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ABSTRACT 

Achieving efficient control of electrons and nuclei in atoms and molecules with lasers has been 

a subject of great interest for decades, in Physics and in Chemistry. One of the current and 

challenging questions with the today advanced in laser technology is how to generate and 

characterize a single and or a train of attosecond (1 𝑎𝑠 =  10−18 𝑠) laser pulses likely to 

control electrons in molecules. This therefore demands a proper mechanism that can lead to 

easy control of the extreme ultraviolet (XUV) harmonics. 

This is addressed in this work by first irradiating the Hydrogen atom H with a single infrared 

(IR) pulse and later with simultaneous interaction with double replica IR lasers of intensity 

2 × 1014W/cm2 each. The order of frequency of emitted photons in the recombination process 

for two IR Lasers and for a single IR laser, interacting with the hydrogen atom without time 

delay, were 400 and 278, respectively. This High Harmonic Generation (HHG) of XUV’s 

depends on laser atom interaction which is governed by Time Dependent Schrödinger Equation 

(TDSE) and the Strong Field Approximations (SFA). By varying the time delay between the 

two simultaneous IR pulses, controlled harmonics are produced. It turns out that these delays 

caused spectral shifts which are smaller for longer time delays (the spectral shift for 400 a.u. 

time delay is smaller than that of 1250a.u. time delay). 

Keywords: Attosecond Pulse, Extreme ultraviolet pulses (XUVs), High-order Harmonic 

Generation (HHG), Split Operator Method, Three Step Model, Strong Field Approximation 

(SFA), Time Delay. 
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Chapter1 Introduction 

 

1.1 Problem Statement 

The growing applications of lasers in various fields such as photoemission spectroscopy has 

prompted the advancement of attosecond science. This development has enabled the study of 

fast occurring processes on electron level. To properly utilize and comprehend attosecond 

science, controlled attosecond pulses in form of Extreme Ultraviolet (XUV) harmonics should 

be produced. Therefore, this thesis aims at providing a proper mechanism of controlling XUV 

harmonics using double Infrared (IR) laser pulses. 

1.2 Preliminary 

Understanding some natural and human phenomena in life mostly depends on suitability of 

spatial and temporal scales used. In terms of better incorporation of spatial scales, a lot of geo-

statistics analysis has been done [1]. But to date a lot more focus has been directed to the 

temporal scale. This opens the exploration of ultrashort pulses and now extreme ultraviolet 

(XUV) harmonics which is as a result of High-order Harmonic Generation (HHG) process in 

gases with high photon flux [2]. These XUV beams exhibit good spatial coherence and 

therefore HHG is a table top process to be considered [3] as it appears now as more complex 

than previously considered. Dedicated experiments and simulations are developed to 

understand and to control the harmonic beam spatial properties which is now the main arena 

for attosecond science [3]. The more we control XUV harmonics, the more applications in the 

field of medicine, photoelectron spectroscopy [4], time- and angle-resolved photoemission 

spectroscopy [5] and high-resolution transient absorption spectroscopy [6] are possible. The 

temporal and spatial scales of some physical phenomena include, the orbital period of the earth 

around the sun which is one year, the orbital period of the moon around the earth which is a 

month and the period of the heart palpitations which is a second (1s). These are considered 

within the human time scale and can be studied with available technologies. More fast 

occurring processes and activities like chemical reactions require sophisticated instruments 

with higher order processing times of zeptoseconds (∼ 10−21 𝑠), attoseconds (∼ 10−18 𝑠),  
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femtoseconds (∼ 10−15 𝑠) to a few thousand femtoseconds or picoseconds (∼ 10−12 𝑠) [7]. 

The timescale measurement of these chemical and other fast occurring biological process, has 

been enabled by more research on generation and control of laser pulses [7]. The femtosecond 

and attosecond laser sources are considered to be the main tools for resolving the fast electron 

motion in matter down to sub-Ångstrom (1 Å =  10−10𝑚) resolution [2]. The electron 

transition between states is a fundamental process in laser matter interaction. Until recently, it 

was not possible to observe the motion of the electrons, because there were no high-resolving 

tools available. But, with the advent of the attosecond (10−18 𝑠) pulses (ATP) a new time 

perspective is opened [9]. A lot of experiments have been able to characterize most of the 

aspects of both the generation and filtering the ATP through optical gating which can generate 

ultra-broadband attosecond pulses using multi-cycle pulses [10], or ionization gating which 

genarates isolated attosecond pulses (IAPs) by controlling the ionization process in 3 step 

model [10]. To generate IAPs, scientists explore various methods, for instance using a sub-

two-cycle driving laser with a stable carrier envelope phase (SCEP), or a longer driving laser 

with different gating methods to control the radiation process of HHG. The first successful 

demonstration of isolated attosecond pulses was achieved in 2001, in a system that used a 

selection around the cut-off generated in HHG with a 7fs long driver pulse [11]. This thesis 

makes used of the double IR laser pulse (two femtosecond pulses) to generate a single or a train 

of ATP that are at the origin of many hot research topics currently discussed in this field. The 

availability of Schemes to control spectral harmonics by using the time delayed IR pulses, 

proposed and experimentally verified [12], is also very crucial for this work. This makes a lot 

more interesting area to explore. 

The spectrum of differrent temporal scales of natural phenomena and technological 

development to XUV region can be clearly seen in Fig 1:1. 

The femtosecond and attosecond pulses have become one of the main tools to study both the 

electronic and molecular dynamics as shown in Fig 1:1. 

During any attosecond pulse generation and analysis, it is fundamentally important to get better 

understanding of characteristics of a laser. The next subsection is dedicated in briefly 

describing these basics of the laser. 
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Fig 1:1 Timescale of differrent physical phenomena [8] 

1.3 Laser Fundamentals 

A laser which is an acronym for Light Amplification by Stimulated Emission by Radiation 

(LASER), is a device that emits light through a process of optical amplification based on the 

stimulated emission of electromagnetic (EM) radiation [36]. The first laser was built by 

Theodore H. Maiman based on a theoretical work by Charles Hard Townes and Arthur Leonard 

Schawlow in the year 1960 [15].   

What makes a laser different from any other light is its high spatial and temporal coherence 

[16]. 

1.3.1 Components of a Typical Laser:  

 

1. Gain medium 

2. Laser pumping energy 

3. High reflector 

4. Output coupler 

5. Laser beam 

Fig 1:2 Components of Laser [58] 

https://en.wikipedia.org/wiki/Output_coupler
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The gain medium is a material with properties that modulate the amplification of light via 

stimulated emission [18]. These properties are enhanced by the excitation system or a laser 

pump through a supply of necessary energy in the form of light or electric current. The active 

medium resonates between high reflector and partial reflector until there is a beam of single 

wavelength which is then released through the outer coupler as a coherent beam in the form of 

a laser [19]. The insights of a laser production are determined by the interaction of active 

medium with a photon from the pump medium. A number of processes are factored including 

the emission and absorption of photons, during which electron is caused to move to excited 

state or to the ground state, respectively, as it is illustrated in Fig 1:3. It is well known that an 

electron  

 

Fig 1:3 2-level Stimulated Emission [57] 

absorbs a photon only when the transition energy matches the energy carried by the photon. 

For light, any given transition will only absorb light of particular wavelength. Photons with the 

energy that matches the energy difference between two energy levels can cause an electron to 

jump from the lower to the higher energy level through photon absorption process. This 

electron is thus in the excited state. When an electron is excited, it will not stay there forever; 

but it will eventually return to the ground state or to a stable state, leaving a vacuum with the 

energy matching ∆𝐸.  Due to the law of conservation of energy, spontaneous emission is likely 

to occur, where the electron transits to a lower or to an unoccupied energy level in the absence 

of any external [18]. The emitted photons from this process are in random directions, hence it 

is a suitable mechanism for fluorescence and thermal emission [21].  
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When a photon interacts with electrons in the excited state, stimulated emission occurs causing 

the electrons to drop from the higher to the lower energy level, emitting a new photon. These 

emitted photons are in phase, moving in the same direction and have the same wavelength.   

At thermal equilibrium, the electron populations between any two-level system are given by a 

Boltzmann relation principle, also refer to as a fundamental law of thermodynamics [18];  

 
𝑁2 = 𝑁1𝑒

(
𝐸1 – 𝐸2 
𝑘𝑇
)
 

1.1 

Where 𝑁2 and 𝑁1 are the population of the upper and lower state, respectively. Here, 𝐸2 and 

𝐸1 are energies corresponding to the upper and lower states, respectively, T represents the 

equilibrium temperature, k is the Boltzmann constant, and h is the Planck’s constant whereas 

v represents the frequency of light. For a normal population of the atoms, there will always be 

more atoms in the lower energy state than in the upper ones [36]. In order to achieve stability 

after excitation, the electrons in the excited state will decay to ground state. When such a decay 

occurs due to spontaneous rather than stimulated emission, the produced photons deviate from 

proper characteristics of a laser [57]. To ensure the production of photons with laser 

characteristics, first, a relatively high number of atoms must be in the higher energy state than 

the lower energy state; this is done through a process commonly known as population inversion 

[57]. Besides, the natural decay of electrons to a lower state can avoided by introducing a 

photon to interact with the excited electrons, thereby causing instead a stimulated decay of 

electrons [36]. This is clearly shown in Fig 1:3. However, stimulated decay cannot be achieved 

with impractical 2-level system due to short lifespan of electron in excited state. Hence the 

need for a proper population inversion process in the subsequent higher-level systems [18]. 

 

Population Inversion 

Population inversion is the process of achieving higher number of electrons in the higher 

energy states than the lower energy states. This is mainly used for light amplification and in 

production of a laser [57]. As stated previously, this process is not possible for 2-level system 

[42]. Therefore, three or more energy states are required to achieve a proper population 

inversion. The greater the number of energy state, the greater the optical gain [18]. 
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3-level Laser 

Considering a three energy levels system with 𝐸1, 𝐸2 and  𝐸3 representing energy level one, 

two and three respectively, it is well known that  𝐸1 < 𝐸2 < 𝐸3. 

 

Fig 1:4 3 level system [58] 

Letting N1, N2 and N3 be the number of electrons in the energy state 𝐸1, 𝐸2 and 𝐸3, respectively, 

in an equilibrium or in a stable system, with 𝑁1 > 𝑁2 > 𝑁3. With a pumping process, the 

population inversion can be achieved between 𝐸1 and 𝐸2, such that 𝑁2 > 𝑁1 [18]. Upon 

excitation, the electrons jump to 𝐸3 where their lifetime is very small and hence instantly falling 

to stable state [36]. Here, 𝐸2 is a meta stable where the electrons will remain for some times 

during which 𝑁1 < 𝑁2 and 𝑁2 > 𝑁3. Here the population inversion is achieved between 𝐸1 and 

𝐸2 [36]. 

After completion of lifetime of electrons in the Meta stable state, they fall back to the lower 

energy state by releasing energy in the form of photons and as a result, stimulated emission 

occurs [36]. In addition, the excitation of the electrons in this system may be through hitting 

with a photon or using other types of energy sources such as electrical energy. However, this 

requires very high pump power and produces pulsed laser [22]. 

4-level Laser 

As shown in Fig 1:5, a similar process to that of three-level system occurs with the meta stable 

state being 𝐸3 [58]. Here we consider 𝐸1 < 𝐸2 < 𝐸3 < 𝐸4, where 𝐸1,  𝐸2, 𝐸3 and 𝐸4 represent 

energy level one, two, three and four, respectively. 
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When the electrons in the lower state 𝐸1 gains sufficient energy and jumps into the higher 

energy state 𝐸4 where lifetime of electrons is very small, they fall back into the next lower 

energy state 𝐸3 by releasing non-radiation energy [58]. 

 

Fig 1:5 4-level system [58] 

The lifetime of electrons 𝐸3 is larger than that of 𝐸4 and 𝐸2. As a result, a large number of 

electrons accumulate in 𝐸3 and hence a population inversion between energy states 𝐸3 and 𝐸2 

is achieved [57]. 

This type of scheme can operate in continuous wave mode and hence used in most working 

lasers. It is a system which is also much easier to pump compared to 3-level scheme [36]. 

The kind of lasers generated are broadly categorized in two deterministic forms, depending on 

the output. The subsequent section is solely dedicated in describing the two forms, though the 

nature of our research adopts only one. 

1.4 Continuous and Pulsed Wave Lasers 

The classification of the two lasers depends on the output produce and the energy propagation. 

Pulsed laser produces a series of pulses at a certain pulse width and frequency until stopped 
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while continuous laser emits steady beam of light with constant power. Relaxation time is also 

fundamental in differentiating the two [18].  

1.4.1 Continuous Wave Lasers (CW)  

These are lasers whose outputs are steady over time, i.e., their output power is steady when 

averaged over any time period [57]. They have time durations in few nanoseconds or less. For 

a continuous laser operation, population inversion of the gain medium must have a steady 

pumping source, in order to ensure a steady streaming of wave. During steady pumping 

process, caution must be taken to prevent destruction of active medium by the excessive heat 

generated. Examples include Argon and CO2 lasers [18]. The energy propagation for this type 

of laser is given by; 

E(t) = E0 sin (𝜔𝑡 + 𝜑),  
1.2 

where E0 is the amplitude of the laser, 𝜔 is the frequency and 𝜑 is the phase. 

