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ABSTRACT 

 

Federal government independent revenue, non-oil revenue and oil revenue are some of the 

different sources of money for the Nigerian government. The sources of tax revenue include 

Pay as You Earn (PAYE), Stamp Duty (STD), Companies Income Tax (CIT), Value Added 

Tax (VAT), Personal Income Tax, and Petroleum Profit Tax (PPT). Due to the fact that taxes 

are now one of Nigeria's main sources of income, it is crucial to understand what to expect in 

terms of their amount. This will either help identify how to improve the country's budget or 

how to align it with the country's economic situation, depending on the current economic 

climate. This study makes use of monthly data collected over a period of time based on 

Federal inland revenue service (FIRS) source data related to earlier collections from a variety 

of tax categories between the years 2010 and 2021. To determine the optimal model, this 

study analyzed the projected values and model accuracy from three models multivariate 

Linear Regression (MLR), seasonal autoregressive integrated moving average (SARIMA) 

and multi-variate long short-term memory networks (LSTM). Because we could predict using 

multiple independent variables, both LSTM and MLR fared better. The LSTM model had a 

R2 score of 98.9% and an adjusted R2 score of 98.8%. Our findings indicate that multi-variate 

long short-term memory networks can be used to forecast tax revenue with reasonable 

accuracy and the multivariate Linear Regression comes close when multiple independent 

variables are used. This can further be enhanced by using other macro-economic factors for 

greater accuracy. 

 

Keywords: Tax revenue; Time series model; SARIMA model; LSTM model; MLR model; 

RMSE test; Granger causality; R2 score; MAPE; MSE; MAE. 
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CHAPTER 1 – INTRODUCTION 

 

1.1. Introduction 

To supply citizens with public goods and services, governments need financial resources. 

Governments must first decide whether there are sufficient financial resources before 

deciding how much of these goods should be provided. Federal government independent 

revenue, non-oil revenue and oil revenue are the three categories into which Nigerian 

government revenue is divided. Pay as You Earn (PAYE), Stamp Duty (STD), Companies 

Income Tax (CIT), Value Added Tax (VAT), Personal Income Tax, and Petroleum Profit Tax 

(PPT) and other taxes generate revenue (FIRS, 2022). According to statistics, the third quarter 

has the biggest revenue collection in history. Taxation has become one of Nigeria's most 

important sources of revenue, thus knowing how much to expect in the future will help either 

improve or align the country's budget. The fundamental purpose of this research is to forecast 

Nigeria's future income tax revenues. It is critical for a country to understand the accuracy of 

its expected income tax revenue to maximize the national budget. Tax revenues are the 

fundamental statistics required in development planning and budget preparation. Currently 

we have several models that has been used for forecasting and prediction both classical 

models like Simple Exponential Smoothing, Seasonal autoregressive integrated moving 

average, autoregressive integrated moving average, vector autoregressive etc. and machine 

learning models like decision trees, Recurrent Neural Network, Multilayer Perceptron’s 

(MLP), and Long Short-Term Memory (LSTM) network models. Predicting tax revenue is a 

challenging task, and even more so when multiple variables are considered (Jang, 2019). 
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Figure 1. Total tax revenue - 2010 – 2021 

Due to the country's reliance on oil money and the volatility of the oil market, tax revenue 

forecasting in Nigeria is a significant concern. Additionally, Nigeria has a relatively low tax-

to-GDP ratio compared to other countries, which means that there is room for improvement 

in terms of tax collection. One of the key challenges in predicting tax revenue for Nigeria is 

the lack of reliable data. According to a study by the International Monetary Fund, Nigeria 

has a relatively weak statistical capacity, and the availability of data on government revenue 

and expenditure is limited. This makes it difficult to build accurate models for tax revenue 

prediction. Predicting tax income in Nigeria has been the subject of several studies, but most 

of them have focused on a single variable, such as oil revenue or Value Added Tax (VAT). 

For example, a study by (Ajayi et al., 2013) predicts Nigerian oil revenue using time-series 

analysis and found that the ARIMA model performed the best. 
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1.2 Research Problem 

For the Nigerian government to minimize underfunding and overfunding, accurate income 

forecasting is crucial. Forecasting makes use of the data that is currently accessible in 

addition to other analytical approaches in order to forecast a variable's future value. Here, as 

tax revenues are the subject, we are interested in discovering which model is the most 

successful overall and will be applied to forecast future revenue by comprehending the 

variables that affect the generation of taxes. Pay-As-You-Earn (PAYE), Petroleum Profit Tax 

(PPT), Companies Income Tax (CIT), Personal Income Tax (PIT), Value Added Tax (VAT), 

Stamp Duty (STD), etc. are just a few of the different sorts of taxes we have. Which of them 

has a major impact on the generation of tax revenue is what we want to discover. We will be 

using multivariate Linear Regression (MLR), multi-variate long short-term memory networks 

(LSTM) and seasonal autoregressive integrated moving average (SARIMA). 

 

1.3 Research Questions 

1. Can total revenue be predicted with just past total revenue data? 

2. Which of the three chosen models (SARIMA, LSTM, MLR) will perform better? 

3. Is the discrepancy between the actual and predicted values significant? 

4. What is the optimal SARIMA model for Total Tax Revenue? 

5. The following variables: Is Granger Causality Present? 

a) Petroleum Profit Tax 

b) Value Added Tax 

c) Capital Gain Tax 

d) Companies Income Tax 

 

1.4 Objective of the study 

This study's primary objective is to introduce and contrast the use of multi-variate long short-

term memory networks (LSTM), seasonal autoregressive integrated moving average 

(SARIMA) and multivariate linear regression (MLR) models in forecasting and predicting 

the overall yearly tax revenue of previous years and to compare actual and predicted values 

using Python's data science libraries. In order to track Nigeria's total tax revenue, the purpose 

of this research is to make projections and zero in on the independent variables that have the 

potential to accurately predict the dependent variable. It seeks to create a model with less 

errors than the others made along the process. The government may use the findings of this 
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study because it controls the national budget and has the authority to decide how to spend the 

taxes it has collected to boost the economy of the nation. 

 

1.5 Research Gap 

While several studies have explored the effectiveness of different forecasting models for tax 

revenues in various countries, there is still a need for further research to develop accurate and 

reliable tax forecasting models specifically for Nigeria. The following research gaps should 

be addressed in a thesis on Nigerian tax forecasting model: 

1. Lack of consideration of political and social factors: Political and social factors can 

significantly impact tax revenues in Nigeria. For instance, changes in government 

policies, social unrest, and other factors could lead to fluctuations in tax revenues. A 

forecasting model that does not account for these factors may not be able to provide 

accurate forecasts. 

2. Limited research on new modeling techniques: There may be a lack of research on 

new modeling techniques that could be applied to tax forecasting in Nigeria. For 

instance, machine learning and artificial intelligence techniques could be leveraged to 

improve the accuracy of tax revenue forecasts, but there may be limited research on 

how to apply these techniques in the Nigerian context. 

3. Limited availability of data: One of the key challenges of building robust tax 

forecasting models is the availability and quality of data. In Nigeria, there may be a 

lack of reliable historical data on tax revenues, which could make it difficult to 

develop accurate forecasting models. 

In summary, the absence of trustworthy data, the economy's volatility, and the informal 

nature of the economy make it difficult to forecast tax collection in Nigeria. It is also 

challenging to locate earlier study on the topic because there is a gap in the literature. 

 

1.6 Contribution 

The importance of this research is multifaceted; for instance, government income forecasting 

studies for Nigeria are still in their infancy. This study aims to fill that vacuum in the 

literature, which will be helpful for future research studies. When predicting Nigeria's total 

revenue, we took into account seasonal characteristics; this is an appropriate and useful 

forecasting technique (Rob J Hyndman & George Athanasopoulos, n.d.). We have looked at 

total revenue projections and the effects of Value Added Tax (VAT), Companies Income Tax 

(CIT), and Petroleum Profit Tax (PPT) on total tax revenues in Nigeria. The findings of this 
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study serve as a foundation for creating policies that are consistent with the interests of the 

general public, private institutions, and decision-makers. Another critical element is the type 

of data utilized in this analysis, which covered the period from January 2010 to December 

2021 and comprised 144 records for various tax categories. Nigeria typically retains quarterly 

data, although the country is making progress in this area. 

 

1.7 Organization of the thesis 

i. Chapter 1: Introduction; focuses on shining light on the types of taxes in Nigeria 

and why they are crucial to economic progress. In addition, this chapter describes 

the aims and objectives of the research, the research questions, and the academic 

and practical significance of this study. 

ii. Chapter 2: Literature Review; This chapter offers a detailed review of the 

available literature on tax revenue forecasting and modeling as it pertains to this 

study. It also shows the created theoretical framework of the research, which 

provides the foundation for the overall structure of the research by elaborating on 

the numerous theoretical facets of the subject at hand. 

iii. Chapter 3: Proposed methodology; In this chapter, we delve deep into the 

theoretical underpinnings of the SARIMA, LSTM, and MLR models. In addition 

to this, we talk about the correctness of the model and how it was measured. 

iv. Chapter 4:  Experimental results stating the dataset; This addresses the 

application of the methodologies described in chapter 3 on the total income of 

Nigeria based on monthly revenue from 2010 to 2021 and monthly individual tax 

types. 

v. Chapter 5: Discussion and Conclusion. Finally, findings and suggestions will be 

offered, along with observations and suggestions for how the research may be 

improved.



CHAPTER 2 – LITERATURE REVIEW AND TERMINOLOGIES 

 

2.1. Introduction 

The degree to which individuals comprehend the relevant data or variable has an 

impact on the accuracy of future forecasts. Predicting future events will always be limited by 

the predictive power of the approach or model used. Given the expansion in data availability 

brought on by improved data collection efficiency and technology, quantitative methods are 

currently widely used. Some causes are already known to limit predictive capacity, but there 

are unknown occurrences that could possibly introduce uncontrollable errors to future 

estimates (Siami-Namini et al., 2018). Tax revenue prediction or forecasting involves using 

various methods and techniques to estimate the future revenue that a government will collect 

from taxes. The goal is to provide policymakers and budget analysts with an accurate and 

reliable estimate of the amount of money that will be available for public spending, so that 

they can make informed decisions. 

One approach that has been widely used in the literature is the use of time series models. 

These models can use techniques like moving averages, exponential smoothing, and ARIMA 

models to forecast future values of a variable based on its past values. For instance, a study 

by (Chen & Chen, 2017) the authors used an ARIMA model to predict tax revenue in Taiwan. 

They found that the model performed well, and that it was able to accurately predict future 

values of tax revenue. 

