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Abstract

The theory of analytic functions plays a central role in operator theory. It has been a source of methods,

examples and problems, and has led to numerous important results. Weighted shifts (which we shall

see in the sequel) have been studied with analytic function theory approach.

In this thesis, inspired by the work A. L. Shields, we give excellent exposition of an interplay between

weighted shift operators and analytic functions. Essential ingredients of the considerations therein were

viewing a weighted shift operator as ”multiplication by z” on a Hilbert space consisting of formal

power/Laurent series and showing that the structure of this space is in fact analytic. This enabled

using multiplication operators and bounded point evaluations, tools known to be very powerful in variety

of problems in operator theory.
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CHAPTER 1

Preliminaries

In this chapter, we will give definition of some terms and results of interest used in the thesis.

1.1 Definition of terms

Along this text, we denote by H a Hilbert space and by L(H), the algebra of all bounded linear

operators defined in H. For an operator T ∈ L(H), we denote by R(T ), N(T ), D(T ) and T ∗ the range

of T , the kernel of T , the domain of T and the adjoint operator of T respectively. Let M 6= ∅ be a

subset of H. we denote the orthogonal complement of M by

M⊥ = {y ∈ H such that 〈x, y〉 = 0 for every x ∈M}.

Given a subset A in H, we set span(A) for the smallest vector subspace of H containing A and

vect− T (A) for the span of the set {Tnx, n ≥ 0 and x ∈ A}.

Definition 1.1.1 (Normed algebra, Banach algebra) A normed algebra N is a normed space

which is an algebra such that for all f, g ∈ N ,

‖fg‖ ≤ ‖f‖‖g‖

and if N has an identity e,

‖e‖ = 1.

N is commutative if the multiplication is commutative, that is, if for all f, g ∈ N , fg = gf . A

Banach algebra is a normed algebra which is complete, considered as a normed space.

Example 1.1.2 The Banach space of all bounded linear operators on a complex Banach space X 6= 0

is a Banach algebra with identity I and multiplication defined by composition of operators.

Definition 1.1.3 (Spectrum, Resolvent, Spectral radius of an operator) Let A ∈ H.

The spectrum, denoted by Λ(A) is a nonempty and compact subset of C defined by

Λ(A) = {λ ∈ C : A− λI is bijective from H to H}

1



1.1. DEFINITION OF TERMS 2

and the resolvent set denoted by ρ(A), is the complement of the spectrum, i.e.,

ρ(A) = C\Λ(A)

The spectral radius of A is defined by

r(A) = sup{|λ| : λ ∈ Λ(A)}.

If A ∈ B is invertible then

Λ(A−1) =

{
1

λ
: λ ∈ Λ(A)

}
= [Λ(A)]−1

and so

(r(A−1))−1 = inf{|λ| : λ ∈ Λ(A)}

In this case, Λ(A) lies in the annulus [r(A−1)]−1 ≤ |z| ≤ r(A).

We now define the different parts the of spectrum of an operator. We proceed with the following

definition and give some characterizations.

Definition 1.1.4 (Bounded Below, Lower Bound) Let A be an operator on the Hilbert space H,

then A is bounded below if there exists ε > 0 such that

‖Af‖ ≥ ε‖f‖ for all f ∈ H.

The lower bound of A denoted by m(A) is defined

m(A) = inf{‖Af‖ : ‖f‖ = 1}.

Remark 1.1.5 (i) W ‖Af‖ ≥ m(A)‖f‖, for all f ∈ H

(ii) It is easy to see that if |λ| < m(A), then A− λ is bounded below.

(iii) If A is bounded below, then m(A) > 0.

(iv) If A is invertible and A−1 is bounded, then m(A) = 1
‖A−1‖ . Indeed,

‖A−1‖ = sup
{
‖A−1g‖ : g ∈ R(A) and ‖g‖ = 1

}
= sup

{
‖A−1g‖
‖g‖

: x ∈ R(A) \ {0}
}

= sup

{
‖A−1Af‖
‖Af‖

: f ∈ D(A) \ {0}
}

= sup

{
‖f‖
‖Af‖

: f ∈ D(A) \ {0}
}

= sup

{
1

‖Af‖
: f ∈ D(A) and ‖f‖ = 1

}
=

1

inf {‖Af‖ : f ∈ D(A) and ‖f‖ = 1}
=

1

m(A)
.
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(v) If A and B are two bounded below operators on H, then

m(AB) ≥ m(A)m(B).

Proposition 1.1.6 Let A be an operator on H. Then the sequence {(m(An))
1
n }n converges with limit

supn(m(An))
1
n .

Proof: Fix k ∈ N. For all n, n = kqn + rn := kq + r where 0 ≤ r < k. By Remark (1.1.5),

m(An) ≥ m(Akq)m(Ar) ≥ m(Ak)qm(Ar) = m(Ak)
n−r
k m(Ar).

Taking the n−th root of both sides and then lim inf of both sides as n→∞, we obtain

lim inf
n→∞

m(An)
1
n ≥ m(Ak)

1
k .

Since k is abitrary, this holds for all k. Thus m(Ak)
1
k is bounded above and has a supremum and

hence

(1.1.1) lim inf
n→∞

m(An)
1
n ≥ sup

k
m(Ak)

1
k .

Again, from Remark (1.1.5), for all n

m(A2n)
1
2n ≥ m(An)

1
n .

Taking supremum of both sides over n and then lim sup of both sides over n, we obtain

(1.1.2) sup
n
m(An)

1
n ≥ lim sup

n
m(An)

1
n .

Combining (1.1.1) and (1.1.2), we obtain our result.

Using similar approach, by noting that r(AB) ≤ r(A)r(B), one can show that

rB(A) = lim
n→∞

‖An‖ 1
n

We denote limn→∞(m(An))
1
n by r1(A).

Remark 1.1.7 Following Remark (1.1.5), if A is invertible, then r(A−1) = 1
r1(A) .

Lemma 1.1.8 Let A be an operator on H then A is invertible if and only if A is bounded below and

has a dense range.

