electromagnetic field.
The atom jumps down from energy level 2 to the lower level 1, and emitted photon
of energy. hv = E2 − E1 is an exact replicant of a photon already present. The
process is induced or stimulated by the incident photon [2]. On the other hand,
the absorption is taking plase as a competing process; however, when population
inversion is present the rate of stimulated emission exceeds that of absorption,
and a net optical amplification can be achieved.

8
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2.9 Lasing Threshold

The lasing threshold is the lowest excitation level at which a laser’s output is
dominated by stimulated rather than by spontaneous emission. Below the thresh-
old, the laser’s output power rises slowly with increasing excitation. Above the
threshold, the slope of power vs. excitation is orders of magnitude greater. The
linewidth of the laser’s emission also becomes orders of magnitude smaller above
the threshold than it is below. Above the threshold, the laser is said to be lasing.

All these processes occur in the gain medium of a laser. Lasers are often
classified according to the nature of the pumping process which is the source of
energy for the output laser beam. In electric discharge laser for instance, the
pumping occurs as a result of collisions of electons in a gaseous discharge with the
atoms of the gain medium.

9



Chapter 3

Models of Laser Dynamics

In this chapter, we consider several models of laser dynamics with increasing com-
plexity and accuracy. The models are expressed in terns of systems of differential
equations and are commonly referred to as rate equations. The approach we un-
dertake is gradual: starting from a very simple, involving a single equation model,
we incorporate mechanisms and properties neglected at the earlier modeling. The
new mechanism in general increases the number of the equations and hence the
dimension of the phase space. Taking the dynamical systems terminology we call
the models one-dimensional, two-dimensional, and so on.

3.1 Simple one-dimensional models

In this section, we begin by defining the simplest model of laser dynamics, which
involves a single differential equation. Admittedly, the model is not much realistic;
however, it is instructive to work with such a model in terms of both physical
considerations and technical analysis.

The model
Consider a system with two energy levels with populations N1 and N2. Let:

I Rp denotes the pumping rate

I T−1
1 be the decay rate of both populations

10
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I n be the population of photons per
unit of volume

I N = N2−N1 be the population differ-
ence between the number of excited
atoms and the number of atoms in
the lower energy level per unit of
volume

T1
-1

N1

Rp
N2

T1
-1

G(N2-N1)n

The rate of change of photons in the lasing media is given by:

dn

dT
= GnN − n

Tc
, (3.1)

where G is called “gain” or “amplification” of the laser with physical dimension
[G] = m3/s, and γ = T−1

c is the rate at which photons “leak” out. The term GnN
describes the increase of photons due to the stimulated emission. Let now,

I N0 be the population difference due to some pumping mechanism, which excites
atoms from the lower level to the upper.

Then,
N = N0 −Bn, (3.2)

where B is the coefficient of stimulated emission. Stimulated emission brings
an exited atom to the lower energy level and hence lowers N . Substituting in
eq. (3.1), we eliminate N making the balance between the creation and loss of
photons quadratic function,

dn

dT
= k1n− k2n

2 ≡ f(n). (3.3)

The coefficients have been aggregated into: k1 = (GNp − γ) and k2 = GB. In a
real experiment, the active laser media has already been chosen; hence both G
and T−1

1 are fixed. The pumping rate and therefore N0 is the only quantity in
hand, which makes N0 the control parameter of the system.

Laser system, which is described reasonably well by a single equation of the
form (3.3) is referred to as “class A” laser [6].

11
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Local analysis of class A lasers
Equation (3.3) has two fixed points n? (such that the derivative of n(T ) vanish,

and hence once reached, n(T ) = n?, remains constant.) Setting f(n) = 0, we

obtain: n?
0 = 0 and n?

1 = k1/k2 =
GN0 − γ

GB
. If Np, the population difference

produced by the pumping mechanism, is viewed as the control parameter, we see
that for Np < γ/G, n?

