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ABSTRACT 

This study investigates ab initio exploration of the Au (111) surface within the generalized gradient 

approximation, with a primary focus on assessing the convergence properties of this noble metal. 

An in-depth analysis of the material's response to various computational parameters, including 

cutoff energy, K-point sampling, and lattice parameter, was conducted to ensure the reliability 

and consistency of the findings. The theoretical determination of the lattice constant, yielding a 

value of 4.059 Å, not only aligns quantitatively with experimental measurements but also agrees 

with calculated values. A noteworthy aspect of this investigation involves reporting on the work 

function's response to strain, shedding light on how this essential property evolves under external 

influences. Additionally, the study evaluates the variation of energy per unit cell with varying slab 

thickness, providing insights into the material's behavior across different structural 

configurations. The results reveal that Au (111) exhibits a surface energy of 0.5561 𝑒𝑉Å−1 , 

surface stress of 0.18177 𝑒𝑉Å−2and a coupling coefficient of 1.145 eV. These results provides 

significant implications for understanding the mechanisms associated with electrochemical 

coupling at an atomic scale, offering crucial insights into the material's behavior across diverse 

atomic and electronic structures. Thus this work contribute to the understanding of Au (111) 

surface properties, laying a foundation for advancements in understanding electrochemical 

phenomena and fostering the development of tailored applications in materials science and 

nanotechnology.  
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CHAPTER ONE 

          INTRODUCTION 

1.1 Background of the Study 

A crystal's surface serves as the primary interface between a solid material and its surroundings, 

consequently the study of surfaces  has implications indubitable for catalytic activity and growth 

rate of a solid’s [1,2]. The surface of a solid material is the site of several important chemical 

reactions, including catalysis and adsorption. Consequently, accurately determining a solid 

surface's energy provides important insight into the material's potential applicability in these 

processes [1]. Typically, when modeling a solid surface, an extremely periodic representable of 

the atomic configuration of the interior of a crystal (bulk material) is cut from a representable of 

the atomic configuration of a crystalline surface (slab model). Two surfaces of the slab, the topmost 

and bottommost, were concurrently stripped by a slab cleave, each with a comparable Miller index. 

Some materials cleft to produce symmetric slab models with similar upper and lower surface 

edges, while other materials cleave to produce precisely matched structural and stoichiometric slab 

models with two different surface edges with different atomic positions and properties 

(asymmetric slabs) [1]. The surface layer of a crystal might decrease its energy by optimization of 

the atomic layers in a path perpendicular to the surface or by surface rebuilding in which the 

periodicity of the rebuilt layer is unlike that of the bulk. The smallest energy configuration of the 

crystal will have the surface layer stressed in its particular plane, whereas the bulk material resist 

the stress so that equilibrium is attained. i. e. the total stress due to both surface and bulk material 

is zero[3]. The investigation of the surface geometry of solid surfaces is one of the fundamental 

subjects of surface science. Metals (such as gold) surfaces are of particular concern, because they 
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act as catalysts in several hydrogenation and reduction processes. It is well known that actual 

surfaces of clean metals can implement  structures changes from those of preferably truncated 

crystals[4]. The energy of a surface is an imperative physical variable in monitoring extensive 

series of phenomena like the stress for brittle fracture, the growth rate during particle coarsening 

and the rate of sintering  and [5]. 

In a metal nanocrystals the surface energies determine equilibrium form  which account for the 

relative stability of several crystallographic planes[6]. Surface energy and work function are  

essential physical variables of metallic surface, they are vital to appreciate an extensive variety of 

surface phenomena[4, 5]. These phenomena comprise surface segregation, adsorption, surface 

corrosion, catalytic behavior, growth rate, and the formation of grain boundaries[1, 4]. The 

equilibrium shape of crystals is determining surface energy and work function. Different crystal 

alignments and the surfaces relaxation have an effect on the amount of the surface energy and 

work function[7]. The surface energy and work function calculated with hypothetical approaches 

particularly by the density functional theory are showed to be an effective way to obtain the 

reasonable outcomes. A lot of researches have been done in this field. Kokko et al. 

Current researches shows a macroscopical expansion or contraction when high surface area metals 

with nanometer-sized absorbency are electrically exciting, the sign of changes in the surface bond 

forces once a space-charge layer is produced[9]. The variable which computes these forces in the 

continuum explanation of solid surfaces, the surface stress, f, is a matter of attention recently in 

surface science, subsequently it is complicatedly connected to the surface electronic structure and 

bonding, and meanwhile it is applicable for modernization as well as for the stress in thin film 

devices[7,8]. Computations of electronic-structure are attractive and broadly applied to 

increasingly intricate and practical materials systems and devices, delving deeply into the field of 
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nanotechnology with uses that include semiconductors and metal molecule junctions, field effect 

transistors made of carbon nanotubes, and nanostructured metals. It is vital and  critical to have a 

strong background or knowledge of the fundamental concepts of the metal main surfaces 

preliminary  surface energies, structural relaxations, and work functions[8].  

 Electrocapillary coupling variable close to the charge-neutral surface (potential of zero charge) 

could be determined in terms of the response of the electronic work function to an applied in-plane 

strain[9, 11]. The surface stress's response to a change in the superficial charge density is known 

as the coupling parameter [12]. For nominally clean surfaces, it fundamentally describes a 

conversion of electrical energy to mechanical work or vice versa and therefore is sometimes also 

referred o as electromechanical coupling parameter. Meanwhile and the work function of the metal 

surface and the electrode potential are closely related. Hence, first-principles values for the 

coupling coefficients between work function and strain will be accompanied by an analysis of the 

response [11]. The term electrocapillary coupling and are related to the modification  of the surface   

stress, a capillary parameter of solid surfaces, due to changes of state of the surface [13]. While 

experimentally these phenomena are typically observed at the solid-electrolyte interface. the 

surface stress has to be balanced by corresponding stresses in the bulk, materials with a high 

surface-to-volume ratio react with a detectable deformation to changes in their surface stress [14, 

15]. Experiments testify to a variation of the coupling coefficient with the electrode potential that 

is dependent on which processes are active at the electrode surface[14-16]. A precise instance for 

the implication of the electrocapillary coupling strength is the catalytic activity of compositionally 

categorized surfaces, for example in core–shell catalyst particles [16].  
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1.2 Statement of the Problem 

The deficiency of an ordinary technique strictly hinders the computational determination of the 

low-energy surfaces of materials that cleave irregularly. However density functional electronic 

structure calculations are used usually to examine materials, researches reporting surface energies 

for asymmetric slabs calculated using first principle approaches remain insufficient, specifically 

studies of the exactness and convergency of the computations [1]. Experiment find it problematic 

with several faults to determine the absolute value of the surface energy of a solid 

directly[1,11]though the surface energy (or surface tension) in the liquid state has been measured 

for most metals precisely more than  solid  [5,10], so ab initio theoretical calculations are a valuable 

alternative approach[1, 9].Typical density functional theory means depend on the local or semi-

local calculation to the many-body functional relating exchange-correlation. Even though many 

dependable estimates were perform by DFT regarding structural and thermodynamical stabilities 

there are great classes of materials, for which the normal DFT applications be unsuccessful and 

are not predictive [19]. 

 

1.3 Aim of the Study 

The aim of this research is to study the coupling coefficient of Au (111) surface through 

comprehensive ab initio computational methods. 

 

1.4 Objectives of the Study 

The study has the following objectives. 
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i. To optimize the lattice parameters, different energy cutoff values and K-Points mesh 

in the Brillouin zone to ensure reliable and efficient accuracy and convergence of the 

computational outcomes. 

ii. To analyze the surface optimization of the Au (111) slab. 

iii. To correlate the results obtained from the various computational studies to draw 

comprehensive conclusions about the coupling coefficient of Au (111). 

 

1.5 Justification of the study 

The findings of this research will add to the existing literatures in the topic and provide room 

for further research in the related topics. The outcomes of this work will be useful in 

comparison with the experimental and other theoretical values. 

 

1.6 Scope of the Study 

The research is geared towards studying the coupling coefficient of Au (111) plane using 

density functional theory method. Convergence tests of the energy cut off, K-Points, and lattice 

constant will be carried out. VASP software installed on high performance computer (HPC) 

will be use to run all the calculations. The variability of the parameters computed will be 

represented graphically which will provide information about the Au (111) plane surface. 
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CHAPTER TWO 

                                                     LITERATURE REVIEW 

2.1 Conceptual Review 

In order to understand surface behaviors such as surface energy, stress, work function it is 

important to discuss some terms associated to crystals surface among other things.  

