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Abstract

Key to Escherichia coli (E-coli) bacteria survival is its ability to direct its

movement to greener pasture and flee harmful environment - also known as

chemotaxis. This thesis focuses on the modelling of E-coli chemotaxis in two-

dimensions with emphasis on trying to understand the basic physics of how

such a tiny microswimmer swim up a concentration gradient despite the enor-

mous thermal fluctuations in its environment. E-coli strategically employs

near straight swimming (also known as run) often interrupted by random re-

orientations (also known as tumble). How often this interruptions happens is

the swimmer tumbling frequency. This chemotaxis strategy is here modeled

as random telegraph process, which is a dichotomous stochastic process. The

swimmer tumbling frequency is represented as the transition rate from run

phase to tumble phase. The transition rate is a function of swimmer specific

trait (known as response kernel) and the environmental condition - concen-

tration profile. Furthermore, the random telegraph process is coupled to the

swimmer Langevin equations in which the system was solved analytically

making judicious approximations. Important chemotaxis parameter expres-

sion was obtained for a swimmer with arbitrary trait and a simple swimmer

case scenario analyzed. Even though, this framework describes E-coli chemo-

taxis excellently, it can as well serve as a base framework for study of other

interesting models that exhibit two state swimming strategy.
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Chapter 1

Introduction

The ability of a living organism to directs its movement up or down a chem-

ical gradient is termed chemotaxis. This thesis focuses on modelling Es-

cherichia coli (E-coli) chemotaxis in two dimensions. E-coli bacteria lives in

aqueous environment such as our intestine. It is quite challenging for a tiny

organism like bacteria that knows nothing about inertia to find food in such

aqueous environments. Motile (flagellated) E-coli evolves strategies to ma-

noeuvre themselves to regions of high concentrations of a chemical attractant

(chemoattractant) and moves away from chemical repellent (chemorepellent)

[1–3]. The strategy involves runs ; which are near-straight swimming along its

principal axis, and tumble; which are random re-reorientation (erratic move-

ment) in same neighborhood. This mystic mechanism of bacterial chemo-

taxis had attracted a lot of attention in the scientific community in last few

decades [1–5]. Currently, there is intensive thrust towards design and fabri-

cation of artificial microswimmers (micro- and nano-swimmers) - mimicking

nature to accomplish important tasks [6–8]. Man-made microswimmers holds

the promise of revolutionising medicine, such as in drug-delivery and early

disease detection [6].

Chemical molecules in the hydrodynamic environment binds to chemore-

ceptors distributed over the E-coli cell membrane. The cell analyses the
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signal through its biochemical pathways (feedback loop) and respond via

its motility machinery [1–3]. It changes the direction of the flagella rota-

tion from clock-wise direction (CW) to counter-clock-wise direction (CCW)

periodically depending on the chemical (chemoattractant or chemorepellent)

sensed or intercepted over some characteristic time scale. Smooth runs corre-

sponds to CCW- and tumbles corresponds to CW-rotations of its flagella [1].

Consequently, the switching of the flagella direction of rotation results in

longer runs in case its moving towards a region of high concentration and

shorter when moving in the opposite. Through tethering assays of E-coli

cell, it was found that it is unlikely the cell will make spatial measurements

of concentration gradient but rather it will sample the space and average the

detections over time, in other words it makes temporal comparisons of the

most recent measurements [1, 5]. The response function that fits good with

the experimental data was determined by Celani and Vergassola [9] using

game theoretic approach. Celani and Vergassola showed that the response

was selected as a maximin strategy of the E-coli, i.e highest minimum up-

take of chemoattractant for any concentration profile. This strategy ensures

good response to any concentration profile for a microswimmer in a complex

environment (where the microswimmer is subject to conflicting response re-

quirements).

In molecular scales, the microswimmer exhibit stochastic motion due to

fluctuations in its environment. In addition, random torques can significantly

affect the swimmer motion [1]. Artificial microswimmers recently developed

(e.g spherical Janus particles) with additional asymmetry demonstrates sig-

nificant gain in translational displacement [10]. However, these microswim-

mers do not mimick the E-coli chemotaxis strategy directly. Hence, we have

so far achieved only partial control of these swimmers. The question remains,

how a swimmer swim up the chemoattractant concentration gradient despite

the thermal fluctuations? - taking note of the fact that engineered devices

usually have small number of degrees of freedom. What strategy a swim-
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mer should employ to extract directed motion from the ceaseless noise with

minimal internal degrees of freedom? Here, random telegraph process (as

decision making process) is incorporated into the microswimmer’s associated

Langevin equations (for a microswimmer moving with a net deterministic

velocity subject to Brownian randomization) and the resulting dynamics an-

alyzed under different environmental conditions (concentration profiles).
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Chapter 2

Background Literature

This chapter will briefly introduce some of the most important stochastic cal-

culus concepts used throughout this thesis. It will serve as a quick reference

to readers that are not so familiar with these concepts. In addition, we intro-

duce a holistic overview of E-coli chemotaxis and some leading theoretical

principles underlaying the realization of a controllable synthetic microswim-

mer. (See the referenced works therein for detailed information)

2.1 Stochatic Processes

Counterpart to a deterministic system, such as rotating wheel, a stochastic

system evolves probabilistically over time. They are usually characterized by

a random variables X(t). The random variables takes values x1, x2, x3, . . .

at different times t1, t2, t3, . . . respectively [11, 12], with an assumed joint

probability distribution

P (x1, t1;x2, t2;x3, t3; . . . )

that completely describe the stochastic system. How present state of the

system relates to the past and future states determines the different categories
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of random processes. For example, a Poisson process in which the present in

independent of the past and the future. Thus, the joint probability of this

process is

P (x1, t1;x2, t2;x3, t3; . . . ) =
∏
i

P (xi, ti) (2.1)

A Markov process is a stochastic process in which the present depends only on

the most recent past and has finite or countable possible states (configuration

space). The conditional probability for a system that is characterized by this

property is

P (x1, t1;x2, t2;x3, t3; . . . ) = P (x1, t1|x2, t2)P (x2, t2|x3, t3) . . . P (xn−1, tn−1|xn, tn)

(2.2)

with t1 ≥ t2 ≥ t3 . . . tn−1 ≥ tn

Moments

The first and second moments of a stochastic process are the mean and the

correlation of the measured random variable X(t); such that the mean is

〈X(t)〉 =

∫ ∞
−∞

xP (x, t)dx (2.3)

while the correlation function is

C(t1, t2) = 〈X(t1)X(t2)〉 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 x1x2P (x1, t1;x2, t2) (2.4)

These two moments are the ones mostly used in all averaging of fluctuations

in this thesis.

