
i

COMPUTER IMPLEMENTATION OF THE ROBERT’S METHOD OF

WATERFLOOD CALCULATIONS

A Thesis Submitted to the Department of

Petroleum Engineering

African University of Science and Technology Abuja, Nigeria

In Partial Fulfilment of the Requirements for the Degree of

Master of Science in Petroleum Engineering.

By

Uzokwe Paul Onyebuchi

December 2020.

ii

CERTIFICATION

This is to certify that the thesis titled “Computer Implementation of the Robert’s Method of

Waterflood Calculations” submitted to the school of postgraduate studies, African University

of Science and Technology (AUST), Abuja, Nigeria for the award of the Masters’ degree is

a record of original research carried out by Uzokwe Paul Onyebuchi in the Department of

Petroleum Engineering.

iii

COMPUTER IMPLEMENTATION OF THE ROBERT’S METHOD OF WATERFLOOD

CALCULATIONS

By

Uzokwe Paul Onyebuchi

A THESIS APPROVED BY THE PETROLEUM ENGINEERING DEPARTMENT

RECOMMENDED: --

Supervisor, Prof. Ikiensikimama Sunday

--

The name of the first co-supervisor

--

The second co-supervisor

--

Head, Department of Petroleum Engineering

APPROVED:

Chief Academic Officer

August 24th, 2021

--

Date

iv

COPYRIGHT PAGE

©2020

Uzokwe Paul Onyebuchi

v

ABSTRACT

This study presents a computer implementation of Robert's method for waterflooding, a critical technique

in petroleum engineering for optimizing oil recovery. The implementation aims to enhance the accessibility

and usability of Robert's method for industry professionals. Utilizing Python and a user-friendly graphical

interface, the application allows users to input various parameters and visualize waterflooding scenarios

effectively. Through comparative analysis with traditional waterflooding methods, the software provides

insights into the performance and efficiency of Robert's approach. Preliminary results demonstrate that the

implementation aligns closely with existing simulation tools, showcasing its potential as a practical resource

for engineers. This work contributes to the ongoing efforts to refine waterflooding strategies and improve

oil recovery outcomes in the field.

Keywords and Phrases: Waterflood, Robert’s method, Computer, Python, Enhanced oil recovery

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Prof. Sunday S. Ikiensikimama, for his

continuous support during my research and the writing of my thesis.

Special thanks to my faculty members: Prof. David Ogbe, Dr. Alpheus Igbokoyi, the head of the

department, Prof. Djebbar Tiab, and Prof. Wumi Iledare, for their invaluable education and the

profound impact they have had on my life.

I extend warmest regards to my colleagues for the memorable moments shared and the academic

contributions and support they provided during my time at the African University of Science and

Technology. I am especially grateful to my partner and friend, Lekia Prosper for our stimulating

discussions.

Last but not least, I would like to thank my family—my parents and siblings—for their unwavering

spiritual, financial, and emotional support throughout the writing of this thesis and in my life in

general.

vii

TABLE OF CONTENT

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.1 Aim and Objectives. ... 4

2 Theories in Waterflood Performance Evaluation .. 5

2.1 Introduction .. 5

2.1.1 Types of Waterflooding .. 5

2.1.2 Factors to Consider in Waterflooding ... 8

2.2 Sweep Efficiencies. .. 9

2.2.1 Mobility Ratio ... 11

2.3 Theories and Advances in Waterflood Performance Predictions. 13

3 Computer Implementation Process .. 16

3.1 Introduction .. 16

3.2 Writing the Computer Program. ... 17

3.2.2 Importing Python Modules ... 18

3.2.1 The Fractional Flow Curve ... 23

3.3 Development of The Graphical User Interface. ... 30

3.3.1 The Application Window. ... 30

3.3.2 The Menu Bar ... 31

3.4 Conversion of The Python File to An Executable Format. .. 31

4 RESULT .. 33

5 Conclusion and Recommendation ... 36

5.1 Conclusion .. 36

5.2 Recommendation .. 36

APPENDIX ... 37

REFERENCES ... 42

viii

LIST OF TABLES

Table 3.1– Defining Program inputs ... 17

Table 3.2– Algorithms for Importing Python Module .. 19

Table 3.3- Oil relative permeability data .. 19

Table 3.4 - Bed data permeability distribution ... 20

Table 3.5 – Algorithm for reading input data csv files ... 21

Table 3.6 – Index versus Layer definition .. 23

Table 3.7– Python modules for making fractional flow curve. ... 24

Table 3.8– Defining function for fractional flow calculation. .. 25

Table 3.9 – Algorithm for drawing tangent to the fractional flow curve .. 26

Table 3.10– Algorithm for Water saturation and fractional flow at flood front ... 27

Table 3.11 – Algorithm for fractional flow derivative .. 28

Table 3.12– Algorithm for making the fractional flow curve. .. 29

ix

LIST OF FIGURES

Figure 2.1–3-Dimensional view of vertical and areal sweep efficiency .. 10

Figure 2.2– Waterflood frontal advancement saturation distribution (Source: B. C. CRAFT, M. H. (1991))

 .. 13

Figure 2.3–Fractional flow curve and derivative of fractional flow curve (Source: B. C. Craft, M. H.

(1991)) .. 15

Figure 3.1 – Computer Implementation Process Schematic ... 17

Figure 3.2 – The Fractional Flow Curve ... 30

Figure 3.3–Graphical user interface .. 31

Figure 4.1–Plot of water injection per layer against Capacity .. 33

Figure 4.2 – Oil Production after breakthrough Vs time to each point ... 34

Figure 4.3 – Water Production vs time. .. 35

x

LIST OF ABBREVIATIONS AND SYMBOLS

D= parameter defined by Eq 2.61,dimensionless

EA = the areal sweep efficiency.

ED = displacement efficiency

EV = Vertical sweep efficiency.

F wop = water-to-oil ratio (WOR), RB/RB[res m 3 /res m3]

h= bed thickness, ft [m]

k = bed permeability, md

kr = relative permeability, dimensionless

L= bed length, ft [m]

M = mobility ratio, dimensionless

n = number of beds

N = oil in place in the pore volume

NPR = cumulative oil recovered, res bbl [res m3]

O= bed-ordering parameter, cp/md [Pa' s/md]

p = pressure, psia [kPa]

q= injection or production rate, RB/D[res m3 /d]

S= fluid saturation, dimensionless

Sor = residual oil saturation, dimensionless

Swi = irreducible water saturation, dimensionless

t= real or process time, days

W= cumulative injected water, RB [res m3]

y= bed width, ft [m]

z= point of flood-front coincidence

{3 = fluid formation volume factor, RB/STB[res m3 /std m3]

Aj= reservoir fluid mobility, md/cp (md/Pa' s)

Ar = reservoir mobility ratio, dimensionless

f1- = fluid viscosity, cp [Pa' s]

Φ = porosity, dimensionless

xi

Subscripts

BT= breakthrough point

i,j,o= bed indices with range L.n

o= oil

τ = identification of a cumulative quantity attime t

T= total

w= water

1

Chapter 1: Introduction

1.1 Introduction

The oil and gas industry has been a phenomenon influencing the world’s economy. The

World’s proven reserve amounts to 1.65 trillion barrels as of 2016. Proven reserve is the amount

of oil that can be recovered under current and available technology, economically, at a specified

date. It is the recovered oil that is valued, and technological and economic efforts are aimed at

getting the oil out of the subsurface with maximum efficiency.

