STOCHASTIC MODELLING OF A CHEMOTACTIC MICROSWIMMER

M.Sc Thesis by
Yahaya Ibrahim

Supervisor:

Prof. Tanniemola B. Liverpool University of Bristol, UK.

Theoretical Physics Stream
African University of Science and Technology, Abuja
November, 2011

Copyright © 2011
Yahaya Ibrahim
All Rights Reserved

Abstract

Key to Escherichia coli (E-coli) bacteria survival is its ability to direct its movement to greener pasture and flee harmful environment - also known as chemotaxis. This thesis focuses on the modelling of E-coli chemotaxis in twodimensions with emphasis on trying to understand the basic physics of how such a tiny microswimmer swim up a concentration gradient despite the enormous thermal fluctuations in its environment. E-coli strategically employs near straight swimming (also known as run) often interrupted by random reorientations (also known as tumble). How often this interruptions happens is the swimmer tumbling frequency. This chemotaxis strategy is here modeled as random telegraph process, which is a dichotomous stochastic process. The swimmer tumbling frequency is represented as the transition rate from run phase to tumble phase. The transition rate is a function of swimmer specific trait (known as response kernel) and the environmental condition - concentration profile. Furthermore, the random telegraph process is coupled to the swimmer Langevin equations in which the system was solved analytically making judicious approximations. Important chemotaxis parameter expression was obtained for a swimmer with arbitrary trait and a simple swimmer case scenario analyzed. Even though, this framework describes E-coli chemotaxis excellently, it can as well serve as a base framework for study of other interesting models that exhibit two state swimming strategy.

Acknowledgments

I would like to sincerely thank my supervisor Prof. Tanniemola B. Liverpool, University of Bristol, for his continuous guidance throughout the course of this work. I deeply appreciate him introducing me to this exciting area of research, which was prior unknown to me. Many thanks goes to Dr. Margaritis Voliotis of Applied Mathematics Department, University of Bristol, for his prompt response to questions and valuable suggestions throughout this work.

This thesis would have not been a reality without the continuous moral support, love and care of my Mom, Saudatu Ibrahim Sarki, my wife A'isha Umar Tambaya and the entire family.

Thank you Rashidi Salako, Maruf Minjibir, Edwin Soh of Pure and Applied Mathematics stream, Mustapha Abdu-Aguye - Theoretical Physics stream, Obinna Ezuiluke - Petroleum Engineering stream, Larry Godwin - Computer Science stream, all of AUST for nice discussions and motivation. Thank you all and more grease to your elbows.

I would like to thank Petroleum Technology Development Fund (PTDF), for the full support of my studies here at AUST.
(All ideas, concepts, figures taken from other sources, such as books, journal articles are fully referenced herein.)

TABLE OF CONTENTS

Abstract 3
List of Figures 6
1 Introduction 7
2 Background Literature 10
2.1 Stochatic Processes 10
2.2 Langevin Equation 12
2.3 E-coli Chemotaxis 13
2.4 Scallop Theorem 13
3 2D Microswimmer Dynamics 15
3.1 The chemotaxis strategy 17
3.2 Associated Langevin Equations 20
3.3 Chemotaxis parameter κ and $\boldsymbol{\xi}_{\text {new }}$ noise 27
4 Discussion 34
Appendix I 37
Appendix II 42

List of Figures

2.1 Excerpt from Purcell's 1976 paper 'Life at low Reynolds number' 14
3.1 A schematic 2D E-coli (microswimmer) cell 16
3.2 A 2D chemotactic E-coli (microswimmer) cell with a concen- tration gradient 18

Chapter 1

Introduction

The ability of a living organism to directs its movement up or down a chemical gradient is termed chemotaxis. This thesis focuses on modelling Escherichia coli (E-coli) chemotaxis in two dimensions. E-coli bacteria lives in aqueous environment such as our intestine. It is quite challenging for a tiny organism like bacteria that knows nothing about inertia to find food in such aqueous environments. Motile (flagellated) E-coli evolves strategies to manoeuvre themselves to regions of high concentrations of a chemical attractant (chemoattractant) and moves away from chemical repellent (chemorepellent) [1-3]. The strategy involves runs; which are near-straight swimming along its principal axis, and tumble; which are random re-reorientation (erratic movement) in same neighborhood. This mystic mechanism of bacterial chemotaxis had attracted a lot of attention in the scientific community in last few decades [1-5]. Currently, there is intensive thrust towards design and fabrication of artificial microswimmers (micro- and nano-swimmers) - mimicking nature to accomplish important tasks [6-8]. Man-made microswimmers holds the promise of revolutionising medicine, such as in drug-delivery and early disease detection [6].