Another approach that has been used in the literature is the use of econometric models. Using 

these models, it is possible to estimate the relationship between tax revenue and different 

economic metrics like GDP and inflation. For instance, a study by (Martinez-Vazquez & 

McNab, 2010), the authors used panel data regression to estimate the relationship between 

tax revenue and GDP in Latin American countries. They found that GDP was positively 

related to tax revenue, and that this relationship was robust across different countries and 

time periods. 

A third approach that has been used is the use of Machine Learning and Artificial Intelligence 

models, such as Neural networks, Random Forest, etc. These methodologies provide more 

flexibility and can be applied on big datasets. For example, in a study by (Yaser S. Abu-

Mostafa et al., 2012) used a Neural Network to predict the US tax revenue, which are found 

to be more accurate than traditional time series models. 
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Overall, the literature on tax revenue prediction and forecasting is diverse, with many 

different methods and approaches having been used. It is significant to remember that no 

approach is flawless, and the selection of a method will be influenced by the particular 

situation and the data at hand. To choose the best research methodology, it is crucial to speak 

with professionals in the fields of economics and public finance. (Matta et al., 2021). 

 

2.2. Review studies on SARIMA models 

Tax revenue forecasting frequently use the time series forecasting technique known as 

SARIMA (Seasonal Autoregressive Integrated Moving Average). This approach models the 

trend and seasonality of the time series data. The seasonal element is a part of an extension of 

the ARIMA model. SARIMA models have been applied in numerous research to anticipate 

tax income. One benefit of using SARIMA models for estimating tax revenue is their ability 

to detect subtle patterns in the data, such as seasonality and trend. 

 

(Otu et al., 2014) applied the Seasonal ARIMA model in order to make projections on 

Nigeria's inflation rates. For the purposes of this investigation, data were gathered between 

the months of November 2003 and October 2013 (One hundred and twenty observations). 

The primary objective was to acquire a model that accurately portrayed the information, and 

the secondary objective was to create estimates regarding the rate of inflation in Nigeria for 

the period beginning in November 2013 and ending in October 2014.Following an 

investigation into the characteristics of the inflation series (which included an examination of 

the model's residuals), it was determined that the SARIMA (1, 1, 1) (0, 0, 1)12 model 

provided the most accurate representation of the inflation rate. A downward trend in inflation 

was indicated by the projections made over a period of 12 months, beginning in November 

2013 and ending in October 2014. The recommendation that was made based on the 

outcomes of the study's forecast was to provide assistance to the decision-makers in Nigeria. 

 

(Erdoğdu & Yorulmaz, 2019)  examined the effectiveness of three models for predicting tax 

revenue in Turkey from 2006 to 2018. In this investigation, three alternative time series 

forecasting methods; BATS (Seasonal Box-Cox Transformation, ARMA Errors, Trend, and 

Seasonal Components), SARIMA (Seasonal Autoregressive Integrated Moving Average), 

Random Walk; were employed. They split the data set into training and testing at the outset of 

the analysis. From 2006 to 2014, there was a training phase, and from 2015 to 2018, there 

was a testing phase. Each forecasting model predicted 36 months based on the outcomes of 
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ME, RMSE, MAE, MPE, MAPE, MASE, and Theil's U. They discovered that employing the 

BATS model, as opposed to the conventional SARIMA model, produced better accurate 

estimates of Turkey's monthly tax revenue. 

 

(Micheni Nelson Kirimi et al., 2022) sought out to find an efficient Holt-Winters and 

SARIMA models that could be used to forecast Domestic tax revenues in Kenya. Their study 

utilized the Domestic tax revenues collected in Kenya between Jan 2015 to December 2020.) 

SARIMA and Holt-Winters time series forecasting methods were applied to the revenue data 

collected. 

 SARIMA (0,1,1) (0,1,1)12 model was found to be the best model since it had the least 

Bayesian Information Criterion (BIC=1236.49) and the least forecasting errors (MAPE=6.9, 

MASE=0.37). The multiplicative Holt-Winters method was slightly superior to the additive 

method due to its lower error (MAPE=7.43). The study later recommended the use of the two 

models to forecast Domestic taxes in Kenya and can be used to capture the Domestic taxes 

revenues with high precision. 

 

(Streimikiene et al., 2018) studied the effects of indirect taxes on the working class and used 

three distinct time series approaches to anticipate Pakistan's tax collection for the fiscal year 

2016 - 2017. The study also examined the effectiveness of three distinct time series models, 

including the vector autoregression (VAR) model, the autoregressive integrated moving 

average (ARIMA), and the autoregressive model (AR with seasonal dummies). They 

concentrated on forecasting for 2017 and used a dataset that ran from July 1985 to December 

2016 (monthly). They used tax revenue components such direct tax, sales tax, federal excise 

duty, and customs duties to anticipate overall tax revenue. According to the study's findings, 

the ARIMA model provides a more accurate projection of Pakistan's overall tax revenue. 

 

2.3. Review studies on LSTM models 

Recurrent neural networks (RNNs) of the Long Short-Term Memory (LSTM) variety are very 

effective at forecasting time series, including tax income. Forecasting future tax collections 

requires the accurate modeling of long-term dependencies in time series data, which is where 

LSTMs come in. 

 

(Rhanoui et al., 2019) contrasted the ARIMA random walk model and the LSTM neural 

network model on financial time series data for accuracy and efficiency. Additionally, the 
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traditional model and the machine learning model were contrasted. The purpose of this study, 

which used data for a country's annual budget from 1976 to 2016, was to determine which 

model could predict the annual budget the most accurately. After making the data stationary, 

they applied the ARIMA model using several settings, keeping the ARIMA model as the best 

one (0,1,0). ARIMA and LSTM had RMSE values of 0.239 and 0.222, respectively. The MSE 

results were 0.057 for ARIMA and 0.049 for LSTM. ARIMA was 0.139 and LSTM was 

0.119 in the MAE results. This study demonstrated that while the ARIMA model yields 

acceptable results, the LSTM model outperforms the ARIMA model's performance. One of 

the strongest models for time series prediction is the LSTM recurrent neural network because 

it can recognize non-linear features in financial time series. 

 

(R. Zhang et al., 2022) Using data from 2013 to 2018 with daily, weekly, and monthly 

datasets, two types of forecasting models (LSTM and ARIMA) with rolling forecast and 

without rolling forecast at various time scales were created and compared for the incidence of 

hemorrhagic fever in China for the year 2019. The forecasting performance in 2019 shown 

that, in rolling forecasting models, LSTM outperformed ARIMA for daily forecasting while 

ARIMA outperformed LSTM for weekly and monthly forecasting. In 2019, the models that 

included rolling predictions had lower mean absolute error (MAE), root mean square error 

(RMSE), and mean absolute percentage error (MAPE) values than the direct forecasting 

models for both ARIMA and LSTM. Rolling forecast results; Daily, RMSE result were, 

ARIMA – 13.01 and LSTM – 8.05. The MAPE result were, ARIMA – 58.63 and LSTM – 

35.70. The MAE result was, ARIMA – 10.06 and LSTM – 5.75.  

Weekly, RMSE result were, ARIMA – 31.09 and LSTM – 35.98. The MAPE result were, 

ARIMA – 11.85 and LSTM – 17.81. The MAE result was, ARIMA – 20.56 and LSTM – 

26.21. Monthly, RMSE result were, ARIMA – 108.38 and LSTM – 247.53. The MAPE result 

were, ARIMA – 8.51 and LSTM – 34.2. The MAE result was, ARIMA – 72.67 and LSTM – 

224.42. 

 

2.4. Review studies on MLR models 

Machine learning techniques for projecting tax income have drawn more attention in recent 

years. These techniques have shown to be successful in capturing the intricate connections 

between economic factors and tax collection. One particular technique used in machine 

learning to determine the relationship between a number of different variables and a target 

variable is multiregression.(X. Zhang et al., 2019). 
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(Petrovski et al., 2015) employed multiple linear regression model to estimate bid price for a 

company. "Choosing a bid price for contracting and becoming a project stakeholder is a 

company's key management choice because bid process involves many parties, each with 

their own interests. As a result, it's crucial to have a bidding model that can forecast the price 

of the bid in light of evolving threats to the bidding process. Given that MLR uses actual data 

from the field and had a MAPE (Mean Absolute Percentage Error) of roughly 3% and an R2 

= 0.88167 coefficient of determination, it was remarkably accurate. This represents a major 

advancement above conventional models, which normally have MAPE around 25% and, in 

some recent studies, MAPE around 19%. The decision-making process can be aided by the 

proposed model during the competitive bidding process. 

 

(Alashari et al., 2022) evaluated the accuracy and effectiveness of multivariate linear 

regression (MLR) and vector autoregression (VAR) time series models in estimating the 

annual maintenance costs of EPDM roofing systems. For a 23-year span, from 1997 to 2019, 

the study used historical data from 16 distinct EPDM roofing systems. The results of this 

performance research show that the stepwise MLR model had a little higher average accuracy 

(85%) than the VAR model in estimating the annual maintenance expenses of EPDM roofs 

(83%). 

 

2.5. Forecasting and error accuracy  

Making predictions about future circumstances or events based on historical and current data 

is the process of forecasting. In order to forecast trends and make decisions, it is frequently 

used in business, economics, and finance.  

How accurately the anticipated values match the actual values is referred to as error accuracy 

in forecasting. It is typically expressed as a decimal between 0 and 1 or as a percentage. 

Mean absolute percentage error (MAPE), mean absolute error (MAE), mean squared error 

(MSE) are often used indicators of predicting error accuracy. The forecast is thought to be 

more accurate the lower the error.  

Where n is the size of the dataset, Ai is the actual value, Fi is the forecasted value, 𝑨̅𝒊 is 

the mean absolute value, and p is the number of features/predictors. 
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2.5.1. What is Time Series 

A time series is a collection of data points taken at regular periods of time. Time series data is 

often used to evaluate trends and patterns across time in industries such as finance, 

economics, and engineering. Time series data can be continuous (for example, temperature) 

or discrete (for example, stock prices) (e.g. number of sales, number of website visitors).  

Time series analysis is the process of modeling and analyzing time series data using statistical 

techniques in order to extract relevant insights and generate projections. Time series analysis 

seeks to comprehend the underlying structure and patterns in data, identify trends and 

seasonality, and make accurate forecasts about future values. 

 

There are several techniques used in time series analysis, including: 

• Decomposition: is the process of dividing a time series into its constituent pieces, 

such as trend, seasonality, and residuals.  

• Smoothing: is the process of reducing noise from data in order to expose underlying 

patterns.  

• Forecasting: is the process of predicting future values based on past data.  

• Analysis of Trends and Seasonality: Identifying and quantifying the underlying trend 

and seasonality patterns in data.  