Waterflooding is a prominent enhanced oil recovery (EOR) technique employed in the petroleum

industry to optimize the extraction of crude oil from reservoirs. As conventional oil sources

become increasingly depleted, the significance of waterflooding grows, playing a critical role in

maintaining production rates and extending the life of oil fields. This introduction will provide a

comprehensive overview of waterflooding, its importance in oil recovery, and delve into Robert's

method, a refined approach to optimizing waterflooding processes.

Waterflooding involves injecting water into oil reservoirs to maintain reservoir pressure and

displace oil toward production wells. The efficiency of this technique is influenced by several

factors, including fluid properties, reservoir characteristics, and the dynamics of fluid flow in

porous media (Akhmetov et al., 2018). The primary objective of waterflooding is to enhance oil

recovery by maintaining reservoir pressure and improving sweep efficiency—the effectiveness

with which the injected water displaces oil.

The overall oil recovery from a reservoir can be characterized by two main components:

volumetric sweep efficiency and displacement efficiency. Volumetric sweep efficiency refers to

the fraction of the reservoir volume that is effectively contacted by the injected water, while

2

displacement efficiency pertains to the ability of the injected water to displace the oil from the

pore spaces of the reservoir rock (Lake et al., 2014).

In heterogeneous reservoirs, where variations in permeability and porosity exist, optimizing water

injection patterns becomes a challenge. Engineers must consider factors such as fluid mobility,

rock properties, and reservoir geometry to maximize oil recovery while minimizing water

production (Chen et al., 2019).

The significance of waterflooding in the oil industry is substantial. It is estimated that

waterflooding can recover an additional 20-50% of the original oil in place (OOIP) after primary

recovery methods have been employed (Butler et al., 2013). This capability to enhance recovery

rates is crucial as operators seek to extend the economic life of oil fields amid declining

conventional reserves.

Moreover, maintaining reservoir pressure is essential for sustaining oil flow to production wells

and preventing premature reservoir depletion. By injecting water, operators can counteract the

natural decline in pressure, thus ensuring a more stable production profile over time (Santos et al.,

2017). This not only contributes to higher recovery rates but also improves the economic viability

of oil production, especially in a volatile market where price fluctuations can significantly impact

profitability.

Robert's method of waterflooding is an advanced approach that enhances traditional waterflooding

techniques by incorporating mathematical modeling to optimize water injection strategies. This

method utilizes analytical solutions to provide a framework for understanding and predicting fluid

behavior in reservoirs.

3

At the heart of Robert's method is the concept of piston-like displacement, which assumes that the

injected water moves through the reservoir similarly to a piston. This assumption allows for the

development of explicit solutions for key performance parameters under various conditions, such

as constant injection pressure and overall injection rate (Robert, 1991).

One of the primary advantages of Robert's method is its ability to address complex reservoir

conditions more accurately than traditional models. While conventional waterflooding models

often rely on simplified assumptions, Robert's method can account for reservoir heterogeneity,

varying fluid properties, and changes in injection rates, providing a more comprehensive

understanding of the waterflooding process (Sheng, 2015).

The implementation of Robert's method allows petroleum engineers to design and optimize

waterflooding strategies tailored to specific reservoir conditions. By utilizing the analytical

solutions provided by this method, engineers can make informed decisions regarding water

injection rates, well placements, and overall field management (Robert, 1991).

Furthermore, the predictive capabilities of Robert's method enhance the ability to forecast

production outcomes. Accurate modeling of fluid flow and displacement efficiency allows

operators to better anticipate production trends and optimize resource allocation, which is critical

in an industry characterized by uncertainty and volatility (Pawar et al., 2020).

In this work, focus will be on the theories of waterflooding, which could also be applicable in

enhanced oil recovery applications such as polymer flooding, or other chemical immiscible

displacement technique. The theoretical advances of this theories, and its foregoing applications

even in enhanced oil recovery, will be discussed in the adjoining chapter. But this will be with

4

greater focus on Robert’s waterflood performance prediction method, decorated with an

encompassing literature review.

1.1 Aim and Objectives.

The aim of this study is to develop a computer program to implement the Robert’s

Waterflood performance technique.

The objectives of the study include:

1. Writing a computer program implementing the Robert’s waterflood method using Python

3.0.

2. Integrating the computer program with a graphical user interface.

3. Converting the resultant computer program to a desktop application.

5

CHAPTER TWO

2 Theories in Waterflood Performance Evaluation

2.1 Introduction

Waterflooding is a secondary recovery process in which water compatible with the reservoir of

interest is injected into the reservoir to displace residual oil. Waterflooding is more commonly

employed than immiscible gas injection – the other secondary recovery process – because water,

which is the injectant, is relatively inexpensive compared to gas injectant. Waterflooding has two

effects on the reservoir; it reduces the rate of reservoir pressure decline during production, possibly

increasing the reservoir pressure with continued injection; and water injected into the reservoir

sweeps the oil towards the producers, thus increasing oil production and consequently, cumulative

oil production (Rose et al., 1989; Abdel-Kareem et al., 2009). Although waterflooding is a

relatively inexpensive and mature technology, several potential problems may arise during a the

process. Some of the problems include inefficient recovery due to varying permeabilities and

anisotropy, reservoir heterogeneities affecting fluid transport within the reservoir, early water

breakthrough that may cause production and surface processing problems, etc. (Rose et al., 1989).

2.1.1 Types of Waterflooding

In selecting a waterflooding pattern for the reservoir of interest, several factors are considered,

such as reservoir heterogeneities – including directional permeability and formation fractures;

injection fluid availability; anticipated maximum oil recovery and flood life; and well spacing,

productivities, and injectivities. There are two types of waterflooding; patterned waterflooding and

non-patterned waterflooding. In non-patterned waterflooding, there are basically two types;

6

generally irregular well placements and peripheral or flank waterflooding. In patterned

waterflooding, where the well placements are done in some repetitive fashion, there are several

types namely; regular 4-spot and skewed 4-spot, 5-spot, 7-spot, 9-spot, direct line drive and

staggered line drive patterns. Another type of flooding that can be utilized – depending on reservoir

geometry and properties is the crestal and basal pattern. This involves perforating the injector wells

up-structure (for gas injection) or down-structure (for water injection) relative to the producer

wells, thus utilizing the effect of gravity segregation in the displacement process (Ahmed, 2006).

Based on some assumptions, Crawford in 1960 obtained the efficiencies for several pattern floods.

According to him, assuming a unit mobility ratio, steady-state condition, homogeneous and

uniform reservoir, and ignoring capillary and gravity effects, the efficiencies were 45% to 90% for

9-spot, 72% for 5-spot, and 56% for direct line drive pattern. The unit mobility ratio used was

mobility ratio before water breakthrough. Older fluid injection projects involved maximizing oil

recovery via understanding and utilizing the reservoir heterogeneities. Well placements were

irregular in both secondary and tertiary recovery processes. Eventually, it became a norm that well

placements be in some repetitive 10 pattern (Ogali, 2011). Several patterns were analyzed to

determine the optimum patterns used in secondary and tertiary recovery processes. Recently,

reservoir engineers, even after selecting a pattern, do not use the same pattern throughout the

reservoir. This is because of two of the criteria considered in pattern selection which are reservoir

heterogeneity and overall project economics (Rose et al., 1989). Waterflood recovery is sensitive

to heterogeneity. Mobility ratios and well configuration also influence it. During waterflooding,

the effect of heterogeneity becomes less severe upon reducing the well spacing as the mobilized

oil has to travel a relatively shorter distance to the nearest producing well (Singhal et al., 2005).

The key objective of selecting a flooding pattern is to maximize the contact between the injection

7

fluid and the hydrocarbon system and hence improve oil recovery and the economics of the project.