Wiener Process(Brownian Motion)

A Wiener process W (t) is an example of a Markov process that satisfies the

following properties [12, 13]
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1. 〈W (t0)〉 = 0

2. W : t→ Wt is almost surely continous

3. 〈W (t1)W (t2)〉 = C(t2 − t1)

Random Telegraph Process (RTP)

This is a process that switches between only two states with certain tran-

sition rates (probability per unit time) associated to each state [11]. A set

of equations governing the evolution dynamics of this process (also called

Master equations) are

∂tP1(t) = −µ(t)P1(t) + λ(t)P2(t) (2.5)

∂tP2(t) = µ(t)P1(t)− λ(t)P2(t) (2.6)

P1(t) ≡ P (α1, t) and P2(t) ≡ P (α2, t) are probabilities of finding the system

in state α1 and state α2 at any time t respectively. µ(t), λ(t) are the transition

rates (could generally be a function of time as emphasized by the time-

dependence).

2.2 Langevin Equation

Stochastic differential equation (SDE) is a deterministic differential equation

with additional randomly varying term(s). This leads to a stochastic solution

of the SDE as well. One important SDE is the Langevin equation

dx

dt
= V (x) + ξ(t) (2.7)

with V (x), the deterministic part and ξ(t), the stochastic part. The solution

Xt of this equation is also another stochastic process.
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2.3 E-coli Chemotaxis

Typical Escherichia Coli (E-coli) has a rod-like shape (∼ 2µm long and of

diameter ∼ 1µm), having long flagella (typically spanning twice the length

of the bacteria) distributed over its membrane [1, 14]. This micro-organism

responds to external concentration gradients of some chemicals in its envi-

ronment. The response can be negative; i.e moving down the gradient in case

of chemical repellent gradient, or positive; i.e moving up the gradient in case

of a chemical attractant gradient. The mechanism employed by this bac-

terium is to swim in near straight path (run) and periodically interrupt with

a random re-orientation of its direction (tumble). This helps the bacterium

to bias its movement to its preferred direction.

2.4 Scallop Theorem

Since the publication of Purcell’s paper on the Life of low Reynolds number

(<e � 1) [4], a physical principle underpinning swimming at low Reynolds

number was brought to light. At this scale non-linear terms in Navier-Stokes

equations vanishes and the equation becomes time reversible. Therefore,

for any swimmer at this scale to propel itself (swim), it must undergo non-

reciprocal deformations. This is known as Scallop Theorem. This lays the

fundamental physical principle on which any man-made device operating at

this conditions should satisfy. Though, for the E-Coli the directed motion

(chemotaxis) comes from the run-and-tumble strategy due to the enormous

thermal fluctuations in its environmental. Hence, in addition to swimmer

satisfying the Scallop theorem, extra strategy is required to achieve directed

motion (drift).
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Figure 2.1: Excerpt from Purcell’s 1976 paper ’Life at low Reynolds number’
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Chapter 3

2D Microswimmer Dynamics

In hydrodynamic environments, E-coli (a microswimmer) is subject to ran-

dom fluctuations (thermal noise). Yet, it do sense chemoattractant gradient

and move up the gradient despite the fluctuations. The bacteria accomplishes

that by reducing its tumbling frequency (rate of random re-orientation) when

moving in a favourable direction [1,3]. This results in the cell’s net drift ve-

locity up the gradient. The thermal fluctuations occurs in much shorter

time-scale than that of the E-coli.

Rotational frictional (viscous) drag on a microswimmer strongly depends

on the swimmers geometrical shape and the axes to which it swims in case

of swimmers with asymmetrical body shapes [14]. Consequently, when a

swimmer changes its body geometry while swimming by some mechanism(s),

the viscous drag on the swimmer changes as well. Thus, the helical structure

of E-coli flagella comes in handy since when rotating in CCW mode, all

the individual flagellum rotates in unison and forms a bundle (the swimmer

will look like an ellipsoid moving lengthwise); while the flagella spread-out

and rotates erratically in CW mode [1, 2, 14]. In other words, the bacteria

enhances or reduces the effect of viscous drag acting on it just by changing

its morphology. E-coli translational diffusion coefficient D is related to its

rotational diffusion coefficient Dr as D = υ2/6Dr [14, 15], where υ is the
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Figure 3.1: A schematic 2D E-coli (microswimmer) cell

average speed of the microswimmer. Roughly speaking, for a microswimmer

with arbitrary shape, D ∝ υ2/Dr [14].

E-coli cell can be considered as a microswimmer that switches between

two states; namely run (near straight swimming) and tumble (random re-

orientation) states. The net motility behaviour of E-coli is largely dependent

on the switching rates between these states. Switching between these states

is totally random (probabilistic) in the absence of any gradient whereas in

the presence of a concentration gradient, it varies over time depending on

the gradient sensed. The cell’s drift towards a chemoattractant (e.g fuel,

food) source or away from chemorepellent (e.g medicine, poison) depends

on how the swimmer periodically adjusts its transition rates upon tempo-

ral measurement of its environmental condition. Random telegraph process

with time dependent transition rates fits perfectly to describe this switching

process. What follows henceforth is the swimmer motility behaviour analy-

sis, coupling the random telegraph process (RTP) to the swimmer associated

Langevin equations.
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3.1 The chemotaxis strategy

Firstly, it is important we introduce how random telegraph process demon-

strates the swimmer chemotaxis strategy. E-coli alters its transition rate

(also known as tumbling frequency) from run state to tumble state in re-

sponse to environmental concentration gradient. The response modulates

the transition rate around the mean adapted transition rate (i.e transition

rate in the absence of a gradient). The transition rate [3,9,16] fitted to exper-

imental data for moderate chemoattractant concentration intensity, c(x(t), t)

reads

ω(t) =
1

τr

(
1−

∫ t

t−τ
dsK(t− s)c(x(s), s)