We may now classifying the parts of the spectrum of an operator using Lemma (1.1.8). Conse-

quently, if λ ∈ Λ(A), let u(A) denote the set of complex numbers λ such that A− λI is not bounded

from below, and Γ(A) the set of complex numbers λ such that Cl(R(A− λI)) ( H, then

Λ(A) = u(A) ∪ Γ(A).

The set u(A) is called the approximate point spectrum of A. An important subset of the approx-

imate point spectrum is the point spectrum/eigenvalues u0(A); a number λ belongs to u0(A) if



1.1. DEFINITION OF TERMS 4

and only if there exists a nonzero vector f such that Af = λf . Such a vectorf is then called an eigen

vector associated with the eigen values λ.

The set Γ(A) is called the compression spectrum of A.

Proposition 1.1.9 The following are equivalent:

(i) λ ∈ u(A).

(ii) There exists a sequence {fn}n of unit vectors such that ‖(A− λ)fn‖ → 0.

(iii) m(A− λI) = 0

Proof: (i) =⇒ (ii). λ ∈ u(A) means A − λI is not bounded below. Thus for all n ≥ 0, there

exists {gn}n such that

‖(A− λ)gn‖ <
1

n
‖gn‖.

Dividing through by ‖gn‖ and letting n→∞ we obtain (ii)

(ii) =⇒ (iii). Consider the set

D := {α : ‖(A− λI)f‖ ≥ α‖f‖ for all f} ⊂ R.

Clearly 0 is a lower bound of D. Combining this result with (ii), we obtain (iii).

(iii) =⇒ (i). We proceed by contrapositive. Suppose λ /∈ u(A), then A− λI is bounded below. Thus

∃c > 0 such that

‖(A− λI)f‖ ≥ c‖f‖ for all f.

Taking infimum over all f with unit norm, we obtain m(A− λI) ≥ c > 0.

Definition 1.1.10 (Weighted Shift Operator) An operator T on the (complex) separable Hilbert

space H is said to be a weighted shift operator if there is some orthogonal basis {en}n and weight

sequence {wn}n such that

Ten = wnen+1, for all n.

T is unilateral if n runs over N and bilateral if n runs over Z.

Remark 1.1.11 (i) We require H to be separable to guarantee the existence of a countable or-

thonormal basis en for H.

(ii) It is easy to see that ‖T‖ = supn |wn|. In particular, T is bounded if and only if {wn}n is

bounded.

(iii) T is injective if and only if none of the weights is zero. Indeed, x ∈ ker(T ) = 0 if and only if

Tx = T (
∑

αnen) =
∑

αnT (en) =
∑

αnwnen+1 = 0,

if and only if

αnwn = 0, for all n

It follows that

N(T ) = span{en such that wn = 0}
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An operator A on an n-dimensional Hilbert space n <∞ is called finite-dimensional weighted

shift if there are numbers {β1, β2, ..., βn−1} and orthonormal basis {e1, e2, ..., en} such that

Aei = βiei+1 (i < n)

Aen = 0.

Such an operator is nilpotent with degree n if none of the β′is is zero. If T is unilateral and finitely

many weights are zero then T is a direct sum of a finite-dimensional weighted shifts and an infinite-

dimensional injective weighted shift. If infinitely many weights are zero then T is the direct sum of an

infinite family of finite-dimensional weighted shifts.

If T is a bilateral shift with one zero weight (say w0), we ill see below that T is is a direct sum of a

unilateral shift (on the space spanned by {ek}k) and the adjoint of a unilateral weighted shift (on the

orthogonal complement). If additional weights are zero, there is a further direct sum decomposition

as the unilateral case.

Definition 1.1.12 (Diagonal Operator) Suppose that H is a separable Hilbert space, and that {en}
is an orthonormal basis for H, an operator D is called diagonal if Den = anen for some family of

scalar numbers an. The family {αn} may be called the diagonal of D.

Remark 1.1.13 A weighted shift operator can be seen as the product of a standard shift (one-sided

or two, with wn = 1) and a compatible diagonal operator. That is, W = SD where S is a shift

(Sen = en+1).

Definition 1.1.14 (Unitary operator) An operator U on H is said to be unitary if U is bijective

and U∗ = U−1.

It is easy to see that a diagonal operator D is a unitary operator on H if and only if |αn| = 1. That

is,

D∗en = D−1en = ān.

Definition 1.1.15 (Unitary equivalence) Let A and B be operators on H. A and B are said to be

unitarily equivalent if there exists a unitary operator U on H such that

A = U∗BU and B = UAU∗

Thus we say the operators A and B are ”abstractly identical”. That is, there is never any loss of

generality in restricting attention to either of the operators in place of the other.

Remark 1.1.16 Two unitarily equivalent operators A and B on H have the same spectrum. Indeed,

for every λ ∈ C
A− λI = U∗BU − λI = U∗(B − λI)U

So B − λI is invertible iff A− λI is invertible, which leaves Λ(S) = Λ(T ).

Definition 1.1.17 (Commutant) Let U ⊂ L(H) then the commutant of U denoted by U ′ is the set

of all operators in L(H) which commutes with every operator in U .
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1.2 Elementary properties of Weighted Shift Operators

Proposition 1.2.1 Suppose that {wi}i is bounded, then ‖Tn‖ exists and

‖Tn‖ = sup
i
|wiwi+1...wi+n−1|, n = 1, 2, ...

Proof: From definition of T we get

(1.2.1) Tnei = (wiwi+1...wi+n−1)ei+n for all i

and thus the result follows.

Proposition 1.2.2 Let T be a bilateral shift then

m(Tn) = inf
i
|wi...wi+n−1| n = 1, 2, ...

Proof: This also follows from Equation (1.2.1).

Proposition 1.2.3 If T is a bilateral weighted shift then

T ∗en = wn−1en−1 for all n

If T is a unilateral weighted shift then

T ∗en = wn−1en−1 for all n ≥ 1

T ∗e0 = 0

Proof: For all n and m,

〈T ∗en, em〉 = 〈en, T em〉

= 〈en, wmem+1〉

= wm〈en, em+1〉

and the result follows.