This is a critical step and can be achieved by either drilling infill injector wells or converting

existing production wells to injectors. Figure 2.1 shows various patterns used in waterflooding. In

this illustration, there are two types of each pattern; the normal pattern and the inverted pattern

types. In the normal pattern type, for a set of injectors and producers, there are several injectors

and one producer. In the inverted pattern type, for each set of injectors and producers, there are

several producers and one injector. This means that each of the patterns shown in Figure 2.1 has

the normal and the inverted pattern types. The success of a waterflood flood project can be

predicted from proper selection of waterflood patterns. The primary objective is to attain a balance

between injection and producer wells within a pattern and minimize oil migration to adjacent

patterns and loss into the formation. Balancing patterns essentially means that for every barrel of

water injected, a barrel of hydrocarbon is 11 recovered from the production wells surrounding the

injector. An unbalanced pattern leads to poor sweep, premature breakthrough, and high-water

cycling. An effective pattern balancing leads to better areal sweep and higher oil recovery

(Oyebimpe, 2010). A wide variety of flood patterns (injection-production well arrangement) have

been studied with efficiencies for various confined well patterns at breakthrough indicating the

effect of the pattern. Figure 2.1: Various patterned flood arrangements – triangles are injectors and

circles are producers (Tarek Ahmed, 2006). A comparison of the data for the two direct line drive

patterns indicate that sweep is a function of spacing ratio, with the greater ratio resulting in higher

breakthrough sweep efficiency (Singh and Kiel, 1982). The effect of off-pattern wells was studied

by Prats et al., 1962 and they found that the oil recovery at breakthrough is always lower with an

off-pattern injection well. Sweep out 12 beyond normal pattern was studied by Caudle et. al.,

1955.They found that at least 90 percent of the area lying outside the last row of wells and within

8

one well spacing of these wells would ultimately be swept by the injected water. Landrum and

Crawford (1960) studied the effect of directional permeability on sweep efficiency at unit mobility

ratio, for a five-spot and direct line drive (square pattern). Their results show that a 45˚ rotation of

patterns could result in approximately 100 percent sweep for the five-spot and approximately zero

sweep for a line drive

2.1.2 Factors to Consider in Waterflooding

In determining how suitable a reservoir of interest is for waterflooding, Thomas, Mahoney and

Winter (1989) pointed out that several reservoir characteristics must be considered. i. Reservoir

geometry – includes areal geometry influences on well and facility locations, number and location

of platforms for offshore operations. ii. Lithology and rock properties – includes rock types, clay

type and content, porosity (single and dual porosity systems), permeability, well spacing, pressure

history. iii. Reservoir depth – involves considering drilling costs especially for new injector wells,

dual porosity systems, temperature gradient, fracturing (injection pressure versus depth) and

fracture types. iv. Fluid properties, fluid saturations, and fluid distribution – includes consideration

of the saturation and distribution of the phases (oil, water and gas) throughout the reservoir, oil

viscosity, oil mobility, and mobility ratio, areal sweep and flood efficiencies. v. Reservoir

uniformity and pay continuity – includes considerations of thief zones, areal continuity of pay

zones, faults, fractures, reservoir anisotropy. vi. Primary reservoir driving mechanisms – includes

review of the hydrocarbon recovery that can be achieved via waterflooding, and considering how

the primary drive mechanisms will affect the waterflooding process. For instance, solution gas

drive reservoirs are the best candidates for waterflooding. Waterflooding has been employed

successfully in many reservoirs. Extensive research and development in this technology have

improved the efficiency of this secondary recovery process. Also, waterflooding in most reservoirs

9

is considered a cheaper option for secondary recovery compared to immiscible gas injection.

However, waterflooding has several potential problems; for instance, poor fluid transport within

the reservoir due to reservoir heterogeneities, production and surface processing problems caused

by early water breakthrough. Every reservoir is unique, and so there is no standard “recipe” for

waterflooding a reservoir. Also, although considered a cheaper secondary recovery option, a

waterflood project is a huge investment. To maximize oil recovery and economics from a given

waterflood project while minimizing injection water volumes and the effects of reservoir

heterogeneities, flood management is employed. Extensive research and development of various

flood management techniques have been carried out. This research involves employing one of the

waterflood management techniques. The optimization objective for a field undergoing water

flooding is to maximize expected net present value (NPV) or expected cumulative oil production

from the reservoir (Jackson et al., 2017). These objectives are maximized through proper well

placement and optimal well control. While well placement and well control are often performed

separately, there is increasing interest in performing coupled optimization of both decision

variables. This research examined well placement, well control and coupled well placement-well

control optimization.

2.2 Sweep Efficiencies.

It has been shown that knowing the oil in place, the areal efficiency, displacement efficiency, and

the vertical sweep efficiency, one can determine the determine the cumulative recovery at any time

using Equation 2.1.

𝑁𝑝 = N (𝐸𝐴 × 𝐸𝐷 × 𝐸𝑣) (2.1)

Where

N = oil in place in the pore volume

10

EA = the areal sweep efficiency.

ED = displacement efficiency

EV = Vertical sweep efficiency.

The product of the areal and vertical sweep efficiency gives the volumetric sweep efficiency.

While the overall recovery factor or efficiency is the product of the areal sweep efficiency, vertical

sweep efficiency and the displacement sweep efficiency as expressed in Equation 2.2.

𝑅𝐹 = 𝐸𝐴 × 𝐸𝐷 × 𝐸𝑣 (2.2)

Areal sweep efficiency is defined as the reservoir area fraction contacted by the displacing fluid

during the waterflooding operation. The areal sweep efficiency is a function of the relative flow

properties of oil and water, the well pattern, pressure distribution and the directional permeability.

The vertical sweep efficiency is the fraction of the formation in the vertical plane which injected

water for waterflood operation will contact. It depends primarily on the vertical stratification of

the reservoir. Figure 2.1 is a representation of areal and vertical sweep of waterflood in a stratified

reservoir, showing the swept and the un-swept zone.

The displacement sweep efficiency represents that portion of movable oil displaced by the

displacing fluid, expressed mathematically in Equation 2.3 – 2.8.

Figure 2.1 – 3-Dimensional view of vertical and areal sweep efficiency

Figure 2.1–3-Dimensional view of vertical and areal sweep efficiency

11

𝐸𝐷 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑤𝑒𝑝𝑡 𝑧𝑜𝑛𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟𝑓𝑙𝑜𝑜𝑑
 (2.3)

𝐸𝐷 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑−𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑖𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑖𝑙 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑
 (2.4)

Where

Soi = Initial oil saturation

Soi = 1-Swc – Sgi (2.5)

And

𝑆𝑜
̅̅ ̅ = 1 − 𝑆𝑤

̅̅̅̅ (2.6)

Therefore,

𝐸𝐷 =
(

𝑆𝑜𝑖

𝐵𝑜𝑖
)−(

�̅�𝑜
𝐵𝑜

)

(𝑆𝑜𝑖/𝐵𝑜𝑖)
 (2.7)

The areal sweep efficiency can also be analytically determined without the use of chart from the

set of equation shown in Equation 2.8 – 2.11.

𝐸𝐴 = 𝐸𝐴𝐵𝑇 + 0.2749 ln(
𝑊𝑖𝑛𝑗

𝑊𝑖𝐵𝑇
) (2.8)

𝐸𝐴𝐵𝑇 = 0.54602036 +
0.03170817

𝑀
+

0.30222997

𝑒𝑀 − 0.00509693𝑀 (2.9)

𝑊𝑖𝐵𝑇 = 𝐸𝐴𝐵𝑇 per pore volume (2.10)

𝑊𝑖𝑛𝑗 =
𝐸𝐴𝐵𝑇

𝐸𝐷
 per pore volume (2.11)

2.2.1 Mobility Ratio

According to Tiab (1986), it is also found that waterflooding performance in layered composite

reservoirs is essentially controlled by the mobility ratio.

