

NEURAL COLLABORATIVE FILTERING AND

AUTOENCODER ENABLED DEEP LEARNING MODELS

FOR RECOMMENDER SYSTEMS

A Thesis Submitted to the Department of Computer Science,

African University of Science and Technology

In partial fulfilment of the requirement for the award of Master of Science in

Computer Science

By

Arnold Kwofie

(40852)

Abuja, Nigeria

November, 2022

i

CERTIFICATION

This is to certify that, the thesis titled “Neural Collaborative Filtering and Autoencoder

Enabled Deep Learning Models for Recommender Systems” submitted to the school of

postgraduate studies, African University of Science and Technology (AUST), Abuja, Nigeria, for

the award of the Master’s degree is an original work carried out by Arnold Kwofie in the

Department of Computer Science.

ii

NEURAL COLLABORATIVE FILTERING AND AUTOENCODER ENABLED DEEP

LEARNING MODELS FOR RECOMMENDER SYSTEMS

By

Arnold Kwofie

A THESIS APPROVED BY THE COMPUTER SCIENCE DEPARTMENT

APPROVED BY:

Supervisor

Prof. Mohammed Hamada

Signature:

The Head of the Department

Assoc. Prof Rajesh Prasad

Signature:

18 Feb 2023

iii

COPYRIGHT

© 2022

Arnold Kwofie

ALL RIGHT RESERVED

iv

ABSTRACT

Finding important and useful information is getting harder as much more information is available

online. The challenge for content producers is to deliver the appropriate content to the

appropriate consumers while making it challenging for users to access that content. The

foundation for overcoming these difficulties is provided by recommender systems. Traditional

methods like Collaborative Filtering (CF) and Content-Based Recommender Systems have

historically been successful in this field of study but are now challenged by problems with data

sparsity, cold start, and non-linearity interaction. Evidently, several academic areas, like image

detection and natural language processing (El-Bakry, 2008), have shown great interest in deep

learning due to outstanding performance and the alluring quality of learning intricate

representations. The impact of deep learning is recently showing good advancement when

applied to recommender systems research (He, 2008). In this research We dive deep into the

Autoencoder and Neural Collaborative Filtering based deep learning models and their

implementation on classical collaborative filtering. The research also evaluates the performance

of both models and outlines loopholes which can further be improved in future works.

v

DEDICATION

This work is foremost dedicated to God for giving me the strength and knowledge in the course

of the work. Also, to my family and loved ones for the immense support. And finally, to my

supervisor, Prof Mohammed Hamada for his guidance throughout the project.

vi

ACKNOWLEDGEMENT

My profound gratitude goes to God for the strength given to me to reach this far in my program.

I would also like to thank my supervisor, Prof. Mohammed Hamada, for his guidance, advice,

and support. My appreciation also goes to all my lecturers for the knowledge with they shared

with me throughout this journey. I am grateful to the African University of Science Technology

and its staff for giving me the opportunity to study at such a prestigious institution. Finally, I

thank all and sundry who supported me in this work and my entire period with the University. I

wish you success in all your endeavors.

vii

TABLE OF CONTENTS

CERTIFICATION ... i

COPYRIGHT ... iii

ABSTRACT ... iv

DEDICATION .. v

ACKNOWLEDGEMENT ... vi

CHAPTER ONE ... 1

1. INTRODUCTION ... 1

1.1 Background of Study .. 1

1.2 Problem Statement ... 2

1.3 Objective of Study .. 3

1.4 Outline of the Study ... 3

CHAPTER TWO .. 4

2. LITERATURE REVIEW .. 4

2.1 Recommender Systems .. 4

2.1.1 Content-Based Recommender Systems .. 5

2.1.2 Collaborative Filtering .. 8

2.1.3 Hybrid Recommender Systems... 12

2.2 Related Works .. 13

2.3 Chapter Summary ... 15

CHAPTER THREE .. 16

3 METHODOLOGY .. 16

3.1 Deep Learning and Artificial Neural Network ... 16

3.2 Autoencoder Based Deep Learning for Recommender System .. 17

3.2.1 Features of Autoencoder ... 18

3.2.2 Architecture of Autoencoder... 18

3.2.3 Loss Function .. 19

3.2.4 Flaws Associated with autoencoders .. 20

3.2.5 Training an Autoencoder on Recommender System .. 20

3.3 Neural Collaborative Filtering ... 23

3.3.1 General Framework .. 23

3.3.2 Generalized Matrix Factorization (GMF) ... 26

3.3.3 Multi-Layer Perceptron (MLP) ... 26

viii

3.3.4 Neural Matrix Factorization (Fusion of GMF and MLP) 27

3.4 Chapter Summary ... 28

CHAPTER FOUR ... 29

4 FINDINGS AND OBSERVATIONS ... 29

4.1 Results .. 29

4.2 Chapter Summary ... 33

CHAPTER FIVE .. 34

5 CONCLUSION AND FUTURE WORK .. 34

5.1 Conclusion .. 34

5.2 Future Work ... 34

APPENDIX A: NUERAL COLLABORATIVE FILTERING CODE .. 35

APPENDIX B: AUTOENCODER CODE ... 37

REFERENCES ... 41

ix

TABLE OF FIGURES

Figure 1: Content based recommender system ... 6

Figure 2: Matrix factorization ... 12

Figure 3: Artificial Neural Network ... 17

Figure 4: Architecture of Autoencoder ... 19

Figure 5: Sample movie lens data ... 21

Figure 6: Generalized Neural Network Framework ... 24

Figure 7: Neural Matrix Factorization .. 27

Figure 8: Output of Autoencoder for 10 epochs ... 29

Figure 9: Output of Neural Collaborative Filtering .. 31

Figure 10: Trends in train losses for NCF .. 31

Figure 11: State-of-the-art algorithm comparison .. 32

Figure 12: Algorithm Comparison Chart .. 32

file:///C:/Users/Arnold/Desktop/MSC/thesis/writeup.docx%23_Toc119439774
file:///C:/Users/Arnold/Desktop/MSC/thesis/writeup.docx%23_Toc119439777

x

LIST OF ABBREAVIATIONS

NCF - Neural Collaborative Filtering

CF - Collaborative Filtering

MF - Matrix Factorization

CB - Content Based

RSs - Recommender Systems

SVD - Single Value Decomposition

DAE - Denoising Autoencoders

NN - Neural Network

DNN - Deep Neural Network

NeuMF - Neural Matrix Factorization

GMF - General Matrix Factorization

MLP - Multi-Layer Perceptron

RMSE - Root Mean Squared Error

1

CHAPTER ONE

1. INTRODUCTION

1.1 Background of Study

Intelligent systems called recommender systems leverage user ratings on previously purchased

goods to suggest comparable goods to other customers. These systems actively reduce the

navigation options for visitors based on their preferences, which is vital for online businesses.