 

2.1.1 Gold (Au) 

Gold is an expensive metal with a distinctive cheerful and attractive type recognized as the golden 

yellow color. As of 2012, a overall of 174,100 tons of Au has been extracted in olden times of 

human, which, in terms of volume, corresponds to roughly 9020 m3, or simply a solid cube of 21 

m on each side [20, 21]. For long gold been observed as an “inert” surface and it bulk  surface 

cannot chemisorb several molecules without difficulty [20, 21]. Nevertheless, in the previous 

decade, mainly through the efforts of [21, 22], the particles of gold, predominantly those less than 

5 nm in size, have received exclusive consideration for catalytic properties, jewellery,  and as 

coinage metal [20, 23]. Unadulterated elemental gold has an exceptional color and shine which 

has captivated human beings for years [26], in the hydrochlorination of acetylene a gold-based 

catalyst can be used [27]. Gold has admirable conductivity as a conductor for electrical 

applications [26]. The malleable and ductile properties of gold make it compressible or stretchable 

to subjective shape [28]. Gold can be relatively biocompatible, as some edible gold foils are added 

to cakes, tea, and cosmetics [29]. Functionalization of gold nanoparticles is crucial for the effective 

utilization of these materials in health related application s[26]. At small temperatures, when gold 

is slightly sufficient—with particle diameters below 10 nm—it turns out to be amazingly vigorous 

for numerous reactions, such as propylene, epoxidation and CO oxidation [30, 23, 24]. 
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2.1.2 Surface Energy 

Surface energy is the amount of energy required to create a new surface (is the energy required to 

split an infinite crystal into two fragments) [7, 8]. Determining this quantity experimentally is 

challenging because it usually necessitates measuring surface tension at the melting point of metals 

[5,8]. Its value is necessarily positive, otherwise bulk matter would be unstable with respect to 

fragmentation [11]. In materials modelling, Surface energies can be obtained from first-principles 

calculations in two ways [31], one may use slabs of different thicknesses and extract from them 

the energy of a bulk atom. Alternatively, Finding the energy of a surface termination involves 

dividing the total energy of a slab model with relaxed atoms (Eslab) by the total energy of an 

equivalent quantity of relaxed bulk material (NEBulk), and then dividing the result by the total area 

exposed in the slab model, which is twice the area of a single face [8,36], according to the 

following expression[1, 8, 36]; 

𝜎 = lim
𝑁 →∞

1

2
(𝐸𝑆𝑙𝑎𝑏

𝑁 − 𝑁𝐸𝑏𝑢𝑙𝑘)                                                                                                       (2.1) 

Where, 𝐸𝑆𝑙𝑎𝑏
𝑁  and 𝑁𝐸𝑏𝑢𝑙𝑘 are the total energies an N-atom slab and the bulk per atom respectively. 

The two surfaces in the slab unit cell are taken into account by the factor ½. However, if there are 

numerical changes between the calculation for the bulk and the slab, such as adjustments to the k-

point mesh, etc., equation (2.1) will diverge with increasing slab thickness [1, 8, 36]. 

In order to  avoid this nonconvergence two approaches have been proposed by [36] and [37] to 

determine surface energies. the bulk energy in equation (2.1) was used by [32]  as 𝐸𝑆𝑙𝑎𝑏
𝑁 − 𝐸𝑆𝑙𝑎𝑏

𝑁−1, 

hence sidestepping a calculation on a distinct bulk system and efficiently removing the errors from 

differences in K-point sampling. [33], modified equation (2.1) by considering the limit of large N 

as follows;  

𝐸𝑠𝑙𝑎𝑏
𝑁 = ≈ 2𝜎 + 𝑁𝐸𝑏𝑢𝑙𝑘                                                                                                      (2.2) 
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By avoiding a calculation on a separate bulk system, the bulk energy term Ebulk can be considered 

as the slope and used in equation (2.1) if the total energy of the slab depends linearly on the 

thickness N of the slab. When large and matching K-point samplings are used, it has been found 

that divergence can be avoided in practice for both slab and bulk calculations [31]. 

 

2.1. 3 Surface Stress 

One of a material's most important and fundamental mechanical properties, strength quantifies the 

material's capacity to support a load. A material's yield, or fracture, causes a decrease in its load-

bearing capacity or, in extreme situations, its loss of functionality [34]. It is necessary to balance 

the surface stress, f, at a solid's surface by offsetting bulk stresses. The resulting surface-induced 

bulk stresses in materials with a nanoscale microstructure can be significant and have a significant 

impact on the material's behavior. Considerable changes to the magnetic and alloy phase diagrams 

are among the effects [16, 39]. The reversible work per unit area needed to stretch the surface 

elastically is known as the surface stress. Accordingly, it is equivalent to the derivative of the 

surface energy in relation to the in-plane strain [11].  

The surface induced stress can have shear components which, at very small size, result in a shear 

instability of the crystal lattice. This imposes lower limits on the size of stable nanoscale objects 

or microstructures[16, 40]. Since the strain state of a two-dimensional surface is represented by a 

second rank tensor[11], the surface stress is also a second rank tensor, whose components are given 

by 

𝑓𝑖 𝑗 =  
𝑑𝛾

𝑑휀𝑖 𝑗
                                                                                                                            (2.3) 
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with 휀𝑖 𝑗  being the components of the surface strain tensor. The interface stress was primarily 

indicated by the parameter, f. If f and e are represented as 2 x 2 tensors in the tangent plane, and 

strain and area are measured in relation to a reference state in the solid, then f is symmetric [34].   

 

2.1.4 Work Function 

The work function which measure the behavior of electrons in a material, is regarded as a key term 

in surface science to recognize the corrosion rates and interfacial engineering in the manufacture 

of photosensitive and electron-emitting devices [36]. It is a fundamental surface electronic 

property of a material [37]. Materials with  a low work function  emit electrons easily into space 

and form an important factor for electronic devices used widely in applications from satellite 

communications to thermionic energy conversion [38]. Work function is the is the lowest amount 

of energy required to eject [7, 41] an electron from the surface of a material [39]. Different 

authors [45, 46, 47] asserted  its dependence on physical factors such as temperature, surface 

dipole, doping, and electric field. The contribution of image potential to the work function of 

materials, which is temperature-dependent, is a significant finding that has been extensively 

studied by researchers [41, 48, 49]. Theoretical and experimental results displayed that work 

function is dependent on thermal expansion of the lattice, Young’s modulus, heat capacity [45], 

corrosion, friction, surface energy,  adhesion fracture toughness, , and yield strength and hardness 

[51, 52, 41]. 

In terms of the density functional theory, the work function can be evaluated as the difference 

between the electrostatic potential value in the vacuum region (i. e. vacuum level ) and the Fermi 

energy [47] given by 

𝑊 = 𝑉𝑑𝑖𝑝 − 𝐸𝑓                                                                                                     (2.4) 
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With 𝑉𝑑𝑖𝑝 = 𝑉𝑣𝑎𝑐𝑢𝑢𝑚 − �̂�𝑏𝑢𝑙𝑘 as the energy needed to stab the dipole barrier that is formed by the 

redistribution of electronic charge at the surface and the Fermi energy Ef is the energy of the 

maximum occupied state in the bulk metal. Experimentally, the work function may be determined 

e.g. by photoelectron spectroscopy or the Kelvin probe technique, where the latter is restricted to 

relative measurements But the results are often inaccurate due to the drawbacks of SKPFM itself 

[7]. The work function is also sensitive to the condition of the surface, e.g. it is affected by 

adsorption of contaminants. Adsorption of atomic or molecular species may change the work 

function due to (i) charge transfer between adsorbate and surface, (ii) polarization of substrate and 

adsorbate charge densities and (iii) their permanent molecular dipole moment. [11]  

 

2.1.5 Electrocapillary Coupling Coefficient (𝝇)  

Electrochemical investigations can deliver mostly comprehensive and detailed evidence on the 

surface stress variation during changes of state at the solid surface [16]. A key parameter in such 

experiments is the electrocapillary coupling coefficient [16].The electrocapillary coupling 

coefficient, ς, determines the response of the electrode potential, E, to tangential elastic strain at 

the surface of an electrode by means of dynamic electro-chemo-mechanical analysis [18].  

The phenomenological context of electrocapillary coupling is depend on a surface free energy 

density (per area) Ψ, which describes the properties of the interface between metal electrode and 

electrolyte that differ from those of the adjacent bulk phases [11]. The state variables of Ψ are the 

tangential strain, e relative change in surface area, A and the superficial charge density 𝑞 =  
𝑄

𝐴
 , 

where Q is the total charge at the surface. As the second derivative of the state function Ψ the 

variation of the surface stress with the superficial charge density is a fundamental materials 

variables, the so-called electrocapillary coupling coefficient [11, 16] is given by 
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𝜍 =  
𝑑𝑓

𝑑𝑞
                                                                                                                                        (2.5) 

The coupling coefficient,  varies with the electrode potential, and is distinctive for the acting 

electrode process [16]. Meanwhile the surface stress is coupled to the bulk stress state through 

balance laws, materials with a high surface-to-volume ratio respond with a measurable elastic 

deformation to surface stress variation [11]. A precise instance for the implication of the 

electrocapillary coupling strength is the catalytic action of compositionally grouped surfaces, for 

instance in core–shell catalyst particles, electronic structure, relaxation and for the charge transfer 

between electrode and adsorbate [16, 53]. Moreover, ς provides the efficiency of surfaces in 

permitting nano porous metal propulsion and current experimentations reveal its vital role in 

computing the coupling between mechanics and reactivity in strained-layer catalysts [18]. 

