
QUANTUM SIMULATION OF A TRANSVERSE-FIELD ISING MODEL

A Theses submitted to

African University of Science and Technology,

(AUST) Abuja, Nigeria.

in partial ful�lment for the award of

MASTER DEGREE IN THEORETICAL PHYSICS

By

Ayeni Babatunde

Supervised by:

Dr. Antonello Scardicchio

International Centre for Theoretical Physics(ICTP), Italy

December, 2010

http://www.aust.edu.ng
mailto:ayeni_babatunde2006@yahoo.com
http://www.ictp.it

Dedication

I dedicate this theses to GOD ALMIGHTY who gave me wisdom, power and courage to

complete this work.

Secondly I dedicate this work to my caring, wonderful and loving parents - Mr. Em-

manuel Oluwadamisi Ayeni and Mrs.Olufunke Mary Ayeni and also to my siblings;

David Adetura, Joshua Oluwatimilehin, Peace Oluwakonyinsola,Deborah Aduno-

laoluwa for their love and support in every way.

ii

Acknowledgement

First and foremost, I'm grateful to the Almighty God through his Son Jesus Christ who gave

me wisdom, power and courage to complete my courses and this theses successfully. My

admission into AUST was not without God, my ability to have completed the courses giving

its rigour was through his strength, my visit to ICTP, Italy, where I did my theses with a

great professor, was all by his grace. Thank you Jesus for the life you gave me. I love you.

Secondly, I want to appreciate my parents for their genuine support towards me during my

program at AUST, Abuja. They have been there for me all my life. Life would have been

useless for me if you were not there to support me in every way - through your instructions,

your guidance, your prayers, your money, your hard work every day and all others which will

make an endless list. I'm grateful dad, I'm grateful mum. I love you both with a genuine

love that only comes from within a caring heart. Since you gave all away to make us have a

life, my prayer for you is that, you will enjoy the fruit of your incessant labour till the end of

life at a fruitful age in Jesus name. In addition, I want to thank my siblings who were there

for me at all time. You are the greatest in the whole world. None like my brothers: Ade and

Timi, none like my sisters: sis Funmi, Kanyin and Adun. My deep love and prayers goes to

you all.

I would like to express my sincere gratitude to the Acting President of the African University

iii

of Science and Technology, Professor C.E. Chidume for his transparent leadership and

administration of the school and for supporting me in making my trip to ICTP possible.

I am also deeply grateful to Doctor Boubou Cisse for all his concerns for the Theoretical

Physics stream. For all your advice, meetings, reply of mails, etc, I'm grateful sir. You

were always accessible and ready to listen to any complain. Indeed you're an asset to the

foundation of AUST. Thank you sir.

I wish to thank sta�s and students at ICTP, Italy, most especially my supervisor prof. An-

tonello Scardicchio of the Condensed Matter Physics section. You are a brilliant scientist

and a great teacher with high pedagogical skills. Also, my sincere gratitude goes to Dr.

Shehu, Dr. Somesh with whom I shared o�ce with, Mr. Philip, Duma, Sylvia - a very won-

derful and brilliant lady who was once my colleague at AUST, Joddel, Yemi, the christian

fellowship among so many others that I can't list, for their advice and help. Thank you all.

My next gratitude is to all the sta�s and students at African University of Science and

Technology(AUST), Abuja, and to all my friends. My sincere appreciation to Dr. Popov

Todor for all his tutoring and advice and also my colleagues in Theoretical Physics: Salawu,

Dandogbesi and Nso�ni, my colleagues in other streams:Dammy, Sunday Aliu, Auphe Baba,

Mustapha Kabiru, Aguye, Yahaya, Khunle, Ogbe, Gaba(my room mate), Sylvia, among so

many others who have all been very nice and friendly to me. God bless you all. Also, I

want to thank my friends who were not in AUST but still showed me their love and support:

AJaz, Raphael, Sunday(atole), Lukman, Fasho, Margaret and all others. Thank you and

God bless you in all your life endeavours.

Last but not the least, I wish to express my sincere appreciation to Mr. Sarki Ajuji of the

Center for Energy Research and Training(CERT), ABU, who taught me and supervised my

undergraduate project. You �rst introduce me to C++, Monte Carlo methods, Metropolis

algorithm, philosophy, Dirac Delta distributions, and other challenging mathematical and

computational problems, without which I won't have had the necessary skills to have used

iv

during my theses and even my program at AUST. You are indeed a brain. Thank you sir

and God bless you.

v

Abstract

A popular model that have been used to study ferromagnetism is the Ising Model which is

an arrangement of spins along a particular direction and with discrete values of +1. 1-D

Ising model doesn't show a phase transition to the paramagnetic phase as opposed to the

2-D Ising model which shows a transition at a critical temperature. In this work, I have used

Monte Carlo simulation method to study the 1-D quantum Ising model in a transverse �eld

at a �nite temperature to obtain the critical �eld when a ferromagnetic material becomes

paramagnetic.

vi

Contents

Dedication ii

Acknowledgement iii

1 INTRODUCTION 1

1.1 Magnetic Systems . 1

1.2 A Brief History of Ising Model . 2

1.3 Statement of the Problem . 4

2 LITERATURE REVIEW 6

2.1 Statistical Mechanics . 6

2.2 Ising Models . 8

2.2.1 1-D Ising Model . 8

2.2.2 2-D Ising Model . 11

3 MONTE CARLO METHODS 14

3.1 Metropolis Algorithm . 14

3.2 Simulation of Ising Models Using Metropolis Algorithm 16

3.2.1 1-D Model . 16

3.2.2 2-D Ising Model . 18

vii

4 QUANTUM LATTICE MODEL 21

4.1 Path Integral Formulation of Ising Model . 21

4.2 Quantum Monte Carlo Simulation and Numerical Results 25

4.3 Conclusion . 27

Bibliography 28

A C++ Codes 29

A.1 1-D Ising model . 29

A.2 2-D Ising model . 31

A.3 1-D Quantum Ising model in a transverse �eld 33

viii

CHAPTER 1

INTRODUCTION

1.1 Magnetic Systems

Magnetism is a common phenomenon observed in some materials in nature. A magnetic

material unlike an electric charge cannot exist as a monopole but as a dipole. The smallest

unit of a magnet which is usually referred to as "magnons" exists as a dipole of north pole

and south pole. Opposite poles of a magent attracts. A magnet is a material that produces

a magenetic �eld.[1]

When magnetic systems enter into a magnetic �eld, they get magnetized, on withdrawing

the materials from the �eld, some loses their magnetism which makes them to be referred to

as temporary magnet and some retains their magnetism which made them to be called

permanent magnet. Examples of permanent magnet are iron, nickel, cobalt, loadstone,

etc. While temporary magnets are just any object attracted by a magnet, those materials

will lose their magnetism once the permanent magnet is removed, although they may retain

a very weak magnetic strength.

