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ABSTRACT 

Nowadays, shifts in Hardware and Software technologies have forced designers and users to look 

at micro-architecture that process instructions stream with high performance and low power 

consumption. 

In Striving for such high performance, the Queue Processor has been designed with architecture 

which has the following features: 

 Low power consumption 

 Smaller code size 

 Simple Hardware 

 High Performance in terms of Speed 

 High Instruction level parallelism 

 

This research aims at comparing and evaluating these performance features of the Queue 

Processor architecture with the traditionally used RISC architecture.  Evaluation will be done in 

terms of Software (code size, execution time) and Hardware (Logical Elements, power and 

speed). This evaluation is performed using Quartus II IDE by Altera. 

The QSoC will be used as case study for the Queue Processor while Aquarius will be used as 

case study for the RISC processor. 

I’m confident that this evaluation research will show a significant improvement in the 

performance of the Queue Processor over the RISC Architecture. 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENT 

I am grateful to my God Almighty for His guidance and sustenance during the course of my 

Masters’ program. 

I am heartily thankful to my supervisor, Prof. Ben Abdallah Abderazek, whose guidance and 

support from the initial to the final level enabled me to develop an understanding of the subject.  

I also owe my deepest gratitude to my dear husband who inspired, supported and encouraged me 

all the way. 

Lastly, I offer my regards and blessings to all my colleagues who supported me in any respect 

during the completion of this Thesis. 

Dorothy Maduagwu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

CHAPTER 1 - INTRODUCTION ................................................................................................1 

1.1 Importance of Performance Evaluation ...............................................................................1 

    1.2 Research Objectives……………………………………………………………………………..2 

    1.3 Motivation of Research……………………………………………………………………2 

   1.4 Queue Computing…………………………………………………………………………3 

   1.5 Thesis Outline……………………………………………………………………………..4 

CHAPTER 2 –LITERATURE REVIEW ....................................................................................5 

2.1 A Short History of Processor Architecture ..........................................................................5 

    2.2 Measuring Processor Performance………………………………………………………..6 

    2.3 Conventional Processor…………………………………………………………………...7 

2.3.1 Issues with Conventional Processors...............................................................................7 

         2.3.2 Architectural Techniques……………………………………………………………….7 

    2.4 Produced Order Queue Computing………………………………………………………..9 

    2.5 Queue Core Architecture………………………………………………………………...13 

       2.5.1 ALU (Arithmetic Logic Unit)……………………………………………………..…..13 

       2.5.2 MLT (Multiplier, Divider and MOD Instructions)……………………………………14 

       2.5.3 LOAD/STORE………………………………………………………………………..14 

       2.5.4 SET……………………………………………………………………………………15 

       2.5.5 Branch…………………………………………………………………………………15 

    2.6 Instruction Pipeline Structure……………………………………………………………16 

CHAPTER 3 – QUEUE Vs RISC MACHINES………………………………………………23 

    3.1 Queue Machine Analysis………………………………………………………………...24 

        3.1.1 Higher Instruction Level Parallelism (ILP)…………………………………………..24 

        3.1.2 Reduced Instruction Width…………………………………………………………...26 

        3.1.3 Free from False Dependencies………………………………………………………..27 

            3.1.3.1 Register Renaming……………………………………………………………….27 



v 
 

       3.1.4 Drawbacks of Queue Machines………………………………………………….........29 

    3.2 QSoC Simulation and Synthesis…………………………………………………………30 

    3.3 Quartus II Overview……………………………………………………………………..30  

    3.4 FPGA Implementation of QSoC………………………………………………………...31 

    3.5 Pictorial Summary of Queue Machines Vs RISC Machines…………………………….32 

CHAPTER 4 – COMPLEXITY ANALYSIS…………………………………………………34 

    4.1 Code Size………………………………………………………………………………...34 

    4.2 Synthesis Result (Logical Elements)…………………………………………………….36 

    4.3 Power and Speed Comparison Results…………………………………………………..37 

CHAPTER 5 DICUSSION OF RESULTS…………………………………………………....39 

CHAPTER 6 CONCLUSION………………………………………………………………….40 

     6.1 Future Work……………………………………………………………………………...40 

REFERENCES …………………………………………………………………………………41 

APPENDICES 

     Appendix A Verilog Codes……………………………………………………………….....42 

Top Level Module (QP_top.v)…………………………………………………………...42 

Memory Unit (QP_MU)…………………………………………………………………46 

Queue Computation Unit (QP_QCU)……………………………………………………48 

Writeback Unit (QP_WBU)……………………………………………………………...53 

Execution Unit (QP_EU)………………………………………………………………...55 

     Appendix B Screenshots………………………………………………………………….....67 

 

 

 

 

 



vi 
 

TABLE OF FIGURES/TABLES/CHARTS 

Fig 1 Pipelined Execution…………………………………………………………………….7 

Fig 2 Demonstration of Produced Order Queue Computing………………………………….8 

Fig 3 Circular Queue Register Structure……………………………………………………...9 

Fig 4 Queue ISA……………………………………………………………………………..13-15 

Fig 5 Instruction Fetch Data Path……………………………………………………………16 

Fig 6 Instruction Decode Data Path………………………………………………………….17 

Fig 7 Queue Computation Example………………………………………………………….18 

Fig 8 Instruction Issue Unit………………………………………………………………….19 

Fig 9 Execution Unit Data Path……………………………………………………………...20 

Fig 10 Calculation of Next QH and QT Values……………………………………………...21 

Fig 11 QC2 Architecture Block Diagram……………………………………………………22 

Fig 12 Research Methodology Adopted…………………………………………………….23 

Fig 13 Expression Evaluation Using Level Order Traversal………………………………...25 

Fig 14 Comparison of Program size…………………………………………………………26 

Fig 15 Problem of Queue Machines…………………………………………………………29 

Fig 16 Summary of Register Machines……………………………………………………...32 

Fig 17 Summary of Queue Machines………………………………………………………..33 

 

Table 1 Code Size Comparison………………………………………………………………34 

Table 2 LE and TCF Results…………………………………………………………………36 

Table 3 Speed and Power Consumption Comparisons for various Synthesizable CPU 

Cores…………………………………………………………………………………………37 

 

Chart 1 Bar Chart showing Code Size Comparison Results…………………………………35 

Chart 2 Parallelism Result……………………………………………………………………38 



1 
 

CHAPTER ONE 

INTRODUCTION 

1.1 Importance of Performance Evaluation 

Performance evaluation is at the foundation of computer architecture research and development. 

Contemporary microprocessors are so complex that architects cannot design systems based on 

intuition and simple models only.  

Adequate performance evaluation methods are absolutely crucial to steer the research and 

development process in the right direction. However, rigorous performance evaluation is non-

trivial as there are multiple aspects to performance evaluation, such as picking workloads, 

selecting an appropriate modelling or simulation approach, running the model and interpreting 

the results using meaningful metrics. Each of these aspects is equally important and a 

performance evaluation method that lacks rigor in any of these crucial aspects may lead to 

inaccurate performance data and may drive research and development in a wrong direction [04]. 

The major aims of Performance Evaluation are to: 

 Collect and disseminate information relative to performance aspects, and in particular to 

a specific topic. 

 Promote interdisciplinary flow of technical information among researchers and 

professionals. 

 Serve as a publication medium for various special interest groups in the performance 

community at large. 

 

1.2       Research Objectives 

This research studies extensively, the Queue Processor Architecture in general and evaluates the 

QSoC (Queue System on Chip) in specific. 

This research compares two different processor architectures: Queue Processor (using QSoC 

from ASL as case study) and RISC Processor (using Aquarius from OpenCores as case study).  
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Through extensive simulation experiments, the performance of the Queue Processor is evaluated 

alongside the RISC Architecture. 

This evaluation is done in terms of Hardware:  

 Logical elements  

 power  

 speed  

And Software:  

 Code size  

 Execution time 

The work consists of three parts: initial analysis, implementation and benchmarking. 

During the initial analysis, the processor architectures will be analyzed and compared based on 

characteristics such as pipeline depth, Instruction Set Architecture, data path and control path. 

Each processor is synthesized and implemented on a DE-II FPGA board.  

Characteristics such as gate count, maximum clock frequency, and performance is measured. 

Performance of the implemented processors is measured with a set of standard benchmarks.  

This research is aimed at identifying the significant improvement in the performance of the 

Queue Processor over the RISC Architecture. 

 

1.3 Motivation for Research 

Nowadays, shifts in Hardware and Software technologies have forced designers and users to look 

at micro-architecture that process instructions stream with high performance and low power 

consumption. 



3 
 

Queue computing and architecture design approaches take into account performance and power 

consumption considerations early in the design cycle and maintain a power-centric focus across 

all levels of design abstraction. 

This is especially useful since power has become a problem in most countries. The importance of 

the use of a processor which consumes and dissipates less power cannot be over emphasized. 

To address this issue, and especially to increase processing speed, it is believed that the Queue 

processor provides an interesting alternative to the design of embedded systems. 

