
i 
 

 

 

COMPUTER IMPLEMENTATION OF THE ROBERT’S METHOD OF 

WATERFLOOD CALCULATIONS 

 

A Thesis Submitted to the Department of  

Petroleum Engineering 

African University of Science and Technology Abuja, Nigeria 

In Partial Fulfilment of the Requirements for the Degree of 

Master of Science in Petroleum Engineering. 

By 

Uzokwe Paul Onyebuchi 

 

 

 

 

December 2020. 

 

 



ii 
 

CERTIFICATION 

This is to certify that the thesis titled “Computer Implementation of the Robert’s Method of 

Waterflood Calculations” submitted to the school of postgraduate studies, African University 

of Science and Technology (AUST), Abuja, Nigeria for the award of the Masters’ degree is 

a record of original research carried out by Uzokwe Paul Onyebuchi in the Department of 

Petroleum Engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

COMPUTER IMPLEMENTATION OF THE ROBERT’S METHOD OF WATERFLOOD 

CALCULATIONS 

By 

Uzokwe Paul Onyebuchi 

A THESIS APPROVED BY THE PETROLEUM ENGINEERING DEPARTMENT 

 

RECOMMENDED:     ---------------------------------------------- 

Supervisor, Prof. Ikiensikimama Sunday 

 

---------------------------------------------- 

The name of the first co-supervisor 

 

 

---------------------------------------------- 

The second co-supervisor 

 

 

---------------------------------------------- 

Head, Department of Petroleum Engineering 

 

 

 

APPROVED:       

 

--------------------------------------------- 

Chief Academic Officer 

 

August 24th, 2021 

---------------------------------------------- 

Date 

 

 

 

 

 

 

 

 



iv 
 

COPYRIGHT PAGE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2020 

Uzokwe Paul Onyebuchi  



v 
 

ABSTRACT 

This study presents a computer implementation of Robert's method for waterflooding, a critical technique 

in petroleum engineering for optimizing oil recovery. The implementation aims to enhance the accessibility 

and usability of Robert's method for industry professionals. Utilizing Python and a user-friendly graphical 

interface, the application allows users to input various parameters and visualize waterflooding scenarios 

effectively. Through comparative analysis with traditional waterflooding methods, the software provides 

insights into the performance and efficiency of Robert's approach. Preliminary results demonstrate that the 

implementation aligns closely with existing simulation tools, showcasing its potential as a practical resource 

for engineers. This work contributes to the ongoing efforts to refine waterflooding strategies and improve 

oil recovery outcomes in the field. 
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Chapter 1: Introduction 

1.1 Introduction 

The oil and gas industry has been a phenomenon influencing the world’s economy. The 

World’s proven reserve amounts to 1.65 trillion barrels as of 2016. Proven reserve is the amount 

of oil that can be recovered under current and available technology, economically, at a specified 

date. It is the recovered oil that is valued, and technological and economic efforts are aimed at 

getting the oil out of the subsurface with maximum efficiency. 

Waterflooding is a prominent enhanced oil recovery (EOR) technique employed in the petroleum 

industry to optimize the extraction of crude oil from reservoirs. As conventional oil sources 

become increasingly depleted, the significance of waterflooding grows, playing a critical role in 

maintaining production rates and extending the life of oil fields. This introduction will provide a 

comprehensive overview of waterflooding, its importance in oil recovery, and delve into Robert's 

method, a refined approach to optimizing waterflooding processes. 

Waterflooding involves injecting water into oil reservoirs to maintain reservoir pressure and 

displace oil toward production wells. The efficiency of this technique is influenced by several 

factors, including fluid properties, reservoir characteristics, and the dynamics of fluid flow in 

porous media (Akhmetov et al., 2018). The primary objective of waterflooding is to enhance oil 

recovery by maintaining reservoir pressure and improving sweep efficiency—the effectiveness 

with which the injected water displaces oil. 

The overall oil recovery from a reservoir can be characterized by two main components: 

volumetric sweep efficiency and displacement efficiency. Volumetric sweep efficiency refers to 

the fraction of the reservoir volume that is effectively contacted by the injected water, while 
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displacement efficiency pertains to the ability of the injected water to displace the oil from the 

pore spaces of the reservoir rock (Lake et al., 2014). 

In heterogeneous reservoirs, where variations in permeability and porosity exist, optimizing water 

injection patterns becomes a challenge. Engineers must consider factors such as fluid mobility, 

rock properties, and reservoir geometry to maximize oil recovery while minimizing water 

production (Chen et al., 2019). 

The significance of waterflooding in the oil industry is substantial. It is estimated that 

waterflooding can recover an additional 20-50% of the original oil in place (OOIP) after primary 

recovery methods have been employed (Butler et al., 2013). This capability to enhance recovery 

rates is crucial as operators seek to extend the economic life of oil fields amid declining 

conventional reserves. 

Moreover, maintaining reservoir pressure is essential for sustaining oil flow to production wells 

and preventing premature reservoir depletion. By injecting water, operators can counteract the 

natural decline in pressure, thus ensuring a more stable production profile over time (Santos et al., 

2017). This not only contributes to higher recovery rates but also improves the economic viability 

of oil production, especially in a volatile market where price fluctuations can significantly impact 

profitability. 

Robert's method of waterflooding is an advanced approach that enhances traditional waterflooding 

techniques by incorporating mathematical modeling to optimize water injection strategies. This 

method utilizes analytical solutions to provide a framework for understanding and predicting fluid 

behavior in reservoirs. 
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At the heart of Robert's method is the concept of piston-like displacement, which assumes that the 

injected water moves through the reservoir similarly to a piston. This assumption allows for the 

development of explicit solutions for key performance parameters under various conditions, such 

as constant injection pressure and overall injection rate (Robert, 1991). 

One of the primary advantages of Robert's method is its ability to address complex reservoir 

conditions more accurately than traditional models. While conventional waterflooding models 

often rely on simplified assumptions, Robert's method can account for reservoir heterogeneity, 

varying fluid properties, and changes in injection rates, providing a more comprehensive 

understanding of the waterflooding process (Sheng, 2015). 

The implementation of Robert's method allows petroleum engineers to design and optimize 

waterflooding strategies tailored to specific reservoir conditions. By utilizing the analytical 

solutions provided by this method, engineers can make informed decisions regarding water 

injection rates, well placements, and overall field management (Robert, 1991). 

Furthermore, the predictive capabilities of Robert's method enhance the ability to forecast 

production outcomes. Accurate modeling of fluid flow and displacement efficiency allows 

operators to better anticipate production trends and optimize resource allocation, which is critical 

in an industry characterized by uncertainty and volatility (Pawar et al., 2020). 