In understanding the origin of magnetism, one has to consider the atomic description of

the material. Every matter is made up of atoms which are composed of nucleon(neutron+proton)

and electrons on the shells around the atom. According to atomic theory, these electrons

1

orbit round the shells of the atom. According to Lenz law, a moving electron create a mag-

netic �eld. As these electrons orbit around the nucleus, they also spin along their orbit which

give the electrons a dipole moment. Therefore, generally there are some atoms that have a

magnetic moment. We can consider a crystal that contains such atoms arranged in a regular

pattern, such a crystal will become magnetic under suitable conditions of spins alignment

and of external conditions such as temperature and external magnetic �eld.

Depending on the orientation of the spins of the electrons, the material can be categorized

into di�erent types among which are:

� Ferromagnets: These materials have most of its spins aligned and uniformly ordered.

These materials are the only one that can retain magnetism and become permanent

magnets.

� Paramagnets: When there is no uniform alignment of spins, the material can be referred

to as paramagnetic. As such, they are weakly attracted to a magnet

� Diamagnets: These are considered as materials not possessing any form of magnetism.

Every other substance like carbon, waste, plastic, etc are diamagnetic.

Di�erent theoretical model have been used to describe the phenomenon of ferromag-

netism, the simplest being the Ising model; �a model for ferromagnetism formulated as a

problem by Wilhelm Lenz(1920) and gave it as a problem to his student Ernst Ising and was

already solved by 1925 as his PhD theses work�[2].

1.2 A Brief History of Ising Model

There are di�erent conditions that can a�ect the magnetism or magnetic strength of a ma-

terial; i.e. there are �harsh� conditions that make a material loses it magnetism. Essentially,

temperature and applied magnetic �eld a�ects the strength of a magnetic system. Increase

in temperature within a material increases thermal �uctuations which dis-orient the spins

from their aligned positions and make the material to lose its magnetism. Also, since the

electrons of an atom respond to magnetic �eld, increase in the applied magnetic �eld strength

2

decreases the �uctuations of the spins which tends to increase the magnetisation of the ma-

terial. In an attempt to investigate how a ferromagnet respond to an external �controllable�

constraints, the problem which led to the Ising model was formulated.

The 1-D Ising model considers N spins on a linear chain. These spins interacts with

each other with an interaction energy denoted by J, which by convention can be (J>0)

for ferromagnetism or (J<0) for antiferromagnetism. The spins, as was used by Ising were

assigned discrete variables of +1 for spin-up and -1 for spin-down. A simple schematic

diagram is shown below.

-6u
?

u
?

u 6u 6u
-�

J ?

u
?

u
-�

u
-J

6 6u
?

u
0 1 2 N − 1 N

Figure 1.1: 1-D lattice of N spins with periodic boundary condition on the N thspin. The interaction

energy +J between nearest neighbours pairs is shown for aligned and opposing spins.

The lines connecting neighbouring spins are referred to as links. When an external

magnetic �eld is applied to a magnetic system, the applied magnetic �eld orient the spins

along its direction which increases the internal magnetic strength within the system. Ising

solved the 1-D model analytically and found no phase transition from the ferromagnetic phase

to the paramagnetic phase but that the magnetisation just reduces to zero at a particular

temperature and remains zero for all higher temperatures.

However, 2-D model which is the square lattice Ising model, a more complicated model, was

solved by Lars Onsager in 1944 and there, a phase transition was observed which renders

Ising's initial assertion of �no phase transition for all dimensions� false. A schematic diagram

for the 2-D Ising model is shown below.

3

-

6

u
uu u
u
-�

6

?
Jx

Jy

0

k − 1
k

k + 1

l − 1

l

l + 1

x

y

6j

-i

Figure 1.2: 2-D rectangular lattice arrangement of m ∗ n spins with periodic boundary conditions

on the nth and mthspins with Jx as the interaction energy on the x axis and Jy as the interaction

energy on the y axis

As opposed to the 1-D and 2-D Ising models, the 3-D Ising model hasn't received any exact

solution even though some other approaches have been used to investigate phase transitions

at higher dimensions. In an attempt to understand higher-D Ising model, approaches like

mean-�eld theory, quantum �eld theory, computer simulations, etc, have been used.

1.3 Statement of the Problem

The Ising models outlined above are statistical models which can be referred to as classical

statistical models because of the discrete nature of the spins. However, these models become

quantum-mechanical when those spins are considered as spins of the famous Pauli spin ma-

trices. The energies now are averages of the quantum Hamiltonian operators which describes

the system.

In this work, we will solve the 1-D quantum Ising model in a transverse �eld which

4

should show quantum phase transitions(i.e. quantum e�ects) when the temperature is kept

very low and we vary the �eld to obtain the critical �eld. However, there are a number

of challenges faced when one tries to simulate a quantum system as opposed to simulating

a classical system. A successful approach to simulating quantum system is to �nd a path

integral formulation which describes the problem in a classical way.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Statistical Mechanics

Statistical physics is a mathematical formulation used in solving systems having many de-

grees of freedom. For example, like a box of gas containing so many particles of the order

of 1024 ∼ Avogadro's number. Basically a system consisting of a large number of particles

can be describe with statistical mechanics, although this mathematical tool also work for

systems of fewer number of particles. I will consider statistical mechanics as �building things

bottom up� because it goes to the microscopic level of the system to compute the thermody-

namic averages of the large system of particles. Thermodynamic values like internal energy

U , speci�c heat capacity C, susceptibility χ, magnetisation M , etc can be derived from the

framework of statistical mechanics.

Every thermodynamic system pass through phases which are di�erent states of the sys-

tem. In real experiments, these systems chooses their states accordingly as the system is

driven towards equilibrium.

The essential assumption of statistical mechanics is that all accessible states are equally

probable[4]. The probability of the system being in a particular state αi is given by the

6

Boltzmann distribution2.1.1

P (αi) =
exp(−E(αi)/kBT)

Z(T)
(2.1.1)

where {αi} will represent the di�erent accessible states as the index i = 1, 2, ..., k labels the

acceptable con�guration of the system, kB is the Boltzmann constant, T is the temperature.

Z(T) =
∑
αi

exp(−E(αi)/kBT) =
∑
αi

e−Eαi/kBT (2.1.2)

where Z(T) is a normalizing factor and is referred to as the partition function - this is a

weighted sum over states.[5]

The partition function itself is like a core function of statistical physics yet it's not

quite �interesting� since we only use it to obtain other statistical thermodynamic properties.

Almost every other thermodynamic property can be obtained after deriving the partition

function[6]

The expectation of a quantity Q for a system in equilibrium is

〈Q〉 =
∑
αi

Q(αi)P (αi) =
1

Z

∑
αi

Qαie
−βEαi

where β = 1
kBT

is called the inverse temperature or temperature parameter.