 

1.4        Queue Computing 

The accelerated demand in increasing performance has resulted in the research into and the 

development of higher performance and less power consuming architectures which employ 

queue computing. 

Queue Computing is simply processing data using queues. The queue data structure uses the 

FIFO (First In First Out) scheme whereby data that comes in first is processed first. 

Queue computing model refers to the evaluation of expression using FIFO queue, called operand 

queue instead of registers as intermediate storage of results [02]. 

This model establishes two rules for the insertion and removal of elements from the operand 

queue. Operands are inserted, or en-queued, at the rear of the queue. And operands are removed, 

or de-queued, from the head of the queue. Two references are needed to track the location of the 

head and the rear of the queue. The Queue Head (QH) points to the head of the queue, and Queue 

Tail (QT) points to the rear of the queue [02]. 

Queue processors offer a very attractive alternative for the design of embedded processors given 

their characteristics of  

 Small Instructions  

 Simple Hardware   
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 High Instruction Level Parallelism 

 Free from False Dependencies 

 

1.5 Thesis Outline 

This thesis work is divided into six chapters. The first chapter gives an introduction to queue 

computing, explaining the research objectives and approach taken to develop the topic. 

The second chapter develops a literature review of processor architecture. It gives detailed 

analysis of the Produced Order Queue Computing, the Circular Queue Register structure, and the 

Queue core in terms of architecture, ISA (Instruction Set Architecture), data path and control.  

The third chapter discusses the specific features (like level order traversal, operands not 

explicitly specified, absence of register renaming, etc) which enable it extract high instruction 

level parallelism (ILP), lower power consumption and smaller code size. The RISC processor is 

also closely examined and analysed alongside the Queue processor. 

Chapter four presents the methodology employed to carry out not just a theoretical analysis but 

simulations to support the higher performance of the Queue architecture over the RISC 

architecture. 

The fifth chapter focuses on the results of the simulation and experiments carried out. 

The final chapter summarizes and draws conclusions based on the work done. It further outlines 

future research areas with respect to the performance evaluation carried out. 
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CHAPTER TWO 

LITERATURE REVIEW 

Since computer was invented in the 40’s, computer programmers and users have been requesting 

faster computers to solve larger and more complex computational tasks. This need for more 

computing power is going to be endless, because there will always be problems that any 

computer cannot solve fast enough. The request for more powerful computers has been, however, 

realized amazingly well. The performance of computers has been doubled in every second year 

during the last five decades. This has been the result of faster and smaller components, better 

integration of circuitries and better processor architectures. 

2.1      A short history of Processor Architecture 

A processor is the brain of the computer. It is the portion of the computer that tells the computer 

what to do and when to do it. It executes computing tasks according to given instructions. 

Physically it consists of numerous interconnected digital gates. These gates form logical entities 

that preserve data (registers, latches, buffers), carry out the calculation (arithmetic and logical 

unit, ALU), take care of the communication to and from memory (memory unit, MU), or control 

the processor (sequencers, SEQ). ALU, MU, and SEQ are called processing elements or 

functional units (FU), because they process the data provided by the instructions. Some 

functional units may be assigned to special uses like address units (ADR) and compare units 

(CMP), which are actually ALUs dedicated to address calculations and comparing operands [05]. 

Different trends in scheduling the execution of instructions in a processor reflect distinctively the 

development of processor architectures.  

The first processors were designed so that they executed instructions strictly sequentially [01]. 

These processors are called non-pipelined processors or scalar processors. 

In the 50’s pipelined execution or pipelining was invented to speed up the execution of 

instructions. The execution of instructions is divided into several parts called pipeline stages. The 

stages are connected to the next to form a pipe. Several instructions can be overlapped in a 
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pipeline by executing different stages of consecutive instructions simultaneously. We call 

processors that execute instructions in this manner pipelined processors. 

In the late 70’s processors using a smaller number of simpler machine language instructions were 

reinvented, because CISC processors were shown inefficient [01]. The optimization of programs 

was left to the job of a compiler. Processors using a smaller number of simpler instructions are 

called reduced instruction-set computer (RISC) processors. 

Lately, the quest for high performance computing with minimal power has led designers at the 

micro-architectural level to create the queue processor which is discussed extensively in this 

chapter. 

2.2 Measuring Processor Performance 

We measure performance in an attempt to determine fitness for a particular purpose. A processor 

can be exceptionally fast at performing a certain kind of computation but offer insufficient 

performance for a different task. For example, the main processor of a desktop computer is not 

specialized for any particular type of programs and tries to perform all tasks equally well, while 

excelling at none. A GPU on the other hand, is specialized towards the graphics related 

operations needed for advanced 3D graphics. 

To really know how well a processor performs a certain task, one would ideally have to 

implement the specific algorithm on that specific processor. Naturally, this is an unfeasible 

approach for processor evaluation. Simple metrics such as clock speed provide a hint of 

performance, but is almost useless by itself.  Average amount of cycles per instruction reveals a 

bit more. However, to really get an idea we must put the processor in motion—we must run a 

program on it. By executing a mix of instructions corresponding to a real program we can get an 

estimate of the number of average instructions per clock cycle. However, a simple mix of 

instructions may not accurately model dependencies between instructions, which may or may not 

cause the processor to stall, leading to an optimistic performance estimate.  

Benchmarks are programs designed to measure the performance of an entire computer system or 

a part thereof. Compared to simple instruction mixes, they better model inter-instruction 

dependencies and more accurately estimates performance. A synthetic benchmark performs no 
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real work, but tries to mimic the operations performed by a real program, while an application 

benchmark performs a real, application specific, task. Naturally, one benchmark does not fit all.  

As previously stated, performance is application dependent and benchmarking programs must 

take this into account. Choosing the right benchmark is an important first step. In this thesis we 

are looking to measure general purpose speed and power performance. 

2.3 Conventional Processors 

Conventional processors begin one operation per cycle. To reduce Cycle Per Instruction (CPI) 

therefore requires starting more than one operation per cycle. This requires the processor to keep 

many instructions in flight, use dynamic scheduling and register renaming. 

2.3.1 Issues with conventional Processors 

 Processor gets ‘hung up’ on instructions requiring more than one clock cycle 

 Low performance in terms of speed, time and power 

2.3.2 Architectural Techniques 

An attempt to achieve scalar and better performance resulted in several architectural techniques 

as outlined below. 

Architectural Techniques 

 Instruction Pipelining – an implementation technique whereby multiple instructions are 

overlapped in execution. This accelerates instruction execution. 

Example: 

 

 

 

   

 

             

Fig 1 Pipelined Execution  
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Execution time of instructions without pipelining takes 7*6 = 42 time Units (Assuming equal 

duration for various stages. 

Execution time of instructions using a 6 – stage pipeline will be reduced to 12 time Units as 

shown above. 

FI – Fetch Instruction 

DI – Decode Instructions 

CO – Calculate Operand 

FO – Fetch Operand 

EI – Execute Instructions 

WO – Write Operand 

 Super Scalar – super scalar machines use their hardware to schedule parallelism. It 

employs instruction pipelining technique. 

 Very Long Instruction Word (VLIW) – this approach executes operations in parallel on 

a fixed schedule determined when programs are compiled. VLIW CPUs offer significant 

computational power with less hardware complexity (but greater software complexity).  

 Out of Order (OoO) Execution – this new paradigm is a technique used in high- 

performance microprocessors to make use of cycles that would otherwise be wasted by 

delay.  

The key concept is to allow the processor to avoid ‘stalls’ that occur when the data needed to 

perform an operation are unavailable. OoO processors fill these slots in time with other 

instructions that are ready, and then re-order the results at the end to make it appear that the 

instructions were processed as normal. 
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2.4 Produced order Queue Computing 

The produced order queue computing model uses a circular queue-register instead of random 

access registers to store intermediate results. Data is loaded in the QREG (Queue Register) in 

produced order scheme and can be reused [07, 08, and 09]. 

This feature has a profound implication in the areas of parallel execution, program compactness, 

hardware simplicity and high execution speed. [03, 10] 

A special register called queue head, (QH), points to the first data in the QREG. Another pointer, 

named queue tail pointer (QT), points to the location of the QREG in which the result is stored. A 

live queue head pointer (LQH) is also used to keep used data that could be re-used from being 

overwritten. [11] 

To demonstrate how this works, given the expression (a * b) + (c / d) = x. The figure below 

describes how this expression is evaluated using the produced order queue computing model. 
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Fig. 2 Demonstration of Produced Order Queue Computing 

 

 

 

 

 

 

 

 

 

 

a) Data Flow Graph of (a * b) + (c / d) = x 
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c)    Circular Queue Register content at each execution stage 

 a b c d 

ld a, ld b, ld c, ld d 

LQ
H 

QH 

     a * b       c/d  

QH QT 

mul, div 

 st x 

QT LQH QH add 1 

          (a*b)+(c/d) 

LQH QT QH 

QT 

ST 2 

ST 3 

ST 1 

ST 4 

Ld a //load variable “a” 

Ld b // load variable “b” 

Ld c // load variable “c” 

Mul //multiply first 2 
//variables 

Div //divide from the 
//front of the Queue 

Add 1 //add entry pointed 
//by QH to (c/d) 

St x //store (a*b)+(c/d) 
//into  x 

b) Generated Instructions 
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Datum is loaded with load instruction (ld), computed with multiply (∗), add (+), and divide (/) 

instructions. The result is stored back in the data memory with store instruction (st). 