1 < 0. Clearly a negative number of photons is not physically
relevant; also, n? = 0 is not an interesting case. For N0 > γ/G two relevant fixed
points, N0p = γ/G is called “threshold” value of N0. To study the stability of the
fixed points, we introduce n = n− n? and linearize the equation.

dn

dT
= f(n? + n) = f(n?) +

df

dn

∣∣∣∣
n?

n+ · · · ≈ (k1 − 2k2n
?)n. (3.4)

For n? = n?
0 = 0, the solution of the linearized equation is n(T ) = n(T ) =

exp(k1T ), which for pumping above the threshold increases with T ; (since, k1 > 0).
That is to say, the fixed point n?

0 is unstable or repealing. On the other hand, the
solution about the second fixed point is n(T ) = n?

1 + exp(−k1T ), i.e. the point is
stable or attracting. These properties of the stationary points are illustrated in
Fig. 3.1, which is called phase diagram of the model. On the basis of this (linear)
analysis we expect that given enough time the laser will settle to a stationary
regime with population of photons given by

n(T ) = n?
1 =

GNp − γ

GB
. (3.5)

Fig (3.1) represent phase diagram for values of the control parameterN0 > γ/G.
The plot depicts the two fixed points of eqn. 3.3, the unstable n?

0 and the stable
n?
1.
In fact, eq. (3.3), which is equivalent to the Verhulst limited logistic growth

equation, admits an exact solution. Indeed, changing the variable to u = k1/(k2n),
we obtain for u(T ) the following (linear) equation

u̇ = k1 (1− u) (3.6)

Integrating, we obtain (u(T )− 1) = Ce−k1T . Setting T = 0, it follows that the
constant of integration is C = (u(0)− 1) and going back to the original variable

12
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n*
1

n*
0

n

Figure 3.1: Phase diagram for 1D laser model

n(T ) we arrive at

n(T ) =
k1/k2

1−
(
1− k1

k2n(0)

)
e−k1T

. (3.7)

In the above expression, n(0) is the initial value of the photon density. For large
T , the solution (3.7),

lim
T→∞

n(T ) =
k1
k2

= n?
1, (3.8)

which is in agreement with the prediction of the linear local analysis. Moreover,
both the local analysis and the nonlinear solution show that the laser approaches
the stationary operation, for which

n =
GNs − T−1

1

GB
, (3.9)

in a monotonic (aperiodic) manner.

13
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3.2 The two-dimensional dynamics

The model
The one-dimensional model considered in the preceding section neglects the dy-
namics of the energy levels populations. As a drawback,the model cannot predict
transient and oscillating phenomena, which are frequently observed in the exper-
iments. In this section, we incorporate the population rate of change, considering
again for simplicity a two-level system with populations N1 and N2, respectively.

dn

dT
= G (N2 −N1)n− n

Tc
, (3.10a)

dN2

dT
= Rp −

N2

T1
−G (N2 −N1)n, (3.10b)

dN1

dT
= −N1

T1
+G (N2 −N1)n. (3.10c)

If we introduce the population difference, N = N2 −N1,

dn

dT
= GNn− n

Tc
(3.11a)

dN

dT
= − 1

T1
(N −N0)− 2GNn, (3.11b)

where, N0 = T1Rp and the following dimensionless quantities have been intro-
duced: I = 2GT1n, D = GTcN , t = T/Tc, A = GTcNs, and γ = Tc/T1.

The dimensionaless version of system (3.11) reads

dI

dt
= I(D − 1) (3.12a)

dD

dt
= γ [A−D(1 + I)] , (3.12b)

in which the free parameters are reduced to just two, A and γ. Typical values

for them are A ∼ 1 ÷ 10 and γ ∼ 10−3 << 1.
dD

dt
≈ 0 D =

A

(1 + I)
. Since the

14
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parameter γ is small,
dD

dt
≈ 0, and hence the dimensionless population difference

is constant. In addition, if we consider the case, in which the second equation is

in a fixed point, we can substitute D =
A

(I + 1)
in the first equation, obtaining

dI

dt
= I

(
A

1 + I
− 1

)
.

