
i 

AN ECLIPSE-BASED GRAPHICAL MODELING TOOL 

FOR DISCRETE EVENT SIMULATION 

 

 

A THESIS SUBMITTED TO  

AFRICAN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

ABUJA-NIGERIA 

 

IN PARTIAL FUFILMENT OF THE REQUIREMENT FOR 
 

 

MASTER DEGREE IN COMPUTER SCIENCE 

 

BY 

UFUOMA BRIGHT IGHOROJE 

 

 

SUPERVISOR: 

PROF. MAMADOU KABA TRAORE 

 

 

 

 

 

 

 

 

 

 

DECEMBER 2010 



ii 

 

To my sweet mum 



iii 

 

Acknowledgement 

There are many people who have helped me directly or indirectly with this thesis work. I am 

particularly grateful to my supervisor, Prof. Mamadou Kaba Traore for introducing me to this 

subject and many instructions on this subject. I appreciate his guidance, encouragement, and 

support during the period I worked on this thesis.  

I owe deep gratitude to Dr. Boubou Cisse and Prof. Charles Chidume for their invaluable 

assistance, especially for their support during my visit to the ISIMA laboratory in Clermont-

Ferrand for intensive research on this work. I would also like to thank Nafisa Abdullahi and 

Tracey Odigie for their logistical support. Thanks also to Dr. Ekpe Okorafor and Dr. Guy 

Degla for their advice and assistance.  

My colleagues at African University of Science and Technology have been very wonderful. 

Special thanks to Doyin for several discussions on my thesis work and for her excellent 

suggestions. Thanks also to Henry, Toyin, Omena, Joachim, Osayawe, Aliu, Aminu, Dorothy, 

Dwumfour, Emmanuel, Rosine, Gaba, Meredith, Hans, and Kehinde.  

I would also like to thank my dear friend, Emamurho for maintaining my mental well-being 

with numerous encouragement and talks. Thanks also to Emmanuel Osahon, Eric, Stanley, 

Esiwo, and Alex. 

My great family has been very supportive. Thanks to my dad, mum, and big brother (Maroh) 

for their financial assistance, prayers and encouragement. Thanks to my lovely sisters, 

Precious and Best, their names describe what they have been to me. Thanks also to Wisdom 

for his wise thoughts and support.  

My greatest thanks go to the Almighty God, to whom I owe my life, for His benevolence, 

mercy, and love. 

This thesis work was funded by the African University of Science and Technology. 

 



iv 

Abstract 

We propose DEVS-Driven Modeling Language (DDML), a graphical notation for DEVS 
[1]

 

modeling and an Eclipse-based graphical editor, Eclipse-DDML. DDML attempts to bridge 

the gap between expert modelers and domain experts making it easy to model systems, and 

capture the static, dynamic, and functional aspects of a system. At the same time, it unifies C-

DEVS and P-DEVS models. DDML integrates excellent modeling concepts from powerful 

formalisms and glues them in one unique consistent framework. Eclipse-DDML provides 

enhanced graphical editing; further simplifying model construction and promoting good 

modeling practices. Integration with eclipse simplifies software development, installation, and 

updates. This also makes the editor extensible. 

 



v 

Table of Contents 

 

Acknowledgement ..................................................................................................................... iii 

Abstract ..................................................................................................................................... iv 
List of Figures .......................................................................................................................... vii 
Chapter 1. Introduction ............................................................................................................... 1 

1.1. Motivation .................................................................................................................. 1 
1.2. Objective .................................................................................................................... 1 

1.3. Structure of the Work ................................................................................................. 2 
Chapter 2. Discrete Event System Specification (DEVS) .......................................................... 3 

2.1. The DEVS Formalism ................................................................................................ 3 
2.1.1. Parallel DEVS .................................................................................................... 5 

2.1.2. DEVS simulation algorithms .............................................................................. 6 
2.2. Tools for DEVS .......................................................................................................... 8 

Chapter 3. DEVS Driven Modelling Language (DDML) ........................................................ 11 

3.1. DDML Processes ...................................................................................................... 11 
3.1.1. Relation to Classical DEVS Theory ................................................................. 12 
3.1.2. Relation to Parallel DEVS Theory ................................................................... 13 

3.2. DDML States and States Transition ......................................................................... 13 

3.2.1. Relation to Classical DEVS Theory ................................................................. 16 
3.2.2. Relation to Parallel DEVS Theory ................................................................... 17 

3.3. Modeling a Traffic Light System Using DDML ...................................................... 17 
Chapter 4. Building Graphical Editors with Eclipse ................................................................ 21 

4.1. Overview of Eclipse ................................................................................................. 21 

4.2. Eclipse Plugin Environment ..................................................................................... 22 

4.3. Eclipse Modeling Framework (EMF) ...................................................................... 24 

4.4. Graphical Editing Framework (GEF) ....................................................................... 25 
4.5. Graphical Modeling Framework (GMF) .................................................................. 26 

4.5.1. Runtime Framework ......................................................................................... 26 
4.5.2. Tooling Framework .......................................................................................... 26 
4.5.3. Graphical Definition Model ............................................................................. 27 
4.5.4. Tooling Definition Model ................................................................................ 27 

4.5.5. Mapping Definition Model ............................................................................... 28 
4.5.6. Generator Model ............................................................................................... 28 

Chapter 5. Architecture of Eclipse-DDML Graphical Editor .................................................. 29 
5.1. The DDML Coupled Model Editor .......................................................................... 31 

5.1.1. Graphical Definition (DDML_Model.gmfgraph) ............................................ 31 

5.1.2. DDML Tooling Definition ............................................................................... 35 

5.1.3. DDML Mapping Definition ............................................................................. 35 

5.1.4. DDML Generator Model .................................................................................. 38 
5.2. The DDML Atomic Model Editor ............................................................................ 39 

5.2.1. Atomic Model Graphical Definition ................................................................ 39 
5.2.2. Atomic Model Tooling Definition ................................................................... 44 
5.2.3. Atomic Model Mapping Definition .................................................................. 44 

5.2.4. Atomic Model Generator Model ...................................................................... 45 
5.3. Creating the DDML UI Plugin ................................................................................. 46 

Chapter 6. Using the Eclipse-DDML Graphical Editor ........................................................... 47 

6.1. The DDML Coupled Model Editor .......................................................................... 47 



vi 

6.1.1. The Menu Bar and Tool Bar ............................................................................. 47 

6.1.2. The Project Explorer ........................................................................................ 49 
6.1.3. The Outline View ............................................................................................. 49 
6.1.4. The Palette ........................................................................................................ 50 
6.1.5. The Drawing Workspace .................................................................................. 50 

6.1.6. The Properties View ......................................................................................... 52 
6.2. The DDML Atomic Model Editor ............................................................................ 54 

Chapter 7. Conclusion .............................................................................................................. 56 
References ................................................................................................................................ 57 

 

 



vii 

List of Figures 

Figure 1. Relationship between models and processors. ................................................... 7 
Figure 2. Messages that a DEVS processor sends and receives ........................................ 8 

Figure 3. DDML Coupled Model and Atomic Model ..................................................... 12 
Figure 4. State Notations in DDML ................................................................................. 14 
Figure 5. External and Internal State Transitions ............................................................ 15 
Figure 6. Confluent Transition ......................................................................................... 16 
Figure 7. Conditional Transition ...................................................................................... 16 

Figure 8. DDML Model for Traffic System .................................................................... 17 
Figure 9. DDML model for the Generator Process showing states and transitions ......... 18 
Figure 10. DDML Model for Lights Process ..................................................................... 19 
Figure 11. DDML State Graph for the Display Process .................................................... 20 
Figure 12. GMF Tooling Framework Main Components .................................................. 27 

Figure 13. Architecture of Eclipse DDML Graphical Editor ............................................ 29 
Figure 14. Ecore (Meta-Model) Model for DDML (Graphical) ........................................ 30 

Figure 15. Figure Descriptor for Coupled Model .............................................................. 31 
Figure 16. Figure Descriptor for Atomic Model ................................................................ 32 
Figure 17. Figure Descriptor for Input Port ....................................................................... 32 
Figure 18. Figure Descriptor for EIC ................................................................................. 32 

Figure 19. Properties Definition for IC .............................................................................. 33 
Figure 20. Figure Descriptor for Circular Decoration ....................................................... 33 

Figure 21. Graph Nodes for DDML Model ....................................................................... 34 
Figure 22. Properties Definition for Input Port .................................................................. 34 
Figure 23. Connections for DDML Model ........................................................................ 34 

Figure 24. Coupled Model Compartments ........................................................................ 34 
Figure 25. Diagram Labels for DDML .............................................................................. 35 

Figure 26. Tooling Definition for DDML Model .............................................................. 35 
Figure 27. Mapping Definition for Coupled Model .......................................................... 36 

Figure 28. Adding Label Mapping .................................................................................... 36 
Figure 29. Node Mapping for Child Reference Atomic .................................................... 37 
Figure 30. Link Mappings (above); Properties for Link Mapping .................................... 37 
Figure 31. Defining Link Constraints ................................................................................ 38 

Figure 32. Setting Open Diagram Behavior for ................................................................. 39 
Figure 33. Figure Descriptor for External Transition ........................................................ 39 
Figure 34. Properties Definition for External .................................................................... 40 
Figure 35. Figure Descriptor for ArrowHead .................................................................... 40 
Figure 36. Figure Descriptor for Initial State .................................................................... 40 

Figure 37. Figure Descriptor for Passive State .................................................................. 41 

Figure 38. Figure Descriptor for Conditional Transition Node ......................................... 41 

Figure 39. Definitions for Nodes, Compartments, Connections and Labels ..................... 43 
Figure 40. Tooling Definition for Atomic Model .............................................................. 44 
Figure 41. Top Node Reference for Transition State ......................................................... 44 
Figure 42. Feature Initializer for Time Advance for Transient State ................................ 45 
Figure 43. Top Node Reference for Passive State ............................................................. 45 

Figure 44. Link Mapping and Constraints for Transitions ................................................ 45 
Figure 45. DDML Coupled Model Editor ......................................................................... 47 
Figure 46. DDML Editor Menu Bar and Tool Bar ............................................................ 48 
Figure 47. New DDML Diagram Wizard .......................................................................... 48 
Figure 48. The Project Explorer ........................................................................................ 49 



viii 

Figure 49. The Outline View ............................................................................................. 50 

Figure 50. The Palette ........................................................................................................ 50 
Figure 51. The Diagram Workspace .................................................................................. 51 
Figure 52. Exporting DDML Diagrams to Image Files ..................................................... 52 
Figure 53. Project Property View ...................................................................................... 52 

Figure 54. Coupled Model Editor Property View .............................................................. 53 
Figure 55. Coupled Model Property View ......................................................................... 53 
Figure 56. Atomic Model Property View .......................................................................... 53 
Figure 57. DDML Atomic Model Editor Screenshot ........................................................ 54 
Figure 58. Atomic Model Editor Palette ............................................................................ 55 

 



1 

Chapter 1. Introduction 
1.1. Motivation 

To model is to abstract from reality a description of a dynamic system. Modeling serves as a 

language for describing systems at some level of abstraction, or additionally, at multiple levels 

of abstraction. Modeling is a way of thinking and reasoning about systems.  