The expectation value of the energy 〈E〉 of a system is

U = 〈E〉 = 1

Z

∑
αi

Eαie
−βEαi (2.1.3)

From the above 2.1.3 it is obvious that the expectation energy can be written in terms

of the derivative of the partition function as

U = − 1

Z

∂Z

∂β
(2.1.4)

the speci�c heat capacity is given as

C =
∂U

∂T
=
∂U

∂β

∂β

∂T
= −kβ2∂U

∂β
= kβ2∂

2 lnZ

∂β2
(2.1.5)

In deriving the entropy,

C =
∂U

∂T
but ∂S =

∂Q

T
⇒ ∂Q = T∂S

= T
∂S

∂T
= −β∂S

∂β
(2.1.6)

7

we can equate the two equations 2.1.5 and 2.1.6 for C and integrate with respect to β

kβ2∂
2 lnZ

∂β2
= −β∂S

∂β
⇒ ∂S

∂β
= kβ

∂

∂β

∂ lnZ

∂β

S = −k
∫
β
∂

∂β
(
∂ logZ

∂β
)dβ = −k(β∂ logZ

∂β
−
∫
∂ logZ

∂β
dβ)

S = −kβ∂ logZ
∂β

+ k logZ (2.1.7)

And now we can write an expression for the Helmholtz free energy F of the system

F = U − TS = −∂ logZ
∂β

+ kTβ
∂ logZ

∂β
− kT logZ

= −kT logZ (2.1.8)

From all the above expressions, it is clearly shown how we can directly calculate all

thermodynamic quantities from the partition function.

When considering a thermodynamic system, di�erent thermodynamic properties of the

system couples to di�erent constraints or �eld. When a perturbation is introduced to the

system, there is always an appropriate response which is considered as its conjugate variable.

For example, increase of the thermodynamic temperature within a system increases the

entropy within the system. Similarly, the magnetisationM of a magnetic material changes in

response to an applied magnetic �eld B. The entropy S and magnetisation M are conjugate

variables to the �eld temperature T and magnetic �eld B. From thermodynamics, values of

the conjugate variables are derivatives of the free energy with respect to the constraints.[6]

Therefore the magnetisation is given as

M =
∂F

∂B
(2.1.9)

2.2 Ising Models

2.2.1 1-D Ising Model

In the spirit of Ernst Ising, the spins arranged on a 1-D lattice are assumed to have only

one of two directions, either parallel to the z-axis or anti-parallel to it. In order words, we

8

can consider that the magnetic moment has only a z-component. If the magnetic moment is

denoted by µ, the two discrete values of the magnetic moment are mz = +µ which represent

a spin up(+µ) and a spin down(−µ) respectively. If we consider an isotropic magnetic �eld

applied along the z-axis, the Hamiltonian can be written as

Hham = −J
N∑
i=1

sisi+1 − µB
N∑
i=1

si (2.2.1)

where −J
∑N

i=1 sisi+1 is the interacting energy between spins on neighbouring spins as shown

in �g 1.

If we consider an arrangement of spins without interaction the energy of the whole system

is given as

E = −MB

where M = total magnetisation and B = magnetic �eld

M =
N∑
i=1

mz = µ
N∑
i=1

si =
N∑
i=1

si (if µ = 1) (2.2.2)

the spins si are assigned values of +1 or −1. The Hamiltonian for the 1-D Ising model is

written as

Hham = −J
N∑
i=1

sisi+1 −B
N∑
i=1

si (2.2.3)

recalling 2.1.2 the partition function can be written as

Z =
∑
µ

e−βEµ (2.2.4)

where µ denote the magnetic moment of our system. The energy of the system is given as

Eµ = 〈Hham(si)〉 = −J
N∑
i=1

sisi+1 −B
N∑
i=1

si

therefore, the partition function can be written as

Z =
∑
µ

exp(βJ
N∑
i=1

sisi+1 + βB

N∑
i=1

si)

Z =
∑
s1=+1

. . .
∑

sN=+1

exp(βJ
N∑
i=1

sisi+1 + βB
N∑
i=1

si) (2.2.5)

9

which is the sum over all the states of the system. Since each spin sum has two terms, the

total number of terms represented by the spins sums is 2N .

Without repeating what has been solved many years back, the magnetisation formula for

the 1-D model which is a standard class-room work, is given as

M =
NeK sinh(b) + e2K cosh(b) sinh(b)/

√
e2K cosh2(b)− 2 sinh(2K)

eK cosh(b) +
√
e2K cosh2(b)− 2 sinh(2K)

(2.2.6)

where K = βJ and βB.

In arriving at this equation, periodic boundary condition was taken into account i.e. the

spin at the (N + 1)th position in considered as equivalent to the spin at the 1st position, i.e.

sN+1 = s, which make the 1-D arrangement of spins as a �belt� of chains of spins.

The magnetisation per spin is given as

m =
M

N
=
NeK sinh(b) + e2K cosh(b) sinh(b)/

√
e2K cosh2(b)− 2 sinh(2K)

eK cosh(b) +
√
e2K cosh2(b)− 2 sinh(2K)

(2.2.7)

K = βJ and b = βB

A stated earlier, the 1-D Ising model doesn't show any phase transition. From the above

formula, the mean magnetisation can be plotted against temperature. Using the values of

B = 0.15T which is a very weak �eld, and T = 0.001 to 10J , the graph of m against T from

the exact equation of magnetization is shown below.

10

Figure 2.1: exact magnetization against temperature in 1-D Ising model

From the above diagram, it is observed that the magnetization decreases as temperature

increases but no phase transition was obtained at any temperature which is true only for

this 1-D model. It wil be shown later that the 2-D model shows a phase transition at a

particular temperature known as a critical temperature

2.2.2 2-D Ising Model

This is a much more complicated model in terms of the dimension and even the analytic

solution. The problem was �rst worked out exactly by Lar Onsager in 1944[3] for the case

of zero magnetic �eld. Since this is a highly non-trivial problem as opposed to 1-D model,

much is understood through computer simulations especially if an external magnetic �eld is

applied or if one consider some other complex geometries other than cartesian.

As shown in 1.2, a generalized 2-D Ising lattice model would be to consider a rectangular

lattice of spins with two di�erent interaction energies along the two axis. The exact magne-

11

tization formula for the square lattice at zero �eld magnetic �eld as derived by Onsager is

given below as

m =


0 T > Tc

{1− [sinh(2βJ)]−4} 1
8 T < Tc kTc ≈ 2.269185J

(2.2.8)

A graph of m against T in the 2-D Ising model as shown below shows a transition to a phase

where m = 0 at all temperatures greater than Tc.

Figure 2.2: exact magnetization against temperature in 2-D square lattice

Below the critical temperature, the 2-D model shows spontaneous magnetization, but above

the critical temperature the magnetization disappeared giving a zero magnetization and

inherently means an observed phase transition in 2-D.

The above result is for a square lattice model with zero applied magnetic �eld. A general-

ized 2-D Ising model will consider a rectangular lattice arrangement with di�erent interaction

energies along the two axis. Computer simulations will prove useful here if one desire to un-

12

derstand the phase transition in 2-D Ising model.

The Hamiltonian for this model is given as

Hham = −
m−1∑
i=0

n−1∑
j=0

[Jyσi,jσi,j+1 + Jxσi,jσi+1,j]− 2h
m−1∑
i=0

n−1∑
j=0

σi,j (2.2.9)

where Jx is the interaction energy along the x axis, Jy is the interaction energy along the y

axis and h as the applied magnetic �eld.

13

CHAPTER 3

MONTE CARLO METHODS

3.1 Metropolis Algorithm

This algorithm survives inside simulation models such as Monte Carlo(MC) simulation.