 

Fig 1:6 Continuous Laser [57] 

1.4.2 Pulsed Lasers  

These are lasers whose output occur as short bursts. This implies that the optical power of a 

pulsed laser appears in flashes/pulses of some duration at some repetition rate [57]. The average 

power 𝑃𝑎𝑣𝑔 is expressed as the average energy 𝐸 of the laser divided by their repetition rate 𝑇 

(𝑃𝑎𝑣𝑔 =
𝐸

𝑇
). By lowering the repetition rate, one can build more energy within a pulse. Pulsed 

lasers are particularly useful in applications where large amount of energy is required to be 

delivered in a short time. For this, researchers use more pulsed lasers because all the power of 

a laser appears to be concentrated within a pulse [57]. As mentioned before this will be the 
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form of the laser utilized in this thesis. Fig 1:7 shows a pulse laser of 3 cycles in each of the 

five pulses. The energy propagation of this type of laser is given by: 

𝐸(𝑡) = 𝐸0𝑓(𝑡)𝑠𝑖𝑛(𝜔𝑡 + 𝜑), 
1.3 

where E0 is the amplitude of the laser, 𝜔 is the frequency, 𝜑 is the phase, f(t) is the envelope, 

𝑓(𝑡) = 𝑠𝑖𝑛2 (
𝜋

𝜏𝑝
) 𝑡 and 𝜏𝑝 is the pulse width. 

 

Fig 1:7 A Pulsed Laser [57] 

 

1.5 Characteristics of a Laser 

There are some specific properties that make a laser suitable to its application in production of 

XUV pulses. Studying these properties is the key to being intuitively able to have more control 

of transient pulses. Some of these characteristics are briefly described below [23]. 

Monochromaticity of Laser: The energy of a photon determines its wavelength through the 

relationship 𝐸 =  ℎ𝑐/𝜆, where c is the speed of light, h is the Planck's constant, and λ is the 

wavelength. In an ideal case, the laser emits photons with the same energy, and thus the same 

wavelength which makes it monochromatic. The light from a laser typically comes from one 

atomic transition with a single precise wavelength. Therefore, the laser light has a single 

spectral color and is almost the purest monochromatic light available [36, 57]. 
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Types of Lasers and their wavelengths 

The below table depicts some of the common laser based on wavelengths range. 

Laser Type Wavelength (nm) 

Free electron UV-Xray 

Excimer: Argon fluoride 193 

Nitrogen 337 

Argon ion (blue) 488 

Argon ion (green) 514 

Helium Neon (blue) 633 

Ruby (CrAlO3) 694 

Rhodamine 6G Dye (tunnable) 570 – 650 

Ti-Sapphire 650 – 1100 

Nd: YAG 1064 

Carbon dioxide 1064 

Table 1:1 laser types [57] 

Coherence: Light waves emitted by a laser are always in phase with each other at every point 

in the space, i.e., temporal and spatial coherence. Hence, a laser light beam is known as a 

coherent beam of light [57]. If coherent waves combine, then the amplitude of the resultant 

wave is always greater than the amplitude of any of the combining waves.  

A wave is said to have a temporal coherence if the phase difference between the electric fields 

at a point in times 𝑡1 and 𝑡2 is constant during the time interval, ∆𝑡 (∆𝑡 = 𝑡1 − 𝑡2). 

Spatial coherence refers to the phase relationship between waves travelling side by side at a 

certain distance from each other [36, 57]. 

Directionality: This a property that makes a laser to travel in one direction only (without 

separating). This is also well known as collimation property of laser. The negligible divergence 

of the laser beam makes the laser useful in range finders, remote sensing, surveying [23] etc. 

Intensity of Laser Light: The intensity 𝐼 of a wave is defines as the energy per unit time per 

unit area; 𝐼 =  
𝐸/𝑡

𝐴
=  𝑃/𝐴 (𝑤𝑎𝑡𝑡/𝑚2). 
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Since a laser gives out the light into a narrow beam and the light energy is concentrated in a 

region of a small area, therefore, the intensity of the laser beam is very high [23]. 

For instance, the intensity of a 1mW laser is far much more, about a thousand times more, the 

intensity of a 100W incandescent bulb (ordinary electric bulb) [23]. A typical laser has the 

intensity of the order of 1013𝑊𝑐𝑚−2, making them suitable for application such as cutting and 

welding metals and alloys [23, 25]. 

To produce XUV pulses, an IR laser in the form of Femtosecond Pulse (FP) is used and through 

HHG process, an attosecond pulse (ATP) is produced. In this work the second FP was 

introduced as a control mechanism. 

Ultrashort Pulse Laser 

This is a laser that generally emits pulses of femtosecond order and is also known as ultrafast 

laser. And owing to this, the current field of attosecond science has been inspired by the 

availability of common ultrashort pulse laser technologies such as Titanium-Saphire [9]. 

Since its implementation in 1960, a lot of techniques were employed to shape up to the current 

attosecond field [25]. Some of these are mentioned briefly as below. 

The Q-Switching  

This an active technique that modulates the losses in the cavity [26]. This technique is used to 

generate nanosecond pulses of high energy in solid-state lasers [27]. 

Kerr Lens Mode-locking (KLM) 

It is a passive technique that uses the nonlinear Kerr effect to mode-lock lasers leading to very 

short emissions [28]. Depending on the synchronization spectrum phases, this method yields 

very short pulses of a few femtoseconds.  

The evolution of ultrafast pulses from basically its first implantation to current attosecond 

science, can be briefly shown in the Fig 1:8 Timescale of evolution of ultrafast Pulses [28]. 
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Fig 1:8 Timescale of evolution of ultrafast Pulses [28] 

To get the insights of an attosecond pulse generation the amazing phenomena of HHG process 

must be studied in detailed [29]. The next section is dedicated to discussing laser-matter 

interaction and the HHG process. 
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Chapter2 High-order Harmonic Generation  

 

In this part, we are going to explore the theoretical aspects of High-order Harmonic Generation 

(HHG). HHG is a nonlinear optical process in which the frequency of laser light is converted 

into its integer multiples [19]. Harmonics of very high orders are generated from atoms and 

molecules exposed to intense (usually near-infrared (IR)) laser fields [7].  

The first HHG was observed in 1977 in interaction of intense 𝐶𝑂2 laser pulses with plasma 

generated from solid targets, by scientists who were interested in the response of atoms to 

intense laser fields [13]. When the atom is exposed to such intense laser field, an electron 

detaches through ionization and move to the continuum before recombining with its parent 

atom. The electron motion in the continuum can take long or short trajectories [14],   

 

Fig 2:1 Concept of Two electron trajectories in a Driving Laser field [14]. 

depending on oscillating electric field as shown in Fig 2:1. Upon re-collision, photons of high 

harmonics are emitted [57]. The first results of HHG obtained by Rhodes and his co-workers, 

using a 248-nm excimer laser, were up to 17th harmonic order [30]. The motion of electron 

from the time of excursion to recombination can be described using classical and quantum 

schemes [57]. 
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2.1 Electron Dynamics in the Continuum   

Taking the classical approach, the electron in a polarized laser field is described by Newton 

laws of motion [57]. 

The polarized electric field is described by the equation below. 

�⃗� = 𝐸0 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 𝑒 𝑧 
2.1 

Where 𝑒 𝑧 is the unit vector along the z-axis, 𝜔 the frequency, 𝜑 the phase shift and 𝐸0 the 

amplitude with the Hamiltonian of free electron given as; 

𝐻(𝑡) =
𝑝2𝑦

2𝑚
+ 𝑞𝑦𝐸0 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

2.2 

Where 𝑞(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒) = 𝑒, 𝑝𝑦(𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) = 𝑚
𝑑𝑦

𝑑𝑡
 and 𝑒 = 𝑚 = 1𝑎. 𝑢 . in 

atomic units.  

With the Newton equations 
𝑑𝑦

𝑑𝑡
=
𝑑𝑦

𝑑𝑝𝑦
, 
𝑑𝑝𝑦

𝑑𝑡
= −

𝑑𝐻

𝑑𝑦
 and 

𝑑𝑝𝑦

𝑑𝑡
= −𝑞 𝐸0𝑐𝑜𝑠(𝜔𝑡 + 𝜑) the resulting 

equation is an Ordinary Differential Equation (ODE) 

𝑑2𝑦

𝑑𝑡2
= −𝐸0 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

2.3 

Whose integration yields, 

𝑑𝑦

𝑑𝑡
= −
𝐸0
𝜔
𝑠𝑖𝑛(𝜔𝑡 + 𝜑) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2.4 

Applying the initial conditions to the above equation  

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = (
dy

dt
) (𝑡 = 0) +

𝐸0

𝜔
𝑠𝑖𝑛(𝜑),  

This constant stands for the drift velocity 𝜐𝐷. With 𝑦(𝑡 = 0) = 𝑦0, the position of electron can 

be deduced from the velocity equation eq.2.4 above as:  
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𝑦(𝑡) = 𝜐𝐷𝑡 +
𝐸0
2

𝜔2
𝑐𝑜𝑠(𝜔𝑡 + 𝜑) + 𝑦0 

2.5 

This shows that as the electron oscillates with the electric field and is being drifted with velocity 

𝜐𝐷  

From eq.2.4 it is clear that the velocity of the electron oscillates with frequency 𝜔 and 

amplitude 
𝐸0

𝜔
 around the drift velocity 𝜐𝐷. 

The kinetic energy of the drifting electron in polarized laser field can be evaluated as; 

𝐸𝑘𝑖𝑛 =
1

2
(
𝑑𝑦

𝑑𝑡
)
2

= (𝜐𝐷 −
𝐸0
𝜔
𝑠𝑖𝑛(𝜔𝑡 + 𝜑))

2

 

2.6 

Over an optical cycle with pulse period T, the average kinetic energy will be stated as; 

〈𝐸𝑘𝑖𝑛〉 =
1

𝑇
∫𝑑𝑡 (

1

2
𝜐𝐷
2 +
𝐸0
2

2𝜔2
𝑠𝑖𝑛2(𝜔𝑡 + 𝜑) −

𝐸0
𝜔
𝜐𝐷 𝑠𝑖𝑛(𝜔𝑡 + 𝜑))

𝑇

0

 
2.7 

And by integration, it reads 

〈𝐸𝑘𝑖𝑛〉 =
1

2
𝜐𝐷
2 +
𝐸0
2

4𝜔2
 

2.8 

Where 
𝐸0
2

4𝜔2
= 𝑈𝑝 is the ponderomotive energy that arise due to quiver motion of electron in the 

laser field [57]. 

During the recombination process, the HHG spectra exhibits characteristic behaviour. The 

produced photons have a rapid intensity decrease for the first orders, a plateau harmonic up to 

a very high order and an abrupt cut-off [57], as seen in Fig 2:2 
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Fig 2:2 Schematic Representation of the HHG Spectrum [30]. 

Due to its coherence, HHG is a process that plays a fundamental role in the generation of pulses 

in XUV and in soft X-rays range [31].   

The maximal harmonic photon energy E is given by the cut-off law [57]. 

𝐸 = 𝐼𝑝 + 3.17𝑈𝑝 
2.9 

Where Ip is the ionization potential of the target atom. 

Rather than using the perturbation theory, many features of HHG can be intuitively and 

quantitatively explained in terms of electron re-scattering trajectories. This represents the 

semiclassical three-step model and the quantum-mechanical Lewenstein model. Remarkably, 

various predictions of the three-step model are elaborated by a direct solution of the time-

dependent Schrodinger equation (TDSE) [35]. 

2.2 Three Step Model 

The underlying process of HHG is well elaborated by the Three Step Model as used in the 

previous subsection [32]. This model consists of tunneling where the electron is treated 

quantum mechanically as it ionizes. This is well described in the subsection above. It also 

consists of acceleration and recombination process during which the electron is treated 

classically [57]. This is a semiclassical model used to verify some of the results obtained from 

experiments and therefore it will be explored later in chapter 5 to verify results of this thesis. 
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Fig 2:3 Classical Scheme of HHG process [57] 

2.2.1 Tunneling 

When an atom is placed in the path of a laser field, it is ionized thereby forcing excursion of 

electron. To achieve this ionization the supplied energy should be greater than ionization 

energy 𝐼𝑝. A single photon produces an energy of ℏ𝜔 = 𝜔 and 𝜔 < 𝐼𝑝. This implies a single 

photon is not enough hence the need of multiphoton ionization with energy of nω order [57], 

where n is the number of photons. Tunneling occurs when the Keldysh parameter 𝛾 < 1, with 

𝛾 = √
𝐼𝑝
2𝑈𝑝
⁄ ,  implying that 𝑈𝑝 ≥ 𝐼𝑝. The barrier is suppressed by strong laser field (𝜔 ≪ 𝐼𝑝)  

and hence electron tunnels through.  

𝜔(𝐸) ≈ 𝑒𝑥𝑝(−
2(2𝐼𝑝)

3
2⁄

3𝐸
) 

2.10 

Where 𝜔(𝐸), is the ionization rate. 