Several methodologies and tools have been developed for modeling of dynamic systems. Most 

of these tools require the modeler to be an expert in programming and/or mathematics. 

Verifying models built with these tools with domain experts is difficult because a wide 

knowledge gap exists between the domain expert and the expert modeler. Also, modeling and 

simulation activities are wide apart. Modeling involves developing multiple levels of 

abstractions of a system and capturing these abstractions with algorithms that represent the 

static, dynamic and functional aspects of the system under study. The primary issues in 

simulation are timing aspects identification and time management. A generic approach is 

recommended to integrate advanced modeling into generic simulation methodologies. Hence, 

both simulation and software engineering domain expertise should be integrated in the 

modeling and simulation process. And since there is an underlying simulation operational 

semantic, there is no need for paradigm/formalism transformation. 

In order to realize this solution, an intermediate level of abstraction has to be adopted, which 

is high enough to be generalized (and accessible to a wide community) and low enough to 

reduce complexity of code synthesis. This representation needs to express the structural and 

behavioral characteristics described by declarative and functional models and this must be 

inherently coherent. This integrative approach should allow the use of a user-familiar 

language/notation with a potential for formal specification of data and operations, and 

therefore the simulation system.  

We define the DEVS-Driven Modeling Language (DDML) to be such a notation.  DDML 

presents a graphical notation to effectively realize DEVS models. The concrete syntax of 

DDML is based on the flowchart, State-Event-Chart, Flow-Trace, State-Event-Trace, and 

abstract data structure graph [3]. All of these elements are amenable to formal analysis and all 

of them have their exact DEVS equivalent (which provides the operational semantics). DDML 

provides graphical notations for defining coupled models and atomic models. Furthermore, 

atomic models can be defined using state transition charts (internal and external state 

transitions), while taking cognizance of simulation timing. 

To facilitate defining simulation models using DDML, we leverage Eclipse’s very rich 

infrastructure to develop a graphical editing tool that realizes the graphical notations for 

DDML. Our editor provides a rich palette of tools, with drag and drop facilities. Integration 

with Eclipse’s platform also eases software development and makes our tool extensible while 

simplifying software development, installation and updates. 

1.2. Objective 

The objective of this work is to present the DEVS Driven Modeling Language (DDML), a 

graphical notation for modeling dynamic systems based on DEVS and an Eclipse-based 

graphical modeling tool based on DDML. The model, when defined in DDML using this tool 

would be amenable to formal analysis and automated code synthesis.  



2 

1.3. Structure of the Work 

In the next chapter, we review the theory of DEVS and several tools that have been used to 

define models based on DEVS. In chapter 2, we present the DEVS formalism. In chapter 3, 

we present the DEVS Driven Modeling Language (DDML) with an illustrative example and 

we show how its graphical notations relate to DEVS. In chapter 4, we present the eclipse 

platform and discuss the tools that eclipse provides for building graphical editors. In chapter 

5, we present the architecture of the Eclipse-based graphical editor for DDML and how it was 

built. In chapter 6, we present the Eclipse-DDML graphical editor and how to use it. 

 



3 

Chapter 2. Discrete Event System Specification (DEVS) 

DEVS 
[1]

 is a modular and hierarchical formalism for modeling and analyzing general systems 

that can be discrete event systems. DEVS defines system behavior as well as system structure. 

System behavior in DEVS formalism is described using system input and output events as 

well as states.  

According to the DEVS theory, the system of interest is seen as a source of behavioral data 

for study within a given experimental frame (EF). The EF is a restricted set of elements 

observed in the system and the conditions under which they are observed. These data are used 

to create an abstract representation of such a system (a model). Using a set of instructions, 

rules or mathematical equations, the model tries to replicate the behavior of the system of 

interest under experimental conditions.  

A model represents a simplified version of reality and its structure. A model is built in 

consideration of the conditions of experimentation of the system of interest, including the 

work conditions of the real system and its application domain. The model is subsequently 

used to build a simulator (a device capable of executing the model’s instructions) generating 

the model’s behavior. 

DEVS was created for modeling and simulation of discrete event dynamic systems (DEDS); 

thus it defined a way to specify systems whose states change either upon the reception of an 

input event or due to the expiration of a time delay. In order to attack the complexity of the 

system under study, the model is organized hierarchically (i.e. it is organized in such a way 

that every element is higher than its precedent), and the higher level components of the system 

are decomposed into simpler elements. The second tool used to attack complexity is 

information hiding, through the provision of a modular interface for each of the models. 

Although many different simulation formalisms have been advanced over the years, the 

DEVS formalism has emerged as the preferred formalism due to the fact that other formalisms 

have been proven to have an equivalent DEVS representation. DEVS support full range of 

dynamic system representation. In particular, a Differential Equation System Specification 

(DESS) can have an approximate Discrete Time System Specification (DTSS) by selection of 

a sufficiently small constant time interval (discretization). A DTSS model, in turn has an 

equivalent DEVS representation. Also, quantization of events in a DESS system can result in 

an approximate DEVS model. As such DEVS approach can be used to model discrete 

systems, continuous systems (approximate), and hybrid systems. 

2.1. The DEVS Formalism 

A real system modeled by DEVS can be described as a composition of atomic and coupled 

components. An atomic model is specified as: 

M = <X, Y, S, δint, δext, λ, ta> 

Where  

X = {(p, v)│p  IPorts, v  Xp} is the set of input events, where IPorts represents the 

set of input ports and Xp represents the set of values for the input ports;  



4 

Y = {(p, v) │p  OPorts, v  Yp} is the set of output events, where OPorts represents 

the set of output ports and Yp represents the set of values for the output ports; 

S is the set of sequential states; 

δext: Q × X → S is the external state transition function, 

With Q = {(s, e)/s  S, e  [0, ta(s)]} and e is the elapsed time since the last state 

transition; 

δint: S → S is the internal state transition function; 

λ: S → Y is the output function; and 

ta: S → R0
+
 U ∞ is the time advance function. 

At any given moment, a DEVS model is in a state s ∈ S. In the absence of external events, it 

remains in that state for a lifetime defined by ta(s). When ta(s) expires, the model outputs the 

value λ(s) through a port y ∈ Y, and it then changes to a new state given by δint(s). A 

transition that occurs due to the consumption of time indicated by ta(s) is called an internal 

transition. On the other hand, an external transition occurs due to the reception of an external 

event. In this case, the external transition function determines the new state, given by δext (s, e, 

x), where s is the current state, e is the time elapsed since the last transition, and x ∈ X is the 

external event that has been received. 

The time advance function can take any real value between 0 and ∞. A state for which ta(s) = 

0 is called a transient or intermediate state (which will trigger an instantaneous internal 

transition). In contrast, if ta(s) = ∞, then s is said to be a passive or infinite state, in which the 

system will remain perpetually unless an external event is received (can be used as a 

termination condition). 

A DEVS coupled model is composed of several atomic or coupled sub-models. It is formally 

defined by 

CM = <X, Y, D, {Md│d  D}, EIC, EOC, IC, select> 

Where 

X and Y are defined as previously; 

D is the set of the component names and for each d  D; 

Md is a DEVS (i.e., atomic or coupled) model; 

EIC is the set of external input couplings (i.e., how the inputs of the coupled model are 

linked to the inputs of its sub-components) 

EOC is the set of external output couplings (i.e., how the outputs of the coupled model 

are linked to the outputs of its sub-components) 



5 

IC is the set of internal couplings (i.e., how the outputs of any the sub-components are 

linked to the inputs of other sub-components), and 

Select: 2
D
 → D is the tiebreaker function 

Coupled models group several DEVS into a composite model that can be regarded, due to the 

closure under coupling property, as a new DEVS model. This closure property guarantees 

that the coupling of several class instances results in a model of the same class, allowing 

hierarchical construction. 

Because multiple subcomponents can be scheduled for an internal transition at the same time, 

ambiguity could arise because it is not clear which transition this second component should 

execute first. There are two alternatives for this: 

 To execute the external transition first and then the internal transition, with e = 

ta(s);  

 To execute the internal transition first, followed by the external transition, with e = 

0. 

The select function provides a simple way to solve this ambiguity. The function defines an 

ordering over all the components of the coupled model so that only the first model to execute 

in the case of simultaneous internal events can be chosen. 

2.1.1. Parallel DEVS 

In the previous section, we saw that whenever two models are scheduled for state transitions 

at the same time, a DEVS coupled model will pick the one specified by the select function to 

execute first. This tie-breaking strategy is rigid. The select function introduces serialization in 

the execution of components when many interconnected atomic models are imminent (which 

could be considered as parallel in a multiprocessor environment). 

Parallel DEVS (or PDEVS) is a variant to DEVS that provides a more flexible way of dealing 

with these ambiguities. Atomic models provide an additional confluent function to specify 

collision behavior for events that might be scheduled simultaneously and a mechanism for 

receiving multiple external events at the same time and processing them together. An atomic 

PDEVS model is defined as 

M = <X, Y, S, δint, δext, δcon, λ, ta> 

Where  

X, Y and S are defined as previously; 

δext:Q x X
b
→ S is the external transition function; 

δint: S → S is the internal state transition function; 

δcon:S x X
b
→ S is the confluent transition function; 

λ: S → Y
b
 is the output function; and 



6 

ta: S → R0
+
 U ∞ is the time advance function. 

PDEVS models use bags (multisets) of events for receiving inputs and collecting outputs (X
b
 

and Y
b
) instead of a single event. This allows multiple events to be processed simultaneously. 

Because external input events received by the component are added to the bag, external 

transition functions can combine the functionality of a number of external transitions into a 

single one, and simultaneous events (like the departure of a vehicle and a collision in the 

intersection) can be treated simultaneously. Also, PDEVS allows a better way to deal with 

collisions: the model specification includes a confluent transition function (δcon). When a 

collision between the internal and external functions occurs, the confluent function determines 

the new state of the model. 

The semantics of PDEVS for internal/external transition functions is similar to DEVS. If one 

or more external events X
b
 = {x1 … xn/xi  X} occur before ta(s) expires (i.e., while the system 

is in total state (s, e) with e < ta(s)), the new state will be given by the model’s external 

transition function, δext(s, e, X
b
). If the external events X

b
 are received when e = ta(s), the new 

state of the model will be given by the confluent function (δcon). If multiple components in a 

coupled model are imminent, all their outputs are first collected and mapped to their 

influences in parallel. Then the corresponding transition function is executed for every model. 

In PDEVS, coupled models are defined as in DEVS, without the need for a select function. 