Information overload is the main issue that recommender systems address. Modern internet

technology has altered several ways to interact and share information (Hamada, 2017). For larger

businesses, having a successful recommender system would increase their revenue. A

recommender system's customized content would enhance the user's experience and help them

save a lot of time (Sarwar, 2011). Many strategies of supervised learning methods have been

used to predict user preferences for product from a large product category using datasets of

numeric preferences over a period of time. close. (e.g., 1 to 10) (Hassan and Hamada, 2017). The

most commonly used algorithms are, collaborative filtering, hybrid method, and content-based

filtering. The hybrid and collaborative filtering systems make suggestions for users based on

many criteria. For instance, CF-based methods rely on past ratings on products while hybrid

methods, join two or more recommender system methods. Collaborative filtering-based

methods for personalized suggestions became popular due to some security problems with

Content Based methods, such as collecting user profile information. Matrix Factorization is

probably the well-known method. This approach is based on user-item function, which can be

modeled or depicted as the internal product of hidden vectors. Deep learning recently has

championed the course when applying to Recommender System due to its ability to solve issues

of sparsity, cold start and non-linearity representation of data. Deep learning Method is an

2

advanced method over machine learning algorithms such that it is able to learn complicated data.

It iterates over the data a couple of times to find better relationships that can be employed to

provide better suggestions. Since it is an upcoming emerging field, this research aims at using

deep learning techniques to improve recommendations. Deep learning techniques like multilayer

perceptron or an autoencoder should be able to learn well and provide more accurate

recommendations when applied to recommender systems. This model has been utilized for

recommendation in several recent works, however these works concentrated on content

descriptions, such as item content information. Even though, these models are still in use, the

concentration is only on applying the ML algorithms on the hidden characteristics by users and

items, ignoring the crucial user-item interaction function of collaborative filtering (Sawar, 2001).

In this project, a neural network architecture takes the place of the inner item and learns a user-

item relationship function from data. if the user-item relationship function exhibits any non-

linearities, to handle them.

1.2 Problem Statement

Users now have access to enormous volumes of data and material, but because there are so many

options available, exploring the data is challenging. This poses a challenge for all parties. The

entities giving out the service challenged with the point of reaching right users with the right

content, and most often, are forced to predict the well-known content. The content creators

struggle to reach relevant users with their work and users struggle to find this content.

Recommendation systems serves as the foundation of these predicaments. To make specific

recommendations, the ongoing process must be studied to produce more specific

recommendations (Ricci B, 2011). Machine learning approaches like Single value decomposition

3

and matrix factorization (MF) have been used in this area of knowledge. However Deep

Learning methods implement accurate recommendations as it iterates over the data many more

times through multiple layers trying to find better relationships.

1.3 Objective of Study

Deep Learning is now a well-known approach in a wide scope of areas of research in the

computing industry. Therefore, it is of interest to investigate the possibility of representing the

challenges of recommendation as a classification structured problem, so that we can determine

what neural networks are usable for creating a more specific recommendation. We discuss the

Autoencoder and Collaborative based deep learning approaches, their accuracies, losses,

loopholes and what can be done to personalize recommendations more effectively

1.4 Outline of the Study

The first chapter focuses on the background of the study, the problem statement and objectives.

The second Chapter will look at theoretical background of recommender systems, some machine

learning models in this area of research and an extensive literature review on the subject matter.

The third chapter will outline in detail the methodologies and tools used in this project. In the

fourth chapter, various findings and discussions will emphatically be discussed. The fifth chapter

will summarize the project and suggest recommendations.

4

CHAPTER TWO

2. LITERATURE REVIEW

This Chapter gives a comprehensive discussion on recommender systems and its improvement

and flaws over the years classical machine learning models. The Chapter also contains reviews

of work done by others. It focuses on the general knowledge established on this topic.

2.1 Recommender Systems

Recommendation systems (RS) are software methods that provide predictions on things that may

be useful to a user. Recommendations involve different thinking processes, such as what to

purchase or what online news to read. An example is a book recommendation platform that helps

people choose what to read. The Amazon uses a recommender system to tailor its online store to

each consumer. Because recommendations are frequently tailored, various individuals or user

groups see a variety of recommendations. Non-personalized recommendations are another option

which are perhaps easier to come by. Some examples can be the top five books. As they can be

helpful in some circumstances, these methods are not really addressed by recommender system

research (Ricci B, 2011). Depending on the user's likes and limitations, RSs attempt to forecast

the best products or services while performing this rating. Users' preferences are gathered by RSs

in order to fulfill such a complex task. These preferences can either be expressed openly, such as

through product ratings, or they can be inferred through analyzing user behavior. For instance, an

RS can interpret a user's movement to a specific product site as an implicit endorsement of the

goods displayed there. The evolution of RS started with a fairly simple observation: people often

depend on experiences provided by others to make day-to-day decisions (Sarwar, 2011).

5

2.1.1 Content Based Recommender Systems

Content-based filtering is a type of recommendation algorithm that uses the characteristics of the

items being recommended to make recommendations. This approach is based on the idea that

items with similar characteristics will be of interest to the same users, and that those

characteristics can be used to make recommendations. For example, if a user likes action movies,

a content-based algorithm may recommend other action movies to that user based on their shared

characteristics. Figure 1 illustrates how content-based filtering works. In this example, a user has

rated a number of movies, and the recommendation system has identified that the user likes

movies in the comedy genre. The system then uses the characteristics of the movies (in this case,

the genre) to recommend other movies in the comedy genre that the user may be interested in.

This approach can help to make more personalized and accurate recommendations, as it takes

into account the specific preferences of the user.