 

2.2 Theoretical Framework  

2.2. 1 First-Principles Calculations 

The first principles approaches are developed based on the density functional theory (DFT) by 

Kohn et al. The main advantage of this approach is change from a wave function, depending on 

the coordinates of all electrons, to a charge density depending on the three three-dimensional 

coordinates only [49]. The first principles method or Ab initio is a method that necessitates only 

the basic properties such as atomic number, atomic radius, nuclear-charge density, and others as 

inputs. These primary inputs together with vital scientific rules can produce the true state of a 

physical system without the assistance of any empirically adjustable parameter.  

The first-principles procedures consider nuclei and electrons as the basic particles and describe 

events in a sub - atomic world. Consequently, the system can be expressed only by quantum 

mechanics that contains relatively problematic partial differential equations. Consequently, first-
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principles calculations are independent of any external parameters excluding the atomic numbers 

of the constituent atoms to be simulated [50]. In this work first – principles technique will be 

employed for obtaining all the results. 

 

2.2.2 Density Functional Theory (DFT) 

In physics, materials science, chemistry, and many engineering fields, the use of density functional 

theory (DFT) computations is quickly becoming a common tool for a variety of materials modeling 

problems [57]. Density functional theory is the model, in which properties of many-body systems 

can be computed using functions of another functions (i.e. functionals) depending on electron 

density. Density functional theory (DFT) is a low-cost, time-saving quantum mechanical model, 

used to calculate several physical characteristics of solids with high precision [53]. DFT belongs 

to the family of first principle or ab initio methods because they can predict materials properties 

for an unidentified system without any experimental input.  

In 1926 with the formation of Thomas- Fermi theory, an approximate method for finding the 

electronic structure of atoms by means of just single electron ground-state density, ρ (r), but too 

crude to bind molecules. In the 50's, Slater intuitively joined this idea with Hartree's orbital method 

in the Xα scheme. Later, the Hohenberg-Kohn (HK) theorem showed that a precise method based 

on ρ (r) exists in principle. The modern type in use today is Kohn- Sham (KS) DFT, which explains 

a self-consistent equation that must be solved for a set of orbitals whose density, ρ(r) is defined to 

be exactly that of the real system [54]. The DFT has its initiation from Hohenberg-Kohn theorem 

whose stated outwardly two simple theorems in 1964 that facilitated the execution of DFT [54]. 
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2.2.3 The Hohenberg - Kohn (HK) Theorems          

The DFT has its initiation from Hohenberg-Kohn theorem whose stated outwardly two simple 

theorems in 1964 that facilitated the execution of DFT [55]. The first theorem state that the external 

potential, 𝑉𝑒𝑥𝑡(𝑟)  is a unique functional of electron density ρ(𝑟), with a unique link between 

potential and electron density for a many body system;    𝑉𝑒𝑥𝑡(𝑟)  ⟹  ρ(𝑟), although this electron 

density can be used to describe the whole information of the system [54]. In order to form a 

mathematical relation, let us assume external potentials as 𝑉(𝑟) and 𝑉(𝑟′)  while the change 

among these potentials is constantly identical subsequently the ground state electron density is 

similar at whole parts of the crystal, that is, 𝑉(𝑟) −  𝑉(𝑟′) = constant. According to theory, 

electrons travel in a field created by external potential 𝑉𝑒𝑥𝑡  and interact with one-another in 

addition to their external potential, and the corresponding Hamiltonian of energy [60] can be 

written as  

𝐻 = 𝑇 + 𝑉𝑒𝑥𝑡 + 𝑈                                                                                                                            (2.6)   

Where T, 𝑉𝑒𝑥𝑡 and U, represents the kinetic energy (K.E) of electrons, external potential and 

coulomb interaction respectively. Quantum mechanically the factors T, U, and 𝑉𝑒𝑥𝑡 

can be expressed as[55]  

𝑇 =  
1

2
  ∫[∇𝜓∗(𝑟)∇ψ(𝑟)] 𝑑𝑟                                                                                                           (2.7) 

𝑉 =  
1

2
  ∫[v(𝑟)𝜓∗(𝑟)ψ(𝑟)] 𝑑𝑟                                                                                                           (2.8)    

𝑈 =  
1

2
  ∫ [𝜓∗(𝑟′)𝜓∗(𝑟)𝜓(𝑟′)ψ(𝑟)

1

|𝑟 − 𝑟′|
] 𝑑𝑟𝑑                                                                    (2.9)  

The solution of Hamiltonian for Equation. (2.6) can be expressed as; 

 

𝐻𝜓(𝑟1, 𝑟2, . ………  , 𝑟𝑁)  = 𝐸𝜓(𝑟1, 𝑟2, . ………  , 𝑟𝑁)                                                                   (2.10𝑎)  
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The term 𝜓(𝑟1, 𝑟2, . ………  , 𝑟𝑁) is a ground state N interacting particle’s wave-function. 

Suppose an additional potential 𝑣′(r) with changed Hamiltonian 𝐻′  and wave - function 

Ψ’(r) where the ground state density ρ(r) must remain the same for both cases. The Hamiltonian 

for this many-body system [55]can be written as  

𝐻′𝜓′ = 𝐸′𝜓′                                                                                                       (2.10𝑏)   

Following a thorough exploration of the situation, established on v(r) – v(𝑟′) is constant, it can be 

concluded, that ψ(r) and 𝜓′(r) are different; as a result, they both satisfy distinct Schrodinger wave 

equations. Similarly, if T and U are known for N-partials systems so ρ (r) may be considered to 

find ground state H and E. The functional association of minimum energy state and corresponding 

resulting density is [55] 

𝐸[𝜌(𝑟)] =  𝑇[𝜌(𝑟) + 𝑉𝜌(𝑟) + 𝑈𝜌(𝑟)]                                                                          (2.11) 

The second theorem state that the true ground state density of an electron relates to electron density 

that minimizes the total energy of the functional. Assume, ρ(r) is the density which is related to 

ground state while ρ′(r) to any other state of a many-body system. The functional for total energy 

in this regard is given as; 𝐸[ρ′] >  𝐸[𝜌]  Furthermore, suppose that F[ρ(r)] is a general functional 

that is valid for fixed electrons at all external potentials,  this can be express [55]  Mathematically 

as 

𝐹[𝜌(𝑟)] = 𝑇[𝜌(𝑟)] + 𝑈[𝜌(𝑟)]                                                                                                    (2.12)  

Similarly, 

𝐸[𝜌(𝑟)] =  ∫[v(𝑟)𝜌(𝑟)𝑑𝑟] +  𝐹[𝜌(𝑟)]                                                                                      (2.13) 

In order to have minimum energy functional, the consistent density ρ(r) must be principally a 

ground state density [55]; 

𝐸[𝜓′] = 𝑉𝜓′, + (𝜓′,   𝑇 + 𝑈)𝜓′                                                                                                  (2.14)  
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2.2.4 The Kohn-Sham (KH) Equations 

The theorems specified by Hohenberg-Kohn are precise; nevertheless, not very applicable in actual 

computations [60, 61].  In order to approximate the kinetic and electron-electron functionals, Kohn 

and Sham [57] proposed the following method: they introduced a hypothetical system of N non-

interacting electrons that would be described by a single determinant wave function in N "orbitals 

𝜙𝑖” fi. The orbitals in this system provide precise information about the kinetic energy and electron 

density [57].;  

𝑇𝑠[𝜌] =  
1

2
∑⟨𝜙𝑖|∇

2|𝜙𝑖⟩

𝑛

𝑖

                                                                                                              (2.15) 

The suffix now emphasizes that this is the kinetic energy of a system of non-interacting electrons, 

which replicates the actual ground state density, rather than the true kinetic energy. [55, 57]; 

𝜌(𝑟) = ∑[𝜙𝑖]
2

𝑛

𝑖

                                                                                                                           (2.16)  

Since the density can be constructed from an asymmetric wave function, it is guaranteed to be 

legal when it is constructed explicitly from a set of orbitals. If we further observe that the classical 

Coulomb interaction, or Hartree energy (which is just the terms of Equation (2.9) expressed in 

terms of density, will constitute a substantial portion of the electron-electron interaction; 

VH [ρ] = 
1

2
  ∫

𝜌(𝑟1)𝜌(𝑟2)

|𝑟1−𝑟2 |
𝑑𝑟1𝑑𝑟2                                                                          (2.17) 

As a result, the energy functional is rearranged as follows: 

E[ρ] =  𝑇𝑠[ρ] + 𝑉𝑒𝑥𝑡[ρ] + 𝑉𝐻[ρ] + 𝐸𝑥𝑐[ρ]                                                  (2.18)    

Where Exc is the exchange-correlation functional [55], [57] given as ; 

𝐸𝑥𝑐[ρ] =  (𝑇[ρ] − 𝑇𝑠[ρ])   +   (𝑉𝑒𝑥𝑡[ρ] −  𝑉𝐻[ρ])                                             
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Exc is the total of the errors made when applying a kinetic energy that is not interacting and when 

taking the electron-electron interaction into account in a classical manner. The following set of 

equations is satisfied by the orbitals that minimize the energy, according to the variational 

theorem; 