Mobility is defined as the ease of flow of fluid. It relates the effective permeability of a fluid

with its viscosity.

12

Mobility is expressed as in Equation 2.12,

𝜆𝑓𝑙𝑢𝑖𝑑 = (
𝑘

𝜇
)

𝑓𝑙𝑢𝑖𝑑
 (2.12)

The mobility ratio is now defined as the ratio of the mobility of the displacing fluid phase to the

mobility of the displaced fluid phase.

Therefore, for a waterflood where injected water is displacing oil, the mobility ratio is given in

Equation 2.13 and 2.14.

M =
𝐾𝑤 𝜇𝑤⁄

𝐾𝑜 𝜇𝑜⁄
 =

𝐾𝑤𝜇𝑜

𝐾𝑜𝜇𝑤
 (2.13)

In terms of the relative permeability of the fluid, considering that absolute permeability is the

same for both fluids, we have the expression in Equation 2.14.

M =
𝐾𝑟𝑤𝜇𝑜

𝐾𝑟𝑜𝜇𝑤
 (2.14)

The relative permeability defined above, for water is the relative permeability in the water-

contacted zone of the formation, and for oil, the relative permeability is defined for the un-swept

oil zone.

A waterflood operation is successful as the areal sweep efficiency is sufficiently high, and this is

only possible at favorable mobility ratio (M less than unity). This implies that the mobility of oil

is greater than that of water.Where the mobility ratio is less than unity, the velocity of the

waterfront in each layer will be impaired as the flood advances, which somewhat stabilizes the

flood front. While the reverse applies to the case where the mobility ratio is greater than unity.

The mobility ratio also influences the fluid injectivity, which is defined as the rate at which fluid

can be injected per unit pressure difference between injection and producing wells. At favorable

mobility ratios, the fluid injectivity decreases with increase in areal sweep efficiency. While the

reverse goes for unfavorable mobility ratios (M greater than unity).

13

2.3 Theories and Advances in Waterflood Performance Predictions.

Several theories have been proposed to predict waterflood performance. This is quite credited to

certain authors and researchers as BuckleyS. E. et al (1942) who were the first to describe and

include a saturation distribution using the frontal advancement theorem in immiscible

displacement in homogeneous formation. The frontal advance equation incorporates the fractional

flow equation in a material balance considering the fraction flow of water at the different sections

of the reservoir being invaded by the flooded water. The result is an equation that relates the

saturation with position and time at a given fluid injection rate as seen in Equation 2.15. With this

equation, one can determine the position of the flood front at any time knowing the fractional flow

slope as a function of saturation, which can be obtained from the fractional flow curve.

𝑥 =
5.615𝑊𝑖

𝜙𝐴

𝑑𝑓𝑤

𝑑𝑆𝑤
 (2.15)

Figure 2.2– Waterflood frontal advancement saturation distribution (Source: B. C. CRAFT, M. H.

(1991))

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Sw
 (

%
)

x(ft)

46*dfw/dSw 60days

92*dfw/dSw 120days

184*dfw/dSw 240days

Sor

14

As shown from Figure 2.2 it could be observed that more than one saturation can occur at the same

location. This is not possible in a practical sense. To resolve this issue, BuckleyS. E. et al. (1942)

suggested that a portion of the calculated saturation distribution curve is imaginary, and the real

curve contains a discontinuity at the front.

In a waterflood study, the reservoir is sectioned into three zones. Starting at the injection point, is

the free water zone, having 100% water saturation, then a transition zone from which oil and water

can be produced, and the oil zone with constituent connate water. The oil zone is considered as the

un-swept zone, while the water zone is called the swept zone. During water breakthrough at the

producer, indicating a complete sweep by the injected water, residual oil is left in the reservoir.

Welge H. J. (1952) proposed an improved method of achieving the same result as BuckleyS. E. et

al. (1942), by integrating the saturation distribution from the injection point to the front and

obtained the water saturation behind the front expressed in Equation 2.16. But requires that the

initial water saturation be uniform. A graphical interpretation of the result show that a line drawn

tangent to the fractional flow curve from the initial water saturation (Swi), meets at the flood front

(fwf, Swf) as shown in Figure2.3.

[
𝑑𝑓𝑤

𝑑𝑆𝑤
]

𝑆𝑤𝑓

=

𝑓𝑤
𝑆𝑤𝑓

⁄ −
𝑓𝑤

𝑆𝑤𝑖
⁄

𝑆𝑤𝑓− 𝑆𝑤𝑖
 (2.16)

15

Figure 2.3–Fractional flow curve and derivative of fractional flow curve (Source: B. C. Craft, M.

H. (1991))

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90

Fr
ac

ti
o

al
 F

lo
w

 O
f

W
at

er
, F

w
 (

%
)

Water Saturation, Sw(%)

Fw %

dfw/dSw

(Swf, fwf)

SwI

SwBT

16

CHAPTER THREE

3 Computer Implementation Process

3.1 Introduction

In this work, the waterflood performance shall be investigated using the Roberts method using

Python programming language.

The data for the program was taken from C.H. Wu (1988). The data includes a relative permeability

of water and oil, and saturation table, and a table showing bed parameters, thickness, porosity, and

permeability for each bed layer. There were no individual bed viscosities, thus an average viscosity

for oil and water was used for the program. The saturation distribution was not also on per bed

basis. The relative permeability of oil for the determination of the mobility ratio was taken at the

initial water saturation (SWI), and that of water at 1-SOR. Where SOR is the residual oil saturation.

The solution and step by step approach for the two cases was implemented with Python 3 software

in Anaconda integrated development environment, shown in the schematic in Figure 3.1. The

process employs three steps.

• Writing the computer program

• Development of a graphical user interface.

• Conversion of the python file to an executable format.

17

Figure 3.1 – Computer Implementation Process Schematic

3.2 Writing the Computer Program.

The computer program was written in python programming language for Robert’s analytical

solution, based on the process and waterflood performance parameters proposed by the authors.

3.2.1 Defining Inputs

STEP1: The first step for this process is input initialization. All the inputs required for the

calculation were first initialized. The input data in Table 3.1 for the initialization step was also

obtained from C.H. Wu (1988) paper.

Table 3.1– Defining Program inputs

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Length_of_bed_ft = 2896

width_of_bed_ft = 2000

average_porosity = 0.25

VISO = 3.6

VISW = 0.95

OFVF = 1.11

WFVF = 1.01

SWI = 0.2

SGI = 0.16

SOI = 0.65

SOR = 0.35

Residual_gas_saturation_unswept_area = 0.06

Residual_gas_saturation_swept_area = 0.02

Residual_gas_saturation = Residual_gas_saturation_unswept_area+Residual_gas_saturation_swept_area

Constant_injection_rate = 1800

Inj_Pressure_differential = 700

3.2.2 Importing Python Modules

STEP 2: The next step requires importing all necessary modules from the python library. Some

of which requires installation such as the Pandastable. Installing files or libraries into your python

path is mostly accomplished with the ‘pip’ command. By simply typing ‘pip install filename’ into

your command prompt or using windows PowerShell for windows users. Pandastable is a software

with graphical user interface, for viewing and working with tables, and making custom plots. It

was developed byFarrel. D(2019). The following Python modules and libraries in Table 3.2 were

imported for this work.