Chemical molecules in the hydrodynamic environment binds to chemoreceptors distributed over the E-coli cell membrane. The cell analyses the
signal through its biochemical pathways (feedback loop) and respond via its motility machinery [1-3]. It changes the direction of the flagella rotation from clock-wise direction (CW) to counter-clock-wise direction (CCW) periodically depending on the chemical (chemoattractant or chemorepellent) sensed or intercepted over some characteristic time scale. Smooth runs corresponds to CCW- and tumbles corresponds to CW-rotations of its flagella [1]. Consequently, the switching of the flagella direction of rotation results in longer runs in case its moving towards a region of high concentration and shorter when moving in the opposite. Through tethering assays of E-coli cell, it was found that it is unlikely the cell will make spatial measurements of concentration gradient but rather it will sample the space and average the detections over time, in other words it makes temporal comparisons of the most recent measurements $[1,5]$. The response function that fits good with the experimental data was determined by Celani and Vergassola [9] using game theoretic approach. Celani and Vergassola showed that the response was selected as a maximin strategy of the E-coli, i.e highest minimum uptake of chemoattractant for any concentration profile. This strategy ensures good response to any concentration profile for a microswimmer in a complex environment (where the microswimmer is subject to conflicting response requirements).

In molecular scales, the microswimmer exhibit stochastic motion due to fluctuations in its environment. In addition, random torques can significantly affect the swimmer motion [1]. Artificial microswimmers recently developed (e.g spherical Janus particles) with additional asymmetry demonstrates significant gain in translational displacement [10]. However, these microswimmers do not mimick the E-coli chemotaxis strategy directly. Hence, we have so far achieved only partial control of these swimmers. The question remains, how a swimmer swim up the chemoattractant concentration gradient despite the thermal fluctuations? - taking note of the fact that engineered devices usually have small number of degrees of freedom. What strategy a swim-
mer should employ to extract directed motion from the ceaseless noise with minimal internal degrees of freedom? Here, random telegraph process (as decision making process) is incorporated into the microswimmer's associated Langevin equations (for a microswimmer moving with a net deterministic velocity subject to Brownian randomization) and the resulting dynamics analyzed under different environmental conditions (concentration profiles).

Chapter 2

Background Literature

This chapter will briefly introduce some of the most important stochastic calculus concepts used throughout this thesis. It will serve as a quick reference to readers that are not so familiar with these concepts. In addition, we introduce a holistic overview of E-coli chemotaxis and some leading theoretical principles underlaying the realization of a controllable synthetic microswimmer. (See the referenced works therein for detailed information)

2.1 Stochatic Processes

Counterpart to a deterministic system, such as rotating wheel, a stochastic system evolves probabilistically over time. They are usually characterized by a random variables $\mathbf{X}(t)$. The random variables takes values $x_{1}, x_{2}, x_{3}, \ldots$ at different times $t_{1}, t_{2}, t_{3}, \ldots$ respectively [11, 12], with an assumed joint probability distribution

$$
P\left(x_{1}, t_{1} ; x_{2}, t_{2} ; x_{3}, t_{3} ; \ldots\right)
$$

that completely describe the stochastic system. How present state of the system relates to the past and future states determines the different categories
of random processes. For example, a Poisson process in which the present in independent of the past and the future. Thus, the joint probability of this process is

$$
\begin{equation*}
P\left(x_{1}, t_{1} ; x_{2}, t_{2} ; x_{3}, t_{3} ; \ldots\right)=\prod_{i} P\left(x_{i}, t_{i}\right) \tag{2.1}
\end{equation*}
$$

A Markov process is a stochastic process in which the present depends only on the most recent past and has finite or countable possible states (configuration space). The conditional probability for a system that is characterized by this property is
$P\left(x_{1}, t_{1} ; x_{2}, t_{2} ; x_{3}, t_{3} ; \ldots\right)=P\left(x_{1}, t_{1} \mid x_{2}, t_{2}\right) P\left(x_{2}, t_{2} \mid x_{3}, t_{3}\right) \ldots P\left(x_{n-1}, t_{n-1} \mid x_{n}, t_{n}\right)$
with $t_{1} \geq t_{2} \geq t_{3} \ldots t_{n-1} \geq t_{n}$