)
(3.1)

where τr is the mean run-time in the absence of gradient, K(t) is the re-

sponse kernel, c(x(t), t) is the chemoattractant concentration profile in the

environment, x(t) is the microswimmer trajectory (intrinsically stochastic)

and τ is the characteristic response time (τ ∼ 4 seconds for E-coli) [1]. The

linear dependence of ω(t) to the concentration field c(x(s), s) is due the as-

sumption that the concentration gradient is weak and the principle of weak

chemotactic response which requires that∣∣∣∣∫ t

−∞
dsK(t− s)c(x(s), s)

∣∣∣∣� 1

We can therefore conveniently define the random telegraph process transition

rates as

λ(t) = λ, µ(t) = µ0

(
1−

∫ t

t−τ
dsK(t− s)c(x(s), s)

)
(3.2)

with µ0 being the transition rate in the absence of concentration gradient and

τr, c(x(t), t), x(t), τ retain their meanings from equation (3.1). The transition

rate µ(t) depends on the history of the swimmer’s past detections through

the response term
∫ t
t−τ dsK(t − s)c(x(s), s). In the absence of chemotactic
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Figure 3.2: A 2D chemotactic E-coli (microswimmer) cell with a concentra-
tion gradient

strategy, the swimmer trajectory Xt is purely diffusive - no drift; described

by Brownian motion (Wiener process dBt), such that dX(t) =
√

2DdBt.

Where D is the swimmer translational diffusivity in an environment with no

chemoattractant gradient.

The set of equations governing the transition dynamics (i.e the telegraph

process) [11] reads

∂tP1(t) = −
loss︷ ︸︸ ︷

µ(t)P1(t) +

gain︷ ︸︸ ︷
λ(t)P2(t) (3.3)

∂tP2(t) = µ(t)P1(t)︸ ︷︷ ︸
gain

−λ(t)P2(t)︸ ︷︷ ︸
loss

(3.4)

P1(t) ≡ P (α1, t) and P2(t) ≡ P (α2, t) are probabilities of finding the swim-

mer with α1 state variable and α2 state variable at any time t respectively.

µ(t)P1(t) is the rate of probability loss (gain) due to transition from α1 state

to α2 state and λ(t)P2(t) is the rate of probability gain (loss) due to transition
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from α2 state to α1 state with the conditions

P1(t) + P2(t) = 1 (3.5)

and P (α, t0|α0, t0) = δα,α0 (3.6)

We can choose to study different models using this process. One excellent

possible choice of such models is that λ is a constant while µ(t) depends

on the swimmer concentration detections history (∼ equivalent to the E-coli

run-and-tumble chemotaxis strategy, equation 3.2). However, depending on

the system one intends to study, we can as well choose λ(t) to depend on

the swimmer trajectory history in some field (e.g the concentration) while

µ being a constant, or making both depend on the field detection history of

interest; though, the field must be what the swimmer is sensitive to.

Now, from equation (3.3) and (3.5):

∂tP1(t) = −λ(t)P1(t) + µ(t)[1− P1(t)]

∂tP1(t) + [λ(t) + µ(t)]P1(t) = µ(t) (3.7)

also from equation (3.4) and (3.5):

∂tP2(t) = +λ(t)[1− P2(t)]− µ(t)P2(t)

∂tP2(t) + [λ(t) + µ(t)]P2(t) = λ(t) (3.8)

Multiplying equation (3.7) by an integrating factor;

⇒ ∂t

{
e
∫ t
t0
dt′[λ(t′)+µ(t′)]

P1(t)
}

= µ(t)e
∫ t
t0
dt′[λ(t′)+µ(t′)]

(3.9)
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Integrating equation (3.9)∫ t

t0

ds ∂s

{
e
∫ s
t0
dt′[λ(t′)+µ(t′)]

P1(s)
}

=

∫ t

t0

ds µ(s)e
∫ s
t0
dt′[λ(t′)+µ(t′)]

{
e
∫ s
t0
dt′[λ(t′)+µ(t′)]

P1(s)
}t
t0

=

∫ t

t0

ds µ(s)e
∫ s
t0
dt′[λ(t′)+µ(t′)]

e
∫ t
t0
dt′[λ(t′)+µ(t′)]

P1(t)− P1(t) =

∫ t

t0

ds µ(s)e
∫ s
t0
dt′[λ(t′)+µ(t′)]

P1(t) = e
∫ t
t0
dt′[λ(t′)+µ(t′)]

{
δα1,α0 +

∫ t

t0

dsµ(s)e
∫ s
t0
dt′[λ(t′)+µ(t′)]

}
Hence, the general solution is

P1(t) = δα1,α0e
−

∫ t
t0
dt′[λ(t′)+µ(t′)]

+

∫ t

t0

ds µ(s)e
∫ s
t dt

′[λ(t′)+µ(t′)] (3.10)

Likewise for the P2(t), after repeating the calculations as above: we have

from equation (3.8)

P2(t) = δα2,α0e
−

∫ t
t0
dt′[λ(t′)+µ(t′)]

+

∫ t

t0

ds λ(s)e
∫ s
t dt

′[λ(t′)+µ(t′)] (3.11)

The two equations (3.10 and 3.11) above describes the time evolution of the

swimmer’s chemotaxis process (or chemotactic strategy). Swimmer phase

variables switching between the two phases in the Langevin equations that

will follow are characterized by these two equations.