6

Figure 1: Content based recommender system

Architecture of Content Based Recommender System

The architecture of a content-based recommender system typically consists of three main

components: the content analyzer, the profile learner, and the filtering component.

The content analyzer is responsible for preprocessing and extracting relevant information from

the unstructured data that is used by the system. This may involve techniques such as feature

extraction and natural language processing to convert the data into a form that can be used by the

other components of the system.

7

The profile learner uses the data generated by the content analyzer to construct user profiles.

This is typically done using machine learning algorithms, which are able to generalize the data

and identify patterns in the preferences of users.

The filtering component uses the user profiles generated by the profile learner to identify items

that are likely to be of interest to a particular user. This is done by matching the profile

representation of the items to the user profile, and recommending items that are deemed to be a

good match. This component is responsible for making the final recommendations to the user.

Together, these components work to analyze the content of items, learn the preferences of users,

and recommend items that are likely to be of interest to those users.

Advantages of Content Based Recommender System

▪ User Independence- Content-based recommenders only use explicit ratings by same user

to construct their profiles. Instead, collaborative filtering methods depends on ratings

from other users to get the "nearest neighbor" of the user in question,

▪ New Item - Content-based recommenders can recommend items that haven't gotten any

rating by other users. As a result, they are not face with the first ranker challenge.

Disadvantages of Content Based Recommender System

One potential limitation of content-based recommender systems is that they rely on the analysis

of the content of items in order to make recommendations. This means that the system needs to

have access to a sufficient amount of information about the items in order to make accurate

recommendations. If the analyzed content does not contain enough information to discriminate

between items that the user likes and those that the user does not like, the system may not be able

8

to provide suitable suggestions. This can be a particular challenge in domains where the

information available about the items is limited or difficult to extract, such as in the case of

unstructured text data.

Another potential limitation of content-based recommender systems is that they may not perform

well for new users who have not yet generated a sufficient number of ratings. Since these

systems rely on the analysis of user preferences in order to make recommendations, they need a

sufficient amount of data to learn the preferences of users before they can provide accurate

suggestions. This can be a particular challenge when dealing with users who have not yet rated

many items, as the system may not have enough data to accurately predict their preferences.

2.1.2 Collaborative Filtering

Recently, there has been a lot of progress and interest in the collaborative filtering (CF) approach

to recommenders. Its popularity has been boosted by the fact that it was a major player in the

Netflix competition. Collaborative filtering (CF) approaches provide specific suggestions of

things subject to tends of ratings (e.g., purchases). buying history, browser history, items

searched, and sometimes mouse motions are examples of implicit feedback, while ratings of

products from 1 to 5 are examples of explicit feedback (Ricci B, 2011). There are two main

methods used in collaborative filtering. Neighborhood-based methods and latent factor methods

are two common approaches used in collaborative filtering-based recommendation systems.

Neighborhood-based methods use the interactions between items or users to make

recommendations. For example, an item-item method might construct the preferences of a user

for a particular item based on the preferences of that user for similar items. This approach relies

on the idea that users who have similar preferences will tend to rate items similarly, and that

9

those ratings can be used to make recommendations to other users. Latent factor methods, such

as matrix factorization, use a different approach. These methods represent both items and users

in a hidden factor space, where the ratings given by users to items can be explained by the

features of the items and the users on the inferred factors. This approach is based on the idea that

the preferences of users can be represented by a small number of latent factors, and that those

factors can be used to make predictions about the preferences of users. Both of these approaches

have their own strengths and weaknesses, and the appropriate approach will depend on the

specific requirements of the recommendation system.

2.1.2.1 Neighborhood Approach

A neighborhood-based recommender system is a type of collaborative filtering algorithm that

uses the ratings and preferences of users to make recommendations. It does this by identifying

users who have similar preferences and then making recommendations based on the preferences

of those users. For example, if two users have both rated a particular movie highly, the

recommendation system may recommend the movie to a third user who has not yet seen it. This

approach can help to make more personalized and accurate recommendations, as it takes into

account the preferences of users who are similar to the user being recommended to.. We then use

accuracy to evaluate the performance of the recommendation system. In so doing, the ratings R

is separated into train set and test set to evaluate the prediction accuracy. Popular measures of

accuracy that can be used are:

10

There are two ways to use the neighborhood model, known as user-based or item-based

recommendations. The evaluations of this item by nearby users, also known as users with similar

rating patterns, are used by user-based systems to assess a user's interest in it. The users who

have ratings that are most closely associated to user u's have traditionally been referred to as user

v's neighbors. On the other hand, item-based techniques forecast the likes of a user for an item

based on u's ratings for products identical

Advantages of Neighborhood Approach

Collaborative filtering-based recommendation methods can be used to address some of the

challenges associated with content-based methods. For example, collaborative methods can be

used to make recommendations for items that do not have any associated content. This is because

collaborative methods rely on the ratings and preferences of similar users to make

recommendations, rather than on the characteristics of the items themselves. This means that

even items that do not have any content can still be recommended if they have been rated by

similar users. Another advantage of collaborative methods is that they are based on the

evaluations of peers, rather than on the content of the items being recommended. This means that

the recommendations made by a collaborative system are more likely to be accurate and relevant,

as they are based on the ratings of other users who have similar preferences.

Finally, collaborative methods are able to recommend items with different content if other users

have already rated those items. This is because collaborative methods do not rely on the

11

characteristics of the items to make recommendations, but rather on the preferences of similar

users. This can help to make more diverse and interesting recommendations, and can also help to

overcome the limitations of content-based methods in cases where the content of the items is not

a good indicator of their quality or relevance.

User-based VS Item-based Recommendation

User-based methods depend on the preferences of similar decisions of users to predict an item,

whereas item-based methods try to use ratings giving to similar items (Mehta, 2009)

2.1.2.2 Latent Factor Approach

Matrix factorization, an example of latent factor method uses a different method by putting both

items and users’ vectors into the same hidden factor space. The hidden space then transforms and

explains using the characteristics of items and users factor gotten from user ratings being it

implicit or explicit

Matrix Factorization

Matrix Factorization (MF) is a common CF technique implemented by most industries for

recommendation. Each user item relationship is related to a vector of hidden features. For

instance, 𝑝𝑢 and 𝑞𝑖 are the latent vectors for user and item, respectively. it calculates (𝑦𝑢𝑖) as the

multiplication of 𝑝𝑢 and 𝑞𝑖 shown below.