Formally, a coupled model is defined as 

CM = <X, Y, D, {Md│d  D}, EIC, EOC, IC> 

Where definitions for the set of input and output events (X and Y), components (D and Md), 

and couplings (EIC, EOC, and IC) follow the specifications of DEVS coupled models 

presented earlier in this chapter. 

2.1.2. DEVS simulation algorithms 

DEVS simulators are based on the abstract simulation techniques presented in Zeigler, 

Praehofer, and Kim [1]. These simulation algorithms are guaranteed to execute the 

hierarchical DEVS specifications correctly. It has been proven that these algorithms are 

correct to simulate DEVS models. This includes cases of hierarchical composition, individual 

atomic model execution, and detection of termination conditions (when all the models in the 

simulation are passive, the simulation can end).  

The main idea of DEVS abstract simulation algorithms is to create a hierarchy of execution 

engines based on the modeling hierarchy created by the user. We call these entities 

Processors. Atomic/Coupled Models define the structure and behaviour of the system of 

interest, while their corresponding Processors implement the simulation dynamics (using an 

abstract mechanism hidden from the models), as sketched in Figure 1. This figure shows the 

different kinds of Processors: Simulators are associated with atomic models and Coordinators 

with coupled models. The Root Coordinator drives the global aspects of the simulation; it 

maintains the global time, starts/finishes the simulation (when a termination condition is 

detected), and is related to the Coordinator of the top-level coupled model (collecting the 

outputs from it and feeding it with external input events). 



7 

Simulation is driven by passing messages among the Processors; each represents an event to 

process. The messages include information about the event origin/destination, the time of the 

event the message represents, and its content. Four kinds of messages are used: 

 * messages signal the occurrence of internal events 

 X messages carry information about external input events 

 Y messages transmit the model’s output events 

 Done messages carry scheduling information for future events, including that a model 

has finished with its current task. 

 

Figure 1.  Relationship between models and processors. 

As discussed earlier, PDEVS was introduced to solve serialization problems with the 

simultaneous events in classic DEVS. The main difference is that PDEVS processes input 

bags and generates output bags for the model, and the confluent transition function (δcon) is 

activated when internal and external events occur simultaneously. 

As with the original definition of the abstract simulator, PDEVS processors are specialized 

into two different engines, Simulator and Coordinator. Five kinds of messages are used and 



8 

can be categorized into synchronization messages (@, *, and done) and content messages (y 

and q) (Figure 2): 

 Synchronization messages are sent from a parent Processor to its imminent children. 

All imminent models’ output functions must be executed before any transition 

function. All outputs are collected and only after they have been sorted the transition 

functions can be activated. Message @ is used to request all imminent children to 

execute their output functions and to route the outputs to the corresponding inputs 

according to the coupling scheme. Message * tells the children to invoke their 

transition functions (whether it is an internal, external, or confluent transition). 

 Data messages are sent from parent/child Processors. All outputs produced by a 

model are translated to y messages between a child Processor and its parent. External 

messages are sent as q messages. 

 

Figure 2. Messages that a DEVS processor sends and receives 

For details of the simulation algorithms for DEVS (simulator, coordinator and root) and for 

PDEVS and efficient realizations of these algorithms, refer to [2]. 

2.2. Tools for DEVS 

The formal specification of DEVS provides a means for mathematical formulation of a model. 

DEVS permits independence of the language or methodology chosen to implement the 

models, which has allowed several simulation tools to be developed, tackling different needs 

and providing advantages in specific domains.  

The following is a list of some tools that have been developed (or currently undergoing 

development) for modeling and simulation based on the DEVS formalism. 

 CD++ Builder 
[3][4][5] 

is an Eclipse plugin that integrates varied applications and 

utilities that aids in creating CD++ DEVS models, simulating and analysing results. 



9 

CD++ modeller provides a graphical editor for coupled and DEVS-Graph atomic 

editors, and visualization of simulation results. Models can be visualized and C++ 

codes for the models can be generated for simulation. The CD++ tool has been 

developed following the specification of DEVS and Cell-DEVS.  

 ADEVS 
[6]

 provides a C++ library based on DEVS, which developers can use to build 

their own models, and supports integration with other simulation environments.  

 DEVS-Ada/TW was the first attempt to combine DEVS and the Time Warp parallel 

simulation algorithm over a multiprocessor environment. DOHS, the distributed 

optimistic hierarchical simulation scheme, combines DEVS and Time Warp, 

implemented in D-DEVSim++. This alternative presents a more general approach for 

distributed optimistic execution of DEVS models, while addressing some restrictions 

introduced in DEVS-Ada/TW 
[7].

 

 DEVS-C++ 
[8]

 is a DEVS-based modeling and simulation environment written in C++, 

which implements parallel execution and supports large-scale systems.  

 DEVS-Scheme 
[9] [10] 

is a knowledge-based environment for modelling and simulation 

based on the Scheme functional language (a variation of Lisp). 

 DEVS/HLA 
[11] [12]

 is based on the high-level architecture (HLA) 
[13]

. It was used to 

demonstrate how an HLA-compliant DEVS environment could improve the 

performance of large-scale distributed modeling and simulation. 

 DEVSJAVA 
[14]

 is a DEVS-based modeling and simulation environment written in 

Java. It provides classes for the users to implement their own DEVS models.  

 DEVSim++ 
[15] 

is an object-oriented DEVS simulator implemented in C++. The tool 

defines basic classes that can be extended by users to define their own atomic and 

coupled DEVS components.  

 GALATEA 
[16]

 is a simulation platform that offers a language to model multi-agent 

systems using an object-oriented architecture.  

 JAMES 
[17] 

implements DEVS theory to model and simulate agent systems. The 

toolkit supports software-in-the-loop simulation to test agents in virtual environments.  

 JDEVS 
[18]

 is a DEVS modeling and simulation environment written in Java. It allows 

general-purpose, component-based, object-oriented, visual simulation of models.  

 PyDEVS 
[19]

 uses the ATOM3 tool 
[20]

 to construct DEVS models and to create the 

code to be executed. Models are represented as a state graph used to generate Python 

code and then interpreted by PyDEVS.  

 SimBeams 
[21]

 is a component-based software architecture based on Java and 

JavaBeans. The idea is to provide a set of layered components that can be used in 

model creation, result output analysis, and visualization using DEVS. 

The list of DEVS tools continues to grow. Common properties missing in these tools include: 

 They are not amenable to formal analysis. 

 Most methodologies are not highly communicable. It is difficult for domain experts to 

express their models using these advanced methodologies. 

 They lack high expressive power. 

 They fail to provide a framework for unification of C-DEVS and P-DEVS. 

 Most of these tools lack a supporting tool that aids simulation modeling. 

We develop DDML and our supporting tool to address these issues. The work in this project 

is based on the DDML (DEVS Driven Modeling Language) graphical notation. DDML has 



10 

been pre-proposed. In the following chapter, we present DDML and show how easy it is to 

build a DEVS model with DDML. We also show how it maps to the DEVS formalism. 

 



11 

Chapter 3. DEVS Driven Modelling Language (DDML) 

As we have seen in chapter 2, DEVS formalism is very generic and several DEVS tools and 

techniques adopt this mathematical style making it DEVS inaccessible to a very wide 

community. DDML makes DEVS accessible to wide community of users and modelers by 

providing a means for defining DEVS-based models graphically. It uses a set of graphical 

notations to specify, visualize, analyse, verify, and document the characteristics and behaviour of 

some real or imagined system under development.  

DDML uses processes to define the functional aspects of a system and this is described 

graphically using flowcharts with input and output ports. Dynamic aspects of a system are 

captured by using notations similar to state/activity diagrams. The static aspects are described 

using abstract structure graphs. The static aspects are automatically derived from the functional 

and dynamic aspects thereby clearing all ambiguities that might result if a modeller uses different 

diagrams to represent different views.Since DDML is visual, it is easier to discuss, understand, 

modify, and diagnose problems. Graph algorithms can be applied to a DDML model to evaluate 

the model and resolve problems. 

3.1. DDML Processes 

A simulation model is analogous to a business process that interacts with its environment through 

input and output ports. It receives messages via its input ports and sends out messages via its 

output ports. In DDML, the processes are instance of classes and the ports have to be defined by 

the domain or a set of allowable signals.  

A process which cannot be decomposed is said to be atomic. Processes that have sub-processes 

are coupled. Processes communicate with each other via couplings (constraints are usually 

attached to these couplings to provide more prescriptions about data that are transferred). These 

process couplings can either couple two input ports (from a process and a sub-process), two 

output ports (from a sub-process and a process), or an input port and an output port (from two 

distinct processes). These couplings are termed External Input Coupling (EIC), External Output 

Coupling (EOC), and Internal Coupling (IC) respectively. 

Figure 1 shows a coupled process (m0) with three sub-processes (m1, m2, m3). Process m0 has 

input ports (A and B) and output ports (C and D). Each port has a port type which specifies the 

domain or set of allowed variables. The External Input Coupling (EIC) (represented by a line-

dot-dotted style line) is any connection between the parent’s input port and a child’s’ input port. 

There are two EIC connections in the diagram above. They include {(A—E) and (B—I)}. The 

External Output Coupling (EOC) (represented by a dashed style line) is any connection between 

the parent’s output port and a child’s output port). There are two EOC connections in the diagram 

above. They include: {(H—C) and (J—D)}. Internal Coupling (IC) (represented by a solid line) 

is any connection between two processes. There only one IC connections in the diagram. It is 

{(F—G)}. 

Processes usually occur concurrently, but in the case of a mutual exclusion, a flag is used to 

determine priorities. A paradox could occur when determining priorities. Figure 3 has a 



12 

compartment for specifying the tie breakers (Select Flags). From the figure, if m1, m2, and m3 

are concurrently activated, then m1 is selected to be processed. But if only m3 and m2 are 

activated, then m3 is selected. This kind of situation is known as Condorcet's paradox (or voting 

paradox). Several flags can be added to indicate paradoxes. Flows are also asynchronous and 

instantaneous.  

 

 
Figure 3. DDML Coupled Model and Atomic Model 

3.1.1. Relation to Classical DEVS Theory 

According to the DEVS theory, a coupled model can be defined in classic DEVS as  

CM = <X, Y, D, {Md│d ∈ D}, EIC, EOC, IC, select> 

Where X and Y are input and output ports respectively. D refers to atomic models, EIC, EOC, IC 

are couplings as defined earlier. Select refers to the select function. 

This model is represented in the coupled model DDML diagram (Figure 3) as follows: 

 The coupled model corresponds to the DDML coupled model diagram 

 Each input port p of X (e.g. A or B) of the CM is an input port of the DDML coupled 

model 

 Each output port p of Y (e.g. C or D) of the CM is an output port of the DDML coupled 

model 

 Each sub-model d of D (e.g. m1, m2, or m3) is a sub-process of the CM (Comments can 

be used to give additional details about the class to which the sub-process belongs). 



13 

 Each element in EIC (e.g. (A—E) and (B—I)), EOC (e.g. (H—C) and (J—D)), or IC (e.g. 

