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ABSTRACT 

Finding important and useful information is getting harder as much more information is available 

online. The challenge for content producers is to deliver the appropriate content to the 

appropriate consumers while making it challenging for users to access that content. The 

foundation for overcoming these difficulties is provided by recommender systems. Traditional 

methods like Collaborative Filtering (CF) and Content-Based Recommender Systems have 

historically been successful in this field of study but are now challenged by problems with data 

sparsity, cold start, and non-linearity interaction. Evidently, several academic areas, like image 

detection and natural language processing (El-Bakry, 2008), have shown great interest in deep 

learning due to outstanding performance and the alluring quality of learning intricate 

representations. The impact of deep learning is recently showing good advancement when 

applied to recommender systems research (He, 2008). In this research We dive deep into the 

Autoencoder and Neural Collaborative Filtering based deep learning models and their 

implementation on classical collaborative filtering. The research also evaluates the performance 

of both models and outlines loopholes which can further be improved in future works.  
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CHAPTER ONE 

1. INTRODUCTION 

 

1.1 Background of Study 

Intelligent systems called recommender systems leverage user ratings on previously purchased 

goods to suggest comparable goods to other customers. These systems actively reduce the 

navigation options for visitors based on their preferences, which is vital for online businesses. 

Information overload is the main issue that recommender systems address. Modern internet 

technology has altered several ways to interact and share information (Hamada, 2017). For larger 

businesses, having a successful recommender system would increase their revenue. A 

recommender system's customized content would enhance the user's experience and help them 

save a lot of time (Sarwar, 2011). Many strategies of supervised learning methods have been 

used to predict user preferences for product from a large product category using datasets of 

numeric preferences over a period of time. close. (e.g., 1 to 10) (Hassan and Hamada, 2017). The 

most commonly used algorithms are, collaborative filtering, hybrid method, and content-based 

filtering. The hybrid and collaborative filtering systems make suggestions for users based on 

many criteria. For instance, CF-based methods rely on past ratings on products while hybrid 

methods, join two or more recommender system methods.   Collaborative filtering-based 

methods for personalized suggestions became popular due to some security problems with 

Content Based methods, such as collecting user profile information. Matrix Factorization is 

probably the well-known method. This approach is based on user-item function, which can be 

modeled or depicted as the internal product of hidden vectors. Deep learning recently has 

championed the course when applying to Recommender System due to its ability to solve issues 

of sparsity, cold start and non-linearity representation of data. Deep learning Method is an 
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advanced method over machine learning algorithms such that it is able to learn complicated data. 

It iterates over the data a couple of times to find better relationships that can be employed to 

provide better suggestions. Since it is an upcoming emerging field, this research aims at using 

deep learning techniques to improve recommendations. Deep learning techniques like multilayer 

perceptron or an autoencoder should be able to learn well and provide more accurate 

recommendations when applied to recommender systems. This model has been utilized for 

recommendation in several recent works, however these works concentrated on content 

descriptions, such as item content information. Even though, these models are still in use, the 

concentration is only on applying the ML algorithms on the hidden characteristics by users and 

items, ignoring the crucial user-item interaction function of collaborative filtering (Sawar, 2001). 

In this project, a neural network architecture takes the place of the inner item and learns a user-

item relationship function from data. if the user-item relationship function exhibits any non-

linearities, to handle them. 

 

1.2 Problem Statement 

Users now have access to enormous volumes of data and material, but because there are so many 

options available, exploring the data is challenging. This poses a challenge for all parties. The 

entities giving out the service challenged with the point of reaching right users with the right 

content, and most often, are forced to predict the well-known content. The content creators 

struggle to reach relevant users with their work and users struggle to find this content. 

Recommendation systems serves as the foundation of these predicaments. To make specific 

recommendations, the ongoing process must be studied to produce more specific 

recommendations (Ricci B, 2011). Machine learning approaches like Single value decomposition 
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and matrix factorization (MF) have been used in this area of knowledge. However Deep 

Learning methods implement accurate recommendations as it iterates over the data many more 

times through multiple layers trying to find better relationships. 

 

1.3 Objective of Study 

Deep Learning is now a well-known approach in a wide scope of areas of research in the 

computing industry. Therefore, it is of interest to investigate the possibility of representing the 

challenges of recommendation as a classification structured problem, so that we can determine 

what neural networks are usable for creating a more specific recommendation. We discuss the 

Autoencoder and Collaborative based deep learning approaches, their accuracies, losses, 

loopholes and what can be done to personalize recommendations more effectively 

 

1.4 Outline of the Study 

The first chapter focuses on the background of the study, the problem statement and objectives. 

The second Chapter will look at theoretical background of recommender systems, some machine 

learning models in this area of research and an extensive literature review on the subject matter. 