The instruction sequence for the queue execution model is correctly generated when we traverse 

the data flow graph (shown in Fig. 1(a)) from left to right and from the highest to the lowest 

level. The generated instruction sequence from the data flow graph is shown in Fig. 1(b). The 

content of the QREG at each execution stage is shown in Fig. 1(c). 

A special register, called queue head pointer, points to the first data in the QREG. Another 

pointer, named queue tail pointer, points to the location of the QREG in which the result is 

stored. 

A live queue head pointer (LQH) is also used to keep used data that could be reused and thus 

should not be overwritten. These data, which are found between QH and LQH pointers, are 

called live-data. The live-data entries in the QREG are statically controlled. Two special 

instructions are used to stop or release the LQH pointer. Immediately after using the data, the QH 

is incremented so that it points to the data for the next instruction. QT is also incremented after 

the result is stored. 

The four load instructions load in parallel a, b, c, and d data and place them into the QREG. At 

this state, QH points to datum a and the QT points to an empty location as shown in Fig. 1(c) (ST 

1). 

The fifth and sixth instructions are also executed in parallel. The mul refers a and b then inserts 

(a ∗ b) into the QREG. The div refers c and d then inserts (c / d) into the QREG. At this state, the 

QH, and QT are incremented as shown in Fig. 1(c) (ST 2). 

The seventh instruction (add 1) adds the data pointed by QH (in this case (a * b)) by the data 

located at +1, offset, from QH (in this case (c / d)) as shown in Fig. 1(c) (ST 3). 

The last instruction stores back the result in the data memory. Since the QREG becomes empty, 

LQH, QH, and QT point to the same empty location (ST 4). 
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Fig 3. Circular Queue Register Structure  

(a) Initial QREG state  

(b) QREG state after writing the first 32-bit data (dat1) 

(c) QREG state after writing the second data (dat2) and consuming 
the first 32 bit data (dat1) 

(d) QREG state with LQH pointer update and different regions 

 

Circular Queue Register 
Structure 

 

4 

10 

 

1 
0 

2 3 

5 

6 

7 
8 

11 
1
2 

1
3 

1
4 

1
5 

9 

c
) 

LQ
H 

Q
H 

Q
T 

dat 
1 

dat 
2 

a
) 

LQ
H 

Q
H 

Q
T 

 

b
) 

LQ
H 

Q
H 

10 

 

1 
0 

2 3 

5 

6 

7 
8 

11 
1
2 

1
3 

1
4 

1
5 

9 

Q
T 

LQ
H 

d
) 

4 

10 

 

1 
0 

2 3 

5 

6 

7 
8 

11 
1
2 

1
3 

1
4 

1
5 

9 

dat 
1 

dat 
2 

dat 
3 

dat 
4 dat 

5 
dat 
6 
dat 
7 

QT 

QH 



13 
 

2.5 Queue - Core Architecture 

In queue computing, all instructions are 16-bit wide, allowing simple instructions fetch and 

decode stages and facilitating pipelining of the processor. 

The instruction format reserves 8-bits for the Opcode and 8-bits for the Operand. The operand 

field is used in binary operations to specify the offset reference value with respect to QH from 

which the second source operand is dequeued, QH-N. 

For cases where 8-bits are not enough to represent an immediate value or an offset for a memory 

instruction, a special instruction called 'covop' is used to precede the conflicting instruction. This 

special instruction extends the operand field of the instruction following it. 

2.5.1 ALU (Arithmetic Logic Unit) 

 

 

 

 

 

 

 

 

 

 

 

16 –bits width 

 

 

 

 

 

 

 

Mnemonic 

 

Binary 

  

Operation QREG (SRC1 addr) + QREG (SRC1 + 0000111) => QREG (DEST 

addr) 

Add, addu, sub,subu, and, 

or, sru, sl, xor, neg 

opcode dis 

1    0 0      0   0       0       0      0     0       0      0      0      0      1     1    
1 

add 00000111 
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2.5.2 MLT – Signed 32 bit multiplier, divider and mod instructions 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.3 LOAD/STORE 

 

 

 

 

 

 

 

 

 

 

 

 

32 –bits width 

 

 

 

 

 

Mnemonic 

 

 

Binary 

  

Operation QREG (SRC1 addr) % QREG (SRC1 + 0010111) => QREG 

(DEST addr) 

1    0 1      1   1       1       0      1    1       0      0      1      0      1     1     
1 

mod 1 0010111 

Mult, multu, div, divo, divu, 

mod, modu, muduo 

    opcode dis m 

 

 

 

 

 

 

Mnemonic 

 

Binary 

  

Operation QREG (SRC1 addr) => MEM (a0 + 11101110) 

Stb, sts, stw, ldb, ldbu, lds, 

ldsu, ldw, ldwu 

   opcode offset 

0      1 1         1       1   0       0       0        1        1       1      0       1        1    1    
0     

stw0 11101110 
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2.5.4 SET 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.5 Branch 

 

 

 

 

 

 

 

 

Fig 4.  Queue ISA 

 

 

 

 

 

 

Mnemonic 

 

Binary 

  

Operation 11111110 => QREG (DEST addr) // value is stored in [7:0] 

setHH, setHL, setLH, setLL, 

ldil, mv, dup, setr 

   opcode value 

 1    0   0       0        0        0        0       0       1       1        1      1       1      1       1     
0     

ldil 11111110 

 

 

 

 

 

 

Mnemonic 

 

Binary 

  

Operation [a0 + 11111110] => PC 

Bge, jump, call, rfc, b, beq, blt, 

ble, bge 

   opcode target 

0      0 0         1       1   0       1       1        1        1       1      1       1        1       1     
0     

call0 11111110 
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2.6 Instruction Pipeline Structure 

The execution pipeline operates in six stages combined with five pipeline-buffers to smooth-en 

the flow of instructions through the pipeline. The stages have been described below: 

Fetch Unit – the fetch stage delivers four instructions to the decode unit each cycle. The address 

pointer hardware (APH) of the fetched instructions issues a new address to the memory system. 

This address is the previous address plus 8 bytes or the target address of the currently executing 

flow-control instruction. 

 

Fig 5. Instruction Fetch Data Path 

Decode Unit (DU) – The DU decodes four instructions in parallel during the second phase and 

writes them into the decode buffer. This stage also calculates the number of consumed and 

produced data for each instruction which are used by the next pipeline stage to calculate the 

sources and destination locations for each instruction. Decoding stops if the queue buffer 

becomes full or if a halt signal is received from one or more stages following the decode stage. 
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Fig 6. Instruction Decode Data Path  

Queue Computation (QCU) - Four instructions arrive at the QCU unit each cycle. The QCU 

calculates the first operand (source1) and destination addresses for each instruction. The QCU 

unit keeps track of the current value of the QH and QT pointers. 



18 
 

 

Fig 7 Queue Computation Example 

Barrier - Inserts barrier flags for dependency resolutions. 

Issue Stage - Four instructions are issued for execution each cycle. In this stage, the second 

operand (source2) of a given instruction is first calculated by adding the address source1 to the 

displacement that comes with the instruction. The second operand address calculation is 
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performed in the QCU stage. However, for a balanced pipeline consideration, the source2 is 

calculated at the beginning of the IS stage. An instruction is ready to be issued if its data and its 

corresponding functional unit are available. The processor reads the operands from the QREG in 

the second half of the IS stage. 

 

Fig 8 Instruction Issue Unit  

Execution (EXE) - The macro data flow execution core consists of four integer ALU units, two 

floating-point units, one branch unit, one multiply unit, four set units, and two load/store units. 

The load/store units have their own address generation logic. Stores are executed to memory in-

order. 
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Fig 9. Execution Unit Data Path 
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Fig 10. Calculation of next QH and QT values 

Dynamic Operands Address Calculation 

 To execute instructions in parallel, the QC-2 processor must calculate each instruction’s 

operand(s) and destination address dynamically. 

 To calculate the source1 address of a given instruction, the number of consumed data 

(CNBR) field is added to the current Queue Head value (QHn). 
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 The destination address on the next instruction (INSTn+1) is calculated by adding the PNBR 

field (8-bit) to the current queue tail value (QTn). 

 

 

Fig 11. QC2 Architecture Block Diagram 
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CHAPTER 3  

QUEUE Vs RISC MACHINES 

The queue processor presents the bulk of work carried out in this thesis. This section presents a 

thorough analysis of the Queue processor alongside the RISC processor. It also examines the 

advantages of the Queue processor over the RISC processor. Some of its drawbacks are also 

outlined. Furthermore, all development tools used for software and hardware development are 

described. A flow chart showing the methodology is found below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12 Research methodology adopted 
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3.1 Queue Machines Analysis 

The analysis of the queue machines revealed the following advantages over its RISC counterpart: 

3.1.1 Higher Instruction Level Parallelism (ILP) 

ILP is the measure of how many operations in a computer program can be executed in parallel. It 

allows a processor to execute multiple instructions that are data independent in parallel. This is 

the key to improving performance in modern general purpose architectures. 