Now, we consider weighted shift operators S and T on H with respect to the same orthonormal

basis {en} and weight sequences {vn} and {wn} respectively. Let A be an operator on H, we define

the matrix associated to A by [ai,j ] = [〈Aej , ei〉]. We give the following proposition:

Proposition 1.2.4 (a) If S and T are unilateral shifts, then AS = TA if and only if

vjai+1,j+1 = wiai,j for all i, j ≥ 0

vja0,j+1 = 0 for all j ≥ 0

(b) If S and T are bilateral shifts, then AS = TA if and only if

vjai+1,j+1 = wiai,j for all i, j ≥ 0
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Proof: We prove (a). For all i, j,

〈ASej , ei+1〉 = vj〈Aej+1, ei+1〉 = vjai+1,j+1

〈TAej , ei+1〉 = 〈Aej , T ∗ei+1〉 =

wiai,j , if i ≥ 0

0, if i+ 1 = 0

and the result follows.

The following theorem gives a characterization for two injective weighted shifts S and T to be

similar (the existence of invertible operator A such that AS = TA).

Theorem 1.2.5 (a) Let S, T be injective bilateral weighted shifts with weight sequences {vn}, {wn}
Then S and T are similar if and only if there exists an integer k and positive constants C1 and

C2 such that

0 < C1 ≤ |
wk+m...wk+n
vm...vn

| ≤ C2 for all m ≤ n.

(b) Let S, T be injective unilateral weighted shifts with weight sequences {vn}, {wn} Then S and T

are similar if and only if positive constants C1 and C2 such that

0 < C1 ≤ |
w0...wn
v0...vn

| ≤ C2 for all n.

In both of these cases, the operator A that implements the similarity can be chosen so that

max(‖A‖, ‖A−1‖) < max(C2,
1

C1
).

Recall that T is a contraction if ‖T‖ ≤ 1 and is power bounded if there exists a c > 0 such that

‖Tn‖ ≤ c, n = 1, 2, .... It is clear that every operator that is similar to a contraction is power bounded.

The converse has motivated several authors in the last century and has been negatively resolved after

numerous investigation. From the previous theorem, we have the next positive answer for weighted

shifts. The proof can be seen in page 55, [Shields, 1974].

Corollary 1.2.6 If T is a weighted shift operator and power bounded, then T is similar to a contrac-

tion.

Proposition 1.2.7 (a) If S, T are two unilateral weighted shifts with weight sequences {vn}, {wn},
and if

|vn| = |wn|, for all

then S and T are unitarily equivalent. The converse is true if S and T are injective

(b) If S, T are two bilateral weighted shifts with weight sequences {vn}, {wn}, and if there exists an

integer k such that

|vn| = |wn+k|,∀n

then S and T are unitarily equivalent. The converse is true if S and T are injective.

Proof: We prove (a). We take our required unitary operator to be the diagonal operator D = {λn}n
which we shall find constructively.
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Now, assume that TD = DS. Applying en to both sides we have,

wnλn = vnλn+1, for all n.

Set λ0 = 1. If vn 6= 0 , put λn+1 = (wn/vn)λn. If vn = 0, then wn = 0 since |vn| = |wn|. Thus, put

λn+1 = 1. The result is a sequence λ of complex numbers of modulus 1. The steps leading to this

sequence are reversible. Given the sequence {λn}, let it induce a diagonal operator D; we note that

since |λn| = 1 for all n, the operator D is unitary; and, finally, note that since TDen = DSen for all

n, the operator D transforms S onto T .

Corollary 1.2.8 T is unitarily equivalent to the weighted shift operator with weight sequence {|wn|}.

Corollary 1.2.9 If |c| = 1, then T and cT are unitarily equivalent.

From now, on we shall assume that T has no zero weight that is T is injective. Due to the previous

corollary, it suffices to say T is a weighted shift operator with real weight sequence {wn}, wn > 0 for

all n.

Remark 1.2.10 With the restriction that wn > 0 for all n, the unilateral shift operator is never

invertible but the bilateral shift can be. To see this, we use the following.

Lemma 1.2.11 For any subset M 6= ∅ of a Hilbert space H,

1. M⊥ is a closed invariant subspace

2. (M⊥)⊥ = span(M)

3. the span of M is dense in H if and only if M⊥ = {0}.

Now, let T be a unilateral weighted shift. We observe that e0 ∈ M⊥(R(T ∗)). Thus, R(T ∗)) is a

proper subset of H and hence T ∗ is not inverible (infact not surjective). This implies that T is cannot

be invertible.

Example 1.2.12 The bilateral weighted shift with weight sequence
{
|n|+2
|n|+1

}
n∈Z

is invertible with in-

verse having weight sequence
{
|n|+1
|n|+2

}
n∈Z

.

We shall see that a bilateral weighted shift is invertible if and only if
{

1
wn

}
n∈Z

is bounded.

1.3 Weighted sequence spaces

Definition 1.3.1 Let {fn}n be an orthogonal basis for H, an operator T is said to shift this orthogonal

basis if

Tfn = fn+1.

We now give the following useful characterization which allows us represent weighted shift operators

as ordinary shift.

Proposition 1.3.2 T is a weighted sift operator if and only if it shifts some orthogonal basis {fn}.
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Proof: Given T , unilateral with weight sequence {wn} and orthonormal basis {en}, define

fn = w0...wn−1en, for n ≥ 1

f0 = e0

For the bilateral case for n < 0, define

fn =
en

wnwn+1...w−1

then T shifts {fn}.
If T shifts some orthogonal basis {fn}, define for all n

en =
fn
‖fn‖

, wn =
‖fn+1‖
‖fn‖

then T is weighted shift operator.

Let f be an analytic function about zero. We denote f = {f̂n}. Let {βn}n be a sequence of positive

numbers such that β0 = 1. We define the following Hilbert spaces of formal power series and formal

Laurent series by

H2(β) =

{
{f̂n}n∈N :

∑
n∈N
|f̂n|2β2

n <∞

}
and

L2(β) =

{
{f̂n}n∈Z :

∑
n∈Z
|f̂n|2β2

n <∞

}
respectively,

endowed with the inner product

〈f, g〉 =
∑

f̂nĝnβ
2
n

and norm

‖f‖ =
√∑

|f̂n|2β2
n.