[− 
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝑟) + ∫

𝜌(𝑟′)

[𝑟 − 𝑟′]
𝑑𝑟′ + 𝑉𝑥𝑐(𝑟)]𝜙𝑖(𝑟) =  휀𝑖𝜙𝑖(𝑟)                                   (2.19) 

in which the functional derivative of the exchange correlation energy with respect to density is 

introduced as a local multiplicative potential (Kohn and Sham, 1956);  

𝑉𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐[ρ]

𝛿ρ
                                                                                                                            (2.20) 

The behaviour of non-interacting "electrons" in an effective local potential is described by this set 

of non-linear equations, also known as the Kohn-Sham equations. Equations (2.16) and (2.18), 

respectively, yield the exact ground state density and ground state energy for the exact functional, 

and hence exact local potential, derived from the "orbitals". With the local exchange-correlation 

potential 𝑉𝑥𝑐 in place of the non-local exchange potential, the Kohn-Sham equations share the same 

structure as the Hartree-Fock equations. 𝐸𝑥𝑐  is not the sum of the correlation and exchange 

energies as stated in the correlated wave function and Hartree-Fock theories; rather, it includes a 

component of the kinetic energy. The density and ground state energy of a system containing non-

interacting Fermions and the "real" many systems described by the Schrödinger equation [57]. 

2.2.5 Exchange-correlation functions  

The exchange-correlation energy functional's form is necessary for the Kohn-Sham equations to 

be used practically, but the precise form of Exc is unknown and might never be known (in a closed 

mathematical form). Consequently, since the development of DFT, approximations for Exc have 
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been used in various ways (Santra, 2010). The final term is XC energy, which is composed of all 

quantum effects and is approximated in terms of electron density [50] 

𝐸𝑋𝐶 =  𝐸𝑋 + 𝐸𝐶                                                                                                                           (2.21) 

The correlation energy between electrons with a different spin is called Ec, and the exchange 

energy between electrons with the same spin is called Ex. 

2.2.6 The Local Density Approximation (LDA) 

The local density approximation (LDA), which rose to popularity in solids calculations in the 

1970s and 1980s [54], is the common exchange correlation approximation. It divides the system's 

entire inhomogeneous electron region into several small regions and approximates each of these 

regions as a homogeneous electron gas [58]. The exchange-correlation energy density, 휀𝑋𝑐((𝓇)), 

in this model, is taken to be the same at every point, just like in a homogeneous electron gas. The 

exchange-correlation energy in a spin-unpolarized system takes the following form: 

𝐸𝑋𝐶
𝐿𝐷𝐴[ρ] =  ∫𝜌(𝓇) 휀𝑋𝑐(𝜌(𝓇))𝑑𝓇                                                                                           (2.22 ) 

The quantity 휀𝑋𝑐((𝓇)), can be further divided into contributions from correlation and exchange. 

휀𝑋𝑐(ρ(𝓇)) =  휀𝑋(ρ(𝓇))  +  휀𝑐(ρ(𝓇))                                                                              (2.23)  

Bloch and Dirac derived 휀𝑋(ρ(𝓇)) as the exchange component of the uniform electron gas. 

휀𝑋 = − 
3

4
(
3𝜌(𝓇)

𝜋
)

1
3

                                                                                                            (2.24) 

The total exchange-correlation energy for the spin-polarized system is expressed as 

: 

          𝐸𝑋𝐶𝐿𝐷𝐴[𝜌↑, 𝜌↓] .   (2.25)  

The spin-unpolarized functionals are used to describe the exchange component. 
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                           [𝜌↑, 𝜌↓] = 
1

2
((2𝜌↑) + (2𝜌↓))                                                        (2.26) 

Where 𝜌↑ and 𝜌↓ respectively, represents the spin-down and spin-up densities. Both the relative 

spin-polarization and the electronic density determine the spin-dependent correlation energy. 

                                                     휁   =  ρ↑ - ρ↓                                                              (2.27) 

                                                              ρ↑ + ρ↓   

                                                             

The correlation energy 𝐸𝐶 [𝜌, 휁] is made to interpolate extreme values 휁=0, ±1. If the non-

homogeneity of electronic density is ignored, the LDA scheme leads to numerous errors, including 

incorrectly estimating the binding energy, underestimating the atomic ground-state energy, and 

mispredicting the semiconductors' energy gap [58]. ∇𝜌(r) 

 

2.2.7 The Generalized Gradient Approximation (GGA) 

In order to account for the non-homogeneous electron gas in a real solid, such as ground state 

energies and molecule and solid geometries, GGAs were developed in relation to LDAs by 

including the gradient of the charge density, ∇𝜌(r). This allowed GGAs to produce more accurate 

results than LDAs [52]. The Perdew, Burke, and Enerhof (PBE) form of GGAs is the most widely 

used and prevalent. It was utilized in the computation of amorphous carbon models system, and 

the exchange-correlation energy [50] can be expressed as follows: 

𝐸𝑋𝐶𝐺𝐺𝐴[𝜌↑, 𝜌↓] (𝜌↑, 𝜌↓, .                                               (2.22) 

The explicit form for correlation energy is 

𝐸𝐶𝐺𝐺𝐴 [𝜌↑, 𝜌↓] [ (𝑟 𝑠, , 𝑡)]𝑑𝑟                                           (2.28)             
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Where 𝑟 𝑠 is the local Seitz radius 𝜌 given by     𝜌 =
3

4𝜋𝑟𝑠
2 = 

𝐾𝐹
2

3𝜋2     and t=| n|2φ𝑘𝑠𝑛 

dimensionless density gradient. 

Three requirements were placed on the function H: it has to approach −휀𝐶𝑢𝑛𝑖𝑓 in the rapidly 

varying limit, be given by its second-order gradient expansion in the gradually varying limit, and 

have a uniform correlation energy under scaling to the high-density limit. Consequently, the H 

function formula can be expressed as follows:  

𝐻 = (
𝑒2

𝑎0
) 𝛾𝜑3 𝐼𝑛 [1 + 

𝛽

𝛾
 𝑡2  (

1 + 𝐴𝑡2

1 + 𝐴𝑡2 + 𝐴2𝑡4
)]                                                                 (2.29) 

Where 𝐴 =  
𝛽

𝛾
⟨𝑒𝑥𝑝|

− 𝐶
𝑢𝑛𝑖𝑓

𝛾𝜑3𝑒2

𝑎0
|− 1⟩

−1

 

The exchange energy in GGA is expressed as [59]. 

 

𝐸𝑋
𝐺𝐶𝐴[𝑛] =  ∫𝑛(𝑟)휀𝑋

𝑢𝑛𝑖𝑓
(𝑛(𝑟)) 𝐹𝑋

𝐺𝐶𝐴(𝑠)𝑑𝑟                                                                        (2.30) 

 

The exchange enhancement factor, FX
GCA(s)  indicates the amount that the exchange energy is 

enhanced over its LDA value for a given n(r). One GGA differs from another based on the Fx 

selection. 𝐹𝑋
𝐺𝐶𝐴(𝑠) exists in two forms: They are Perdew-Burke-Ernzerhof (PBE) and Becke88 

(B88) functionals, which have several different forms; 

 

              𝐹𝑋
𝑃𝐵𝐸(𝑠) = 1 +  𝜘 −  

𝜘

(1+
𝜇𝑠2

𝜘
)
                                                   (2.31) 

      𝐹𝑋
𝐵88(𝑠) = 1 + 

𝛽𝓍(𝑆)2

𝐶[1+6𝛽𝓍(𝑆)𝑆𝑖𝑛ℎ−1(𝓍)(𝑆)]
                         (2.32) 
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Whereas C and β in B88 are parameters derived from empirical fitting (empirical), κ and μ in 

PBE are parameters derived from physical constraints (non-empirical), with κ = 0.804. We return 

to the LDA exchange when the density gradient is zero, which is represented by the formula 

𝐹𝑋
𝐺𝐶𝐴(𝑠) = 1. 