The queue processor groups instructions that are data independent and executes them in parallel. 

This is called Grouped ILP. ILP allows the independent instructions of a sequential program to 

be executed in parallel on multiple functional units. Careful scheduling of instructions is crucial 

to achieving high performance. 

Furthermore, such grouped ILP leads to Smaller Instruction Window which in turn requires less 

complexity. This leads to less power consumption 

The queue processor exploits high Instruction Level Parallelism by executing programs using a 

Level Order Traversal scheme. 

Its counterpart RISC processor does not exhibit such Grouped ILP and so has large Instruction 

Window which leads to more complexity and thus consuming a greater amount of power. 



25 
 

 

 

Fig 13 Evaluation of (a * b) + (c / d) using Level Order Traversal  

In a RISC machine the expression in Fig 12 would be evaluated in eight (8) phases using a Post 

Order Traversal. The queue machine however, employs the use of Level order Traversal to 

evaluate the expression in four (4) phases. The load instructions for operands a, b, c and d will be 

executed simultaneously, that is in parallel since they are of the same level on the parse tree. 

Similarly, the multiplication and the division instructions will be executed at the same time, after 

which the addition is carried out on the third level and lastly the result gets stored into x at the 

fourth level.  

It executes data independent instructions on the same level in parallel. This is a core way in 

which queue machines exploit maximum parallelism and thus higher performance. 
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3.1.2 Reduced Instruction width 

Instructions are shorter since they do not need to be explicitly specified. Data is implicitly taken 

from queue head and results stored in queue tail of the queue register (QREG). Not having 

explicit operands in the instructions make instructions short, improving code density.  

The advantage of such code density is that smaller memory is required. Also, the smaller the 

memory usage, the less power that is consumed. 

 

 

 

 

 

 

 

 

 

 

Fig 14  Comparison of program size 

The Fig 13 above gives an example of instructions for both the queue machine and the RISC 

machine. The longer instructions of the RISC machine are as a result of the operands’ location 

being explicitly specified in the instruction. Such long instructions consume more memory and 

invariably use more power. 
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Such smaller instruction width as seen in the queue machine instructions, places the queue 

processor at yet another advantage over its counterpart RISC processor. 

3.1.3 Free from False dependencies 

False dependencies are also called anti-dependencies. This is a WAR (Write After Read) 

dependency. 

Example: 

mul r1, r2, r3 

add r2, r4, r5 

This can be eliminated through register renaming as shown below: 

mul r1, r2, r3 

add r6, r4, r5 

For Queue computing, because instructions read and write their operands implicitly, the design 

makes instructions independent of the actual number of physical queue words (QREG). This 

feature is thus free from false dependency as described above. Therefore register renaming unit is 

eliminated. This reduces circuitry and improves power consumption. 

3.1.3.1 Register Renaming 

Register renaming is a technique used to allow multiple execution paths without conflicts 

between different execution units trying to use the same registers. Instead of just one set of 

registers being used, multiple sets are put into the processor. This allows different execution units 

to work simultaneously without unnecessary pipeline stalls. 

Register renaming refers to a technique used to avoid unnecessary serialization of program 

operations imposed by the reuse of registers by those operations. 

Register renaming is used to correct Write-after-read (WAR) data hazard. 
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 Write-after-read (WAR)  

A data hazard is caused by data dependencies between instructions. If the first instruction writes 

to the same register that the second reads from, the write may not complete before the read, 

resulting in incorrect data being read. 

A read from a register or memory location must return the last prior value written to that 

location, and not one written programmatically after the read. This is the sort of false dependency 

that can be resolved by renaming. WAR dependencies are also known as anti- dependencies. 

Instead of delaying the write until all reads are completed, two copies of the location can be 

maintained, the old value and the new value. Reads that precede, in program order, the write of 

the new value can be provided with the old value, even while other reads that follow the write 

are provided with the new value. The false dependency is broken and additional opportunities for 

out-of-order execution are created. When all reads needing the old value have been satisfied, it 

can be discarded. This is the essential concept behind register renaming. 

Results have shown that register renaming takes up to 4% of overall on-chip power in RISC 

processors.  

The absence of false dependencies in the Queue processor has also means that Register 

Renaming technique is not required. This leads to Queue machines saving considerable amount 

of power. 

This is thus another significant improvement of the queue based processor over the RISC based 

processor. 

However, the following drawbacks were noted too: 
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3.1.4 Drawbacks of Queue Machines 

For queue machines to evaluate an instruction, it first builds an expression tree for the 

instruction, and then schedules nodes in Level – Order. The tree is then traversed by level-order 

scheme. 

If the expression tree is optimized into a directed acyclic graph (DAG) as shown in Fig 14, level 

– order scheduling no longer holds. Thus, DAGs are not executed correctly. 

Furthermore, instructions are always read from the queue head and written to the queue tail. This 

does not allow for much flexibility. 

 

Fig 15 Problem of Queue Machines 
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3.2 QSoC Simulation and Synthesis 

A thorough analysis of the queue processor was carried out. This led to identifying the features in 

it that enabled the exploitation of high Instruction Level Parallelism, lower speed and lower 

power consumption. After the theoretical analysis of both processors, simulations were carried 

out to back this up. 

The QSoC was developed using Verilog Hardware Description Language (HDL). The HDL code 

was synthesized using Altera Quartus II 9.0 sp2 Web Edition.  

After synthesizing the HDL code, the designed processor showed characteristics that enable 

investigation of the actual hardware performance and functional correctness. It also gives the 

possibility to study the effect of coding style and instruction set architectures over various 

optimizations.  

For the QSoC processor to be useful for these purposes a modular approach was adopted to 

facilitate easier modifications – only relevant parts requiring modification need to be changed.  

Also, the processor description is synthesizable to derive actual implementations. 

The QSoC was synthesized for a DE II FPGA board.   

 

3.3 Quartus II Overview 

Quartus II is a software tool produced by Altera for analysis and synthesis of HDL designs, 

which enables the developer to compile their designs, perform timing analysis, examine RTL 

diagrams, simulate a design's reaction to different stimuli, and configure the target device with 

the programmer. 

The Web Edition was used because it is a free version that can be downloaded or delivered by 

mail for free. This edition also provides compilation and programming for a limited number of 

Altera devices. 

The low-cost Cyclone family of FPGAs is fully supported by this edition. 

http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Field-programmable_gate_array
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3.4 FPGA Implementation of QSoC  

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by 

the customer or designer after manufacturing—hence "field-programmable". The FPGA 

configuration is generally specified using a hardware description language (HDL). 

In this research, the QSoC was compiled and synthesized using Quartus II and subsequently, the 

netlist generated was downloaded unto the Cyclone DE II FPGA Board for implementation. The 

FPGA emulates the design of my hardware. 

The testbench used was that of a Clock which behaviour on the FPGA device is decribed below: 

 The clock program enables a User set the time as he/she desires. 

 The lower 4-bit and higher 4-bit of slide switches (SW0-SW7) indicate the 10's and 1's of 

the second, minute and hour. 

 These slide switches can be set as desired. 32 bits hexadecimal notations were used to 

specify constants.  

 Key 0 sets the clock to the default state of 0 second, 0 minute and 0 hour. 

 Keys 3, 2 or 1 can be used to set the clock time. (These keys have the same function) 

 After setting, the clock starts running from the time set 

 

 The results obtained from this synthesis are described in the following chapter.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
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3.5 Pictorial Summary of Queue Machines Vs RISC Machines 

 

Fig 16 Summary of Register Machines 
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Fig 17  Summary of Queue Machines 

The analysis above clearly demonstrates the advantage of the queue processor over its RISC 

counterpart with features like maximum parallelism, minimal ISA, level order traversal and 

requiring no register renaming owing to the absence of false dependencies. 

To establish that these analysis are not simply a product of mere chance, statistics of the 

simulation and synthesis results are described in the following chapter. 
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CHAPTER 4  

COMPLEXITY ANALYSIS 

4.1 Code size 

The table below shows the result of the code size analysis of various RISC cores as compared to 

the Queue core. 