Monte Carlo simulation is essentially the only known numerical method for calculating the

partition function of a model such as Ising model on a large lattice[6]. By the use of MC

methods, we can simulate the random thermal �uctuations of a system over di�erent accept-

able and accessible con�gurations chosen according to Metropolis algorithm. Simulating a

system on a computer would mean that, we allow our system to transit from one initial state

to another acceptable state. Since in real experiment, the probability of the system being in

any state µ is P = 1
Z
e−βEµ , similarly, the acceptable states in our simulation will be given

weights wµ(t) according to Boltzmann probability. The di�cult task is how to choose our

states according to Boltzmann's probability.

Without delving much into the gory details of the theory of Monte Carlo simulations,

our algorithm for choosing our states must satisfy some properties. Usually, for an e�ective

MC simulation, we should have a set of states that forms a Markov chain. A Markov process

guarantees that, given a system in one state µ, a new state ν can be generated and then

feed that state into the process again to generate another state λ and so on. In addition,

14

our Markov process must satisfy two other conditions, which are �ergodicity� and �detailed

balance�.

� Ergodicity: This condition ensures that our Markov process is able to reach every other

state from a particular state.

� Detailed Balance: This is the condition that ensures that the Boltzmann probability

distribution which we generate will bring our system to equilibrium.

In principle, the condition of detailed balance necessarily ensures equilibrium. If we

denote the probability of the system being in a particular state µ as pµ and the probability

of the system making a transition from state µ to state ν as P (µ→ ν) which is referred to

as the �transition probability�, therefore, the system will come to equilibrium after all the

states have been visited which is represented below by the equation

∑
ν

pµP (µ→ ν) =
∑
ν

pνP (ν → µ) (3.1.1)

with a condition
∑

ν P (µ→ ν) = 1, being satis�ed. Therefore,

pµ =
∑
ν

pνP (ν → µ)

If making a transition from state µ to state ν is possible, then from 3.1.1, we have

pµP (µ→ ν) = pνP (ν → µ) (3.1.2)

P (µ→ ν)

P (ν → µ)
=
pν
pµ

=
e−βEν

e−βEµ
= e−β(Eν−Eµ) (3.1.3)

If we denote the probability of choosing a state as C(µ→ ν) and the probability of accepting

that state as A(µ → ν). Therefore, the probability of the system making a transition from

one initial state to a new state is written as

P (µ→ ν) = C(µ→ ν)A(µ→ ν)

from 3.1.3

P (µ→ ν)

P (ν → µ)
=
C(µ→ ν)A(µ→ ν)

C(ν → µ)A(ν → µ)
= e−β(Eν−Eµ)

15

If we assume that every state generated are equally probable to be selected, we have

A(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ) (3.1.4)

To arrive at our Metropolis algorithm, we can assume that state ν has a higher energy

than state µ i.e. Eν > Eµ so that transition from state ν to state µ is always possible with

a probability of 1 i.e. A(ν → µ) = 1, therefore

A(µ→ ν) =


e−β(Eν−Eµ) if Eν − Eµ > 0

1 otherwise

(3.1.5)

The above equation is our Metropolis algorithm.

In practice, we always accept a new state ν if the energy of that state is lower than the

energy of the initial state. Even if the new state has an energy greater than the initial state,

we don't just reject that move out of hand, but accept it with a probability e−β(Eν−Eµ) which

should be greater than some random number which can be generated from the computer

through the use of a good random number generator. That random number will be set

during our simulation.

The metropolis algorithm, being one of the most famous algorithm used in MC simulation

[6], is designed such that our system will come to equilibrium after a long run, thereby

mimicking real experiments.

3.2 Simulation of Ising Models Using Metropolis Algorithm

3.2.1 1-D Model

The 1-D Ising model is a very simple model to solve both analytically and numerically. In

order to justify any numerical scheme applied to solving statistical systems, the results of

the numerical solution should match with known analytical solution to within some error

limits. For the 1-D model whose exact results we know as shown in �gure 2.1, I implemented

the Metropolis algorithm inside a MC code to simulate an arrangement of 400 spins within

the temperature range of T = 0.01 to 10J and at a magnetic �eld of B = 0.15T to justify

if the algorithm can �copy� the exact behaviour of the exact solution. The simulation was

16

ran for 200 Monte Carlo cycle to thermalize the system and for 1000 Monte Carlo cycles

to calculate averages of the magnetization. The �gure below is a graph of magnetization

against temperature of both the exact and simulation results.

Figure 3.1: magnetization against temperature for both simulation and exact solution of 1-D Ising

model

From the �gure above, the result of our simulation almost perfectly match our exact re-

sult. We can therefore conclude that Monte Carlo simulation will be a good way to proceed

if one desire to study systems that are intractable analytically.

The graph of the magnetization against temperature above doesn't show any phase transition

which conforms to the 1-D exact solution. However, we should expect our Monte Carlo sim-

ulation of the 2-D model to undergo a phase transition from ferromagnetic to paramagnetic

as in the exact solution.

17

3.2.2 2-D Ising Model

Since in our Metropolis algorithm, we have to always evaluate the di�erence in the energies

of two states, it's not shrewd to always compute the energies directly as given in 2.2.9 and

taking the di�erence each time we evaluate the metropolis algorithm. It is easy to see that

each time a single spin is �ipped, all other spins retain their values, therefore the di�erence

of the sums of other spins interaction is zero and leaving only an e�ective di�erence based

on the spins that �ip and their nearest neighbours.

To derive an expression for the energy di�erence, assume we make a move from state µ

to state ν, then the di�erence in their energies is given as,

For a particular state µ the energy is given as

Eµ = −
m−1∑
i=0

n−1∑
j=0

[Jyσ
µ
i,jσ

µ
i,j+1 + Jxσ

µ
i,jσ

µ
i+1,j]− 2h

m−1∑
i=0

n−1∑
j=0

σµi,j

For a new state ν

Eν = −
m−1∑
i=0

n−1∑
j=0

[Jyσ
ν
i,jσ

ν
i,j+1 + Jxσ

ν
i,jσ

ν
i+1,j]− 2h

m−1∑
i=0

n−1∑
j=0

σνi,j

choose a random spin σk,l from state µ for �ipping i.e. when i = k, j = l. Only the four(4)

nearest neighbours are a�ected

the spin at position (k, l) of the state ν is now σνk,l = −σ
µ
k,l (3.2.1)

let 4E = Eν − Eµ, therefore

4E =
∑
<i,j>

[Jyσ
µ
i,jσ

µ
i,j+1+Jxσ

µ
i,jσ

µ
i+1,j]−

∑
<i,j>

[Jyσ
ν
i,jσ

ν
i,j+1+Jxσ

ν
i,jσ

ν
i+1,j]+2h(

∑
<i,j>

σµi,j−
∑
<i,j>

σνi,j)

(3.2.2)

in state µ , i = 1, 2, . . . , k − 2, k − 1, k, k + 1, . . . ,m and in state ν, j = 1, 2, . . . , l − 2, l −

1, l, l+1, . . . , n. When we consider this in 3.2.2, up to i = k− 2, and from i = k+1 upward

nothing changes between interaction of spins σi′s and σj′s in the two con�guration µ and ν

and so their di�erence just simply cancels out. Up to j = l− 2, and from j = l+1 upwards,

spins interaction of the two di�erent states µ and ν are the same and they cancels out in