The probability of finding the atom in the ground state can be stated as; 
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|𝑎(𝑡)|2 = 𝑒𝑥𝑝(−∫ 𝜔(𝐸(𝑡′))
𝑡

𝑡0

𝑑𝑡′) 
2.11 

a(t) is the probability amplitude of finding the atom in the ground state and 𝑡0 is the time for 

which the electron is released by the atom [56]. 

2.2.2 Acceleration  

After ionization, the electron is then propagated in the continuum, during which there is 

acceleration of electron in the presence of electric field induced by the laser [57]. Assuming 

that electron is released with zero velocity, then the acceleration will be given by eq.2.3. From 

eq.2.5 we derive the trajectories in Fig 2:1 

According to 3-step Model, HHG is due to the emission on re-collision. This therefore makes 

the kinetic energy of the electron fundamental. This kinetic energy is proportional to 3.17𝑈𝑝  

as indicated by eq.2.8 [17].  

2.2.3 Recombination 

This step describes the re-collision process of the electron with an atom. Since we are 

describing the electron from excursion to re-collision, this is a quantum mechanical process 

and is described by the Time Dependent Schrödinger Equation (TDSE). Taking into account 

Strong Field Approximation (SFA), the equation describing this process is given as; 

𝑖
𝑑

𝑑𝑡
𝜓(𝑡) =  𝐻𝜓(𝑡) − 𝑥𝐸(𝑡), 

2.12 

with the atomic Hamiltonian given by 

𝐻 = −
1

2
𝛻 + 𝑉(𝑥), 

2.13 

where 𝑉(𝑥) is the effective atomic potential confining the electron to the atom. Due to the 

interaction with the laser field, it is expected that the wavefunction of the electron that is 

initially in the ground state |0⟩ evolves into a superposition state between the ground state with 
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probability amplitude a(t) and a wavefunction describing free electron or the continuum state, 

|𝜓𝑐(𝑡)⟩.  

|𝜓(𝑡)⟩ = 𝑎(𝑡)|0⟩ + |𝜓𝑐(𝑡)⟩ 
2.14 

Though the free electron together with the parent atom form a dipole moment, this is not the 

source of emitted EM radiation. Dipole acceleration is rather the contributing source of HHG 

[35].  This acceleration of the electron dynamics of this process is revealed numerically by 

direct integration of the TDSE. A simple example of the harmonic field made up of the of odd 

harmonics is shown in Fig 2:4 

 

Fig 2:4 Train of Attosecond Pulses [33]. 

This kind of pulse could experimentally be obtained through the following set up of HHG in 

Fig 2:5 

 

Fig 2:5 Experimental set up of Attosecond Pulses [18] 

-2 -1 0 1 2 

 harmonic field     harmonic intensity      fundamental field 
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2.3 Lewenstein Model 

It is the analytical quantum theory of HHG developed by Lewenstein [34]. The analytical 

analysis of this model is based on the SFA assumptions [59]. These assumptions include 

neglecting the contribution of all the excited bound states, the effect of the atomic potential on 

the motion of electron in the continuum and the depletion of the ground state [59].  

The majority of strong field effects can be understood at least qualitatively by this model which 

has less computational demand than numerically solving TDSE [59]. Using these SFA, the 

time-dependent wave function of Schrödinger equation can be expressed in the terms of ground 

state and continuum state [60], by considering an atom in SFA approximation in an intense 

field 𝐸(𝑡). This interaction of an atom with the intense field, linearly polarized in the x 

direction, can be described by TDSE in the length gauge, 

𝑖
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡 
= (𝐻(𝑡) + 𝑥𝐸(𝑡))𝜓 (𝑥, 𝑡), 

2.15 

where the Hamiltonian H is given as:  

𝐻(𝑡) = 𝐻0 + 𝑥. 𝐸(𝑡) 
2.16 

And  𝐻0 can be represented as the equation below 

𝐻0 = − 
1

2

∂2

∂x2
+  V(x), 

2.17 

where 𝑉(𝑥) denotes the atomic potential.  Therefore eq.2.17 determines the ground state of the system 

as; 

𝐻0|𝑔⟩ = −𝐼𝑝|𝑔⟩ 
2.18 

In the continuum electron is described as   

𝐻0|𝑘⟩ =
𝑘2

2
|𝑘⟩ 

2.19 

Where k is the momentum of outgoing electron. 

After transforming to the laboratory frame [60, 61], the induced dipole moment becomes, 
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𝐷𝑥(𝑡) = 𝑖

∫

 
 
 
𝑑𝜏(

𝜋

휀 +
𝑖𝜏
2

)

3
2

[𝑐𝑜𝑠𝜃 𝑑𝑧
∗(𝑡) + 𝑠𝑖𝑛𝜃 𝑑𝑦

∗ (𝑡)]

∞

0

× [𝑐𝑜𝑠𝜃 𝑑𝑧(𝑡 − 𝜏) + 𝑠𝑖𝑛𝜃𝑑𝑧(𝑡 − 𝜏)]𝐸(𝑡 − 𝜏)

× exp[−𝑖𝑆𝑎𝑡(𝑡, 𝜏)] 𝑎
∗ (𝑡)𝑎(𝑡 − 𝜏) + 𝑐. 𝑐, 

2.20 

 

where 휀 is small positive constant; 𝑎(𝑡) is the amplitude of the ground sate; 𝑑(𝑡) ≡ 𝑑[𝑃𝑠𝑡(𝑡, 𝜏) + 𝐴(𝑡)], 

𝑑(𝑡 − 𝜏) ≡ 𝑑[𝑃𝑠𝑡(𝑡, 𝜏) + 𝐴(𝑡 − 𝜏)] are transition-dipole moment between the ground and the 

continuum state, with P and A are canonical momentum and vector potential of the laser field 

respectively [60]; 𝑃𝑠𝑡(𝑡 − 𝜏) =  ∫ 𝐴t
′𝑑𝑡′/𝜏

𝑡

𝑡−𝜏
 is the momentum at the stationary point of the action. 

The quasi-classical action at the stationery point is  

𝑆𝑠𝑡(𝑡 − 𝜏) =  ∫ (
[𝑃𝑠𝑡(𝑡 − 𝜏) − 𝐴(t

′)]2

2
+ 𝐼𝑝)

𝑡

𝑡−𝜏

𝑑𝑡′ 
2.21 

Eq.2.20 and eq.2.21 are standard forms of equations in this model for the laser induced dipole moment 

[60]. Some of the SFA approximation will be extended in the next section of solving TDSE. 

The importance of this model is that most of the simulations are done under the SFA and with 

slight improvement with the inclusion of field and atom interaction term, one can now obtained 

justifiable results from direct simulation of TDSE [20]. 

 

This model predicts the cut off energy 𝐸𝑐,  

𝐸𝑐 = 3.17𝑈𝑝 + 𝐼𝑝, 
2.22 

where 𝑔 ≈ 1.3. This prediction of the cut off energy is slightly higher than that of the 3-step 

Model [34]. 

Another model is the gaussian. This model is useful when one wants to account for the effect 

of the initial spatial width of the wave function within the framework of the Lewenstein model 

[35]. 
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Atomic Units  

Since all calculations in this thesis are in atomic units. Table 2:1 Atomic Units [57] provides 

an overview of the units used in this work [57] 

Quantity  Atomic units [au] SI units [SI] 

ℏ  1 1.05457× 𝟏𝟎−𝟑𝟒𝐤𝐠 𝐦𝟐/𝐬 

𝐦𝐞  1 9.10939× 𝟏𝟎−𝟑𝟏𝐤𝐠 

E 1 1.6028× 𝟏𝟎−𝟏𝟗𝐀. 𝐬 

C 137.036 2.99792× 𝟏𝟎𝟖𝐦/𝐬 

Time 1 2.41888× 𝟏𝟎−𝟐𝐟𝐬 

Position 1 5.29177× 𝟏𝟎−𝟐𝐧𝐦 (𝐚𝟎: 𝟏 𝐁𝐨𝐡𝐫) 

Velocity 1 2.188× 𝟏𝟎𝟔𝐦/𝐬 

Electric field  1 5.1427× 𝟏𝟎𝟗/𝐜𝐦 

Frequency  1 4.1341× 𝟏𝟎𝟏𝟔𝐬−𝟏 

Energy 1 4.3597× 𝟏𝟎−𝟏𝟖𝐉(𝐇𝐚𝐭𝐫𝐞𝐞, 𝟐𝐑𝐲) =
𝟐𝟕. 𝟐𝟏𝟏𝒆𝑽 

Permittivity 1/4𝛑 8.8542× 𝟏𝟎−𝟏𝟐𝐀𝐬/𝐕𝐦 

Table 2:1 Atomic Units [57] 

2.4 Theoretical Model 

At the atomic time and space scales, the electron structure and electron dynamics description 

of the matter is fully governed by the laws of Quantum Mechanics. Typically, the study of the 

Quantum phenomena has been performed within the frame of the perturbative theory. It is a 

very good approximation in case that the coupling interaction potential of the system with an 

external field can be considered as a perturbation of the field-free Hamiltonian [21]. This 

theoretical approach has been quite successful to explain an ample range of experimental 

results [22, 24]. However, in case of ultrashort and ultra intense laser pulses, the interaction 

term can not be treated any more as a perturbation of the field-free Hamiltonian. A new and 

totally different theory needs to be developed in order to explain the experimental results in 

this regime. The most general treatment of the Quantum Mechanics is the Time Dependent 

Shrödinger Equation. It governs the time evolution of a wavefunction and with it, a 

quantification of the observables can be obtained. 

In order to fully obtain the characteristics of the XUV lasers, we are going to exploit more on 

quantum approach by studying more on time dependent Schrödinger equation (TDSE). TDSE 

carries more information of how ultrashort laser (femtosecond wave) interact with atoms or 
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molecules. In this thesis we will use this approach to numerically analyze laser atom 

interacting. 

This process is possible only if we solve TDSE equation [20, 37, 40]. The aim of this work is 

that we are going to consider a 1D TDSE in the form; 

𝑖 
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡 
= − 
1

2

𝜕2

𝜕𝑥2
𝜓(𝑥, 𝑡)  +  𝑉(𝑥)𝜓(𝑥, 𝑡)  + 𝐻𝐼𝜓(𝑥, 𝑡) 

2.23 

Where 𝜓(𝑥, 𝑡) is time-dependent wavefunction at position 𝑥 at time 𝑡, 𝑉(𝑥) is the atomic 

binding potential, coulomb potential, 𝐻𝐼 = −𝑥𝐸(𝑡) describes the atom-field interaction 

Hamiltonian within dipole approximation. 

The next section provides a brief description of numerical algorithms used for solving the 

TDSE, where the time dependent quantum evolution of a wavefunction is used to compute the 

observables of interest. TDSE simulation is a powerful tool to investigate quantitative details, 

especially the effects of excited levels and the atomic Coulomb potential as well as gaussian 

potential [36]. 
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Chapter3 Numerical Methods 

Over time, many numerical methods used for solving the Time Dependent Schrödinger 

Equation (TDSE) have been developed. Some of these methods utilizes the Single Active 

Electron (SAE) approximations and are briefly discussed below. 

3.1 Finite Difference Method 

This is a method that converts the nonlinear partial differential equations (PDE) e.g., TDSE 

into a linear matrix equation. This is done by using finite difference approximations [37]. 

This procedure transforms the region (where the independent variables in PDE are defined on) 

to a mesh grid of points where the dependent variables are approximated [37, 38]. However, 

this method is too slow and computationally heavy for its use to be justifiable [38]. 

3.2 Pseudo-spectral Method  

The fundamental concept of this method is to expand the solution function as a finite series of 

smooth basis functions [42]. For TDSE, the spatial parts of a wavefunction are discretized into 

grids by a synthetic scheme [40, 41].  

Unlike Finite Difference Method, Pseudo-spectral Method is computationally less intense and 

it produces highly accurate and stable solutions [39]. However, this method has up to 20% error 

in the measurement of intensity [62]. 

3.3 Crank-Nicolson Method  

This is a finite difference method developed by John Crank and Phyllis Nicolson in the mid 

20th century [20]. It is a second order method in time that can be written as an implicit Runge-

Kutta. Due to its numerical stability, it can be used for solving the heat equation as well as 

partial differential equations e.g., TDSE [43]. 
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3.4 Split Operator Method 

This method was developed by Feit and Fleck for solving TDSE [32]. It is one of the simplest 

and fastest methods for solving TDSE and it is widely used throughout modern quantum 

research, in particular when dealing with the Non-linear Schrödinger Equation (NLSE). it is 

the method used in this thesis and therefore its analytical derivation is shown below. 

We considered a 1-D TDSE given by;  

𝑖
𝑑

𝑑𝑡
|𝜓(𝑥, 𝑡)⟩ = �̂�|𝜓(𝑥, 𝑡)⟩ 

3.1 

Where Ĥ is Hamiltonian. The solution of the above equation can be expressed as 

|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ = 𝑈(𝑡, 𝑡 + ∆𝑡)|𝜓(𝑥, 𝑡)⟩ 
3.2 

 Where |𝜓(𝑥, 𝑡 + ∆𝑡)⟩ is the evolved wavefunction, |ψ(x, 𝑡)⟩ is the initial wavefunction, 𝑈(𝑡, 𝑡 +

∆𝑡) is the Evolution Operator and ∆𝑡 is the time interval or time step as referred to throughout 

this work. 