 

Benchmarks MIPS 16 ARM X86 QC-2 

H.263 58.00 83.66 57.20 41.34 

MPEG2 53.09 78.40 53.22 36.75 

Susan 47.34 80.48 46.66 35.12 

AES 51.27 86.67 44.62 34.93 

Blowfish 54.59 86.38 57.45 45.49 

FFT 58.09 100.74 46.27 36.77 

Average 53.73 86.06 50.90 38.40 

Table 1 Code Size Comparison 



35 
 

 

 

Chart 1  Bar Chart showing code size Comparison Results 
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4.2 Synthesis Result (Logical Elements) 

 

Description Modules Logical Elements 

(LE) 

Total 

Combinational 

Functions (TCF) 

Instruction Fetch IF 483 483 

Instruction Decode ID 150 150 

Queue Compute Unit QCU 70 60 

Issue Unit IS 5544 4008 

Execution Unit EXE 882 845 

Memory Access MEM 1241 729 

QSoC QSoC 8370 6275 

Table 2 LE and TCF Results 

 

Fig 18 Floorplan of Leon Processor 

 



37 
 

 

Fig 19 Floorplan of QSoC showing space occupied on the target FPGA device 

 

4.3 Power and Speed Comparison Results 

Cores Speed (Spd) Area (ARA) Av. Power (mW) 

PQP 22.5 21.5 120 

SH-2 15.3 14.1 187.5 

Leon2 27.5 26.7 458 

Micro Blaze 26.7 26.7 135 

QC -2 25.5 24.2 90 

QSoC   61.1 

 

Table 3 Speed and power consumption comparisons for various Synthesizable CPU 

cores over speed (SPD) and area (ARA) optimizations 
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Chart 2 18 Parallelism Result 
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CHAPTER 5 

DISCUSSION OF RESULTS 

In QC-2 processor, all instructions designed are fixed format 16-bit words with minimal 

decoding effort. As a result, the QC-2 architecture has much smaller programs than either RISC 

or CISC machines. As shown in Table 1, programs sizes for the QC-2 architecture are found to 

be 50–70% smaller than programs for conventional architectures. 

Table 2 summarizes the synthesis results of the QC-2 for the FPGA and HardCopy targets. The 

complexity of each module as well as the whole QC-2 core are given as the number of logic 

elements (LEs) for the FPGA device and as the total combinational functions (TCF) count for the 

HardCopy device (Structured ASIC). The design was optimized for balanced optimization 

guided by a properly implemented constraint table. 

Performance of QC-2 in terms of speed and power consumption is compared with various 

synthesizable CPU cores as illustrated in Table 3. 

From the result shown in Table 3, the QC-2 processor core shows better speed performance for 

both area and speed optimizations when compared with SH-2, PQP, and ARM7 (hard core) 

processors. The QC-2 has higher speed for both SPD and ARA optimizations when compared 

with SH-2 processor (about 40% for speed optimization and 41.73% for area optimization). QC-

2 core also shows 25% less power consumption when compared with PQP and consumes less 

power than LEON2 and MicroBlaze processors.  

On average the QC-2 has about 40.87% higher speed than SH-2 processor. QC-2 core also shows 

25% less power consumption when compared with PQP, and consumes less power than SH-2, 

LEON2, and MicroBlaze cores. 
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CHAPTER 6 

CONCLUSION 

In this research work, the architecture, and features of the queue processor was evaluated 

alongside the RISC architecture. The theoretical analysis backed up by the synthesis results 

showed that the queue processor exhibits faster speed than its RISC counterpart. 

Comparison with other synthesizable cores showed that on average the QC-2 has about 40.87% 

higher speed than SH-2 processor.  

The lower Logical Elements (LE) accounts for its low memory usage, thus queue cores show less 

power consumption when compared with SH-2, LEON2, and MicroBlaze cores which use the 

RISC architecture. 

The complete absence of the register renaming unit also accounts for its less power consumption. 

This unit is almost always present in RISC architectures and account for about 4% of the overall 

on-chip power consumption in RISC processors. 

Since processor performance is measured by how much parallelism it can exploit, the queue 

processor stands out in this regard. This is as a result of the high parallelism results obtained with 

the QSoC due to its employing the Level Order Traversal Scheme. 

Conclusively, these results show that the queue processor offers an interesting alternative to the 

design of embedded systems. 

6.1 Future work 

The result of this performance evaluation revealed a little problem with the queue machine. To 

get around this, future work which could proffer a solution to this has been outlined below: 

• Eliminating the problem of the Queue machine with respect to DAG (Directed Acyclic 

Graph) expressions. 

• Improving the Issue mechanism (like merging the Barrier and Issue stages) 
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APPENDICES 

APPENDIX A 

VERILOG CODES  

FOR TOP LEVEL MODULE (QP_top.v) 

//--------------------------------------------------------------------

--------- 

// Title         : Top Module 

// Project       : Queue Processor Implementation in CFS 2009 

//--------------------------------------------------------------------

--------- 

// File          : QP_top.v 

// Created       : 28.08.2009 

// Last modified : 28.08.2009 

//--------------------------------------------------------------------

--------- 

 

`define SIM 

 

module QP_top( 

`ifdef SIM 

`else 

              CLK, 

              RESET 

`endif 

              ); 

`ifdef SIM 

   reg CLK; 

   reg RESET; 

   reg IntReq; 

   reg [31:0] IntAddress; 

    

`else 
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   input CLK; 

   input RESET; 

`endif 

    

   wire [31:0] Top_Address_wire; 

   wire [31:0] Top_DataToCPU_wire, Top_DataFromCPU_wire; 

   wire [1:0]  Top_ReadWrite_wire; 

 

`ifdef SIM 

   integer     i; 

   initial 

     begin 

        // Instruction Memory, width=16bit, depth=1024 

        $readmemh("../QASM/int_matrix_inst.hex", 

cpu0.fu0.InstructionMemory); 

 //$readmemh("SIM/mat_inst.dat", cpu0.fu0.InstructionMemory); 

        // Data Memory, width=32bit, depth=1024 

        $readmemh("../QASM/int_matrix_data.hex", mem0.dm0.DataMemory); 

 //$readmemh("SIM/mat_data.dat", mem0.dm0.DataMemory); 

      end // initial begin 

    

   initial 

     begin 

        CLK = 1'b1; 

        RESET = 1'b1; 

 IntReq = 1'b0; 

 IntAddress = 32'h00000000; 

 #10; 

        RESET = 1'b0; 

        #10; 

        RESET = 1'b1; 

 

 #1000 

   IntReq = 1'b1; 

 //IntAddress = 32'h00000048; 
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 IntAddress = 32'h00000380; 

 #1050 

   IntReq = 1'b0; 

 #100000; 

         

        // QREG Contents 

        $display("+------ QREG ------+"); 

        for(i=0;i<32;i=i+1) 

          $display("QREG[%d]: %h", i, cpu0.iu0.QREG[i]); 

        $display("+------ SPR ------+"); 

        for(i=0;i<16;i=i+1) 

          $display("SPR[%d]: %h", i, cpu0.iu0.SPR[i]); 

         

        // Display Memory Contents 

        $display("+------ Inst Memory ------+"); 

        for(i=0;i<10;i=i+1) 

          $display("IMEM[%d]: %h", i, cpu0.fu0.InstructionMemory[i]); 

        $display("+------ Data Memory ------+"); 

        for(i=0;i<50;i=i+1) 

          $display("DMEM[%d]: %h", i, mem0.dm0.DataMemory[i]); 

 

 $display("IMEM[896]: %h", cpu0.fu0.InstructionMemory[896]); 

  

  

        $finish; 

     end // initial begin 

    

   always #50 CLK = ~CLK; 

    

   initial 

     begin  

      $dumpfile("tb_top.dsn"); 

      $dumpvars(0, QP_top); 

     end 

`endif 
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   QP_CPU cpu0( 

               .CLK(CLK), 

               .RESET(RESET), 

                

               .QP_I_PeripheralData(Top_DataToCPU_wire), 

               .QP_I_IntReq(IntReq), 

               .QP_I_IntAddress(IntAddress), 

                

               .QP_O_PeripheralData(Top_DataFromCPU_wire), 

               .QP_O_PeripheralControl(Top_ReadWrite_wire), 

               .QP_O_PeripheralAddress(Top_Address_wire) 

               ); 

    

   PERI_MEM mem0( 

                 .CLK(CLK), .RESET(RESET), 

                  

                 .MEM_I_Address(Top_Address_wire), 

                 .MEM_I_Data(Top_DataFromCPU_wire), 

                 .MEM_I_ReadWrite(Top_ReadWrite_wire), 

                  

                 .MEM_O_Data(Top_DataToCPU_wire) 

                 ); 

endmodule // QP_top 

 

`include "QP_CPU.v" 

`include "PERI_MEM.v" 
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Verilog codes for Memory unit (QP_MU) 

//--------------------------------------------------------------------

--------- 

// Title         : Memory Unit 

// Project       : Queue Processor Implementation in CFS 2009 

//--------------------------------------------------------------------

--------- 

// Modification history : 

// 27.08.2009 : created 

//--------------------------------------------------------------------

--------- 

 

module QP_MU( 

             CLK, RESET, 

 

             MU_I_Result, 

             MU_I_WriteDataToMem, 

             MU_I_DstAddress, 

             MU_I_ControlMem, 

             MU_I_ControlWB, 

             MU_I_ReadDataFromPeripheral, 

 

             MU_O_Result, 

             MU_O_ReadDataFromMem, 

             MU_O_DstAddress, 

             MU_O_ControlWB, 

             MU_O_ControlPeripheral, 

             MU_O_PeripheralAddress, 

             MU_O_WriteDataToPeripheral 

             ); 

   parameter QPOINTER_WIDTH = 6; 