In this work, focus will be on the theories of waterflooding, which could also be applicable in 

enhanced oil recovery applications such as polymer flooding, or other chemical immiscible 

displacement technique. The theoretical advances of this theories, and its foregoing applications 

even in enhanced oil recovery, will be discussed in the adjoining chapter. But this will be with 
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greater focus on Robert’s waterflood performance prediction method, decorated with an 

encompassing literature review. 

1.1 Aim and Objectives. 

The aim of this study is to develop a computer program to implement the Robert’s 

Waterflood performance technique. 

The objectives of the study include: 

1. Writing a computer program implementing the Robert’s waterflood method using Python 

3.0. 

2. Integrating the computer program with a graphical user interface. 

3. Converting the resultant computer program to a desktop application. 
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CHAPTER TWO 

2 Theories in Waterflood Performance Evaluation 

2.1 Introduction 

Waterflooding is a secondary recovery process in which water compatible with the reservoir of 

interest is injected into the reservoir to displace residual oil. Waterflooding is more commonly 

employed than immiscible gas injection – the other secondary recovery process – because water, 

which is the injectant, is relatively inexpensive compared to gas injectant. Waterflooding has two 

effects on the reservoir; it reduces the rate of reservoir pressure decline during production, possibly 

increasing the reservoir pressure with continued injection; and water injected into the reservoir 

sweeps the oil towards the producers, thus increasing oil production and consequently, cumulative 

oil production (Rose et al., 1989; Abdel-Kareem et al., 2009). Although waterflooding is a 

relatively inexpensive and mature technology, several potential problems may arise during a the 

process. Some of the problems include inefficient recovery due to varying permeabilities and 

anisotropy, reservoir heterogeneities affecting fluid transport within the reservoir, early water 

breakthrough that may cause production and surface processing problems, etc. (Rose et al., 1989). 

 

2.1.1 Types of Waterflooding  

In selecting a waterflooding pattern for the reservoir of interest, several factors are considered, 

such as reservoir heterogeneities – including directional permeability and formation fractures; 

injection fluid availability; anticipated maximum oil recovery and flood life; and well spacing, 

productivities, and injectivities. There are two types of waterflooding; patterned waterflooding and 

non-patterned waterflooding. In non-patterned waterflooding, there are basically two types; 
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generally irregular well placements and peripheral or flank waterflooding. In patterned 

waterflooding, where the well placements are done in some repetitive fashion, there are several 

types namely; regular 4-spot and skewed 4-spot, 5-spot, 7-spot, 9-spot, direct line drive and 

staggered line drive patterns. Another type of flooding that can be utilized – depending on reservoir 

geometry and properties is the crestal and basal pattern. This involves perforating the injector wells 

up-structure (for gas injection) or down-structure (for water injection) relative to the producer 

wells, thus utilizing the effect of gravity segregation in the displacement process (Ahmed, 2006). 

Based on some assumptions, Crawford in 1960 obtained the efficiencies for several pattern floods. 

According to him, assuming a unit mobility ratio, steady-state condition, homogeneous and 

uniform reservoir, and ignoring capillary and gravity effects, the efficiencies were 45% to 90% for 

9-spot, 72% for 5-spot, and 56% for direct line drive pattern. The unit mobility ratio used was 

mobility ratio before water breakthrough. Older fluid injection projects involved maximizing oil 

recovery via understanding and utilizing the reservoir heterogeneities. Well placements were 

irregular in both secondary and tertiary recovery processes. Eventually, it became a norm that well 

placements be in some repetitive 10 pattern (Ogali, 2011). Several patterns were analyzed to 

determine the optimum patterns used in secondary and tertiary recovery processes. Recently, 

reservoir engineers, even after selecting a pattern, do not use the same pattern throughout the 

reservoir. This is because of two of the criteria considered in pattern selection which are reservoir 

heterogeneity and overall project economics (Rose et al., 1989). Waterflood recovery is sensitive 

to heterogeneity. Mobility ratios and well configuration also influence it. During waterflooding, 

the effect of heterogeneity becomes less severe upon reducing the well spacing as the mobilized 

oil has to travel a relatively shorter distance to the nearest producing well (Singhal et al., 2005). 

The key objective of selecting a flooding pattern is to maximize the contact between the injection 
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fluid and the hydrocarbon system and hence improve oil recovery and the economics of the project. 

This is a critical step and can be achieved by either drilling infill injector wells or converting 

existing production wells to injectors. Figure 2.1 shows various patterns used in waterflooding. In 

this illustration, there are two types of each pattern; the normal pattern and the inverted pattern 

types. In the normal pattern type, for a set of injectors and producers, there are several injectors 

and one producer. In the inverted pattern type, for each set of injectors and producers, there are 

several producers and one injector. This means that each of the patterns shown in Figure 2.1 has 

the normal and the inverted pattern types. The success of a waterflood flood project can be 

predicted from proper selection of waterflood patterns. The primary objective is to attain a balance 

between injection and producer wells within a pattern and minimize oil migration to adjacent 

patterns and loss into the formation. Balancing patterns essentially means that for every barrel of 

water injected, a barrel of hydrocarbon is 11 recovered from the production wells surrounding the 

injector. An unbalanced pattern leads to poor sweep, premature breakthrough, and high-water 

cycling. An effective pattern balancing leads to better areal sweep and higher oil recovery 

(Oyebimpe, 2010). A wide variety of flood patterns (injection-production well arrangement) have 

been studied with efficiencies for various confined well patterns at breakthrough indicating the 

effect of the pattern. Figure 2.1: Various patterned flood arrangements – triangles are injectors and 

circles are producers (Tarek Ahmed, 2006). A comparison of the data for the two direct line drive 

patterns indicate that sweep is a function of spacing ratio, with the greater ratio resulting in higher 

breakthrough sweep efficiency (Singh and Kiel, 1982). The effect of off-pattern wells was studied 

by Prats et al., 1962 and they found that the oil recovery at breakthrough is always lower with an 

off-pattern injection well. Sweep out 12 beyond normal pattern was studied by Caudle et. al., 

1955.They found that at least 90 percent of the area lying outside the last row of wells and within 
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one well spacing of these wells would ultimately be swept by the injected water. Landrum and 

Crawford (1960) studied the effect of directional permeability on sweep efficiency at unit mobility 

ratio, for a five-spot and direct line drive (square pattern). Their results show that a 45˚ rotation of 

patterns could result in approximately 100 percent sweep for the five-spot and approximately zero 

sweep for a line drive  

2.1.2 Factors to Consider in Waterflooding  

In determining how suitable a reservoir of interest is for waterflooding, Thomas, Mahoney and 