3.2.2 leaving the expression shown below:

18

4 E =
k∑

i=k−1

l∑
j=l−1

[Jyσ
µ
i,j+1σ

µ
i,j+1 + Jxσ

µ
i,jσ

µ
i+1,j − Jyσνi,j+1σ

ν
i,j+1 − Jxσνi,jσνi+1,j] + 2h(σµk,l − σ

ν
k,l)

(3.2.3)

when we now apply 3.2.1 in 3.2.3 we have the simple equation below:

4 E = 2σµk,l[Jx(σ
µ
k−1,l + σµk+1,l) + Jy(σ

µ
k,l−1 + σµk,l+1) + 2h] (3.2.4)

Therefore in calculating the energy di�erence between states µ and ν, we simply apply the

above relation to know if we should accept the move or reject the move. This relation is

very elegant because we can determine if �ipping a particular spin will lower the energy of

our system before actually �ipping that particular spin. Using 3.2.4 in our MC code will

optimize our simulation for speed.

Simulating the 2-D Ising model at a �eld of h = 0.001T (i.e. a very weak �eld) and at

kT = 0.05 to 2.2J (i.e. the critical temperature) with the c++ code that I wrote for the

2-D lattice , I obtained a �copy� of the analytical solution which shows a transition at about

Tc ≈ 2J to a paramagnetic phase where the magnetization remained zero as shown in the

graph below.

19

Figure 3.2: magnetization against temperature for both exact solution and simulation for 2-D square

lattice

From the above graph of the magnetization against temperature, there is a phase change

at a temperature near Tc ≈ 2J from ferromagnetic(ordered spins) to paramagnetic(scattered

spins). At very high temperatures, thermal �uctuations now dominates over the interaction

of the spins.

Conclusively, using the Metropolis algorithm, one can simulate just any system at suit-

able conditions to obtain thermodynamic variables which are invaluable yet unobtainable

analytically and this has been an invaluable tool in simulating quantum systems.

20

CHAPTER 4

QUANTUM LATTICE MODEL

4.1 Path Integral Formulation of Ising Model

In this �nal chapter which is conveys the main work, I will discuss the 1-D Ising model in

a transverse �eld and the numerical results obtained if one vary the applied magnetic �eld

which is transverse to the orientation of the spins. The Hamiltonian for the 1-D Ising chain

of spins in a transverse �eld is given as

Ĥ = −J
N∑
i=1

σzi σ
z
i+1 − Γ

N∑
i=1

σxi (4.1.1)

where Γ is the transverse �eld.

We can decompose the Hamiltonian above into two parts, i.e.

Ĥ = Ĥ1 + Ĥ2

where Ĥ1 = −J
∑N

i=1 σ
z
i σ

z
i+1, Ĥ2 = −Γ

∑N
i=1 σ

x
i . The σ

(γ=x,y,z)
i are the Pauli spin matri-

ces at lattice i which are given as

σx =

0 1

1 0

 , σy =

o −i
i 0

 , σz =

1 0

0 −1

 (4.1.2)

21

Recalling the formaula from 2.2.4 , the partition function for this model can be written

as,

Z =
∑

{s1,s2,...,sN}

exp(−βĤ)

=
∑

s1,2,...,N

〈s|exp(−βĤ)|s〉 = Tr[exp(−βĤ)] (4.1.3)

where |s〉 = |s1, s2, . . . , sN〉 is any particular state of N spins. The space of all the con�gu-

rations is 2N

The application of Metropolis algorithm to simulating statistical systems such as Ising

models has proved useful as shown in the previous chapter. However the model that we have

considered are referred to as classical Ising model since the spins are just discrete variables

as opposed to this present Ising model of linear chains in a transverse �eld. The spins in this

model are quantum mechanical operators which are the Pauli spins matrices. It has been

pointed out that MC methods can not be directly applied to simulating Quantum Statistical

systems [7] since the exponential of matrix operators are required and also because the

presence of zero or negative matrix elements prevents us from directly applying our sampling

algorithm. However, the quantum mechanical problem in d-dimensions can be transformed

into an equivalent classical statistical problem in d + 1-dimensions through the use of path

integral[7]. In this work, I have used the discrete analogue of the Feynmann path integral

for the numerical simulation of the quantum lattice model by applying the Trotter-Suzuki

product formula[8]. The Suzuki-Trotter product is given as

exp(Û + V̂) = lim
P→∞

[exp(Û/P)exp(V̂ /P)] (4.1.4)

where P is the number of the di�erent paths our system can evolve through. Using this in

the partition function, we have,

Z =
∑
s

〈s| lim
p→∞

[e−Ĥ1/kBTP e−Ĥ2/kBTP]P |s〉

= lim
p→∞

∑
s

〈s|[e−Ĥ1/kBTP e−Ĥ2/kBTP]P |s〉

= lim
p→∞

ZP (4.1.5)

22

⇒ ZP =
∑

s〈s|[e−Ĥ1/kBTP e−Ĥ2/kBTP]P |s〉

where the ZP above is the approximation for Z only if P is large enough.

If we introduce a complete set of states which can be chosen to be the eigen basis of σz into

the above equation, we have

ZP =
∑
s

〈s|(e−Ĥ1/kBTP e−Ĥ2/kBTP)(e−Ĥ1/kBTP e−Ĥ2/kBTP) . . . (e−Ĥ1/kBTP e−Ĥ2/kBTP)|s〉

ZP =
∑
s

〈s|(Ω1Ω2)(Ω1Ω2) . . . (Ω1Ω2)|s〉 (4.1.6)

where Ω1 and Ω2 are e
−Ĥ1/kBTP and e−Ĥ2/kBTP respectively.

ZP =
∑
s

〈s|(Ω1

∑
k

|sk〉〈sk|Ω2)(Ω1

∑
k

|sk〉〈sk|Ω2) . . . (Ω1

∑
k

|sk〉〈sk|Ω2)|s〉

=
∑
s

〈s|
∑
k

(Ω1|sk〉〈sk|Ω2)
∑
k

(Ω1|sk〉〈sk|Ω2) . . .
∑
k

(Ω1|sk〉〈sk|Ω2)|s〉

where Ω1|sk〉 gives

e−Ĥ1/kBTP |sk〉 = e
J

kBTP

∑N
i=1 σ

z
i σ
z
i+1|sk〉

but ex =
∑n

k=0
xk

k!
= 1 + x+ x2

2!
+ . . .+ xn

n!

⇒ σzi σ
z
i+1|sk〉 = ski s

k
i+1|ski+1〉

therefore,

e−Ĥ1/kBTP |sk〉 = e
J

kBTP

∑N
i=1 σ

z
i σ
z
i+1 |ski 〉 = e

J
kBTP

∑N
i=1 s

k
i s
k
i+1 |ski+1〉

=
N∏
i=1

e
J

kBTP
ski s

k
i+1|ski+1〉

ZP =
∑
s

〈si|
N∏
i=1

e
J

kBTP
ski s

k
i+1

∑
k

(|ski+1〉〈ski |Ω2) . . .
N∏
i=1

e
J

kBTP
ski s

k
i+1

∑
k

(|ski+1〉〈sk|Ω2)|si〉

=
∑
s

〈ski |
P∑
k=1

N∏
i=1

e
J

kBTP
ski s

k
i+1Ω2 . . .