Moments

The first and second moments of a stochastic process are the mean and the correlation of the measured random variable $X(t)$; such that the mean is

$$
\begin{equation*}
\langle X(t)\rangle=\int_{-\infty}^{\infty} x P(x, t) d x \tag{2.3}
\end{equation*}
$$

while the correlation function is

$$
\begin{equation*}
C\left(t_{1}, t_{2}\right)=\left\langle X\left(t_{1}\right) X\left(t_{2}\right)\right\rangle=\int_{-\infty}^{\infty} d x_{1} \int_{-\infty}^{\infty} d x_{2} x_{1} x_{2} P\left(x_{1}, t_{1} ; x_{2}, t_{2}\right) \tag{2.4}
\end{equation*}
$$

These two moments are the ones mostly used in all averaging of fluctuations in this thesis.

Wiener Process(Brownian Motion)

A Wiener process $W(t)$ is an example of a Markov process that satisfies the following properties $[12,13]$

1. $\left\langle W\left(t_{0}\right)\right\rangle=0$
2. $W: t \rightarrow W_{t}$ is almost surely continous
3. $\left\langle W\left(t_{1}\right) W\left(t_{2}\right)\right\rangle=C\left(t_{2}-t_{1}\right)$

Random Telegraph Process (RTP)

This is a process that switches between only two states with certain transition rates (probability per unit time) associated to each state [11]. A set of equations governing the evolution dynamics of this process (also called Master equations) are

$$
\begin{align*}
& \partial_{t} P_{1}(t)=-\mu(t) P_{1}(t)+\lambda(t) P_{2}(t) \tag{2.5}\\
& \partial_{t} P_{2}(t)=\mu(t) P_{1}(t)-\lambda(t) P_{2}(t) \tag{2.6}
\end{align*}
$$

$P_{1}(t) \equiv P\left(\alpha_{1}, t\right)$ and $P_{2}(t) \equiv P\left(\alpha_{2}, t\right)$ are probabilities of finding the system in state α_{1} and state α_{2} at any time t respectively. $\mu(t), \lambda(t)$ are the transition rates (could generally be a function of time as emphasized by the timedependence).

2.2 Langevin Equation

Stochastic differential equation (SDE) is a deterministic differential equation with additional randomly varying term(s). This leads to a stochastic solution of the SDE as well. One important SDE is the Langevin equation

$$
\begin{equation*}
\frac{d x}{d t}=V(x)+\boldsymbol{\xi}(t) \tag{2.7}
\end{equation*}
$$

with $V(x)$, the deterministic part and $\boldsymbol{\xi}(t)$, the stochastic part. The solution X_{t} of this equation is also another stochastic process.

2.3 E-coli Chemotaxis

Typical Escherichia Coli (E-coli) has a rod-like shape ($\sim 2 \mu m$ long and of diameter $\sim 1 \mu m$), having long flagella (typically spanning twice the length of the bacteria) distributed over its membrane [1,14]. This micro-organism responds to external concentration gradients of some chemicals in its environment. The response can be negative; i.e moving down the gradient in case of chemical repellent gradient, or positive; i.e moving up the gradient in case of a chemical attractant gradient. The mechanism employed by this bacterium is to swim in near straight path (run) and periodically interrupt with a random re-orientation of its direction (tumble). This helps the bacterium to bias its movement to its preferred direction.

2.4 Scallop Theorem

Since the publication of Purcell's paper on the Life of low Reynolds number ($\Re e \ll 1$) [4], a physical principle underpinning swimming at low Reynolds number was brought to light. At this scale non-linear terms in Navier-Stokes equations vanishes and the equation becomes time reversible. Therefore, for any swimmer at this scale to propel itself (swim), it must undergo nonreciprocal deformations. This is known as Scallop Theorem. This lays the fundamental physical principle on which any man-made device operating at this conditions should satisfy. Though, for the E-Coli the directed motion (chemotaxis) comes from the run-and-tumble strategy due to the enormous thermal fluctuations in its environmental. Hence, in addition to swimmer satisfying the Scallop theorem, extra strategy is required to achieve directed motion (drift).

> Navies - Stokes:
> $-\nabla p+\eta \nabla^{2} \vec{V}=9 \overrightarrow{\partial k}+\rho(\vec{v} p / \vec{v}$
> If $Q<1:$
> Time doernit matter. The pattern of motion is the same, whether slow or fast, whether forward or backward in time.