Winter (1989) pointed out that several reservoir characteristics must be considered. i. Reservoir 

geometry – includes areal geometry influences on well and facility locations, number and location 

of platforms for offshore operations. ii. Lithology and rock properties – includes rock types, clay 

type and content, porosity (single and dual porosity systems), permeability, well spacing, pressure 

history. iii. Reservoir depth – involves considering drilling costs especially for new injector wells, 

dual porosity systems, temperature gradient, fracturing (injection pressure versus depth) and 

fracture types. iv. Fluid properties, fluid saturations, and fluid distribution – includes consideration 

of the saturation and distribution of the phases (oil, water and gas) throughout the reservoir, oil 

viscosity, oil mobility, and mobility ratio, areal sweep and flood efficiencies. v. Reservoir 

uniformity and pay continuity – includes considerations of thief zones, areal continuity of pay 

zones, faults, fractures, reservoir anisotropy. vi. Primary reservoir driving mechanisms – includes 

review of the hydrocarbon recovery that can be achieved via waterflooding, and considering how 

the primary drive mechanisms will affect the waterflooding process. For instance, solution gas 

drive reservoirs are the best candidates for waterflooding. Waterflooding has been employed 

successfully in many reservoirs. Extensive research and development in this technology have 

improved the efficiency of this secondary recovery process. Also, waterflooding in most reservoirs 
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is considered a cheaper option for secondary recovery compared to immiscible gas injection. 

However, waterflooding has several potential problems; for instance, poor fluid transport within 

the reservoir due to reservoir heterogeneities, production and surface processing problems caused 

by early water breakthrough. Every reservoir is unique, and so there is no standard “recipe” for 

waterflooding a reservoir. Also, although considered a cheaper secondary recovery option, a 

waterflood project is a huge investment. To maximize oil recovery and economics from a given 

waterflood project while minimizing injection water volumes and the effects of reservoir 

heterogeneities, flood management is employed. Extensive research and development of various 

flood management techniques have been carried out. This research involves employing one of the 

waterflood management techniques. The optimization objective for a field undergoing water 

flooding is to maximize expected net present value (NPV) or expected cumulative oil production 

from the reservoir (Jackson et al., 2017). These objectives are maximized through proper well 

placement and optimal well control. While well placement and well control are often performed 

separately, there is increasing interest in performing coupled optimization of both decision 

variables. This research examined well placement, well control and coupled well placement-well 

control optimization. 

2.2 Sweep Efficiencies. 

It has been shown that knowing the oil in place, the areal efficiency, displacement efficiency, and 

the vertical sweep efficiency, one can determine the determine the cumulative recovery at any time 

using Equation 2.1. 

𝑁𝑝 =  N (𝐸𝐴 × 𝐸𝐷 × 𝐸𝑣)                                                                                                                                (2.1) 

Where 

N = oil in place in the pore volume 
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EA = the areal sweep efficiency. 

ED = displacement efficiency 

EV = Vertical sweep efficiency. 

The product of the areal and vertical sweep efficiency gives the volumetric sweep efficiency. 

While the overall recovery factor or efficiency is the product of the areal sweep efficiency, vertical 

sweep efficiency and the displacement sweep efficiency as expressed in Equation 2.2. 

𝑅𝐹 =  𝐸𝐴 × 𝐸𝐷 × 𝐸𝑣          (2.2) 

Areal sweep efficiency is defined as the reservoir area fraction contacted by the displacing fluid 

during the waterflooding operation. The areal sweep efficiency is a function of the relative flow 

properties of oil and water, the well pattern, pressure distribution and the directional permeability.  

The vertical sweep efficiency is the fraction of the formation in the vertical plane which injected 

water for waterflood operation will contact. It depends primarily on the vertical stratification of 

the reservoir. Figure 2.1 is a representation of areal and vertical sweep of waterflood in a stratified 

reservoir, showing the swept and the un-swept zone. 

The displacement sweep efficiency represents that portion of movable oil displaced by the 

displacing fluid, expressed mathematically in Equation 2.3 – 2.8. 

 

 

Figure 2.1 – 3-Dimensional view of vertical and areal sweep efficiency 

Figure 2.1–3-Dimensional view of vertical and areal sweep efficiency 
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𝐸𝐷 =  
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑤𝑒𝑝𝑡 𝑧𝑜𝑛𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟𝑓𝑙𝑜𝑜𝑑
     (2.3) 

𝐸𝐷 =  
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑−𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑
    (2.4) 

Where 

Soi = Initial oil saturation 

Soi = 1-Swc – Sgi         (2.5) 

And  

𝑆𝑜
̅̅ ̅ = 1 −  𝑆𝑤

̅̅̅̅           (2.6) 

Therefore, 

𝐸𝐷 =  
(

𝑆𝑜𝑖

𝐵𝑜𝑖
)−(

�̅�𝑜
𝐵𝑜

) 

(𝑆𝑜𝑖/𝐵𝑜𝑖)
         (2.7) 

The areal sweep efficiency can also be analytically determined without the use of chart from the 

set of equation shown in Equation 2.8 – 2.11. 

𝐸𝐴 = 𝐸𝐴𝐵𝑇 + 0.2749 ln(
𝑊𝑖𝑛𝑗

𝑊𝑖𝐵𝑇
)        (2.8) 

𝐸𝐴𝐵𝑇 = 0.54602036 +
0.03170817

𝑀
+

0.30222997

𝑒𝑀 − 0.00509693𝑀   (2.9) 

𝑊𝑖𝐵𝑇 =  𝐸𝐴𝐵𝑇 per pore volume       (2.10) 

𝑊𝑖𝑛𝑗 =  
𝐸𝐴𝐵𝑇

𝐸𝐷
 per pore volume       (2.11) 

 

2.2.1 Mobility Ratio 

According to Tiab (1986), it is also found that waterflooding performance in layered composite 

reservoirs is essentially controlled by the mobility ratio.  

Mobility is defined as the ease of flow of fluid. It relates the effective permeability of a fluid 

with its viscosity. 
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Mobility is expressed as in Equation 2.12, 

𝜆𝑓𝑙𝑢𝑖𝑑 =  (
𝑘

𝜇
)

𝑓𝑙𝑢𝑖𝑑
         (2.12) 

The mobility ratio is now defined as the ratio of the mobility of the displacing fluid phase to the 

mobility of the displaced fluid phase. 

Therefore, for a waterflood where injected water is displacing oil, the mobility ratio is given in 

Equation 2.13 and 2.14. 