• ARIMA: which is a prominent method for modeling and forecasting time series data. 

 

Organizations can use time series analysis to make informed decisions and prepare for the 

future with more accuracy (Wilson, 2016). 

 

2.5.2. Mean squared error (MSE) 

A frequently used metric for comparing anticipated and actual values is mean squared error, 

or MSE. The average of the squared differences between the predicted and actual values is 

used to calculate it. It is a common error metric for regression problems, MSE is defined in 

Equation (1). 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝐴𝑖 − 𝐹𝑖)

2𝑛
𝑖=1         (1) 

 

The benefit of MSE is that it penalizes large errors more severely than tiny errors, which is 

advantageous when attempting to lessen the influence of outliers. It is crucial to scale the data 

before employing MSE due to its sensitivity to the data's size. Additionally, because it is 
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sensitive to the presence of outliers, the error may appear larger than it actually is (James et 

al., 2021). 

 

2.5.3. Mean absolute error (MAE) 

The mean absolute error (MAE) is a measurement of the difference between predicted and 

actual values. It is determined by averaging the absolute differences between the forecasted 

and actual values. MAE is defined in Equation (2). 

𝑀𝐴𝐸 =  
1

𝑛
{∑ |𝐴𝑖 − 𝐹𝑖|

𝑁
𝑖=1 }        (2) 

 

MAE is a regularly used measure of forecast quality; it is a measure of the average magnitude 

of errors in a series of forecasts, without taking into account their direction. It demonstrates 

how inaccurate the projections are.  

The advantage of MAE over other measures such as Mean Squared Error is that it is less 

sensitive to outliers (MSE). Large errors are not substantially penalized because they are not 

squared. It also uses the same unit of measurement as the data, making it simple to interpret.  

However, unlike the Mean Absolute Percentage Error, it does not reveal if the forecast is 

exceeding or underestimating the actual values (Shumway & Stoffer, 201). 

 

2.5.4. Mean absolute percentage error (MAPE) 

The percentage difference between the predicted and actual values is known as the Mean 

Absolute Percentage Error (MAPE). It is determined by arithmetically averaging the absolute 

percentage differences between predicted and actual values. MAPE is defined in Equation 

(3). 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ (

|𝐴𝑖−𝐹𝑖|

𝐴𝑖
)𝑁

𝑖=1 × 100       (3) 

 

MAPE is a commonly used measure of the quality of a forecast, it is a measure of the average 

magnitude of the errors in a set of forecasts, expressed as a percentage. It gives an idea of 

how wrong the forecasts are in percentage terms. 

MAPE has the advantage of being in the same unit as the data, which makes it easy to 

interpret. It also allows for comparison between forecasts of different variables or even 

different forecast models. 

However, it has the disadvantage of being undefined when actual values are zero, it also can 

be sensitive to the presence of outliers, as well as to the scale of the data. 
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Remember that if your actual values are 0, the formula is not defined, and you'll need to make 

some changes or switch to a different error measure (Hyndman & Koehler, 2006). 

 

2.5.5. Coefficient of determination (R2 score) 

R-squared (R²) is a statistical term that shows the proportion of the variance in the dependent 

variable that can be predicted by the independent variable (s). R-squared is defined in 

Equation (4). 

𝑅2 = 1 − {
∑ (𝐴𝑖−𝐹𝑖)2𝑛

𝑖

∑ (𝐴𝑖−𝐴̅𝑖)2𝑛
𝑖

}         (4) 

 

R-squared is a popular metric for assessing how well a model fits a set of data. The model fits 

the data more accurately when the R-squared value is larger. However, because it ignores the 

model's complexity or if the model is overfitting the data, it cannot tell whether the model is 

excellent or bad.  

It is crucial to keep in mind that R-squared only evaluates how well a model fits the data, not 

how well it can predict the future (Hastie et al., 2009; Hyndman & Koehler, 2006). 

 

2.5.6. Adjusted Coefficient of determination (Adj-R2 score) 

R-squared has been changed to include an adjustment for the number of independent 

variables in a model, known as adjusted R-squared (adj-R2). It is a statistical measure that, 

after accounting for the number of variables, shows what fraction of the variance in the 

dependent variable can be predicted from the independent variable(s). It has a range of 0 to 1.  

Adjusted R-squared is defined in Equation (5). 

𝑅𝑎 ⅆ𝑗
2 =

1−(1−𝑅2)(𝑛−1)

𝑛−𝑝−1
         (5) 

 

When comparing models with various numbers of independent variables, adjusted R-squared 

is used to adjust the R-squared value for the number of predictors. When comparing models 

with various numbers of predictors, it is a better indicator of the goodness of fit of a model 

because it penalizes models with more variables.  

It is crucial to keep in mind that, similar to R-squared, adjusted R-squared simply assesses 

how well the model fits the data and not the model's capacity for making precise predictions 

(Valerie Watts, 2022). 
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2.5.7. Root mean squared error (RMSE) 

RMSE, or root mean squared error, is a regularly used indicator of the difference between 

predicted and actual values. It is calculated by taking the mean squared error's square root 

(MSE). RMSE is defined in Equation (6). 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
{∑ (𝐴𝑖 − 𝐹𝑖)

2𝑛
𝑖=1 }       (6) 

 

The average magnitude of the error is measured by the RMSE, which is a commonly used 

metric of forecast quality. The fact that RMSE is in the same unit as the data makes it simple 

to interpret. It also penalizes huge errors more than tiny errors, which is useful when reducing 

the influence of outliers. However, it, like MSE, can be sensitive to the presence of outliers 

and the scale of the data (Hyndman & Koehler, 2006; James et al., 2021).  

 

2.5.8. Granger Causality 

A statistical concept called Granger causality aids in determining the causal relationship 

between the two variables in a time series of data. It is founded on the hypothesis that if a 

variable X influences a variable Y, then previous values of X should have knowledge that 

improves predictions of future values of Y when compared to using only past values of Y. 

To put it another way, Granger causality aids in determining if one time series can forecast 

another better than simply relying solely on its past values. It's crucial to remember that 

Granger causality does not indicate traditional causality but rather a statistical link between 

two variables.  

Granger causality, as a result, does not prove causality, but rather suggests the presence of a 

causal relationship between two variables based on statistical evidence. It is also worth 

mentioning that other factors may influence the link between the variables, which Granger 

causality analysis may not capture. 

 

2.6. Conclusion  

Every country's economy benefits from making the most accurate revenue projections 

possible since doing so results in a more equitable distribution of future budgets. Time series 

models have proven to be effective ways to forecast tax revenues from the aforementioned 

literature analysis, and they can be used for both larger and smaller tax kinds. SARIMA 

models are a particular method for identifying patterns in data that are both seasonal and non-
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seasonal. According to studies that have been analyzed, the SARIMA model performs well in 

estimating sales tax collections as well as personal and corporate income tax receipts. It 

should be emphasized that although though SARIMA models have been shown to be useful 

for predicting tax receipts, they might not be appropriate for all taxes or in all circumstances. 

To produce more precise projections, it's critical to assess the applicability of a given model 

and combine it with other models and methodologies. In addition, other models, like 

econometric models and judging approaches, may offer extra perspective and boost 

predicting accuracy. LSTM is a promising method for estimating tax revenues, according to a 

study of the literature on the subject. These studies have repeatedly demonstrated that LSTM 

outperforms conventional statistical models like ARIMA in terms of forecasting accuracy. 

Additionally, it has been demonstrated that LSTM outperforms other machine learning 

models like Random Forest and XGBoost. Numerous of this research used various datasets 

and locations, but they all came to the same conclusion: LSTM is an effective tool for 

predicting tax income. According to the studies examined, multivariate regression models 

seem to be useful for predicting tax income. These models' independent variables may 

incorporate economic statistics like the GDP, inflation, and unemployment rate. These studies 

have shown that multivariate models perform better in terms of predicting accuracy than 

univariate models, which may be useful in anticipating tax income. However, a recorded 

quantitative data sample of the same historical course is required. Because the accuracy of 

these methods decreases over time, they are more accurate for short-term projections (two to 

three years). To obtain or generate more accurate long-term forecasts, more information about 

the variables of interest must be gathered, the model must be well-defined, and statistics such 

as root mean squared error, mean absolute percentage error, Akaike information criterion, 

quadratic lost function, and many others must be taken into consideration. In addition, it is 

necessary to monitor the forecasts that were obtained to determine whether any adjustments 

are necessary. The theory of SARIMA, LSTM, and MLR models is illustrated in the 

following chapter by examining model specification and test statistics for forecasting.



 

CHAPTER 3 – PROPOSED METHODOLOGY 

 

3.1. Introduction 

This chapter examines the theory underlying the Seasonal autoregressive integrated moving 

average (SARIMA), Long short-term memory networks (LSTM), and multivariate linear 

regression (MLR) models. In section 3.5, we conclude our discussion of forecasting by 

describing the criteria we will use to evaluate the accuracy of the model's prediction. 

 

3.2. SARIMA modeling 

SARIMA (Seasonal Autoregressive Integrated Moving Average) is a type of time series 

forecasting model that accounts for both seasonality and autocorrelation. The SARIMA 

model is typically denoted as:  

ARIMA (p, d, q) (P, D, Q) s 

 

The Formula for SARIMA is defined in Equation (7); 

𝑦_𝑡 =  𝑐 +  𝜙_1𝑦_𝑡 − 1 + . . . + 𝜙_𝑝𝑦_𝑡 − 𝑝 −  𝜃_1𝑒_𝑡 − 1 − . . . − 𝜃_𝑞𝑒_𝑡 − 𝑞 +  (1 −
𝐵)^𝑑 ∗ (1 − 𝐵_𝑠)^𝐷 ∗ (𝑦_𝑡 −  𝑐_𝑠)  +  𝑒_𝑡 +  𝛷_1 ∗ (1 − 𝐵)^𝑑 ∗ (1 − 𝐵_𝑠)^𝐷 ∗ (𝑦_𝑡 −
𝑠 −  𝑐_𝑠) + . . . + 𝛷_𝑃 ∗ (1 − 𝐵)^𝑑 ∗ (1 − 𝐵_𝑠)^𝐷 ∗ (𝑦_𝑡 − 𝑝𝑠 −  𝑐_𝑠)  −  𝛩_1𝑒_𝑡 −
𝑠 − . . . − 𝛩_𝑄𝑒_𝑡 − 𝑄       (7) 

 

• y_t is the dependent variable at time t 

• c is a constant term 

• ϕ_1, ..., ϕ_p are the autoregressive coefficients for the non-seasonal component 

• y_t-1, ..., y_t-p are the lagged values of the dependent variable for the non-seasonal 

component 

• θ_1, ..., θ_q are the moving average coefficients for the non-seasonal component 

• e_t-1, ..., e_t-q are the lagged values of the error term for the non-seasonal component 

• (1-B)^d and (1-B_s)^D are the non-seasonal and seasonal difference operators of 

orders d and D, respectively 

• c_s is the seasonal constant term 

• Φ_1, ..., Φ_P are the autoregressive coefficients for the seasonal component 

• y_t-s, ..., y_t-ps are the lagged values of the dependent variable for the seasonal 

component 
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• Θ_1, ..., Θ_Q are the moving average coefficients for the seasonal component 

• e_t-s, ..., e_t-Q are the lagged values of the error term for the seasonal component 

• s is the seasonal period. 