The Scallop Theorem
Figure 6

Figure 2.1: Excerpt from Purcell's 1976 paper 'Life at low Reynolds number'

Chapter 3

2D Microswimmer Dynamics

In hydrodynamic environments, E-coli (a microswimmer) is subject to random fluctuations (thermal noise). Yet, it do sense chemoattractant gradient and move up the gradient despite the fluctuations. The bacteria accomplishes that by reducing its tumbling frequency (rate of random re-orientation) when moving in a favourable direction $[1,3]$. This results in the cell's net drift velocity up the gradient. The thermal fluctuations occurs in much shorter time-scale than that of the E-coli.

Rotational frictional (viscous) drag on a microswimmer strongly depends on the swimmers geometrical shape and the axes to which it swims in case of swimmers with asymmetrical body shapes [14]. Consequently, when a swimmer changes its body geometry while swimming by some mechanism(s), the viscous drag on the swimmer changes as well. Thus, the helical structure of E-coli flagella comes in handy since when rotating in CCW mode, all the individual flagellum rotates in unison and forms a bundle (the swimmer will look like an ellipsoid moving lengthwise); while the flagella spread-out and rotates erratically in CW mode $[1,2,14]$. In other words, the bacteria enhances or reduces the effect of viscous drag acting on it just by changing its morphology. E-coli translational diffusion coefficient D is related to its rotational diffusion coefficient D_{r} as $D=v^{2} / 6 D_{r}[14,15]$, where v is the

Figure 3.1: A schematic 2D E-coli (microswimmer) cell
average speed of the microswimmer. Roughly speaking, for a microswimmer with arbitrary shape, $D \propto v^{2} / D_{r}$ [14].

E-coli cell can be considered as a microswimmer that switches between two states; namely run (near straight swimming) and tumble (random reorientation) states. The net motility behaviour of E-coli is largely dependent on the switching rates between these states. Switching between these states is totally random (probabilistic) in the absence of any gradient whereas in the presence of a concentration gradient, it varies over time depending on the gradient sensed. The cell's drift towards a chemoattractant (e.g fuel, food) source or away from chemorepellent (e.g medicine, poison) depends on how the swimmer periodically adjusts its transition rates upon temporal measurement of its environmental condition. Random telegraph process with time dependent transition rates fits perfectly to describe this switching process. What follows henceforth is the swimmer motility behaviour analysis, coupling the random telegraph process (RTP) to the swimmer associated Langevin equations.

3.1 The chemotaxis strategy

Firstly, it is important we introduce how random telegraph process demonstrates the swimmer chemotaxis strategy. E-coli alters its transition rate (also known as tumbling frequency) from run state to tumble state in response to environmental concentration gradient. The response modulates the transition rate around the mean adapted transition rate (i.e transition rate in the absence of a gradient). The transition rate [3,9,16] fitted to experimental data for moderate chemoattractant concentration intensity, $c(\mathbf{x}(t), t)$ reads

$$
\begin{equation*}
\omega(t)=\frac{1}{\tau_{r}}\left(1-\int_{t-\tau}^{t} d s K(t-s) c(\mathbf{x}(s), s)\right) \tag{3.1}
\end{equation*}
$$

where τ_{r} is the mean run-time in the absence of gradient, $K(t)$ is the response kernel, $c(\mathbf{x}(t), t)$ is the chemoattractant concentration profile in the environment, $\mathbf{x}(t)$ is the microswimmer trajectory (intrinsically stochastic) and τ is the characteristic response time ($\tau \sim 4$ seconds for E-coli) [1]. The linear dependence of $\omega(t)$ to the concentration field $c(\mathbf{x}(s), s)$ is due the assumption that the concentration gradient is weak and the principle of weak chemotactic response which requires that

$$
\left|\int_{-\infty}^{t} d s K(t-s) c(\mathbf{x}(s), s)\right| \ll 1
$$

We can therefore conveniently define the random telegraph process transition rates as

$$
\begin{equation*}
\lambda(t)=\lambda, \quad \mu(t)=\mu_{0}\left(1-\int_{t-\tau}^{t} d s K(t-s) c(\mathbf{x}(s), s)\right) \tag{3.2}
\end{equation*}
$$

with μ_{0} being the transition rate in the absence of concentration gradient and $\tau_{r}, c(\mathbf{x}(t), t), \mathbf{x}(t), \tau$ retain their meanings from equation (3.1). The transition rate $\mu(t)$ depends on the history of the swimmer's past detections through the response term $\int_{t-\tau}^{t} d s K(t-s) c(\mathbf{x}(s), s)$. In the absence of chemotactic

Figure 3.2: A 2D chemotactic E-coli (microswimmer) cell with a concentration gradient
strategy, the swimmer trajectory \mathbf{X}_{t} is purely diffusive - no drift; described by Brownian motion (Wiener process $d B_{t}$), such that $d \mathbf{X}(t)=\sqrt{2 D} d B_{t}$. Where D is the swimmer translational diffusivity in an environment with no chemoattractant gradient.