19

Table 3.2– Algorithms for Importing Python Module

1

2

3

4

5

6

7

8

9

10

11

12

13

14

from tkinter import*

from tkinter import filedialog

from tkinter import ttk

import pandas as pd

from tkinter.messagebox import*

from tkinter.filedialog import askopenfilename

import csv

import math

from decimal import*

import numpy as np

from pandastable.core import Table

from pandastable.data import TableModel

import matplotlib.pyplot as plt

from scipy import integrate

Tkinter is a Python default application for building a graphical user interface. Pandas is the Python

default library for working with tables, while numpy is for arrays. Python uses the matplotlib for

making plots.

STEP 3: The tabular data for the saturation distribution, relative permeability of water and oil, and

the reservoir bed parameters were arranged in a csv file stored in the same directory or folder as

the Python file or executable file. This file serves as a template for working with the application.

When trying to input new data, the column/ table header title must correspond with the csv file

template. The data is as shown in Table 3.3:

Table 3.3- Oil relative permeability data

20

SW KRW KRO

0.2 0 1

0.25 0.003 0.68

0.3 0.008 0.46

0.35 0.018 0.32

0.4 0.035 0.2

0.45 0.054 0.124

0.5 0.08 0.071

0.55 0.105 0.038

0.6 0.14 0.017

0.65 0.18 0

As a matter of rule, the oil and water relative permeability must be (1) saved in the same folder as

the executable file (2) must be saved with the name

‘Oil_Water_Relative_Permeability_data.csv’. (3) The file must be saved with the same column

heading as shown in Table 3.3 and 3.4

Same rule also applies for the reservoir bed data. This should be saved with the name

‘Permeability_Porosity_distribution_data.csv’, and with same column heading as shown in

Table 3.4:

Table 3.4 - Bed data permeability distribution

LAYER DEPTH THICKNESS PERMEABILITY POROSITY

1 4359.5 1 593 0.301

21

2 4361 1 500 0.288

3 4363.5 1 366 0.283

4 4365.5 1 1464 0.309

5 4367.5 1 2790 0.311

6 4369.5 1 5940 0.305

7 4371.5 1 9230 0.322

8 4373.5 1 2860 0.306

9 4375.5 1 3080 0.322

10 4377.5 1 594 0.297

11 4379.5 1 2370 0.323

12 4381.5 1 526 0.286

The csv (comma-separated values) files were imported into the python file with the following

algorithms in Table 3.5.

Table 3.5 – Algorithm for reading input data csv files

1

2

bed_data = pd.read_csv('Permeability_Porosity_distribution_data.csv')

RPERM_data = pd.read_csv('Oil_Water_Relative_Permeability_data.csv')

STEP 4: After the above steps, the program is written based on the step by process outlined by

Roberts. The following were determined from the calculations:

General Calculations

1. Construct a fractional flow curve and determine the average water saturation behind the front.

22

2. Draw several tangents to the fractional flow curve at Sw values greater than the breakthrough

saturation. Determine Sw and dFw/dSw and corresponding to these values. Plot fw’ versus Sw and

construct a smooth curve through the points.

3. Define the layers within the reservoir and determine the average permeability, porosity, and

thickness for each layer.

4. Compute the capacity, kh, and fraction of total capacity, ∆C, for each layer.

5. Compute the injection rate into each layer.

𝑖𝑤𝑗 = 𝑖𝑤𝑡 × ∆𝐶

6. Calculate the cumulative water injection, Wij, into each layer to reach each Sw point chosen in

Step 2

𝑊𝑖𝑗 =
7758 × 𝐴𝑗ℎ𝑗∅𝑗

𝑓𝑤
1

7. Calculate qoj and qwj for each layer at each Sw point. Before breakthrough in a given bed,

𝑞0𝑗 =
𝑖𝑤𝑗

𝐵𝑜

9. Calculate the recovery, Npj, and the time, tj , to each point.

10.Plot the oil production rate for each layer as a function of time. Use this plot to construct a

graph of total oil production rate versus time.

11.Repeat step 10 for the water production rate.

12.Use the total oil and water production rates to construct a plot of WOR versus time.

13. Plot cumulative oil recovery from each layer as a function of time and use this plot to

construct a graph of total recovery versus time.

23

14. Based on estimated expenses, decide on an appropriate WOR cutoff and from the data in

Step 12, estimate the life of the project.

15. Use the WOR-time cutoff to determine the projects ultimate recovery from data in Step 13.

It is worth noting that the column and row numbering are based on their index and not necessarily

on the reservoir bed layers.

Table 3.6 – Index versus Layer definition

Index Layers

0 7

1 6

2 9

3 8

4 5

5 11

6 4

7 10

8 1

9 12

10 2

11 3

The codes written for the implementation of the solution is found in the Appendix A.

3.2.1 The Fractional Flow Curve

A fractional flow curve menu tab was incorporated into the program. Generating this curve

followed four encompassing steps.

24

To begin this calculation, the following Python modules in Table 3.7 are imported:

Table 3.7– Python modules for making fractional flow curve.

1

2

3

4

5

6

7

import numpy as np

from scipy.optimize import*

import math

import random

import matplotlib

import matplotlib.pyplot as plt

Generating the fractional flow equation.

The fractional flow equation is generally given by:

𝑓𝑤 =
1

1+
𝐾𝑟𝑜
𝐾𝑟𝑤

𝜇𝑤
𝜇𝑜

 (3.1)

Where,

𝐾𝑟𝑜

𝐾𝑟𝑤
= 𝑎𝑒−𝑏𝑆𝑤 (3.2)

This imply that the coefficients and constants ‘a’ and ‘b’, can be expressed as:

𝑎 = 𝐾1𝑒𝑏𝑆𝑤 (3.3)

b =
𝑙𝑛𝐾1−𝑙𝑛𝐾2

𝑆𝑤2−𝑆𝑤1
 (3.4)

The Python program for the determination of a and b was written as shown in Table 3.8:

25

Table 3.8– Defining function for fractional flow calculation.

1

2

3

4

5

b = (np.log((KRO/KRW)[2]) - np.log((KRO/KRW)[3]))/(SW[3] -SW[2])

a = (KRO/KRW)[2]*math.exp(b*SW[2])

def fw(SW):

fw = 1/(1+a*(VISW/VISO)*np.exp(-b*SW))

return(fw)

Note: The extreme points are not chosen because log of the relative permeability ratio does not

form straight lines at the extremes, which will give erroneous result for the relative permeability

ratio correlation in Equation (3.2)

After successful determination of ‘a’ and ‘b’, the fractional flow data can be generation by

substituting ‘a’, and ‘b’ into the fractional flow equation.

Generating the Tangent to the fractional flow curve.

Generating the tangent to the fractional flow curve is the tricky part of plotting the fractional flow

curve. Customarily, to generating a tangent is easier when the point of tangency is given or known.

In this case the only point that is known is the initial water saturation (Swi, 0) from where, the

tangent line is drawn.

With the point (Swi, 0) known, the tangent equation can be expressed as:

𝑦 = 𝑚(𝑆𝑤 − 𝑆𝑤𝑖) (3.5)

where,

m is the slope of the tangent line,

and Sw the water saturation

26

The concept involves generating several tangent lines that will intercept the fractional flow curve

at several points. The line (drawn from point (Swi, 0)) with the maximum slope touching the

fractional flow curve will give the suitable tangent line.

This necessitated equating the tangent line equation, and the fractional flow equation.

m (Sw – Swi) =
1

1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

 (3.6)

which gave m to be:

𝑚 =
1

(𝑆𝑤−𝑆𝑤𝑖)(1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

)
 (3.7)

For this program, ten thousand of uniformly distributed random points were generated to the

required slope. Using the algorithm in Table 3.9.