12

K denote hidden space. The two-way interaction of potential users and product factors using

single direction of the hidden space does not relate to themselves and hence added linearly to the

same load.

Figure 2: Matrix factorization

Figure 2 explains Matrix Factorization’s challenges from user-item matrix, u4 and u1 are most

related, next is u3, then u2. but, for user latent space, putting p4 closer to p1 will mean that p4 will

come close to p2 than p3, hence higher-ranking loss. Deducing from this example, it shows the

negative impact generated by inner product on the performance of the model. We solve this issue

by learning user item characteristic interactions with neural networks covered later in this work.

2.1.3 Hybrid Recommender Systems

A hybrid system that combines two technologies attempts to exploit the positives of one to solve

the disadvantages of the other. An example is that, the Collaborative Filtering has problem with

cold start or new item in the sense that it is difficult to recommend items without history. This

13

however does not hinder content-based methods, as parameters to predict new products is based

on readily available content description.

2.2 Related Works

Many literature reviews have been written regarding Recommender systems and deep learning.

(Guan, Qin, Ling, & Ding, 2016) are intrigued by the use of algorithms and modernizing the

conventional algorithms to enhance the issues. Single value decomposition and support vector

machine are some examples of machine learning techniques that has been used in this field.

(Naomie, 2021) believed that e-commerce, entertainment and social media area some areas

where recommender system have been used to solve the challenge of information overload.

However, despite extensive research on learning-based recommender system, few research has

been done in this area. Therefore, they implemented a general view of the theoretical foundations

of recommender systems using on deep learning and neural networks. (Qi Zhang et al., 2016)

also proposed a joint attention neural network which contained textual and visual information

that can be recommended. In the past, explicit feedback has been the main source of data for

recommendation tasks (Salakhutdinov, 2007) however implicit data is steadily gaining attention.

Collaborative filtering's implicit feedback is typically regarded as a recommendation problem

that concentrates on giving users recommendations for a short list of items. Recent works also

proposes two strategies, where all missing data are considered to be negative. Specialized models

have been presented by (He, 2008) and to account for the missing data, (Hornik, 1989)

and (Bayer, 2017) implemented an implicit rating method on coordinate descent for the models

depending on characteristic-based factorization, achieving the most advanced performance for

14

item recommendation. A dual-layered Boltzmann Machine is used in the work by

(Salakhutdinov, 2007) to represent the users who have explicit ratings for the objects.

Autoencoders are now the most popular option for developing recommendation systems. User-

based AutoRec is a study of hidden features that can rebuild a user's ratings using inputs from

previous ratings (Sedhain, 2015). Denoising autoencoders have been introduced in order to learn

or examine from the inputs and avoid autoencoder inability to generalize the unseen or missing

data. Another neural network approach for collaborative filtering (CF) has been also proposed by

(Zheng, 2016). Which has given neural networks (NN) a very strong foundation to solve the

collaborative filtering problem, where the explicit ratings and solely observable data are used to

model the problem. While some recent research has examined recommendations made using

deep learning models that analyze implicit feedback (IF), they primarily used neural networks to

implement the other data like textual description of the products (Rahman, 2020), properties of

sound in music, and sometime the behavior or mouse movement on multiple platforms. These

characteristics when derived using deep learning are subsequently combined with matrix

factorization for personalized recommendations. Recently, a deep neural network was used by

google for recommendation which used multi-layer perceptron architecture, and then eventually

showing promising results while making the model generic. (Hamada and Hassan, 2016)

confirmed the importance of modelling a neural network by obtaining input features to predict a

user's preference for a product based on several features of the product in a multi-criteria

recommendation system.

15

2.3 Chapter Summary

In summary, the chapter reviewed various theoretical and application models which have been

used on the subject matter. Concept like recommender system, collaborative filtering and matrix

factorization were discussed in this chapter.

16

CHAPTER THREE

3 METHODOLOGY

In this Chapter, we dive deep into autoencoders and provide an explanation to the general

framework on deep learning to examine user-item interaction. Additionally, we employ a

multilayer perceptron to study the non-linear relationships on users and items. We also present a

Matrix Factorization function which is a combination of the general framework and the

multilayer perceptron.

3.1 Deep Learning and Artificial Neural Network

Deep learning is a part of machine learning algorithms that learn information representations.

Neurons are multi-layered non-linear process units utilized in deep learning models, which are

capable of remodeling features. These tools rely mainly on cross correlation within the frequency

space (El-Bakry and Hamada, 2008). The neuron, that is commonly known as a node, is

the smallest procedure unit. It computes associate degree output once receiving input

from alternative neurons. every input to the node contains a weight (w) that represents its

position in respect to other related inputs. The node, as portrayed in Figure 3.0, applies function f

to the weighted total of inputs. The non-linear function f is known as the activation function.

17

Figure 3: Artificial Neural Network

3.2 Autoencoder Based Deep Learning for Recommender System

An Autoencoder is an example of neural network that operate on two transformations namely

encoder and decoder. Dimensionality reduction is the primary objective of an autoencoder in

order to minimize error (Sedhain, 2015). Simply described, it is a machine learning method that

employs back propagation and sets the real values to be equivalent to the input values. An

autoencoder is also simple feedforward network which have an input, hidden, and output layers.

In order to reconstruct its inputs, the output layer is made to have the same of neurons in terms of

numbers as the input layer. With this we can describe autoencoder as an unsupervised learning

algorithm, which means there are no labelled data. It is important to note that it has smaller hidden

layer compared to the input layer. This method compels the model to construct a compressed

18

representation of the data in the hidden part of the layers when learning correlations in the data.

The encoding step is the operations that happens between the input and hidden layers and

decoding step is the operation that happen between the hidden and output layers.

3.2.1 Features of Autoencoder

• Autoencoders can learn nonlinear interactions using nonlinear activation functions on

multiple levels, in contrast to principal component analysis (PCA).

• When learning several layers, autoencoder are expected to be more efficient with model

parameters

• Autoencoders are able translate input to output with the minimum error.