The set of equations governing the transition dynamics (i.e the telegraph process) [11] reads

$$
\begin{align*}
& \partial_{t} P_{1}(t)=-\overbrace{\mu(t) P_{1}(t)}^{\text {loss }}+\overbrace{\lambda(t) P_{2}(t)}^{\text {gain }} \tag{3.3}\\
& \partial_{t} P_{2}(t)=\underbrace{\mu(t) P_{1}(t)}_{\text {gain }}-\underbrace{\lambda(t) P_{2}(t)}_{\text {loss }} \tag{3.4}
\end{align*}
$$

$P_{1}(t) \equiv P\left(\alpha_{1}, t\right)$ and $P_{2}(t) \equiv P\left(\alpha_{2}, t\right)$ are probabilities of finding the swimmer with α_{1} state variable and α_{2} state variable at any time t respectively. $\mu(t) P_{1}(t)$ is the rate of probability loss (gain) due to transition from α_{1} state to α_{2} state and $\lambda(t) P_{2}(t)$ is the rate of probability gain (loss) due to transition
from α_{2} state to α_{1} state with the conditions

$$
\begin{array}{rlrl}
P_{1}(t)+P_{2}(t) & =1 \\
\text { and } & P\left(\alpha, t_{0} \mid \alpha_{0}, t_{0}\right) & =\delta_{\alpha, \alpha_{0}} \tag{3.6}
\end{array}
$$

We can choose to study different models using this process. One excellent possible choice of such models is that λ is a constant while $\mu(t)$ depends on the swimmer concentration detections history (\sim equivalent to the E-coli run-and-tumble chemotaxis strategy, equation 3.2). However, depending on the system one intends to study, we can as well choose $\lambda(t)$ to depend on the swimmer trajectory history in some field (e.g the concentration) while μ being a constant, or making both depend on the field detection history of interest; though, the field must be what the swimmer is sensitive to. Now, from equation (3.3) and (3.5):

$$
\begin{array}{r}
\partial_{t} P_{1}(t)=-\lambda(t) P_{1}(t)+\mu(t)\left[1-P_{1}(t)\right] \\
\partial_{t} P_{1}(t)+[\lambda(t)+\mu(t)] P_{1}(t)=\mu(t) \tag{3.7}
\end{array}
$$

also from equation (3.4) and (3.5):

$$
\begin{array}{r}
\partial_{t} P_{2}(t)=+\lambda(t)\left[1-P_{2}(t)\right]-\mu(t) P_{2}(t) \\
\partial_{t} P_{2}(t)+[\lambda(t)+\mu(t)] P_{2}(t)=\lambda(t) \tag{3.8}
\end{array}
$$

Multiplying equation (3.7) by an integrating factor;

$$
\begin{equation*}
\Rightarrow \quad \partial_{t}\left\{e^{\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} P_{1}(t)\right\}=\mu(t) e^{\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \tag{3.9}
\end{equation*}
$$

Integrating equation (3.9)

$$
\begin{gathered}
\int_{t_{0}}^{t} d s \quad \partial_{s}\left\{e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} P_{1}(s)\right\}=\int_{t_{0}}^{t} d s \quad \mu(s) e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \\
\left\{e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} P_{1}(s)\right\}_{t_{0}}^{t}=\int_{t_{0}}^{t} d s \quad \mu(s) e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \\
e^{\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} P_{1}(t)-P_{1}(t)=\int_{t_{0}}^{t} d s \quad \mu(s) e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \\
P_{1}(t)=e^{\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]}\left\{\delta_{\alpha_{1}, \alpha_{0}}+\int_{t_{0}}^{t} d s \mu(s) e^{\int_{t_{0}}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]}\right\}
\end{gathered}
$$

Hence, the general solution is

$$
\begin{equation*}
P_{1}(t)=\delta_{\alpha_{1}, \alpha_{0}} e^{-\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]}+\int_{t_{0}}^{t} d s \quad \mu(s) e^{\int_{t}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \tag{3.10}
\end{equation*}
$$

Likewise for the $P_{2}(t)$, after repeating the calculations as above: we have from equation (3.8)

$$
\begin{equation*}
P_{2}(t)=\delta_{\alpha_{2}, \alpha_{0}} e^{-\int_{t_{0}}^{t} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]}+\int_{t_{0}}^{t} d s \quad \lambda(s) e^{\int_{t}^{s} d t^{\prime}\left[\lambda\left(t^{\prime}\right)+\mu\left(t^{\prime}\right)\right]} \tag{3.11}
\end{equation*}
$$

The two equations (3.10 and 3.11) above describes the time evolution of the swimmer's chemotaxis process (or chemotactic strategy). Swimmer phase variables switching between the two phases in the Langevin equations that will follow are characterized by these two equations.