P∑
k=1

N∏
i=1

e
J

kBTP
ski s

k
i+1Ω2)|sk+1

i 〉

=
∑
{ski }

P∏
k=1

N∏
i=1

exp(
J

kBTP
ski s

k
i+1)〈ski | exp(

Γσxi
kBTP

)|sk+1
i 〉 (4.1.7)

23

where periodic boundary condition have been taken along the Trotter direction, i.e. sP+1
i =

s1i . To evaluate 〈ski | exp(
Γσxi
kBTP

)|sk+1
i 〉, we will use the series expression of exponential function

shown above,

⇒ σxi |sk+1
i 〉 = | − sk+1

i 〉 and σxi (σ
x
i |sk+1

i 〉) = |sk+1
i 〉

〈ski | exp(
Γσxi
kBTP

)|sk+1
i 〉 = 〈ski |[

Γ

kBTP
+

1

3!
(

Γ

kBTP
)3 + . . .)]| − sk+1

i 〉

+〈ski |[1 +
1

2!
(

Γ

kBTP
)2 +

1

4!
(

Γ

kBTP
)4 + . . .)]|sk+1

i 〉

〈ski | exp(
Γσxi
kBTP

)|sk+1
i 〉 = sinh(

Γ

kBTP
)δski ,−s

k+1
i

+ cosh(
Γ

kBTP
)δski ,s

k+1
i

= cosh(
Γ

kBTP
)ski s

k+1
i

= [
1

2
sinh(

2Γ

kBTP
)]1/2 exp(

1

2
log coth

Γ

kBTP
)ski s

k+1
i (4.1.8)

Therefore, using 4.1.8 in 4.1.7 and assuming that P is large such that ZP approximates the

partition function Z we have,

Z = C
∑
{ski }

exp[
P∑
k=1

N∑
i=1

(KP s
k
i s
k+1
i +

J

kBTP
ski s

k+1
i)]

where C = [1
2
sinh(2Γ

kBTP
)]PN/2 and KP = 1

2
log{coth(Γ

kBTP
)}

⇒ Z =
∑
{ski }

exp[
P∑
k=1

N∑
i=1

(KP s
k
i s
k+1
i +

J

kBTP
ski s

k+1
i) + lnC]

since the partition function is given as Z = e−βH , therefore

H = − 1

β

P∑
k=1

N∑
i=1

(KP s
k
i s
k+1
i +

J

kBTP
ski s

k+1
i)− 1

β
lnC (4.1.9)

H = −
P∑
k=1

N∑
i=1

(
KP

β
ski s

k+1
i +

J

P
ski s

k+1
i)− 1

β
lnC (4.1.10)

Comparing this Hamiltonian with that in equation 2.2.9, we can conclude that the Hamil-

tonian for the 1-D quantum problem has been successfully transformed into a 2-D classical

24

Hamiltonian which we can now easily simulate with the use of Metropolis algorithm run in-

side a Monte Carlo cycle. It now appears that the 1-D quantum Ising model resembles a 2-D

rectangular lattice with two directions of spins arrangement each with its own interaction

energy.

4.2 Quantum Monte Carlo Simulation and Numerical Results

In the Hamiltonian derived in the previous section, the KP is referred to as the coupling

constant in the �Trotter direction P � which depends on temperature T , the size of the P

and on the applied magnetic �eld Γ . By the using the Metropolis algorithm3.1.5, we can

now simulate the 1-D quantum Ising model to obtain thermodynamic quantities of interest

such as free energy, magnetization, ground-state energy, etc. It is worth stressing the fact

that, the Trotter index which is sometimes called the imaginary time axis has to be very

large so as to approximate our partition function and to display the quantum e�ect which

is expected.

With the use of the c++ programs that I wrote for the 2-D classical problem, I simulated

the 1-D quantum problem at a �nite temperature of 0.5J for various system sizes and at a

varied magnetic �eld of 0.05 to 6T . The graph of magnetization is shown below,

25

Figure 4.1: magnetization against magnetic �eld for di�erent system size

From the �gure above, we can conclude that this �resembles� the 2-D classical Ising

graph of the magnetization against temperature which showed a phase transition at a critical

temperature for a weak magnetic �eld. Although, as opposed to 2-D classical model, the 1-D

quantum Ising model in a transverse �eld, show a phase transition at critical �eld of about

1T as shown in the above graph. The extra dimension of the 1-D quantum problem can be

said to be due to quantum e�ects displayed by the spins.

26

4.3 Conclusion

In this work, I have used path-integral and Monte Carlo method to study the 1-D Ising

model in a transverse �eld, showing that there is a critical magnetic �eld when the material

will undergo a phase transition to lose all its magnetism. At a very small temperature, the

material remains magnetic not until the applied magnetic �eld becomes very strong and the

coupling of the spins becomes weak giving away its magnetism due to quantum e�ects.

27

Bibliography

[1] http://en.wikipedia.org/wiki/magnet.

[2] http://en.wikipedia.org/wiki/Ising_model.

[3] http://en.wikipedia.org/wiki/Square-lattice_Ising_model.

[4] Tony Guenault, Statistical Physics.

[5] Rubin H. Landau and Manuel J. Páez, Computational Physics. Problem Solving with

Computers.

[6] M.E.J Newman and G.T Barkema, Monte Carlo Methods in Statistical Physics.

[7] Hans De Raedt and Ad Lagendijk, Phys. Rep. 127 (1985), p.233.

[8] K. Binder and D.W Heermann, Monte Carlo Simulation in Statistical Physics.

[9] Tao Pang, An Introduction to Computational Physics

[10] M.J. de Oliveira and J.R.N. Chiappin, Physica A 238 (1997), p.312.

28

http://en.wikipedia.org/wiki/magnet.
http://en.wikipedia.org/wiki/Ising_model.
http://en.wikipedia.org/wiki/Square-lattice_Ising_model.