    

   input CLK, RESET; 
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   input [31:0] MU_I_Result; 

   input [31:0] MU_I_WriteDataToMem; 

   input [QPOINTER_WIDTH-1:0] MU_I_DstAddress; 

   input [1:0]                MU_I_ControlMem; 

   input [1:0]                MU_I_ControlWB; 

   input [31:0]               MU_I_ReadDataFromPeripheral; 

    

   output [31:0]              MU_O_Result; 

   output [31:0]              MU_O_ReadDataFromMem; 

   output [QPOINTER_WIDTH-1:0] MU_O_DstAddress; 

   output [1:0]                MU_O_ControlWB; 

   output [1:0]                MU_O_ControlPeripheral; 

   output [31:0]               MU_O_PeripheralAddress; 

   output [31:0]               MU_O_WriteDataToPeripheral; 

 

   // Output Generation 

   assign MU_O_Result = MU_I_Result; 

   assign MU_O_ReadDataFromMem = MU_I_ReadDataFromPeripheral; 

   assign MU_O_DstAddress = MU_I_DstAddress; 

   assign MU_O_ControlWB = MU_I_ControlWB; 

 

   // To Peripheral 

   assign MU_O_ControlPeripheral = MU_I_ControlMem; 

   assign MU_O_PeripheralAddress = MU_I_Result; 

   assign MU_O_WriteDataToPeripheral = MU_I_WriteDataToMem; 

 

endmodule // QP_MU 
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Verilog codes for Queue Computation Unit (QP_QCU) 

//--------------------------------------------------------------------

--------- 

// Title         : Queue Computation Unit 

// Project       : Queue Processor Implementation in CFS 2009 

//--------------------------------------------------------------------

--------- 

// Modification history : 

// 27.08.2009 : created 

//--------------------------------------------------------------------

--------- 

 

module QP_QCU( 

              CLK, RESET, 

 

              QCU_I_PN, 

              QCU_I_CN, 

              QCU_I_RegSel, 

              QCU_I_RegNum, 

              QCU_I_Operand, 

              QCU_I_ControlExe, 

              QCU_I_ExeOp, 

              QCU_I_ControlMem, 

              QCU_I_ControlWB, 

              QCU_I_PC, 

              QCU_I_Branch, 

              QCU_I_RenewQH, 

              QCU_I_RenewQT, 

 

              QCU_O_Src1Address, 

              QCU_O_Src2Address, 

              QCU_O_DstAddress, 

              QCU_O_Operand, 

              QCU_O_ControlExe, 
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              QCU_O_ExeOp, 

              QCU_O_ControlMem, 

              QCU_O_ControlWB, 

              QCU_O_PC, 

              //===== for interrupt ===== 

              QCU_I_IntReq, 

              QCU_I_IntEnable, 

              QCU_I_RFI 

              ); 

   parameter QPOINTER_WIDTH = 6; 

    

   input CLK, RESET; 

    

   input QCU_I_PN; 

   input [1:0] QCU_I_CN; 

   input [2:0] QCU_I_RegSel; 

   input [7:0] QCU_I_RegNum; 

   input [7:0] QCU_I_Operand; 

   input [4:0] QCU_I_ControlExe; 

   input [3:0] QCU_I_ExeOp; 

   input [1:0] QCU_I_ControlMem; 

   input [1:0] QCU_I_ControlWB; 

   input [31:0] QCU_I_PC; 

   input        QCU_I_Branch; 

   input [QPOINTER_WIDTH-2:0] QCU_I_RenewQH, 

                              QCU_I_RenewQT; 

 

   //===== for interrupt ===== 

   input                      QCU_I_IntReq, 

                              QCU_I_IntEnable, 

                              QCU_I_RFI; 

    

   output [QPOINTER_WIDTH-1:0] QCU_O_Src1Address, 

                               QCU_O_Src2Address, 

                               QCU_O_DstAddress; 
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   output [7:0]                QCU_O_Operand; 

   output [4:0]                QCU_O_ControlExe; 

   output [3:0]                QCU_O_ExeOp; 

   output [1:0]                QCU_O_ControlMem; 

   output [1:0]                QCU_O_ControlWB; 

   output [31:0]               QCU_O_PC; 

 

   //===== register ===== 

   //===== for interrupt ===== 

   reg [QPOINTER_WIDTH-2:0]    QCU_IQHR_reg,  

                               QCU_IQTR_reg; 

    

   wire [QPOINTER_WIDTH-2:0]   QCU_Src1Address_wire, 

                               QCU_Src2Address_wire, 

                               QCU_DstAddress_wire; 

   wire [QPOINTER_WIDTH-6:0]   QCU_ZeroSpace_wire; 

    

   assign QCU_ZeroSpace_wire = 0; 

    

   // QREG Pointer Register 

   reg [QPOINTER_WIDTH-2:0]    QCU_QH_reg, QCU_QT_reg; 

 

   // Output Generation 

   assign QCU_O_Src1Address = QCU_I_RegSel[2] ? {1'b1, 

QCU_ZeroSpace_wire, QCU_I_RegNum[3:0]} : {1'b0, QCU_Src1Address_wire};    

   assign QCU_O_Src2Address = QCU_I_RegSel[1] ? {1'b1, 

QCU_ZeroSpace_wire, QCU_I_RegNum[3:0]} : {1'b0, QCU_Src2Address_wire}; 

   assign QCU_O_DstAddress = QCU_I_RegSel[0] ? {1'b1, 

QCU_ZeroSpace_wire, QCU_I_RegNum[7:4]} : {1'b0, QCU_DstAddress_wire}; 

   assign QCU_O_Operand = QCU_I_Operand; 

   assign QCU_O_ControlExe = QCU_I_ControlExe; 

   assign QCU_O_ExeOp = QCU_I_ExeOp; 

   assign QCU_O_ControlMem = QCU_I_ControlMem; 

   assign QCU_O_ControlWB = QCU_I_ControlWB; 

   assign QCU_O_PC = QCU_I_PC; 
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   //==== QREG Pointer Calculation ====// 

   // Src1 

   assign QCU_Src1Address_wire = QCU_QH_reg; 

   // Src2, case 1 is for store instruction write data 

   assign QCU_Src2Address_wire = QCU_I_RegSel[2] ? QCU_QH_reg : 

((|QCU_I_Operand) ? QCU_QH_reg + QCU_I_Operand : QCU_QH_reg + 1); 

   // Dst 

   assign QCU_DstAddress_wire = QCU_QT_reg; 

 

   //==== Renew QREG Pointer ====// 

   always @(posedge CLK or negedge RESET) 

     begin 

        if(!RESET) 

          begin 

             QCU_QH_reg <= 0; 

             QCU_QT_reg <= 0; 

          end 

        else 

          begin 

             //===== for interrupt ===== 

             if((QCU_I_IntReq == 1'b1) && (QCU_I_IntEnable == 1'b1)) 

               begin 

                  QCU_IQHR_reg <= QCU_QH_reg; 

                  QCU_IQTR_reg <= QCU_QT_reg; 

                  QCU_QH_reg <= 0; 

                  QCU_QT_reg <= 0; 

               end 

             else if(QCU_I_RFI == 1'b1) 

               begin 

                  QCU_QH_reg <= QCU_IQHR_reg; 

                  QCU_QT_reg <= QCU_IQTR_reg; 

               end 

             else 

               begin 
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                  if(QCU_I_Branch) 

                    begin 

                       QCU_QH_reg <= QCU_I_RenewQH; 

                       QCU_QT_reg <= QCU_I_RenewQT; 

                    end 

                  else 

                    begin 

                       QCU_QH_reg <= QCU_QH_reg + QCU_I_CN; 

                       QCU_QT_reg <= QCU_QT_reg + QCU_I_PN; 

                    end 

               end // else: !if(QCU_I_IntReq) 

          end // else: !if(!RESET) 

     end // always @ (posedge CLK or negedge RESET) 

 

endmodule // QP_QCU 
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Verilog codes for Write Back Unit (QP_QCU) 

//--------------------------------------------------------------------

--------- 

// Title         : Write Back Unit 

// Project       : Queue Processor Implementation in CFS 2009 

//--------------------------------------------------------------------

--------- 

// Modification history : 

// 27.08.2009 : created 

//--------------------------------------------------------------------

--------- 

 

module QP_WBU( 

              CLK, RESET, 

 

              WBU_I_Result, 

              WBU_I_ReadDataFromMem, 

              WBU_I_DstAddress, 

              WBU_I_ControlWB, 

 

              WBU_O_WriteDataToReg, 

              WBU_O_DstAddress, 

              WBU_O_RegWrite 

              ); 

   parameter QPOINTER_WIDTH = 6; 

 

   input CLK, RESET; 

 

   input [31:0] WBU_I_Result; 

   input [31:0] WBU_I_ReadDataFromMem; 

   input [QPOINTER_WIDTH-1:0] WBU_I_DstAddress; 

   input [1:0]                WBU_I_ControlWB; 

 

   output [31:0]              WBU_O_WriteDataToReg; 
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   output [QPOINTER_WIDTH-1:0] WBU_O_DstAddress; 

   output                      WBU_O_RegWrite; 

 

   wire                        WBU_DataSel_wire, WBU_RegWrite_wire; 

    

   // Control Signals 

   assign {WBU_DataSel_wire, WBU_RegWrite_wire} = WBU_I_ControlWB; 

 

   // Output Generation 

   assign WBU_O_WriteDataToReg = WBU_DataSel_wire ? 