3.2 Associated Langevin Equations

In low Reynold’s number (<e � 1), inertial effects are negligible for a mi-

croswimmer [4]. A microswimmer stops as soon as the propulsive force ceases
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- no coasting. Now, consider a microswimmer (e.g E-coli cell) moving in two

dimensions (2D), with a net swimming speed υ(t), swimming along its unit

director n̂(t) = (cos θ(t), sin θ(t)), where θ(t) is the orientation of the mi-

croswimmer to the x-axis at time t as illustrated in figure 3. The dynamics

of this swimmer is represented by the Langevin stochastic differential equa-

tions below. Runs (CCW flagella rotation) corresponds to the microswimmer

moving with near constant orientation θ interrupted by tumbles (CW flagella

rotation) which are random re-orientation in same neighborhood x that oc-

cur with transition rate µ(t). For all the analysis that follows, the swimmer

hydrodynamic environment is assumed unbounded and stationary. Langevin

equations [12] for this microswimmer coupled with the chemotaxis strategy

(telegraph process) and expressing translational and rotational contributions

separately are

translational ⇒ dx

dt
(t) = υ(t)n̂(t) + ξ(t) (3.12)

rotational ⇒ dθ

dt
(t) = β(t) (3.13)

Explicitly, the equations coupling the different degrees of freedom are

dx

dt
(t) = υ(t) cos θ(t) + γ(t) (3.14)

dy

dt
(t) = υ(t) sin θ(t) + η(t) (3.15)

dθ

dt
(t) = β(t) (3.16)

ξ(t) = (γ(t), η(t)), β(t) are stochastic Gaussian white noise processes whose

autocorrelation functions are given by [17,18]

〈ξ(t)〉 = 0, 〈ξi(t)ξj(s)〉 = 2Dδi,jδ(t− s) (3.17)

〈β(t)〉 = 0, 〈β(t)β(s)〉 = 2Dr(t)δ(t− s) (3.18)
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where D is the swimmer translational diffusion constant and Dr(t) is the

rotational diffusion coefficient.

Markov approximation of the above correlation functions is chosen as

such because, the time scales of the molecular kicks that manifest as the

random forces and torques acting on the swimmer are so small compared to

the microswimmer’s time scales and even much smaller than our macroscopic

time scales. The fast state variables (rapidly varying variables) with respect

to our macroscopic time scales are the Brownian randomization (thermal

noise)- ξ(t) and the random torque effect β(t).

The two swimmer states (phases) described by the above Langevin equations

(3.14,3.15, and 3.16) are:

run state (υ1, D1): swimming state with high swimming velocity and low

rotational diffusion.

tumble state (υ2, D2): random re-orientation state with low swimming ve-

locity and high rotational diffusion.

Therefore, the swimmer speed υ(t) and rotational diffusion coefficient

Dr(t) are characterized by the probabilities P1(t), P2(t) = 1−P1(t) as follows:

υ(t) = υ1P1(t) + υ2P2(t); υ1 � υ2 (3.19)

Dr(t) = D1P1(t) +D2P2(t); D1 � D2 (3.20)

Here, we assume that the time-scale of the switching rates µ, λ is much longer

than the time-scale of the rotational diffusion ∼ D−1r of the swimmer. Recall

our choice of the transition rates λ and µ(t) from equation (3.2), it require

us calculating the integral∫ t

t−τ
dsK(t− s)c(x(s), s)

The kernel function K(t) can in principle be taken to be any real continuous

function in the interval [0, τ ], such as K(t) = constant, or K(t) = K0e
−|t|/τ .
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Furthermore, the concentration c(x(t), t) can be Taylor expanded around t0

as

c(x(t′), t′) =
∞∑
l=0

∞∑
m=0

(x(t′)− x(t0))
l

l!

(t′ − t0)m

m!

∂l+mc

∂xl∂(t′)m
(x(t0), t0)

= c(x(t0), t0) + (x(t′)− x(t0)) · ∇c(x(t0), t0) + (t− t0)∂tc(x(t0), t0)

+
1

2
((x(t′)− x(t0)) · ∇)2c(x(t0), t0) + · · · (3.21)

At the swimmer micro-scale, the chemoattractant concentration c(x(t), t)

varies very slowly in space and time. This is justified by the swimmer being

of micron-scale size (E-coli has typical length of ∼ 2µm and ∼ 1µm diameter)

[1]. Hence, this implies we can take the concentration c(x(t), t) a constant

function of time ∂tc = 0 (as viewed by the swimmer) and truncate the Taylor

expansion of the concentration only to the quadratic order (∇c,∇2c - which

are also effectively constant to the swimmer). Concisely, we have

c(x(t′), t′) = c0+(x(t′)−x(t0))·c1+(xi(t
′)−xi(t0))(xj(t′)−xj(t0))c2ij+O(∇3c)

(3.22)

where the constant coefficients are

c0 ≡ c(x(t0), t0) (3.23)

c1 ≡ ∇c(x(t0), t0) (3.24)

c2ij ≡
∂2

∂xi∂xj
c(x(t0), t0) (3.25)

We note that since µ(t) is the transition rate from run state (state 1) to

tumble state (state 2), to calculate the expression of µ(t), the swimmer has

speed υ1 and rotational diffusion coefficient D1 at this time t and due to

the assumption we made on the separation of the time-scales above, one can

23



freely write

x(t′)− x(t0) =

∫ t′

t0

dt1 (υ1n̂(t1) + ξ(t1)) (3.26)

(xi(t
′)− xi(t0))(xj(t′)− xj(t0)) =

∫ t′

t0

dt1

∫ t′

t0

dt2(υ1n̂i(t1) + ξi(t1))

× (υ1n̂j(t2) + ξj(t2)) (3.27)

Substituting equation (3.22) into equation (3.2) of the transition rate µ(t)

µ(t) = µ0

(
1−

∫ t

t−τ
dsK(t− s)c(x(s), s)

)
= µ0 − µ0

∫ t

t−τ
dt′K(t− t′)

(
c0 + (x(t′)− x(t0)) · c1

+(xi(t
′)− xi(t0))(xj(t′)− xj(t0))c2ij +O(∇3c)

)
(3.28)

Now we can write the transition rate in the form

µ(t) = µ0 + δµ+O(∇3c); δµ = M0(t)c
0 + M1(t) · c1 +M ji

2 (t)c2ij (3.29)

where the time dependent coefficients are:

M0(t) = −µ0

∫ t

t−τ
dt1K(t− t1) (3.30)

M1(t) = −µ0

∫ t

t−τ
dt1K(t− t1)

∫ t1

t0

dt2 (υ1n̂(t2) + ξ(t2)) (3.31)