Table 3.9 – Algorithm for drawing tangent to the fractional flow curve

1

2

3

4

5

6

7

8

9

10

11

12

13

14

''' To calculate a suitable slope for the tangent to the fractional flow curve

Drawn from the initial water saturation'''

STEP1: Generate a list of uniformly distributed random numbers from a water saturation

greater than the initial water saturation to 1

xList = []

for i in range(0, 10000):

x = random.uniform(SWI+0.1, 1)

xList.append(x)

xs = np.array(xList)

STEP2: Calculate different slopes of tangents or lines intersecting the fractional

flow curve using the array generated in step 1 as the water saturation.

m = 1/((xs-SWI)*(1+(VISW/VISO)*a*np.exp(-b*xs)))

STEP3: Calculate the maximum slope from different slopes generated in step 2.

The value of this slope will be the slope of the tangent to the fractional flowcurve

27

15 tangent_slope = max(m)

Upon calculating the slope of the tangent line, the water saturation can be calculated from tangent

equation by substituting the point (SwBT, 1) into the tangent equation.

Where SwBT is the water saturation at breakthrough.

The flood front water saturation is also determined by substituting the point (Swf, Fwf) into the

tangent equation and the fractional flow equation. The resulting non-linear equation is then solve

using Python fsolve by importing the scipy module. The algorithms are as shown in Table 3.10.

Table 3.10– Algorithm for Water saturation and fractional flow at flood front

1

2

3

4

5

6

7

8

9

Saturation_at_Breakthrough = SWI + 1/tangent_slope

def funct(SWF):

swf = SWF[0]

F[0] = ((tangent_slope*(swf-SWI)*(1+(VISW/VISO)*a*math.exp(-b*swf)))-1)

return F

SWF_Guess = np.array([SWI+0.1])

SWF = fsolve(funct, SWF_Guess)[0]

Fractional flow at the flood front

Fwf = fw(SWF)

28

Differential of the fractional flow equation

The differential of the fractional flow equation was also plotted on the fractional flow curve.

Differentiating the fractional flow equation with respect to water saturation gives the expression

below:

(
𝑑𝑓𝑤

𝑑𝑆𝑤
)

𝑆𝑤

=
𝑎𝑏𝑒−𝑏𝑆𝑤𝜇𝑤

𝜇𝑜

(1+𝑎𝑒−𝑏𝑆𝑤
𝜇𝑤
𝜇𝑜

)
2 (3.8)

The Python program for this is given as in Table 3.11.

Table 3.11 – Algorithm for fractional flow derivative

1

2

3

4

Calculating the differential of the fractional flow equation

dfw_dSw = (VISW/VISO)*a*b*np.exp(-SW*b)/(1+(VISW/VISO)*a*np.exp(-SW*b))**2

Generating the data for the tangent plot

tangent = (SW-SWI)*tangent_slope

Making the fractional flow curve

The fractional flow curve comprises the plot of the fractional flow equation, the derivative of the

fractional flow equation, and the tangent on the same

 plot. The Python algorithm in Table 3.12 was used to set up the plot.

29

Table 3.12– Algorithm for making the fractional flow curve.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Making the plots

fig, ax = plt.subplots(constrained_layout=True)

fig.set_figheight(8)

fig.set_figwidth(12)

fractional_flow_curve = ax.plot(SW, fw(SW), 'b', label = 'Fractional Flow (Fw)')

tangent_curve = ax.plot(SW, tangent, 'k--')

ax.set_ylabel("Fractional Flow (fw)",fontsize=14)

ax.set_xlabel("Water Saturation (Sw)",fontsize=14)

ax.set_ylim([0,1])

ax.set_xlim([0,1])

twin object for two different y-axis on the same plot

ax2=ax.twinx()

make a plot with different y-axis using second axis object

dfw_dSw_curve = ax2.plot(SW, dfw_dSw, 'r', label ='dFw/dSw')

ax2.set_ylabel("dfw/dSw",fontsize=14)

ax.grid(True)

ax2.legend()

ax.legend(loc='upper left')

ax.annotate(" (Swf, Fwf)", (SWF, Fwf))

ax.annotate(" SwBT", (Saturation_at_Breakthrough, 1))

plt.show()

The resultant plot of the fractional flow curve is as shown in Figure 3.2.

30

Figure 3.2 – The Fractional Flow Curve

3.3 Development of The Graphical User Interface.

The graphical user interface for the program was created with TkinterTM1. Tkinter makes use of

widgets such as labels, buttons, treeviews, entries, frames, canvas, and lots more to build graphical

user interface.

The graphical user interface is as seen in Figure 3.3 to Figure (3.9).

3.3.1 The Application Window.

When the program is turned on or opened the window in Figure 3.2 comes up. This is the

application from which you can navigate to other part of the application.

31

Figure 3.3–Graphical user interface

3.3.2 The Menu Bar

The application consists of five menu bars.

• Load Data

• Fractional flow

• Print Result

• Robert: clicking on this tav brings up the table (the pandastable) on the left.

3.4 Conversion of The Python File to An Executable Format.

To convert the python file to an installable executable file, the following process were

taken.

• Run command prompt in the directory with the python file and all other related file.

Install python installer, by typing the command ‘pip install pyinstaller2’. This

command will be success if python is installed the system path. With pyinstaller

installed, the command ‘pyinstaller --onefile -w filename.py’ is issued. If some

dependencies (such as pandas, pandastable, etc.) are absent, they can be installed

with the command “pyinstaller -F –hidden-import ‘name of module absent’

32

filename.py”. The possibility of pyinstaller not finding a dependency already used

in the development of the application is traceable to the fact that these dependencies

were installed in an IDE and not in the path where Python is in the computer.

• The NSIS3 (nullsoft scriptable install system) is used to bundle any additional

document or file the application may require, into an executable zip file.

33

CHAPTER FOUR

4 RESULT

The example used to test the application/program with saturation and relative permeability data as

shown in Table 3.3, and bed parameters as shown in Table 3.4 was gotten from Langnes etal

(1985). Tabular results were obtained for Robert’s method, and the necessary waterflood

descriptive and performance plots were made

PERFORMANCE PLOTS

Plot of water injection per layer against Capacity

Figure 4.1–Plot of water injection per layer against Capacity

34

Oil Production after breakthrough Vs time to each point

Figure 4.2 – Oil Production after breakthrough Vs time to each point

35

Figure 4.3 – Water Production vs time.

36

5 Conclusion and Recommendation

5.1 Conclusion

waterflooding is a crucial technique in enhanced oil recovery, significantly impacting the

petroleum industry's ability to maximize resource extraction. As operators face the challenges

posed by declining conventional reserves, the importance of effective waterflooding strategies

becomes increasingly evident. Robert's method of waterflooding represents a significant

advancement in this field, providing a robust analytical framework for optimizing water injection

processes.

By leveraging mathematical modeling and sophisticated computer implementations,

Robert's method enhances the efficiency and effectiveness of waterflooding operations. The

adoption of advanced techniques like Robert's method will play a pivotal role in shaping the future

of oil recovery, ensuring that valuable resources are extracted sustainably and economically.

5.2 Recommendation

Robert’s method of waterflooding calculation integrates multiple parameters that influence water

flooding, enabling a comprehensive assessment of reservoir performance. Its capacity to

incorporate real-time data significantly enhances prediction accuracy and operational efficiency,

facilitating dynamic adjustments to water injection strategies. Furthermore, Robert's model is

versatile and applicable to various reservoir types and conditions, making it a valuable tool across

diverse geographical locations and geological settings. A computer program that embeds all

methods of predicting waterflooding performance can be developed, which can optimize the

management of waterflooding operations and improve overall recovery outcomes.