 

3.2.1 Autoregressive (AR) component of (p) 

The dependence between an observation and several lag observations is modeled by the 

autoregressive (AR) component of a SARIMA model. A time series' current value is a linear 

combination of its previous values, with the coefficients of the linear combination being 

specified by a set of parameters. This is the core notion behind an AR model. The first-order 

autoregressive model, or AR (1) model, is a straightforward illustration of an AR model and 

is defined in Equation (8). 

𝑌_𝑡 =  𝑐 +  𝜙 ∗ 𝑌_𝑡 − 1 +  𝜀_𝑡       (8) 

 

Where Y_t is the current observation, Y_t-1 is the previous observation, c is a constant, ϕ is 

the autoregressive coefficient, and ε_t is the error term. The autoregressive coefficient, ϕ, is a 

scalar value between -1 and 1, is a measure of how closely the current observations relate to 

earlier ones. Strong positive relationships are indicated by a value ϕ that is close to 1, 

whereas strong negative relationships are indicated by a number φ that is close to -1. 

Maximum likelihood estimation (MLE) or least squares estimation (LSE) are frequently used 

to estimate the autoregressive component of a SARIMA model, and the Yule-Walker 

equations or the Burg method are frequently used to estimate the autoregressive coefficients. 

Although the SARIMA model's autoregressive (AR) component is a potent tool for modeling 

time series data, it can be difficult to precisely estimate the model's parameters. To make sure 

that the model is a good fit for the data, it is crucial to examine the model residuals for 

normality and independence (WALTER ENDERS, 2015). 

 

3.2.2. Degree of differencing (d) 

The differencing component (d) of a SARIMA model is used to make a non-stationary time 

series stationary by removing the trend component from the data. It is defined as the number 

of times that the original time series is differenced to obtain a stationary series. For example, 

if d=1, then the first differences of the original time series are taken. If d=2, then the first 

differences of the first differences are taken. The differencing component (d) can be 

represented mathematically as the operator ∆^d, where ∆ is the difference operator and d is 
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the degree of differencing. For example, a time series Y_t can be transformed into a 

stationary time series ∆^dY_t by taking the d-th order differences of Y_t, the equation is 

defined in Equation (9). 

∆𝑑𝑌_𝑡 =  𝑌_𝑡 −  𝑌_𝑡 − 𝑑        (9) 

 

 

3.2.3. Order of the moving average (MA) component (q) 

Moving average (MA) is used to model the dependence between an observation and the 

residual error from a moving average model applied to lagged observations. The fundamental 

concept underlying an MA model is that the current value of a time series is a linear 

combination of the error term from a moving average model applied to lagged observations, 

with the coefficients of the linear combination being determined by a set of parameters.  

A straightforward example of an MA model is the MA (1) model, which defined in Equation 

(10). 

𝑌_𝑡 =  𝜇 +  𝜀_𝑡 +  𝜃𝜀_{𝑡 − 1}       (10) 

 

Where Y_t is the current observation, μ is the mean of the series, ε_t is the error term, and θ 

is the moving average coefficient. The moving average coefficient, θ, is a scalar value 

between -1 and 1, and represents the strength of the relationship between the current 

observation and the past error term. Strong positive relationships are indicated by a value ϕ 

that is close to 1, whereas strong negative relationships are indicated by a number ϕ that is 

close to -1. 

The moving average component of a SARIMA model is typically estimated using least 

squares estimation (LSE) or maximum likelihood estimation (MLE). 

 

3.2.4. Seasonal autoregressive (SAR) component (P) 

Modeling the relationship between an observation and several lagging seasonal observations 

can be done with the SAR part of a SARIMA model. The present value of a time series is 

thought to be a linear combination of its previous seasonal values, with the coefficients of the 

linear combination being determined by a given set of parameters in a SAR model. The first-

order seasonal autoregressive model (SAR (1)) is a simple example of a SAR model. The 

formula for SAR is defined in Equation (11). 

𝑌_𝑡 =  𝑐 +  𝜑𝑠𝑌_{𝑡 − 𝑚}  +  𝜀_𝑡       (11) 
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Where Y_t is the current observation, Y_t-m is the previous observation at the same season, c 

is a constant, φ_s is the seasonal autoregressive coefficient, m is the number of seasons, and 

ε_t is the error term. The seasonal autoregressive coefficient, ϕ_s, is a scalar value between -1 

and 1, and represents the strength of the relationship between the current and previous 

observations at the same season Strong positive relationships are indicated by a value ϕ that is 

close to 1, whereas strong negative relationships are indicated by a number ϕ that is close to -

1.  

Note that in order to accurately model the seasonal factor, it’s important to have a time series 

that have enough seasonal data, and to choose the right number of seasons (m) correctly. 

 

3.2.5. Degree of seasonal differencing (D) 

To eliminate the seasonal component from a time series and make it stationary, a SARIMA 

model's degree of seasonal differencing (D) is used. Similar to regular differencing (d), 

seasonal differencing takes the differences between consecutive observations that occurred 

during the same season as opposed to between consecutive observations. 

The seasonal differencing component is represented mathematically as the operator ∆_m^D, 

where ∆_m is the seasonal difference operator, m is the number of seasons, and D is the 

degree of seasonal differencing. 

For example, a time series Y_t can be transformed into a stationary time series ∆_m^DY_t by 

taking the D-th order seasonal differences of Y_t, the equation is defined in Equation (12). 

∆_𝑚^𝐷 𝑌_𝑡 =  𝑌_𝑡 −  𝑌_{𝑡 − 𝑚}^𝐷       (12) 

 

In order to stabilize the time series' variance and guarantee that the model is a good fit for the 

data, the degree of seasonal differencing (D) is a crucial parameter in the SARIMA model. It 

is typical to experiment with different values of D until a stationary series is obtained if a 

time series is found to have a seasonal component. It's crucial to remember that choosing D 

has a direct impact on choosing the number of seasons (m), as well as P and Q. When 

selecting the values of D, P, and Q, careful consideration of the time series and its seasonal 

pattern is required. 
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3.2.6. Order of the seasonal moving average (SMA) component (Q) 

The dependence between an observation and the residual error from a seasonal moving 

average model applied to lagged observations is modeled by the seasonal moving average 

(SMA) component of a SARIMA model. A seasonal moving average (SMA) model works on 

the fundamental premise that the current value of a time series is a linear combination of the 

error term from a SMA model applied to lagged observations, with the coefficients of the 

linear combination being influenced by a set of parameters. The first-order seasonal moving 

average model, or SMA (1) model, is a straightforward illustration of a SMA model and is 

defined in Equation (13). 

𝑌_𝑡 =  𝜇 +  𝜀_𝑡 +  𝜃_𝑠 𝜀_{𝑡 − 𝑚}       (13) 

 

Where Y_t is the current observation, μ is the mean of the series, ε_t is the error term, m is 

the number of seasons, and θ_s is the seasonal moving average coefficient. The seasonal 

moving average coefficient, θ_s, is a scalar value between -1 and 1, and represents the 

strength of the relationship between the current observation and the past error term of the 

same season. A value of θ_s close to 1 indicates a strong positive relationship, while a value 

of θ_s close to -1 indicates a strong negative relationship. It is important to note that the 

selection of Q is closely related to the selection of the number of seasons (m) as well as the 

selection of P and D. 

 

3.2.7. The process of building a SARIMA model 

1. Using a time series data visualization to spot any patterns or trends. 

2. Testing the time series data' stationarity. 

3. Using methods like the partial autocorrelation function (PACF) and autocorrelation 

function (ACF), we identify the optimal values for the parameters p, d, and q, as well 

as the seasonal parameters P, D, and Q. 

4. Using metrics like root mean square error (RMSE), mean squared error (MSE) and 

mean absolute error (MAE) to evaluate the SARIMA model's performance after 

fitting it to the time series data. 

5. Lastly, predicting future values of the time series using the fitted model (WALTER 

ENDERS, 2015). 

 

 



  

 21 

Figure 3.1. Flowchart for building the SARIMA, LSTM and MLR model 
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3.3. LSTM modeling 

The Recurrent Neural Network (RNN) known as Long Short-Term Memory (LSTM) is 

capable of identifying long-term dependencies in sequential data. LSTMs were first presented 

in a paper by (Sepp Hochreiter & J�urgen Schmidhuber, 1997) in the paper "Long Short-

Term Memory". When it comes to processing data, LSTMs rely on a set of gates (input, 

forget, and output) to regulate the information's progression through the network. The gates 

are operated by learned weights that determine what data is allowed through, what data is 

discarded, and what data is outputted.  

LSTMs are based on the concept of a cell state that is propagated throughout the network in 

addition to the input and output. One way to think of the cell state as a memory is as a long-

term storage mechanism for information. The gates in LSTMs regulate the entry and exit of 

data into and out of the cell state, giving the network the ability to pick and choose what to 

keep and what to throw away. 

The core components of an LSTM cell are: 

1. Input Gate (i): regulates how much data enters the current state of the cell. 

2. Forget Gate (f): controls the amount of information that is forgotten from the previous 

cell state. 

3. Output Gate (o): regulates the rate at which data leaves the cell. 

4. Cell State (c): holds data that will be transmitted from one time step to the next. 

5. Hidden State (h): the value produced by the LSTM cell and fed into the next iteration. 

 

The LSTM model can be defined by a series of Equations (14-18): 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖)     (14) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +  𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)     (15) 

𝑐𝑡 =  𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑓𝑥𝑡 +  𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) + 𝑓𝑡𝑐𝑡−1     (16) 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 +  𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)     (17) 

ℎ𝑡 =  𝑜𝑡𝑡𝑎𝑛ℎ𝑐𝑡     (18) 

 

Where x is the input, h is the hidden state, Wci, Whc, Wco, Wcf, and Wxi are the parameters 

(weights and biases) of the LSTM model, sigmoid and tanh are activation functions and the b 

terms denote bias vectors. 
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Additionally, the LSTM model can also have other attributes such as: 

1. Number of layers: LSTMs can be stacked on top of each other to create deeper 

architectures that can learn more complex representations. 