M = 
𝐾𝑤 𝜇𝑤⁄

𝐾𝑜 𝜇𝑜⁄
 = 

𝐾𝑤𝜇𝑜

𝐾𝑜𝜇𝑤
         (2.13) 

In terms of the relative permeability of the fluid, considering that absolute permeability is the 

same for both fluids, we have the expression in Equation 2.14. 

M = 
𝐾𝑟𝑤𝜇𝑜

𝐾𝑟𝑜𝜇𝑤
          (2.14) 

The relative permeability defined above, for water is the relative permeability in the water-

contacted zone of the formation, and for oil, the relative permeability is defined for the un-swept 

oil zone. 

A waterflood operation is successful as the areal sweep efficiency is sufficiently high, and this is 

only possible at favorable mobility ratio (M less than unity). This implies that the mobility of oil 

is greater than that of water.Where the mobility ratio is less than unity, the velocity of the 

waterfront in each layer will be impaired as the flood advances, which somewhat stabilizes the 

flood front. While the reverse applies to the case where the mobility ratio is greater than unity. 

The mobility ratio also influences the fluid injectivity, which is defined as the rate at which fluid 

can be injected per unit pressure difference between injection and producing wells. At favorable 

mobility ratios, the fluid injectivity decreases with increase in areal sweep efficiency. While the 

reverse goes for unfavorable mobility ratios (M greater than unity). 
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2.3 Theories and Advances in Waterflood Performance Predictions. 

Several theories have been proposed to predict waterflood performance. This is quite credited to 

certain authors and researchers as BuckleyS. E. et al (1942) who were the first to describe and 

include a saturation distribution using the frontal advancement theorem in immiscible 

displacement in homogeneous formation. The frontal advance equation incorporates the fractional 

flow equation in a material balance considering the fraction flow of water at the different sections 

of the reservoir being invaded by the flooded water. The result is an equation that relates the 

saturation with position and time at a given fluid injection rate as seen in Equation 2.15. With this 

equation, one can determine the position of the flood front at any time knowing the fractional flow 

slope as a function of saturation, which can be obtained from the fractional flow curve.  

𝑥 =  
5.615𝑊𝑖

𝜙𝐴

𝑑𝑓𝑤

𝑑𝑆𝑤
         (2.15) 

 

Figure 2.2– Waterflood frontal advancement saturation distribution (Source: B. C. CRAFT, M. H. 

(1991)) 
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As shown from Figure 2.2 it could be observed that more than one saturation can occur at the same 

location. This is not possible in a practical sense. To resolve this issue, BuckleyS. E. et al. (1942) 

suggested that a portion of the calculated saturation distribution curve is imaginary, and the real 

curve contains a discontinuity at the front. 

In a waterflood study, the reservoir is sectioned into three zones. Starting at the injection point, is 

the free water zone, having 100% water saturation, then a transition zone from which oil and water 

can be produced, and the oil zone with constituent connate water. The oil zone is considered as the 

un-swept zone, while the water zone is called the swept zone. During water breakthrough at the 

producer, indicating a complete sweep by the injected water, residual oil is left in the reservoir. 

Welge H. J. (1952) proposed an improved method of achieving the same result as BuckleyS. E. et 

al. (1942), by integrating the saturation distribution from the injection point to the front and 

obtained the water saturation behind the front expressed in Equation 2.16. But requires that the 

initial water saturation be uniform. A graphical interpretation of the result show that a line drawn 

tangent to the fractional flow curve from the initial water saturation (Swi), meets at the flood front 

(fwf, Swf) as shown in Figure2.3. 

[
𝑑𝑓𝑤

𝑑𝑆𝑤
]

𝑆𝑤𝑓

=  

𝑓𝑤
𝑆𝑤𝑓

⁄ − 
𝑓𝑤

𝑆𝑤𝑖
⁄

𝑆𝑤𝑓− 𝑆𝑤𝑖
        (2.16) 
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Figure 2.3–Fractional flow curve and derivative of fractional flow curve (Source: B. C. Craft, M. 

H. (1991)) 
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CHAPTER THREE 

3 Computer Implementation Process 

3.1 Introduction 

In this work, the waterflood performance shall be investigated using the Roberts method using 

Python programming language. 

The data for the program was taken from C.H. Wu (1988). The data includes a relative permeability 

of water and oil, and saturation table, and a table showing bed parameters, thickness, porosity, and 

permeability for each bed layer. There were no individual bed viscosities, thus an average viscosity 

for oil and water was used for the program. The saturation distribution was not also on per bed 

basis. The relative permeability of oil for the determination of the mobility ratio was taken at the 

initial water saturation (SWI), and that of water at 1-SOR. Where SOR is the residual oil saturation. 

The solution and step by step approach for the two cases was implemented with Python 3 software 

in Anaconda integrated development environment, shown in the schematic in Figure 3.1. The 

process employs three steps. 

• Writing the computer program 

• Development of a graphical user interface. 

• Conversion of the python file to an executable format. 
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Figure 3.1 – Computer Implementation Process Schematic 

3.2 Writing the Computer Program. 

The computer program was written in python programming language for Robert’s analytical 

solution, based on the process and waterflood performance parameters proposed by the authors. 

3.2.1 Defining Inputs 

STEP1: The first step for this process is input initialization. All the inputs required for the 

calculation were first initialized. The input data in Table 3.1 for the initialization step was also 

obtained from C.H. Wu (1988) paper. 

Table 3.1– Defining Program inputs 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Length_of_bed_ft = 2896 

width_of_bed_ft = 2000 

average_porosity = 0.25 

VISO = 3.6 

VISW = 0.95 

OFVF = 1.11 

WFVF = 1.01 

SWI = 0.2 

SGI = 0.16 

SOI = 0.65 

SOR = 0.35 

Residual_gas_saturation_unswept_area = 0.06 

Residual_gas_saturation_swept_area = 0.02 

Residual_gas_saturation = Residual_gas_saturation_unswept_area+Residual_gas_saturation_swept_area 

Constant_injection_rate = 1800 

Inj_Pressure_differential = 700 

 

3.2.2 Importing Python Modules 

STEP 2: The next step requires importing all necessary modules from the python library. Some 

of which requires installation such as the Pandastable. Installing files or libraries into your python 

path is mostly accomplished with the ‘pip’ command. By simply typing ‘pip install filename’ into 

your command prompt or using windows PowerShell for windows users. Pandastable is a software 

with graphical user interface, for viewing and working with tables, and making custom plots. It 

was developed byFarrel. D(2019). The following Python modules and libraries in Table 3.2 were 

imported for this work. 
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Table 3.2– Algorithms for Importing Python Module 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

from tkinter import* 

from tkinter import filedialog 

from tkinter import ttk 

import pandas as pd 

from tkinter.messagebox import* 

from tkinter.filedialog import askopenfilename 

import csv 

import math 

from decimal import* 

import numpy as np 

from pandastable.core import Table 

from pandastable.data import TableModel 

import matplotlib.pyplot as plt 

from scipy import integrate 

 

Tkinter is a Python default application for building a graphical user interface. Pandas is the Python 

default library for working with tables, while numpy is for arrays. Python uses the matplotlib for 

making plots. 