37

APPENDIX

Python Codes

#Water Saturation

import numpy as np

from scipy.optimize import*

import math

import random

import matplotlib

import matplotlib.pyplot as plt

import pandas as pd

SW = np.array([0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65])

SW_table = pd.DataFrame(SW, columns = ['SW'])

#print(SW_table)

Relative permeability of Water

KRW = np.array([0, 0.003, 0.008, 0.018, 0.035, 0.054, 0.08, 0.105, 0.14,

0.18])

Relative permeability of Oil

KRO = np.array([1, 0.68, 0.46, 0.32, 0.2, 0.124, 0.071, 0.038, 0.017, 0])

Water and Oil Viscosity

VISW = 0.95 # unit is in centipoise

VISO = 3.6 # unit is in centipoise

Initial water saturation

SWI = 0.2

Using the correlation between relative permeability ratio and water

saturation

#print('Correlation:\n Kro/Krw = aexp(-bSw)\n')

Calculating the coefficient b

b = (np.log((KRO/KRW)[2])-np.log((KRO/KRW)[3]))/(SW[3]-SW[2])

#print('b is:\n ', b)

#==

Calculating the coefficient a

a = (KRO/KRW)[2]*math.exp(b*SW[2])

#print('a is:\n ', a)

#==

Calculating the fractional flow

def fw(SW):

fw = 1/(1+a*(VISW/VISO)*np.exp(-b*SW))

return(fw)

#==

''' To calculate a suitable slope for the tangent to the fractional flow

curve

Drawn from the initial water saturation'''

''' STEP1: Generate a list of uniformly distributed random numbers from a

water saturation

greater than the initial water saturation to 1'''

xList = []

38

for i in range(0, 10000):

x = random.uniform(SWI+0.1, 1)

xList.append(x)

xs = np.array(xList)

'''STEP2: Calculate different slopes of tangents or lines intersecting the

fractional

flow curve using the array generated in step 1 as the water saturation.'''

m = 1/((xs-SWI)*(1+(VISW/VISO)*a*np.exp(-b*xs)))

'''STEP3: Calculate the maximum slope from different slopes generated in step

2.

The value of this slope will be the slope of the tangent to the fractional

flow

curve.'''

tangent_slope=max(m)

#print('slope of the tangent line is:\n ',tangent_slope)

#==

Calculate the breakthrough saturation.

Saturation_at_Breakthrough = SWI + 1/tangent_slope

print(Saturation_at_Breakthrough)

#print('saturation at breakthrough is:\n ', Saturation_at_Breakthrough)

#===

Calculating the saturation at the flood front

def funct(SWF):

swf = SWF[0]

F = np.empty((1))

F[0] = ((tangent_slope*(swf-SWI)*(1+(VISW/VISO)*a*math.exp(-b*swf)))-1)

return F

SWF_Guess = np.array([SWI+0.1])

SWF = fsolve(funct, SWF_Guess)[0]

SWF

#==

Fractional flow at the flood front

Fwf = fw(SWF)

Fwf

#==

=

Fractional flow

Fw = fw(SW)

Fw_table = pd.DataFrame(Fw, columns = ['Fractional Flow (Fw)'])

#print(Fw_table)

#==

=

Calculating the differential of the fractional flow equation

def dFw_dSw(Sw):

dfw_dSw = (VISW/VISO)*a*b*np.exp(-Sw*b)/(1+(VISW/VISO)*a*np.exp(-Sw*b))**2

return dfw_dSw

dfw_dSw_table = pd.DataFrame(dFw_dSw(SW), columns = ['dFw/dSw'])

print(dFw_dSw(SW))

#print(dfw_dSw_table)

#==

Generating the data for the tangent plot

tangent = (SW-SWI)*tangent_slope

tangent_table = pd.DataFrame(tangent, columns = ['Tangent'])

#print(tangent_table)

39

#==

==

'''Draw several tangents to the fractional flow curve at Sw values greater

than the

breakthrough saturation. Determine Sw and dFw/dSw and corresponding to these

values.

Plot fw’ versus Sw and construct a smooth curve through the points '''

Sw greater than SwBT

from numpy import*

Sw_greater_SwBT = arange(Saturation_at_Breakthrough+0.01,SW[len(SW)-1],0.01)

dFw_dSw_greater_SwBT = dFw_dSw(Sw_greater_SwBT)

print(dFw_dSw_greater_SwBT)

#==

Fractional_flow_table = pd.concat([SW_table, Fw_table, dfw_dSw_table,

tangent_table], axis=1)

#print(Fractional_flow_table)

#==

=

Making the plots

fig, ax = plt.subplots(constrained_layout=True)

fig.set_figheight(4)

fig.set_figwidth(7)

fractional_flow_curve = ax.plot(SW, fw(SW), 'b', label = 'Fractional Flow

(Fw)')

tangent_curve = ax.plot(SW, tangent, 'k--')

ax.set_ylabel("Fractional Flow (fw)",fontsize=14)

ax.set_xlabel("Water Saturation (Sw)",fontsize=14)

ax.set_ylim([0,1])

ax.set_xlim([0,1])

twin object for two different y-axis on the same plot

ax2=ax.twinx()

make a plot with different y-axis using second axis object

dFw_dSw_curve = ax2.plot(SW, dFw_dSw, 'r', label ='dFw/dSw')

ax2.set_ylabel("dfw/dSw",fontsize=14)

ax.grid(True)

ax2.legend()

ax.legend(loc='upper left')

ax.annotate(" (Swf, Fwf)", (SWF, Fwf))

ax.annotate(" SwBT", (Saturation_at_Breakthrough, 1))

plt.show()

#Making the plots of Sw_greater_SwBT and dFw_dSw_greater_SwBT

dFw_dSw_Sw_greater_SwBT = plt.plot(Sw_greater_SwBT, dFw_dSw_greater_SwBT)

plt.show()

#==

=

#Calculating capacity

Bed_data =

pd.read_csv("C:/file_location/Permeability_Porosity_distribution_data.csv")

permeability = Bed_data['PERMEABILITY']

thickness = Bed_data['THICKNESS']

porosity = Bed_data['POROSITY']

Capacity=permeability*thickness

Fraction_of_total_Capacity= Capacity/sum(Capacity)

40

#==

=

#Calculating Injection Rate

Injection_Rate = 1800 #STB/d

Injection_Rate_Per_Layer = Injection_Rate*Fraction_of_total_Capacity

#==

=

#Calculating Water injection rate per layer

Length = 2896 #feet

Breadth = 2000 #feet

Area = Length*Breadth

Cummulative_Water_Injection_Per_Layer_list = []

for j in range(len(thickness)):

Cummulative_Water_Injection_Per_Layer =

7758*Area*thickness[j]*porosity[j]/dFw_dSw_greater_SwBT

Cummulative_Water_Injection_Per_Layer_list.append(Cummulative_Water_Injection

_Per_Layer)

print(Cummulative_Water_Injection_Per_Layer_list)

#==

=

#Oil Production Rate Before Breakthrough

Oil_Formation_Volume_Factor = 1.11 #RBL/STB

Oil_Production_Before_Breakthrough =

Injection_Rate_Per_Layer/Oil_Formation_Volume_Factor

#Oil Production Rate After Breakthrough

Oil_Production_Per_Layer_After_Breakthrough_list = []

for j in range(len(thickness)):

Oil_Production_Per_Layer_After_Breakthrough =

Oil_Production_Before_Breakthrough[j]*(1-Fw)

Oil_Production_Per_Layer_After_Breakthrough_list.append(Oil_Production_Per_La

yer_After_Breakthrough)

#Water Production

Water_Production_Per_Layer_After_Breakthrough_list = []

for j in range(len(thickness)):