(F—G)) is a DDML port-to-port connection as shown above.  

 The select function is translated into flags. A paradox may occur and there are as many 

lines as there are paradoxes.  

3.1.2. Relation to Parallel DEVS Theory 

Recall that a coupled model can be defined in parallel DEVS as 

CM = <X, Y, D, {Md│d  D}, EIC, EOC, IC> 

The DDML representation of such a model is done like with C-DEVS, but with the following 

changes: 

 Inputs (and outputs) are all synchronized 

 There is no flag (hence the compartment for the select flag is left empty) 

According to the closure property, every coupled model can be regarded to be a DEVS atomic 

model. The closure property guarantees that the coupling of several class instances results in a 

model of a particular class, allowing hierarchical construction. This implies that we can have a 

coupled model (child) within another coupled model (parent). 

3.2. DDML States and States Transition 

At any given time, a process is in a particular state. A moderately sized system can have an 

unimaginable size of state spaces. Hence the size of the state space can become infinite leading to 

a problem of state explosion. We solve this problem by using a finite number of state variables to 

partition the infinite number of states into a finite number of state classes. Hence, we define a 

―state‖ here to be an equivalence class of states. From set theory, we can show that a partition on 

a given set of states is defined under a given relation, and each subset in the partition is an 

equivalence class of states. Multiple individual states are said to be in the same equivalence class 

(―state‖ in DDML) if and only if they are equivalent under the given relation, which is defined by 

a configuration of state variables.  

For example, if we define a process by two state variables, X and Y, we can say that the 

individual states defined by {X=4, Y=10}, {X=7, Y=9}, and {X=8, Y=11}, are equivalent under 

the relation {X>3, 7<Y<12}. Hence, the configuration {X>3, 7<Y<12} is a state in DDML. 

We classify states in DDML based on the duration of a state, configuration of state variables, and 

state activities. We have Finite State (to represent a state with a definite duration); Passive State 

(to represent a state with an infinite duration); and Transient State (to represent a state that 

transits instantaneously).  

We use rectangles to represent these states in DDML (see Figure 4). The rectangle has four 

compartments: the upper part is for the name of the state, the second part is for the values of the 

state variables (which defines the state), and the third part is for the activities performed 



14 

whenever the process enters the state, and the lower part is for the time advance for the given 

state. 

The Initial state represents the first state for a process. This state is used to define all the state 

variables and to define the subroutines that are used in other states. Variables creation and 

initialization activities are specified (in a global way, any internal activity which is not a call to a 

subroutine can be specified in a ―do‖ block). The modeler can use any language to express data 

structures and algorithms. Figure 4 also shows the graphical notation for an initial state. The state 

variables are defined in the second compartment; and functions (method definitions) of a process 

are defined in the last compartment. 

A state can be composite. Such a state is composed of sub-states that have common properties 

(every property of the composite state stands also for each of its sub-states, but sub-states can 

have their specific additional properties, and these can be specified in the sub-state graph). The 

duration of a composite state can be explicit or not (in the latter case, sub-states have their own 

durations). We call this a state cluster. Figure 4 illustrates a state cluster in DDML. 

State transitions occur between states in a process. As a result of grouping of states using state 

variables, these transitions should be seen as a transition between state groups rather than 

transitions between definite states. 

 
Figure 4. State Notations in DDML 



15 

The internal state transition is represented by a solid line with an arrow at the end as shown in 

Figure 5 (S5—S6). An internal state transition occurs automatically at the end of a definite state 

or an intermediate state. An action (usually sending an output signal, e.g. Board^.Red) is 

performed at the beginning of the transition and a computation (e.g. Y=”OFF”) is done at the end 

(just before it enters the new state). Such a transition always goes from the right hand side of a 

state to the left hand side of another one. Infinite states do not undergo internal transitions. 

 

 
Figure 5. External and Internal State Transitions 

The external state transition is represented by a broken line with an arrow at the end as shown 

in Figure 5 (S1—S5). An external state transition occurs when a system receives an external 

input or disturbance that forces it to change its state (in the diagram, Control port receives a 

signal with value 3, depicted as Control.3). Such transition can occur at a time (elapse time, e (0 

≤ e ≤ ta)). A computation is done at the end of the transition (just before it enters the new state 

e.g. (Y=”ON”) as shown in Figure 6. In DDML notation, external transitions go from the upper 

or the lower side of a state to the left hand side of another one. 

The Conflict transition, which is a transition that goes from one of the right hand side corners of 

a state, showing that two situations occur simultaneously: the life-time of the state has expired 

while an external event occurs. This is illustrated in Figure 6. A conflict transition also has an 

action and computation.  

 



16 

 
Figure 6. Confluent Transition 

DDML also has notation to define a conditional transition. The diamond shaped figure (Figure 7) 

is used to represent a decision node which indicates a conditional transition. A test is carried out 

before decision is made on which state to transit to. In the figure shown, the system transits to 

state C if Y ≠5 or transits to state B if Y == 5. Conditional transitions could also apply to external 

state transitions. 

 
Figure 7. Conditional Transition 

3.2.1. Relation to Classical DEVS Theory 

Recall, an atomic model is defined in C-DEVS as follows: 

M = <X, Y, S, δint, δext, λ, ta> 

Where X, Y are input ports and output ports respectively. S is the set of states. δint, δext are 

internal and external states transitions respectively. λ is the output function and ta is the time 

advance function. 

The DDML representation of the model is an atomic process built as follows: 

 X and Y are defined as defined in section 3.1.1. 



17 

 An initial state is defined, with declarations: v  Sv. All other states are defined and their 

corresponding configurations of values for the variables specified. Also the value returned 

by the time advance (ta) is indicated for each state at the bottom of the corresponding 

rectangle. Transient states are states with ta(s) = 0 and infinite states are states with ta(s) = 

+∞. 

 δint (s) is defined in the DDML representation as an internal transition from State A to 

state B, which carries λ (s) (output), by indicating how it is distributed among output 

ports. Stochastic situations are depicted using decision nodes. 

 δint (s) is defined in DDML representation as an external transition, which carries the input 

received and shows how this value is distributed among input ports. The associated guard 

(if mentioned) indicates the value of the elapsed time. 

3.2.2. Relation to Parallel DEVS Theory 

An atomic model is defined in P-DEVS as: M = <X
b
, Y

b
, S, δint, δext, δcon, λ, ta> 

The DDML representation is done here like in C-DEVS, with the following changes:  

 Inputs (and outputs) are synchronized.  

 Each relation δcon defines in the conflict transition (Figure 6), which carries X and λ (s). 

3.3. Modeling a Traffic Light System Using DDML 

In this section, we shall demonstrate how to model dynamic systems using DDML with the 

example of a traffic light system.  

Figure 8 shows a simple model of a traffic light system using DDML notation. The Traffic 

system has three sub-processes (Generator, Lights, and Display). The select flag, as shown has 

four lines to indicate priorities of processes when they are imminent simultaneously. 

 
Figure 8. DDML Model for Traffic System 



18 

The Generator randomly switched ON/OFF the traffic system. The Generator has an input port 

(generatorSignal) with domain ({0, 1}) defined. The generator generates a 0 or 1 signal. This 

signal is sent to the Lights process through its Control port. The domain of the Control is 

defined as {ON, OFF}, and this port acts as a switch to the Lights system. The Lights process 

also has an output port, trafficColor which sends the color {Black, Red, Green, Yellow} to be 

displayed to the Display system through the displaySignal port. 

The Generator can be further analyzed using DDML state notations and state transition notations. 

Figure 9 shows a description of the Generator process. 

 
Figure 9. DDML model for the Generator Process showing states and transitions 

The Generator system randomly switches OFF/ON the traffic system. From the Figure above, we 

can see that the generator has two states; the BUSY and IDLE states. The Generator generates a 

random signal (0 or 1) at the end of its BUSY state, which lasts for a random time between 20 

and 80 seconds. A signal of 0 switches off the traffic system; whereas a signal of 1 indicated that 

the traffic system is ON. Note that IDLE process is a transient process (time advance is zero). 

Figure 10 below shows the DDML state graph for the Light system. 



19 

 
Figure 10. DDML Model for Lights Process 

As shown in the figure, there are five states: STOP, READY_TO_GO, READY_TO_STOP, 

GO, and LIGHTS_OFF. Each of these states is defined with its values for state variables, 

activities and time advance. Note that state LIGHTS_OFF is a passive state (time advance is 

INFINITY), showing that it has infinite time duration. Hence, it does not undergo any internal 

transitions. From that state, when the process receives an ON signal through its Control port 

(indicated with Control.ON in the diagram), it undergoes an external transition to STOP state. 

The system remains in STOP state for 20 seconds (duration) before it undergoes an internal 

transition to the READY_TO_GO state. Before this internal transition, it sends out a Yellow 

signal through the trafficColor port (indicated by trafficColor.^Yellow in the figure). The 

system remains in the READY_TO_GO state for 5 seconds, but if it receives an OFF signal 

through the Control port, it transits to LIGHTS_OFF state (external transition). The system works 

in this fashion as shown by other states and transitions in the Figure. 

The DDML state graph for the Display system is shown in Figure 11 below 



20 

 
Figure 11. DDML State Graph for the Display Process 

 



21 

Chapter 4. Building Graphical Editors with Eclipse 

In order to implement the graphical editor for DDML, several frameworks have been considered. 

Some of them include the basic Java graphic libraries: the Abstract Window Toolkit (AWT) and 

Swing. Others frameworks considered are the Eclipse graphic utilities: the Standard Widget 

Toolkit (SWT), JFace, Draw2D, and the Graphical Editing Framework (GEF). AWT, Swing, and 

SWT are based on Java and they provide general GUI controls useful for building form windows. 

Furthermore, SWT is a widget set and graphics library integrated with the native window system 

but with an OS-independent API. JFace is a platform-independent toolkit built on SWT. It 

provides convenience classes for many typical application features and simplifies a number of 

common UI tasks. It enhances and works with SWT without ever hiding it from the developer. 

Nevertheless, AWT, SWT, Swing, and JFace are not practical for manipulating figures and 

shapes, and they do not provide any special infrastructure for Eclipse-based editors. 

Figures are the building blocks of Draw2D that builds on top of the SWT library. The Draw2D 

tool lets you render GUI components with whatever appearance and functionality you prefer. It 

provides this capability by creating a high-level drawing region that operates independently from 

the native platform. GEF allows generating a graphical editor based on an existing application 

model. Eclipse provides Eclipse Modelling Framework (EMF) for building application models 

and Graphical Modeling Framework (GMF) to glue EMF models with GEF. Due to these 

reasons, Eclipse’s GMF has been chosen because this library acts as a bridge between GEF and 

EMF; and it specifically tackles the creation of graphical Eclipse-based editors. 