M ij
2 (t) = −µ0

2

∫ t

t−τ
dt1K(t− t1)

∫ t1

t0

dt2

×
∫ t1

t0

dt3(υ1n̂i(t2) + ξi(t2))(υ1n̂j(t3) + ξj(t3)) (3.32)

Therefore, we can now expand the expressions of the probabilities P1 and P2

(eqns 3.10,3.11) using the approximate expression of µ(t) (eqn. 3.29) keeping
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only linear terms in δµ (i.e keeping only the linear terms in c0, c1, c2ij)

P1(t) = P̄1 + P
(0)
1 c0 + P

(1)
1 (t) · c1 + P

(2)ji
1 (t)c2ij +O(∇3c) (3.33)

P2(t) = P̄2 + P
(0)
2 c0 + P

(1)
2 (t) · c1 + P

(2)ji
2 (t)c2ij +O(∇3c) (3.34)

where for the choice of the transitions rates: λ constant and µ(t) depends on

the detections history for a chemotactic swimmer made in equation (3.2), we

have

P̄1 =
µ0

µ0 + λ
(3.35)

P
(0)
1 (t) =

∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
)
M0(s)

+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′M0(t
′) (3.36)

P
(1)
1 (t) =

∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
)

M1(s)

+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′M1(t
′) (3.37)

P
(2)ji
1 (t) =

∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
)
M ji

2 (s)

+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′M ji
2 (t′) (3.38)

similarly for P2(t) ≡ 1 − P1(t), using equation (3.11) the coefficients can in

the same manner (note that calculating one of the probabilities is enough for

our calculations).

Then, substituting these judiciously approximate values into the transla-
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tional Langevin equation of motion (3.12)

dx

dt
(t) = (υ1P1(t) + υ2P2(t))n̂(t) + ξ(t)

= (υ1P̄1 + υ2P̄2)n̂(t) +
[
(υ1P

(1)
1 (t) + υ2P

(1)
2 (t)) · c1

]
n̂(t)

+ (υ1P
(2)ji
1 (t)c2ij + υ2P

(2)ji
2 (t)c2ij)n̂(t) + ξ(t) (3.39)

Consequently, averaging the translational Langevin equation (3.12) over the

rotational fluctuations β(t) and the telegraph process we get

dx

dt
=
〈[

(υ1P
(1)
1 (t) + υ2P

(1)
2 (t)) · c1

]
n̂(t)

〉
β

+
〈

(υ1P
(2)ji
1 (t)c2ij + υ2P

(2)ji
2 (t)c2ij)n̂(t)

〉
β

+ 〈ξ(t)〉β (3.40)

The first term can be simplified using triple product rule of vectors

(a · b)c = (a · c)b− a× (b× c)

such that

dx

dt
=
〈[
υ1P

(1)
1 (t) + υ2P

(1)
2 (t)

]
· n̂(t)

〉
β

c1

+
〈[
υ1P

(1)
1 (t) + υ2P

(1)
2 (t)

]
×
(
c1 × n̂(t)

)〉
β

+
〈[
υ1P

(2)ji
1 (t)c2ij + υ2P

(2)ji
2 (t)c2ij

]
n̂(t)

〉
β

+ ξ(t) (3.41)

It can easily be seen that the second term〈[
υ1P

(1)
1 (t) + υ2P

(1)
2 (t)

]
×
(
c1 × n̂(t)

)〉
β

= 0

Therefore, equation (3.41) reduces to

dx

dt
=
〈[
υ1P

(1)
1 (t) + υ2P

(1)
2 (t)

]
· n̂(t)

〉
β

c1 + ξnew(t) + ξ(t) (3.42)
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Now written concisely,

dx

dt
= veff(x) + ξeff(t) (3.43)

where

veff(x) = κ∇c(x); ξeff(t) = ξ(t) + ξnew (3.44)

and

κ =
〈[
υ1P

(1)
1 (t) + υ2P

(1)
2 (t)

]
· n̂(t)

〉
β

(3.45)

ξnew(t) =
〈[
υ1P

(2)ji
1 (t)c2ij + υ2P

(2)ji
2 (t)c2ij

]
n̂(t)

〉
β

(3.46)

The parameter κ determines how effective the swimmer will chemotax in the

presence of a gradient ∇c. It depends on the swimmer response function

K(t), the switching rates µ0, λ, the fast and slow rotational diffusion con-

stants D2, D1 as well as the fast and slow swimming speeds υ1, υ2. We can

notice some additional correlation term to the effective thermal fluctuations

term ξnew which comes from the complex rotational motion of the swimmer

due to the chemotactic strategy and results in a net enhancement of the

swimmer diffusivity (or mean square displacement, MSD).

Finally, given a particular form of the response kernel function K(t), we

can get explicit expressions of all state variables of interest.

3.3 Chemotaxis parameter κ and ξnew noise

The expression of the chemotaxis parameter κ and ξnew in the previous sec-

tion are more intuitive for the model description, but tedious for specific

swimmer calculations.

We can obtain similar results that contains only one of the probabilities

and is much simpler to handle analytically.

From the Langevin equation (3.12) and the expressions P1(t)+P2(t) = 1;
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υ(t) = υ1P1(t) + υ2P2(t) (eqn. 3.5 and eqn. 3.19 respectively), one can write

υ(t) = (υ1 − υ2)P1(t) + υ2

Also, we can re-write equation (3.39) as

dx

dt
(t) = (υ1 − υ2)P1(t)n̂(t) + υ2n̂(t) + ξ(t)

= (υ1 − υ2)P̄1 n̂(t) +
[
(υ1 − υ2)P(1)

1 (t) · c1
]

n̂(t)

+ (υ1 − υ2)P (2)ji
1 (t)c2ij n̂(t) + υ2n̂(t) + ξ(t) (3.47)

Averaging over the rotational fluctuations β(t) and following same arguments

as in the previous section, we get

dx

dt
= (υ1−υ2)

〈
P

(1)
1 (t) · n̂(t)

〉
β

c1+(υ1−υ2)
〈
P

(2)ji
1 (t) n̂(t)