STEP 3: The tabular data for the saturation distribution, relative permeability of water and oil, and 

the reservoir bed parameters were arranged in a csv file stored in the same directory or folder as 

the Python file or executable file. This file serves as a template for working with the application. 

When trying to input new data, the column/ table header title must correspond with the csv file 

template. The data is as shown in Table 3.3: 

Table 3.3- Oil relative permeability data 
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SW KRW KRO 

0.2 0 1 

0.25 0.003 0.68 

0.3 0.008 0.46 

0.35 0.018 0.32 

0.4 0.035 0.2 

0.45 0.054 0.124 

0.5 0.08 0.071 

0.55 0.105 0.038 

0.6 0.14 0.017 

0.65 0.18 0 

 

As a matter of rule, the oil and water relative permeability must be (1) saved in the same folder as 

the executable file (2) must be saved with the name 

‘Oil_Water_Relative_Permeability_data.csv’. (3) The file must be saved with the same column 

heading as shown in Table 3.3 and 3.4  

Same rule also applies for the reservoir bed data. This should be saved with the name 

‘Permeability_Porosity_distribution_data.csv’, and with same column heading as shown in 

Table 3.4: 

Table 3.4 - Bed data permeability distribution 

LAYER DEPTH THICKNESS PERMEABILITY POROSITY 

1 4359.5 1 593 0.301 
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2 4361 1 500 0.288 

3 4363.5 1 366 0.283 

4 4365.5 1 1464 0.309 

5 4367.5 1 2790 0.311 

6 4369.5 1 5940 0.305 

7 4371.5 1 9230 0.322 

8 4373.5 1 2860 0.306 

9 4375.5 1 3080 0.322 

10 4377.5 1 594 0.297 

11 4379.5 1 2370 0.323 

12 4381.5 1 526 0.286 

 

The csv (comma-separated values) files were imported into the python file with the following 

algorithms in Table 3.5. 

Table 3.5 – Algorithm for reading input data csv files 

1 

2 

bed_data = pd.read_csv('Permeability_Porosity_distribution_data.csv') 

RPERM_data = pd.read_csv('Oil_Water_Relative_Permeability_data.csv') 

 

STEP 4: After the above steps, the program is written based on the step by process outlined by 

Roberts. The following were determined from the calculations: 

General Calculations 

1. Construct a fractional flow curve and determine the average water saturation behind the front. 
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2. Draw several tangents to the fractional flow curve at Sw values greater than the breakthrough 

saturation. Determine Sw and dFw/dSw and corresponding to these values. Plot fw’ versus Sw and 

construct a smooth curve through the points. 

3. Define the layers within the reservoir and determine the average permeability, porosity, and 

thickness for each layer. 

4. Compute the capacity, kh, and fraction of total capacity, ∆C, for each layer. 

5. Compute the injection rate into each layer. 

𝑖𝑤𝑗 = 𝑖𝑤𝑡 × ∆𝐶 

6. Calculate the cumulative water injection, Wij, into each layer to reach each Sw point chosen in 

Step 2 

 

𝑊𝑖𝑗 =
7758 × 𝐴𝑗ℎ𝑗∅𝑗

𝑓𝑤
1

 

7. Calculate qoj and qwj for each layer at each Sw point. Before breakthrough in a given bed, 

 

𝑞0𝑗 =
𝑖𝑤𝑗

𝐵𝑜
 

9. Calculate the recovery, Npj, and the time, tj , to each point. 

10.Plot the oil production rate for each layer as a function of time. Use this plot to construct a 

graph of total oil production rate versus time. 

11.Repeat step 10 for the water production rate. 

12.Use the total oil and water production rates to construct a plot of WOR versus time. 

13. Plot cumulative oil recovery from each layer as a function of time and use this plot to 

construct a graph of total recovery versus time. 
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14. Based on estimated expenses, decide on an appropriate WOR cutoff and from the data in 

Step 12, estimate the life of the project. 

15. Use the WOR-time cutoff to determine the projects ultimate recovery from data in Step 13. 

It is worth noting that the column and row numbering are based on their index and not necessarily 

on the reservoir bed layers.  

Table 3.6 – Index versus Layer definition 

Index Layers 

0 7 

1 6 

2 9 

3 8 

4 5 

5 11 

6 4 

7 10 

8 1 

9 12 

10 2 

11 3 

The codes written for the implementation of the solution is found in the Appendix A. 

3.2.1 The Fractional Flow Curve 

A fractional flow curve menu tab was incorporated into the program. Generating this curve 

followed four encompassing steps. 
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To begin this calculation, the following Python modules in Table 3.7 are imported: 

Table 3.7– Python modules for making fractional flow curve. 

1 

2 

3 

4 

5 

6 

7 

import numpy as np 

from scipy.optimize import* 

import math 

import random 

import matplotlib 

import matplotlib.pyplot as plt 

 

Generating the fractional flow equation. 

The fractional flow equation is generally given by: 

𝑓𝑤 =  
1

1+
𝐾𝑟𝑜
𝐾𝑟𝑤

𝜇𝑤
𝜇𝑜

          (3.1) 

Where, 

𝐾𝑟𝑜

𝐾𝑟𝑤
= 𝑎𝑒−𝑏𝑆𝑤          (3.2) 

This imply that the coefficients and constants ‘a’ and ‘b’, can be expressed as: 

𝑎 = 𝐾1𝑒𝑏𝑆𝑤           (3.3) 

b = 
𝑙𝑛𝐾1−𝑙𝑛𝐾2

𝑆𝑤2−𝑆𝑤1
          (3.4) 

The Python program for the determination of a and b was written as shown in Table 3.8: 
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Table 3.8– Defining function for fractional flow calculation. 

1 

2 

3 

4 

5 

b = (np.log((KRO/KRW)[2]) - np.log((KRO/KRW)[3]))/(SW[3] -SW[2]) 

a = (KRO/KRW)[2]*math.exp(b*SW[2]) 

def fw(SW): 

fw = 1/(1+a*(VISW/VISO)*np.exp(-b*SW)) 

return(fw) 

 

Note: The extreme points are not chosen because log of the relative permeability ratio does not 

form straight lines at the extremes, which will give erroneous result for the relative permeability 

ratio correlation in Equation (3.2) 

After successful determination of ‘a’ and ‘b’, the fractional flow data can be generation by 

substituting ‘a’, and ‘b’ into the fractional flow equation. 