4.1. Overview of Eclipse 

Eclipse 
[23]

 is an open source software development platform, simple to understand, yet robust 

enough to support integration with a lot of powerful tools. The Eclipse SDK comes with a Java 

Development Toolkit (JDT) for writing and debugging Java programs and the Plugin 

Development Environment (PDE) for extending Eclipse. The Eclipse Platform’s purpose is to 

provide the services necessary for integrating software development tools, which are 

implemented as plugins. To be useful, the Platform has to be extended with plugins; even the 

JDT is a plugin. The beauty of Eclipse’s design is that, except for a small runtime kernel, 

everything is a plugin or a set of related plugins. This plugin design makes Eclipse extensible. 

More important, however, the platform provides a well-defined way for plugins to work together 

(by means of extension points and contributions), so new features can be added not only easily, 

but seamlessly. 

Eclipse is built to meet the following requirements: 

 Support the construction of a variety of tools for application development.  

 Support an unrestricted set of tool providers, including independent software vendors 

(ISVs).  

 Support tools to manipulate arbitrary content types (e.g., HTML, Java, C, JSP, EJB, 

XML, and GIF).  

 Facilitate seamless integration of tools within and across different content types and tool 

providers.  



22 

 Support both GUI and non-GUI-based application development environments.  

 Run on a wide range of operating systems, including Windows® and Linux.  

 Capitalize on the popularity of the Java programming language for writing tools.  

Eclipse platform architecture consists of a platform runtime kernel, Workbench, workspace, help, 

and team components. Other tools plug in to this basic framework to create a usable application. 

4.2. Eclipse Plugin Environment 

An Eclipse plugin is the smallest unit of Eclipse Platform function that can be developed and 

delivered separately. Usually a small tool is written as a single plugin, whereas a complex tool 

has its functionality split across several plugins. Except for a small kernel known as the Platform 

Runtime, all of the Eclipse Platform's functionality is located in plugins.  

An Eclipse Plugin is coded in Java. A typical plugin consists of Java code in a JAR library, some 

read-only files, and other resources such as images, web templates, message catalogs, native code 

libraries, etc. Some plugins do not contain code at all. One such example is a plugin that 

contributes online help in the form of HTML pages. A single plugin's code libraries and read-

only content are located together in a directory in the file system, or at a base URL on a server. 

There is also a mechanism that permits a plugin to be synthesized from several separate 

fragments, each in their own directory or URL. This is the mechanism used to deliver separate 

language packs for an internationalized plugin.  

Each plugin has a manifest file declaring its interconnections to other plugins. The 

interconnection model is simple: a plugin declares any number of named extension points, and 

any number of extensions to one or more extension points in other plugins.  

A plugin’s extension points can be extended by other plugins. For example, the workbench 

plugin declares an extension point for user preferences. Any plugin can contribute its own user 

preferences by defining extensions to this extension point. An extension point may have a 

corresponding API interface. Other plugins contribute implementations of this interface via 

extensions to this extension point. Any plugin is free to define new extension points and to 

provide new API for other plugins to use.  

On start-up, the Platform Runtime discovers the set of available plugins, reads their manifest 

files, and builds an in-memory plugin registry. The Platform matches extension declarations by 

name with their corresponding extension point declarations. Any problems, such as extensions to 

missing extension points, are detected and logged. The resulting plugin registry is available via 

the Platform API. Plugins cannot be added after start-up.  

Plugin manifest files contain XML. An extension point may declare additional specialized XML 

element types for use in the extensions. This allows the plug-in supplying the extension to 

communicate arbitrary information to the plugin declaring the corresponding extension point. 

Moreover, manifest information is available from the plugin registry without activating the 

contributing plugin or loading of any of its code. This property is key to supporting a large base 

of installed plugins only some of which are needed in any given user session. Until a plugin’s 



23 

code is loaded, it has a negligible memory footprint and impact on start-up time. Using an XML-

based plugin manifest also makes it easier to write tools that support plugin creation. The Plugin 

Development Environment (PDE), which is included in the Eclipse SDK, is such a tool.  

A plugin is activated when its code actually needs to be run. Once activated, a plugin uses the 

plugin registry to discover and access the extensions contributed to its extension points. The 

contributing plugin will be activated when the user selects a preference from a list. Activating 

plugins in this manner does not happen automatically; there are a small number of API methods 

for explicitly activating plugins. Once activated, a plugin remains active until the Platform shuts 

down. Each plugin is furnished with a subdirectory in which to store plugin-specific data; this 

mechanism allows a plugin to carry over important state between runs.  

The Platform Runtime declares a special extension point for applications. When an instance of 

the Platform is launched, the name of an application is specified via the command line; the only 

plugin that gets activated initially is the one that declares that application.  

By determining the set of available plugins up front, and by supporting a significant exchange of 

information between plugins without having to activate any of them, the Platform can provide 

each plugin with a rich source of pertinent information about the context in which it is operating. 

This context cannot change while the Platform is running, so there is no need for complex life 

cycle events to inform plugins when the context changes. A lengthy start-up sequence is avoided, 

as is a common source of bugs stemming from unpredictable plugin activation order.  

The Eclipse Platform is run by a single invocation of a standard Java virtual machine. Each 

plugin is assigned its own Java class loader that is solely responsible for loading its classes (and 

Java resource bundles). Each plugin explicitly declares its dependence on other plugins from 

which it expects to directly access classes. A plugin controls the visibility of the public classes 

and interfaces in its libraries. This information is declared in the plugin manifest file; the 

visibility rules are enforced at runtime by the plugin class loaders.  

The plugin mechanism is used to partition the Eclipse Platform itself. Indeed, separate plugins 

provides the workspace, the workbench, and so on. Even the Platform Runtime itself has its own 

plugin. Non-GUI configurations of the Platform may simply omit the workbench plugin and the 

other plugins that depend on it.  

The Eclipse Platform's update manager downloads and installs new features or upgraded versions 

of existing features (a feature being a group of related plugins that get installed and updated 

together). The update manager constructs a new configuration of available plugins to be used the 

next time the Eclipse Platform is launched. If the result of upgrading or installing proves 

unsatisfactory, the user can roll back to an earlier configuration.  

The Eclipse Platform Runtime also provides a mechanism for extending objects dynamically. A 

class that implements an ―adaptable‖ interface declares its instances open to third party behavior 

extensions. An adaptable instance can be queried for the adapter object that implements an 

interface or class. For example, workspace resources are adaptable objects; the workbench adds 

adapters that provide a suitable icon and text label for a resource. Any party can add behavior to 

existing types (both classes and interfaces) of adaptable objects by registering a suitable adapter 



24 

factory with the Platform. Multiple parties can independently extend the same adaptable objects, 

each for a different purpose. When an adapter for a given interface is requested, the Platform 

identifies and invokes the appropriate factory to create it. The mechanism uses only the Java type 

of the adaptable object (it does not increase the adaptable object's memory footprint). Any plugin 

can exploit this mechanism to add behavior to existing adaptable objects, and to define new types 

of adaptable objects for other plugins to use and possibly extend. 

4.3. Eclipse Modeling Framework (EMF) 

EMF 
[24]

 is a Java framework and code generation facility for building tools and other 

applications based on a structured model. EMF helps to rapidly turn models into efficient, 

correct, and easily customizable Java code.  

EMF model requires just a small subset of the kinds of things that can be modeled in UML, 

specifically simple definitions of the classes and their attributes and relations, for which a full-

scale graphical modeling tool is unnecessary.  

EMF unifies the three important technologies: Java, XML, and UML. Regardless of which one is 

used to define the model, an EMF model is the common high-level representation that "glues" 

them all together. The model used to represent models in EMF is called Ecore (an XML Metadata 

Interchange (XMI) file). Ecore is itself an EMF model, and thus is its own meta-model. While 

EMF uses XMI (XML Metadata Interchange) as its canonical form of a model definition, you 

have several ways of getting your model into that form:  

 Create the XMI document directly (using Ecore) , using an XML or text editor 

 Export the XMI document from UML using a modeling tool such as Rational Rose 

 Annotate Java interfaces with model properties 

 Use XML Schema Definition (XSD) to describe the form of a serialization of the model 

Once an EMF model is specified, the EMF generator can create a corresponding set of Java 

implementation classes. These generated classes can be edited to add methods and instance 

variables and still regenerate from the model as needed: the additions will be preserved during the 

regeneration.  

In addition to simply increasing productivity, building an application using EMF provides several 

other benefits like model change notification, persistence support including default XMI and 

schema-based XML serialization, a framework for model validation, and a very efficient 

reflective API for manipulating EMF objects generically. Most important of all, EMF provides 

the foundation for interoperability with other EMF-based tools and applications.  

EMF consists of two fundamental frameworks: the core framework and EMF.Edit. The core 

framework provides basic generation and runtime support to create Java implementation classes 

for a model. EMF.Edit extends and builds on the core framework, adding support for generating 

adapter classes that enable viewing and command-based (undoable) editing of a model, and even 

a basic working model editor.  



25 

4.4. Graphical Editing Framework (GEF) 

The Graphical Editing Framework, GEF 
[25]

 allows us to easily develop graphical representations 

for existing models. It is possible to develop feature rich graphical editors using GEF. All 

graphical visualization is done via the Draw2D framework, which is a standard 2D drawing 

framework based on SWT from eclipse.org. The editing possibilities of the Graphical Editing 

Framework allow you to build graphical editors for nearly every model. With these editors, it is 

possible to do simple modifications to a model, like changing element properties or complex 

operations like changing the structure of your model in different ways at the same time. 

All these modifications to the model can be handled in a graphical editor using very common 

functions like drag and drop, copy and paste, and actions invoked from menus or toolbars. As 

GEF is based on MVC architecture, every GEF-based application uses a model to represent the 

state of the diagrams being created and edited. GEF allows us to use any objects as model objects 

within an application, however, using an EMF model provides some advantages over using 

arbitrary objects: 

 EMF’s code generation facilities can be used to produce consistent, efficient and easily 

customizable implementations of a model’s objects. If your model evolves during 

development, you can regenerate the code to reflect changes to the model, while 

preserving your customizations. 

 The MVC architecture used by GEF relies on controllers that listen for model changes 

and update the view in response. If you use an EMF model, notification of model change 

is already in place, as all EMF model objects notify change via EMF’s notification 

framework. 

 The implementations generated for the model’s objects ensure that the model remains 

consistent; for example, when a reference is updated, the opposite reference is also 

updated.  

 EMF provides support for persisting model instances, and the serialization format is easily 

customizable.  

 Your applications can use the reflective API provided by EMF to work with any EMF 

model generically. 

Although EMF.Edit-based editors can be generated from EMF models using the 

org.eclipse.emf.codegen.ecore plugin, these editors use JFace viewers, such as the TreeViewer to 

display model instances, and typically provide a view that has a one-to-one correspondence with 

the model. Sometimes editors where the view is more loosely coupled with the model might be 

created. This is often the case when we want to use a graphical notation that may hide some of 

the detail of the underlying model objects, or may impose additional or a different structure to the 

model, for visualization purposes. We can think about using GEF and EMF together from two 

different perspectives; using an EMF model within a GEF application, and augmenting 

EMF.Edit-based editors using GEF. 