The third chapter will outline in detail the methodologies and tools used in this project. In the 

fourth chapter, various findings and discussions will emphatically be discussed. The fifth chapter 

will summarize the project and suggest recommendations. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

 

This Chapter gives a comprehensive discussion on recommender systems and its improvement 

and flaws over the years classical machine learning models. The Chapter also contains reviews 

of work done by others. It focuses on the general knowledge established on this topic. 

 

2.1 Recommender Systems 

Recommendation systems (RS) are software methods that provide predictions on things that may 

be useful to a user. Recommendations involve different thinking processes, such as what to 

purchase or what online news to read. An example is a book recommendation platform that helps 

people choose what to read. The Amazon uses a recommender system to tailor its online store to 

each consumer. Because recommendations are frequently tailored, various individuals or user 

groups see a variety of recommendations. Non-personalized recommendations are another option 

which are perhaps easier to come by. Some examples can be the top five books. As they can be 

helpful in some circumstances, these methods are not really addressed by recommender system 

research (Ricci B, 2011). Depending on the user's likes and limitations, RSs attempt to forecast 

the best products or services while performing this rating. Users' preferences are gathered by RSs 

in order to fulfill such a complex task. These preferences can either be expressed openly, such as 

through product ratings, or they can be inferred through analyzing user behavior. For instance, an 

RS can interpret a user's movement to a specific product site as an implicit endorsement of the 

goods displayed there. The evolution of RS started with a fairly simple observation: people often 

depend on experiences provided by others to make day-to-day decisions (Sarwar, 2011).  
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2.1.1 Content Based Recommender Systems 

Content-based filtering is a type of recommendation algorithm that uses the characteristics of the 

items being recommended to make recommendations. This approach is based on the idea that 

items with similar characteristics will be of interest to the same users, and that those 

characteristics can be used to make recommendations. For example, if a user likes action movies, 

a content-based algorithm may recommend other action movies to that user based on their shared 

characteristics. Figure 1 illustrates how content-based filtering works. In this example, a user has 

rated a number of movies, and the recommendation system has identified that the user likes 

movies in the comedy genre. The system then uses the characteristics of the movies (in this case, 

the genre) to recommend other movies in the comedy genre that the user may be interested in. 

This approach can help to make more personalized and accurate recommendations, as it takes 

into account the specific preferences of the user. 
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Figure 1: Content based recommender system 

 

Architecture of Content Based Recommender System 

The architecture of a content-based recommender system typically consists of three main 

components: the content analyzer, the profile learner, and the filtering component. 

The content analyzer is responsible for preprocessing and extracting relevant information from 

the unstructured data that is used by the system. This may involve techniques such as feature 

extraction and natural language processing to convert the data into a form that can be used by the 

other components of the system. 
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The profile learner uses the data generated by the content analyzer to construct user profiles. 

This is typically done using machine learning algorithms, which are able to generalize the data 

and identify patterns in the preferences of users. 

The filtering component uses the user profiles generated by the profile learner to identify items 

that are likely to be of interest to a particular user. This is done by matching the profile 

representation of the items to the user profile, and recommending items that are deemed to be a 

good match. This component is responsible for making the final recommendations to the user. 

Together, these components work to analyze the content of items, learn the preferences of users, 

and recommend items that are likely to be of interest to those users. 

Advantages of Content Based Recommender System 

▪ User Independence- Content-based recommenders only use explicit ratings by same user 

to construct their profiles. Instead, collaborative filtering methods depends on ratings 

from other users to get the "nearest neighbor" of the user in question, 

▪ New Item - Content-based recommenders can recommend items that haven't gotten any 

rating by other users. As a result, they are not face with the first ranker challenge. 

Disadvantages of Content Based Recommender System 

One potential limitation of content-based recommender systems is that they rely on the analysis 

of the content of items in order to make recommendations. This means that the system needs to 

have access to a sufficient amount of information about the items in order to make accurate 

recommendations. If the analyzed content does not contain enough information to discriminate 

between items that the user likes and those that the user does not like, the system may not be able 
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to provide suitable suggestions. This can be a particular challenge in domains where the 

information available about the items is limited or difficult to extract, such as in the case of 

unstructured text data. 

Another potential limitation of content-based recommender systems is that they may not perform 

well for new users who have not yet generated a sufficient number of ratings. Since these 

systems rely on the analysis of user preferences in order to make recommendations, they need a 

sufficient amount of data to learn the preferences of users before they can provide accurate 

suggestions. This can be a particular challenge when dealing with users who have not yet rated 

many items, as the system may not have enough data to accurately predict their preferences.  

 

2.1.2 Collaborative Filtering 

Recently, there has been a lot of progress and interest in the collaborative filtering (CF) approach 

to recommenders. Its popularity has been boosted by the fact that it was a major player in the 

Netflix competition. Collaborative filtering (CF) approaches provide specific suggestions of 

things subject to tends of ratings (e.g., purchases). buying history, browser history, items 

searched, and sometimes mouse motions are examples of implicit feedback, while ratings of 

products from 1 to 5 are examples of explicit feedback (Ricci B, 2011). There are two main 

methods used in collaborative filtering. Neighborhood-based methods and latent factor methods 

are two common approaches used in collaborative filtering-based recommendation systems. 