APPENDIX A

C++ Codes

A.1 1-D Ising model

/*
This program fo r 1−D I s i n g model s imu la t e s the I s i n g arragement o f sp in s
to compute average magnet i sa t ion

Written by Ayeni Babatunde , Theore t i c a l Phys ics stream
*/

#include<iostream>
#include<ctime>
#include<cs td l i b >
#include<fstream>
#include<math . h>

using namespace std ;

const int N = 64 ; // no . o f sp in s
int J = 1 ; // i n t e r a c t i o n energy f o r a ferromagnet
double min_temp = 0 .01 , max_temp = 10 .0 , Tint = 0 . 2 ; // f o r temperature
double temp = min_temp ;
double B = 0 . 1 5 ; // the magnetic f i e l d app l i e d
int accept ; // no . o f accep ted con f i g u r a t i on at t h i s temperature

void i n i t i a l i z e (int []) ;
bool metropo l i s (int []) ;
void oneMC(int []) ;
double mag_per_spin (int []) ;

int main ()
{

//open a f i l e f o r wr i t i n g output
ofstream o u t f i l e (" Is ing_simulat ion_data . dat") ;
o u t f i l e <<"temp"<<' \ t '<<"mag_per_spin"<<endl ;

29

int MCsteps = 1000 ; //no . o f Monte Carlo s t ep
double mag_sum; // v a r i a b l e f o r magnet i sa t ion
// i n i t i a l i z i n g my array o f sp in s
int s [N] ;
i n i t i a l i z e (s) ;

while (temp < max_temp) // s t a r t from the min temp
{

accept = 0 ; // no . o f accepted con f i g u r a t i on at t h i s temperature
int seed = time (NULL) ; //new seed
srand (seed) ;

int thermSteps = 0.2*MCsteps ; // s t e p s f o r system to t h e rma l i z e
for (int i = 0 ; i < thermSteps ; ++i)

oneMC(s) ;

//we now assume our system i s in thermal e qu i l i b r i um
//we have to now c a l c u l a t e our mean magnet i sa t ion
mag_sum = 0 . 0 ;
for (int i = 0 ; i < MCsteps ; ++i)
{

oneMC(s) ; // genear t e s a con f i g u r a t i on around the e qu i l i b r i um
mag_sum += mag_per_spin (s) ;

}

// wr i t e data to f i l e
o u t f i l e <<temp<<' \ t '<<mag_sum/double (MCsteps)<<endl ;
temp += Tint ; // inc rea se my temperature va lue

}

return 0 ;
}

void i n i t i a l i z e (int s [])
{

for (int i = 0 ; i < N; ++i)
s [i] = 1 ; //uniform s t a r t

}

bool metropo l i s (int s [])
{

int k = rand()%N; // choose s i t e k f o r f l i p p i n g
double r = rand ()/double (RAND_MAX) ;
double dE ; // f o r my change in energy
dE = 2* s [k] * (J*(s [(k==0)? N−1:k−1] + s [(k == N−1)? 0 : k+1]) + B) ;
i f (exp(−dE/temp) > r)
{

s [k] *= −1;
return true ;

}
else return fa l se ;

}

void oneMC(int s [])
{

for (int i = 0 ; i < N; ++i)
i f (met ropo l i s (s)) ++accept ; // c a l l my met ropo l i s a l gor i thm

}

double mag_per_spin (int s [])
{

int sum = 0 ;
for (int i = 0 ; i < N; ++i)

30

sum += s [i] ;
return sum/double (N) ;

}

A.2 2-D Ising model

/*
This program i s f o r 2−D Is i n g model . I t s imu la t e s the I s i n g
arrangment o f sp in s on a r e c t an g l e o f m by n to computes avarage
magnet i sa t ion and to check f o r a phase t r a n s i t i o n .

Author : Ayeni Babatunde . Theor e t i c a l Phys ics stream (AUST)

*/

#include<iostream>
#include<ctime>
#include<cs td l i b >
#include<fstream>
#include<math . h>

using namespace std ;

const int m = 30 ; // no . o f sp in s on ho r i z o n t a l a x i s
const int n = 25 ; //no . o f sp in s on v e r t i c a l a x i s
double Jx = 1 ; // i n t e r a c t i o n energy on ho r i z o n t a l a x i s
double Jy = 1 ; // i n t e r a c t i o n on v e r t i c a l a x i s
double h = 0 . 0015 ; // the magnetic f i e l d app l i e d
double min_temp = 0 .01 , max_temp = 2 . 0 , Tint = 0 . 0 1 ; // f o r temperature
double temp = min_temp ;
int accept ; // no . o f accep ted con f i g u r a t i on at t h i s temperature

void i n i t i a l i z e (int [] [n]) ;
bool metropo l i s (int [] [n] , double *) ;
void oneMC(int [] [n] , double *) ;
double mag_per_spin (int [] [n]) ;
double energy (int [] [n]) ;
int main ()
{

//open a f i l e f o r wr i t i n g output
ofstream o u t f i l e ("2D_Ising_sim_mag . dat") ;
o f s tream o u t f i l e 1 ("2D_Ising_energy . dat") ;
o u t f i l e <<"temp"<<' \ t '<<"mag_per_spin"<<endl ;
int MCsteps = 10000; //no . o f Monte Carlo s t ep
double mag_sum, old_energy ; // v a r i a b l e f o r magnet i sa t ion and energy

// i n i t i a l i z i n g my array o f sp in s
int s [m] [n] ; // c r ea t e a 2−dim array
i n i t i a l i z e (s) ;
old_energy = energy (s) ;
double* new_energy = &old_energy ;

while (temp < max_temp) // s t a r t from the min temp
{

accept = 0 ; // no . o f accepted con f i g u r a t i on at t h i s temperature
int seed = time (NULL) ; //new seed
srand (seed) ;

31

// s t e p s ssumed f o r our system to th e rma l i z e
int thermSteps = 0.2*MCsteps ;
for (int i = 0 ; i < thermSteps ; ++i)

oneMC(s , new_energy) ;

//we now assume our system i s in thermal e qu i l i b r i um
//we have to now c a l c u l a t e our mean magnet i sa t ion
mag_sum = 0 . 0 ;
for (int i = 0 ; i < MCsteps ; ++i)
{

oneMC(s , new_energy) ; // genear te a new s ta tearound the e qu i l i b r i um
mag_sum += mag_per_spin (s) ;

}

// wr i t e data to f i l e
o u t f i l e <<temp<<' \ t '<<mag_sum/double (MCsteps)<<endl ;
o u t f i l e 1 <<temp<<' \ t '<<*new_energy<<endl ;
temp += Tint ; // inc rea se my temperature va lue

}

return 0 ;
}

void i n i t i a l i z e (int s [] [n])
{

for (int i = 0 ; i < m; ++i)
for (int j = 0 ; j < n ; ++j)

s [i] [j] = 1 ; //uniform s t a r t
}

bool metropo l i s (int s [] [n] , double* new_energy)
{

int k = rand()%m; // choose s i t e k on x ax i s f o r f l i p p i n g
int l = rand()%n ; // choose s i t e l on y ax i s f o r f l i p p i n g
double r = rand ()/double (RAND_MAX) ;
double delta_E ;
// time to work−−− j u s t k i dd ing ! ! \

delta_E = 2* s [k] [l] * (Jx *(s [(k==0)? m−1:k−1] [l] + s [(k==m−1)? 0 : k+1] [l])
+ Jy *(s [k] [(l ==0)? n−1: l −1] + s [k] [(l==n−1)? 0 : l +1])) ;

i f (exp(−delta_E/temp) > r)
{

*new_energy = delta_E + *new_energy ;
s [k] [l] *= −1;
return true ;

}

else return fa l se ;

}

void oneMC(int s [] [n] , double* new_energy)
{

for (int i = 0 ; i < m; ++i)
for (int j = 0 ; j < n ; ++j)

// c a l l my met ropo l i s a l gor i thm
i f (met ropo l i s (s , new_energy)) ++accept ;

}

double mag_per_spin (int s [] [n])

32

{
int sum = 0 ;
for (int i = 0 ; i < m; ++i)

for (int j = 0 ; j < n ; ++j)
sum += s [i] [j] ;

return sum/double (n*m) ;
}

double energy (int s [] [n])
{

double sum = 0 ;
for (int i = 0 ; i < m−1; ++i)

for (int j = 0 ; j < n−1; ++j)
sum += Jx* s [i] [j]* s [i +1] [j] + Jy* s [i] [j]* s [i] [j +1] + 2*h* s [i] [j] ;

return −1*sum/double (n*m) ; // re turn energy per sp in
}

A.3 1-D Quantum Ising model in a transverse �eld

/*
This program i s f o r 1−D Quantum I s i n g model in a t r an s v e r s e f i e l d .
I t s imu la t e s the I s i n g arrangment o f sp in s to determine
the c r i t i c a l f i e l d .