2.2.8 LDA + U 

Many approaches were developed to describe strongly correlated systems containing transition 

metal or rare-earth metal ions with partially filled d or f shells after the failure of the orbital-

independent potentials-based local density approximation (LDA) and generalized gradient 

approximation (GGA) methods. In order to account for the strong electron-electron correlations 

between the d and f electrons, a number of methods were proposed, including the Hatree-Fock 

method, GW approximation, the self-interaction correction (SIC) method, and LDA+U. According 

to Ayuk (2019), the LDA+U method yields the following total energy: 

 

𝐸𝐷𝐹𝑇+𝑈 = 𝐸𝐷𝐹𝑇  + 𝐸𝑈  =  𝐸𝐷𝐹𝑇  + 𝐸𝐻𝑢𝑏 − 𝐸𝑑𝑐                                                (2.33) 

where the double-counting energy of the same electronic interactions is denoted by 𝐸𝑑𝑐 and the 

corrective Hubbard functional is represented by E𝐻𝑢b . The entire corrective energy can be 

expressed in simplified form as 

𝐸𝑈 = 𝐸𝐻𝑈𝐵 − 𝐸𝑑𝑐 = ∑
𝑈𝐼

2𝐼,𝜎
 𝑇𝑟[𝑛𝐼𝜎(1 − 𝑛𝐼𝜎)]                                      (2.34) 

where 𝑛𝐼𝜎 is the occupation matrix, and the actual electronic interaction that occurs on-site 

determines U. 
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2.2.9 Plane Wave Basic Set 

The basic set of a plane wave for a state of vector K is defined according to the equation 

〈𝑟|K + G〉 =  
1

√𝑁Ω
𝑒𝑖(K+G) ⋅ 𝑟,

ℏ

2𝑚
|K + G|2  ≤ 𝐸𝑐𝑢𝑡                        (2.35) 

where NΩ is the crystal volume, Ω is the unit cell volume, and Ecut is the plane wave kinetic energy 

cutoff. The PW basis set for a finite number of plane waves is complete for E𝑐𝑢𝑡 ⟶  ∞ and 

orthogonal  

〈K + G|K + 𝐺′〉 =  𝛿G𝐺′ 

The component of the plane wave basis can be express in the terms of Fourier transform as 

|𝜓𝑖⟩ = ∑ 𝐶𝑖,   𝑘+𝐺
𝐺

|K + G⟩                                                     (2.36a)  

𝐶𝑖,   𝑘+𝐺 = ⟨𝐾 + 𝐺|𝜓𝑖⟩ =  
1

√𝑁Ω
∫𝜓𝑖(𝑟)𝑒

−𝑖(K+G) ⋅ 𝑟 𝑑𝑟 =  𝜓�̃�(K + G) ∙ |          (2.36b)  

PWs are therefore not used as a basis set for electronic structure computation as a substitute for 

straightforward Fourier analysis: Fourier components up to q∼2π/δ on the length scale δ. In a solid, 

this means ∽ 4𝜋 (
2𝜋
𝛿

3Ω𝐵𝑧

)

3

 PWs (volume of the sphere of radius q divided by Ω𝐵𝑧 = 
8𝜋2

Ω
, volume 

of the Brillouin Zone). Getting rid of core states is necessary because this is not a practical solution. 

eliminate the wiggles of orthogonality near the nucleus. Pseudopotential (PP) becomes highly 

significant in reaching the above. 

2.2.10 Pseudopotential 

The characteristics of the real potential are acted upon by the pseudopotential approach. The 

important points are to pseudize the remaining valence wave functions, to effectively freeze the 

nucleus and the core electrons together, and to separate the electrons into two groups according to 
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their contributing implications. As a result, the number of electrons in a system that must be 

calculated is significantly reduced, and the valence wave functions are much easier to describe and 

compute [50]. Normconserving PPs, ultrasoft PPs (USPPs), and projector-augmented wave are the 

three primary categories of PPs [55].  

 

2.2.10.1 Norm-conserving Pseudopotential   

for a norm – conserving pseudopotential the pseudo- and all-electron (AE) charge densities inside 

the core are constructed to be equal [55, 65].  Both generating and using it positively (+) are easy. 

Usually, and mostly exclusively, theory and methodological improvements are used for norm-

conserving partial differential equations (PPs). Its negative (-) values are quite difficult because a 

significant loss of transferability results from core radii rc exceeding the outermost maximum of 

the valence atomic orbitals. This restriction could result in extremely high plane-wave cutoffs (70 

Ry and up) for certain atoms, including 2p elements C, N, O, F, 3d transition metals, and 4f rare 

earth. Though all-electron orbitals can be "reconstructed" using the PAW transformation, please 

do not divulge any sensitive information regarding the orbitals near the nucleus. According to 

Ayuk (2019), this is typically the initial decision and point of origin. To fulfill this requirement, a 

large number of pseudopotentials are created [50]:       

∫ |𝜓𝑝𝑝(𝑟)|
2
 𝑑𝑟 = 

𝑟𝑐
0

∫ |𝜓𝐴𝐸(𝑟)|
2 𝑑𝑟                                                                                          (2.37)

𝑟𝑐
0

  

With this method, the valence electrons perceive nothing differently because the net charge from 

the core doesn't change. However, in contrast to AE methods, these PPs only provide the valence 

charge densities—not the total charge densities [50].   
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2.2.10.2 Ultrasofts Pseudopotentials (USPPs) 

We can actually make the pseudo wave function as flat as an upside-down bowl if we ignore the 

norm-conserving condition and move the peak position of a wave function further to a greater rc 

with reduced peak height in addition to removing radial nodes. Van der Bilt refers to the potentials 

generated as ultrasoft pseudopotentials. A smaller cutoff energy and fewer pseudo wave functions 

(PWs) can be used to extend this kind of reduced amplitude pseudo wave function, which can 

result in up to a tenfold speed increase in computation. Furthermore, USPPs provide solely valence 

charge densities rather than total charge densities [52]. In all cases where norm-conserving PPs are 

too hard, ultra-soft PPs are usually employed. 

 

2.2.10.3 Projected – Augmented Wave (PAW) 

The frozen core all-electron potential (PAW) can be used to describe projector-augmented wave 

potentials. The efficiency of the PP and the accuracy of the AE potential are the two goals of this 

type, which was first presented by Blöchl (1994) and accepted by Kresse and Joubert (1999). Lee 

(2017) notes that the mapping provides two distinct descriptions for the core and parts of the 

valence wave functions. The most practical method is projector-augmented wave, which is 

applicable to even "difficult" atoms for Ultrasoft PPs (such as magnetic materials), and whose 

accuracy is comparable to that of all-electron techniques, according to the formalism adds more 

terms and provides information about the orbital close to the nucleus. It is also more difficult to 

obtain than Ultrasoft PPs.  
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2.3 Empirical Review 

A lot of studies has been carried out to investigate the behavior of a material surface using different 

experimental and computational techniques. [37] reported the electronic work function of the cu 

(100) surface under different strain states, these authors find that the tensile state makes the work 

function decrease but the compressive state makes the work function increase, whereas the lateral 

strain state can disturb the work function strongly but the perpendicular state can hardly do so [37]. 

[8] used first principle to studies surface energies, work functions, and surface relaxations of low-

index metallic surfaces, they result and comparison show that calculated values often do not 

quantitatively match experimental values. This may be understandable for the surface relaxations 

and surface energies, where experimental values can have large error but even for the work 

functions, neither local nor semi local functionals emerge as an accurate choice for every case. 

Work function and surface stability of tungsten-based Thermionic electron emission cathodes was 

studied by [38] the findings revealed consistent with transfer valency of Ba2+ and O -2 , supercilious 

that some oxidation of work function occurred and then matching charge. For the (001), (011), 

(111), (211), and (310) surfaces, these steady Ba–O (Ba/O < 1) surfaces have low work functions 

of less than or equal to 2 eV. These results show that both low and high index surfaces might 

display a similar low work function and then could contribute substantially to the measured 

electron ejection [43]. Ab initio study of surface stress response to charging, was conducted by [9] 

the work function, surface stresses and coupling coefficient on Au surfaces using DFT reported by 

the authors is shown in table 2.1. 
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Table 2.1: Work function, surface stresses and coupling coefficient reported by [9]. 

Surface Stresses (Jm-2) Work function (eV) Coupling coefficient 

(V) 

Au (100) 2.723  5.56 −0.90 

Au (110) 2.020  5.42 ≈0 

Au (111) 3.317  5.65 −1.86 

 

[7] used density functional approach to examine the Surface energy and work function of FCC and 

BCC crystals, the results of the work functions with the surface crystallographic positioning 

revealed a good uniformity. for alkali metals, the work functions are increasing and, in the 

sequence, (110), (133), (311), (120), (100), (111). Also, for the similar crystal structure of BCC 

Nb, Mo, Ta, W transition metals the order is (110), (133), (120), (111), (311), (100). The work 

functions for FCC 3d, 4d and 5d transition metals likewise displayed a noticeable uniformity and 

ordered as (111), (100), (211), (123), (310), (110) [7].  

 [60] observed the surface relaxation, electronic work function and surface energy of BCC Li for 

(100), (110) and (111) surfaces computed using ab initio molecular dynamics procedures using 

local density approximation. The obtained relaxations for three-layer Li slabs are outer for the 

(100) and inner for the (110) and (111) surface layers. The outcomes display that the work function 

increases in the order (100) > (111) > (110) in the surface orientation. Moreover, the results 

revealed that the various energy quantities converge  fast with increasing number of atomic layers 

[60]. Some theoretical results obtained by [7] as compared to experimental values of surface 

energy and work function reported by [7] for some metallic surfaces are shown in table 2.2. 
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Table 2.2: Surface energies and work function reported by [7] for some metals. 