Neighborhood-based methods use the interactions between items or users to make 

recommendations. For example, an item-item method might construct the preferences of a user 

for a particular item based on the preferences of that user for similar items. This approach relies 

on the idea that users who have similar preferences will tend to rate items similarly, and that 
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those ratings can be used to make recommendations to other users. Latent factor methods, such 

as matrix factorization, use a different approach. These methods represent both items and users 

in a hidden factor space, where the ratings given by users to items can be explained by the 

features of the items and the users on the inferred factors. This approach is based on the idea that 

the preferences of users can be represented by a small number of latent factors, and that those 

factors can be used to make predictions about the preferences of users. Both of these approaches 

have their own strengths and weaknesses, and the appropriate approach will depend on the 

specific requirements of the recommendation system. 

 

2.1.2.1 Neighborhood Approach 

A neighborhood-based recommender system is a type of collaborative filtering algorithm that 

uses the ratings and preferences of users to make recommendations. It does this by identifying 

users who have similar preferences and then making recommendations based on the preferences 

of those users. For example, if two users have both rated a particular movie highly, the 

recommendation system may recommend the movie to a third user who has not yet seen it. This 

approach can help to make more personalized and accurate recommendations, as it takes into 

account the preferences of users who are similar to the user being recommended to.. We then use 

accuracy to evaluate the performance of the recommendation system. In so doing, the ratings R 

is separated into train set and test set to evaluate the prediction accuracy. Popular measures of 

accuracy that can be used are: 
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There are two ways to use the neighborhood model, known as user-based or item-based 

recommendations. The evaluations of this item by nearby users, also known as users with similar 

rating patterns, are used by user-based systems to assess a user's interest in it. The users who 

have ratings that are most closely associated to user u's have traditionally been referred to as user 

v's neighbors. On the other hand, item-based techniques forecast the likes of a user for an item 

based on u's ratings for products identical 

Advantages of Neighborhood Approach 

Collaborative filtering-based recommendation methods can be used to address some of the 

challenges associated with content-based methods. For example, collaborative methods can be 

used to make recommendations for items that do not have any associated content. This is because 

collaborative methods rely on the ratings and preferences of similar users to make 

recommendations, rather than on the characteristics of the items themselves. This means that 

even items that do not have any content can still be recommended if they have been rated by 

similar users. Another advantage of collaborative methods is that they are based on the 

evaluations of peers, rather than on the content of the items being recommended. This means that 

the recommendations made by a collaborative system are more likely to be accurate and relevant, 

as they are based on the ratings of other users who have similar preferences. 

Finally, collaborative methods are able to recommend items with different content if other users 

have already rated those items. This is because collaborative methods do not rely on the 
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characteristics of the items to make recommendations, but rather on the preferences of similar 

users. This can help to make more diverse and interesting recommendations, and can also help to 

overcome the limitations of content-based methods in cases where the content of the items is not 

a good indicator of their quality or relevance. 

User-based VS Item-based Recommendation 

User-based methods depend on the preferences of similar decisions of users to predict an item, 

whereas item-based methods try to use ratings giving to similar items (Mehta, 2009)  

 

2.1.2.2 Latent Factor Approach 

Matrix factorization, an example of latent factor method uses a different method by putting both 

items and users’ vectors into the same hidden factor space. The hidden space then transforms and 

explains using the characteristics of items and users factor gotten from user ratings being it 

implicit or explicit  

Matrix Factorization 

Matrix Factorization (MF) is a common CF technique implemented by most industries for 

recommendation. Each user item relationship is related to a vector of hidden features. For 

instance, 𝑝𝑢 and 𝑞𝑖 are the latent vectors for user and item, respectively. it calculates (𝑦𝑢𝑖) as the 

multiplication of 𝑝𝑢 and 𝑞𝑖 shown below. 
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K denote hidden space. The two-way interaction of potential users and product factors using 

single direction of the hidden space does not relate to themselves and hence added linearly to the 

same load.  

 

Figure 2: Matrix factorization 

 

Figure 2 explains Matrix Factorization’s challenges from user-item matrix, u4 and u1 are most 

related, next is u3, then u2. but, for user latent space, putting p4 closer to p1 will mean that p4 will 

come close to p2 than p3, hence higher-ranking loss. Deducing from this example, it shows the 

negative impact generated by inner product on the performance of the model. We solve this issue 

by learning user item characteristic interactions with neural networks covered later in this work. 