We used the Split Operator Method to solve eq.3.1 by first splitting the Ĥ as the sum of two; 

the kinetic energy operator (T) and potential energy operator (V). These operators acts on 

momentum and position space, respectively [44].  

Substituting the evolved wavefunction, |ψ(x, t + ∆t)⟩, in eq.3.2 into eq.3.1, the resulting 

equation is; 

|𝜓(𝑥, 𝑡)⟩𝑖ħ
𝑑

𝑑𝑡
𝑈 = 𝐻𝑈(𝑡, 𝑡 + ∆𝑡)|𝜓(𝑥, 𝑡)⟩ 

3.3 

This reduces to, 

𝑖
𝑑

𝑑𝑡
𝑈 =  𝐻𝑈(𝑡, 𝑡 + ∆𝑡) 

3.4 

which is a first order differential equation that can be solved as eq.3.5. 
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∫(
𝑑𝑈

𝑈
) = −𝑖Ĥ∫ 𝑑𝑡

𝑡+∆𝑡

𝑡

 
3.5 

Since ∆𝑡 is so small, the above integration solves to, 

𝑙𝑛𝑈 = − 𝑖Ĥ𝑡 
3.6 

Thus, giving the evolution operator in terms of Ĥ  as; 

𝑈(𝑡, 𝑡 + ∆𝑡) =  𝑒− 𝑖Ĥ∆𝑡 
3.7 

With this form of evolution operator, the evolved wavefunction in eq.3.2 now reads; 

|𝜓(𝑥, 𝑡 + ∆𝑡)⟩  =  𝑒− 𝑖Ĥ∆𝑡|𝜓(𝑥, 𝑡)⟩ 
3.8 

But Ĥ = 𝑇 + 𝑉. Therefore, eq.3.8 now reads; 

|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ =  𝑒− 𝑖( 𝑇+𝑉) ∆𝑡|𝜓(𝑥, 𝑡)⟩ 
3.9 

Since 𝑇 and 𝑉 are noncommutative, we used Baker-Campbell-Hausdorff approximation 

formula stated by eq.3.10 below [57]. 

𝑒( 𝑇+𝑉) ∆𝑡 = 𝑒𝛼𝑇 𝑒  𝛼𝑉𝑒− 
𝛼2

2
[ 𝑇,𝑉] 𝑒  

𝛼3

6
(2[𝑉[ 𝑇,𝑉]]+[𝑉[ 𝑇,𝑉]]) 𝑒−

𝛼4

24
(...[𝑇,𝑉]...)

 
3.10 

If ∆𝑡 → 0 𝛼 goes to zero with the order 0(∆𝑡2) or higher, eq.3.10 reduces to eq.3.11 below. 

𝑒( 𝑇+𝑉) ∆𝑡 = 𝑒𝛼𝑇 𝑒  𝛼𝑉 
3.11 

By applying this approximation on eq.3.10 and substituting 𝛼 = −𝑖∆𝑡, we get either eq.3.12 or 

eq.3.13. These two equations represent two main schemes of Split Operator Method,  

|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ = 𝑒− 
 𝑖𝑉
2
∆𝑡𝑒− 𝑖𝑇∆𝑡𝑒− 

 𝑖𝑉
2
∆𝑡|𝜓(𝑥, 𝑡)⟩ 

3.12 

and 
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|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ = 𝑒− 
 𝑖𝑇
2
∆𝑡𝑒−𝑖𝑉∆𝑡 𝑒− 

 𝑖𝑇
2
∆𝑡|𝜓(𝑥, 𝑡)⟩ 

3.13 

In this thesis we used the scheme governed by eq.3.12. This is because the last operation is in 

real space, hence requires a simple direct multiplication.  Scheme governed by eq.3.13 requires 

an extra step, i.e., Inverse Forward Fourier Transform (IFFT), to take the wavefunction to the 

real space. By applying Forward Fourier Transform (FFT), wave-packet can be transformed 

from position to momentum space [44]. 

Considering first scheme, eq.3.12, we first performed half step in the position space by 

multiplying the wavefunction with exponential of potential V as shown by eq.3.14. 

𝑒− 
𝑖
2
 𝑉∆𝑡|𝜓(𝑥, 𝑡)⟩ = |𝜓(𝑥, 𝑡)⟩′ 

3.14 

Secondly, before performing the full step in momentum space, we transformed the 

wavefunction from position to momentum by taking the FFT of the position wavefunction, 

|𝜓(𝑥, 𝑡)⟩′, from eq.3.14. The mathematical operation of this FFT is shown as; eq.3.15 results in 

a wavefunction is in momentum space.  

|𝜓(𝑝, 𝑡)⟩ = ℱ(|𝜓(𝑥, 𝑡)⟩′) =
1

2𝜋
∫(𝑑𝑥)|𝜓(𝑥, 𝑡)⟩′𝑒−𝑖 𝑝𝑥   

3.15 

Where the resulting wavefunction, |𝜓(𝑝, 𝑡)⟩ , is in momentum space. Therefore, eq. 3.12 now 

reads; 

|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ = 𝑒− 
𝑖
2
𝑉∆𝑡𝑒− 𝑖𝑇∆𝑡|𝜓(𝑝, 𝑡)⟩ = 𝑒− 

𝑖
2
 𝑉∆𝑡|𝜓(𝑝, 𝑡)⟩′ 

3.16 

Where |𝜓(𝑝, 𝑡)⟩′ = 𝑒− 𝑖𝑇∆𝑡|𝜓(𝑝, 𝑡)⟩ 

Finally, before performing a half step in position space in eq.3.18, we took IFFT of the 

momentum wavefunction, |𝜓(𝑝, 𝑡)⟩′, as shown by eq.3.17 

|𝜓(𝑝, 𝑡)⟩′′ = ℱ−′(|𝜓(𝑝, 𝑡)⟩′) =
1

2𝜋
∫(𝑑𝑥) |𝜓(𝑝, 𝑡)⟩′𝑒𝑖 𝑝𝑥   

3.17 
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|𝜓(𝑥, 𝑡 + ∆𝑡)⟩ =  𝑒− 
𝑖
2
𝑉∆𝑡|𝜓(𝑥, 𝑡)⟩′′ 

3.18 

The Fig 3:1 below is a simple schematic representation of Split Operator Method used for 

solving eq3.12. This figure represents a process of propagating a wavefunction through real 

space in step one, momentum space in step two and real space in step three. It is important to 

note FFT and IFFT are required to be performed between step one and two and step two and 

three, respectively. 

 

Fig 3:1 Schematic Representation of Split Operator Method 

The wavefunction in eq.3.18 can be used in the computation of the average kinetic energy, 

〈𝐸𝑘𝑖𝑛〉,  and average potential energy, 〈𝐸𝑝𝑜𝑡〉, of the electron.  

The kinetic energy T is given by: 

𝐸𝑘𝑖𝑛 = 𝑇 =
𝑝2

2𝑚
 

3.19 

Thus, 

〈𝐸𝑘𝑖𝑛〉  = ⟨𝜓(𝑥, 𝑡)|𝑇|𝜓(𝑥, 𝑡)⟩ 
 

〈𝐸𝑘𝑖𝑛〉  = ⟨𝜓(𝑥, 𝑡)|
𝑝2

2𝑚 |𝜓(𝑥, 𝑡)⟩ 

3.20 

Over pulse duration 𝑇𝑝, 〈𝐸𝑘𝑖𝑛〉 is given as; 
 

〈𝐸𝑘𝑖𝑛〉  = ∫ 𝜓∗(𝑥, 𝑡)∫(
𝑝2

2𝑚
)𝑑𝑥 𝜓(𝑥, 𝑡)

𝑇𝑝

0

 𝑑𝑡 
3.21 

And potential energy 𝑉 given by; 

Step1

(real 
space)

Step2

(momentum 
space)

Step3

(real 
space)
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𝐸𝑝𝑜𝑡 = 𝑉 = 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 −∫𝐸(𝑡) 𝑑𝑥, 
3.22 

is made up of the soft-core potential 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒, where 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 = −
1

√𝑥2+𝑎2
  with a soft-core 

parameter 𝑎 and electric field 𝐸(𝑡). This electric field takes the form given by eq.3.23 below. 

𝐸(𝑡) = 𝑓(𝑡)𝐸0 cos(𝜔𝑡 + 𝜑) 
3.23 

Where, 𝑓(𝑡) is the envelope and  𝐸0 is the amplitude of the Laser field. 

With electric field from eq.3.23 , Potential energy in eq.3.22 becomes;  

V = 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 − 𝑓(𝑡)𝐸0 cos(𝜔𝑡 + 𝜑)∫𝑑𝑥 

V = 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 − 𝑥𝑓(𝑡)𝐸0 cos(𝜔𝑡 + 𝜑) 

3.24 

Thus, average potential energy, 〈𝐸𝑝𝑜𝑡〉, is given by; 

〈𝐸𝑝𝑜𝑡〉  = 〈𝜓(𝑥, 𝑡)|𝑉|𝜓(𝑥, 𝑡)〉 
3.25 

Using eq3.24, this can be written as eq.3.26 below. 

〈𝐸𝑝𝑜𝑡〉  = ⟨𝜓(𝑥, 𝑡)| (−
1

√𝑥2 + 𝑎2
 −  𝑥𝐸01𝑓(𝑡)𝑐𝑜𝑠(𝜔𝑡 + 𝜑)) |𝜓(𝑥, 𝑡)⟩ 

3.26 

Whose average over a pulse duration 𝑇𝑝 is; 
 

〈𝐸𝑝𝑜𝑡〉  = −∫ (𝜓
∗(𝑥, 𝑡)∫ (

1

√𝑥2 + 𝑎2
 +  𝑥𝐸01𝑓(𝑡)𝑐𝑜𝑠(𝜔𝑡

𝑇𝑝

0

+ 𝜑))𝑑𝑥 𝜓(𝑥, 𝑡))  𝑑𝑡 

3.27 

 

3.4.1 Dipole Acceleration of the Atom 

The dipole acceleration is used to describe the ion-electron motion. This kind of acceleration 

is caused by the overlap of acceleration part of wavefunction and that in the core as well as the 

second derivative of the position of the electron density.  
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By Ehrenfest theorem [63], 

𝑚
𝑑

𝑑𝑡
〈𝑥〉 = 〈

𝜕𝑥

𝜕𝑡
〉𝑡 + 𝑖〈[𝐻, 𝑥]〉 

3.28 

where [𝐻, 𝑥] = 𝐻𝑥 −  𝑥𝐻 is the commutator relation between H and x.  

To calculate the dipole acceleration, we first start with the Hamiltonian equation below. 

𝑚
𝑑2𝑥

𝑑𝑡2
= −
𝜕𝐻(𝑥, 𝑡)

𝜕𝑥
 

3.29 

But since m is in atomic units, the dipole acceleration can be stated as;  

𝑑2𝑥

𝑑𝑡2
= −
𝜕𝐻(𝑥, 𝑡)

𝜕𝑥
, 

3.30 

which can simply be written as; 

𝑑𝑎𝑡 = −
𝜕𝐻(𝑥, 𝑡)

𝜕𝑥
 

3.31 

The average or the expectation value of this dipole acceleration is given by;   

〈𝑑𝑎𝑡〉 = − ⟨𝜓(𝑥, 𝑡)|
𝜕𝐻(𝑥, 𝑡)
𝜕𝑥

|𝜓(𝑥, 𝑡)⟩ 
3.32 

Where,  

𝐻(𝑥, 𝑡) =  𝑇𝑖𝑜𝑛 𝑘 + 𝑉𝑎𝑡𝑚 + 𝑇𝑒𝑙 + 𝐻1 
3.33 

and 𝑇𝑒𝑙 is the kinetic energy of electron, 𝑉𝑎𝑡𝑚 is the atomic potential, 𝑇𝑖𝑜𝑛 𝑘  is the ion kinetic 

energy and 𝐻1 is the atom-field interaction Hamiltonian term 

While the electron is in motion due to the laser field, the atom is stationary and therefore the 

following relations holds;  
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𝑇𝑖𝑜𝑛 =  0 
3.34 

𝑇𝑒𝑙 =
𝑝2

2
 

3.35 

With these relations the Hamiltonian in eq.3.33 reduces to, 

𝐻(𝑥, 𝑡) = 𝑉𝑠 + 𝑇𝑒𝑙 + 𝐻1 
3.36 

Where, 𝑉𝑠  is the atomic potential. Therefore, in terms of a softcore parameter this can be written 

as; 

𝑉𝑠 = −
1

√𝑥2+𝑎0
2
 

3.37 

Where a0 is soft-core parameter. The reason for using the soft-core potential rather than the 

coulomb potential is to avoid getting infinite values at the origin. The soft-core parameter used 

in this thesis is 0.3282, a value that converges at the ground sate energy of hydrogen, −0.5𝑎. 𝑢, 

as it will be shown in chapter four of this thesis.  