Generating the Tangent to the fractional flow curve. 

Generating the tangent to the fractional flow curve is the tricky part of plotting the fractional flow 

curve. Customarily, to generating a tangent is easier when the point of tangency is given or known. 

In this case the only point that is known is the initial water saturation (Swi, 0) from where, the 

tangent line is drawn. 

With the point (Swi, 0) known, the tangent equation can be expressed as: 

𝑦 = 𝑚(𝑆𝑤 − 𝑆𝑤𝑖)         (3.5) 

where,  

m is the slope of the tangent line, 

and Sw the water saturation 
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The concept involves generating several tangent lines that will intercept the fractional flow curve 

at several points. The line (drawn from point (Swi, 0)) with the maximum slope touching the 

fractional flow curve will give the suitable tangent line. 

This necessitated equating the tangent line equation, and the fractional flow equation. 

m (Sw – Swi) = 
1

1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

        (3.6) 

which gave m to be: 

𝑚 =  
1

(𝑆𝑤−𝑆𝑤𝑖)(1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

)
        (3.7) 

For this program, ten thousand of uniformly distributed random points were generated to the 

required slope. Using the algorithm in Table 3.9. 

Table 3.9 – Algorithm for drawing tangent to the fractional flow curve 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

''' To calculate a suitable slope for the tangent to the fractional flow curve 

Drawn from the initial water saturation''' 

# STEP1: Generate a list of uniformly distributed random numbers from a water saturation 

# greater than the initial water saturation to 1 

xList = [] 

for i in range(0, 10000): 

x = random.uniform(SWI+0.1, 1) 

xList.append(x) 

xs = np.array(xList) 

# STEP2: Calculate different slopes of tangents or lines intersecting the fractional 

# flow curve using the array generated in step 1 as the water saturation. 

m = 1/((xs-SWI)*(1+(VISW/VISO)*a*np.exp(-b*xs))) 

# STEP3: Calculate the maximum slope from different slopes generated in step 2. 

# The value of this slope will be the slope of the tangent to the fractional flowcurve 
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15 tangent_slope = max(m) 

 

Upon calculating the slope of the tangent line, the water saturation can be calculated from tangent 

equation by substituting the point (SwBT, 1) into the tangent equation. 

Where SwBT is the water saturation at breakthrough. 

The flood front water saturation is also determined by substituting the point (Swf, Fwf) into the 

tangent equation and the fractional flow equation. The resulting non-linear equation is then solve 

using Python fsolve by importing the scipy module. The algorithms are as shown in Table 3.10. 

Table 3.10– Algorithm for Water saturation and fractional flow at flood front 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Saturation_at_Breakthrough = SWI + 1/tangent_slope 

def funct(SWF): 

swf = SWF[0] 

F[0] = ((tangent_slope*(swf-SWI)*(1+(VISW/VISO)*a*math.exp(-b*swf)))-1) 

return F 

SWF_Guess = np.array([SWI+0.1]) 

SWF = fsolve(funct, SWF_Guess)[0] 

# Fractional flow at the flood front 

Fwf = fw(SWF) 
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Differential of the fractional flow equation 

The differential of the fractional flow equation was also plotted on the fractional flow curve. 

Differentiating the fractional flow equation with respect to water saturation gives the expression 

below: 

(
𝑑𝑓𝑤

𝑑𝑆𝑤
)

𝑆𝑤

=  
𝑎𝑏𝑒−𝑏𝑆𝑤𝜇𝑤

𝜇𝑜

(1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

)
2        (3.8) 

The Python program for this is given as in Table 3.11. 

Table 3.11 – Algorithm for fractional flow derivative 

1 

2 

3 

4 

# Calculating the differential of the fractional flow equation 

dfw_dSw = (VISW/VISO)*a*b*np.exp(-SW*b)/(1+(VISW/VISO)*a*np.exp(-SW*b))**2 

# Generating the data for the tangent plot 

tangent = (SW-SWI)*tangent_slope 

 

Making the fractional flow curve 

The fractional flow curve comprises the plot of the fractional flow equation, the derivative of the 

fractional flow equation, and the tangent on the same 

 plot. The Python algorithm in Table 3.12 was used to set up the plot. 
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Table 3.12– Algorithm for making the fractional flow curve. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

# Making the plots 

fig, ax = plt.subplots(constrained_layout=True) 

fig.set_figheight(8) 

fig.set_figwidth(12) 

fractional_flow_curve = ax.plot(SW, fw(SW), 'b', label = 'Fractional Flow (Fw)') 

tangent_curve = ax.plot(SW, tangent, 'k--') 

ax.set_ylabel("Fractional Flow (fw)",fontsize=14) 

ax.set_xlabel("Water Saturation (Sw)",fontsize=14) 

ax.set_ylim([0,1]) 

ax.set_xlim([0,1]) 

# twin object for two different y-axis on the same plot 

ax2=ax.twinx() 

# make a plot with different y-axis using second axis object 

dfw_dSw_curve = ax2.plot(SW, dfw_dSw, 'r', label ='dFw/dSw') 

ax2.set_ylabel("dfw/dSw",fontsize=14) 

ax.grid(True) 

ax2.legend() 

ax.legend(loc='upper left') 

ax.annotate("  (Swf, Fwf)", (SWF, Fwf)) 

ax.annotate(" SwBT", (Saturation_at_Breakthrough, 1)) 

plt.show() 

 

The resultant plot of the fractional flow curve is as shown in Figure 3.2. 
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Figure 3.2 – The Fractional Flow Curve 

3.3 Development of The Graphical User Interface. 

The graphical user interface for the program was created with TkinterTM1. Tkinter makes use of 

widgets such as labels, buttons, treeviews, entries, frames, canvas, and lots more to build graphical 

user interface. 

The graphical user interface is as seen in Figure 3.3 to Figure (3.9). 

3.3.1 The Application Window. 

When the program is turned on or opened the window in Figure 3.2 comes up. This is the 

application from which you can navigate to other part of the application. 
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Figure 3.3–Graphical user interface 

3.3.2 The Menu Bar 

The application consists of five menu bars. 

• Load Data 

• Fractional flow 

• Print Result 

• Robert: clicking on this tav brings up the table (the pandastable) on the left. 

3.4 Conversion of The Python File to An Executable Format. 

To convert the python file to an installable executable file, the following process were 

taken. 