 

2.1.3 Hybrid Recommender Systems 

A hybrid system that combines two technologies attempts to exploit the positives of one to solve 

the disadvantages of the other. An example is that, the Collaborative Filtering has problem with 

cold start or new item in the sense that it is difficult to recommend items without history. This 
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however does not hinder content-based methods, as parameters to predict new products is based 

on readily available content description. 

 

2.2  Related Works 

Many literature reviews have been written regarding Recommender systems and deep learning. 

(Guan, Qin, Ling, & Ding, 2016) are intrigued by the use of algorithms and modernizing the 

conventional algorithms to enhance the issues. Single value decomposition and support vector 

machine are some examples of machine learning techniques that has been used in this field. 

(Naomie, 2021) believed that e-commerce, entertainment and social media area some areas 

where recommender system have been used to solve the challenge of information overload. 

However, despite extensive research on learning-based recommender system, few research has 

been done in this area. Therefore, they implemented a general view of the theoretical foundations 

of recommender systems using on deep learning and neural networks. (Qi Zhang et al., 2016) 

also proposed a joint attention neural network which contained textual and visual information 

that can be recommended. In the past, explicit feedback has been the main source of data for 

recommendation tasks (Salakhutdinov, 2007) however implicit data is steadily gaining attention. 

Collaborative filtering's implicit feedback is typically regarded as a recommendation problem 

that concentrates on giving users recommendations for a short list of items. Recent works also 

proposes two strategies, where all missing data are considered to be negative. Specialized models 

have been presented by (He, 2008) and to account for the missing data, (Hornik, 1989) 

and (Bayer, 2017) implemented an implicit rating method on coordinate descent for the models 

depending on characteristic-based factorization, achieving the most advanced performance for 
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item recommendation. A dual-layered Boltzmann Machine is used in the work by 

(Salakhutdinov, 2007) to represent the users who have explicit ratings for the objects. 

Autoencoders are now the most popular option for developing recommendation systems. User-

based AutoRec is a study of hidden features that can rebuild a user's ratings using inputs from 

previous ratings (Sedhain, 2015). Denoising autoencoders have been introduced in order to learn 

or examine from the inputs and avoid autoencoder inability to generalize the unseen or missing 

data. Another neural network approach for collaborative filtering (CF) has been also proposed by 

(Zheng, 2016). Which has given neural networks (NN) a very strong foundation to solve the 

collaborative filtering problem, where the explicit ratings and solely observable data are used to 

model the problem. While some recent research has examined recommendations made using 

deep learning models that analyze implicit feedback (IF), they primarily used neural networks to 

implement the other data like textual description of the products (Rahman, 2020), properties of 

sound in music, and sometime the behavior or mouse movement on multiple platforms. These 

characteristics when derived using deep learning are subsequently combined with matrix 

factorization for personalized recommendations. Recently, a deep neural network was used by 

google for recommendation which used multi-layer perceptron architecture, and then eventually 

showing promising results while making the model generic. (Hamada and Hassan, 2016) 

confirmed the importance of modelling a neural network by obtaining input features to predict a 

user's preference for a product based on several features of the product in a multi-criteria 

recommendation system. 

 

 



15 
 

2.3  Chapter Summary 

In summary, the chapter reviewed various theoretical and application models which have been 

used on the subject matter. Concept like recommender system, collaborative filtering and matrix 

factorization were discussed in this chapter. 
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CHAPTER THREE 

3 METHODOLOGY 

 

In this Chapter, we dive deep into autoencoders and provide an explanation to the general 

framework on deep learning to examine user-item interaction. Additionally, we employ a 

multilayer perceptron to study the non-linear relationships on users and items. We also present a 

Matrix Factorization function which is a combination of the general framework and the 

multilayer perceptron. 

 

3.1 Deep Learning and Artificial Neural Network 

Deep learning is a part of machine learning algorithms that learn information representations. 

Neurons are multi-layered non-linear process units utilized in deep learning models, which are 

capable of remodeling features. These tools rely mainly on cross correlation within the frequency 

space (El-Bakry and Hamada, 2008). The neuron, that is commonly known as a node, is 

the smallest procedure unit. It computes associate degree output once receiving input 

from alternative neurons. every input to the node contains a weight (w) that represents its 

position in respect to other related inputs. The node, as portrayed in Figure 3.0, applies function f 

to the weighted total of inputs. The non-linear function f is known as the activation function. 
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Figure 3: Artificial Neural Network 

 

3.2 Autoencoder Based Deep Learning for Recommender System 

An Autoencoder is an example of neural network that operate on two transformations namely 

encoder and decoder. Dimensionality reduction is the primary objective of an autoencoder in 

order to minimize error (Sedhain, 2015). Simply described, it is a machine learning method that 

employs back propagation and sets the real values to be equivalent to the input values. An 

autoencoder is also simple feedforward network which have an input, hidden, and output layers. 