3.2.2 Architecture of Autoencoder

An autoencoder has several layers between its input and output layers which are smaller the input

layer. It must also be noted the input and output layer’s dimensionality (n) must be the same. The

input is then being transformed through a layer of size P where n is greater than P. Unlabeled

input are fed into an autoencoder for reconstruction. The bottleneck is the part to determine the

important or necessary aspect of the observed values which should be fed forward for the next

operation. It does this by following two criteria. That is the compactness of featured

representation measured as the compression number of bits required to save the representation

and the information the representation retains about some behavioral relevant variables. Figure 4

shows the architectural diagram of an autoencoder.

19

Figure 4: Architecture of Autoencoder

Encoder: the encoder compresses the input into a hidden space representation in a reduced

dimension. The compressed data is grabbled, and does not look like the input data.

Decoder: This layer transforms the encoded data to the original dimension. The decoded data is

lossy when reconstructed as compared to the original data.

3.2.3 Loss Function

The loss function determines the amount of information lost. It shows how effectively the input x

and latent representation Z were reconstructed. If the data is reconstructed well, large cost can be

incurred.

20

3.2.4 Flaws Associated with autoencoders

• They can only compress data which looks like what they have been trained on

• They lose data because the decompressed output is less of quality as compared to the

input

3.2.5 Training an Autoencoder on Recommender System

Environment

▪ Hardware: Intel(R) Core (TM)i7-8550U CPU @ 1.80GHz, Installed RAM - 8.00 GB

▪ IDE – Visual Studio Code

▪ Python 3.9.12

▪ Libraries (Tensorflow, Pandas, Numpy)

Data

We will use the movielens 1m data set, which contains of 1,000,209 ratings. These ratings were

submitted by 6,040 members for 3,900 films. We perform data purification, and then split the

data into training (75%) and testing (25%) sets, which is required for the model to be trained. We

then require a user-movie matrix with a list of ratings in each row.

21

Movielens Dataset

Figure 5: Sample movie lens data

Model Parameters

▪ Number of epochs = 10

▪ Batch Size = 16

▪ Learning Rate = 0.0005

22

▪ Number of hidden neurons = 128

▪ Number of Training Sample = 5953

▪ Activation Function = Sigmoid

▪ Optimization = Adam optimizer

▪ Accuracy Assessment = RMSE

TensorFlow implementation

The weights and biases initializers for the kernel are set in the constructor. The weights have a

distribution with average and variation 0.0 and 0.02 respectively. We used three hidden layers in

the network, each with 128 neurons. The number of all present movies in the dataset is shown by

the input layer. Forward network output computation is done based on a sample of input data x

(one row of user movie matrix). sigmoid was used as an activation function in the buried layers.

Note that the last layer lacks both nonlinear and biased terms. After this step, loss and adjustment

loss can be determined. The Adam optimizer minimizes the loss function. For a more accurate

assessment, this method produces the root mean square error (RMSE) rather than of the original

mean square error (MSE). The neural network multiplied all ratings in each user's training dataset

after several stages of the training phase. By now, the model should have discovered underlying

patterns in consumers' collective movie viewing preferences and data. We can now calculate the

loss of root mean square error (RMSE) between the predicted and actual estimates.

23

3.3 Neural Collaborative Filtering

Neural collaborative filtering uses neural architecture instead of the internal product of the user

element. In doing so, NCF uses a layered perceptron to understand user-item relation and aims to

represent and generalize MF within its framework. Despite matrix factorization's usefulness for

collaborative filtering, its overall performance is restrained with the aid of using easy desire of the

inner product function. By including user-item bias terms in the relationship function, the

performance will be enhanced (Xiangnan, 2017). This demonstrates that multiplying latent

features (inner products) will not be enough to record the complexities in structure of user

interaction data. This requires reconstructing a good interaction function to model the interaction

of latent features between the user and the item. Neural Collaborative Filtering (NCF) aims to

solve this by using the design of neural networks to model the interaction of user and item

features. To learn user-item interactions, it employs the multi-layer perceptron. This is an

advancement over MF since MLP is well equipped to learn user-item interaction functions due to

its ability to learn any continuous function.

3.3.1 General Framework

We use a multi-class representation to generate the interaction between the user and the item

(yui), where the result of a layer acts as the input of the following layer. Two input vectors vu and

vi, representing user and item, are present in the initial input layer. These are hot-encoded sparse

binary vectors. The integration layer which is next is fully connected and converts the sparse data

to a dense space. The resulting user/item integration of the latent factor model can be regarded as

a latent user/item vector. To translate latent vectors into prediction scores, these integration

layers are consequently given to a multilayer neural network. To find new hidden patterns from

24

user-item interactions, we can then alter each hidden layer. The performance of the model is

determined by the size of the last hidden layer, providing the expected yui score in the last layer.

By reducing the loss point and its true value, Figure 6 shows a diagram of generalized neural

network framework

Figure 6: Generalized Neural Network Framework

Now we build the predictive neural network model as

 where P ∈ ℜ𝑀𝑋𝐾 and Q ∈ ℜ𝑁𝑋𝐾, representing the matrix for users and items in latent space and

Θ𝑓 denote the interaction function’s parameters. The function f which is a neural network is

defined as

25

where 𝜑𝑜𝑢𝑡 and 𝜑𝑋 denote the function for the layers in the output

Model Parameters

Also, this method performs specific regression duties with squared loss when learning model

parameters as

where 𝑌 denotes actual data in Y, and 𝑌− denote unobserved data. The squared loss fails to work

well on binary data but performs better when drawn from Gaussian distribution. So, to study

parameters on binary data, probabilistic function is implemented as the activation function for

the layer in the output as 𝜑𝑜𝑢𝑡. We define the function as

We then get the formula below when the function’s negative logarithm is taken

This is the cross-entropy loss of the binary term or the log loss. The optimization of this function

is generalised by stochastic gradient descent.