Whenever we do not wish to distinguish either of the spaces, we denote H.

This heuristic expression of members of H as formal power (Laurent) series suggests a multiplicative

and analytic structure which have significant relationship to the weighted shift operator T .



CHAPTER 2

Multiplication Operator and The Commutant

2.1 Multiplication Operator

A weighted shift operator could be viewed as ”multiplication by z” on a Hilbert space of formal

power series or formal Laurent series. This point of view was taken by R. Gellar in [Gellar, 1968],

[Gellar, 1969b] and [Gellar, 1969a] where he considered much more general spaces. Further exposition

was done by N.K. Nikol’skii [Nikol’skii, 1968], and S.Grabiner [Gellar and Herrero, 1974].

We define the linear multiplication operator Mz on H as follows

Mzf(z) = z ×
∑

f̂nz
n =

∑
f̂nz

n+1.

For the formal Laurent series case, ˆ(Mzf)n = f̂n−1 for all n, while for the formal power series case,
ˆ(Mzf)n = f̂n−1 for n ≥ 1, ˆ(Mzf)0 = 0.

It is easy to see that {fn(z) = zn}n is an orthonormal basis for H with ‖fn‖ = βn. Furthermore, Mz

shifts the orthogonal basis {zn}n; for each n, Mzfn = zn+1 = fn+1

Remark 2.1.1 Mz need not be bounded. Consider βn =
√
n!, then ‖Mzfn‖ = (n+ 1)‖fn‖

Following Proposition 1.3.2, we have that Mz is unitarily equivalent to an injective weighted shift

operator with weight sequence.

(2.1.1) wn =
‖fn+1‖
‖fn‖

=
βn+1

βn
for all n

Conversely, every weighted shift operator is unitarily equivalent to Mz acting on H with βn given by

βn =


w0...wn−1 if n > 0

1 if n = 0

1
w−1...w−n

if n < 0

10
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Proposition 2.1.2 Mz is bounded if and only if
βj+1

βj
is bounded and

‖Mn
z ‖ = sup

j

[
βj+n
βj

]
, n = 0, 1, 2...

Proof: Since Mz is unitarily equivalent to T with weight sequence {wn}n as given above, this

follows from Proposition 1.2.1.

Proposition 2.1.3 Let T be a bilateral weighted shift (represented as Mz on L2(β)). T is invertible

if and only if { 1
wn

= βn

βn+1
}n is bounded. Furthermore, T−1 is a bilateral weighted shift. In this case,

(2.1.2) ‖T−n‖ = sup
j

βj
βn+j

=

[
inf
j

βn+j
βj

]−1
, n = 0, 1, 2, ...

Proof: Suppose
{

1
wn

}
n

is bounded. Then the operator S defined by Sen = 1
wn−1

en−1 for all n ∈ Z
is well defined. We see that TS = ST = I. This implies T−1 exists and equals S. Moreover, S is a

bilateral shift operator: Svn = snvn+1, where vn = e−n and sn = 1
w−(n+1)

. Thus T−1 is a bilateral

weighted shift operator. By Proposition 1.2.1, and equation 2.1.1, we obtain equation 2.1.2.

Conversely, suppose that T is invertible. Then Mz is invertible. Since Mzfn = fn+1, we have

M−1z fn = fn−1 for all n. Let f
′

n = f−n. We see that M−1z shifts the orthogonal basis {f ′n}. Thus we

may represent T−1 as a multiplication by z on L2(β′) where β′n = ‖f ′n‖ = ‖f−n‖ = β−n and thus

2.2 Classical examples

Let D denote the open unit disc

Example 2.2.1 (Unweighted Hardy shift)

wn = 1⇒ βn = 1⇒ Hβ = H2(D) =

f = {f̂n} :
∑
n≥0

|f̂n|2 <∞

 .

Example 2.2.2 (Weighted Hardy shift)

wn =

(
n+ 1

n

)α
⇒ βn = nα ⇒ Hβ =

f = {f̂n} :
∑
n≥1

|f̂n|2nα <∞

 .

In the examples above, we define the Hardy shift on Mz on Hβ by the multiplication operator

Mzf(z) = zf(z).

Example 2.2.3 (Bergmann shift, [Giselsson, 2012]) Let E be a Hilbert space and let n ∈ N. We

denote by

An(E) =

f(z) =
∑
k≥0

f̂kz
k, z ∈ D :

∑
k≥0

‖f̂k‖2µn,k <∞ where µn,k =
1(

k+n−1
k

)

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The Bergman shift operator is the operator Sn on An(E) is given by multiplication by the complex

coordinate:

Snf(z) = zf(z), z ∈ D.

Example 2.2.4 (Dirichlet shift, [Richter and Sundberg, 1994]) The Dirichlet space D is de-

fined as the space of all analytic functions f = {fn} on D which have a finite Dirichlet integral

D(f) =

∫∫
D

|f ′(z)|2dA(z).

Here dA(z) = 1
π rdrdt denotes the normalized area measure on D.

The Dirichlet shift (Mz,D) is the operator of multiplication by z on D.

2.3 The commutant

The commutant of a weighted shift operator was first described by R. L. Kelley [Kelley, 1966, p. 5].

The more useful description of the commutant (of a bilateral shift) as a space of formal Laurent series

occurs in Gellar [Gellar, 1969b].

We adopt the following notations as suggested by Gellar [Gellar, 1974], and A. L. Shields [Shields, 1974].

H∞(β) = {φ = {φ̂n}n∈N : φH2(β) ⊂ H2(β)}

and

L∞(β) = {φ = {φ̂n}n∈Z : φL2(β) ⊂ L2(β)}

where φH means the multiplication of formal power (resp. Laurent) series φf for all f ∈ H.

With {fn(z) = zn}n as an orthonormal basis for H, we give the following remarks.