2. Number of units: how many neurons are contained within each LSTM cell, which 

ultimately determines how much data can be stored and processed by the model. 

3. Dropout: a regularization technique that randomly drops out units during training to 

prevent overfitting. 

4. Bidirectional: a configuration where the LSTM reads the input sequence in both 

forward and backward directions. 

5. Attention: a method that enables the LSTM to generate output by concentrating on 

particular segments of the input sequence. 

 

3.3.1. Recurrent Neural Network (RNN) 

When dealing with sequential data, like time series or natural language, a Recurrent Neural 

Network (RNN) is the best artificial neural network to use. RNNs are equipped with a 

"memory" that allows them to recall and apply information from previously processed inputs 

to the current input. An RNN's "recurrent unit" is its smallest component; it receives an input 

and a "hidden state" (the network's memory of previous inputs) and outputs a value and a new 

hidden state. When one recurrent unit finishes processing data, it passes on the hidden state to 

the next one in the chain. There are several variations of RNNs, including the Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. These variations have 

been designed to address some of the issues with training traditional RNNs, such as the 

vanishing gradient problem. 

Overall, RNNs are a powerful tool for processing sequential data, and have been used in 

many state-of-the-art models for natural language processing and other tasks. 

 

3.3.2. The process of building a LSTM model 

The input sequences are processed in a step-by-step manner, one time step at a time, by an 

LSTM model, which then generates predictions. The model generates a new hidden state as 

well as an output after each time step, using the current input as one of its inputs and the 

previous hidden state as the other input. After that, the output is sent through an output layer, 

which maps it to the output space that was specified earlier. Inside of the LSTM cell, the 

process of generating the output as well as the new hidden state is carried out utilizing the 
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input gates, output gates, forget gates, and cell state(Sepp Hochreiter & J�urgen 

Schmidhuber, 1997). 

The model learns the best settings for the gates' and output layer's parameters (weights and 

biases) during training by reducing the error between the expected and actual outputs. Once 

the model has been trained, it may be used to make predictions on fresh input sequences by 

applying the same time-step-by-time-step processing and learnt parameters that it used during 

training. 

For the purpose of language modeling, for instance, the LSTM receives as input a string of 

words, one at a time, and at each time step it generates a probability distribution over the 

vocabulary for the following word. The procedure continues until the end of the input 

sequence is reached, at which point the algorithm will stop and the word with the highest 

probability will be chosen as the anticipated next word. 

 

Forecasting time series data using an LSTM model involves several steps: 

1. Data preprocessing: Prepare the time series data for use as input by the model by 

eliminating noise, standardizing the values, and applying any necessary 

transformations. Typically, one part of the data is used to train the model, while the 

other is utilized to test and evaluate how well the model performed. 

2. Model architecture: The number of input and output variables, time steps, hidden 

layers, and units are some of the special properties of the time series data that are 

taken into account when designing the LSTM model architecture. 

3. Training: Using a suitable optimization approach, such as stochastic gradient descent, 

the model is trained on the training set (SGD). In order to reduce the discrepancy 

between the projected output and the actual output, the model's parameters (weights 

and biases) are adjusted during the training phase. 

4. Forecasting: The trained model can then be used to make predictions on unlabeled 

data. As part of time series forecasting, the model receives as input a series of past 

values and outputs a prediction for the next value in the series. The process is iterated 

as many times as necessary to produce a forecast for the time horizon of interest. 

5. Evaluation: The test set is used to assess the model's accuracy by comparing the 

predicted and actual values and then computing an error measure such as the mean 

squared error (MSE), mean absolute error (MAE) or root mean squared error 

(RMSE). 
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It's worth noting that LSTMs are particularly useful for time series data that has a temporal 

dependency, where the current value is dependent on previous values. LSTMs can handle this 

type of sequential data by using its memory cells, gates, and hidden state to process it (Siami-

Namini et al., 2019). 

 

3.3.3. Hyperparameter Tuning 

Hyperparameter tuning involves finding the optimal values for hyperparameters that are 

defined by the user before training a machine learning algorithm. These hyperparameters 

cannot be learned from the data and need to be specified prior to training. In the case of 

LSTM models, hyperparameters may include the number of layers, number of neurons in 

each layer, learning rate, batch size, dropout rate, and number of epochs. These 

hyperparameters can impact the performance of the model, so selecting the optimal values is 

crucial for achieving the best possible performance. Hyperparameter tuning can be done 

manually or automatically using techniques such as grid search, random search, or Bayesian 

optimization. The goal is to optimize the model's performance on a given dataset, leading to 

better accuracy and predictions. 

 

In summary, forecasting time series data using an LSTM model involves several steps: data 

preprocessing, model architecture, training, forecasting and evaluation. LSTMs are 

particularly useful for time series data that has a temporal dependency, where the current 

value is dependent on previous values. 

 

3.4. MLR modeling 

MLR is a type of linear regression that permits several independent variables (also known as 

predictors or features) to be used to predict a single dependent variable (also known as the 

response or outcome). The purpose of MLR is to determine the best-fitting line or hyperplane 

that explains the relationship between the variables and to use this model to forecast the 

dependent variable's future values. The MLR model is defined in Equation (19). 

𝑌 =   𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + . . . + 𝛽𝑛𝑋𝑛     (19) 

 

The dependent variable is Y, the independent variables are X1, X2, Xn, the y-intercept is b0, 

and the independent variables' coefficients are b1, b2., bn. When all of the other variables are 

maintained constant, the change in the dependent variable that is represented by these 
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coefficients occurs when there is a change of one unit in the independent variable that 

corresponds to it.  

Finding the values of the coefficients in an MLR model that minimize the gap between the 

predicted values of the dependent variable and the actual values is one of the steps involved 

in the process of training an MLR model. This is often accomplished through the use of a 

technique known as least squares, which seeks to minimize the sum of the squared disparities 

that exist between the values that were predicted and those that were actually observed.  

After the model has been trained, it can be used to produce forecasts based on data that it has 

not previously encountered. In addition, the coefficients of the variables that are independent 

can be used to infer the relative importance of each variable in terms of its ability to predict 

the variable that is dependent (Hastie et al., 2009). 

 

When employing an MLR model, a few assumptions are frequently made. The fact that there 

is a linear relationship between the independent and dependent variables is among the most 

significant. In other words, the change in the dependent variable follows the change in the 

independent variable in a linear fashion. Additionally, it is presumed that the errors are 

independent, properly distributed, and homoskedastic in nature; these assumptions are 

typically verified using diagnostic plots and statistical tests (James et al., 2021). 

In conclusion, Multivariate Linear Regression (MLR) is a variation of Simple Linear 

Regression that enables the use of numerous independent variables to forecast a single 

dependent variable. It entails determining the line or hyperplane that best fits the data and 

makes the assumptions that the relationship is linear and the errors are independent, normally 

distributed, and have a constant variance. 

 

3.4.1. The process of building a MLR model 

When employing a multivariate linear regression (MLR) model to forecast time series data, 

historical data on many variables are used to forecast the future values of the target variable. 

The following steps are often included in the process: 

1. Data collection and preparation: Gathering and getting ready the historical data for 

analysis is the initial phase. This entails preparing the data for modeling by cleaning, 

formatting, and possibly changing it.  

2. Feature selection: The model's most pertinent independent variables (features) are 

then chosen to be included. This can entail applying methods like principal 

component analysis (PCA), correlation analysis, or feature importance measurements. 
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3. Model fitting: Using the chosen characteristics, the MLR model is subsequently fitted 

to the historical data. Finding the values of the coefficients that reduce the 

discrepancy between the target variable's anticipated values and its actual values is 

often required.  

4. Model evaluation: Metrics like mean square error (MSE), mean absolute error 

(MAE), and coefficient of determination are used to assess the effectiveness of the 

fitted model (R-squared)  

5. Forecasting: Once trained, the model can be used to make predictions based on fresh, 

unused data. To predict future values of the target variable, the model is applied to 

time series data.  

6. Model updating: To increase the forecast's accuracy over time, the model should be 

revised to incorporate new data as it becomes available. 

 

It's vital to keep in mind the temporal relationships between observations while working 

with time series data, as well as the possibility of trends or seasonality in the data, which 

can be handled by methods like differencing, decomposition, or state-space models 

(Shumway & Stoffer,2017). 



 

CHAPTER 4 – EXPERIMENTAL RESULTS 

 

4.1. Introduction 

When presenting experimental results, it is crucial to include information about the dataset 

that was used. This information helps to provide context and enables others to understand the 

limitations and generalizability of the results. A typical introduction to the dataset in 

experimental results may include details such as: 

1. The source of the dataset: where it was obtained and any relevant background 

information. 

2. The size of the dataset: how many samples or instances are included in the dataset. 

3. The preprocessing steps: any transformations or manipulations applied to the data 

before analysis. 

4. Characteristics of the data: any relevant information about the data, such as the type 

of data (e.g., text, image, audio), the format of the data, or any unique properties of 

the data. 

By including this information, researchers can provide transparency and increase the 

credibility of their results, allowing others to understand the data that was used and 

potentially replicate the experiment. 

 

4.2. SARIMA Performance and Results 

This section shows the result and how it was gotten using the SARIMA model and the 

error scores from 5 different error accuracy scores. The best fit to use with the SARIMA 

model was: 

 (1, 1, 1)x(1, 1, 1, 12), this resulted in a better performance than any other combination. We 

used just the total revenue in Table1 in the appendix which shows the full dataset used. 
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Figure 4.1: Autocorrelation graph of the dataset 

 

Figure 4.2: Partial autocorrelation graph of the dataset 
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Table 4.1: Error Accuracy Result for SARIMA, LSTM, MLR 

Model K R2 MSE MAE RMSE MAPE Adj 

R2 

Diff 

SARIMA - 38.4% 9571.09 74.57 97.83 32.31 - 736.50B 

LSTM - 98.9% 137.48 5.89 11.73 0.016 98.8% 26.4B 

MLR 10 97.4% 319.07 5.57 17.86 0.014 97.3% 387.5B 

MLR 15 98.8% 143.67 4.16 11.98 0.0098 98.7% 68.98B 

MLR 20 97.5% 316.40 5.67 17.79 0.014 97.4% 255.89B 

 

Table 4.1 the SARIMA model has the lowest performance across all evaluation metrics. It has 

a significantly lower R2 value (38.4%) compared to the other models, as well as higher MSE, 

MAE, RMSE, and MAPE values. Additionally, the SARIMA model lacks information on the 

adjusted R-squared value. 