In order to reconstruct its inputs, the output layer is made to have the same of neurons in terms of 

numbers as the input layer. With this we can describe autoencoder as an unsupervised learning 

algorithm, which means there are no labelled data. It is important to note that it has smaller hidden 

layer compared to the input layer. This method compels the model to construct a compressed 
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representation of the data in the hidden part of the layers when learning correlations in the data. 

The encoding step is the operations that happens between the input and hidden layers and 

decoding step is the operation that happen between the hidden and output layers. 

 

3.2.1 Features of Autoencoder 

• Autoencoders can learn nonlinear interactions using nonlinear activation functions on 

multiple levels, in contrast to principal component analysis (PCA). 

• When learning several layers, autoencoder are expected to be more efficient with model 

parameters 

• Autoencoders are able translate input to output with the minimum error. 

 

3.2.2 Architecture of Autoencoder  

An autoencoder has several layers between its input and output layers which are smaller the input 

layer. It must also be noted the input and output layer’s dimensionality (n) must be the same. The 

input is then being transformed through a layer of size P where n is greater than P. Unlabeled 

input are fed into an autoencoder for reconstruction. The bottleneck is the part to determine the 

important or necessary aspect of the observed values which should be fed forward for the next 

operation. It does this by following two criteria. That is the compactness of featured 

representation measured as the compression number of bits required to save the representation 

and the information the representation retains about some behavioral relevant variables. Figure 4 

shows the architectural diagram of an autoencoder. 
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Figure 4: Architecture of Autoencoder 

 

Encoder: the encoder compresses the input into a hidden space representation in a reduced 

dimension. The compressed data is grabbled, and does not look like the input data.  

Decoder: This layer transforms the encoded data to the original dimension. The decoded data is 

lossy when reconstructed as compared to the original data.  

 

3.2.3 Loss Function 

The loss function determines the amount of information lost. It shows how effectively the input x 

and latent representation Z were reconstructed. If the data is reconstructed well, large cost can be 

incurred. 
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3.2.4 Flaws Associated with autoencoders 

• They can only compress data which looks like what they have been trained on  

• They lose data because the decompressed output is less of quality as compared to the 

input 

 

3.2.5 Training an Autoencoder on Recommender System 

Environment 

▪ Hardware: Intel(R) Core (TM)i7-8550U CPU @ 1.80GHz, Installed RAM - 8.00 GB  

▪ IDE – Visual Studio Code 

▪ Python 3.9.12 

▪ Libraries (Tensorflow, Pandas, Numpy) 

 

Data 

We will use the movielens 1m data set, which contains of 1,000,209 ratings. These ratings were 

submitted by 6,040 members for 3,900 films. We perform data purification, and then split the 

data into training (75%) and testing (25%) sets, which is required for the model to be trained. We 

then require a user-movie matrix with a list of ratings in each row. 
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Movielens Dataset 

 

 

 

Figure 5: Sample movie lens data 

 

Model Parameters 

▪ Number of epochs = 10 

▪ Batch Size = 16 

▪ Learning Rate = 0.0005 
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▪ Number of hidden neurons = 128 

▪ Number of Training Sample = 5953 

▪ Activation Function = Sigmoid 

▪ Optimization = Adam optimizer 

▪ Accuracy Assessment = RMSE 

 

TensorFlow implementation 

The weights and biases initializers for the kernel are set in the constructor. The weights have a 

distribution with average and variation 0.0 and 0.02 respectively. We used three hidden layers in 

the network, each with 128 neurons. The number of all present movies in the dataset is shown by 

the input layer. Forward network output computation is done based on a sample of input data x 

(one row of user movie matrix). sigmoid was used as an activation function in the buried layers. 

Note that the last layer lacks both nonlinear and biased terms. After this step, loss and adjustment 

loss can be determined. The Adam optimizer minimizes the loss function. For a more accurate 

assessment, this method produces the root mean square error (RMSE) rather than of the original 

mean square error (MSE). The neural network multiplied all ratings in each user's training dataset 

after several stages of the training phase. By now, the model should have discovered underlying 

patterns in consumers' collective movie viewing preferences and data. We can now calculate the 

loss of root mean square error (RMSE) between the predicted and actual estimates.  
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3.3 Neural Collaborative Filtering  

Neural collaborative filtering uses neural architecture instead of the internal product of the user 

element. In doing so, NCF uses a layered perceptron to understand user-item relation and aims to 

represent and generalize MF within its framework. Despite matrix factorization's usefulness for 

collaborative filtering, its overall performance is restrained with the aid of using easy desire of the 

inner product function. By including user-item bias terms in the relationship function, the 

performance will be enhanced (Xiangnan, 2017). This demonstrates that multiplying latent 

features (inner products) will not be enough to record the complexities in structure of user 

interaction data. This requires reconstructing a good interaction function to model the interaction 

of latent features between the user and the item. Neural Collaborative Filtering (NCF) aims to 

solve this by using the design of neural networks to model the interaction of user and item 

features. To learn user-item interactions, it employs the multi-layer perceptron. This is an 

advancement over MF since MLP is well equipped to learn user-item interaction functions due to 

its ability to learn any continuous function. 