Surface  Surface 

energy 

(Jm-2) 

Experimental 

results 

Work 

function 

(eV) 

Experimental 

results 

Ag (100) 1.267 4.246 4.246  4.64 

Ag (110) 1.350  1.26 4.059 4.52 

Ag (111) 1.153 1.25 4.368  4.74 

Ag (123) 1.382  4.138  

Ag (211) 1.302  4.238  

Ir (100) 3.492)  5.55 5.67 

Ir (111) 2.775 3.00 5.497 5.76 

Ir (123) 3.521  5.072  

Ir (211) 3.320  5.284  

Ir (310)  3.684  5.134  

Pt (100) 2.474  5.625 5.82 ± 0.15 

Pt (110) 2.495  5.223 5.35 ± 0.05 

Pt (111) 2.004 2.48 5.702 6.08 ± 0.15 

Pt (123) 2.376  5.436  

Pt (211) 2.221  5.555  

Pt (310) 2.506  5.419  

Au (100) 1.359  5.071 5.22 ± 0.04 

Au (110) 1.414  4.91 5.20 ± 0.04 

Au (111) 1.137 1.50 5.110 5.26 ± 0.04 
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Au (123) 1.378  4.980  

Au (211) 1.293  5.01  

Au (210) 1.447  4.925  

Cu (100) 2.145  4.506 4.59 

Cu (110) 2.192  4.272 4.48 

Cu (111) 1.939 1.83 4.714 4.94 

Cu (123) 2.244  4.35  

Cu (211) 2.096  4.453  

Cu (210) 2.279  4.258  

Ca (100) 0.529  2.758  

Ca (110) 0.635  2.813  

Ca (111) 0.548 0.502 2.936 2.87 

Ca (123) 0.637  2.778  

Ca (211) 0.612  2.825  

Ca (310) 0.619  2.714  

Ba (100) 0.415  2.31  

Ba (110) 0.407 0.38 2.384  

Ba (111) 0.495  2.293 2.7 

Ba (120) 0.446  2.346  

Ba (133) 0.466  2.341  

Ba (311) 0.471  2.327  
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Density functional theory method was used by [61] to studies  the surface energies and work 

functions for ten categories of Miller-indices surfaces of hexagonal metals for Be, Mg, Tc, Re, Ru, 

and Os. The results revealed that the metals in the same group have similar order in work functions 

and surface energies. The work functions of (0001),  011̅1, and 101̅0 surfaces are mostly larger 

than the work functions (112̅1), (112̅2), (112̅3) and (314̅0) surfaces [67]. Coupling coefficients 

for a number of low-index transition metal surfaces mainly of the 4d series  have quantitatively 

determined and obtained negative values ranging from -0-3 V to -2.5 V[62]. Weigend et al. have 

executed first principles calculations for the charge-induced relaxation of  Au cluster with 309 

atoms containing (111) and (100) surfaces giving outward relaxation of the first atomic layer 

additional electrons. Furthermore, they proposed a phenomenological model which justifies the 

negative sign of  and thus the increase of the surface stress upon negative charging as resulting 

from the transverse contraction in retort to the charge-induced outward relaxation of the top 

layer[63]. Common data available associated to electrocapillary coupling are for transition metal 

surfaces. Solely negative values  have been testified for dissimilar clean transition metal surfaces 

both from theoretical and experimental methods [48]. A linear relation between the surface stress 

of a Au(111) cantilever and q in different electrolytes with a slope depending on the strength of 

adsorption of the employed anions was reported[64]. A good agreement of experimental values of 

the coupling coefficient, 𝜍  for (111)-textured Au electrodes of -2 V measured via cantilever 

bending  and -1.9 V from potential strain response  with a DFT calculations of the work function 

strain response for a planar Au(111) surface in vacuum, which yielded 𝜍  = -1.86 V[9, 53]. 

Comparable agreement is observed for Pt(111) and Pd(111) surfaces, where DFT values of-1.00 

V (Pt) and  -0.98 V (Pd) compare to -1.34 V and -1.31 V from electrochemical measurements of 

the potential-strain coupling in the capacitive regime using Dynamic Electro-Chemo-Mechanical 
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Analysis (DECMA) [48]. 

In the context of  the phenomenological framework, a dependency of the materials variables on 

the state variables is permissible and indeed experiments reveal that the electrocapillary coupling 

coefficient is a function of the electrode potential 𝜍 = 𝜍(U)[16, 53]. Electrosorption of Hydrogen 

on Pd is also characterized by a positive coupling coefficient of similar magnitude. 

Electrochemical experiments presented that the surface stress of Pd electrodes decreases during 

electrosorption of Hydrogen [11, 16]. The surface stress variation is quantitatively consistent with 

a continuum mechanics analysis of a misfitting solute atom in a superficial layer of a solid substrate 

yielding a value of 𝜍 = +1.2 V [16]. This is compatible with 𝜍 = +1.4 V obtained from cyclic 

voltammetry measurements of strained (pseudomorphic) layers and the DECMA result for 

potential-strain coupling of 𝜍 = 1:36 V [48]. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

All calculations  were performed using the Vienna Ab-initio Simulation Package (VASP) codes, 

and the projector-augmented wave (PAW) method was used [7, 71]. The calculation code has 

already been installed and available in the VASP library. for surface energy calculations, the 

electronic exchange-correlation potentials were described by the local density approximation 

(LDA) and for the work function calculations using the generalized gradient approximation of 

Perdew, Burke, and Ernzerh (GGA-PBE) functional [7,71]. The energy cut-off for the plane-waves 

of the system was set to 350 eV, the K-Point meshes were adjusted depending on the size of the 

surface modeled to provide well converged total energies [7]. The conjugate gradient minimization 

algorithm was employed for geometry optimizations, ensuring that the forces on each relaxed atom 

reached [71]. To get accurate results of the calculations we optimized the structure, kinetic energy 

cut – off (Ecut), K-Points and lattice parameter.  

 

3.2 COMPUTATIONAL DETAILS 

3.2.1 Kinetic energy cut-off (Ecut) optimization 

The kinetic energy cut-off (ecut) optimization was done to limit the number plane waves with 

energy smaller than and/or equal to kinetic energy cutoff. This is required to computation 

efficiency while maintaining the accuracy of the computation result. In a periodic system, the plane 

wave is expressed by [66]. 

Ψ𝑘 (𝑟) =  
1

Ω
 ∑𝑐𝑘

𝐺

, 𝐺𝑒𝑖(𝑘+𝐺)𝑟
                                                                                  (3.1) 
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With, G as a reciprocal lattice vector. This plane wave can be signified as a grid in the K-plane. 

The higher number of grid will make the calculation to be more precise but  required long time for 

calculation, it is usually restricted by the cut-off energy unit, given by [72] 

ℏ|𝑘 + 𝐺|2

2𝑚
 ≤  𝐸𝑐𝑢𝑡                                                                                                                        (3.2) 

The parameter used in the INCAR file is Encut. In this study, the Encut value was varied in the 

range of 50-500 eV. 

 

3.2.2 The K-point Optimization 

The total energy and density calculations were perfectly performed for all values of K plane waves. 

Nevertheless, a finite number of K plane waves were considered. The Monkhorst-Pack mesh 

variation of 𝑘1 × 𝑘2 × 𝑘3   was used limited Brillouin Zone (BZ) sampling from 1×1×1 to 

21×21×21 for finding the best convergence with total energy value. 

 

3.2.3 Lattice Parameters Optimization 

Optimization of the Structural was done by optimizing the crystal lattice constant[66]. In this 

study, a face centered cubic crystal structure of Au was used. The lattice constant optimization was 

carried out by giving the initial lattice constant (a0) smaller value which is less than the expected 

value. The calculations were reiterated and at the end of each stage we found the total energy (E) 

corresponding to the assumed lattice constant. The iteration continued until a minimum total 

energy is found which convergences the lattice parameters. 
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3.2.4 Surface Optimization 

Surface optimization is characterized as the percent variation ∆𝑑𝑖𝑗 of the spacing among layers i 

and j against the equilibrium layer spacing d0 [8]. 

  ∆𝑑𝑖𝑗 = 
𝑑𝑖𝑗− 𝑑0

𝑑0
                                                                                                        (3.3) 

Where d0 is the bulk interlayer spacing for the particular surface orientation. optimization of the 

top layer  is usually most noticeable, there can be substantial multilayer optimizations spreading 

deep into the crystal, especially for the more open surfaces [11]. In this study the optimization was 

conducted by taking three different doped surfaces of 14, 16 and 18 layers to obtained the most 

converge surface. 

 

3.3 Implementation of strain 

The different components of the deformation of the strained surface slabs are considered. The work 

function strain response parameter was determined using the equation given by  

𝜍 =  
𝑑𝑊

𝑑𝑒
                                                                                                                                         (3.4) 

the surface slab was subjected to isotropic in-plane strain. The parameter e measures the relative 

change in surface area A, 𝑒 =
𝛿𝐴

𝐴0
  where, A0 is the area of the two-dimensional surface unit cell of 

the unstrained slab. Thus, in-plane strain is imposed by scaling the in-plane lattice vectors by a 

factor of  √1 +    𝑒  . While in experiment purely elastic strain can only be achieved at very small 

strain amplitudes of about 10−3. This kind of  strain values would be too small to resolve the 

corresponding change in the work function, meanwhile DFT calculations do not include any plastic 

distortion, it is possible to apply larger strain values [11]. The main interest of this study is on the 

first order change of the work function with strain values. We applied strain from -0.04 up to 0.04 
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because it is usually small and sufficient to give an approximately linear relation between W and 

e. Single point calculations were performed for each strain applied to determine the wave function 

corresponding to each strain. Vaspkit was used to run the calculation. The vaspkit calculate the 

wave function by taking the Fermi and the vacuum potential in accordance with equation (2.4). 