 

Figure 4.3: graph showing the differences between the actual and the predicted value for the 

SARIMA model 
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According to Figure 4.3, the SARIMA model performed poorly in limiting the differences 

between the actual and the predicted value. We came to this conclusion not only because of 

how the graph above looks like but based on the sum of the differences between the actual 

and predicted value resulted in 736.50B 

 

4.3. LSTM Performance and Results 

This section shows the result and how it was gotten using the Multivariate LSTM 

model and the error scores from 6 different error accuracy scores, we included the adjusted r2 

score here since we are dealing with multiple independent variables. We used just the total 

revenue as the dependent variable and CIT, VAT, PPT, CGT, EDT, SD, CONS, NITDEF as 

the independent variables to predict the dependent variable which can be seen in Table1 in 

the appendix which shows the full dataset used. I used the mean squared error loss function 

and the Adam optimizer for training. The model consists of a single LSTM layer with 64 

memory units. We used just the total revenue in Table1 in the appendix which shows the full 

dataset used. 

 

Table 4.1 the LSTM model has the highest R2 value (98.9%), indicating a strong correlation 

between the predicted and actual values. It also has the lowest MSE, MAE, RMSE, and 

MAPE values, suggesting the best predictive performance among the listed models. The 

LSTM model also has a high adjusted R-squared value (98.8%), indicating a good balance 

between model complexity and fit. 

 

According to Figure 4.4, the LSTM model performed way better than the SARIMA model 

which was all over the place especially the MAPE score which was incredibly high for a 

model and was slightly better than the MLR model. We came to this conclusion not only 

because of how the graph above looks like but based on the sum of the differences between 

the actual and predicted value resulted in 26.4B. 
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Figure 4.4: graph showing the differences between the actual and the predicted value for the 

LSTM model 

 

 

 

4.4. MLR Performance and Results 

This section shows the result and how it was gotten using the MLR model and the 

error scores from 6 different error accuracy scores, we included the adjusted r2 score here 

since we are dealing with multiple independent variables. We used just the total revenue as 

the dependent variable and CIT, VAT, PPT, CGT, EDT, SD, CONS, NITDEF as the 

independent variables to predict the dependent variable which can be seen in Table1 in the 

appendix which shows the full dataset used. We used a cross validation (K) of 15 because it 

gave the best r2 score and sum of differences between actual and predicted values. The tables 

below show the scores of 3 different K values that was tested. 

 

The MLR models with K = 10 and K = 15 have similar accuracy to the LSTM model. 

However, they are less stable, as evidenced by their higher Diff values.The MLR model with 

K = 20 is less accurate than the other models. This is likely because it is overfitting the data. 
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Figure 4.5: graph showing the differences between the actual and the predicted value for the 

MLR model where K = 10 and 20 

 

 

Figure 4.6: graph showing the differences between the actual and the predicted value for the 

MLR model where k = 15 

 

According to Figure 4.6, the LSTM model and the MLR model with cv of 15 perform very 

well in predicting the target variable. The LSTM model has a slightly higher R2 value and 
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lower MSE, indicating a better fit to the data and more accurate predictions overall. However, 

the MLR model with cv of 15 has a slightly lower MAE, suggesting it performs slightly 

better in terms of average prediction errors. We came to this conclusion not only because of 

how the graph above looks like but based on the sum of the differences between the actual 

and predicted value resulted in 68.98B. 

 

4.5 Granger Casual relationship between the Dependent and Independent  

In order to investigate the Granger causal relationship that exists between dependent 

and independent variables, a Granger Causality Test was carried out. The conclusion drawn 

from the Granger Causality Test in Table 4.3 suggests that there is evidence of a uni-

directional causal relationship between Petroleum Profit Tax and Total Tax Revenue, as well 

as between Capital Gain Tax and Total Tax Revenue. This means that changes in Petroleum 

Profit Tax and Capital Gain Tax can help predict changes in Total Tax Revenue, but the 

reverse is not true. Additionally, there is evidence of a uni-directional causal relationship 

between Total Tax Revenue and Value Added Tax. 

 

Table 4.2:  Granger Causality Test 

Null Hypothesis: Probability 

TTR does not Granger Cause CIT 

CIT does not Granger Cause TTR 

0.4281 

0.8022 

TTR does Granger Cause VAT 

VAT does not Granger Cause TTR 

0.0117(*) 

0.6039 

TTR does not Granger Cause PPT 

PPT does Granger Cause TTR 

0.7578 

0.0492(*) 

TTR does not Granger Cause CGT 

CGT does Granger Cause TTR 

0.2649 

0.0402(*) 

 

Decision: The asterisk (*) denote the rejection of the null hypothesis. 



 

CHAPTER 5 – CONCLUSION AND DISCUSSION 

 

5.1. Discussion 

According to the findings and based on the Table 4.1, it appears that the LSTM model has the 

best performance. It achieved a high R2 value of 98.9%, indicating a strong correlation 

between the predicted and actual values. Additionally, it has the lowest MSE, MAE, RMSE, 

and MAPE values among multivariate linear regression model (MLR) and seasonal 

autoregressive integrated moving average (SARIMA). The LSTM model also has a high 

adjusted R-squared value of 98.8%, which suggests that it has a good balance between model 

complexity and fit. Therefore, based on the given evaluation metrics in Table 4.1, the LSTM 

model seems to be the best choice among the options provided. The study's findings also 

indicated that indirect taxes account for the majority of tax revenue (PPT, CIT, VAT, CONS, 

EDT, NITDEF). The outcomes are consistent with earlier studies by (Aamir et al., 2011; 

Chaudhry & Munir, 2010; Himani, 2016) , they examined the factors of tax collection in 

India and Pakistan and concluded that indirect taxes play a key role in tax collection in 

Pakistan. They concluded that indirect taxes have increased the gap between the wealthy and 

the poor and further exploit the working class's susceptibility. In our research, the total tax 

income was the dependent variable, and direct (CGT and SD) and indirect (PPT, CIT, VAT, 

CONS, EDT, NITDEF) taxes were the independent variables. Earlier research used the same 

variables. (Aamir et al., 2011; Himani, 2016; Luqman, 2014; Qadirpatoli et al., 2012). They 

came to the same conclusion as the previous group, which was that indirect taxes are more 

prevalent than direct taxes, with the exception of the findings of (Himani, 2016) which he 

came to the conclusion that in the case of India, total tax revenue is more notable and 

dominant than direct taxes. The capacity to incorporate additional variables for prediction 

makes MLR effective, but we neglected to take into account other macro-economic factors 

that would have strengthened forecasting and brought it much closer to reality. The study also 

demonstrated that the PPT tax has a Granger effect on overall tax income. These results are 

very much in line with the true picture or ground realities and consistent with earlier research 

studies such as (Akhter & Hassan, 2012; Eugene & Abigail, 2016; Karagöz, 2013) because as 

a  nation that produces oil, Nigeria has a tax rate of 50 percent for petroleum operations that 

are covered by production sharing contracts, 65.75 percent for petroleum operations that are 
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not covered by PSCs, and 85 percent for petroleum operations that are not covered by PSCs 

after the first five years. 

 

 

5.2. Conclusion 

The purpose of this study is to analyze the performance of three predicting tax revenue 

models for Nigeria from 2010-01 to 2021-12 and identify the most effective model. In this 

investigation, three distinct time series forecasting methodologies, including the multivariate 

long short-term memory networks (LSTM), seasonal autoregressive integrated moving 

average (SARIMA) and multivariate linear regression (MLR) models, were employed. The 

results of the study revealed the efficiency of three distinct time series models, as well as the 

precise outcomes of forecasting total tax income for the preceding years in order to determine 

if it was adequate, so laying the right groundwork for policymaking by the Nigerian 

government. 

 

The LSTM model outperforms the MLR slightly though and not on all metrics used (MSE, 

R2 Score, RMSE) but completely outperforms SARIMA models according to all evaluation 

metrics (MSE, R2 Score, RMSE, MAE, MAPE). We discovered that forecasting Nigeria's 

monthly tax revenue series using the LSTM model rather than SARIMA or MLR produced 

more accurate forecasts because LSTM models are specifically designed to handle sequential 

or time-series data. They have the ability to capture and learn from temporal dependencies 

and patterns in the data, which is crucial in many time-series prediction tasks. MLR models, 

on the other hand, assume independence between data points and do not consider the 

sequential nature of the data. According to the LSTM model, we were able to determine that 

there is no substantial discrepancy between the actual total tax revenue and the predicted tax 

revenue. This study's empirical findings aid specialists in the process of preparing 

government budgets. The LSTM model may be superior for additional forecasting of other 

tax types, such as Petroleum Profit Tax (PPT), Value-Added Tax (VAT), and Companies 

Income Tax (CIT). Furthermore, the empirical findings of this work will be used to develop 

combination forecasting models (Jabeur et al., 2022). 

It would have been more efficient to use more realistic independent variables like Real GDP 

Rate, crude oil production, Nigeria stock exchange, Employment Population, Unemployment 

Rate and Inflation and exchange rate to get better results. In the future we should be 

considering Hybrid models, combinations of two or more models, that will complement each 
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other strength and weakness for a more robust and efficient prediction or forecasting (Bala & 

Shuaibu, 2022). 

 

5.3. Applications 

For governments and tax authorities to efficiently manage and distribute resources, 

forecasting tax revenue is a critical duty. Forecasting tax income accurately enables decision-

makers to make well-informed choices regarding public spending, taxation, and policy.  

Here are some possible real-world uses for an effective time series model for predicting tax 

revenue: 

a. Government budgeting: An effective tax revenue forecasting model can assist 

governments in making financial decisions, planning expenditures, and efficiently 

allocating resources. 

b. Tax planning and policy-making: Forecasting tax income can help policymakers make 

informed judgments about future policy and get insight into the efficiency of current 

tax laws. 

c. Economic forecasting: Because of the strong relationship between tax revenue and 

economic activity, an effective forecasting model can be utilized to predict changes in 

the economy and guide the decisions that businesses make. 

d. Resource allocation: Based on projected revenue, resources can be distributed to a 

variety of areas, including education, healthcare, and public safety. 

e. Public debt management: Forecasting tax revenue accurately is crucial for managing 

the public debt well. It enables decision-makers to choose the right degree of 

borrowing and debt repayment. 