Remark 2.3.1 (i) Since φf0 = φ for all formal power (resp. Laurent) series, L∞(β) ⊂ L2(β) and

H∞(β) ⊂ H2(β)

(ii) For all φ ∈ H and n,m,

(2.3.1) 〈fmφ, fn〉 = φ̂n−mβ
2
n

Let φ ∈ H, we denote the operator of multiplication by φ on H by Mφ. We give the following

propositions.

Proposition 2.3.2 Mφ is a bounded linear transformation.

Proof: It is clear that Mφ is linear. Let the matrix associated with Mφ be A. Then given the

orthogonal basis {fn}n and from equation 2.3.1, for all i, j,

(2.3.2) ai,j =
〈Mφfj , fi〉
‖fi‖2

=
φ̂i−jβ

2
i

β2
i =

.

For the formal power series case, ai,j = 0 for i < j. Using the fact that an everywhere defined matrix

transformation is bounded [Cohen and Dunford, 1937], we conclude that Mφ is bounded.
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Proposition 2.3.3 Both H∞(β) and L∞(β) are commutative algebras.

Proof: Let φ, ψ ∈ L∞(β). Denote the matrix of transformation of Mφ and Mψ by [ai,j ] and [bi,j ]

respectively. The product operator MφMψ is thus given by the product of the matrices [ai,j ][bi,j ] with

entries

ci,j =
∑
k

ai,kbk,j .

This sum converges due to the boundedness of Mφ and Mψ and the result from Cohen and

Dunford (since the product of bounded maps is bounded).

But ∑
k

ai,kbk,j =
∑
k

φ̂i−kψ̂k−j =
∑
l

φ̂lψ̂i−j−l = ˆ(φψ)(i− j)

which by equation 2.3.2 is precisely the i, j−entry of the matrix associated with Mφψ. Thus

MφψH = MφMψH = Mφ(MψH) ⊂MφH ⊂ H.

This gives φψ ∈ H. Hence H is a commutative algebra.

Following the same process, we also have that the product of the matrices [bi,j ][ai,j ] with entries

di,j = ˆ(φψ)(i− j).

From Proposition 2.3.2, we have that ‖Mφ‖ exists. We shall use the following notation for norm of

Mφ.

(2.3.3) ‖Mφ‖ = ‖φ‖∞

We now give a characterization of the commutant of Mz on H

Theorem 2.3.4 (a) Let A be an operator on H2(β) that commutes with Mz, then A = Mz, for

some φ ∈ H2(β).

(b) Let A be an operator on L2(β) that commutes with Mz, then A = Mz, for some φ ∈ L2(β).

Corollary 2.3.5 Both H∞(β) and L∞(β) are complete in the norm given by 2.3.3.



CHAPTER 3

The Spectrum of Weighted shift operator

Here we investigate the parts of the spectrum of the weighted shift mostly due to R. L. Kelley

[Kelley, 1966]. However, the exposition on the approximate point spectrum was done by W. Ridge

[Ridge, 1970]. Independently, N. K. Nikolskii [Nikol’skii, 1968] identified the eigenvalues of an injective

bilateral shift.

From now on we assume that T is a bounded weighed shift operator. From corollary 1.2.9 and the

fact that unitarily equivalent have the same spectrum, we get that the spectrum of a weighted shift

operator has circular symmetry about the origin: If λ is in the spectrum of T and if |c| = 1 then cλ is

in the spectrum of cT and hence in the spectrum of T .

We now investigate on the spectrum of T . First off, the unilateral case.

Theorem 3.0.1 Let T be a unilateral weighted shift. Then the spectrum of T is the disc |z| ≤ r(T ).

Proof: It is known that

Λ(T ) ⊂ {λ ∈ C : |λ| ≤ r(T )}.

To prove the converse, it suffices to show that the resolvent set of T is the punctured disc |z| > r(T ).

T can be represented by Mz on a corresponding H2(β). Let λ ∈ ρ(T ). Then (T − Iλ)−1 exists.

Now,

T (T − Iλ)−1 = ((T − Iλ)T−1)−1

= (TT−1 − IλT−1)−1

= (T−1T − T−1Iλ)−1

= (T−1(T − Iλ))−1

= (T − Iλ)−1T.

Thus, (T − Iλ)−1 is commutative with T and hence can be represented by an operator Mφ on H2(β)

for some formal power series φ ∈ H∞(β). That is, Mφ = (Mz − Iλ)−1.

Applying f0 to both sides,

Mφf0 = (Mz − Iλ)−1f0.

14
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Thus we obtain,

(z − λ)φ(z) = 1

From which by computation (comparison of coefficients), we find that φ̂n = (−1)/λn+1 for all n ≥ 0.

Let k,m ∈ N. From equation 2.3.1 we have

|φ̂kβ2
k+m| = |〈Mφfm, fm+k〉| ≤ ‖Mφ‖βmβk+m.

Hence,
βk+m
βm

≤ ‖Mφ‖
|φ̂k|

= ‖Mφ‖|λk+1|

So,

‖Mk
z ‖ = sup

m

[
βk+m
βm

]
≤ ‖Mφ‖
|φ̂k|

= ‖Mφ‖|λk+1| = ‖λMφ‖|λk|

By taking k−th root and letting k →∞ yields r(T ) ≤ |λ| or |λ| ≤ r(T ). In fact, strict inequality must

holds since, by circular symmetry, the entire circle |λ| = r(T ) is in the spectrum. Thus we obtain our

result.

We now consider the bilateral case.

Theorem 3.0.2 (a) If T is an invertible bilateral weighted shift, then the spectrum of T is the

annulus [r(T−1)]−1 ≤ |z| ≤ r(T ).

(b) If T is a non-invertible weighted shift, then the spectrum is the disc |z| ≤ r(A).

Proof: Since T is invertible, it is known that

Λ(T ) ⊂ {λ ∈ C : [r(T−1)]−1 ≤ |λ| ≤ r(T )}.

To prove the converse, we follow in similitude the method used in the previous theorem.