If further I < 1, we can expand
1

(I + 1)
≈ 1−I we arrive at an equation similar

to the equation defining the 1D model,

dI

dt
= (A− 1)I − AI2,

however, now for the dimensionless photon density (dimensionless intensity of the
laser emission).

Local Analysis of the 2d model.
As in the case of the 1D model we begin by finding the fixed (stationary) points

Is and Ds of the system (3.12). From the first equation, we have I(D − 1) = 0
and therefore two cases:

Case OFF: Is = 0, and thus Ds = A.
Case ON: Ds = 1 and then the second equation gives Is = A− 1, which exist

physically for A > 1.
What is the location of the fixed points depending on the values of the control

parameter A? For A < 1, the regime OFF as physically realistic option exist only.
(Physically, the population N2 is so low that a photon created in a spontanious
transition (N2 7→ N1) has much higher probability to excite an electron (N1 7→
N2) compared to the probability to create another photon through stimulated
emission. The outcome is a state of equilibrium with population diffrence Ds = A,
or N = N0 in the corresponding dimension variable.)

Rp =
1

GT1Tc
.

u(t) = I(t)− Is, v(t) = D(t)−Ds

15
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0.0 0.5 1.0 1.5 2.0

state OFF0.0

A

0.0

Is

state ON

bifurcation
point

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

bifurcation
point

state ON

state OFF
Ds

B

A

Figure 3.2: Bifurcation diagram. Left panel: The dependess of the stationary dimensionless
intensity Is on control parameter A (dimensionless pumping). For the sake of clarity, the state
ON is shifted vertically. The dotted line is an indication, that for A < 1, the state ON does not
exists. The arrow marks the bifurcation point A = 1, the treshhold value, at which the state ON
is “born”. Right panel: The same for the dimenssionless stationary population difference Ds.
See Fig. 3.2

du

dt
= (Ds − 1)u+ Isv, (3.13a)

dv

dt
= γ [−Dsu− (1 + Is)v] . (3.13b)

σ2 + [γ(1 + Is)−Ds + 1]σ + γ(1 + Is −Ds) = 0. (3.14)

σ2 − (γ − A+ 1)σ + γ(1− A) = 0 (3.15)

Which has solutions: σ1 = A − 1, σ2 = −γ, hence for A > 1, σ2 > 0 showing
that the OFF regime is unstable.
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Figure 3.3: Location of the stationary points of Eq. (3.12) OFF and ON (see, the legends) in the
phase space for five different values of the control parameter A: 0.8, 0.95, 1.0, 1.05, and 1.2

σ2 + (γA)σ + γ(A− 1) = 0. (3.16)

σ1σ2 = γ(A− 1) > 0

σ1 + σ2 = −γA < 0

and therefore both Reσ1 < 0, Reσ2 < 0.
Solving equation (3.16), we

σ1,2 = −1

2
γA± i

√
(A− 1)γ − γ2A2/4 (3.17)

σ1,2 ≈ −1

2
γA± i

√
(A− 1)γ +O(γ

3
2 ) (3.18)
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u(t) = c exp (σ1t) + c? exp (σ2t), (3.19)

where the star in the second term denote complex conjugation.
c = C exp (iφ)

u(t) = C exp

(
−1

2
γAt

)
cos

[√
γ(A− 1)t+ φ

]
, (3.20)

ω̃R =
√

γ(A− 1) and Γ̃ = γA/2,
√
γ and γ.

u(T ) = C exp

(
−1

2
ΓT

)
cos (ωRT + φ), (3.21)

Γ = GTcRp, (3.22)

ωR = [GRp − (T1Tc)
−1]

1
2 . (3.23)

G, Rp, T
−1
c .

Dynamical Equations for the electric field in the laser’s cavity
To this end, the first of eq. (3.10a)

dE

dT
=

GN

2
E − E

2Tc
. (3.24)

Equation (3.24) is obtained n = |E|2.

dE?

dT
=

GN

2
E? − E?

2Tc
.