 

 



26 

4.5. Graphical Modeling Framework (GMF) 

GMF 
[26]

 combines both GEF and EMF for designing powerful graphical editors. GEF is used to 

define the figures representing the models created using EMF. GMF sits on GEF and utilizes all 

the features of EMF and also provides its users with an editor with many re-usable components.  

GMF consists of two main components: a runtime and a tooling framework. The runtime handles 

the task of bridging EMF and GEF while providing a number of services and Application 

Programming Interfaces (API) to allow for the development of rich graphical editors. The tooling 

component provides a model-driven approach to defining graphical elements, diagram tooling, 

and mappings to a domain model for use in generating diagrams that leverage the runtime. 

GMF also relies on the Model-View-Controller (MVC) architectural pattern to separate the 

model from its graphical representation, which has been used successfully in other DEVS editor 

(notably CD++ Builder).  

4.5.1. Runtime Framework 

The production of an editor plugin based on the generator model will target a final model; that is, 

the diagram runtime model. The runtime is bridge between the notation and domain model(s) 

when a user is working with a diagram. It also provides for the persistence and synchronization of 

both. The runtime not only allows easier integration between EMF and GEF, but provides 

additional services like: transactions support, extended meta-modeling facilities, notation meta-

model, variability points used for runtime extensibility of generated code, etc. 

4.5.2. Tooling Framework  

Figure 12 below illustrates the main components and models used on the tooling side of GMF.  

 



27 

 
Figure 12. GMF Tooling Framework Main Components 

4.5.3. Graphical Definition Model 

The graphical definition model consists of two parts and defines the graphical elements found on 

a diagramming surface. The first part is a Figure Gallery, which defines figures (shapes, labels, 

lines, and so on) that the Canvas elements later reference to define nodes, connections, 

compartments, and diagram labels. An important point is that figure galleries can be reused. 

Many diagrams require similar-looking elements, such as a rounded rectangle with center label, 

or connections that are a solid line with open arrowhead decoration on the target end.  

The mapping model references figures defined in the gmfgraph model. When the mapping model 

is transformed to the generator model, figure code is generated and included within the gmfgen 

model itself. When code is generated, edit parts will contain figures as inner classes. This is the 

default behavior when working with GMF, although it is not necessarily the recommended 

approach.  

Another feature of the graphical definition model is the capability to export figures to a 

standalone figure plugin. This can also satisfy reuse because these plugins can be shared by 

several diagrams and among a community as a binary form of the figure gallery. 

4.5.4. Tooling Definition Model 

Diagrams typically include a palette and other periphery to create and work with diagram content. 

The purpose of the tooling definition model is to specify these elements. The tooling model 

currently includes elements for the palette, the toolbar, and various menus to be defined for a 

diagram.  



28 

4.5.5. Mapping Definition Model 

Perhaps the most important of all models in GMF is the mapping model. Here, elements from the 

diagram definition (nodes and links) are mapped to the domain model and assigned tooling 

elements. The mapping model represents the actual diagram definition and is used to create a 

generator model. Typically a one-to-one mapping exists among a mapping model, its generator 

model, and a particular diagram. 

The mapping model uses Object Constraint Language (OCL) in many ways, including initializing 

features for created elements, defining link and node constraints, and defining model audits and 

metrics. Audits identify problems in the structure or style of a diagram and its underlying domain 

model instance, and metrics provide measures of diagram and domain model elements. 

4.5.6. Generator Model 

As mentioned in the overview, the generator model adds information used to generate code from 

the mapping model and is somewhat analogous to the EMF genmodel. Both can be reproduced 

and reloaded from their source models, although the EMF genmodel is a true decorator model. 

The GMF generator model is more of a many-to-one model transformation than a decorator 

model. As a mapping model is transformed into a generator model, it loses knowledge of the 

graphical definition and gains knowledge of the runtime notation model. This minimizes the 

number of dependencies linked from the generator model and separates concern among the 

models. The code generated should be modified to provide custom behavior and functionality 

that is required of the graphical editing tool. 

GMF comes with a dashboard that streamlines the workflow of dealing with the collection of 

models. Each model can be selected, created, or edited within the dashboard, including EMF 

*.ecore and *.genmodel models. 

 



29 

Chapter 5. Architecture of Eclipse-DDML Graphical Editor 

Figure 13 shows the conceptual architecture of the Eclipse-based DDML Editor. 

 

DDML Editor 

GMF 

GEF EMF 

Eclipse 
 

Figure 13. Architecture of Eclipse DDML Graphical Editor 

EMF was used to define the model, as it provides several utilities for specifying entities. The 

model was specified in an Ecore graphical editor which was translated into an Ecore model (XMI 

format). EMF uses this model to generate Java classes and interfaces. The generated classes 

implement the observable design pattern, providing methods that notify whenever one of their 

properties has changed. Custom code and methods to provide extra behaviour and functionality 

was added to the generated classes. EMF recognises special code comments in the added or 

customized methods not to overwrite them when the model is regenerated. EMF also provides 

persistence and validation services for the generated models. Figure 14 below shows the Ecore 

Graphical Definition for DDML  



30 

 
Figure 14. Ecore (Meta-Model) Model for DDML (Graphical) 

DDML is hierarchical. First, we defined an editor for defining coupled models and atomic 

models with ports and connections (EIC, EOC, and IC). We call this editor the DDML Coupled 

Model Editor. Next, we defined an editor for defining state transitions for an atomic model. We 

call this editor the DDML Atomic Model Editor. Our idea here is that, the user would first define 

the coupled model and atomic models within a coupled model. Thereafter, the user can further 

define the state transitions for an atomic model by double clicking on an atomic model within the 



31 

DDML Coupled Model Editor. This would launch the DDML Atomic Model Editor for state 

transitions definition. 

5.1. The DDML Coupled Model Editor 
5.1.1. Graphical Definition (DDML_Model.gmfgraph) 

Building on the Ecore model defined in Figure 14, we created the GMF graphical definition was 

defined for DDML. This includes graphical definitions for Coupled Model, Atomic Model, Input 

Port, Output Port, External Input Coupling (EIC), External Output Coupling (EOC), and Internal 

Coupling (IC).  

 We defined a Canvas at the root with a Figure gallery containing figure descriptors for our 

model elements (we call the diagram canvas ddml). 

 We defined a set of figures to represent the domain model elements. The editor for this 

definition has dimension and color attributes such as line widths, foreground and 

background color attributes and static decorations. We constructed all the figures by 

adding them as a New Child to the present figure that represents our class.  

 We defined the figure for the Coupled Model which is a Rounded Rectangle with a label 

(for the name of the atomic model) and other properties as shown in Figure 15 below: 

 
Figure 15. Figure Descriptor for Coupled Model 

 We defined the figure for the Atomic Model which is a rectangle with a label (for the 

name of the atomic model) and other properties as shown in Figure 16. 



32 

 
Figure 16. Figure Descriptor for Atomic Model 

 We define figures for the input and output ports which is a polygon (with template points 

as shown in Figure 17 below  

 
Figure 17. Figure Descriptor for Input Port 

 We define figures for EIC, EOC, and IC which are polyline connections with their 

particular line types, source and target decorations (circular decoration as defined below) 

as shown in the Figure 18 below 

 
Figure 18. Figure Descriptor for EIC 

For each of the Connection Figures, we made tweaks to the Properties to define the line 

properties. The properties of the IC Figure are shown in Figure 19. 



33 

 
Figure 19. Properties Definition for IC 

 We defined a Polygon Decoration (circular decoration) for the EIC, EOC, and IC 

connections as shown in Figure 20 

 
Figure 20. Figure Descriptor for Circular Decoration 

 We defined graph nodes and connections. The domain model elements that are to be 

placed on the diagram editor canvas as nodes were defined as Node. The nodes in our 

DDML_MODEL.gmfgraph definition are shown in Figure 21: 



34 

 
Figure 21. Graph Nodes for DDML Model 

 We also associated each of these nodes to the corresponding figure descriptor. 

 We also made tweaks to the properties of the Input Port Node and Output Port Nodes. 

These nodes would be affixed to the side of a parent node (a Model node). We defined the 

Input Port to be affixed to the West side of the parent and the Output Port to be affixed to 

the East side of the parent. The properties of Node Input_Port are shown Figure 22. 

 

Figure 22. Properties Definition for Input Port 

 We defined connections. Domain elements that are to be specified as connections to link 

the domain elements were defined as Connection. The connections in our graphical 

definition are shown in Figure 23: 

 

Figure 23. Connections for DDML Model 

We also associated each connection to the corresponding figure description.  

 We defined Compartments. Compartments are sections in nodes that can be collapsed and 

themselves can contain other nodes or list of elements. We specify two compartments in 

the Coupled_ModelFigure. They are shown in Figure 24. 

 

Figure 24. Coupled Model Compartments 

 Finally, we defined diagram labels to show the text associated with the graphical 

elements. The labels are shown in Figure 25. 



35 

 

Figure 25. Diagram Labels for DDML 

5.1.2. DDML Tooling Definition 

The DDML_MODEL.gmftool model defines a set of palette entries. The palette is the set of 

figure buttons (on the right of the editor) that allows model elements to be added to the domain 

model instance. As shown in Figure 26, we defined tools for Models, Ports and Couplings. Then 

we defined an icon for each of the tools. 

 
Figure 26. Tooling Definition for DDML Model 

5.1.3. DDML Mapping Definition 

This is the most complex model. Here we mapped the tooling definition and the graphical 

definition to the domain model. For each domain model that we want to map directly onto the 

diagram surface (the editpattern) we have to first define a Top Node Reference. Below that, we 

add a normal Node Mapping. This contains information about the model element to map to the 

tooling and graphical definitions. We did the following to define our mapping definition: 

 We created a Top Node Reference for Coupled Models (as shown in the Figure 27). To 

this we added a Node Mapping to map the map the Coupled Model Domain Element, the 

Coupled Model Graphical Definition, and the Coupled Model Creation Tool. We then 

added several Child References to this node. As shown in the figure, we added Child 



36 

References for Input Ports, Output Ports, Tie Breakers (Select Function), Atomic Models, 

and a Child Reference which references the Node Mapping for the Coupled Model Node 

Mapping. We also added Compartment Mappings for the SelectCompartment (a 

compartment for the Select Flag, with Child as the Child Reference for Select Flag) and 

ModelCompartments (with Children as the Child References for the Atomic Model and 

Coupled Model). We also defined the Containment Features and the Children Features for 

the Child References. 

 

Figure 27. Mapping Definition for Coupled Model 

 For each of the Child References, we defined a Node Mapping to map the Domain 

Element, the Graphical Definition for the element and the Creation Tool. In some cases, 

we made a reference to an existing Node Mapping, for example, the Child Reference for 

Coupled Model references the Node Mapping for the Top Node Reference (Coupled 

Model).  