To gather for atom-laser interaction, we introduced the atom interaction term which takes the 

form,  

𝐻𝐼 = −𝑥𝐸(𝑡) 
3.38 

as already stated in this chapter. Since this thesis employs the use of double IR laser pulse, it 

is important to note that the electric field 𝐸(𝑡) for the primary laser is given by; 

𝐸(𝑡) = 𝐸01𝑓(𝑡) 𝑐𝑜𝑠(𝜔𝑡) 
3.39 

and the secondary laser it is expressed as; 
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𝐸(𝑡) = 𝐸02𝑓(𝑡 − 𝜏) 𝑐𝑜𝑠(𝜔(𝑡 − 𝜏)  +  𝜙𝑐𝑒) 
3.40 

Where 𝜙𝑐𝑒 and 𝜏 are phase shift or Carrier Envelope Phase (CEP) and time delay between the primary 

and secondary lasers, respectively. All other terms still hold as used in the previous chapters of this 

thesis. 

For the coupled lasers, the resulting laser field reads 

𝐸(𝑡) = 𝐸01𝑓(𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 𝐸02𝑓(𝑡 − 𝜏) 𝑐𝑜𝑠(𝜔(𝑡 − 𝜏) + 𝜙𝑐𝑒) 
3.41 

Where 𝑓(𝑡) is the temporal envelope of each IR pulse, 𝐸01 and 𝐸02 are amplitudes of the 

primary and secondary lasers, respectively. 

If we consider the primary laser in eq.3.32 and associated Hamiltonian of the form; 

𝐻(𝑥, 𝑡) =  
𝑝2

2𝑚
−

1

√𝑥2+𝑎0
2
− 𝑥𝐸01 𝑓(𝑡) 𝑐𝑜𝑠(𝜔𝑡) 

3.42 

The resulting equation is; 

〈𝑑𝑎𝑡〉𝑡 = − ⟨𝜓(𝑥, 𝑡)|
𝑑
𝑑𝑥
[
𝑝2

2𝑚 − 
1

√𝑥2 +  𝑎0
2
− 𝑥𝐸𝑝] |𝜓(𝑥, 𝑡)⟩ 

3.43 

Where 𝐸𝑝 is the primary laser field. 

After differentiating the inside square brackets eq.3.43 becomes, 

〈𝑑𝑎𝑡𝑝〉(𝑡) = − ⟨𝜓(𝑥, 𝑡)|
𝑥

𝑥2  +   𝑎0
2 |𝜓(𝑥, 𝑡)⟩ + 𝐸𝑝 

3.44 

The expectation value of dipole acceleration for secondary laser is given as; 
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〈𝑑𝑎𝑡𝑠〉 = − ⟨𝜓(𝑥, 𝑡)|
𝑑
𝑑𝑥
[
𝑝2

2 − 
1

√𝑥2 +  𝑎0
2
− 𝑥𝐸𝑠] |𝜓(𝑥, 𝑡)⟩ 

3.45 

Where, 𝐸𝑠 is the secondary laser field. 

Therefore, this equation can be written as; 

〈𝑑𝑎𝑡〉 = − ⟨𝜓(𝑥, 𝑡)|
𝑥

𝑥2  +   𝑎0
2 |𝜓(𝑥, 𝑡)⟩ + 𝐸𝑠  

3.46 

For the two coupled or combined lasers, 

〈𝑑𝑎𝑡𝑐〉 = − ⟨𝜓(𝑥, 𝑡)|
𝑥

𝑥2  +   𝑎0
2 |𝜓(𝑥, 𝑡)⟩ + (𝐸𝑐) 

3.47 

3.4.2 HHG Spectrum Generated by an Ultrashort Laser Pulse 

The HHG spectrum is obtained from the FFT of dipole acceleration, 𝑑𝑎𝑡 [45]. FFT is a 

mathematical transformation that decomposes a function into frequency components [44]. This 

process of obtaining HHG Spectrum is given by eq.3.48.  

𝐻𝐻𝐺𝜔 = |ℱ{𝑑𝑎𝑡}|
2 

3.48 

Numerically, this is calculated as; 

𝑓1(𝜔) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥
∞

−∞

 
3.49 

Where 𝑓1(𝜔) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 〈𝑑𝑎(𝜔)〉 and 𝑓(𝑥) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 〈𝑑𝑎(𝑡) 〉. With these substitutions, 

eq.3.49 now reads; 
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〈𝑑𝑎(𝜔)〉 =
1

√2𝜋
∫ 𝑑𝑎(𝑡)𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

 
3.50 

Applying this on equations; eq.3.44, eq.3.45, and eq.3.47, we obtained the following equations; 

〈𝑑𝑎(𝜔𝑝)〉 =
1

√2𝜋
(∫ [− ⟨𝜓|

𝑥
𝑥2  +   𝑎0

2 |𝜓⟩] 𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

+∫ [𝐸𝑝]𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

) 
3.51 

and  

〈𝑑𝑎(𝜔𝑐)〉 =
1

√2𝜋
(∫ [− ⟨𝜓|

𝑥
𝑥2  +   𝑎0

2 |𝜓⟩] 𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

+∫ [𝐸𝑐]𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

), 
3.52 

respectively. These equations represent average dipole acceleration of electron in primary, i.e., 

single IR laser and coupled laser fields.  

In the event that electron motion is controlled by a fundamental or the primary laser, single IR 

laser, the HHG spectrum is given by the equation; 

 𝐻𝐻𝐺𝜔𝑝 = |
1

√2𝜋
(∫ [− ⟨𝜓|

𝑥

𝑥2 +  𝑎0
2 |𝜓⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+ ∫ [𝐸𝑝]𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0
)|

2

 

  = |
1

√2𝜋
(∫ [−∫  𝑑𝑥 ⟨𝜓(𝑥, 𝑡)|𝑥⟩ 

𝑥

𝑥2 +  𝑎0
2  ⟨𝑥|𝜓(𝑥, 𝑡)⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+

 ∫ 𝐸𝑝𝑑𝑡
𝑇𝑝

0
)|

2

 

= |
1

√2𝜋
(∫ [−∫  𝑑𝑥 |⟨𝑥|𝜓(𝑥, 𝑡)⟩|2  

𝑥

𝑥2  +   𝑎0
2 ] 𝑒

−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

+ ∫ 𝐸𝑝𝑑𝑡
𝑇𝑝

0

)|

2

 

3.53 
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While for the coupled or combined laser fields, the HHG Spectrum is given 

as; 

 

 𝐻𝐻𝐺𝜔𝑐 = |
1

√2𝜋
(∫ [− ⟨𝜓|

𝑥

𝑥2 +  𝑎0
2 |𝜓⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+ ∫ [𝐸𝑐]𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0
)|

2

 

 = |
1

√2𝜋
(∫ [−∫  𝑑𝑥 ⟨𝜓(𝑥, 𝑡)|𝑥⟩ 

𝑥

𝑥2 +  𝑎0
2  ⟨𝑥|𝜓(𝑥, 𝑡)⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+

 ∫ 𝐸𝑐𝑑𝑡
𝑇𝑝

0
)|

2

 

 = |
1

√2𝜋
(∫ [−∫  𝑑𝑥 |⟨𝑥|𝜓(𝑥, 𝑡)⟩|2  

𝑥

𝑥2 +  𝑎0
2 ] 𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0

+ ∫ 𝐸𝑐𝑑𝑡
𝑇𝑝

0
)|

2

 

3.54 

Where 𝐻𝐻𝐺𝜔𝑝 and 𝐻𝐻𝐺𝜔𝑐 are high harmonic spectra for primary and coupled lasers, 

respectively. The results obtain from above equations of HHG spectra agree with the 

predictions of Three Step Model with slight This will be seen clear in chapter five but a simple 

example of this over estimation is shown below.   

An example of harmonic spectrum for a hydrogen atom irradiated by a Ti: Sapphire laser pulse 

with a wavelength of 800 nm (𝜔 = 1.55𝑒𝑉) and a peak intensity of 1.6 × 1014W/cm2is shown 

in the Fig 2:2. The laser field E(t) was of the form, 𝐸(𝑡) = 𝑓(𝑡)𝑠𝑖𝑛(𝜔𝑡), where the field 

envelope f(t) corresponds to a, 8-cycle flat-top pulse with a half-cycle turn-on and turn-off. It 

is clear that the spectrum has peaks at odd harmonic orders, as is experimentally observed, and 

the cutoff energy predicted by the cutoff law [46]. 

 

Fig 3:2 Experimental set up of Attosecond Pulse [18] 
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To prove the experimental results above, the calculation of the order of the cut off using eq.2.9 

is necessary. 

From quantum mechanics it is well known that energy is quantize, integer multiples of 

frequency, i.e.,  𝐸 = 𝑛𝜔 where 𝑛 = 1, 2, 3, … ,𝑁. Therefore, 

𝑛𝜔 = 𝐼𝑝 + 3.17𝑈𝑝 
3.55 

from eq.2.8 

Up[eV] = 𝐼 4𝜔2⁄  

The atomic unit of laser intensity is 

𝐼0 = 1𝑎. 𝑢 =
1

2
휀0𝑐𝐸

2 =  3.54 × 1016𝑊. 𝑐𝑚−2   

Hence, I in atomic units is; 

𝐼 =
1.6×1014

3.54×1016
= 4.52 × 10−3  

𝑈𝑝 =
4.52×10−3

4(0.057)2
 = 0.3477   

Substituting Up in eq.3.55 one gets; 

𝑛ω =  |𝐼𝑝| + 3.17 (0.3477 )  

And with 𝐼𝑝 = 0.5𝑎. 𝑢 and 𝜔 =  0.057𝑎. 𝑢, the Harmonic order n can be deduced as; 

𝑛 =
0.5+3.17(0.3477 )

0.057
≈  33  

This result, 𝑛 ≈  33, approximately predicts the experimental results in the experimental one, 

𝑛 ≈  32 in Fig 3:2. 

The ponderomotive potential associated with the field is the energy that the oscillating laser 

field can give to an electron in it. It is the energy of the propagating electron in the laser field. 

This energy is obtained through the real time propagation of the wavefunction as it will be 

described in the forthcoming chapter on results and discussions.   
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From the above, we have established how to obtain ponderomotive energy and to predict the 

experimental results of HHG spectrum using Three Step Model. Another important aspect 

discussed is the dipole acceleration which is the basis of computing HHG spectra. 

Having described the laser-atom interaction, the next section is dedicated to bring insight of 

photons produced during the recombination process. In this work we considered a single and 

double IR laser pulses interacting with an atom simultaneously. The result of such interaction 

is a pulse in an attoseconds timescale. This pulse commonly known as Attosecond Pulse (ATP), 

is shown in Fig 3:3 below. 

 

Fig 3:3 Temporal profile a Single Attosecond Pulse [31]. 
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Chapter4 Attosecond Pulses  

As discussed in chapter one, many applications of the Attosecond Pulse Train’s (ATP) have 

been enabled by the availability of controlled attosecond pulses in form of XUVs. These pulses 

are either produced as Attosecond Pulse Train (APT) or Isolated Attosecond Pulse (IAP). To 

be able to produce these types of pulses using time delayed and identical IR pulses, it is 

necessary to first explore various methods. 

The aim of this chapter is to provide insights on characterization and production of ATPs using 

double IR laser pulses, but as stated above, the following subsection is dedicated for exploring 

other methods used. Owing to some similarities with double IR pulses, the Two-color mixing 

is one of the methods described in detail [47]. 

4.1 Isolated Attosecond Pulse (IAP)  

To observe electron dynamics in molecules and atoms on the attosecond timescale, single 

Isolated Attosecond Pulse (IAP) is utilized in performing pump–probe experiments. However, 

by manipulating the 3-step Model regimes; ionization, acceleration and recombination, many 

methods of generating IAP have been developed. These methods includes; Ionization Gating, 

where an IAP is generated by controlling the ionization process [47] and Polarization Gating, 

where the recombination process is manipulated through controlling displacement of electron 

due to polarization; if the displacement is so large the recombination is difficult [48, 49]. 

4.2 The Two-color Mixing  

This method involves mixing of two lasers, a fundamental and a secondary laser, with different 

sets of parameters like wavelengths. By adjusting the wavelengths of these lasers, IAP can be 

generated through suppression of multiple pulse transient [50]. A secondary laser field of a 

lower wavelength has a constructive interference at the second or third peak when mixed with 

the fundamental field. Unfortunately, this kind of wavelength for a secondary laser does not 

favour the generation of a broader plateau. Therefore, a secondary laser field of a higher 

wavelength tend to be used [51]. 
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4.2.1 Essential Conditions of a Driving Laser Field for Creating IAP 

As explained in chapter two, High-order Harmonic Generation (HHG) is due to recombination 

process of an electron and its parent ion. This process happens within half cycle of oscillating 

electric field, where, electron leaves and accelerates back in the continuum to its parent atom. 

However, when a multicycle laser field is used instead, the temporal structure of the harmonics 

will see a pulse train formation. Therefore, to create IAP, it is necessary to confine the driving 

laser field to a few optical cycles of around 5 𝑓𝑒𝑚𝑡𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑓𝑡) or less, 𝑇𝑝 <

 5 𝑓𝑒𝑚𝑡𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑓𝑡) [52]. When the pumping pulse have a few-cycle electric field, the 

photon energy near the cut-off region of HHG can be confined to one half of the electric field 

at the central peak [53]. Therefore, by extracting the cut-off components of the high harmonics 

beam, it is possible to obtain an IAP. 