E?dE

dT
+ E

dE?

dT
=

d

dT
|E|2 = dn

dT
The second of the equations (3.11) modifies accourding to

dN

dT
= − 1

T1
(N −N0)− 2GN |E|2. (3.25)

E =
√
2GT1E
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Figure 3.4:

dE
dt

=
1

2
E(D − 1) (3.26a)

dD

dt
= γ

[
A−D(1 + E2)

]
. (3.26b)

Es = 0, Ds = A, Ds = 1, Es = ±
√

(A− 1), Is = E2
s

3.3 Three-Dimensional Model

3.3.1 Physical considerations

In this section we extend the standard 2d rate equations (S2dRE) to higher dimen-
sions. Physically, higher dimensional models correspond to lasers the operation of
which involves three or more energy levels. Clearly, the model is dictated by the
nature of the active medium (lasing material). For the majority of lasing media,
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Figure 3.5: Energy levels of the ruby laser with their relaxation rates γij indicated. The pumping
is carried out from level (1), population N1, to level (3), population N3, with rate Wp. Level (3)
is short-lived and hence the electrons exited to (3) drop almost instantaneously to levels (1) and
(2). The stimulated emission occurs between the long lived levers (2) 7→ (1) with rate Kn, where
n denotes the number density of the photons.

the S2dRE model does not provide adequate description. On the other hand, to
access aspects like power conversation efficiency, response time, etc, it is often
good enough to consider three- and four-dimensional models. The benefit of this
fact is that the laser dynamics depends and therefore the laser operation can be
controled by just few few physical parameters.

Rather than adopting a general approach to the problem, we take up specific
examples of laser systems. These are the ruby laser – active material Cr3+: Al2O3

– and the CO2 laser. They are also important in the practical applications.

3.3.2 Model of ruby laser

The dynamics of the ruby laser could directly be described initially within the
framework of a three-dimensional model. The pumping scheme involving three-
levels was originally suggested in [7] and further elucidated in [8]; see Fig. 3.5 and
its description.
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dN1

dT
= γ21N2 −Wp(N1 −N3) + kn(N2 −N1) + γ31N3 (3.27a)

dN2

dT
= γ32N3 − γ21N2 − kn(N2 −N1) (3.27b)

dN3

dT
= Wp(N1 −N3)− γ32N3 − γ31N3 (3.27c)

N1 +N2 +N3 = NT , (3.28)

where NT is a constant. To see how this property comes out, we add eqs. (3.27)

together, obtaining readily
dN

dT
(N1 +N2 +N3) = 0. For the ruby crystal, the the

lifetime of the upper laser level, that is level (2), is exceptionally long; according
to some measurements, γ−1

21 = 3 ms and according to others γ−1
21 = 4.3 ms. On

the other hand, the relaxation rates from level 3 to level 2 or from level 3 to level
1 are fast compared to γ−1

21 . (γ
−1
32 and γ−1

31 are of the order of 10−4 ms)
Furthermore, we note the inequalities

γ−1
32 << W−1

p , γ−1
31 (3.29)

As soon as one atom is excited from 1 to level 3, it will almost instantaneously be
de-excited to level 2 and N3 will remain small. Mathematically,we assume N3 is
small compared to N1 and that γ31N3 and N

′

3 are both small compared to WpN1

eq (3.1) and (3.2) simplifies as

dN1

dT
= γ21N2 −WpN1 + kn(N2 −N1) (3.30a)

dN2

dT
= γ32(N3 −N3)− γ21N2 − kn(N2 −N1) (3.30b)

0 = WpN1 − γ32N3 (3.30c)

NT = N1 +N2 (3.30d)

solving equation (3.4c) we have

N3 =
WpN1

γ32
< 1 (3.31)
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using equation (3.5) and (3.4b) we further simplify as

dN2

dT
= WpN1 − γ21N2 − kn(N2 −N1) (3.32)

Introducing the inversion of populationN = N2−N2 and using equations (3.4a),(3.5)and
(3.6) we determine equation for N

dN

dT
= −γ21(N +NT )−Wp(N −NT )− 2knN (3.33)