 We also defined Label Mappings and Feature Label Mapping for each Node Mapping. 

For example, for Input Ports, we mapped the Input Port Name to the Model. This has been 

defined by an External Label in our Graphical Definition. This is illustrated in Figure 28. 

 

Figure 28. Adding Label Mapping 

 For the Node Mapping for the Child Reference to Atomic Model (within the Node 

Mapping for Coupled Model to the Top Node Reference for Coupled Model), we define 

Children Child References (i.e. Child References within a Child Reference) for Input 

Ports and Output Ports. This ensures that Our Atomic Model can also contain Input Ports 

and Output Ports. See Figure 29 for the illustration: 



37 

 

Figure 29. Node Mapping for Child Reference Atomic 

 We defined Link Mappings for the EIC, EOC, and IC links. For each link, we mapped the 

Domain Element, Graphical Definition, and Creation Tool. This is illustrated in Figure 

30. 

 

 
Figure 30. Link Mappings (above); Properties for Link Mapping 

From the properties (as shown in the Figure 30), we defined the Containment Feature, Domain 

Element, Source Feature, Target Feature, Diagram Link, and Tool.  

 We defined constraints for each link using Object Constraint Language (OCL). Link 

Constraints are used to validate the links upon creation between any two elements. The 

constraints can be specified using OCL as Source End Constraint. and Target End 

Constraint. (Refer to Figure 31) 

 For EIC, we define Source Constraint  (not self.oclIsKindOf(Output_Port) and 
(self <> oppositeEnd)) and Target Constraint (not 



38 

self.oclIsKindOf(Output_Port) and (self <> oppositeEnd)). This ensures that 

an EIC connects only an Input Port from the Parent Coupled Model and an Input 

Port in the Child Model (Coupled Model or Atomic Model). 

 For EOC, we define Source Constraint (not self.oclIsKindOf(Input_Port) and 
(self <> oppositeEnd)) and Target Constraint (not 
self.oclIsKindOf(Intput_Port) (self <> oppositeEnd)). This ensures that an 

EOC connects only an Output Port from the Parent Coupled Model and an Output 

Port in the Child Model (Coupled Model or Atomic Model). 

 For IC, we define Source Constraint(not self.oclIsKindOf(Input_Port) (self <> 
oppositeEnd)) and Target Constraint(not self.oclIsKindOf(Output_Port) (self 
<> oppositeEnd)). This ensures that an EOC connects only an Output Port from 

a Model and an Input Port in another Model (Both Models within a parent 

Coupled Model). 

 

 

Figure 31. Defining Link Constraints 

5.1.4. DDML Generator Model 

We transformed the .gmfmap model to the generator model (.gmfgen) using the facilities that 

Eclipse provides. During the transformation, reference was made to the .genmodel file that was 

generated from the .ecore model. We made some tweaks to the generated .gmfgen model XMI 

file. We separated the domain model (.ddmdm file) and the diagram file (.ddmdg). We specified a 

partition for our editor by defining Open Diagram Behaviour Policy. This is illustrated in Figure 

32. 



39 

 
Figure 32. Setting Open Diagram Behavior for 

The Open Diagram Behaviour Policy references the Atomic Model Plugin. This implies that 

double clicking the Atomic Diagram Model Figure would open another editor to define the 

process model. This second editor is described in the sections to follow.  

We generated the editor code using the facilities that eclipse provides. We also made 

modifications to the generated code to meet the functionalities of our graphical editor.  

5.2. The DDML Atomic Model Editor 
5.2.1. Atomic Model Graphical Definition 

Just like we did with the DDML Model Graphical Definition, we defined the notations and 

descriptors for the following Process Model Figures: Initial State, Finite State, Passive State, 

Transient State, External Transition, Internal Transition, Conditional Transition, State Properties, 

State Activities, Time Advance, and Process Method Definition.  

 Figure descriptors for Internal and External Transitions include Polyline Connections 

(Figure 33). The Properties of the Connections are defined in the Properties View (shown 

in Figure 34) below for External Transition). For Internal Transition, we used a Solid Line 

as the Line Kind 

 
Figure 33. Figure Descriptor for External Transition 

 



40 

 
Figure 34. Properties Definition for External 

 The figure above shows that we define a target decoration (Polygon Decoration 

ArrowHead). We show the definition of the target decoration in Figure 35. 

 
Figure 35. Figure Descriptor for ArrowHead 

 We defined figure descriptor for Initial State as shown in Figure 36. 

 
Figure 36. Figure Descriptor for Initial State 

 We defined figure descriptors for definite state, passive state, and transient state. The 

figure descriptor for passive state is shown in the Figure 37. 



41 

 
Figure 37. Figure Descriptor for Passive State 

 We defined figure descriptors for conditional transition node as shown in Figure 38. 

 
Figure 38. Figure Descriptor for Conditional Transition Node 

In the generated code (atomic.diagram.edit.parts.Decision_NodeEditPart class), we make the 

following tweaks to adjust the Stack Layout and ensure that the Label ConditionName is always 

wrapped.  



42 

 
 We defined Nodes, Compartments, Diagram Labels, and Connections and linked them to 

their respective figure descriptors. This is shown in Figure 39. 



43 

 

 
Figure 39. Definitions for Nodes, Compartments, Connections and Labels 

 



44 

5.2.2. Atomic Model Tooling Definition 

We defined the Atomic_Model.gmftool which creates the palette and tools for the Aomic Model 

Editor. In the generated code, we defined the icons for the tools. Figure 40 shows the tools that 

were created: 

 
Figure 40. Tooling Definition for Atomic Model 

5.2.3. Atomic Model Mapping Definition 

Just as we did when we defined the mapping definition for the DDML Coupled Model 

(DDML_Model.gmfmap), we defined mappings to define the Atomic_Model.gmfmap. The 

following were done to achieve this: 

 We defined a Top Node Reference for Transient State as shown in Figure 41. 

 
Figure 41. Top Node Reference for Transition State 

In the Node Mapping, we defined three Child References (Property, Activity, and Time Advance) 

and linked them to their corresponding Compartment Mapping. We also defined the 

corresponding Node Mapping for the Child References. As shown in Figure 42, we also defined a 



45 

Feature Initializer to Initialize the Time Advance to DEVS_ZERO. This value is fixed for all 

Transient State. This initialization was done in OCL. 

 
Figure 42. Feature Initializer for Time Advance for Transient State 

 We defined the Top Node References for Initial State, Passive State, and Finite State. We 

also defined their compartments, child references, and feature initialization as was 

necessary. Figure 43 shows the mappings (with Node Mappings suppressed) 

 
Figure 43. Top Node Reference for Passive State 

 We defined link mappings for external transition and internal transition. As shown in 

Figure 44, we defined a link constraint for the internal transition link. This constraint 

(Source End Constraint) was defined in OCL (not self.oclIsKindOf(Passive_State). This is 

necessary to ensure that passive states do not undergo internal transition. 

 
Figure 44. Link Mapping and Constraints for Transitions 

5.2.4. Atomic Model Generator Model 

Using the tools provided with eclipse, we generated the Atomic_Model.gmfgen file by 

referencing the .gmfmap and .genmodel files. We made some changes to the generated model. 

We separated the domain model (.atmdm file) and the diagram file (.atmdg). As noted in section 

**, this editor was referenced in the Open Diagram Behaviour Policy for Atomic Model defined 



46 

in DDML_Model.gmfgen. The generator model was used to generate the editor plugin code and 

tweaks were made to the code to ensure that the editor meets the desired functionalities. 

5.3. Creating the DDML UI Plugin 

Using the Eclipse Plugin development tools, we defined an eclipse plugin to integrate the DDML 

Coupled Model plugin and the Atomic Model Plugin. The plugin has extensions from 

org.eclipse.ui.NewWizards. A snippet from the plugin.xml file is shown below: 

 

 



47 

Chapter 6. Using the Eclipse-DDML Graphical Editor 

The DDML Graphical editor is eclipse based and it is as easy to use as eclipse. In this chapter, we 

present the DDML Coupled Model Editor and the DDML Atomic Model Editor. 

6.1. The DDML Coupled Model Editor 

Figure 45 below shows a screen shot of the coupled model editor. The editor has a menu bar, a 

tool bar, project explorer, Outline view, Properties View, Palette, and the Model Editor 

Workspace. In the following sections, we will take a look at each of these sections. 

 
Figure 45. DDML Coupled Model Editor 

6.1.1. The Menu Bar and Tool Bar 

Figure 46 shows the Menu Bar and Tool Bar for the DDML Coupled Model Editor. The menu 

bar includes the following menus: File, Edit, Diagram, Navigate, Search, Project, Run, Window 

and Help. 

  



48 

 

Figure 46. DDML Editor Menu Bar and Tool Bar 

The File menu contains menu items for creating a new model, opening an existing model, closing 

the application window, saving a model, switching/selecting a workspace, exporting and 

importing models from other locations, printing a model diagram, etcetera. To create a new 

model, click on the File Menu, click on New, select Other, in the DEVS Modeling Tools 

category, select DDML Coupled Model Diagram Wizard (or the appropriate wizard). This is 

shown in Figure 47 below. 

 
Figure 47. New DDML Diagram Wizard 

The Edit menu contains the following menu items: Undo, Redo, Cut, Copy, Paste, Delete, Select 

All, Find/Replace, Add Bookmark, Add Task. The keyboard shortcuts (same as the standard 

shortcuts for editors) for these items are shown beside the menu items. 

The Diagram menu contains menu items to change the diagram properties. It includes Font, 

Color, Line Type, Line Size, Select, Arrange, Order, Align, and other features that facilitate 

graphical modeling.   

The Search, Project, Run, Window, and Help menus are standard eclipse menus with similar 

functionalities. 

The toolbar contains common tools for formatting the model diagram. These tools include tools 

used for formatting font properties, adjusting model diagram foreground and background 



49 

properties, zooming, printing a model, saving a model, undoing and redoing modeling activity, 

selecting a model, and creating a new model. Just like in most editors, the properties of a tool can 

be discovered by resting the cursor on the tool. 

6.1.2. The Project Explorer 

The project explorer view (shown in Figure 48) provides a hierarchical view of the project and 

resources in the Workbench. To add the project explorer to the workbench, click Window > 

Show View > Other... > General > Project Explorer. 

 
Figure 48. The Project Explorer 

6.1.3. The Outline View 

The outline view shows a graphical outline of the workspace. Figure 49 shows what the outline 

view looks like. To add the outline view to the workbench, click Window > Show View > 

Other... > General > Outline. 



50 

 
Figure 49. The Outline View 

6.1.4. The Palette 

The palette contains the tools for defining a model. Figure 50 shows the palette for the coupled 

model editor. 