 

3.3.1 General Framework 

We use a multi-class representation to generate the interaction between the user and the item 

(yui), where the result of a layer acts as the input of the following layer. Two input vectors vu and 

vi, representing user and item, are present in the initial input layer. These are hot-encoded sparse 

binary vectors. The integration layer which is next is fully connected and converts the sparse data 

to a dense space. The resulting user/item integration of the latent factor model can be regarded as 

a latent user/item vector. To translate latent vectors into prediction scores, these integration 

layers are consequently given to a multilayer neural network. To find new hidden patterns from 
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user-item interactions, we can then alter each hidden layer. The performance of the model is 

determined by the size of the last hidden layer, providing the expected yui score in the last layer. 

By reducing the loss point and its true value, Figure 6 shows a diagram of generalized neural 

network framework 

 

Figure 6: Generalized Neural Network Framework 

 

Now we build the predictive neural network model as 

 

 where P ∈ ℜ𝑀𝑋𝐾 and Q ∈ ℜ𝑁𝑋𝐾, representing the matrix for users and items in latent space and 

Θ𝑓 denote the interaction function’s parameters. The function f which is a neural network is 

defined as 
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where 𝜑𝑜𝑢𝑡 and 𝜑𝑋 denote the function for the layers in the output 

Model Parameters 

Also, this method performs specific regression duties with squared loss when learning model 

parameters as 

 

where 𝑌 denotes actual data in Y, and 𝑌− denote unobserved data. The squared loss fails to work 

well on binary data but performs better when drawn from Gaussian distribution. So, to study 

parameters on binary data, probabilistic function is implemented as the activation function for 

the layer in the output as 𝜑𝑜𝑢𝑡. We define the function as  

 

We then get the formula below when the function’s negative logarithm is taken 

 

This is the cross-entropy loss of the binary term or the log loss. The optimization of this function 

is generalised by stochastic gradient descent. 
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3.3.2 Generalized Matrix Factorization (GMF)  

One-hot encodings of user/item vectors serve as the input to the model, and subsequent 

embedding layers can be seen as potential user/item vectors. Let's the user and item vectors be  

pu and qi respectively. The function to the first layer is then defined as:  

𝜑𝑜𝑢𝑡(p𝑢 , q𝑖 ) = p𝑢 ⊙ q𝑖 

where ⊙ represent the multiplication of vectors. The output layer is then project by the vector 

as: 

𝑦𝑢𝑖 = 𝑎𝑜𝑢𝑡(h 𝑇 (p𝑢 ⊙ q𝑖 )) 

where aout and hT stand for the edge weights and activation function, respectively. We used the 

sigmoid function as the activation function in our generalized matrix factorization 

implementation, which studies parameters with the objective function of the log loss. 

 

3.3.3 Multi-Layer Perceptron (MLP)  

Two paths are used by neural collaborative filtering method to model users and items. 

Concatenating these approaches makes sense in order to create a powerful deep learning-based 

recommender system. However, the relationships between user and item latent characteristics 

cannot be fully captured by a straightforward vector concatenation. To solve this problem, we 

concatenated the vector with hidden layers and utilized MLP to understand how the user and 

item vectors interacted. We state the model as follows: 

𝑦𝑢𝑖 = 𝜎(h 𝑇 𝜑𝐿(𝑧𝐿−1)) 
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3.3.4 Neural Matrix Factorization (Fusion of GMF and MLP) 

For now, we have examined two neural network methods that learn interaction function from 

data: GMF employs a linear interactive method while MLP uses a non-linear interactive method. 

We now introduce a hybrid model that combines GMF and MLP in order to learn the intricate 

interactions through mutual reinforcement. 

.

 

Figure 7: Neural Matrix Factorization 
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Sharing the same layer of embedding for both GMF and MLP and combining the outputs of their 

interaction functions is an obvious approach for fusing these models. However, the performance 

and flexibility of the fused model may be constrained by combined embeddings of GMF and 

MLP. In order to merge these models, we concatenated the final hidden layers of the GMF and 

MLP models, as illustrated in Figure 6. This model can be stated as follows: 

 𝑦𝑢𝑖 = 𝜎(h𝑇 (𝜑𝐺𝑀𝐹𝑜𝑢𝑡 .𝜑𝑀𝐿𝑃𝑜𝑢𝑡 )) 

 

3.4 Chapter Summary 

In Summary the Chapter out listed the tools used for the project and made a comprehensive 

description of the implementation of Autoencoder and Neural Collaborative Filtering Deep 

Learning models. 
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CHAPTER FOUR 

4 FINDINGS AND OBSERVATIONS 

 

In this Chapter, we evaluate the result and performance of both Autoencoder and neural 

collaborative filtering, taking into consideration their loss functions and root mean squared 

errors. 