WBU_I_ReadDataFromMem : WBU_I_Result; 

   assign WBU_O_DstAddress = WBU_I_DstAddress; 

   assign WBU_O_RegWrite = WBU_RegWrite_wire; 

 

endmodule // QP_WBU 
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Verilog Codes for Execution Unit  

//--------------------------------------------------------------------

--------- 

// Title         : Execution Unit 

// Project       : Queue Processor Implementation on CFS 2009 

//--------------------------------------------------------------------

---------- 

// Modification history : 

// 25.08.2009 : created 

//--------------------------------------------------------------------

--------- 

 

module QP_EU( 

             CLK, RESET, 

              

             EU_I_Src1Address, 

             EU_I_Src1, 

             EU_I_Src2, 

             EU_I_DstAddress, 

             EU_I_Operand, 

             EU_I_ControlExe, 

             EU_I_ExeOp, 

             EU_I_PC, 

             EU_I_ControlMem, 

             EU_I_ControlWB, 

              

             EU_O_Result, 

             EU_O_WriteDataToMem, 

             EU_O_DstAddress, 

             EU_O_ControlMem, 

             EU_O_ControlWB, 

             EU_O_BranchAddress, 

             EU_O_Branch, 

             EU_O_RenewQH, 
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             EU_O_RenewQT, 

             //===== for interrupt ===== 

             EU_I_IntReq, 

             EU_I_IntEnable, 

             EU_I_RFI 

             ); 

   parameter QPOINTER_WIDTH = 6; 

    

   input CLK, RESET; 

    

   input [QPOINTER_WIDTH-1:0] EU_I_Src1Address; 

   input [31:0]               EU_I_Src1, EU_I_Src2; 

   input [QPOINTER_WIDTH-1:0] EU_I_DstAddress; 

   input [7:0]                EU_I_Operand; 

   input [4:0]                EU_I_ControlExe; 

   input [3:0]                EU_I_ExeOp; 

   input [31:0]               EU_I_PC; 

   input [1:0]                EU_I_ControlMem; 

   input [1:0]                EU_I_ControlWB; 

    

   //===== for interrupt ===== 

   input                      EU_I_IntReq, 

                              EU_I_IntEnable, 

                              EU_I_RFI; 

       

   output [31:0]              EU_O_Result; 

   output [31:0]              EU_O_WriteDataToMem; 

   output [QPOINTER_WIDTH-1:0] EU_O_DstAddress; 

   output [1:0]                EU_O_ControlMem; 

   output [1:0]                EU_O_ControlWB; 

   output [31:0]               EU_O_BranchAddress; 

   output                      EU_O_Branch; 

   output [QPOINTER_WIDTH-2:0] EU_O_RenewQH, EU_O_RenewQT; 

    

   reg [31:0]                  EU_O_Result; 
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   reg [31:0]                  EU_SetResult_reg; 

   reg [QPOINTER_WIDTH-1:0]    EU_SPRAddress_reg; 

   reg [31:0]                  EU_SPRReg_reg; 

   reg [1:0]                   EU_CC_reg; 

 

   //===== for interrupt ===== 

   reg [QPOINTER_WIDTH-1:0]    EU_ISPRAddress_reg; 

   reg [31:0]                  EU_ISPRReg_reg; 

   reg [1:0]                   EU_ICC_reg; 

    

   wire                        EU_AG_wire, EU_Branch_wire, 

EU_Immediate_wire; 

   wire [1:0]                  EU_ResultSel_wire; 

   wire [31:0]                 EU_ExtendedOperand_wire; 

   wire [31:0]                 EU_SelectedSrc1_wire; 

   wire [31:0]                 EU_ALUSrc1_wire, EU_ALUSrc2_wire; 

   wire [3:0]                  EU_FuncSel_wire; 

   wire                        EU_CCWrite_wire; 

   wire [31:0]                 EU_ALUResult_wire; 

   wire                        EU_ALUZero_wire; 

   wire [31:0]                 EU_MultResult_wire; 

    

    

   // Output Generation 

   assign EU_O_WriteDataToMem = EU_I_Src2; 

   assign EU_O_DstAddress = EU_I_DstAddress; 

   assign EU_O_RenewQH = EU_I_Src1Address[QPOINTER_WIDTH-2:0]; 

   assign EU_O_RenewQT = EU_I_DstAddress[QPOINTER_WIDTH-2:0]; 

   assign EU_O_ControlMem = EU_I_ControlMem; 

   assign EU_O_ControlWB = EU_I_ControlWB; 

   always @(*) 

     begin 

        case (EU_ResultSel_wire) 

          2'b00: EU_O_Result <= EU_ALUResult_wire; 

          2'b01: EU_O_Result <= EU_SetResult_reg;           
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          2'b10: EU_O_Result <= EU_MultResult_wire; 

          default: EU_O_Result <= EU_ALUResult_wire; 

        endcase // case (EU_ResultSel_wire) 

     end 

    

 

   // Execution Unit Control Signals 

   assign {EU_AG_wire, EU_Branch_wire, EU_Immediate_wire, 

EU_ResultSel_wire} = EU_I_ControlExe; 

    

   // Sign Extention 

   assign EU_ExtendedOperand_wire = EU_I_Operand[7] ? {24'hffffff, 

EU_I_Operand} : {24'b0, EU_I_Operand}; 

 

    

   // ==== Set Type ==== // 

   assign EU_SelectedSrc1_wire = (EU_SPRAddress_reg == 

EU_I_Src1Address) ? EU_SPRReg_reg : EU_I_Src1; 

   always @(*) 

     begin 

        case (EU_I_ExeOp) 

          3'h0: EU_SetResult_reg <= {EU_I_Operand, 

EU_SelectedSrc1_wire[23:0]}; 

          3'h1: EU_SetResult_reg <= {EU_SelectedSrc1_wire[31:24], 

EU_I_Operand, EU_SelectedSrc1_wire[15:0]}; 

          3'h2: EU_SetResult_reg <= {EU_SelectedSrc1_wire[31:16], 

EU_I_Operand, EU_SelectedSrc1_wire[7:0]}; 

          3'h3: EU_SetResult_reg <= {EU_SelectedSrc1_wire[31:8], 

EU_I_Operand}; 

          3'h4: EU_SetResult_reg <= EU_SelectedSrc1_wire; 

          3'h5: EU_SetResult_reg <= EU_ExtendedOperand_wire; 

          default:  EU_SetResult_reg <= 32'b0; 

        endcase // case (EU_I_ExeOp) 

     end // always @ (*) 

   always @(posedge CLK or negedge RESET) 
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     begin 

        if(!RESET) 

          begin 

             EU_SPRAddress_reg[QPOINTER_WIDTH-1] <= 1'b1; 

             EU_SPRAddress_reg[QPOINTER_WIDTH-2:0] <= 0; 

             EU_SPRReg_reg <= 32'b0; 

          end 

        else 

          begin 

             //===== for interrupt ===== 

             if((EU_I_IntReq == 1'b1) && (EU_I_IntEnable == 1'b1)) 

               begin 

                  EU_ISPRAddress_reg <= EU_SPRAddress_reg; 

                  EU_ISPRReg_reg <= EU_SPRReg_reg; 

                  EU_SPRAddress_reg[QPOINTER_WIDTH-1] <= 1'b1; 

                  EU_SPRAddress_reg[QPOINTER_WIDTH-2:0] <= 0; 

                  EU_SPRReg_reg <= 32'b0; 

               end 

             else if(EU_I_RFI == 1'b1) 

               begin 

                  EU_SPRAddress_reg <= EU_ISPRAddress_reg; 

                  EU_SPRReg_reg <= EU_ISPRReg_reg; 

               end 

             else 

               begin 

                  if(EU_ResultSel_wire[0] & (EU_I_ExeOp != 4'h5)) 

                    begin 

                       EU_SPRAddress_reg <= EU_I_Src1Address; 

                       EU_SPRReg_reg <= EU_SetResult_reg; 

                    end 

                  else 

                    begin 

                       EU_SPRAddress_reg <= EU_SPRAddress_reg; 

                       EU_SPRReg_reg <= EU_SPRReg_reg; 

                    end 
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               end // else: !if((EU_I_Int_Req == 1'b1) && 

(EU_I_Int_Status == 1'b0)) 

          end 

     end // always @ (posedge CLK or negedge RESET) 

    

    

   // ==== ALU Type ==== // 

   assign EU_ALUSrc1_wire = EU_SelectedSrc1_wire; 

    

   assign EU_ALUSrc2_wire = EU_Immediate_wire ? (EU_AG_wire ? 

EU_ExtendedOperand_wire : EU_ExtendedOperand_wire) : EU_I_Src2; 

   // If 8bit-width-memory is used, the following line is used insted 

of above one. 