 

Overall, an efficient time series model for tax revenue forecasting has many practical 

applications in real life, from government budgeting to economic forecasting and public debt 

management. 
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APPENDIX 

 

Table 1: Full Data set used for this research in Billion Naira 

Year TOTA

LREV 

PPT CIT  VAT   CGT   EDT   SD   CONS

  

NITD

EF 

2010-

01 

225.07

39 

111.08

19 

50.802

6 

48.097

9 

0.028 11.105

8 

0.4416 2.5188 0.9973 

2010-

02 

173.38

86 

83.869

4 

39.554

1 

46.437

4 

0.1174 0.6015 0.3655 2.3717 0.0716 

2010-

03 

173.88

79 

73.551

9 

43.120

8 

51.144

5 

0.0676 2.3402 0.6532 2.9646 0.0451 

2010-

04 

212.23

71 

109.36

88 

46.092

6 

49.755 0.0346 4.0036 0.4394 2.45 0.0931 

2010-

05 

198.20

65 

112.53

18 

39.414

8 

41.526

7 

0.2816 1.6328 0.3839 2.4292 0.0057 

2010-

06 

265.70

49 

124.21

17 

67.968

1 

54.194

7 

0.0628 11.966

3 

0.744 3.6477 2.9096 

2010-

07 

226.41

47 

109.72

81 

63.190

2 

44.625

5 

0.1258 4.4803 0.5778 2.6923 0.9947 

2010-

08 

265.71

15 

120.96

11 

79.829

2 

48.518

3 

0.1534 13.197

4 

0.4966 2.4772 0.0783 

2010-

09 

264.36

25 

129.00

12 

60.561

7 

42.753

4 

0.0925 28.783

7 

1.0797 2.0702 0.0201 

2010-

10 

222.64 120.52

55 

50.934

5 

45.676

5 

0.0599 1.7393 0.3821 2.726 0.5962 

2010-

11 

314.07

08 

188.49

35 

68.924

4 

44.701

8 

0.0124 8.2739 0.5791 3.0407 0.045 



  

 44 

2010-

12 

297.68

6 

197.03

9 

48.109

6 

47.459

9 

0.0007 1.0532 0.4505 3.5437 0.0294 

2011-

01 

336.80

67 

236.75

22 

41.528

7 

50.793

1 

0.1997 2.8029 0.4164 3.8545 0.4592 

2011-

02 

342.42

36 

254.78

53 

34.103

4 

49.155

4 

0.825 0.7018 0.4097 2.4346 0.0084 

2011-

03 

275.96

1 

165.89

22 

38.911 61.607

3 

0.2572 3.3752 0.5991 5.2097 0.1093 

2011-

04 

290.08

48 

184.19

02 

50.649

1 

44.337

1 

4.5706 2.715 0.4552 3.1474 0.0202 

2011-

05 

256.05

43 

156.94

12 

37.456

7 

53.748

2 

0.2425 3.9212 0.562 3.1343 0.0482 

2011-

06 

439.16

68 

307.05

58 

64.315

1 

54.692

4 

0.2861 7.2266 0.5785 3.5709 1.4414 

2011-

07 

491.40

71 

306.78

27 

84.233

5 

65.993

3 

0.0476 25.649

5 

0.4462 3.1894 5.0649 

2011-

08 

501.35

14 

315.78

37 

103.88

2 

57.006

5 

2.7484 16.290

1 

0.4189 4.7249 0.4969 

2011-

09 

424.16

65 

265.66

14 

78.505

5 

60.739

3 

0.0181 14.658

1 

0.6275 3.5758 0.3808 

2011-

10 

412.12

96 

277.18

68 

67.978 51.638

4 

0.0043 11.047

6 

0.622 3.3483 0.3042 

2011-

11 

390.57

04 

269.75

3 

51.827

3 

52.314

5 

0.025 12.240

9 

0.6582 3.4617 0.2898 

2011-

12 

468.35

35 

329.80

68 

46.285 57.128

1 

0.08 30.113 0.6686 4.2202 0.0518 

2012-

01 

369.38

8 

267.39

12 

41.184

5 

53.240

6 

0.0307 3.8534 0.3644 3.3191 0.0041 
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2012-

02 

466.86

79 

365.24

14 

35.277

9 

60.608 0.086 1.761 0.4335 3.1578 0.3023 

2012-

03 

336.21

23 

216.11

64 

48.456

4 

62.008

9 

0.4711 3.0074 0.59 4.765 0.7971 

2012-

04 

385.17

1 

265.55

89 

44.628

3 

59.678

4 

1.6993 7.685 0.4815 3.9126 1.527 

2012-

05 

328.02

06 

198.79

7 

59.590

8 

60.084

3 

0.7839 2.2873 0.7117 4.876 0.8896 

2012-

06 

554.03

79 

277.95

97 

186.49

61 

59.219

6 

0.2862 15.854

9 

0.679 8.5334 5.009 

2012-

07 

524.12

24 

301.50

09 

134.54

55 

53.910

5 

4.0975 24.810

4 

0.983 4.0414 0.2332 

2012-

08 

438.08

71 

245.15

43 

70.968

2 

60.437

2 

0.028 57.133

5 

0.5698 3.7467 0.0494 

2012-

09 

403.88

29 

249.85

54 

50.538 56.342

5 

0.0347 42.991

5 

0.5296 3.447 0.1442 

2012-

10 

454.86

35 

289.71

26 

71.141 64.766

7 

0.7345 23.703

7 

0.7867 3.8568 0.1615 

2012-

11 

402.57

1 

290.25

71 

43.484 62.722

6 

0.1396 1.3529 0.7035 3.901 0.0103 

2012-

12 

344.42

82 

233.77

46 

43.981

8 

57.535

8 

0.5251 3.9945 0.5501 4.0561 0.0102 

2013-

01 

478.96

02 

330.81

39 

61.670

4 

65.290

9 

0.0523 16.886

7 

0.5133 3.6909 0.0418 

2013-

02 

378.06

08 

249.63

29 

50.397

6 

62.706

8 

0.0991 10.261

3 

0.5413 4.3775 0.0443 

2013-

03 

349.71

04 

220.20

28 

44.517

3 

64.198

7 

0.0153 15.752

5 

1.0266 3.9083 0.0889 



  

 46 

2013-

04 

357.68

69 

247.23

23 

47.403

6 

54.571

3 

2.0478 1.5616 0.6059 3.8203 0.4441 

2013-

05 

431.28

17 

258.13

87 

86.262

3 

74.872

8 

0.6702 3.3443 0.7551 4.0657 3.1726 

2013-

06 

647.53

74 

288.05

47 

269.11

76 

51.170

3 

14.065

4 

15.845

9 

0.4601 3.8099 5.0135 

2013-

07 

397.57

88 

142.97

01 

102.30

32 

74.197

4 

0.0659 72.789

9 

0.6499 3.9739 0.6285 

2013-

08 

421.00

56 

188.38

81 

87.901

3 

68.932

3 

0.0515 71.683

9 

0.4644 3.5149 0.0692 

2013-

09 

337.14

39 

189.12

29 

51.548

5 

63.941 0.0221 28.394

2 

0.431 3.6425 0.0417 

2013-

10 

361.12

41 

200.49

35 

49.109

1 

66.346

2 

2.4887 37.998

3 

0.8268 3.6834 0.1781 

2013-

11 

350.16

65 

187.15

16 

64.097

8 

91.730

3 

0.0326 2.3669 0.5178 4.1951 0.0744 

2013-

12 

295.38

57 

164.16

54 

56.849 64.725

5 

0.045 2.4732 0.8103 6.2575 0.0598 

2014-

01 

346.50

17 

191.04

79 

60.219 82.276

7 

0.0067 7.6725 1.3673 3.8651 0.0465 

2014-

02 

401.37

25 

268.20

75 

58.066 66.801

2 

0.0008 2.4162 0.7509 5.0798 0.0501 

2014-

03 

308.49

99 

178.83

29 

58.309

0552 

63.307

5 

0.7763 2.5526 0.6989 3.9753 0.0473 

2014-

04 

312.49

67 

177.20

38 

61.471

6 

65.425

7 

0.1128 2.0475 0.5271 4.4481 1.2601 

2014-

05 

569.21

5 

215.63

06 

281.57

03049 

65.415

4 

0.0117 1.4065 0.7215 3.9378 0.5212 
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2014-

06 

573.45

87 

246.43

39 

215.74

01 

66.414 0.1659 34.608

6 

0.6199 3.6483 5.828 

2014-

07 

410.36

82 

207.77

47 

93.934

8 

65.467

4 

0.2094 34.927

2 

0.9151 5.7144 1.4252 

2014-

08 

408.96

91 

193.38

94 

109.06

66 

61.512

9 

1.1003 38.754

5 

0.8393 3.9771 0.329 

2014-

09 

379.89

57 

193.63

54 

74.685

3 

65.102

2 

0.2094 41.491

9 

0.6147 3.9341 0.2227 

2014-

10 

346.29

72 

194.15

11 

61.150

1 

67.137

3 

0.021 18.767 0.7043 4.2846 0.0818 

2014-

11 

339.36

91 

206.91

94 

63.779

9 

60.638

6 

0.016 2.0187 1.7976 4.1678 0.0311 

2014-

12 

318.11

66 

180.72

08 

53.247

7 

73.465

8 

0.0195 2.9505 1.387 6.2601 0.0652 

2015-

01 

291.90

92 

147.37

73 

69.933

5 

63.935

4 

0.1514 3.6028 0.4896 6.3332 0.086 

2015-

02 

272.97

41 

150.48

05 

56.715

6 

58.256

6 

0.0455 1.0611 0.915 5.4468 0.053 

2015-

03 

217.48

47 

93.179

2 

43.523

7 

71.197

3 

0.0533 2.5178 0.5836 6.4003 0.0295 

2015-

04 

195.78

58 

50.670

5 

62.130

1 

75.160

3 

0.0032 2.015 0.4142 4.2711 1.1214 

2015-

05 

246.12

36 

118.90

16 

57.713

3 

56.821

2 

1.7246 4.2336 0.6361 4.7528 1.3404 

2015-

06 

746.21

54 

136.56

96 

501.65

61 

64.992

2 

10.279

6 

20.597

3 

0.5164 4.7471 6.8571 

2015-

07 

408.08

53 

103.03

29 

155.74

67 

74.945

1 

3.9552 63.091

3 

0.8231 5.0545 1.4365 
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2015-

08 

322.14

7 

110.87

38 

104.79

33 

62.176

5 

0.0263 38.800

1 

0.4935 4.8667 0.1168 

2015-

09 

250.25

06 

111.95

89 

66.113

5 

56.399 0.2634 10.256

1 

0.7662 4.4093 0.0842 

2015-

10 

338.51

96 

70.129

3 

162.83

66 

60.197

3 

0.1253 41.255

4 

0.4588 3.4429 0.074 

2015-

11 

232.71

14 

103.03

85 

52.869

9 

61.181

3 

0.1615 11.725

7 

0.3833 3.3372 0.014 

2015-

12 

219.55

07 

93.748

6 

50.514

1 

62.071

3 

0.0127 6.884 0.6047 4.6795 1.0358 

2016-

01 

201.04

15 

52.351

6 

71.468

7 

69.719

2 

0.0161 3.6202 0.3632 3.4289 0.0736 

2016-

02 

200.34

64 

73.988

4 

53.882

7 

64.781

1 

0.0216 2.3562 0.6527 4.6396 0.0241 

2016-

03 

162.48

18 

50.407

8 

41.505

2 

64.234 0.1903 2.2656 0.4007 3.4468 0.0314 

2016-

04 

168.76

42 

38.241

4 

55.815

1 

65.259

3 

0.0458 3.0664 0.4324 4.6229 1.2809 

2016-

05 

211.86

8 

51.045

4 

69.713 65.116

3 

11.962

4 

7.207 0.4237 4.8743 1.5259 

2016-

06 

614.28

43 

238.80

48 

222.45

62 

67.400

9 

60.584

9 

16.302

5 

0.4284 5.1325 3.1741 

2016-

07 

343.97

12 

94.141 126.76

96 

66.987

1 

24.148

1 

27.038

1 

0.486 4.1053 0.296 

2016-

08 

367.15

17 

122.57

38 

116.11

25 

75.962

1 

0.0177 46.104

3 

0.4423 5.753 0.186 

2016-

09 

281.16

4 

106.86

42 

96.905

1 

64.264

8 

0.023 7.3223 0.4762 5.2729 0.0355 



  