As mentioned in chapter two, the deterministic factors of this pulse, i.e., the Carrier Envelop 

Phase (CEP) and electric field E(𝑡) at time t are given by the relation; 

𝐸(𝑡) = 𝐸1𝑒
−2𝑙𝑛(

𝑡
𝜏0
)
2

𝑐𝑜𝑠(𝜔1𝑡 +  𝜙𝑐𝑒) 
4.1 

With regards to double IR pulses, this relation can be modified to; 

𝐸(𝑡) = 𝐸2𝑒
−2𝑙𝑛(

𝑡
𝑇
)
2

𝑐𝑜𝑠(𝜔2𝑡 +  𝜙𝑐𝑒) + 𝐸2𝑒
−2𝑙𝑛(

𝑡−𝜏
𝑇
)
2

𝑐𝑜𝑠(𝜔2𝑡 +  𝜙𝑐𝑒) 
4.2 

Where, 𝜏 is the delay time between the main field laser and the supplementary or secondary 

field laser and 𝜙𝑐𝑒 is the phase shift. The other terms still hold as previously used. 

When 𝜙𝑐𝑒 changes shot by shot, the structure of the electric field also changes. This effect 

leads to the generation of Attosecond Pulse Train (APT). A prototypical example of APT is 

displayed in Fig 4:1.   

 

Fig 4:1 Attosecond Pulse Trains (APT) [31]. 
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4.2.2 Continuum Analysis  

This analysis is fundamental for the optimization of the laser wavelengths in Two Color (TC) 

mixing. The ratio R of the TC field is defined as; 

𝑅 =
𝐸1𝑠𝑡
𝐸2𝑛𝑑

 
4.3 

Where 𝐸1𝑠𝑡 denotes the strongest amplitude of the TC field, while 𝐸2𝑛𝑑 denotes the second 

strongest amplitude. Another important factor considered during this analysis is the intensity 

difference ratio 𝛿𝑑, which is defined as;  

𝛿𝑑 =
𝐸1𝑠𝑡
2− 𝐸2𝑛𝑑

2

𝐸1𝑠𝑡
2  

4.4 

The two ratios, 𝑅 and 𝛿𝑑, are bounded by the fact that large values of R results in greater values 

of 𝛿𝑑. This fact leads to a longer continuum length thereby creating a shorter attosecond pulse 

duration [52]. The importance of this relation is that it helps determine the type of colors used 

as components of the TC field. 

Due to the availability of 800nm laser, the wavelength of the first color field is fixed at 800nm. 

Depending on the fact that longer driving wavelengths extends the cut-off [54] and decreases 

the efficiency of HHG process [55], the wavelength ranging from 300nm to 2800nm tend to be 

used as the second color field laser. An example on how electric field changes in TC mixing is 

shown in Fig 4:2 

 

Fig 4:2 The Electric Field of Single and Mixed Laser field [31] 
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In Fig 4:2, 𝐸1𝑠𝑡, 𝐸2𝑛𝑑 and 𝐸3𝑟𝑑 are in order of strongest to the least electric field peak, 

respectively.  

Having briefly described how to generate an attosecond pulse by Two-color mixing, the next 

section introduces the methodology of generating ATP using double IR pulse.  

4.3 Methodology  

This section is purposely for building up all the required parameters and procedures for a 

successful simulation of our results. When the induced femtosecond laser interacts with the 

Hydrogen H atom, it ionizes forcing detachment of the electron. This electron is accelerated in 

continuum by electric field which is reinforced by identical secondary laser. Eventually this 

electron recombines with the parent atom. To study this recombination process, we ran a 

simulation for the emission spectra. 

Before running the simulation, we start with the process of modelling an environment that will 

act as defining modulators of our propagation. This consists of the momentum space that 

describes electron kinetic energy in the continuum, the position space that describes the 

position of the electron wave packet and time grid that describes instantaneous time of electron.   

4.3.1 Position Grid  

The grid size 𝐿𝑥, along the electronic coordinates was designed to allow full oscillation of 

electron in the electric field. Here we chose 𝐿𝑥 =  7 to represent the maximum range from −2𝛼 

to 2𝛼, where 𝛼 = 1.0 

The length L, therefore, becomes; 

𝐿 = 2𝜋𝐿𝑥 
4.5 

By letting the boundary positions to be 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥 or −
𝐿

2
 and 

𝐿

2
, respectively, the position 

at any instant is given by; 
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𝑋𝑛 = 𝑋𝑚𝑖𝑛 +  𝑛∆𝑥 
4.6 

With n (points) = 0, ..., 𝑁𝑥 −  1, 𝑁𝑥 is the total grid points (86 points) and ∆𝑥 is the electronic 

spacing.  

4.3.2 Momentum Grid 

The momentum was defined as −𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑎𝑥 representing minimum and maximum 

momenta, respectively. In terms of electronic spacing, these momenta were given as; 

𝑝𝑚𝑎𝑥 =
𝜋

∆𝑥
 

4.7 

and 

𝑝𝑚𝑖𝑛  = −
𝜋

∆𝑥
 

4.8 

At any point, momentum p is given by;  

𝑝𝑖 = 𝑝𝑚𝑖𝑛  +  𝑛∆𝑝 
4.9 

With 𝑝𝑚𝑖𝑛 = −𝑝𝑚𝑎𝑥, momentum spacing ∆𝑝 =  
𝑝𝑚𝑎𝑥  − (−𝑝𝑚𝑎𝑥)

𝑁𝑥
. It is also important to note 

that the momentum grid was split into two lines, one that is going from −𝑝𝑚𝑎𝑥 to 0 and from 

0 to 𝑝𝑚𝑎𝑥. This is because we have two maxima with both having 0 as 𝑝𝑚𝑖𝑛. 

4.3.3 Temporal Grid 

We considered different temporal grids, the imaginary time propagation, the real time 

propagation and the time for spectrum computation.  

In real time space we used the number of timesteps 𝑁𝑡 , of 1600 and 4800. With the time grid 

size of [0, 𝑡𝑚𝑎𝑥], the timestep ∆𝑡 = (
𝑡𝑚𝑎𝑥

𝑁𝑡
). Therefore, time in real space is given by; 
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𝑡 = 𝑡0 + 𝑘∆𝑡 
4.10 

where k =  0, 1, 2, . . . , 𝑁𝑡 − 1 and 𝑡0 = 0. 

In the imaginary time propagation, we set 𝑡 ⟶ −it and ∆𝑡 ⟶ − 𝑖∆𝑡. Therefore, the imaginary 

time is given by; 

t = 𝑡0 − 𝑖𝑘∆𝑡  
4.11 

where 𝑖 is complex number.   

It is important to note that this imaginary time propagation will be used in the simulation of 

ground state energy of the system, the hydrogen atom.  

 

4.4 Absorbing Barriers 

Since the wavefunction is too large, we set an absorbing barrier in such a way that it confines 

this wavefunction and prevents its reflection and reentering of ghost wavefunction at the 

endpoints of the spatial grid. This absorbing barrier is a potential added to the laser for damping 

action of the electron motion near the grid boundaries. 

Here, we used an optical barrier of the form; 

𝑉𝑜𝑝𝑡 = −𝑖 [𝜃(𝑥 − 𝑥1) (
𝑥 − 𝑥1
𝑥𝑚𝑎𝑥 − 𝑥1

)
2

−  𝜃(𝑥2 −  𝑥) (
𝑥 − 𝑥2
𝑥𝑚𝑖𝑛  +  𝑥2

)
2

] 
4.12 

Where 𝑥1= 𝑥𝑚𝑎𝑥 −
5𝜋 𝐿𝑥

10
,  𝑥2 = 𝑥𝑚𝑖𝑛 + 

5𝜋 𝐿𝑥

10
, and 𝜃 is the Heaviside function controlling the 

absorption of the wavefunction. 
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Fig 4:3 Potential Barrier 

This Heaviside function, usually set to 0.5, must not be too large to allow reflection of the wave 

packet and at the same time not too small to permit reentering of a ghost wave packet. 

Therefore, it is important to note that this potential is imaginary and is added to the laser 

potential for damping action of electron approaching grid boundaries. 

4.4.1.1 Soft-core Coulomb Potential 

Normally, the coulomb potential of hydrogen H atom is given as; 

𝑉 = −
𝑒

4𝜋𝜖0𝑥
 

4.13 

In atomic units this equation can simply be stated as; 

𝑉 = −
1

𝑥
 

4.14 

But in order to avoid singularity at the origin, we introduced a soft-core parameter modifying 

this potential as a softcore potential of the form;  
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𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 = −
1

√𝑥2 + 𝑎0
2
 

4.15 

 

Fig 4:4 Soft-core Coulomb Potential. 

Where a softcore parameter 𝑎0, is set to 0.3282. Besides being chosen to avoid singularity of 

potential at the origin, at 𝑥 = 0, this parameter makes the system converge at the Ground State 

Energy 𝐸𝑔 = −0.5𝑎. 𝑢, which is exactly the ground state energy for hydrogen H atom. 

Moreover, a0 has been verified to have some significance on plateau where, smaller values of 

this soft-core parameter give rise to broader plateau, as compared to larger values [64].   

4.4.2 Gaussian Potential  

For the purpose of comparison with the Softcore Coulomb potential we considered the 

Gaussian potential of the form  

𝑉(𝑥)  =   −1.1𝑒𝑥𝑝(−𝑥2/𝜎2) 
4.16 

where σ2 is gaussian parameter.  
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Fig 4:5 Gaussian Potential with 𝜎2 = 1.21 

The Gaussian potential has only a single bound-state unlike the soft-core coulomb potential 

which allows for a Rydberg series.  

  

Fig 4:6 Gaussian and Coulomb Potential. 

This is shown clearly in Fig 4:6. Both potentials did not change over widely spread grid since 

the potentials could only depend on the choice of coulomb and gaussian parameters used. 

4.4.2.1   Imaginary Time Propagation of The Wavefunction 

The initial wavefunction was chosen to take the gaussian form in eq.4.17. 
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𝜓(𝑥, 0) = 𝑒−
𝛼𝑥2

2  
4.17 

 

Fig 4:7 Normalized Initial Wavefunction with higher Spatial Grid points. 

This Fig 4:7 shows that the electron was initially at the origin with the probability of 0.55.  

Having defined the atomic and barrier potential, the total potential now takes; 

𝑉 → 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 + 𝑉𝑜𝑝𝑡 
4.18 

This potential was used in computation of the ground state energy of the system, H atom. The 

ground state energy is obtained when the imaginary time propagation is converged, that is when 

the energy does no longer changes. Therefore, as stated before, 

∆𝑡 → −𝑖∆𝑡 
4.19 

Hence, eq.3.13 becomes;    

𝜓𝑖𝑚𝑔(𝑥, 𝑡) = 𝑒
− 
𝑉
2
   ∆𝑡𝑒− �̂� ∆𝑡 𝑒− 

𝑉
2
   ∆𝑡𝑒−

𝛼𝑥2

2  
4.20 

Where 𝜓𝑖𝑚𝑔(𝑥, 𝑡) is the imaginary time propagated wavefunction. 

Since the propagting wavefunction hoops between the real and momentum space, we perfomed 

the action of eq.3.14 to eqn.3.18 on eq.4.20 and the result is the normalized wavefunction 

shown in Fig 4:8 below. 
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Fig 4:8 Propagated Wavefunction. 

The Fig 4:8 shows that after relaxing the system through imaginary time propagation, the probability 

of the electron being at the origin is 0.10 

It is clear that initial and propagated wavefunctions have different probabilities of electron being at the 

origin. This is shown in Fig 4:9 below. 

 

Fig 4:9 Both Initial (red) and Propagated (blue) Wavefunctions. 

 

In Fig 4:9, the red line represents the initial wavefunction with the probability of finding an 

electron at the origin being 0.55. When this wavefunction is propagated through imaginary 

time, we obtained the propagated wavefunction in blue with the probability of finding an 

electron at the origin dropping to 0.1. Because it suffers less dumping compared to initial 

wavefunction, the propagated wavefunction results in the ground state energy in Fig 4:10.  
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4.4.2.2 Ground State Energy  

This is the initial state of our computation i.e., obtaining the ground state of system. This can 

also be referred to as the ionization energy of the H atom. As stated above, this computation is 

done through the imaginary time propagation. 

We computed the kinetic and potential energy of the H electron by using eq.3.21 and eq.3.27. 

Therefore, the ionization energy, 𝐼𝑝 now reads; 

𝐼𝑝 = 〈𝐸𝑘𝑖𝑛〉 + 〈𝐸𝑝𝑜𝑡〉 
4.21 

𝐼𝑝 now represents the total energy of the electron in  Fig 4:10 below. The plot shows that indeed 

the atomic species is H atom. 

 

Fig 4:10 Energy of the system as a function of time t. 

In Fig 4:10, the electron’s initial energy was approximately 2.5a.u, but after about 2a.u time of 

propagation the system was well relaxed. Hence, we obtained the Ground State Energy of 

−0.5𝑎. 𝑢 which indeed corresponds to Ground State Energy of H atom. As discussed before, 

the choice of the soft-core parameter i.e., 0.3282 was significant in ensuring convergence of 

energy at −0.5𝑎. 𝑢.     