Water_Production_Per_Layer_After_Breakthrough =

Injection_Rate_Per_Layer[j]*Fw

Water_Production_Per_Layer_After_Breakthrough_list.append(Water_Production_Pe

r_Layer_After_Breakthrough)

#Calculate the recovery at breakthrough and the time to breakthrough for each

layer

Recovery_At_Breakthrough_Per_Layer_list = []

for j in range(len(thickness)):

Recovery_At_Breakthrough_Per_Layer =

7758*Area*thickness[j]*porosity[j]*(Saturation_at_Breakthrough -

SWI)/Oil_Formation_Volume_Factor

Recovery_At_Breakthrough_Per_Layer_list.append(Recovery_At_Breakthrough_Per_L

ayer)

#Time to Breakthrough for each layer

#Water injection at Breakthrough

Cummulative_Water_Injection_Per_Layer_At_Breakthrough_list = []

41

for j in range(len(thickness)):

Cummulative_Water_Injection_Per_Layer_At_Breakthrough =

7758*Area*thickness[j]*porosity[j]/dFw_dSw(Saturation_at_Breakthrough)

Cummulative_Water_Injection_Per_Layer_At_Breakthrough_list.append(Cummulative

_Water_Injection_Per_Layer_At_Breakthrough)

Time_To_Breakthrough_For_Each_Layer =

Cummulative_Water_Injection_Per_Layer_At_Breakthrough/permeability[j]

#Oil recovery and time to each point.

Oil_Recovery_To_Each_Point_List = []

for j in range(len(thickness)):

Oil_Recovery_To_Each_Point = 7758*Area*thickness[j]*porosity[j]*(SW -

SWI)/Oil_Formation_Volume_Factor

Oil_Recovery_To_Each_Point_List.append(Oil_Recovery_To_Each_Point)

Time_To_Each_Point = Cummulative_Water_Injection_Per_Layer/permeability[j]

42

REFERENCES

Akhmetov, A., et al. (2018). "Fundamentals of Waterflooding in Oil Reservoirs." Journal of

 Petroleum Science and Engineering, 171, 113-124.

B. C. Craft, M. H. (1991). Applied Petroleum Reservoir Engineering.pdf.

Buckley, S. E. and Leverett, M. C. (1942) Mechanism of Fluid Displacement in Sands. Trans.,

AIME 146,107-16.

Butler, R., et al. (2013). "Waterflooding: Principles and Practices." Society of Petroleum

Engineers.

Chen, J., et al. (2019). "Optimization of Waterflooding in Heterogeneous Reservoirs." Energy

 Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(3), 256-267.

C.H Wu. (1988). Waterflood Performance Projection Using Classical Waterflood Models

Compared with Numerical Model Performance jpt forum.

D. Tiab, (1986). SPE 15020 Extension of the Dykstra-Parsons Method to Layered-Composite

Reservoirs.

Dykstra, H. and Parsons, H.: "The Prediction of Oil Recovery by Waterflooding, " Secondary

Recovery of Oil in the United States, API, New York City (1950) 160-74.

Enick, R. M., Pittsburgh, U., Reznik, A. A., Pittsburgh, U., Miller, R. A., & Pittsburgh, U. (1988).

The Statistical and Dimensionless- Time Analog to the Generalized Dykstra-Parsons Method.

February 313–319.

Farrell, D. (2019). pandastable Documentation.

Field, P., Saavedra, N. F., Peralta, R. C., Ltda, D. T. H., Cobb, W., & Cobb, W. M. (2003). SPE

81042 Distribution of Injected Water by Using CGM Method: A Case History in Palogrande-

Cebu Field.

Gasimov, R. R. (2005), Modification of the Dykstra-Parsons Method to Incorporate Buckley-

Leverett displacement Theory for Water Floods. Thesis Submitted to the Office of Graduate

Studies of Texas A & M University in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE August 2005 Major Subject: Petroleum Engineering.

Gomez, V., Gomez, A., & Duran, J. (2009). SPE 121854 Analytical Simulation of the Injection /

Production System of La Cira East and North Areas Using CGM Method.

Jensen, J. L., & Currie, D. (1990). A New Method for Estimating the Dykstra · Parsons Coefficient

to Characterize Reservoir Heterogeneity. August, 369–374.

Johnson, C. E. (1956). Prediction of Oil Recovery by Water Flood - A Simplified Graphical

Treatment of the Dykstra-Parsons Method. 2–3.

43

Lake, L. W., et al. (2014). "The Physics of Fluid Flow in Porous Media." Petroleum Engineering

 Handbook, Volume II.

Lewis, E., Dao, E. K., & Mohanty, K. K. (2008). Sweep Efficiency of Miscible Floods in a High-

Pressure Quarter-Five-Spot Model. May, 24–27.

Li, D. (2004). SPE 88459 Comparative Simulation Study of Water Flood. 1–10.

Mahfoudhl, J. E., Enick, R. M., & Pittsburgh, U. (1990). Extension of the Generalized Dykstra-

Parsons Technique to Polymer Flooding in Stratified Porous Media. August, 339–345.

Morrison, G. R. (n.d.). SPE 97645 Dykstra Parsons Water Flood Theory Adapted to Chemical

Flood Modelling.

Nyga, J. I. (2020). Simulation of Immiscible Water-Alternating-Gas Injection in a Stratified

Reservoir: Performance Characterization Using a New Dimensionless Number. November

2019, 1711–1728.

Omar, A. I., Chen, Z., & Khalifa, A. E. (2017). Predicating Water-flooding Performance into

Stratified Reservoirs Using a data driven proxy model. 8(7), 60–78.

https://doi.org/10.5897/JPGE2016.0240

Pawar, S., et al. (2020). "Forecasting Oil Production Using Advanced Waterflooding

 Techniques." Journal of Petroleum Technology, 72(12), 45-56.

Popa, A. S., Sivakumar, K., & Cassidy, S. (2012). SPE 154302 Associative Data Modeling and

Ant Colony Optimization Approach for Waterflood Analysis. 1–14.

Reznik, A. A., Robert M. Enick, & Sudhir B. Panvelker. (1984). An Analytical Extension of the

Dykstra -Parsons Vertical Stratification Discrete Solution to a Continuous, Real-Time Basis.

Richardson, J. G. (1957). The Calculation of Waterflood Recovery from Steady-State Relative

Permeability Data. 64–66.

Santos, J., et al. (2017). "Reservoir Pressure Maintenance: Challenges and Solutions." Energy

Sources, Part B: Economics, Planning, and Policy, 12(6), 554-570.

Sheng, J. (2015). "Modern Waterflooding: Technology and Applications." Journal of Natural

 Gas Science and Engineering, 23, 123-134.

Singh, S. P., & Kiel, O. G. (1982). Waterflood Design (Pattern, Rate, and Timing).

Stiles, W.E. (1949). Use of Permeability Distribution in Water-flood Calculations. Trans., AIME

186,9-13.

https://doi.org/10.5897/JPGE2016.0240

44

Warren, J.E., (1964), and Cosgrove, J.J.: Prediction of Waterflood Behavior in a Stratified System.

Soc. Pet. Eng. · J., 149-15 7.

Welge, H. J. (1952). A Simplified Method for Computing Oil Recoveries by Gas or Water Drive.

Trans. AIME, 195, 91-98.

Yazdani, S., et al. (2018). "Software Implementation of Enhanced Waterflooding Methods."

 Journal of Petroleum Science and Engineering, 172, 135-145.

Zhao, L., Li, L., Wu, Z., & Zhang, C. (2016). Analytical Model of Waterflood Sweep Efficiency

in Vertical Heterogeneous Reservoirs under Constant Pressure. 2016.