The right hand side of equation (3.7) displays the three main processes appearing
in laser action. The first term models the relaxation to equilibrium in the absence
of pumping: N relaxes towards -NT since the population accumulates in level 1
under the influence of single relaxation process. The second term describes the
pumping process which creates the inversion of population (ifWp > γ21): in case of
very strong pumping if (Wp >> γ21), and in the absence of laser emission (n = 0),
the population accumulates in level 2 (N = NT ). The last term indicates the
nonlinear coupling between population and intensity as the result of stimulated
emission. Equation (3.7) for N is coupled to an equation for the laser number of
photons given by

dn

dT
= n(−γc + 2kN) (3.34)

equation (3.8) is identical to equation (2.11a); with k = G and γc = T−1
c intro-

ducing the new variables

t≡γcT, I≡
2kn

γ21 +Wp
andD≡kN

γc
(3.35)

dI

dT
= I(−1 +D) (3.36a)

dD

dT
= γ [A−D(1 + I)] (3.36b)

where γ =
γ21 +Wp

γc
and A =

(Wp − γ21)kNT

(γ21 +Wp)γc
equations (3.10) are identical to equations (2.12)
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Figure 3.6: Energy levels of the CO2 laser with their relaxation rates γij indicated. The pumping
is carried out from level (1), population N1, to level (3), population N3, with rate Wp. The
stimulated emission occurs between the long-lived level (3) and level (2) with rate Kn, where n
denotes the number density of the photons. Level (2) is short-lived and hence the electrons drop
almost instantaneously to level (1).

3.3.3 CO2 laser

Assuming independence of the three basic processe (pumping, relaxation, stimu-
lated emission), the population equation for N1, N2, and N3 are now given by

dN1

dT
= −Wp(N1 −N3) + γ21N2 + γ31N3 (3.37a)

dN2

dT
= γ32N3 − γ21N2 + kn(N3 −N2) (3.37b)

dN3

dT
= Wp(N1 −N3)− γ32N3 − γ31N3 − kn(N3 −N2) (3.37c)

As for the ruby laser we assume coherent pumping, i.e the pumping mechanism
induces back and forth transition between levels 1 and 3. For

dN1

dT
+

dN2

dT
+

dN3

dT
= 0

We would take advatage of the relatively small values ofγ32 and Wp compared
to either γ21 or γ31 The large value of γ21 and γ31 means that N2 and N3 are small
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compared to N1 because they rapidly relax to their equilibrium values. From
equation (3.2) N1 = NT . With N1 = NT and neglecting all γ32N3 terms equations
(3.11) simplify as

dN1

dT
= −WpNT + γ21N2 + γ31N3 (3.38a)

dN2

dT
= −γ21N2 + kn(N3 −N2) (3.38b)

dN3

dT
= WpNT − γ31N3 − kn(N3 −N2) (3.38c)

We introduced the inversion of population

N = N3 −N2 (3.39)

and express N2 interms of N3 and N as N2=N3 −N , from equation (3.12)

dN1

dT
= −WpNT + γ21(N3 −N) + γ31N3 (3.40a)

dN1

dT
= WpNT − γ31N3 − 2knN + γ21(N3 −N) (3.40b)

since the total population is
N1 +N2 +N3 = N1 + 2N3 −N = NT

N3 =
NT −N1 +N

2
(3.41)

substitute equation (3.15) into (3.14)

dN1

dT
= γ1N + γ2(NT −N1)−WpNT (3.42a)

dN

dT
= −γ1(NT −N1)− 2knN − γ2N +WpNT (3.42b)

Where γ1 =
γ31 − γ21

2
and γ2 =

γ21 + γ31
2

We now introduce the following dimensionaless variables t = γcT , I =
2kn

γ2
and

u =
kN

γc
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W =
k

γcγ2
(−γ1(NT −N1) +WpNT ) (3.43)

From equations (3.8) and (3.16) we obtain

dI

dT
= I(−1 + u) (3.44a)

du

dT
= E(W − u(1 + I)) (3.44b)

dW

dT
= E(A+ bu−W ) (3.44c)