4.4.3 Laser Irradiation  

The coupled laser field takes the form; 

𝐸(𝑡)  = 𝐸1𝑓(𝑡)𝑠𝑖𝑛(𝜔1𝑡 − 𝜙𝑐𝑒) + 𝐸2𝑓(𝑡)𝑠𝑖𝑛(𝜔2(𝑡 + 𝜏) − 𝜙𝑐𝑒)),  
4.22 

and the characteristics of the two lasers used as are given below. 
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Primary Laser 

As discussed in chapter three primary laser had the form; 

𝐸(𝑡)  = 𝐸1𝑓(𝑡)𝑠𝑖𝑛(𝜔1𝑡 − 𝜙𝑐𝑒) 
4.23 

Where 𝑓(𝑡) = 𝑐𝑜𝑠2 (
𝑡

𝑇𝑝
) is the envelope, 𝑇𝑝(𝑝𝑢𝑙𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = nc1 × T(pulse length), 𝜔1 =

2𝜋𝑐

𝜆1
, 

𝑇 =
2𝜋

𝜔1
  and 𝐸1 = √

2×𝐼

𝜀0𝑐
 . 

Primary laser had the following specific characteristic parameters; 

Intensity I 𝟐 × 𝟏𝟎𝟏𝟒𝐖/𝐜𝐦𝟐  0.0057a.u 

Wavelength 𝝀𝟏 800nm 0.057a.u 

Optical cycles 𝐧𝐜𝟏 10 optical cycles 10 

 𝐸1 = √
2×1014

3×1016
 

Secondary Laser 

𝐸2𝑓(𝑡)𝑠𝑖𝑛(𝜔2(𝑡 + 𝜏) − 𝜙𝑐𝑒)) 
4.24 

 

Secondary laser is the replica of the primary laser and had same characteristics has shown 

below. 

Intensity I 𝟐 × 𝟏𝟎𝟏𝟒𝐖/𝐜𝐦𝟐  0.0057a.u 

Wavelength 𝛚𝟏 800nm 0.057a.u 

Optical cycles 𝐧𝐜𝟏 10 optical cycles 10 

 

Here E2 = E1  

Here, ϕce was zero and the results were obtained different values of τ ,i.e., 0.0a.u, 400a.u and 

1250a.u.  

After defining the atomic environment and the ground state energy of the system, the following 

subsection gives the wavefunction with a redefined system potential.   
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4.4.3.1  System Potential  

For the next sections we took into consideration the laser potential and now potential reads; 

𝑉 → 𝑉𝑠𝑜𝑓𝑡 𝑐𝑜𝑟𝑒 + 𝑉𝑜𝑝𝑡 + 𝑉𝑙𝑎𝑠𝑒𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 
4.25 

Unlike potential in eq.4.18, this potential accounts for laser-atom interaction by including 

𝑉𝑙𝑎𝑠𝑒𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙. 

4.4.3.2  Real Time Propagation 

The real time propagation of the wavefunction is essential for simulating the energy of the 

accelerating electron. This wavefunction takes the form of eq.4.26 shown below. 

𝜓(𝑥, 𝑡 + ∆𝑡) =  𝑒− 
𝑉

2
 𝑖∆𝑡𝑒− 𝑇𝑖∆𝑡 𝑒− 

𝑉

2
 𝑖∆𝑡𝛹𝑖𝑚𝑔   

4.26 

Where 𝜓(𝑥, 𝑡) is the real time propagated wavefunction and 𝛹𝑖𝑚𝑔 the initial wave function or the 

ground state wave function resulting from the imaginary time propagation.  

We then performed the action of eq.3.14 to eq.3.18 of the Split Operator Method to simulate 

the result of eq.4.26. 
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Chapter5 Results and Discussions 

 

5.1.  Energy of an Accelerating Electron  

After ionization, the electron accelerates in the continuum attaining energy commonly known 

as the ponderomotive energy 𝑈𝑝. This energy is influenced by the laser field under which an 

electron oscillates. In this work we considered three kinds of laser fields: (i) a single IR laser 

field, (ii) a delayed double IR laser field, and (iii) a non-delayed double IR laser field.  

This energy can be computed through the real time propagation of wavefunction. Therefore, 

the total energy of electron in the oscillating field is given as; 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑝 = 〈𝐸𝑘𝑖𝑛〉 + 〈𝐸𝑝𝑜𝑡〉 
5.1 

Where 𝑈𝑝 now represent the energy of accelerating electron. 

Starting with the first case where the atom is in a Single IR laser field, the energy of an 

accelerating electron is shown in Fig 5:1. 

 

Fig 5:1 Energy of Accelerating Electron due to a Single Laser Field. 
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From Fig 5:1, it is clear that after ionization, - 0.5a.u, accelerating electron attained an average 

energy of 1.25a.u. 

For the second case where the atom is in a non-delayed double IR laser field, the energy of 

accelerating electron is shown in Fig 5:2. 

 

Fig 5:2 Energy of Accelerating Electron due to Douple IR Pulse. 

From Fig 5:2 above, it is clear that after ionization, - 0.5a.u, the electron gained energy up to 

an average energy of 8a.u. Here, it is important to note that the two laser pulses were coupled 

with no time delay.  

Considering the third case where the atom is in a delayed double IR laser field, the energy of 

the propagating electron is shown in Fig 5:3 below. It is important to note that this plot was 

computed with time delay of 𝜏 = 300 a.u. 

 

Fig 5:3 Energy of Accelerating electron due to 2 Replica IR with 𝜏 = 300 𝑎. 𝑢. 
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After ionization the electron attained an average energy of 6 a.u. as shown in Fig 5:3. Unlike 

the delayed IR laser field, the non-delayed IR laser field is reinforced by the two laser fields 

which are in phase.   

5.2.  Dipole Acceleration  

As explain in chapter three, to understand the dynamics of the recombination process, we have 

to study the emission spectrum, HHG Spectrum. The basis of this spectrum is the dipole 

acceleration. 

Just like in the case of computing energy of accelerating electron, the dipole acceleration 

depends on the laser field. Therefore, we considered three cases, as used above: (i) a single IR 

laser field, (ii) a delayed double IR laser field, and (iii) non-delayed IR laser fields. 

By considering the first case here dipole acceleration due to single IR pulse, the dipole 

acceleration was computed using eq.3.44 which was stated as; 

〈𝑑𝑎𝑡𝑝〉 = − ⟨𝜓(𝑥, 𝑡)|
𝑥

𝑥2 +  𝑎0
2 |𝛹(𝑥, 𝑡)⟩ + 𝐸𝑝  

The result of this computation is shown in Fig 5:4 below. 

 

Fig 5:4 Dipole Acceleration of Single IR Laser Pulse. 

In Fig 5:4, each of the three pulses has a duration of about 35a.u. This single pulse’s duration 

is clearly shown in Fig 5:5 below. 
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Fig 5:5 Dipole Acceleration of Single IR Pulse. 

The second case uses the non-delayed double IR laser field. The dipole acceleration due to this 

field was computed using eq.3.46 which states; 

  〈𝑑𝑎𝑡𝑐〉 = − ⟨𝜓(𝑥, 𝑡)|
𝑥

𝑥2 +  𝑎0
2 |𝜓(𝑥, 𝑡)⟩ + 𝐸𝑐 

The result of this computation is shown in Fig 5:6 below. 

 

Fig 5:6 Train of Pulses of Dipole Acceleration of Double replica IR Laser Pulse. 

Each pulse in Fig 5:6 has a duration of 16a.u as clearly shown in Fig 5:7. 
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Fig 5:7 A Single Pulse due to a Double Laser. 

Form the above computation, it is clear that a short pulse with a pulse duration of 16a.u is 

produced when double IR laser field is used. On the other hand, when a single IR laser field is 

used, a pulse with a pulse duration of 35a.u is produced. This is clearly shown in Fig 5:7 and 

Fig 5:5, respectively. 

For a delayed double IR laser with time delay of 𝜏 = 400𝑎. 𝑢 and 𝜏 = 1250𝑎. 𝑢, the dipole 

accelerations are shown in Fig 5:8 and Fig 5:9, respectively. 

 

Fig 5:8 A Dipole Acceleration from Double IR Laser with 𝜏 = 400𝑎. 𝑢. 

 

Fig 5:9 A Dipole Acceleration from Double IR Laser with 𝜏 = 1250𝑎. 𝑢. 
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Even though the two plots have the same amplitudes, there is less phase mismatch in Fig 5:9 

than in Fig 5:8. 

After computing the basis, dipole acceleration, the next section will be for the computation of 

HHG spectra.  

5.3.  HHG Spectra  

The HHG spectrum gives insights of the recombination process and is obtained by taking FFT 

of dipole acceleration. This work utilizes the dipole accelerations obtained above. It is 

important to note that in the previous section we used three cases of laser field, namely (i) a 

single IR laser field, (ii) a delayed double-delayed and (iii) a non-delayed double IR laser field.  

For the single IR laser field, the FFT of dipole acceleration is given by eq.3.51 as: 

HHG𝜔𝑝 = |
1

√2𝜋
∫ [− ⟨𝜓(𝑥, 𝑡)|

𝑥

𝑥2 +  𝑎0
2 |𝜓(𝑥, 𝑡)⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+ ∫ 𝐸𝑝𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0
|

2

 

This computation resulted in HHG spectrum shown in Fig 5:10 and Fig 5:11.  

 

Fig 5:10 HHG Spectrum due to a Single IR Pulse, computed with 1600 grid 

points. 

 

Fig 5:11 HHG Spectrum due to a Single IR Pulse, computed with 4800 grid 

points. 
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The two figures, Fig 5:10 and Fig 5:11, were plotted with 1600 and 4800 points, respectively. 

The HHG spectra reveal that the harmonics of up to 78th order were produced when a single IR 

laser pulse was used. This implies that during recombination, photons of very high frequencies 

were emitted. These frequencies were 78 times the absorbed frequency. Using the Three Step 

Model, these results can be predicted as;  

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐼𝑝 + 3.17𝑈𝑝 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑛𝜔 

𝑛 =
|𝐼𝑝| + 3.17(𝑈𝑝)

𝜔
 

𝑈𝑝 = 1.25𝑎. 𝑢 𝑎𝑛𝑑 𝐼𝑝 = 0.5𝑎. 𝑢 

𝑛 =
0.5 + 3.17(1.25)

𝜔
=
4.4625

0.057
= 78.3 

This harmonic order can be converted to the corresponding energy in eV using the equation;  

𝑒𝑛𝑒𝑟𝑔𝑦(𝑒𝑉) = 𝜔 × 27.211𝑒𝑉 × 𝑛 
5.2 

Therefore, 78th order is equivalent to 120eV.    

The harmonic order of 78th, obtained from the HHG spectrum of Fig 5:11 is very close to 

predicted one (78.3th), calculated using the formula in eq. 5.2 above. 

The HHG spectrum due to double IR laser pulse is govern by eq.3.51 and can be stated as;  

HHG𝜔𝑐 = |
1

√2𝜋
∫ [− ⟨𝜓|

𝑥

𝑥2 +  𝑎0
2 |𝜓⟩] 𝑒

−𝑖𝜔𝑡𝑑𝑡
𝑇𝑝

0

+ (∫ 𝐸𝑐𝑒
−𝑖𝜔𝑡𝑑𝑡

𝑇𝑝

0
)|

2

 

The result of this computation is depicted in Fig 5:12 below with 0.0a.u time delay between 

the two double IR laser of 15 optical circles each. 
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Fig 5:12 HHG Spectrum due to Double IR Lasers. 

The cutoff energy in Fig 5:12 is at harmonic order of 400. This implies that the emitted photons 

are 400 times the absorbed frequency. This frequency is so high as compared to that of emitted 

photons due to single laser field interaction with the H atom.  

This harmonic order due to double IR laser field can be predicted by Three Step Model as; 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐼𝑝 + 3.17𝑈𝑝 

𝑛 =
|𝐼𝑝| + 3.17(𝑈𝑝)

𝜔
 

𝑈𝑝 = 8 𝑎. 𝑢 𝑎𝑛𝑑 𝐼𝑝 = 0.5 𝑎. 𝑢 

𝑛 =
0.5 + 3.17(8)

𝜔
=
25.86

0.057
= 453.6 

This value is approximately close to that obtained from the HHG spectrum in Fig 5:12. Using 

eq.5.2, the corresponding energy of this harmonic order is 700𝑒𝑉; 

The plateau in Fig 5:12 runs from 40th to 400th order and is computed with 1600 grid points. 

However, the plateau is well resolved with more grid points, say 4800, as illustrated in Fig 

5:13 below. 
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Fig 5:13 HHG Spectrum of H atom due to Double IR Lasers. 

This number of grid points only affects the resolution of the plateau and not the cut off energy.  

In this work one of the main factors considered when computing these results was time delay. 

Therefore, the following section is solely for comparing results obtained from different time 

delays. In terms of dipole acceleration which is the basis of HHG spectrum, the plots of the 

three different time delays are shown in Fig 5:14 below. 

 

Fig 5:14 Dipole Acceleration due to Different Time Delays. 