   // assign EU_ALUSrc2_wire = EU_Immediate_wire ? (EU_AG_wire ? 

{EU_ExtendedOperand_wire[29:0], 2'b0} : EU_ExtendedOperand_wire) : 

EU_I_Src2; 

    

   ALUControler aluCont0( 

                         .ALUControler_I_ExeOp(EU_I_ExeOp), 

                         .ALUControler_O_FuncSel(EU_FuncSel_wire), 

                         .ALUControler_O_CCWrite(EU_CCWrite_wire) 

                         ); 

   ALU alu0( 

            .ALU_I_Src1(EU_ALUSrc1_wire), 

            .ALU_I_Src2(EU_ALUSrc2_wire), 

            .ALU_I_FuncSel(EU_FuncSel_wire), 

            .ALU_O_Result(EU_ALUResult_wire), 

            .ALU_O_Zero(EU_ALUZero_wire) 

            ); 

   always @(posedge CLK or negedge RESET) 

     begin 

        if(!RESET) 

          begin 

             EU_CC_reg <= 2'b00; 

          end 
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        else 

          begin 

             if((EU_I_IntReq == 1'b1) && (EU_I_IntEnable == 1'b1)) 

               begin 

                  EU_ICC_reg <= EU_CC_reg; 

                  EU_CC_reg <= 2'b00; 

               end 

             else if(EU_I_RFI == 1'b1) 

               EU_CC_reg <= EU_ICC_reg; 

             else     

               begin          

                  if(EU_CCWrite_wire & (EU_ResultSel_wire == 2'b00)) 

                    begin 

                       EU_CC_reg[1] <= EU_ALUResult_wire[31]; 

                       EU_CC_reg[0] <= EU_ALUZero_wire; 

                    end 

                  else 

                    begin 

                       EU_CC_reg <= EU_CC_reg; 

                    end 

               end // else: !if((EU_I_Int_Req == 1'b1) && 

(EU_I_Int_Status == 1'b0)) 

          end // else: !if(!RESET) 

     end // always @ (posedge CLK or negedge RESET) 

 

 

   // ==== Mult Type ==== // 

   Multiplyer mult0( 

                  .Multiplyer_I_Src1(EU_I_Src1), 

                  .Multiplyer_I_Src2(EU_I_Src2), 

                  .Multiplyer_O_Result(EU_MultResult_wire) 

                  ); 

 

 

   // ==== Branch Type ==== // 
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   assign EU_O_BranchAddress = EU_I_PC + EU_ExtendedOperand_wire; 

   // If instruction memory is 8-bit-width memory, following line is 

used 

   // assign EU_O_BranchAddress = EU_I_PC + 

{EU_ExtendedOperand_wire[30:0], 1'b0}; 

   BranchConditionCheck bcc( 

                            .BranchConditionCheck_I_CC(EU_CC_reg), 

                            .BranchConditionCheck_I_ExeOp(EU_I_ExeOp), 

                            

.BranchConditionCheck_I_Branch(EU_Branch_wire), 

                            .BranchConditionCheck_O_PCSel(EU_O_Branch) 

                            ); 

    

endmodule // QP_EU 

 

module ALUControler( 

                    ALUControler_I_ExeOp, 

                    ALUControler_O_FuncSel, 

                    ALUControler_O_CCWrite 

                    ); 

   input [3:0] ALUControler_I_ExeOp; 

   output [3:0] ALUControler_O_FuncSel; 

   output       ALUControler_O_CCWrite; 

 

   reg [3:0]    ALUControler_O_FuncSel; 

   reg          ALUControler_O_CCWrite; 

 

   always @(*) 

     begin 

        case (ALUControler_I_ExeOp) 

          4'b0000: 

            begin 

               ALUControler_O_FuncSel <= 4'b0000; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 
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          4'b0001: 

            begin 

               ALUControler_O_FuncSel <= 4'b0001; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

          4'b0010: 

            begin 

               ALUControler_O_FuncSel <= 4'b0010; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

          4'b0011: 

            begin 

               ALUControler_O_FuncSel <= 4'b0011; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

          4'b0100: 

            begin 

               ALUControler_O_FuncSel <= 4'b0001; 

               ALUControler_O_CCWrite <= 1'b1; 

            end 

          4'b0101: 

            begin 

               ALUControler_O_FuncSel <= 4'b1000; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

          4'b0110: 

            begin 

               ALUControler_O_FuncSel <= 4'b1010; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

          4'b0111: 

            begin 

               ALUControler_O_FuncSel <= 4'b1011; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 
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          4'b1000: 

            begin 

               ALUControler_O_FuncSel <= 4'b0100; 

               ALUControler_O_CCWrite <= 1'b0; 

            end  

          default: 

            begin 

               ALUControler_O_FuncSel <= 4'b0000; 

               ALUControler_O_CCWrite <= 1'b0; 

            end 

        endcase // case (ALUControler_I_ExeOp) 

     end // always @ (*) 

endmodule // ALUControler 

 

module ALU ( 

            ALU_I_Src1, 

            ALU_I_Src2, 

            ALU_I_FuncSel, 

            ALU_O_Result, 

            ALU_O_Zero 

            ); 

      

   input [31:0] ALU_I_Src1, ALU_I_Src2; 

   input [3:0]  ALU_I_FuncSel; 

 

   output [31:0] ALU_O_Result; 

   output        ALU_O_Zero; 

 

   reg [31:0] ALU_O_Result; 

 

   assign ALU_O_Zero = ~|ALU_O_Result; 

 

   always @(*) 

     begin 

        case (ALU_I_FuncSel) 



65 
 

          4'b0000: ALU_O_Result <= ALU_I_Src1 + ALU_I_Src2; 

          4'b0001: ALU_O_Result <= ALU_I_Src1 - ALU_I_Src2; 

          4'b0010: ALU_O_Result <= ALU_I_Src1 | ALU_I_Src2; 

          4'b0011: ALU_O_Result <= ALU_I_Src1 & ALU_I_Src2; 

          4'b0100: ALU_O_Result <= ~ALU_I_Src1; 

          4'b1000: ALU_O_Result <= ALU_I_Src1 << ALU_I_Src2; 

          4'b1010: ALU_O_Result <= ALU_I_Src1 >> ALU_I_Src2; 

          4'b1011: ALU_O_Result <= ALU_I_Src1 >> ALU_I_Src2; 

          default: ALU_O_Result <= 32'b0; 

        endcase // case (ALU_I_FuncSel) 

     end // always @ (*) 

 

endmodule // ALU 

 

module Multiplyer( 

                  Multiplyer_I_Src1, 

                  Multiplyer_I_Src2, 

                  Multiplyer_O_Result 

                  ); 

   input [31:0] Multiplyer_I_Src1, Multiplyer_I_Src2; 

   output [31:0] Multiplyer_O_Result; 

    

   //====== modification ===== 

   //wire signed [31:0] Multiplyer_I_Src1, Multiplyer_I_Src2; 

    

   assign Multiplyer_O_Result = Multiplyer_I_Src1 * Multiplyer_I_Src2; 

    

endmodule 

 

module BranchConditionCheck( 

                            BranchConditionCheck_I_CC, 

                            BranchConditionCheck_I_ExeOp, 

                            BranchConditionCheck_I_Branch, 

                            BranchConditionCheck_O_PCSel 

                            ); 
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   input [1:0]  BranchConditionCheck_I_CC; 

   input [3:0]  BranchConditionCheck_I_ExeOp; 

   input        BranchConditionCheck_I_Branch; 

   output       BranchConditionCheck_O_PCSel; 

   reg          BranchConditionCheck_O_PCSel; 

 

   wire         BranchConditionCheck_Condition1bit_wire; 

   wire [1:0]   BranchConditionCheck_Condition2bit_wire; 

 

   assign BranchConditionCheck_Condition1bit_wire = 

BranchConditionCheck_I_ExeOp[1]; 

   assign BranchConditionCheck_Condition2bit_wire = 

BranchConditionCheck_I_ExeOp[0] ? 2'b10 : 2'b00; 

 

   always @(*) 

     begin 

        if(BranchConditionCheck_I_Branch) 

          if(BranchConditionCheck_I_ExeOp[2]) 

            if(BranchConditionCheck_I_CC == 

BranchConditionCheck_Condition2bit_wire) 

              BranchConditionCheck_O_PCSel <= 1'b1; 

            else 

              BranchConditionCheck_O_PCSel <= 1'b0; 

          else 

            

if(BranchConditionCheck_I_CC[BranchConditionCheck_I_ExeOp[0]] == 

BranchConditionCheck_Condition1bit_wire) 

              BranchConditionCheck_O_PCSel <= 1'b1; 

            else 

              BranchConditionCheck_O_PCSel <= 1'b0; 

        else 

          BranchConditionCheck_O_PCSel <= 1'b0; 

     end // always @ (*) 

    

endmodule        
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APPENDIX B 

 

1. Analysis and Synthesis Summary Report 

 

 

 

 

 

 

 

 

 

 