The results obtained were linearly fitted and the coupling coefficient was determined from the 

fitting equation. The coupling coefficient was then found as the slope of a linear fit to the data of 

work function (W) against strain (e) graph.  

 

3.4 Calculation of the Surface stress  

The following formula represents the shift in a system's total energy as the deformation tensor 

changes [67]: 

𝛿𝐸 =  ∫∑𝜎𝑖𝑗

𝑖𝑗

(𝑟)𝛿𝜖𝑖𝑗𝑑𝑟                                                                                           (3.5) 

where at point r = (x,y,z),  𝜎𝑖𝑗(𝑟) is the stress tensor. Assuming periodicity in x and y directions 

and by using a slab geometry, we have 

𝛿𝐸 = 𝐴∫ ∑𝜏𝑖𝑗

𝑖𝑗

𝑑
2

−𝑑
2

(𝑧)𝛿𝜖𝑖𝑗𝑑𝑧                                                                                               (3.6)                   

Here z is perpendicular to the surface of the slab, the slab's thickness is denoted by d, its surface 

area is represented by A, and the  𝜏𝑖𝑗(𝑧)are the components of the ‘‘slab’’ stress tensor introduced 

as 

τij(z) =  
1

𝐴
∫𝜎𝑖𝑗(𝑟)𝑑𝑥𝑑𝑦                                                                                        (3.7) 

The surface stress tensor is defined from τij(z) [68] by 
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𝜏𝑖𝑗
(𝑠) = ∫[τij(z) − 𝜏𝑖𝑗

(𝑏)
] 𝑑𝑧                                                                                        (3.8) 

Where 𝜏𝑖𝑗
(𝑏)

represents the slab stress tensor value in the bulk region (far from the surface). Equation 

(3.6) can be divided into two segments with respect to the surface stress tensor as 

𝛿𝐸 = 2𝛿𝐸(𝑆) + 𝛿𝐸(𝑏) = 2𝐴∑𝜏𝑖𝑗
(𝑠)

𝑖𝑗

𝛿𝜖𝑖𝑗 + 𝐴𝑑 ∑𝜏𝑖𝑗
(𝑏)

𝑖𝑗

𝛿𝜖𝑖𝑗                                   (3.9) 

The slab's two surface facets give rise to the factor 2. As a result, there is a relationship between 

the change in the deformation tensor 𝛿𝜖𝑖𝑗 and the changes in bulk 𝛿𝐸(𝑏)  and slab 𝛿𝐸(𝑆)  energies. 

    

                  𝛿𝐸(𝑠) =
1

2
[𝛿𝐸 − 𝛿𝐸(𝑏) ] = 𝐴∑ 𝜏𝑖𝑗

(𝑠)
𝑖𝑗 𝛿𝜖𝑖𝑗                                                                 (3.10)   

Furthermore, 

                   𝜏𝑖𝑗
(𝑠) = 

1

𝐴

 𝛿𝐸(𝑆)

𝛿𝜖𝑖𝑗     
                                                                                                                    (3.11) 

We can write (3.11) by substituting the relation 𝐸(𝑆) = 𝐴𝛾, 

𝜏𝑖𝑗
(𝑠) = 𝛾𝛿𝑖𝑗 + 

𝛿𝛾

𝛿𝜖𝑖𝑗 
                                                                           (3.12)  

 Where 𝛾 is the surface energy defined as the reversible work per unit area to create a surface. 

Where 
𝛿𝛾

𝛿𝜖𝑖𝑗 
 is the residual surface stress. Equation (3.12) is known as Shuttleworth equation, 

showing that the surface stress is the reversible work per area to stretch the surface elastically. 

In this work equation (3.10) was used to compute the surface stress. Slab geometry was used in 

the calculation, and the third lattice vector—which establishes the layer distance—is maintained 

fixed while the lattice vectors extending in the surface plane are extended by 𝜖  during the 

"stretching"deformation. The shape of the deformation tensor for this distortion is as follows. 
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𝜖𝑖𝑗 = [
𝜖 0 0
0 𝜖 0
0 0 𝜖

] 

The change in the energies 𝛿𝐸(𝑏) and 𝛿𝐸 are given as a function of 𝜖. Various values of 𝜖  were 

used to calculate the total energies of the slab and bulk systems of Au (111). The noise from the 

calculated mesh points was reduced by using a fitting equation in the form of a polynomial 

approximation. 

𝛿𝜖 ≈  𝑐0 + 𝑐1𝜖 + 𝑐2𝜖
2  + ⋯                                                                                 (3.13) 

Consequently, the linear coefficients of the slab and bulk energies, can be used to find the surface 

stress by using equation (3.14) 

  𝜏(𝑠) = 
𝑐1
(𝑠)

− 𝑐1
(𝑏)

2𝐴
                                                                                            (3.14) 

The area of the two-dimensional unit cell on (111) surface is 𝐴 = (
√3    

4
) 𝑎2 , where a is the 

theoretical (computed) lattice constant. 

  

 

Figure 3.1: Au (100) conventional unit cell 
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Figure 3.2: Au (111) bulk and slab super cells. 
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CHAPTER FOUR 

    RESULTS AND DISCUSSION 

The results obtained are presented in this chapter and discuss accordingly. 

4.1 Results from Parameters Optimization Calculation 

The results obtained of the total energy convergence with the energy cutoff are presented in table 

4.1. 

Table 4.1: Total energy convergence with energy cut-off. 

Energy cutoff (eV) Total Energy (eV) 

100 45.22508183 

150 -14.60215037 

200 -17.25138238 

250 -17.59220988 

300 -17.56225425 

350 -17.53451466 

400 -17.53472539 

450 -17.53509303 

500 -17.53403554 

 

From table 4.1 it was observed that as the energy cutoff increases the total energy decreases and 

the energies converges as the energy cutoff approaches 350 eV. The highest value of the total 

energy is found when the energy cut-off is lowest. The optimization result of the energy cutoff 

parameter for the Au (111) calculation in the range of 50 eV to 500 eV is displayed in figure 4.1. 
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Figure 4.1: Plot showing the total energy plotted against the energy cut – off. 

 

The value of the total energy decreases as the energy cut – off increases. However, as the value of 

the energy cut – off approaches 300 eV to 500 eV the value of the total energy does not change 

significantly. Hence, the value of 350 eV was used as the kinetic energy cut-off in the calculations. 

The results obtained for the total energy convergence with Kpoints are presented in table 4.2. 
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Table 4.2: Results of K points convergence with total energy 

K POINTS TOTAL ENERGY (eV) 

01 -4.48920759 

03 -17.08391414 

05 -17.40967212 

07 -17.50700164 

09 -17.54400416 

11 -17.54322620 

13 -17.53895503 

15 -17.53720641 

17 -17.53502475 

19 -17.53459073 

21 -17.53451466 

 

From table 4.2 it was observed that the total energy decreases with increases in the number of K 

points in the mesh grid and converges as the K points approaches 9×9×9. In the K Points values 

optimization, the results for grid variations from 1to 21 are shown figure 4.2. 
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Figure 4.2: Plot showing the total energy plotted against the K-Points 

 

Figure 4.2 presents value of the total energy generated for each grid. The highest total energy 

obtained is generated on the grid of 1×1×1. The total energy value varies but comparative constant 

for grid size larger than 11. Consequently, the grid size of 9×9×9 will be used for further 

calculation. This value of the K-Point is precisely sufficient to obtain the total energy. However, 

it requires denser points for electronic structure calculation to get the smoother curve. In this work, 

K-Point of the form 9×9×1 was used. The results obtained for the total energy convergence with 

lattice parameters are displayed in table 4.3. 
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Table 4.3: Results of total energy convergence with lattice parameters. 

Lattice 

Parameter  

(Å) 

Total 

energy 

(eV) 

3.94 -17.497737 

3.96 -17.604893 

3.98 -17.688594 

4.00 -17.749758 

4.02 -17.790004 

4.04 -17.810604 

4.06 -17.813167 

4.08 -17.798583 

4.10 -17.767734 

4.12 -17.722286 

4.14 -17.663130 

4.16 -17.590855 

4.18 -17.506732 

4.20 -17.411614 

4.21 -17.360339 
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From table 4.3 the experimental lattice constant parameter was used to get the calculated lattice 

parameter by varying the lattice parameter around the minimum value of the experimental lattice 

parameter. The results obtained in the lattice parameter optimization is shown in figure 4.3.  

Figure 4.3: Plot showing the total energy plotted against lattice parameter. 