The purple, the blue and the green represent the dipole acceleration for 0.0 a.u., 400a.u. and 

1250 a.u. time delays between the driving lasers, respectively. Taking the associated FFT of 

the dipole acceleration above, the resulting HHG spectra are depicted in Fig 5:15. 
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Fig 5:15 HHG Spectrum for Different Time Delays. 

The Fig 5:15 shows the HHG spectra for different time delays, 0.0a.u, 400a.u and 1250a.u, 

represented by Blue, Green and Purple colors, respectively. These are spectra with less grid 

points, 1600 points. However, with more grid points, say 4800, the plateau in Fig 5:15 become 

well resolved. This is shown in Fig 5:16 below. 

 

Fig 5:16 HHG Spectra for Different Time Delays. 

Fig 5:15 and Fig 5:16 show the HHG spectra for different time delays between the secondary 

and primary laser. The purple color shows the spectrum with a time delay of 0.0a.u while the 

green and the blue represent the HHG spectrum for 400 a.u. and 1250 a.u, time delays, 

respectively. 

It is clearly seen in Fig 5:16 that time delay causes some spectral shift on the spectrum. The 

longer the time delay the smaller the spectral shift. 
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Chapter6 Conclusions 
 

In this thesis, I have investigated the High-order Harmonic Generation (HHG) process through 

laser atom interaction. Specifically, I used Hydrogen atom in: (i) a Single Infrared (IR) Laser 

field, (ii) a delayed double IR Laser field and (ii) a non-delayed double IR laser field. We 

indeed found that this HHG process can produce Extreme Ultraviolet (XUV) pulses which are 

in attoseconds timescale.  

To achieve this goal, we played with different time delays between the two lasers in order to 

attempt to extend the cut off energy in the HHG spectra. This thesis clearly depicts how we can 

increase this cut off energy by using two replica IR which doubles the cut off energy compared 

to a single laser interacting with the Hydrogen atom H. With different delay time between the 

two pulses, harmonics of different orders are seen in the HHG spectrum. When lasers of 

intensities 2 × 1014W/cm2 each interacts with H atom, the energy of emitted photons is of 

order 400 of the absorbed frequency which correspond to energy of 618eV. This frequency of 

recombination for a single laser and atom interaction is order of 78 which correspond to 120eV. 

This therefore clearly shows that double laser pulse interaction is so much higher compared to 

single laser pulse. The less the time delay, the more the cut off energy. This therefore can be 

transferred to practical implementation in the laser lab with available laser such as Ti-Sapphire 

(800nm). With more investment in the implementation, this analysis could be studied more by 

extending this research to other atoms like atoms like Argon. Also, effects of different time 

delay could be clearly seen by using Gabor transformation for the spectrum near the cut off 

region. Here in this thesis, it can only be seen that there is a spectral shift in intensity from the 

driving laser for different time delay between the driving and the secondary laser. 

The challenge of this numerical analysis is the code implementation of the Gabor window of 

the cut off region for the HHG spectrum.  

 

 

 



63 
 

References  

1. Kim, Dong Eon, et al. "For the extension of current attosecond pulses to multi-cycle 

driver regime and hard X-ray regime" 2009 IEEE LEOS Annual Meeting 

Conference Proceedings. IEEE (2009) 

2. Popmintchev, Tenio, et al. "The attosecond nonlinear optics of bright coherent X-ray 

generation" Nature Photonics 4, 822-832 (2010) 

3. Gaarde, Mette B., and Kenneth J. Schafer. "Generating single attosecond pulses via 

spatial filtering" Optics Letters 31, 3188-3190 (2006) 

4. Corder, Christopher, et al. "Development of a tunable high repetition rate XUV source 

for time-resolved photoemission studies of ultrafast dynamics at surfaces" Laser 

Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) 

XXIII 10519, SPIE (2018) 

5. Sie, Edbert J., et al. "Time-resolved XUV ARPES with tunable 24–33 eV laser pulses 

at 30 meV resolution" Nature communications 10, 3535 (2019) 

6. Chang, Zenghu. "Controlling attosecond pulse generation with a double optical 

gating" Physical Review A 76, 051403 (2007) 

7. Herrmann, Daniel, et al. "Generation of sub-three-cycle, 16 TW light pulses by using 

noncollinear optical parametric chirped-pulse amplification" Optics Letters 34, 2459-

2461 (2009) 

8. Heyl, Christoph M., et al. "Scale-invariant nonlinear optics in gases" Optica 3, 75-81 

9 (2016) 

9. Corkum, P. áB, and Ferenc Krausz. "Attosecond science" Nature Physics 3, 381-387 

(2007) 

10. Feng, Ximao, et al. "Generation of isolated attosecond pulses with 20 to 28 femtosecond 

lasers" Physical Review Letters 103, 183901 (2009) 

11. Pérez-Hernández, J. A., et al. "Extension of the cut-off in high-harmonic generation 

using two delayed pulses of the same colour." Journal of Physics B: Atomic, 

Molecular and Optical Physics 42, 134004 (2009) 

12. Oldal, Lénárd Gulyás, et al. "All-Optical Experimental Control of High-Harmonic 

Photon Energy" Physical Review Applied 16, L011001 (2021) 

13. Burnett, N. H., et al. "Harmonic generation in CO2 laser target interaction" Applied 

Physics Letters 31, 172-174 (1977) 



64 
 

14. Gould, R. Gordon. "The LASER, light amplification by stimulated emission of 

radiation" The Ann Arbor conference on optical pumping, the University of 

Michigan 15, 92 (1959) 

15. Taylor, Nick. “LASER: The inventor, the Nobel laureate, and the thirty-year patent 

war”. Simon and Schuster, (2002) 

16. Grossmann, Frank. “Theoretical femtosecond physics: atoms and molecules in strong 

laser fields” Springer (2018) 

17. Wang, Juan, et al. "Spatiotemporal variation in surface urban heat island intensity and 

associated determinants across major Chinese cities" Remote Sensing 7, 3670-3689 

(2015) 

18. Silfvast, William T. “Laser fundamentals” Cambridge University Press, (2004) 

19. Chang, Zenghu. “Fundamentals of attosecond optics” CRC Press, (2016) 

20. Feit, M. D., J. A. Fleck Jr, and A. Steiger. "Solution of the Schrödinger equation by a 

spectral method" Journal of Computational Physics 47, 412-433 (1982) 

21. Csele, Mark. “Fundamentals of light sources and lasers” John Wiley & Sons, (2011) 

22. Suhara, Toshiaki. “Semiconductor laser fundamentals” CRC press, (2004) 

23. Silfvast, William T. "Laser Fundamentals Cambridge University Press" New York, 

NY, (1996) 

24. Mahamood, Rasheedat Modupe, and R. M. Mahamood. "Laser basics and laser material 

interactions" Laser Metal Deposition Process of Metals, Alloys, and Composite 

Materials, 11-35 (2018) 

25. Maiman, Theodore H., and Theodore H. Maiman. "Addendum 10: Reprint of TH 

Maiman, “Stimulated Optical Radiation in Ruby” Nature 187, 493–494 (2018) 

26. Eckhardt, Gisela, et al. "Stimulated Raman scattering from organic liquids" Physical 

Review Letters 9, 455 (1962) 

27. Paschotta, Rüdiger. "Rp photonics encyclopedia" Available online: www. rp-

photonics. com, (2013) 

28. Heckl, O. H., et al. "High harmonic generation in a gas-filled hollow-core photonic 

crystal fiber" Applied Physics B 97, 369-373 (2009) 

29. Paul, Pierre-Marie, et al. "Observation of a train of attosecond pulses from high 

harmonic generation" Science 292, 1689-1692 (2001) 

30. Haken, Hermann, et al. “Light and matter” Springer Science & Business Media 5, 

(2013) 



65 
 

31. Corkum, Paul, and Ferenc Krausz. "Attosecond science" Nature physics 3, 381-387 

(2007) 

32. Corkum, Paul B. "Plasma perspective on strong field multiphoton ionization" Physical 

Review Letters 71, 1994 (1993) 

33. Nabekawa, Yasuo, et al. "Conclusive evidence of an attosecond pulse train observed 

with the mode-resolved autocorrelation technique" Physical Review letters 96, 

083901 (2006) 

34. Lewenstein, Maciej, et al. "Theory of high-harmonic generation by low-frequency laser 

fields" Physical Review A 49, 2117 (1994) 

35. Ishikawa, Kenichi L., Eiji J. Takahashi, and Katsumi Midorikawa. "Wavelength 

dependence of high-order harmonic generation with independently controlled 

ionization and ponderomotive energy" Physical Review A 80, 011807 (2009) 

36. Thyagarajan, K., and Ajoy Ghatak. “Laser fundamentals and applications” Springer 

Science & Business Media, (2010) 

37. LeVeque, Randall J. “Finite difference methods for ordinary and partial differential 

equations: steady-state and time-dependent problems” Society for Industrial and 

Applied Mathematics, (2007) 

38. Strikwerda, John C. “Finite difference schemes and partial differential equations” 

Society for Industrial and Applied Mathematics, (2004) 

39. Ogundare, B. S. "On the pseudo-spectral method of solving linear ordinary differential 

equations." Journal of Mathematics and Statistics 5, 136 (2009) 

40. Mazziotti, David A. "Spectral difference methods for solving the differential equations 

of chemical physics" The Journal of chemical physics 117, 2455-2468 (2002) 

41. Doescher, S. W., and M. H. Rice. "Infinite square-well potential with a moving 

wall" American Journal of Physics 37, 1246-1249 (1969) 

42. Cebeci, Tuncer. “Convective heat transfer” Berlin: Horizons Pub, (2002) 

43. Crank, John, and Phyllis Nicolson. "A practical method for numerical evaluation of 

solutions of partial differential equations of the heat-conduction type" Mathematical 

proceedings of the Cambridge philosophical society 43, 1 (1947).  

44. Shiner, A. D., et al. "Wavelength scaling of high harmonic generation 

efficiency" Physical Review Letters 103, 073902 (2009) 

45. Pascal Diougue Ndione; “Ultrafast lasers interacting with Small Atoms, Research 

essay” African Institute for Mathematical Science (AIMS), Senegal  (2016) 



66 
 

46. Galloway, Benjamin R., et al. “High-Order Harmonic Generation Driven by Mid-

Infrared Laser Light” Diss. University of Colorado at Boulder, (2017) 

47. Feng, Ximao, et al. "Generation of isolated attosecond pulses with 20 to 28 femtosecond 

lasers" Physical Review letters 103, 183901 (2009) 

48. Mashiko, Hiroki, et al. "Double optical gating of high-order harmonic generation with 

carrier-envelope phase stabilized lasers" Physical Review letters 100, 103906 (2008) 

49. Vozzi, C. A. T. E. R. I. N. A., et al. "Characterization of a high-energy self-phase-

stabilized near-infrared parametric source" JOSA B 25, B112-B117 (2008) 

50. Krausz, Ferenc, and Misha Ivanov. "Attosecond physics" Reviews of Modern 

Physics 81, 163 (2009) 

51. Lewenstein, Maciej, et al. "Theory of high-harmonic generation by low-frequency laser 

fields" Physical Review A 49, 2117 (1994) 

52. Lan, Pengfei, et al. "Macroscopic effects for quantum control of broadband isolated 

attosecond pulse generation with a two-color field" Physical Review A 79, 043413 

(2009) 

53. Baltuška, Andrius, et al. "Attosecond control of electronic processes by intense light 

fields" Nature 421, 611-615 (2003) 

54. Tate, J., et al. "Scaling of wave-packet dynamics in an intense midinfrared 

field" Physical Review letters 98, 013901 (2007) 

55. Chen, Wenxiang, Guanglong Chen, and Dong Eon Kim. "Two-color field for the 

generation of an isolated attosecond pulse in water-window region" Optics 

Express 19, 20610-20615 (2011) 

56. Mainfray, G., and G. Manus. "Multiphoton ionization of atoms" Reports on Progress 

in Physics 54, 1333 (1991) 

57. Anatole Kenfack, “Introduction to Laser-Matter Interaction Lecture notes” African 

University of Science and Technology [AUST], Nigeria, (2018) 

58. Jokanović, Vukoman, Dijana Trišić, and Marija Živković. "Review of lasers application 

in dentistry" Stomatoloski Glasnik Srbije 67, 36-49 (2020) 

59. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. 

A 49, 2117 (1994) 

60. Cam-Tu Le and Ngoc-Loan Phan J. Phys Conf. Ser. 1506, 012005 (2020) 

61. Anh-Thu Le et al J. Phys. B: At. Mol Opt. Phys 49, 053001 (2016) 

62. Pullen, M. G., et al. "Measurement of laser intensities approaching 10 15 W/cm 2 with 

an accuracy of 1%" Physical Review A 87, 053411 (2013) 



67 
 

63. P. Ehrenfest, Bemerkung ¨uber die angen¨aherte G¨ultigkeit der klassischen 

Mechanik innerhalb der Quantenmechanik, Zeitschrift f¨ur Physik 45, 7 (1927). 

64. Torsten Leitner; “High order Harmonic Generation as a Possible Seed Source for the 

Bessey Free Electron Laser” PhD Thesis submitted to Humboldt-Universitat zu 

Berlin, (2007) 

 

 

 

 