〉
c2ij+ξ(t) (3.48)

where now κ is equivalently

κ = (υ1 − υ2)
〈
P

(1)
1 (t) · n̂(t)

〉
β

and the additional noise

ξnew(t) = (υ1 − υ2)
〈
P

(2)ji
1 (t) n̂(t)

〉
β
c2ij

Now, from the expressions of P̄1, P
(0)
1 ,P

(1)
1 and P

(2)ji
1 (eqns. 3.35 to 3.38)

〈
P̄1n̂(t)

〉
β

=
µ0

µ0 + λ
〈n̂(t)〉β (3.49)〈

P
(0)
1 (t)n̂(t)

〉
β

= 〈n̂(t)〉β
∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
)
M0(s)

+ µ0 〈n̂(t)〉β
∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′M0(t
′) (3.50)
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〈
P

(1)
1 (t) · n̂(t)

〉
β

=

∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
)
〈M1(s) · n̂(t)〉β

+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′ 〈M1(t
′) · n̂(t)〉β (3.51)〈

P
(2)ji
1 (t)n̂(t)

〉
β

=

∫ t

0

ds
(
e(µ0+λ)(s−t) − δα1,α0e

−(µ0+λ)t
) 〈
M ji

2 (s)n̂(t)
〉
β

+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′
〈
M ji

2 (t′)n̂(t)
〉
β

(3.52)

Therefore, using eqns (3.31,3.32) and the correlation 〈n̂i(t)n̂j(s)〉 = 1
2
δije

−
∫ t
s Dr(t′)dt′

〈M1(s) · n̂(t)〉β = −µ0

∫ s

s−τ
dt1K(s− t1)

×
∫ t1

t0

dt2

(
υ1 〈n̂(t2) · n̂(t)〉β + ξ(t2) 〈n̂(t)〉β

)
= −µ0υ1

∫ s

s−τ
dt1K(s− t1)

∫ t1

t0

dt2 e
−D1(t−t2)

= −µ0υ1
D1

∫ s

s−τ
dt1K(s− t1)

(
e−D1(t−t1) − e−D1(t−t0)

)
(3.53)

Taking the Taylor expansion of the concentration profile (eqn. 3.22) to be

around the swimmer current vicinity or simply t0 = t, we have

〈M1(s) · n̂(t)〉β =
µ0υ1
D1

∫ s

s−τ
dt1K(s− t1)

(
1− e−D1(t−t1)

)
(3.54)
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and the noise

〈
M ij

2 (s)n̂(t)
〉
β

= −µ0υ1
2

∫ s

s−τ
dt1K(s− t1)

∫ t1

t0

dt2

×
∫ t1

t0

dt3
(
e−D1(t−t2)ξj(t3), e

−D1(t−t3)ξi(t2)
)

= −µ0υ1
2

∫ s

s−τ
dt1K(s− t1)

×
∫ t1

t0

dt′e−D1(t−t′)
(∫ t1

t0

dt3ξj(t3),

∫ t1

t0

dt2ξi(t2)

)
= −µ0υ1

2

∫ s

s−τ
dt1K(s− t1)

×
∫ t1

t0

dt′e−D1(t−t′) (W (t1)−W (t0),W (t1)−W (t0))

= −µ0υ1
2

∫ s

s−τ
dt1K(s− t1)

×
∫ t1

t0

dt′e−D1(t−t′) (W (t1)−W (t0)) ξ̂new (3.55)

with ∫ t1

t0

dsξj(s) =

∫ t1

t0

dWs = W (t1)−W (t0)

a wiener process [11] and ξ̂new a unit vector. This shows that

〈
M ij

2 (s)n̂(t)
〉
β,Ws

= 0; ⇒ 〈ξnew(t)〉β,Ws = 0 (3.56)

Equation (3.55) indicates that the term ξnew is a fluctuating function (noise)

with zero mean and represents the enhanced diffusion of the swimmer due

to the complex correlations from the chemotactic strategy as noted earlier.

We can now conveniently look at some swimmer specific examples.
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I. Swimmer with K(t) = K0 (constant)

A swimmer with constant response kernel will have

〈M1(s) · n̂(t)〉β = −µ0υ1
D1

∫ s

s−τ
dt1K(s− t1)

(
e−D1(t−t1) − e−D1(t−t0)

)
= −µ0υ1K0

D1

∫ s

s−τ
dt1
(
e−D1(t−t1) − e−D1(t−t0)

)
=
µ0υ1K0

D1

τe−D1(t−t0) − µ0υ1K0(1− e−D1τ )

D2
1

e−D1(t−s)

= A+Be−D1(t−s) (3.57)

where

A =
µ0υ1K0

D1

τ ; B = −µ0υ1K0(1− e−D1τ )

D2
1

Now, assuming α0 = α2 (it does not matter which state the swimmer starts

with since the term(s) involving δα,α0 decays rapidly with time)

〈
P

(1)
1 (t) · n̂(t)

〉
β

=

∫ t

0

dse(µ0+λ)(s−t)
(
A+Be−D1(t−s)

)
+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′
(
A+Be−D1(t−t′)

)
=
A
(
1− e−(µ0+λ)t

)
(µ0 + λ)

+
B
(
1− e−(µ0+λ+D1)t

)
(µ0 + λ+D1)

−
µ0At

(
e−(µ0+λ)t

)
(µ0 + λ)

−
µ0A

(
1− e−(µ0+λ)t

)
(µ0 + λ)2

+
µ0B

(
1− e−(µ0+λ+D1)t

)
D1(µ0 + λ+D1)

−
µ0B

(
1− e−(µ0+λ)t

)
D1(µ0 + λ)

(3.58)

31



In which the limiting expression of
〈
P

(1)
1 (t) · n̂(t)

〉
β

for t� 1/µ, 1/λ is

〈
P

(1)
1 (t) · n̂(t)

〉
β
' A

(µ0 + λ)
+

B

(µ0 + λ+D1)
− µ0A

(µ0 + λ)2

+
µ0B

D1(µ0 + λ+D1)
− µ0B

D1(µ0 + λ)

=
µ0λυ1K0τ

D1(µ0 + λ)2

[
1− (1− e−D1τ )(µ0 + λ)