4.1 Results 

Autoencoder 

For Autoencoder, Sigmoid is used as an activation function in the buried layers. The Adam 

Optimizer also minimizes the loss function. For greater accuracy assessment, the method outputs 

a root mean squared error (RMSE) rather than a mean squared error (MSE). At various epochs, 

corresponding test loss, train loss and RMSE were obtained. Figure 7 shows the output of 

autoencoder for 10 epochs, figure 8 shows the trends in accuracy for 10 epochs and figure 9 

shows the trends in train loss and deviations from actual data on tensorboard. 

 

 

Figure 8: Output of Autoencoder for 10 epochs 

 



30 
 

 

Neural Collaborative Filtering 

The fusion of Linear GMF and non-linear MLP keeps NeuMF at an advantageous position to 

learn the more iteratively with it layers than autoencoders. Here also, at various epochs it was 

observed that, the train loss was lesser than the autoencoder model and traditional matrix 

factorization. Figure 10 shows the output of neural collaborative filtering and figure 11 shows 

the trend in train losses. 

 

 

Figure 8: Accuracy trends for 10 epochs Figure 9: Train loss trends for 10 epochs 
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Figure 10: Trends in train losses for NCF 

 

 

 

 

 

 

Figure 9: Output of Neural Collaborative Filtering 
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State-of-the-Art Algorithm Comparison 

 

Figure 11: State-of-the-art algorithm comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Algorithm Comparison Chart 
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4.2 Chapter Summary 

To conclude, the models and findings explained in this chapter demonstrated how deep learning 

can be used to personalize and improve recommendation systems. The research compared the 

output of the Autoencoder and Neural Collaborative Filtering models on same dataset which 

showed a better result for NCF than Autoencoders. It is also discussed that, the compression of 

autoencoder degrades data which makes it lossy hence the lager values in train loss compared to 

NeuMF. 
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CHAPTER FIVE 

5 CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

We employed various neural network topologies in this effort to get over the drawbacks of 

matrix factorization collaborative filtering techniques. We demonstrated that the models 

outperformed existing state-of-the-art models. Again, we contrasted the accuracy of the NCF 

deep learning model and the autoencoder model. Our research revealed that NCF performed 

better than autoencoders in terms of accuracy, even though both are more effective than 

traditional machine learning models for collaborative filtering. The models are simple and all-

encompassing, and they can be used to a variety of circumstances including recommendations or 

improved upon. For autoencoders, the idea is to learn an predictions to the function by enforcing 

certain constraints, such as adding regularization, denoising, sparsity, contractive, etc. By doing 

so, its output is similar to input is generated, information may be effectively compressed and 

interesting structure about the data may be discovered. 

 

5.2 Future Work 

This work improves the commonly employed shallow models for collaborative filtering and 

opens up new avenues for deep learning-based recommendation research. Future research may 

examine variables and ways to reduce output losses, though. Additionally, we wish to conduct 

research on personalization algorithms that focus on user groups rather than specific people. 

These models will be useful for making recommendations to social groups. 
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APPENDIX A: NUERAL COLLABORATIVE FILTERING CODE 

The following codes shows the implementation of Neural Collaborative Filtering in python. 

Libraries used were tensorflow and numpy on movielens one million dataset 

# In the following code, we import libraries and other classes 

import sys 

import pandas as pd 

import tensorflow as tf 

from recommendersystem.utility.time import Timer 

from recommendersystem.rs_models.ncf.ncf_single import NCF 

from recommendersystem.rs_models.ncf.rs_dataset import Dataset as 

NCFDataset 

from recommendersystem.rs_datasets import movielens 

from recommendersystem.utililty.notebook_utility import is_jupyter 

from recommendersystem.rs_datasets.python_splitters import 

python_chrono_split 

from recommendersystem.rs_evaluation.rs_python_evaluation import 

(rmse, mae, rsquared, exp_var) 

 

# In the block of code below, we set our movielens data size and define the model parameters 

MOVIELENS_DATA_SIZE = '1m' 

EPOCHS_RS = 50 

BATCH_SIZE_RS = 256 

SEED_RS = 42 
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df = movielensdata.load_pandas_df( 

size=MovielensData_Size, 

header=["userID", "itemID", "rating", "timestamp"] 

) 

 

# In the block of code below, we split the data into train and test set at 75% and 25% respectively 

trainSet, testSet = python_chrono_split(df, 0.75) 

testSet = 

testSet[testSet["userID"].isin(trainSet["userID"].unique())] 

testSet = 

testSet[testSet["itemID"].isin(trainSet["itemID"].unique())] 

train_file_csv = "./train.csv" 

test_file_csv = "./test.csv" 

trainSet.to_csv(train_file_csv, index=False) 

testSet.to_csv(test_file_csv, index=False) 