• Run command prompt in the directory with the python file and all other related file. 

Install python installer, by typing the command ‘pip install pyinstaller2’. This 

command will be success if python is installed the system path. With pyinstaller 

installed, the command ‘pyinstaller --onefile -w filename.py’ is issued. If some 

dependencies (such as pandas, pandastable, etc.) are absent, they can be installed 

with the command “pyinstaller -F –hidden-import ‘name of module absent’ 
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filename.py”. The possibility of pyinstaller not finding a dependency already used 

in the development of the application is traceable to the fact that these dependencies 

were installed in an IDE and not in the path where Python is in the computer. 

• The NSIS3 (nullsoft scriptable install system) is used to bundle any additional 

document or file the application may require, into an executable zip file. 
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CHAPTER FOUR 

4 RESULT 

The example used to test the application/program with saturation and relative permeability data as 

shown in Table 3.3, and bed parameters as shown in Table 3.4 was gotten from Langnes etal 

(1985). Tabular results were obtained for Robert’s method, and the necessary waterflood 

descriptive and performance plots were made 

PERFORMANCE PLOTS 

Plot of water injection per layer against Capacity 

 

 

 

Figure 4.1–Plot of water injection per layer against Capacity 
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Oil Production after breakthrough Vs time to each point 

 

 

Figure 4.2 – Oil Production after breakthrough Vs time to each point 
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Figure 4.3 – Water Production vs time. 
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5 Conclusion and Recommendation 

5.1 Conclusion 

waterflooding is a crucial technique in enhanced oil recovery, significantly impacting the 

petroleum industry's ability to maximize resource extraction. As operators face the challenges 

posed by declining conventional reserves, the importance of effective waterflooding strategies 

becomes increasingly evident. Robert's method of waterflooding represents a significant 

advancement in this field, providing a robust analytical framework for optimizing water injection 

processes. 

By leveraging mathematical modeling and sophisticated computer implementations, 

Robert's method enhances the efficiency and effectiveness of waterflooding operations. The 

adoption of advanced techniques like Robert's method will play a pivotal role in shaping the future 

of oil recovery, ensuring that valuable resources are extracted sustainably and economically. 

 

5.2 Recommendation 

Robert’s method of waterflooding calculation integrates multiple parameters that influence water 

flooding, enabling a comprehensive assessment of reservoir performance. Its capacity to 

incorporate real-time data significantly enhances prediction accuracy and operational efficiency, 

facilitating dynamic adjustments to water injection strategies. Furthermore, Robert's model is 

versatile and applicable to various reservoir types and conditions, making it a valuable tool across 

diverse geographical locations and geological settings. A computer program that embeds all 

methods of predicting waterflooding performance can be developed, which can optimize the 

management of waterflooding operations and improve overall recovery outcomes. 
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APPENDIX  

Python Codes 

#Water Saturation 

import numpy as np 

from scipy.optimize import* 

import math 

import random 

import matplotlib 

import matplotlib.pyplot as plt 

import pandas as pd 

 

SW = np.array([0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65]) 

SW_table = pd.DataFrame(SW, columns = ['SW']) 

#print(SW_table) 

# Relative permeability of Water 

KRW = np.array([0, 0.003, 0.008, 0.018, 0.035, 0.054, 0.08, 0.105, 0.14, 

0.18]) 

 

# Relative permeability of Oil 

KRO = np.array([1, 0.68, 0.46, 0.32, 0.2, 0.124, 0.071, 0.038, 0.017, 0]) 

 

# Water and Oil Viscosity 

VISW = 0.95 # unit is in centipoise 

VISO = 3.6 # unit is in centipoise 

 

# Initial water saturation 

SWI = 0.2 

 

# Using the correlation between relative permeability ratio and water 

saturation 

#print('Correlation:\n Kro/Krw = aexp(-bSw)\n') 

 

# Calculating the coefficient b 

b = (np.log((KRO/KRW)[2])-np.log((KRO/KRW)[3]))/(SW[3]-SW[2]) 

#print('b is:\n ', b) 

#======================================================================== 

 

# Calculating the coefficient a 

a = (KRO/KRW)[2]*math.exp(b*SW[2]) 

#print('a is:\n ', a) 

#======================================================================== 

# Calculating the fractional flow 

def fw(SW): 

fw = 1/(1+a*(VISW/VISO)*np.exp(-b*SW)) 

return(fw) 

#======================================================================== 

''' To calculate a suitable slope for the tangent to the fractional flow 

curve 

Drawn from the initial water saturation''' 

 

''' STEP1: Generate a list of uniformly distributed random numbers from a 

water saturation 

# greater than the initial water saturation to 1''' 

xList = [] 
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for i in range(0, 10000): 

x = random.uniform(SWI+0.1, 1) 

xList.append(x) 

xs = np.array(xList) 

 

'''STEP2: Calculate different slopes of tangents or lines intersecting the 

fractional 

flow curve using the array generated in step 1 as the water saturation.''' 

m = 1/((xs-SWI)*(1+(VISW/VISO)*a*np.exp(-b*xs))) 

 

'''STEP3: Calculate the maximum slope from different slopes generated in step 

2. 

The value of this slope will be the slope of the tangent to the fractional 

flow 

curve.''' 

tangent_slope=max(m) 

#print('slope of the tangent line is:\n ',tangent_slope) 

#========================================================================== 

# Calculate the breakthrough saturation. 

Saturation_at_Breakthrough = SWI + 1/tangent_slope 

print(Saturation_at_Breakthrough) 

#print('saturation at breakthrough is:\n ', Saturation_at_Breakthrough) 

#=========================================================================== 

# Calculating the saturation at the flood front 

 

def funct(SWF): 

swf = SWF[0] 

F = np.empty((1)) 

F[0] = ((tangent_slope*(swf-SWI)*(1+(VISW/VISO)*a*math.exp(-b*swf)))-1) 

return F 

SWF_Guess = np.array([SWI+0.1]) 

SWF = fsolve(funct, SWF_Guess)[0] 

SWF 

#============================================================================ 

# Fractional flow at the flood front 

Fwf = fw(SWF) 

Fwf 

#============================================================================

= 

# Fractional flow 

Fw = fw(SW) 

Fw_table = pd.DataFrame(Fw, columns = ['Fractional Flow (Fw)']) 

#print(Fw_table) 

#============================================================================

= 

# Calculating the differential of the fractional flow equation 

def dFw_dSw(Sw): 

dfw_dSw = (VISW/VISO)*a*b*np.exp(-Sw*b)/(1+(VISW/VISO)*a*np.exp(-Sw*b))**2 

return dfw_dSw 

dfw_dSw_table = pd.DataFrame(dFw_dSw(SW), columns = ['dFw/dSw']) 

print(dFw_dSw(SW)) 

#print(dfw_dSw_table) 

#============================================================================ 

# Generating the data for the tangent plot 

tangent = (SW-SWI)*tangent_slope 

tangent_table = pd.DataFrame(tangent, columns = ['Tangent']) 

#print(tangent_table) 
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#============================================================================

== 

'''Draw several tangents to the fractional flow curve at Sw values greater 

than the 

breakthrough saturation. Determine Sw and dFw/dSw and corresponding to these 

values. 