Figure 4.3 show a plot of the total energy values versus the lattice parameters of the Au crystal 

structure which was used to determine the minimum total energy of the crystal. The lattice constant 

with the minimum total energy was found to be the theoretical lattice constant obtained from the 

DFT calculation. In experimental literatures value of the lattice constant of Au is observed to be 

at 4.07825 Å and a theoretical value of 4.025 Å  [3]. A second order polynomial of quadratic form 

was used to fit the data and the fitting equation obtained is given as 
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𝐸 = 20.458𝑥 2  −  166.09𝑥 +  319.31                                                         (4.1) 

Where the coefficient 𝑥 in equation (4.1) is the lattice constant. 

The lattice constant in equation (4.1) can be found by differentiating equation (4.1) and hence, 

𝑑𝐸

𝑑𝑥
=  40.916𝑥 − 166.09                                                                                 (4.2) 

To get the lattice constant the energy most be minimum, this was achieved by equating equation 

(4.2) to zero and the lattice constant was found to be 4.059 Å. In this work the lattice constant 

obtained from the DFT calculation 4.059 Å was used. 

 

4.2 Result from the Computation of Surface Energy 

The results obtained for the computation of surface energy by observing the variation of energy 

per unit cell with slab thickness (number of layers) are displayed table 4.4 

Table 4.4: Result for the computation of surface energy. 

Number of Layers         Energy/unit cell (eV) 

03 -12.27861662 

05 -21.18551068 

07 -30.13757049 

09 -39.07751259 

11 -47.98179155 

13 -56.91049256 

15 -65.82791259 

 

From table 4.4 it was observed that the energy per unit cell of the slab decreases as the number of 

layers (slab thickness) increases. The results in shown in table 4.4 is displayed in figure 4. 
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Figure 4.4: Plot showing the total energy per unit cell against number of layers. 

In order to find the surface energy of Au (111) the data of the result represented in figure 4.4 was 

fitted linearly and the following equation is obtained 

  𝑦 = 1.1122 − 4.4633𝑥                                                                               (4.3)  

By comparing equation (4.3) with equation (2.2) the surface energy of Au (111) was found to be 

𝜎 =  
1.1122

2
 =  0.5561 eVÅ−1      
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4.3 Results from the Computation of Surface Stress 

The results obtained for the computation of surface stress for both the bulk and slab are displayed 

in table 4.5. 

Table 4.5: Results of applied strain and energy for bulk and slab.  

Strain Energy (eV) 

      Bulk 

 

          Slab 

-0.04 -66.62610839 -43.59514729 

-0.03 -66.73687264 -43.61421784 

-0.02 -66.80625553 -43.61573833 

-0.01 -66.83719958 -43.60130997 

0.00 -66.83388768 -43.57303717 

0.01 -66.79747373 -43.53080637 

0.02 -66.73003876 -43.47498722 

0.03 -66.63635208 -43.40770457 

0.04 -66.51622105 -43.32851411 

 

In table 4.5 the strain was applied to the bulk and slab for deformation along the x – axis. It was 

observed that as the strain applied was increased the energy of both the bulk and slab reduced. The 

results presented in table 4.5 were represented graphically as shown in figure 4.5a and 4.5b 

 



57 
 

 

 

Figure 4.5 (a): Plot showing the total energy against the strain applied for bulk deformation along 

x-axis, (b) Plot showing the total energy against the strain applied for slab deformation along x-

axis. 
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Polynomial fitting was used to find the energy changes 𝐸𝑥𝑥
(𝑏)

 and 𝐸𝑥𝑥
(𝑠)

 for the bulk and slab 

respective as a result of deformation. The fitting equations found to be; 

δ𝐸𝑥𝑥
(𝑏)

 = −66.836 + 2.0559𝑥 + 165.56𝑥2  −  407.41𝑥3  −  3835.5𝑥4  −  12106𝑥5

+  1861900𝑥6                                                                                                (4.4)                

δ𝐸𝑥𝑥
(𝑠) = −43.573 + 3.5533𝑥 + 69.688𝑥2  −  99.095𝑥3  −  1705.7𝑥4  −  24285𝑥5

+  990770𝑥6                                                                                          (4.5)      

The coefficients in equation (4.4) and (4.5) was found by comparing these equations with equation 

(3.3) and equation (3.4) was used to find the surface stress as follows; 

𝑐1𝑥𝑥
(𝑏)

 = 2.0559 𝑒𝑉  ,  𝑐1𝑥𝑥
(𝑠)  = 3.5533 𝑒𝑉 , and substituting these values in equation (3.14) the 

surface stress along x – axis reads; 

𝜏𝑥𝑥
(𝑠)

 =  
𝑐1𝑥𝑥
(𝑠) − 𝑐1𝑥𝑥

(𝑏)

2𝐴
 =  

3.5533 − 2.0559 

2 ×  4.1189

𝑒𝑉

Å 2
 =  0.18177

𝑒𝑉

Å 2
 =  2.912 

𝐽

𝑚2
 

 

4.3 Result from the Computation of Coupling Coefficient 

The results obtained for the computation of coupling coefficient are displayed in table 4.6. 

Table 4.6: Variation of applied strain with work function. 

Strain Work function (eV) 

-0.04 -5.616 

-0.03 -5.606 

-0.02 -5.597 

-0.01 -5.586 

0.00 -5.575 

0.01 -5.564 
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0.02 -5.553 

0.03 -5.539 

0.04 -5.522 

It was observed that in table 4.6, work function decreased as the applied strain is increased. The 

results presented in table 4.6 were represented graphically as shown in figure 4.7.  

 

Figure 4.6: Plot showing the variation of strain applied with work function. 

A linear fit was used for fitting the results presented and the fitting equation obtained is 

𝑊 =  1.145𝑥 −  5.5731                                                                                                      (4.6) 

The coefficient x, in equation (4.6) denotes the strains applied during the deformation. The 

coupling coefficient 𝜍, by the slope of the graph of work function against strain and hence, in 

accordance with equation (4.6) the coupling coefficient is found to be 𝜍 =  1.145 𝑒𝑉. This result 

shows that the calculated coupling coefficient is positive. 

  



60 
 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

In this study, ab initio calculations were executed to ascertain diverse material properties, adopting 

established practices. A systematic examination of the convergence of these properties including 

cutoff energy, K-point sampling, and lattice parameter was conducted to guarantee the reliability 

and consistency of the results. 

The findings of this investigation reveal that the Au (111) surface possesses a surface energy of 

0.5561 eVÅ−1, a surface stress of 0.18177 eVÅ−2, and a coupling coefficient of 1.145 eV, hold 

significant implications for surface stability. The surface energy, indicative of the energy required 

to form a unit area of the surface, is a crucial metric for understanding the thermodynamic stability 

of a material. In the case of Au (111), the obtained surface energy provides insights into the 

energetics governing the stability of its exposed surface. A lower surface energy generally implies 

greater stability, suggesting that Au (111) is expected to exhibit favorable stability characteristics. 

Surface stress, denoting the force per unit length acting on the boundary of a crystal surface, is an 

essential factor influencing the mechanical and thermodynamic behavior of materials. The 

calculated surface stress of 0.18177 eVÅ−2 for Au (111) highlights its response to external forces 

and perturbations. This parameter is indicative of the material's resistance to deformation and its 

ability to maintain structural integrity under stress conditions. 

The coupling coefficient, representing the strength of interaction between atoms in adjacent layers 

of a crystal lattice, is a crucial factor influencing the overall stability of a material. The determined 

coupling coefficient of 1.145 eV for Au (111) signifies the cohesive forces within the crystal 

structure, shedding light on its bonding characteristics and potential applications in various 
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contexts. Lastly, the comprehensive ab initio calculations performed in this study provide valuable 

insights into the material properties of Au (111). The obtained results, including surface energy, 

surface stress, and coupling coefficient, contribute to our understanding of the surface stability of 

this material, with potential implications for its applications in diverse fields, such as catalysis, 

materials science, and nanotechnology. 

 

5.2 RECOMMENDATION 

For future investigations, it is recommended that studies explore high Miller index geometries to 

gain deeper insights into their distinct surface behaviors. Exploring these higher index surfaces is 

imperative for a more comprehensive understanding of the material's surface characteristics and 

their potential applications in various fields. Furthermore, future research endeavors should focus 

on unraveling the impact of impurities on crucial surface properties, including surface energy, 

surface stress, and coupling coefficient. Investigating both low and high index surfaces in the 

presence of impurities is essential for elucidating the material's response to external influences and 

its stability under real-world conditions. Such an exploration would contribute significantly to 

refining our understanding of the material's behavior and guide the development of tailored 

applications in areas such as catalysis, materials engineering, and nanotechnology. 

In essence, by extending investigations to encompass high Miller index geometries and 

incorporating impurity effects, future studies can provide a more nuanced and comprehensive 

perspective on the surface characteristics of the material. This expanded knowledge base will not 

only deepen our understanding of its fundamental properties but also pave the way for the 

development of advanced materials with enhanced functionalities and tailored applications.  
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