26

3.3.2 Generalized Matrix Factorization (GMF)

One-hot encodings of user/item vectors serve as the input to the model, and subsequent

embedding layers can be seen as potential user/item vectors. Let's the user and item vectors be

pu and qi respectively. The function to the first layer is then defined as:

𝜑𝑜𝑢𝑡(p𝑢 , q𝑖) = p𝑢 ⊙ q𝑖

where ⊙ represent the multiplication of vectors. The output layer is then project by the vector

as:

𝑦𝑢𝑖 = 𝑎𝑜𝑢𝑡(h 𝑇 (p𝑢 ⊙ q𝑖))

where aout and hT stand for the edge weights and activation function, respectively. We used the

sigmoid function as the activation function in our generalized matrix factorization

implementation, which studies parameters with the objective function of the log loss.

3.3.3 Multi-Layer Perceptron (MLP)

Two paths are used by neural collaborative filtering method to model users and items.

Concatenating these approaches makes sense in order to create a powerful deep learning-based

recommender system. However, the relationships between user and item latent characteristics

cannot be fully captured by a straightforward vector concatenation. To solve this problem, we

concatenated the vector with hidden layers and utilized MLP to understand how the user and

item vectors interacted. We state the model as follows:

𝑦𝑢𝑖 = 𝜎(h 𝑇 𝜑𝐿(𝑧𝐿−1))

27

3.3.4 Neural Matrix Factorization (Fusion of GMF and MLP)

For now, we have examined two neural network methods that learn interaction function from

data: GMF employs a linear interactive method while MLP uses a non-linear interactive method.

We now introduce a hybrid model that combines GMF and MLP in order to learn the intricate

interactions through mutual reinforcement.

.

Figure 7: Neural Matrix Factorization

28

Sharing the same layer of embedding for both GMF and MLP and combining the outputs of their

interaction functions is an obvious approach for fusing these models. However, the performance

and flexibility of the fused model may be constrained by combined embeddings of GMF and

MLP. In order to merge these models, we concatenated the final hidden layers of the GMF and

MLP models, as illustrated in Figure 6. This model can be stated as follows:

 𝑦𝑢𝑖 = 𝜎(h𝑇 (𝜑𝐺𝑀𝐹𝑜𝑢𝑡 .𝜑𝑀𝐿𝑃𝑜𝑢𝑡))

3.4 Chapter Summary

In Summary the Chapter out listed the tools used for the project and made a comprehensive

description of the implementation of Autoencoder and Neural Collaborative Filtering Deep

Learning models.

29

CHAPTER FOUR

4 FINDINGS AND OBSERVATIONS

In this Chapter, we evaluate the result and performance of both Autoencoder and neural

collaborative filtering, taking into consideration their loss functions and root mean squared

errors.

4.1 Results

Autoencoder

For Autoencoder, Sigmoid is used as an activation function in the buried layers. The Adam

Optimizer also minimizes the loss function. For greater accuracy assessment, the method outputs

a root mean squared error (RMSE) rather than a mean squared error (MSE). At various epochs,

corresponding test loss, train loss and RMSE were obtained. Figure 7 shows the output of

autoencoder for 10 epochs, figure 8 shows the trends in accuracy for 10 epochs and figure 9

shows the trends in train loss and deviations from actual data on tensorboard.

Figure 8: Output of Autoencoder for 10 epochs

30

Neural Collaborative Filtering

The fusion of Linear GMF and non-linear MLP keeps NeuMF at an advantageous position to

learn the more iteratively with it layers than autoencoders. Here also, at various epochs it was

observed that, the train loss was lesser than the autoencoder model and traditional matrix

factorization. Figure 10 shows the output of neural collaborative filtering and figure 11 shows

the trend in train losses.

Figure 8: Accuracy trends for 10 epochs Figure 9: Train loss trends for 10 epochs

31

Figure 10: Trends in train losses for NCF

Figure 9: Output of Neural Collaborative Filtering

32

State-of-the-Art Algorithm Comparison

Figure 11: State-of-the-art algorithm comparison

Figure 12: Algorithm Comparison Chart

33

4.2 Chapter Summary

To conclude, the models and findings explained in this chapter demonstrated how deep learning

can be used to personalize and improve recommendation systems. The research compared the

output of the Autoencoder and Neural Collaborative Filtering models on same dataset which

showed a better result for NCF than Autoencoders. It is also discussed that, the compression of

autoencoder degrades data which makes it lossy hence the lager values in train loss compared to

NeuMF.

34

CHAPTER FIVE

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

We employed various neural network topologies in this effort to get over the drawbacks of

matrix factorization collaborative filtering techniques. We demonstrated that the models

outperformed existing state-of-the-art models. Again, we contrasted the accuracy of the NCF

deep learning model and the autoencoder model. Our research revealed that NCF performed

better than autoencoders in terms of accuracy, even though both are more effective than

traditional machine learning models for collaborative filtering. The models are simple and all-

encompassing, and they can be used to a variety of circumstances including recommendations or

improved upon. For autoencoders, the idea is to learn an predictions to the function by enforcing

certain constraints, such as adding regularization, denoising, sparsity, contractive, etc. By doing

so, its output is similar to input is generated, information may be effectively compressed and

interesting structure about the data may be discovered.

5.2 Future Work

This work improves the commonly employed shallow models for collaborative filtering and

opens up new avenues for deep learning-based recommendation research. Future research may

examine variables and ways to reduce output losses, though. Additionally, we wish to conduct

research on personalization algorithms that focus on user groups rather than specific people.

These models will be useful for making recommendations to social groups.

35

APPENDIX A: NUERAL COLLABORATIVE FILTERING CODE

The following codes shows the implementation of Neural Collaborative Filtering in python.