τD1(µ0 + λ+D1)

]
(3.59)

Hence

κ ' (υ1 − υ2)
µ0λυ1K0τ

D1(µ0 + λ)2

[
1− (1− e−D1τ )(µ0 + λ)

τD1(µ0 + λ+D1)

]
(3.60)

II. Swimmer with K(t) = K0e
−|t|L (K0, L are constants)

Similarly for a swimmer with an exponential kernel, we will have

〈M1(s) · n̂(t)〉β =
µ0υ1
D1

∫ s

s−τ
dt1K(s− t1)

(
1− e−D1(t−t1)

)
=
µ0υ1K0

D1

∫ s

s−τ
dt1e

−(s−t1)L
(
1− e−D1(t−t1)

)
=
µ0υ1K0(1− e−Lτ )

D1L
− µ0υ1K0(1− e−(D1+L)τ )

D1(D1 + L)
e−D1(t−s)

= A+Be−D1(t−s) (3.61)

where

A =
µ0υ1K0(1− e−Lτ )

D1L
; B = −µ0υ1K0(1− e−(D1+L)τ )

D1(D1 + L)
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Therefore,

〈
P

(1)
1 (t) · n̂(t)

〉
β

=

∫ t

0

dse(µ0+λ)(s−t)
(
A+Be−D1(t−s)

)
+ µ0

∫ t

0

ds e(µ0+λ)(s−t)
∫ s

t

dt′
(
A+Be−D1(t−t′)

)
=
A
(
1− e−(µ0+λ)t

)
(µ0 + λ)

+
B
(
1− e−(µ0+λ+D1)t

)
(µ0 + λ+D1)

−
µ0At

(
e−(µ0+λ)t

)
(µ0 + λ)

−
µ0A

(
1− e−(µ0+λ)t

)
(µ0 + λ)2

+
µ0B

(
1− e−(µ0+λ+D1)t

)
D1(µ0 + λ+D1)

−
µ0B

(
1− e−(µ0+λ)t

)
D1(µ0 + λ)

(3.62)

For our macroscopic long time t� 1/µ, 1/λ〈
P

(1)
1 (t) · n̂(t)

〉
β
' A

(µ0 + λ)
+

B

(µ0 + λ+D1)
− µ0A

(µ0 + λ)2

+
µ0B

D1(µ0 + λ+D1)
− µ0B

D1(µ0 + λ)

=
µ0λυ1K0(1− e−Lτ )
D1L(µ0 + λ)2

[
1− (1− e−(D1+L)τ )(µ0 + λ)L

(1− e−Lτ )(µ0 + λ+D1)(D1 + L)

]
(3.63)

Now, it follows that

κ ' (υ1 − υ2)
µ0λυ1K0(1− e−Lτ )
D1L(µ0 + λ)2

[
1− (1− e−(D1+L)τ )(µ0 + λ)L

(1− e−Lτ )(µ0 + λ+D1)(D1 + L)

]
(3.64)
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Chapter 4

Discussion

So far, we have successfully coupled the random telegraph process (represent-

ing chemotaxis strategy) to the swimmer associated Langevin equation. We

were able to obtain an explicit expression of the chemotaxis parameter κ for

a given microswimmer characterized by chemotactic response function, K(t),

run, (υ1, D1), and tumble phases with switching rates (µ, λ), in the presence

of concentration profile c(x(t), t). It is shown that the swimmer actually

drifts in the presence of a concentration gradient ∇c and the swimmer drift

velocity is limited by its characteristics. This highlights the dependence of

swimmer’s chemotaxis efficiency to its physical traits (such as the swimming

speeds υ1, υ2 and rotational diffusion constant D1).

This model could be a step more towards the right paradigm for designing

a two-state artificial microswimmer.

Part of the goals of this thesis originally includes obtaining swimmer mean

square angular deviation (MSAD) and mean square displacement (MSD) for

different possible swimmer response functions. But, due to time constraint,

this is only partially achieved. However, using the expressions of the chemo-

taxis parameter κ and the effective Langevin equation, One can easily cal-

culate any quantity of interest (e.g MSAD, MSD, drift velocity υd). For

example, in Appendix I below, it is shown how this could be done in prin-
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ciple (i.e generic procedure). In addition, to illustrate a simple scenario, a

simple swimmer in a homogeneous concentration profile (∇c = 0) MSAD

and MSD were obtained.

In case of swimmer population, additional interaction terms may signif-

icantly affect the chemotaxis parameter. Also, detail numerical simulations

of this model may open up new investigation paradigms.
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APPENDICES



A: Mean-Squared Angular

Deviation (MSAD)

MSAD estimates the precision to which a swimmer swims along a straight

path. It gives the average deviation to the deterministic swimming direction.

Integrating equation (3.16), one gets

θ(t)− θ(0) =

∫ t

0

dt′β(t′) (4.1)

and the rotational diffusion coefficient

Dr(t) = D1P1(t) +D2P2(t)

Squaring the integral in equation (4.1) and averaging over the random pro-

cesses (random torques, the telegraph process and all possible trajectories),

〈4θ2(t)〉 =

∫ t

0

dt1

∫ t

0

dt2〈β(t1)β(t2)〉

=

∫ t

0

dt1

∫ t

0

dt22Dr(t2)δ(t2 − t1)

= 2

∫ t

0

dt1Dr(t1) (4.2)
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substituting the expression for the rotational diffusion coefficient Dr(t) equa-

tion (??),

〈4θ2(t)〉 = 2

∫ t

0

dt1 [D2 − (D2 −D1)P1(t1)]

=

(
λD1 + µ0D2

λ+ µ0

)
t− 2(D2 −D1)

∫ t

0

dt1〈P (0)
1 c0〉

− 2(D2 −D1)

∫ t

0

dt1〈P(1)
1 (t1) · c1〉 − 2(D2 −D1)

∫ t

0

dt1〈P (2)ji
1 (t1)c

2
ij〉

(4.3)

We can easily notice the different contributions from the swimmer intrinsic

properties υ1,2, K(t), D1,2 and the external (environmental conditions) to the

average mean deviation of the swimming direction. The first term is the mean

deviation of a non-chemotactic swimmer irrespective of the environmental

conditions, since for this swimmer K(t) = 0 and therefore the deviation

remains always constant. The second term is the contribution that comes

from the nature of the swimmer’s response kernel K(t). While the third and

the fourth terms comes from the nature of the concentration gradient present

in the swimmer environment.