 

# We then seed the training and testing data into respective csv files 

data = NCFData(train_file_csv=train_file_csv, 

test_file_csv=test_file_csv, seed=SEED) 

# This code shows the implementation of NCF Class with couple of parameters set to it. 

model = NCF ( 

num_of_users=data.num_users, 

num_of_items=data.num_items, 
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model_type="NeuMF", 

factors_used=4, 

layer =[16,8,4], 

num_of_epochs= EPOCHS_RS, 

batch_size=BATCH_SIZE_RS, 

lr=1e-3, 

seed_num=SEED_RS 

) 

 

APPENDIX B: AUTOENCODER CODE 

 

# In the following code, we import libraries and other classes 

import numpy as np 

#import tensorflow as tf 

#import tensorflow.compat.v1 as tf 

import tensorflow._api.v2.compat.v1 as tf 

import os 

from data.dataset import _get_training_data, _get_test_data 

from model.train_model import TrainModel 

from sklearn.metrics import mean_absolute_error, 

mean_squared_error 

 

# In the block of code below, we define the model parameters 
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tf.app.flags.DEFINE_string('tf_records_train_path', 

os.path.abspath(os.path.join(os.path.dirname("__file__"), '..', 

'auto/src/data/mm_records/strain/')),'Path of the training data.') 

tf.app.flags.DEFINE_string('tf_records_test_path', 

os.path.abspath(os.path.join(os.path.dirname("__file__"), '..', 

'auto/src/data/mm_records/stest/')),'Path of the test data.') 

tf.app.flags.DEFINE_string('checkpoints_path', 

os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 

'checkpoints/model.ckpt')), 'Path for the test data.') 

tf.app.flags.DEFINE_integer('num_epoch', 1000, 'Number of training 

epochs.') 

tf.app.flags.DEFINE_integer('batch_size', 16,'Size of the training 

batch.') 

tf.app.flags.DEFINE_float('learning_rate',0.0005, 'Learning_Rate') 

tf.app.flags.DEFINE_boolean('l2_reg', False, 'L2 regularization.') 

tf.app.flags.DEFINE_float('lambda_',0.01, 'Wight decay factor.') 

tf.app.flags.DEFINE_integer('num_v', 3952, 'Number of visible 

neurons (Number of movies the users rated.)') 

tf.app.flags.DEFINE_integer('num_h', 128, 'Number of hidden 

neurons.)') 

tf.app.flags.DEFINE_integer('num_samples', 5953, 'Number of 

training samples (Number of users, who gave a rating).') 

FLAGS = tf.app.flags.FLAGS 

 

# Building the graph, opening of a session and starting the training of the neural network. 
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def main(_): 

    num_batches=int(FLAGS.num_samples/FLAGS.batch_size) 

    with tf.Graph().as_default(): 

        train_data, train_data_infer=_get_training_data(FLAGS) 

        test_data=_get_test_data(FLAGS) 

        iter_train = train_data.make_initializable_iterator() 

   iter_train_infer=train_data_infer.make_initializable_iterator() 

        iter_test=test_data.make_initializable_iterator() 

        x_train= iter_train.get_next() 

        x_train_infer=iter_train_infer.get_next() 

        x_test=iter_test.get_next() 

        model=TrainModel(FLAGS, 'training') 

        train_op, train_loss_op=model.train(x_train) 

prediction,labels,test_loss_op,mae_ops=model._validation_loss(x_tr

ain_infer, x_test) 

        saver=tf.train.Saver()        

        with tf.Session() as sess:           

            sess.run(tf.global_variables_initializer()) 

            train_loss=0 

            test_loss=[] 

            mae=[] 

            for epoch in range(FLAGS.num_epoch) 

                sess.run(iter_train.initializer) 
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                sess.run(iter_train_infer.initializer) 

                sess.run(iter_test.initializer) 

                for batch_nr in range(num_batches):                   

                    _, loss_=sess.run((train_op, train_loss_op)) 

                    train_loss+=loss_             

                for i in range(FLAGS.num_samples):                    

                    

pred,labels_,loss_,mae_=sess.run((prediction,l

abels, test_loss_op,mae_ops)) 

 

                    test_loss.append(loss_) 

                    mae.append(mae_)   

                print('epoch_nr: %i, train_loss: %.3f, test_loss: 

%.3f, mean_abs_error: %.3f' 

                  

%(epoch,(train_loss/num_batches),np.mean(test_loss), 

np.mean(mae)))                 

                if np.mean(mae)<0.9: 

                    saver.save(sess, FLAGS.checkpoints_path) 

                train_loss=0 

                test_loss=[] 

                mae=[]                     

if __name__ == "__main__": 

    tf.app.run() 
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