Author : Ayeni Babatunde , Theor e t i c a l Phys ics stream (AUST) .
E−mail : ayeni_babatunde2006@yahoo . com

*/

#include<iostream>
#include<ctime>
#include<cs td l i b >
#include<fstream>
#include<math . h>

using namespace std ;

const int p = 1200 ; // no . o f time−s l i c e s which i s the Tro t t er number y−ax i s
const int n = 1200 ; //no . o f sp in s on the h o r i z o n t a l a x i s
double J=1;
double Jx = J/p ; // i n t e r a c t i o n energy on ho r i z o n t a l a x i s
double temp = 0 . 5 ; // the temperature

// doub le Jy = 1;
double min_h = 0 .05 , max_h= 6 , h_int = 0 . 0 5 ; // f o r temperature
double h = min_h ;
int accept ; // no . o f accep ted con f i g u r a t i on at t h i s temperature

void i n i t i a l i z e (int [] [n]) ;
bool metropo l i s (int [] [n] , double* , double) ;
void oneMC(int [] [n] , double* , double) ;
double mag_per_spin (int [] [n]) ;
double energy (int [] [n] , double) ;
int main ()
{

//open a f i l e f o r wr i t i n g output
ofstream o u t f i l e ("2D_Ising_Trot_mag . dat") ;
// ofs tream o u t f i l e 1 ("2D_Ising_Trot_energy . dat ") ;

33

o u t f i l e <<" f i e l d "<<' \ t '<<"mag_per_spin"<<endl ;
int MCsteps = 100 ; //no . o f Monte Carlo s t ep
double mag_sum, old_energy ; // v a r i a b l e f o r magnet i sa t ion and energy

// i n i t i a l i z i n g my array o f sp in s
int s [p] [n] ; // c r ea t e a 2−dim array
i n i t i a l i z e (s) ;

// i n t e r a c t i o n on v e r t i c a l a x i s − Trot te r time ax i s
double Jy = 0.5* temp* l og (1/ tanh (min_h/(temp*p))) ;
old_energy = energy (s , Jy) ; // energy o f i n i t i a l c on f i g u r a t i on
double* new_energy = &old_energy ;

int i =1;
while (h< max_h) // s t a r t from the min temp
{

// i n t e r a c t i o n on v e r t i c a l a x i s − Trot te r time ax i s
Jy = 0.5* temp* l og (1/ tanh (h/(temp*p))) ;
accept = 0 ; // no . o f accepted con f i g u r a t i on at t h i s temperature
int seed = time (NULL) ; //new seed
srand (seed) ;

// s t e p s ssumed f o r our system to th e rma l i z e
int thermSteps = 0.2*MCsteps ;
for (int i = 0 ; i < thermSteps ; ++i)

oneMC(s , new_energy , Jy) ;

//we now assume our system i s in thermal e qu i l i b r i um
//we have to now c a l c u l a t e our mean magnet i sa t ion
mag_sum = 0 . 0 ;
for (int i = 0 ; i < MCsteps ; ++i)
{

oneMC(s , new_energy , Jy) ; // genear t e s a s t a t e near e qu i l i b r i um
mag_sum += mag_per_spin (s) ;

}

// wr i t e data to f i l e
o u t f i l e <<h<<' \ t '<<mag_sum/double (MCsteps)<<endl ;
// o u t f i l e 1 <<h<<'\ t '<<*new_energy<<end l ;
h += h_int ; // inc rea se the f i e l d

}

return 0 ;
}

void i n i t i a l i z e (int s [] [n])
{

for (int i = 0 ; i < p ; ++i)
for (int j = 0 ; j < n ; ++j)

s [i] [j] = 1 ; //uniform s t a r t
}

bool metropo l i s (int s [] [n] , double* new_energy , double Jy)
{

int k = rand()%n ; // choose s i t e k on x ax i s f o r f l i p p i n g
int l = rand()%p ; // choose s i t e l on y ax i s f o r f l i p p i n g
double r = rand ()/double (RAND_MAX) ;
double delta_E ;
// time to work−−− j u s t k i dd ing ! ! \

34

delta_E = 2* s [l] [k] * (Jx *(s [l] [(k==0)? n−1:k−1] + s [l] [(k==n−1)? 0 : k+1])
+ Jy *(s [(l ==0)? p−1: l −1] [k] + s [(l==p−1)? 0 : l +1] [k])) ;

i f (exp(−delta_E/temp) > r) //me t ropo l i s a l gor i thm
{

//*new_energy = delta_E + *new_energy ;
s [l] [k] *= −1;
return true ;

}

else return fa l se ;

}

void oneMC(int s [] [n] , double* new_energy , double Jy)
{

for (int i = 0 ; i < p ; ++i)
for (int j = 0 ; j < n ; ++j)

// c a l l me t ropo l i s a l gor i thm fo r the job . oops ! k i dd ing !
i f (met ropo l i s (s , new_energy , Jy)) ++accept ;

}

double mag_per_spin (int s [] [n])
{

int sum = 0 ;
for (int i = 0 ; i < p ; ++i)

for (int j = 0 ; j < n ; ++j)
sum += s [i] [j] ;

return sum/double (n*p) ;
}

double energy (int s [] [n] , double Jy)
{

double sum = 0 . 0 ;
for (int i = 0 ; i < p−1; ++i)

for (int j = 0 ; j < n−1; ++j)
sum += Jx* s [i] [j]* s [i] [j +1] + Jy* s [i] [j]* s [i +1] [j] ;

sum += log (pow(0 . 5* s inh (2*h/(temp*p)) ,double (p*n) / 2 . 0)) ;
return −1*sum/double (n*p) ; // re turn energy per sp in

}

35

	Dedication
	Acknowledgement
	INTRODUCTION
	Magnetic Systems
	A Brief History of Ising Model
	Statement of the Problem
	LITERATURE REVIEW
	Statistical Mechanics
	Ising Models
	1-D Ising Model
	2-D Ising Model

	MONTE CARLO METHODS
	Metropolis Algorithm
	Simulation of Ising Models Using Metropolis Algorithm
	1-D Model
	2-D Ising Model

	QUANTUM LATTICE MODEL
	Path Integral Formulation of Ising Model
	Quantum Monte Carlo Simulation and Numerical Results
	Conclusion

	Bibliography
	C++ Codes
	1-D Ising model
	2-D Ising model
	1-D Quantum Ising model in a transverse field