Libraries used were tensorflow and numpy on movielens one million dataset

In the following code, we import libraries and other classes

import sys

import pandas as pd

import tensorflow as tf

from recommendersystem.utility.time import Timer

from recommendersystem.rs_models.ncf.ncf_single import NCF

from recommendersystem.rs_models.ncf.rs_dataset import Dataset as

NCFDataset

from recommendersystem.rs_datasets import movielens

from recommendersystem.utililty.notebook_utility import is_jupyter

from recommendersystem.rs_datasets.python_splitters import

python_chrono_split

from recommendersystem.rs_evaluation.rs_python_evaluation import

(rmse, mae, rsquared, exp_var)

In the block of code below, we set our movielens data size and define the model parameters

MOVIELENS_DATA_SIZE = '1m'

EPOCHS_RS = 50

BATCH_SIZE_RS = 256

SEED_RS = 42

36

df = movielensdata.load_pandas_df(

size=MovielensData_Size,

header=["userID", "itemID", "rating", "timestamp"]

)

In the block of code below, we split the data into train and test set at 75% and 25% respectively

trainSet, testSet = python_chrono_split(df, 0.75)

testSet =

testSet[testSet["userID"].isin(trainSet["userID"].unique())]

testSet =

testSet[testSet["itemID"].isin(trainSet["itemID"].unique())]

train_file_csv = "./train.csv"

test_file_csv = "./test.csv"

trainSet.to_csv(train_file_csv, index=False)

testSet.to_csv(test_file_csv, index=False)

We then seed the training and testing data into respective csv files

data = NCFData(train_file_csv=train_file_csv,

test_file_csv=test_file_csv, seed=SEED)

This code shows the implementation of NCF Class with couple of parameters set to it.

model = NCF (

num_of_users=data.num_users,

num_of_items=data.num_items,

37

model_type="NeuMF",

factors_used=4,

layer =[16,8,4],

num_of_epochs= EPOCHS_RS,

batch_size=BATCH_SIZE_RS,

lr=1e-3,

seed_num=SEED_RS

)

APPENDIX B: AUTOENCODER CODE

In the following code, we import libraries and other classes

import numpy as np

#import tensorflow as tf

#import tensorflow.compat.v1 as tf

import tensorflow._api.v2.compat.v1 as tf

import os

from data.dataset import _get_training_data, _get_test_data

from model.train_model import TrainModel

from sklearn.metrics import mean_absolute_error,

mean_squared_error

In the block of code below, we define the model parameters

38

tf.app.flags.DEFINE_string('tf_records_train_path',

os.path.abspath(os.path.join(os.path.dirname("__file__"), '..',

'auto/src/data/mm_records/strain/')),'Path of the training data.')

tf.app.flags.DEFINE_string('tf_records_test_path',

os.path.abspath(os.path.join(os.path.dirname("__file__"), '..',

'auto/src/data/mm_records/stest/')),'Path of the test data.')

tf.app.flags.DEFINE_string('checkpoints_path',

os.path.abspath(os.path.join(os.path.dirname(__file__), '..',

'checkpoints/model.ckpt')), 'Path for the test data.')

tf.app.flags.DEFINE_integer('num_epoch', 1000, 'Number of training

epochs.')

tf.app.flags.DEFINE_integer('batch_size', 16,'Size of the training

batch.')

tf.app.flags.DEFINE_float('learning_rate',0.0005, 'Learning_Rate')

tf.app.flags.DEFINE_boolean('l2_reg', False, 'L2 regularization.')

tf.app.flags.DEFINE_float('lambda_',0.01, 'Wight decay factor.')

tf.app.flags.DEFINE_integer('num_v', 3952, 'Number of visible

neurons (Number of movies the users rated.)')

tf.app.flags.DEFINE_integer('num_h', 128, 'Number of hidden

neurons.)')

tf.app.flags.DEFINE_integer('num_samples', 5953, 'Number of

training samples (Number of users, who gave a rating).')

FLAGS = tf.app.flags.FLAGS

Building the graph, opening of a session and starting the training of the neural network.

39

def main(_):

 num_batches=int(FLAGS.num_samples/FLAGS.batch_size)

 with tf.Graph().as_default():

 train_data, train_data_infer=_get_training_data(FLAGS)

 test_data=_get_test_data(FLAGS)

 iter_train = train_data.make_initializable_iterator()

 iter_train_infer=train_data_infer.make_initializable_iterator()

 iter_test=test_data.make_initializable_iterator()

 x_train= iter_train.get_next()

 x_train_infer=iter_train_infer.get_next()

 x_test=iter_test.get_next()

 model=TrainModel(FLAGS, 'training')

 train_op, train_loss_op=model.train(x_train)

prediction,labels,test_loss_op,mae_ops=model._validation_loss(x_tr

ain_infer, x_test)

 saver=tf.train.Saver()

 with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 train_loss=0

 test_loss=[]

 mae=[]

 for epoch in range(FLAGS.num_epoch)

 sess.run(iter_train.initializer)

40

 sess.run(iter_train_infer.initializer)

 sess.run(iter_test.initializer)

 for batch_nr in range(num_batches):

 , loss=sess.run((train_op, train_loss_op))

 train_loss+=loss_

 for i in range(FLAGS.num_samples):

pred,labels_,loss_,mae_=sess.run((prediction,l

abels, test_loss_op,mae_ops))

 test_loss.append(loss_)

 mae.append(mae_)

 print('epoch_nr: %i, train_loss: %.3f, test_loss:

%.3f, mean_abs_error: %.3f'

%(epoch,(train_loss/num_batches),np.mean(test_loss),

np.mean(mae)))

 if np.mean(mae)<0.9:

 saver.save(sess, FLAGS.checkpoints_path)

 train_loss=0

 test_loss=[]

 mae=[]

if __name__ == "__main__":

 tf.app.run()

41

REFERENCES

Aminu, D., Naomie, S. (2021). Recommendation System Based on Deep Learning Methods: A

Systematic Review and New Directions. SpringerLink.

https://link.springer.com/article/10.1007%2Fs10462-019-09744-1.

Bayer, I. H. (2017). A Generic Coordinate Descent framework for Learning from Implicit

FeedBack. WWW.

El-Bakry, H., Hamada, M. (2008). A New Implementation for High Speed Normalized Neural

Networks in Frequency Space. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5177

LNAI(PART 1), pp. 33–40.

El-Bakry, H., Hamada, M. (2008). New fast decision tree classifier for identifying protein coding

regions. Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 5370 LNCS, pp. 489–500.

Guan, C., Qin, S., Ling, W., Ding, G. (2016). Apparel Recommendation System Evolution: An

empirical review. International Journal of Clothing Science and Technology, 854–879.

Hamada, M., Hassan, M. (2017). An Enhanced Learning Style index: Implementation and

Integration into an Intelligent and Adaptive E-Learning System. Eurasia Journal of

Mathematics, Science and Technology Education, 13(8), pp. 4449–4470.

Hamada, M., Hassan, M. (2011). A Game-based Learning System for Theory of Computation

Using Lego NXT Robot. Procedia Computer Science, 4, pp. 1944–1952.