 49 

2016-

10 

252.72

02 

115.98

09 

49.451

5 

69.621

2 

2.0746 9.297 0.3931 5.8224 0.0795 

2016-

11 

253.62

07 

114.29

65 

55.292

2 

75.579

5 

0.2575 1.5049 0.7818 5.8892 0.0191 

2016-

12 

250.04

74 

99.112

3 

60.043

6 

79.273

6 

0.0614 4.0382 0.6225 6.8739 0.0219 

2017-

01 

317.83

86 

142.33

01 

61.474

4 

73.521

6 

0.0838 31.313

8 

0.6237 8.4887 0.0025 

2017-

02 

229.52

64 

111.08

27 

40.255

4 

69.207

6 

0.0014 1.0696 0.4854 7.3628 0.0615 

2017-

03 

230.82

85 

84.886

2 

54.228

7 

78.651

3 

0.0254 1.5469 1.5242 9.8506 0.1152 

2017-

04 

218.35

65 

65.597

8 

55.898

4 

84.673

6 

0.0141 1.8187 0.6496 9.3613 0.343 

2017-

05 

286.79

72 

84.822

3 

103.59

14 

79.985 0.019 4.2222 0.6098 10.501

1 

3.0464 

2017-

06 

499.02

2 

147.45

14 

236.05

18 

81.644

7 

0.7927 18.897

2 

0.5615 8.678 4.9447 

2017-

07 

329.75

19 

84.197

1 

120.81

01 

80.533

5 

1.78 32.551

6 

0.455 8.0729 1.3517 

2017-

08 

469.74

31 

192.55

67 

167.34

7 

86.712

2 

0.0443 11.462

7 

0.8223 10.736

2 

0.0617 

2017-

09 

315.83

37 

113.95

07 

96.777

4 

83.315 0.0206 16.086

2 

0.7226 4.9247 0.0365 

2017-

10 

332.32

91 

138.68

23 

65.902

9 

89.713

5 

0.1703 30.598 0.8856 6.2868 0.0897 

2017-

11 

390.95

74 

166.55

34 

132.46

34 

80.426

6 

0.0587 1.9213 0.6623 8.842 0.0297 
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2017-

12 

406.96

08 

188.37

1 

115.09

45 

83.963

8 

0.17 3.4692 0.9315 14.909

4 

0.0514 

2018-

01 

384.98

74 

180.89

81 

74.927 96.646

5 

0.0309 20.727

4 

0.7768 10.882

9 

0.0978 

2018-

02 

459.05

12 

296.08

73 

63.130

1 

89.447 0.0608 1.6949 1.7366 6.8616 0.0329 

2018-

03 

329.57

53 

167.78

97 

65.63 83.700

3 

0.2225 3.3751 1.7446 7.0809 0.0322 

2018-

04 

440.44

34 

197.59

11 

141.93

3 

87.965

8 

0.1673 1.6533 0.7839 10.273

1 

0.0759 

2018-

05 

406.94

08 

186.76

14 

103.77

78 

93.423

3 

0.031 9.5907 0.8514 8.682 3.8232 

2018-

06 

486.86

02 

139.49

98 

225.82

14 

85.342

6 

5.968 18.452

7 

0.9462 5.642 5.1875 

2018-

07 

477.61

8 

160.62

69 

159.39

47 

82.313

3 

5.7473 59.426

5 

0.8942 6.9447 2.2703 

2018-

08 

524.95

13 

265.98

58 

110.51

12 

114.54

23 

0.0777 27.122

8 

1.454 5.136 0.1215 

2018-

09 

377.84

82 

199.77

12 

92.760

4 

76.648

4 

0.0185 3.2475 1.2823 4.0728 0.0471 

2018-

10 

533.48

11 

276.05

52 

90.594 105.17

17 

0.0476 52.615

5 

1.84 7.1182 0.0389 

2018-

11 

493.62

84 

232.53

74 

159.08

85 

92.078

8 

0.0948 2.8868 1.712 5.1912 0.0389 

2018-

12 

405.50

62 

163.97

68 

128.74

91 

100.76 0.1283 2.4916 1.7754 7.538 0.0871 

2019-

01 

364.41

39 

156.87

87 

93.307

6 

104.46

87 

0.0405 2.3833 1.2447 6.0683 0.0221 
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2019-

02 

359.65

81 

182.98

69 

70.931

7 

96.389

2 

0.0152 1.8196 1.3438 6.1389 0.0328 

2019-

03 

322.81

78 

153.35

43 

68.566 92.181

5 

0.0407 3.0267 0.7982 4.7942 0.0562 

2019-

04 

387.98

38 

197.66

6 

80.663

8 

96.485

6 

0.1744 4.3146 1.0937 5.475 2.1107 

2019-

05 

403.20

8 

99.101

9 

179.70

68 

106.82

65 

0.2504 4.6606 1.6679 8.9094 2.0845 

2019-

06 

609.41

68 

206.22

56 

250.56

07 

108.63

09 

0.5504 29.436

7 

0.9571 4.1018 8.9536 

2019-

07 

542.93

61 

187.26

24 

194.32 94.159

5 

0.7749 58.561

7 

1.3917 5.2222 1.2437 

2019-

08 

535.69

28 

211.93

44 

202.41

96 

88.082

4 

0.1565 25.309

9 

1.1449 6.4102 0.2349 

2019-

09 

485.93

98 

193.35

07 

124.14

62 

92.874

2 

0.3672 69.977

2 

1.1603 3.8815 0.1825 

2019-

10 

455.29

13 

191.74

01 

135.01 104.91 0.5606 14.695

6 

1.7905 6.4901 0.0944 

2019-

11 

345.25

86 

151.57

83 

90.009

4 

90.166

6 

0.3449 4.0712 2.923 6.1095 0.0557 

2019-

12 

449.29

93 

182.18

91 

136.98

69 

114.80

6 

2.7013 2.8006 2.6762 7.0291 0.1101 

2020-

01 

371.15

79 

171.16

32 

84.545 104.75

84 

0.1659 5.1219 1.4599 3.9014 0.0422 

2020-

02 

328.96 156.65

45 

62.741

2 

99.552

1 

0.1764 2.8168 1.7175 5.2779 0.0236 

2020-

03 

474.93

41 

194.50

21 

148.38

16 

120.26

86 

0.301 3.4008 1.5734 5.8812 0.6254 
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2020-

04 

381.40

83 

163.68

65 

55.879 94.496 0.0073 2.6685 59.885 2.6289 2.1572 

2020-

05 

380.36

35 

182.77

99 

85.735

1 

103.87

3 

0.0266 2.3003 0.8641 4.3422 0.4423 

2020-

06 

526.59

05 

93.835 260.41

99 

128.82

64 

0.5835 27.515

1 

1.8339 4.6259 8.9508 

2020-

07 

530.38

47 

192.70

11 

133.47

2 

132.61

95 

0.4153 60.592 2.0973 5.6606 2.8269 

2020-

08 

490.47

44 

52.493

8 

197.11

28 

150.23

01 

1.2909 77.771

8 

3.0339 5.9846 2.5565 

2020-

09 

399.13

48 

107.91

76 

85.424

2 

141.85

85 

0.0775 56.736

8 

2.1261 4.8346 0.1595 

2020-

10 

332.36

33 

43.733

7 

100.18

25 

126.46

33 

0.0651 12.062

1 

39.772

8 

10.016

3 

0.0675 

2020-

11 

356.13

53 

93.126

3 

93.614

7 

156.86

71 

0.1329 3.4422 2.1344 6.7001 0.1176 

2020-

12 

380.33

69 

64.385

5 

101.92

48 

171.35

79 

0.2762 5.1351 3.6587 33.516

9 

0.0818 

2021-

01 

396.67

74 

113.74

65 

98.346

4 

157.35

13 

0.0716 2.5435 1.9861 5.5855 0.0067 

2021-

02 

371.60

62 

137.58

25 

56.484

1 

157.32

67 

0.5511 2.1467 3.0458 8.1655 0.0292 

2021-

03 

517.57

9 

75.904

4 

237.82

07 

181.71

2 

0.1245 6.7142 2.5843 8.9166 0.6255 

2021-

04 

413.53

21 

100.39

84 

122.59

14 

176.70

99 

0.107 5.9251 2.2414 3.7548 0.1493 

2021-

05 

366.09

05 

57.111

6 

117.59

93 

181.07

79 

0.5691 3.4981 2.042 2.4662 0.3594 
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2021-

06 

696.97

9 

159.40

19 

216.79

75 

154.46

51 

0.4596 19.738

3 

0.2071 9.4685 3.4681 

2021-

07 

427.68

95 

64.865 169.22

97 

151.13

44 

0.6045 26.503

2 

0.407 2.9288 0.3099 

2021-

08 

444.05

41 

56.508

2 

155.49

38 

178.50

92 

0.1139 37.281

3 

0.0512 2.8629 0.0572 

2021-

09 

558.63

78 

183.76

4 

147.79

97 

170.85

01 

0.1388 28.721

8 

0.0251 2.6284 10.722

6 

2021-

10 

340.47

08 

53.863

6 

96.528

6 

166.28

45 

0.0557 3.9026 7.2821 2.582 0.1665 

2021-

11 

502.75

52 

170.98

2 

113.34

5 

196.17

54 

0.2338 3.7342 4.4283 2.689 0.1356 

2021-

12 

532.15

41 

103.37

3 

137.93

6 

201.25

54 

1.1593 48.826

2 

9.6399 9.1498 3.277 

 

 

 

 