Let λ ∈ ρ(T ) then (Mz − Iλ)−1 is represented by Mφ for some φ ∈ L∞(β) and so we obtain

(z − λ)φ(z) = 1 that is (z − λ)
∑
n

φ̂nz
n.

From which by comparing of coefficients, we get

(3.0.1)


φ̂−1 − λφ̂0 = 1

λkφ̂k = φ̂0

φ̂−k−1 = λkφ̂−1, k ≥ 0

When k = λ = 0 we take λk = 1. By equation 2.3.1, and equation 2.1.1,

|φ̂k|β2
m+k = 〈Mφfm, fm+k〉 ≤ ‖Mφ‖‖fm‖fm+k‖ = ‖Mφ‖βmβm+k for all k,m

That is,

(3.0.2) |φ̂k|βm+k ≤ ‖Mφ‖βm for all k,m
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We consider the following cases:

Case 1. φ̂0 6= 0. Multiplying 3.0.2 by |λ|k and applying 3.0.1 we obtain

|φ̂0|βm+k ≤ |λ|k‖Mφ‖βm for all m and k ≥ 0.

So that,

βk+m/βm ≤ |λ|k‖Mφ‖/|φ̂0|

So,

‖Mk
z ‖ = sup

m
[βk+m/βm] ≤ |λ|k|Mφ‖/|φ̂k|

By taking k−th root and letting k →∞ yields r(T ) ≤ |λ|. Equality is excluded since by circular

symmetry, the entire circle |λ| = r(T ) is in the spectrum.

Case 2. φ̂−1 6= 0. In equation 3.0.2, let k = −n, n ≥ 1, we have

|φ̂−n|βm−n ≤ ‖Mφ‖βm for all n,m.

Applying the last equation in equation 3.0.1, we obtain

|λ|n−1|φ̂−1|βm−n ≤ ‖Mφ‖βm for all n,m.

Setting n = 1, recalling that we take 00 to be 1, we obtain that βm−1

βm
is bounded for all m

implying from Proposition 2.1.3 that T is invertible.

Furthermore, for n ≥ 1, |λ|n−1|φ̂−1| ≤ ‖Mφ‖βm/βm−n. Taking inf over m of both sides and

recalling 2.1.2, we obtain

|λ|n−1|φ̂−1 ≤ ‖Mφ‖ inf
m

[
βm
βm−n

]
= ‖Mφ‖‖T−n‖−1

Taking the n-th root of both sides and letting n→∞, we obtain |λ| ≥ [r(T−1)]−1.

From the first equation in 3.0.1, we see that given λ, at least one of these Cases must occur. If

T is invertible then T−1 exists and thus the two Cases yield the desired result (a). If T is not

invertible then only Case 1 holds and thus (b).

3.1 The approximate point spectrum of Weighted shift oper-

ator

Proposition 3.1.1 Let T be a weighted shift represented as Mz (on H2(β) or L2(β)) then

m(Tn) = inf
k

βk+n
βk

for n = 1, 2, ...

Thus, r1(T ) = limn→∞

[
infk

βk+n

βk

] 1
n

.
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Theorem 3.1.2 ([Ridge, 1970], p. 350) Let T be a unilateral weighted shift. Then u(T ) = {λ ∈
C : r1(T ) ≤ |λ| ≤ r(T )}.

For the bilateral shift case, we shall use the following notations.

r+1 (T ) = lim
n→∞

[
inf
j≥0

βn+j
βj

] 1
n

, r+(T ) = lim
n→∞

[
sup
j≥0

βn+j
βj

] 1
n

r−1 (T ) = lim
n→∞

[
inf
j<0

βj
β−n+j

] 1
n

, r−(T ) = lim
n→∞

[
sup
j<0

βj
β−n+j

] 1
n

.

In the sense that the limits exists following the procedure used in Proposition 1.2.1.

We state the following:

Theorem 3.1.3 ([Ridge, 1970] p.352) If T is a bilateral shift and if r−(T ) < r+1 (T ), then

u(T ) = {λ ∈ C : r−1 ≤ |λ| ≤ r−} ∪ {λ ∈ C : r+1 ≤ |λ| ≤ r+}

otherwise,

u(T ) = {λ ∈ C : r−1 ≤ |λ| ≤ r−} ∪ {λ ∈ C : r+1 ≤ |λ| ≤ r+}.

3.2 The Point Spectrum of Weighted shift operator

If T is a unilateral shift with weight sequence {wn}, we define r2(T ) by

r2(T ) = lim inf
n→∞

[w0...wn−1]
1
n .

Theorem 3.2.1 Let T be a unilateral weighted shift. Then

(i) u0(T ) is empty.

(ii)

{0} ∪ {λ ∈ C : |λ| < r2(T )} ⊂ u0(T ∗) ⊂ {λ ∈ C : |λ| ≤ r2(T )}.

Furthermore, all eigenvalues of T ∗ are simple that is, of geometric multiplicity one.

Proof:

(i) Let λ ∈ C. It suffices to show that T − Iλ is one to one. Now, let f =
∑
αnen such that

(T − Iλ)f = 0, that is, Tf = λf . We get∑
n≥0

αnwnen+1 =
∑
n≥0

λαnen

From which we get

λα0 = 0, αnwn = λαn+1 for all n ≥ 0.

If λ = 0, Tf = 0 implies f = 0 since T is injective.

If λ 6= 0, we get that αn = 0 for all n ≥ 0 implying f = 0.
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(ii) Let 0 6= λ ∈ u0(T ∗) with f =
∑
n≥0 αnen as a corresponding eigenvector. From T ∗f = λf we

have ∑
n≥1

αnwn−1en−1 =
∑
n≥0

λαnen.

And so, αn+1wn = λαn for all n ≥ 0. Therefore

(3.2.1) αn =
α0λ

n

w0w1...wn−1
for all n ≥ 1.