Hassan, M., Hassan, M. (2016). Performance Comparison of Featured Neural Network Trained

with Backpropagation and Delta Rule Techniques for Movie Rating Prediction in Multi-

Criteria Recommender Systems. Informatica (Slovenia), 40(4), pp. 409–414.

Hassan, M., Hamada, M. (2017). Performance Comparison of Feed-forward Neural Networks

Trained with Different Learning Algorithms for Recommender Systems. Computation,

pp 5(3), 40.

He, X. Z. (2008). Fast Matrix Factorization for Online and Implicit Feedback. SGIR, 549-558.

Hornik, M. S. (1989). Multilayer FeedForward Networks anre Universal Approcimators. Neural

Networks,, Vol. 5.

Mehta, B. N. (2009). Unsupervised Strategies for Shilling Detection and Robust Collaborative

Filtering. User Modeling and User-Adaptive Interaction , 65-97.

Oppermann, A. (2015). https://towardsdatascience.com/deep-autoencoders-for-collaborative-

filtering-6cf8d25bbf1d.

Rahman, M. A., Hamada, M. (2020). Burrows–wheeler Tansform Based Lossless Text

Compression Using Keys and Huffman Coding. Symmetry, 12(10), pp. 1–14, 1654.

Ricci B, R. L. (2011). Recommender System Handbook. Library of Congress.

42

Salakhutdinov, R. M. (2007). Restricted Boltzman Machines for Collaborative Filtering. ICDM,

791-798.

Sarwar, B. K. (2011). Item-based Collaborative Filtering. In Proceedings of the Tenth

International World Wide Web.

Sawar, B. G. (2001). Item Based Collaborative Recommendation Algorithm. In proceedings of

the tenth International World Wide Web Conference, 285-295.

Sedhain, S. M. (2015). Autoencoders Meet Collaborative Filtering. WWW, 111-11.

Xiangnan, H. L. (2017). Neural Collaborative Filtering. In Proceedings of the 26th International

Conference on World Wide Web, 173-182.

Zheng, Y. B. (2016). A Neural Autoregressive Approach to Collaborative Filtering. ICML.

Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2001). “Item–based Collaborative Filtering

 Recommendation Algorithms”. In Proceedings of the Tenth International World

Wide Web Conference pp. 285–295

Ouyang Y, Liu W, Rong W, et al. (2014) Autoencoder Based Collaborative Filtering. In

 International Conference on Neural Information Processing., vol 8836, pp 284-291.

Springer, Cham

Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer Feedforward Networks are

 Universal Approximators,” Neural Networks, vol. 5.

Koren, Y. (2008) “Factorization Meets the neighborhood: A Multifaceted Collaborative Filtering

 Model.” in KDD, pp. 426–434.

He, L., Liao L, Zhang, He., Nie, H., Hu, H., and Chua, T. (2017) “Neural Collaborative

 Filtering.” In Proceedings of the 26th International Conference on World Wide Web.

 International World Wide Web Conferences Steering Committee,, pp. 173–182.

Yin, Z., Cailiang, L., Bangsheng, Tang., and Hanning, Z. (2016). Neural Autoregressive

 Collaborative Filtering for Implicit Feedback. In Recsys.

Yin, Z., Bangsheng, T., Wenkui, D., and Hanning, Z. (2016). A Neural Autoregressive Approach

 to Collaborative Filtering. In ICML.

Chang, Z., Jinze, B., Junshuai S., Xiaofei L., Zhengchao, Z., Xiusi, C., and Jun Gao. (2017).

 ATRank: An AŠention-Based User Behavior Modeling Framework for

 Recommendation. arXiv preprint arXiv:1711.06632.

43

Jiang, Z., Catha, l G., and Rami, A. (2016). Applying Visual User Interest Profiles for

 Recommendation and Personalization

Fuzhen, Z., Zhiqiang, Z., Mingda, Q., Chuan, S., Xing, X. and Qing, H. (2017). Representation

 Learning via Dual-Autoencoder for Recommendation. Neural Networks 90 (2017), 83–

89.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017.

 Neural Collaborative Filtering. In Proceedings of the 26th International Conference on

 World Wide Web, 173–182

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classification with

 Deep Convolutional Neural Networks. In Advances in Neural Information Processing

 Systems. 1097 1105.

Wonsung, L., Kyungwoo, S., and Il-Chul, M. (2017). Augmented Variational Autoencoders for

 Collaborative Filtering with Auxiliary Information. In Proceedings of the 2017 ACM on

 Conference on Information and Knowledge Management. ACM, 1139–1148.

Liang, D., Krishnan, R., Hoffman, M., Tony, J. 2018. Variational Autoencoders for

Collaborative Filtering. arXiv preprint arXiv:1802.05814

Zhang, F., Yuan, N. J., Lian, D., Xie, X. (2001). Collaborative Knowledge Based Embedding for

 Recommender Systems. In KDD, pages 353–362, 201

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. “Item-based Collaborative

 Filtering Recommendation Algorithms,” in WWW, 2015, pp. 1661– 1670.

Wang, Y., Wang, M., Xu, W. (2018) Sentiment-enhanced Hybrid Recommender System for

 Movie Recommendation: A Big Data Analytics Framework, Wireless Communications

 and Mobile Computing.

Sedhain, S., Menon, A., Xie, S. (2015) Autorec: Autoencoders Meet Collaborative Filtering. In

Proceedings of the 24th International Conference on World Wide Web. ACM, 111–112.

44

Strub, F., Mary, J. (2015). Collaborative Filtering with Stacked Denoising AutoEncoders and

 Sparse Inputs. In IPS Workshop on Machine Learning for ECommerce,

 https://hal.inria.fr/hal-01256422v1

Ouyang, Y., Liu, W., Rong, W., et al. (2014) Autoencoder Based Collaborative Filtering.

 International Conference on Neural Information Processing

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization Techniques for Recommender

 Systems. Computer 42, 8 (2009).

Andriy, M., Ruslan, A., Salakhutdinov, R. (2008). Probabilistic Matrix Factorization. In

Advances in Neural Information Processing Systems. 1257–1264.

https://hal.inria.fr/hal-01256422v1