E≡γ2
γc
, b≡(

γ1
γ2
)2 and A≡kWpNT

γcγ2
(1− γ1

γ2
)

From equation (3.18)the population inversion U which is coupled to a reservoir
population W. Both U and W are slow variables because the right hand sides of
the equations for U and W are proportional to E which is a small parameter. A is
the control parameter and there are only two fixed parameters, b and E. Using the
values of the parameters given by Lefrac et al. We find b = 0.85 and E = 0.1375.
From equation (3.18), we find the following steady state solution.

I = 0,W = U =
A

1− b
(3.45a)

I = A+ b− 1 ≥ 0, U = 1,W = A+ b (3.45b)

corresponding to OFF and ON states, respectively. The value of b is close to 1
because γ31 << γ21. However we cannot set b equal to 1 because equation (3.19a)
is singular at b=1.
From equation (3.19b) we find that the lasing threshold is A = Ath = 1−b suggest-
ing a drastic reduction of the lasing threshold from a two to a three level system.
This is however not the case because the definition of A is quite different in the
two and three level problems. Practically A is not calculated from the physical
constants but it is normalized using the threshold pump as a reference since it can
be determine experimentally. If this is done, the OFF and ON steady states are
(I, U)≡(0, A/Ath) and (I, U)≡(A− Ath, 1), respectively.
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Linear Stability Analysis
We wis to find how a small perturbation of the either (3.19a) or (3.19b) will grow
or decay. let insert I = Is + i, U = Us + u and W = Ws = w into equation (3.18)
where (Is, Us,Ws) denotes the zero intensity steady state of equation (3.19b).
Simplifying the resulting equations and neglecting all nonlinear contributions in
i, uandw. We obtain the following linear equation for i,u and w.

d

dt

 i
u
w

 =

Us − 1 Is 0
−EUs −E(1 + Is) E
0 Eb −E − σ

 i
u
w

 (3.46)

The general solution is a linear combination of the exponential solution of the
form

i = c1exp(σt), u = c2exp(σt).andw = c3exp(σt) (3.47)

Where σ is the growth rate and the cj are constants. substituting (3.21) into
(3.20), we have a homogeneous system of equations for c1, c2, c3. A trivial solution
is possible only if Us − 1− σ Is 0

−EUs −E(1 + Is)− σ E
0 Eb −E − σ

 = 0 (3.48)

For the zero intensity steady state (3.19a) and (3.22) leads to the following char-
acteristic equation(

A

1− b
− 1− σ

)
(σ2 + 2Eσ + E2(1− b)) = 0 (3.49)

σ1 =
A

1− b
− 1. σ2 and σ3 satisfy σ2 + 2Eσ + E2(1 − b) = 0. From the sign

of coefficient and since b < 1 the real part is always negative. The stability is
determine by σ1 only. σ1 changes sign at A = Ath = 1 − b and the solution is
stable (unstable) if A < Ath (ifA > Ath)
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For the non-zero intensity steady state (3.19b) and (3.22) leads to the following
characteristic equation for σ

σ3 + c1σ
2 + c3σ + c3 = 0 (3.50)

c1≡2E + EIs, c2≡EIs + E2A, c3≡E2Is
The necessary and sufficient conditions for σ to have a negative real part are
known as the Routh-Hurwitz conditions, these requires the following inequalities
on the coefficient cj
cj (j=1,2,3)
c1 > 0, c3 > 0 and c1c2 − c3 > 0.
They are easily verified since E and Is are both negative. The non-zero intensity
solutionis always stable.
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Chapter 4

Simulation Results

4.1 Simulation

In this chapter the two-dimensional model of the rate equations derived in the
previous chapter were simulated using Matlab and Runge-Kutta.

Matlab was used to simulate equations (3.12a) and (3.12b). The simulation
was done for various values of the pump parameters A and for three different
types of lasers namely:
Semicondoctor Laser
CO2 Laser
Solid State Laser.
The results of the simulation was used to discribed the dynamical behaviour of
the lasers.