 
Figure 50. The Palette 

The tools in the palette are Coupled Model (for creating a coupled model); Select Flag (for 

defining a select flag in the select flag compartment of a coupled model); Atomic Model (for 

creating an atomic model within the model compartment in a coupled model); Input and Output 

Ports. Ports are added by selecting a port and dropping it on a model (coupled or atomic). It also 

contains tools for EIC, EOC and IC. The connections are created by selecting the desired tool and 

drawing a connection between two model ports.  

The upper part of the palette also contains tools for zooming (in and out), and adding a note to a 

model element. 

6.1.5. The Drawing Workspace 



51 

The drawing workspace is where the model is created. Figure 51 shows the workspace. The 

modeler defines a model by picking tools from the palette and dropping them on the workspace. 

The figures in the workspace can be dragged and adjusted just as the modeler wants it. Only a 

coupled model can be dropped on the top level of the workspace. The coupled model has a 

compartment for holding select flags. To add a select flag, simply pick the Select Flag tool and 

drop on the select flag compartment on the coupled model. The coupled model also has a 

compartment for housing models. Coupled models and atomic models can be placed within a 

parent couple model by simply picking on the appropriate tool and dropping it on the coupled 

model’s model compartment. Ports can be added to a model (coupled or atomic) by simply 

picking the appropriate tool (Input Port or Output Port) and dropping it on the model. 

Connections are made between ports. An External Input Coupling (EIC) can only couple the 

input port of a coupled model to the input port of its child model (atomic or coupled). An 

External Output Coupling (EOC) can only couple the output port of a child model and the output 

port of the parent coupled model. An Internal Coupling (IC) can only couple the output port of a 

model and the input port of another model within the same hierarchical level.  

 
Figure 51. The Diagram Workspace 

Right-clicking on the workspace (or a figure element in the workspace) launches a menu with 

several menu items (shown in Figure 52). From this menu, the modeler can add a note to the 

workspace or to the model diagram, print a model diagram, export the whole workspace (or a 

figure if it is selected) to an image file (jpg, png, gif, etc.), display the properties view for the 

workspace (or the selected figure), etcetera.  

To export the workspace to an image file, simply right click on an empty space in the workspace, 

select File, and select Save As Image File (as shown in Figure 52 below).   



52 

 
Figure 52. Exporting DDML Diagrams to Image Files 

6.1.6. The Properties View 

The Eclipse-DDML workbench provides a properties view that displays the detailed properties 

for the selected element. Some details about a model element which can are not shown in the 

drawing workspace are shown in the properties view. This view is very important to the modeler. 

The default user interface is table with property and value pairs, and the value being modified 

using a standard dialog cell editor. The properties shown depend on the element (workspace or 

model element) selected. Figures 53-56 shows the properties view for some selected model 

elements. 

 
Figure 53. Project Property View 



53 

 
Figure 54. Coupled Model Editor Property View 

 
Figure 55. Coupled Model Property View 

 
Figure 56. Atomic Model Property View 



54 

6.2. The DDML Atomic Model Editor 

Figure 57 shows the workbench for the Atomic Model Editor. 

 
Figure 57. DDML Atomic Model Editor Screenshot 

Just like the Coupled Model Editor, the Atomic Model Editor has a menu bar and tool bar; a 

project explorer, a properties view, an outline view, a diagram workspace, and a palette. Apart 

from the palette, the other sections are very much similar to the Coupled Model Editor.  

Figure 58 shows the palette. The palette contains tools for States (Initial State, Finite State, 

Passive State and Transient State); State Tools (State Property, State Variable and Process 

Method); and Transitions (External Transitions and Internal Transitions). 



55 

 
Figure 58. Atomic Model Editor Palette 

Defining state transitions for the atomic model involves simply picking the right tools from the 

palate. The Initial State figure has compartments for State Variables and Process Methods. The 

State Variables define the states and can be added to the model by simply picking the State 

Variable tool and dropping it the Initial State (within the State Variables Compartment). A 

Process Method can be added in a similar way. A process method is a method (the body should 

be defined in the properties view) that is used within the atomic model. The body of the process 

method should be written in the language that has been predefined when creating the Atomic 

Model. 

The Passive, Transient, and Finite States contain compartments for defining State Variables 

(which can be picked from the palette), and Activities. The State Activity is defined within the 

body of the do {} in the properties view and this must be done in the predefined language. The 

Time Advance for the Passive State and Transient State is set to infinity and zero respectively, 

while that of the Finite State must be defined by the modeler. 

External and Internal Transitions can be made by using the Transition tools. This can be done by 

simply picking the tool and connecting two states. The Lambda and Computation must be defined 

for the internal transition while the Trigger and the Computation must be defined for the external 

transition (this can be done either graphically or in the properties view). 

 



56 

Chapter 7. Conclusion 

We presented DDML as a graphical notation for defining DEVS models. We showed how 

DDML maps to the formal DEVS specification and how it captures the dynamic, static and 

functional aspects of a system. We also presented a graphical editing tool with rich editors for 

defining DEVS coupled models and atomic models. Our tool, with drag and drop features can 

enable modelers to easily define, edit, share, and store models in a persistent form. DDML is a 

natural and intuitive approach to modeling. Its notation can easily be understood by both domain 

experts and modelers. Using a graphical editing tool further increases the simplicity. 

DDML is a contribution towards making DEVS available to a wider community. It borrows 

concepts and ideas from very strong graphical formalisms (like UML and BPMN). Our tool is 

built as an eclipse plugin, hence it can integrate and be integrated into other utilities using Eclipse 

platform. This also means that it is extensible, easy to manage, and update.  

Future work includes the following: 

 DDML should be integrated with some methods for formal analysis 

 Our editor should be extended to include ability to automatically generate simulation code 

for DEVS libraries like SimStudio, DEVSJAVA, and DEVS-C++. 

 Our tool should evolve into an integrated development environment for all simulation 

tasks (modeling, simulation, analysis of results, verification, and validation of simulation 

models, and visualization of simulation results. 

 



57 

References 

[1] Zeigler, B.; Praehofer, H; Kim, T. 2000. ―Theory of Modeling and Simulation‖. 2nd 

Edition, Academic Press. 

[2] Adegoke A. 2010. ―Efficient Object Oriented Implementations for the DEVS 

Formalism‖. M.Sc. Thesis, Computer Science Stream, African University of Science and 

Technology, Abuja, Nigeria.  

[3] Christen, G., A. Dobniewski, and G. Wainer. 2004. ―Modeling state-based DEVS 

models CD++‖. Proceedings of MGA, Advanced Simulation Technologies Conference 

2004, Arlington, VA, USA. 

[4] Kidisyuk, K., and G. Wainer. 2007. ―CD++Modeler: A graphical viewer for DEVS 

models‖. Technical report SCE-017, Ottawa, ON, Canada. 

[5] Matias, B.; G. Wainer; R. Castro; 2010. ―Advanced IDE for Modeling and 

Simulation of Discrete Event Systems‖. Proceedings of 2010 Symposium on Theory of 

Modeling and Simulation, DEVS’10. Orlando, FL. 2010.  

[6] Nutaro, J. ADEVS. URL: http://www.ornl.gov/~1qn/adevs/index.html. Accessed: 

November 1, 2010. 

[7] Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1996. ―Distributed simulation 

of hierarchical DEVS models: Hierarchical scheduling locally and time warp 

globally‖. Transactions of the SCS 13 (3): 135–154. 

[8] Zeigler, B., Y. Moon, D. Kim, and D. Kim. 1996. ―DEVS-C++: A high performance 

modeling and simulation environment‖. Proceedings of the 29th Hawaii International 

Conference on System Sciences, Honolulu.  

[9] Zeigler, B. P. 1990. ―Object-oriented simulation with hierarchical, modular 

models: Intelligent agents and endomorphic systems‖. Boston: Academic Press. 

[10] Zeigler, B., and D. Kim. 1995. ―Extending the DEVS-scheme knowledge-based 

simulation environment for real-time event-based control‖. Technical report, 

Department of Electrical and Computer Engineering, University of Arizona. 

[11] Sarjoughian, H. S., and B. P. Zeigler. 2000. ―DEVS and HLA: Complementary 

paradigms for M&S?‖ Transactions of the SCS 17:187–197. 

[12] Zeigler, B. P. 1999. ―Implementation of the DEVS formalism over the HLA/RTI: 

Problems and solutions‖. Simulation Interoperability Workshop, Orlando, FL. 



58 

[13] IEEE Std 1516.1-2000. 2001. IEEE standard for modeling and simulation. ‖High 

level architecture (HLA)—Federate interface specification‖. IEEE Std 1516.1-2000: 

1–467. 

[14] Sarjoughian, H. S., and B. P. Zeigler. 1998. ―DEVSJAVA: Basis for a DEVS-based 

collaborative M&S environment‖. Proceedings of SCS International Conference on 

Web-Based Modeling and Simulation, San Diego, CA. 

[15] Kim, T. G. 1994. DEVSIM++ user’s manual. CORE Lab, EE Dept, KAIST, Taejon, 

Korea. 

[16] DÃ¡vila, J., and M. UzcÃ¡gegui. 2000. ―GALATEA: A multi-agent, simulation 

platform‖. Proceedings of International Conference on Modeling, Simulation and Neural 

Networks, MÃ©rida, Venezuela. 

[17] Himmelspach, J., and A. Uhrmacher. 2004. ―A component-based simulation layer 

for JAMES‖. Proceedings of 18th Workshop on Parallel and Distributed Simulation 

(PADS), Kufstein, Austria, 115–122. 

[18] Filippi, J. B., and P. Bisgambiglia. 2004. ―JDEVS: An implementation of a DEVS 

based formal framework‖. Environmental Modeling and Software 19:261–274. 

[19] Bolduc, J. S., and H. Vangheluwe. 2001. ―The modeling and simulation package 

PythonDEVS for classical hierarchical DEVS‖. Technical report MSDL-TR-2001-01, 

McGill University. 

[20]. de Lara, J., and H. Vangheluwe. 2002. ―AToM3: A tool for multi-formalism and 

meta-modeling‖. Proceedings of Fundamental Approaches to Software Engineering, 5th 

International; Lecture Notes in Computer Science, 174–188. 

[21] Praehofer, H., and G. Reisinger. 1995. ―Object-oriented realization of a parallel 

discrete event simulator‖. Technical report, Johannes Kepler University, Department of 

System Theory and Information Engineering. 

[22] Traore, M. K. 2009. ―A Graphical Notation for DEVS‖. Proceedings from the 

Spring Simulation Multiconference. 

[23] Gallardo G. et al. 2003. ―Eclipse in Action: A Guide for Java Developers‖. 

Manning Publications Co.  

[24] Steinberg D. et al. 2008. ―Eclipse Modeling Framework.‖ 2nd Edition, Addison-

Wesley Professional. 

[25] Moore B. et al. 2004. ―Eclipse Development: Using the Graphical Editing 

Framework and the Eclipse Modeling Framework‖. IBM Redbooks.  



59 

[26] Gronback R. C. 2009. ―Eclipse Modeling Project: A Domain-Specific Language 

Toolkit‖. Addison-Wesley.  