We see that a0 6= 0 else an = 0 for all n. Also, f = α0

[
e0 +

∑
n≥1

λnen
w0w1...wn−1

]
and

(3.2.2) ‖f‖2 = |α0|2
1 +

∑
n≥1

λ2n

(w0w1...wn−1)
2


In this note, we take α0 = 1. So that by the Cauchy-Hadamard formula, 3.2.2 converges for

|λ| ≤ lim inf
n→∞

[w0w1...wn−1]
1
n = r2(T ).

implying that u0(T ∗) ⊂ {λ ∈ C : |λ| ≤ r2(T )}.
Conversely, since T ∗e0 = 0, 0 ∈ u0(T ∗) and if |λ| < r2 then ‖f‖ <∞ and so, f is an eigenvector of T ∗

corresponding to λ. And thus

{0} ∪ {λ ∈ C : |λ| < r2(T )} ⊂ u0(T ∗).

Furthermore, from 3.2.1, we see that the scalars α′ns of the eigenvector f is uniquely determined up

to a scalar multiple by the eigenvalue λ. In other words, the geometric multiplicity of λ is 1. Thus,

the eigenvalues of T ∗ are simple.

If T is a bilateral shift with weight sequence {wn}, we denote

r+2 (T ) = lim inf
n→∞

[w0...wn−1]
1
n , r+3 (T ) = lim sup

n→∞
[w0...wn−1]

1
n

r−2 (T ) = lim inf
n→∞

[w−1...w−n]
1
n , r−3 (T ) = lim sup

n→∞
[w−1...w−n]

1
n .

Then r−1 ≤ r
−
2 ≤ r

−
3 ≤ r− and r+1 ≤ r

+
2 ≤ r

+
3 ≤ r+.

Theorem 3.2.2 Let T be a bilateral weighted shift. Then

(i) all eigenvalues of T and T ∗ are simple.

(ii) {λ ∈ C : r+3 (T ) < |λ| < r−2 (T )} ⊂ u0(T ) ⊂ {λ ∈ C : r+3 (T ) ≤ |λ| ≤ r−2 (T )}.

(iii) {λ ∈ C : r−3 (T ) < |λ| < r+2 (T )} ⊂ u0(T ∗) ⊂ {λ ∈ C : r−3 (T ) ≤ |λ| ≤ r+2 (T )}.

(iv) at least one of u0(T ), u0(T ∗) is empty.

Remark 3.2.3 (i) If r−2 < r+3 , then u0(T ) = ∅; if r+2 < r−3 then u0(T ∗) = ∅.

(ii) By circular symmetry, one of the containments in (ii), and one of the containments in (iii) must

be equality.
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Proof: Let λ ∈ u0(T ) with its corresponding eigenvector f =
∑
n αn`n. Then we have from Tf = λf∑

n∈Z
αnwnen+1 =

∑
n∈Z

λαnen.

From which we obtain αn−1wn−1 = λαn for all n. And so,

an =
a0w0...wn−1

λn
, a−n =

a0λ
n

w−1...w−n
for all n ≥ 1.

From this we that the eigenvalues are simple. Further calculations are reversible and so λ ∈ u0(T ) if

and only if the sequence {αn} with α0 = 1 is square summable. This leads to two power series, one in

λ and the other in 1
λ , and the result follows from Cauchy-Hadamard formula [Gamelin, 2003] for the

radius of convergence.

The case of T ∗ is also similar.

Finally, let λ ∈ u0(T ) and µ ∈ u0(T ∗). We wish to show that at least one of these is impossible. By

what we have shown above, r+3 (T ) ≤ |λ| ≤ r−2 (T ) and r−3 (T ) ≤ |µ| ≤ r+2 (T ). Since r+3 ≤ |λ| ≤ r−2 ≤
r−3 ≤ |µ| ≤ r

+
2 ≤ r

+
3 , we have |λ| = |µ|. Also, an examination of the series which must converge shows

that ∑
n≥1

|w0...wn−1|2

|λ|2n
<∞ and

∑
n≥1

|µ|2n

|w0...wn−1|2
<∞,

which is impossible since |λ| = |µ|.

Proposition 3.2.4 (a) Let T be a unilateral weighted shift with weight sequence {wn}. If wn → d,

as n→∞ then

r1 = r2 = r3 = r = d.

(b) Let T be a bilateral weighted shift with weight sequence {wn}. If wn → d+ as n → +∞ and

wn → d− as n→ −∞ then

r−1 = r−2 = r−3 = r− = d−, r+1 = r+2 = r−3 + r+ = d+.
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Analytic structure

Let w ∈ C. We denote the the functional of ”evaluation at w”, defined on polynomials by λw(p) = p(w).

Definition 4.0.1 (Bounded point evaluation) w is said to be a bounded point evaluation on H2(β)

if there exist c > 0 such that

|λw(p)| ≤ c‖p‖2 for all polynomials p,

where the norm denotes the norm on H2(β).

We define λw(f) to be f(w) for all f ∈ H2(β).

By Riesz representation theorem, there exists kw ∈ H2(β) such that

(4.0.1) f(w) = λw(f) = 〈f, kw〉 =
∑
n

f̂nk̂wn β
2
n, for all f ∈ H2(β).

We call kw the reproducing kernel of H2(β) associated with w. Let n be fixed, by taking for f

fn = zn =
∑
i δi,nz

i on H2(β), we obtain

wn =
∑
i

δi,nk̂wi β
2
i = k̂wn β

2
n, implying k̂wn =

wn

β2
n

.

Thus, w is a bounded point evaluation if and only if

‖kw‖2 =
∑
n

|w|2n

β2
n

<∞.

Note that if p and q are polynomials then λw(pq) = λw(p)λw(q). Holding p fixed, we have, for all

f ∈ H2(β),

(4.0.2) λw(pf) = λw(p)λw(f).

We state the following theorem:

20
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Theorem 4.0.2 Let T be a unilateral weighted shift operator represented as Mz on H2(β). Then

(i) w is a bounded point evaluation if and only if w ∈ u0(T ∗).

(ii) If w is a bounded point evaluation and if f ∈ H2(β), then the power series f converges absolutely

at w to the value λw(f).

Furthermore, the disc ∆2(T ) = {|w| < r2(T )} is the largest open disc in which all the power

series in H2(β) converge.