Laser Tc(s) T1(s) γ

CO2 10−8 4×10−6 2.5×10−3

Solid State (Nd+3 : Y AG) 10−6 2.5×10−4 4×10−3

Semiconductor(AsGa) 10−12 10−9 10−3
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Figure 4.1: Switch-on transient of semiconductor laser for pump parameter A=2

4.2 Switch-on Transient and phase portrait

The intensity was plotted against time fig. 4.1 to fig. 4.6. The phase portrait is
also plotted for population density and intensity fig. 4.7 to fig. 4.12.
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Figure 4.2: Switch-on transient of solid state laser for pump parameter A=2
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Figure 4.3: Switch-on transient of CO2 laser for pump parameter A=2
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Figure 4.4: Switch-on transient of semiconductor laser for pump parameter A=5
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Figure 4.5: Switch-on transient of solid state laser for pump parameter A=5
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Figure 4.6: Switch-on transient of CO2 laser for pump parameter A=5

34



Fundamentals of Laser Dynamics CHAPTER 4. SIMULATION RESULTS

Figure 4.7: Phase porrait of semiconductor laser for pump parameter A=2
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Figure 4.8: Phase porrait of solid state laser for pump parameter A=2
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Figure 4.9: Phase porrait of CO2 laser for pump parameter A=2
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Figure 4.10: Phase porrait of semiconductor laser for pump parameter A=5
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Figure 4.11: Phase porrait of solid state laser for pump parameter A=5
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Figure 4.12: Phase porrait of CO2 laser for pump parameter A=5
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4.3 Comparison of the linear approximation vs. exact nu-

merical solution

In this section we obtain numerical sulutions of the 2d nonlinear laser model of
equations (3.26). This is carried out using a common variable-degree Runge-
Kutta procedure with well controlled precision. The solution for the value of
the parameter A = 2 for both the dimensionless field E and population density
difference D is shown in Fig. (4.14) by the solid lines. The phase portrait of
equations (3.26) is shown in fig. (4.15).
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

Fig (4.1) to (4.6) show a typical turn on time for the most common lasers used
today (solid state, CO2, and semiconductor lasers). We switch the pump from
an above threshold value and observe the time evolution of the intensity. Three
distinct regimes were observed.
1. A time interval where the laser power remain very low. This region is called
the “ latency,” “lethargy,” or “turn-on” region. The delay of the laser transition
is called turn-on time or delay.
2.A strongly pulsating intensity regime during which the laser emitts a series of
sharp spikes separated by periods of very low emission.
3.A region of damped oscillation as the laser approaches its steady state through
exponentially damped sinusoidal oscillations.

For pump parameter A=2, from fig. (4.1) it was observed that the semiconduc-
tor laser has the highest latency period, the highest intensity spikes and it takes
a longer time for the laser to come to steady state.
CO2 laser has the lowest latency period
lowest intensity spikes and
it takes a shorter time for the laser to come to steady state.
From the graph it was also observed that as the pump parameter A increases the
latency time reduces, the intensity increases and it takes a shorter period for the
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laser to come to steady state.
The graphs of the turn-on transient and phase portraits are compactable, they
clearly explain the trajectory of the dynamical system of lasers.

The 2D version of the rate equations were simulated. It was observed from
the results that as the pump power A increases the latency time decreases, the
intensity increases and it takes a shorter time for the laser to come to relaxation
oscillation. From the results it was also observed that the semiconductor laser has
the highest latency period because it takes some time to move the electron from
the valence band to the conduction band. The CO2 laser has the shortest latency
time, lowest intensity spikes and it takes a shorter time for the laser to come to
relaxation oscillation. The solid state laser lies between the semiconducor and the
CO2 laser.

5.2 Recommendations

The following are suggestions for future reseach:
Quantum and semiclassical approach should be used to derive the rate equa-

tions.
The numerical solution should be extended to 3D.
The research should be done for more lasers.
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