B: Mean-Squared Displacement (MSD)

This is the average displacement or translational diffusion displacement of a

swimmer undergoing random walk motion (here runs and tumbles). Starting

with the swimmer trajectory (i.e integrating equations 3.14,3.15)

x(t)− x(0) =

∫ t

0

υ(t) cos θ(t1)dt1 +

∫ t

0

ξ(t1)dt1 (4.4)

y(t)− y(0) =

∫ t

0

υ(t) sin θ(t1)dt1 +

∫ t

0

η(t1)dt1 (4.5)

In which the (chemotactic) swimmer extract a net propulsion with an
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average displacement components

〈4x(t)〉 =

∫ t

0

〈υ(t) cos θ(t1)〉dt1 (4.6)

〈4y(t)〉 =

∫ t

0

〈υ(t) sin θ(t1)〉dt1 (4.7)

where the angle brackets 〈...〉 denotes averaging over all the fast variables

including the all possible trajectories Xt.

Hence, the swimmer have an average drift velocity (average speed a swim-

mer swim up a concentration gradient) up a chemoattractant gradient. The

drift velocity can be obtained from the effective Langevin equation (3.43) by

averaging over the translational thermal noise ξ(t) and all possible trajecto-

ries. 〈
dx

dt

〉
= 〈veff(x)〉+ 〈ξeff(t)〉

⇒ υd = κ∇c(x) (4.8)

However, for a mutant swimmer undergoing runs and tumbles without a

strategy (directional bias) υ(t) = ῡ = υ1P̄1 + υ2P̄2

(ῡ〈cos θ(t1)〉, ῡ〈sin θ(t1)〉) = 0 ⇒ υd = 0

while for a swimmer with chemotactic strategy in the presence of a gradient,

generally,

(〈υ(t) cos θ(t1)〉, 〈υ(t) sin θ(t1)〉) 6= 0 ⇒ υd = κ∇c(x)

Another quantity of interest is the swimmer effective diffusivity, which is

related to MSD through the fluctuation-dissipation relation [1,14]. Therefore,

to get the MSD, one need to square and eliminate the fast variables (averaging
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over the fast variables) in the effective Langevin equation (3.43):

〈4L2(t)〉 = 〈4x2(t)〉+ 〈4y2(t)〉

=

∫ t

0

dt1

∫ t

0

dt2(κ∇c(x(t1)) + ξeff) · (κ∇c(x(t2)) + ξeff)

= (4D + |ξnew|2)t+ κ2
∫ t

0

dt1

∫ t

0

dt2∇c(x(t1)) · ∇c(x(t2)) (4.9)

Lets analyze the dynamics for a simple swimmer environmental condition

(with constant response function, K(t) = constant).

Homogeneous (constant) concentration profile

c(x, t) = c0

From the expression of mean rotational coefficient (??), it simplifies to

〈Dr(t)〉 = D1 + (D2 −D1) (P̄1 + P
(0)
1 (t)c0) (4.10)

while the mean squared angular deviation (MSAD)

〈4θ2(t)〉 = D1t+ (D2 −D1)

∫ t

0

dt1

(
P̄1 + P

(0)
1 (t1)c

0
)

(4.11)

with limiting behaviours

〈4θ2(t)〉 ≈

(D1 +D2)t−
(
λD1+µ0D2

λ+µ0

)
t� 1/µ0, 1/λ

2D1t+ (λD1 − µ0D2)t
2 t� 1/µ0, 1/λ.

(4.12)
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and the mean squared displacement (MSD)

〈4L2(t)〉 = 〈4x2(t)〉+ 〈4y2(t)〉

=

∫ t

0

dt1

∫ t

0

dt2(κ∇c(x(t1)) + ξeff) · (κ∇c(x(t2)) + ξeff)

= 4Dt+ |ξnew|2t+ κ2
∫ t

0

dt1

∫ t

0

dt2∇c(x(t1)) · ∇c(x(t2)) (4.13)

which simplifies to

4L2(t) = 4Dt (4.14)

since |ξnew|2 is a function c2ij - second derivative of the concentration field.
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Appendix II

Unit Director Auto-correlation Function

For a Gaussian noise β(t), the distribution functional is [17]

P [β(t)] =
1

Z
exp

(
−
∫
dt′
β2(t′)

4

)
(4.15)

with Z =

∫
Dβ(t′) exp

(
−
∫
dt′
β2(t′)

4

)
and Dβ(t) ≡

∏
t

dβ(t) (4.16)

The unit director autocorrelation function 〈n̂(t1).n̂(t2)〉 goes

〈n̂(t1).n̂(t2)〉 =

∫
Dβ(t′)

Z
exp

[
−
∫
dt′
β(t′)2

4
∓ i
∫ t2

t1

dt′
√
Dr(t′)β(t′)

]
=

∫
Dβ(t′)

Z
exp

[
−
∫ t2

t1

dt′
(
β(t′)2

4
± i
√
Dr(t′)β(t′)

)]
completing the square:

〈n̂(t1).n̂(t2)〉 =

∫
Dβ(t′)

Z
exp

(
−
∫ t2

t1

dt′
β(t′)2 ± i4

√
Dr(t′)β(t′)

4

)

=

∫
Dβ(t′)

Z
exp

[
−
∫ t2

t1

dt′

(
(β(t′)± i2

√
Dr(t′))

2

4
+Dr(t

′)

)]
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〈n̂(t1).n̂(t2)〉 = e−
∫ t2
t1
dt′Dr(t′)

∫
Dβ(t′)

Z
exp

(
−
∫ t2

t1

dt′
(β(t′)± i2Dr(t

′))2

4

)
= exp

(
−
∫ t2

t1

dt′Dr(t
′)

)
Therefore, 〈

e±i
∫ t2
t1
dt′β(t′)

〉
= e−

∫ t2
t1
dt′Dr(t′) (4.17)
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