Plot fw’ versus Sw and construct a smooth curve through the points ''' 

# Sw greater than SwBT 

from numpy import* 

Sw_greater_SwBT = arange(Saturation_at_Breakthrough+0.01,SW[len(SW)-1],0.01) 

dFw_dSw_greater_SwBT = dFw_dSw(Sw_greater_SwBT) 

print(dFw_dSw_greater_SwBT) 

#============================================================================ 

Fractional_flow_table = pd.concat([SW_table, Fw_table, dfw_dSw_table, 

tangent_table], axis=1) 

#print(Fractional_flow_table) 

#============================================================================

= 

# Making the plots 

 

fig, ax = plt.subplots(constrained_layout=True) 

fig.set_figheight(4) 

fig.set_figwidth(7) 

fractional_flow_curve = ax.plot(SW, fw(SW), 'b', label = 'Fractional Flow 

(Fw)') 

tangent_curve = ax.plot(SW, tangent, 'k--') 

ax.set_ylabel("Fractional Flow (fw)",fontsize=14) 

ax.set_xlabel("Water Saturation (Sw)",fontsize=14) 

ax.set_ylim([0,1]) 

ax.set_xlim([0,1]) 

# twin object for two different y-axis on the same plot 

ax2=ax.twinx() 

# make a plot with different y-axis using second axis object 

dFw_dSw_curve = ax2.plot(SW, dFw_dSw, 'r', label ='dFw/dSw') 

ax2.set_ylabel("dfw/dSw",fontsize=14) 

ax.grid(True) 

ax2.legend() 

ax.legend(loc='upper left') 

ax.annotate(" (Swf, Fwf)", (SWF, Fwf)) 

ax.annotate(" SwBT", (Saturation_at_Breakthrough, 1)) 

plt.show() 

 

#Making the plots of Sw_greater_SwBT and dFw_dSw_greater_SwBT 

dFw_dSw_Sw_greater_SwBT = plt.plot(Sw_greater_SwBT, dFw_dSw_greater_SwBT) 

plt.show() 

 

#============================================================================

= 

#Calculating capacity 

Bed_data = 

pd.read_csv("C:/file_location/Permeability_Porosity_distribution_data.csv") 

permeability = Bed_data['PERMEABILITY'] 

thickness = Bed_data['THICKNESS'] 

porosity = Bed_data['POROSITY'] 

Capacity=permeability*thickness 

Fraction_of_total_Capacity= Capacity/sum(Capacity) 
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#============================================================================

= 

#Calculating Injection Rate 

Injection_Rate = 1800 #STB/d 

Injection_Rate_Per_Layer = Injection_Rate*Fraction_of_total_Capacity 

 

#============================================================================

= 

#Calculating Water injection rate per layer 

Length = 2896 #feet 

Breadth = 2000 #feet 

Area = Length*Breadth 

 

Cummulative_Water_Injection_Per_Layer_list = [] 

for j in range(len(thickness)): 

Cummulative_Water_Injection_Per_Layer = 

7758*Area*thickness[j]*porosity[j]/dFw_dSw_greater_SwBT 

Cummulative_Water_Injection_Per_Layer_list.append(Cummulative_Water_Injection

_Per_Layer) 

print(Cummulative_Water_Injection_Per_Layer_list) 

 

#============================================================================

= 

#Oil Production Rate Before Breakthrough 

Oil_Formation_Volume_Factor = 1.11 #RBL/STB 

Oil_Production_Before_Breakthrough = 

Injection_Rate_Per_Layer/Oil_Formation_Volume_Factor 

 

#Oil Production Rate After Breakthrough 

Oil_Production_Per_Layer_After_Breakthrough_list = [] 

for j in range(len(thickness)): 

Oil_Production_Per_Layer_After_Breakthrough = 

Oil_Production_Before_Breakthrough[j]*(1-Fw) 

Oil_Production_Per_Layer_After_Breakthrough_list.append(Oil_Production_Per_La

yer_After_Breakthrough) 

 

#Water Production 

Water_Production_Per_Layer_After_Breakthrough_list = [] 

for j in range(len(thickness)): 

Water_Production_Per_Layer_After_Breakthrough = 

Injection_Rate_Per_Layer[j]*Fw 

Water_Production_Per_Layer_After_Breakthrough_list.append(Water_Production_Pe

r_Layer_After_Breakthrough) 

 

#Calculate the recovery at breakthrough and the time to breakthrough for each 

layer 

Recovery_At_Breakthrough_Per_Layer_list = [] 

for j in range(len(thickness)): 

Recovery_At_Breakthrough_Per_Layer = 

7758*Area*thickness[j]*porosity[j]*(Saturation_at_Breakthrough - 

SWI)/Oil_Formation_Volume_Factor 

Recovery_At_Breakthrough_Per_Layer_list.append(Recovery_At_Breakthrough_Per_L

ayer) 

 

#Time to Breakthrough for each layer 

#Water injection at Breakthrough 

Cummulative_Water_Injection_Per_Layer_At_Breakthrough_list = [] 
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for j in range(len(thickness)): 

Cummulative_Water_Injection_Per_Layer_At_Breakthrough = 

7758*Area*thickness[j]*porosity[j]/dFw_dSw(Saturation_at_Breakthrough) 

Cummulative_Water_Injection_Per_Layer_At_Breakthrough_list.append(Cummulative

_Water_Injection_Per_Layer_At_Breakthrough) 

Time_To_Breakthrough_For_Each_Layer = 

Cummulative_Water_Injection_Per_Layer_At_Breakthrough/permeability[j] 

 

#Oil recovery and time to each point. 

Oil_Recovery_To_Each_Point_List = [] 

for j in range(len(thickness)): 

Oil_Recovery_To_Each_Point = 7758*Area*thickness[j]*porosity[j]*(SW - 

SWI)/Oil_Formation_Volume_Factor 

Oil_Recovery_To_Each_Point_List.append(Oil_Recovery_To_Each_Point) 

Time_To_Each_Point = Cummulative_Water_Injection_Per_Layer/permeability[j] 
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