(iii) If |w| < r(T ) and if φ ∈ H∞(β), then the power series φ converges at w and

|φ(w) ≤ ‖Mφ‖|.

Furthermore, this is the largest open disc in which all the power series in H∞(β) converge.

(iv) If φ ∈ H∞(β) and f ∈ H2(β) and w is a bounded point evaluation on H2(β)0, then λw(φf) =

λw(φ)λw(f).

(v) If w ∈ u0(T ∗), then kw is a common eigenvector for all operators commuting with T ∗.

M∗φk
w = φ(w)kw for φ ∈ H∞(β).

(vi) If |w| = ‖T‖ then w is not a bounded point evaluation.

(vii) If the power series φ represents a bounded analytic function in the disc |z| < ‖T‖, then φ ∈
H∞(β) and

‖Mφ‖ ≤ sup{|φ(z)| : |z| < ‖T‖}.

Proof: (i) Let w be a bounded point evaluation on H2(β). Then there exists kw ∈ H2(β) such

that

λw(f) = 〈f, kw〉 for all f ∈ H2(β).

Moreover,

〈f,M∗z kw〉 = 〈Mzf, kw〉

= λw(zf)

= λw(z)λw(f) {By (4.0.2)}

= w〈f, kw〉

= 〈f, wkw〉.

This implies that M∗z k
w = wkw. Thus w ∈ u0(T ∗). By circular symmetry of the spectrum, w ∈

u0(T ∗).

Conversely, suppose that w ∈ u0(T ∗), again by circular symmetry, w ∈ u0(T ∗), thus there exists k 6= 0

such that M∗z k = wk.

Define a bounded operator on H2(β) λ(f) = 〈f, ck〉 for some c 6= 0. Then,

λ(zf) = 〈Mzf, ck〉 = 〈f,M∗z ck〉 = 〈f, cwk〉 = w〈f, ck〉 = wλ(f).
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We observe that if fn = zn, then λ(fn+1) = wnλ(f0) for all n. f0 6= 0 else by Riesz representation

theorem, 0 = ‖λ‖ = ‖ck‖ implying that k = 0. Hence we may choose c so that λ(f0) = 1 so that

λ(p) = p(w) for all polynomials and so w is a bounded point evaluation.

(ii) Let sn(z) =
∑n
k=0 f̂kz

k for n = 0, 1, ..., be the partial sums of the power series of f converging

to f in the norm of H2(β). Then λw(sn(z))→ λw(f). Implying sn(w)→ λw(f). That is∑
n

f̂ zn = λw(f).

The absolute convergence is a direct consequence of the following:

From (i), w ∈ u0(T ∗) and thus by circular symmetry |w| ∈ u0(T ∗) implying that that |w| is a bounded

point evaluation on H2(β) and so we have convergence at |w| for all f ∈ H2(β). And, if f ∈ H2(β),

then the power series
∑
|f̂n|zn ∈ H2(β).

The second part follows using Cauchy-Hadamard formula by noting that the power series f defined by

f̂n = 1
(n+1)βn

is in H2(β) and has r2(T ) = lim infn→∞[βn]
1
n as its radius of convergence.

Let G be an open subset of C. We denote by H∞(G) the algebra of all bounded analytic functions

in G with the supremum norm. If G is a disc or annulus about the origin, we identify elements of

H∞(G) with their corresponding power series or Laurent series.

Now, let w be a bounded point evaluation on H2(β). We denote by H2
w(β) the set of functions in

H2(β) vanishing at w. That is the kernel of λw.

Given a linear space X, a proper linear subspace M is called a linear space of codimension one

if for a given x0 ∈ X \M , every x ∈ X can be represented as in the form

x = αx0 + y

where α is a scalar and y ∈M .

Lemma 4.0.3 The kernel of a linear functional that is not ≡ 0 is a linear subspace of codimension

one.

Proposition 4.0.4 H2
w(β) is a closed subspace of codimension one in H2(β), and the polynomials in

H2
w(β) are dense in H2

w(β).

Proof: The first part follows directly from the preceding lemma. For the second part, let f ∈ H2(β)

and let {pn} be a sequence of polynomials such that pn → f . This implies λw(pn)→ 0. Define a new

sequence of polynomials {qn} by qn = pn − λw(pn). We see that for each n, qn ∈ H2
w(β) and qn → f .

Proposition 4.0.5 If w is a bounded point evaluation, then (z−w)H2(β) is a dense subset of H2
w(β).

They are equal if and only if |w| < r1(T ).



CHAPTER 5

Applications of Analytic Structure

Here, we see some applications of the analytic structure of weighted shift operator. Other notable

examples and applications can be found in [Gellar, 1969b], [N. P. Jewell, 1979], [I. B. Jung, 2008],

[J. Stochel, 1989] and [Xia, 1983].

5.1 Equivalence of normed spaces

Let O be an open subset of C. We shall denote H∞(O) as the algebra of bounded analytic functions

in O with the supremum norm.

Proposition 5.1.1 If r(T ) = ‖T‖, then the normed algebras H∞(β) and H∞({z : |z| < ‖T‖}) are

equivalent.

Proof: This follows directly as stated in (iii) and (vii) of theorem 4.0.2.

5.2 No Reducing Subspace

A closed subspace E of H is invariant under T , if T (E) ⊂ E and is said to be reducing provided that

it is invariant under T and T ∗.

Let H = E ⊕ E⊥ and PE be the orthogonal projection on E. E and E⊥ are invariant under T if and

only if PET = TPE .

Proposition 5.2.1 Let T be a weighted shift operator. Then there does not exist any proper invariant

subspace E such that H2(β) = E ⊕ E⊥.

Proof: The existence of such subspace would imply that from the analytic structure of a shift,

PE = Mφ and since P 2
E = PE it will follow that φ2 = φ which says φ = 1 or 0.

23
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5.3 Non-existence of root in L(H)

Proposition 5.3.1 If T is unilateral weighted shift, then T has no nth root in L(H) for n > 1.

Proof: Suppose An = T , then A commutes with T . By the analytic structure of T , A = φ. But

there is no formal power series φ such that φn = z for n > 1.
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