3.2 Associated Langevin Equations

In low Reynold's number $(\Re e \ll 1)$, inertial effects are negligible for a microswimmer [4]. A microswimmer stops as soon as the propulsive force ceases

- no coasting. Now, consider a microswimmer (e.g E-coli cell) moving in two dimensions $(2 \mathrm{D})$, with a net swimming speed $v(t)$, swimming along its unit director $\hat{\mathbf{n}}(t)=(\cos \theta(t), \sin \theta(t))$, where $\theta(t)$ is the orientation of the microswimmer to the x-axis at time t as illustrated in figure 3. The dynamics of this swimmer is represented by the Langevin stochastic differential equations below. Runs (CCW flagella rotation) corresponds to the microswimmer moving with near constant orientation θ interrupted by tumbles (CW flagella rotation) which are random re-orientation in same neighborhood \mathbf{x} that occur with transition rate $\mu(t)$. For all the analysis that follows, the swimmer hydrodynamic environment is assumed unbounded and stationary. Langevin equations [12] for this microswimmer coupled with the chemotaxis strategy (telegraph process) and expressing translational and rotational contributions separately are

$$
\begin{align*}
\text { translational } & \Rightarrow \quad \frac{d \mathbf{x}}{d t}(t)=v(t) \hat{\mathbf{n}}(t)+\boldsymbol{\xi}(t) \tag{3.12}\\
\text { rotational } & \Rightarrow \quad \frac{d \theta}{d t}(t)=\beta(t) \tag{3.13}
\end{align*}
$$

Explicitly, the equations coupling the different degrees of freedom are

$$
\begin{align*}
& \frac{d x}{d t}(t)=v(t) \cos \theta(t)+\gamma(t) \tag{3.14}\\
& \frac{d y}{d t}(t)=v(t) \sin \theta(t)+\eta(t) \tag{3.15}\\
& \frac{d \theta}{d t}(t)=\beta(t) \tag{3.16}
\end{align*}
$$

$\boldsymbol{\xi}(t)=(\gamma(t), \eta(t)), \beta(t)$ are stochastic Gaussian white noise processes whose autocorrelation functions are given by $[17,18]$

$$
\left.\begin{array}{rl}
\langle\boldsymbol{\xi}(t)\rangle & =\mathbf{0},
\end{array} \quad\left\langle\xi_{i}(t) \xi_{j}(s)\right\rangle=2 D \delta_{i, j} \delta(t-s), ~ l o z(t)\right\rangle=0, \quad\langle\beta(t) \beta(s)\rangle=2 D_{r}(t) \delta(t-s)
$$

where D is the swimmer translational diffusion constant and $D_{r}(t)$ is the rotational diffusion coefficient.

Markov approximation of the above correlation functions is chosen as such because, the time scales of the molecular kicks that manifest as the random forces and torques acting on the swimmer are so small compared to the microswimmer's time scales and even much smaller than our macroscopic time scales. The fast state variables (rapidly varying variables) with respect to our macroscopic time scales are the Brownian randomization (thermal noise)- $\xi(t)$ and the random torque effect $\beta(t)$.
The two swimmer states (phases) described by the above Langevin equations (3.14,3.15, and 3.16) are:
run state $\left(v_{1}, D_{1}\right)$: swimming state with high swimming velocity and low rotational diffusion.
tumble state $\left(v_{2}, D_{2}\right)$: random re-orientation state with low swimming velocity and high rotational diffusion.

Therefore, the swimmer speed $v(t)$ and rotational diffusion coefficient $D_{r}(t)$ are characterized by the probabilities $P_{1}(t), P_{2}(t)=1-P_{1}(t)$ as follows:

$$
\begin{align*}
v(t) & =v_{1} P_{1}(t)+v_{2} P_{2}(t) ; & v_{1} & \gg v_{2} \tag{3.19}\\
D_{r}(t) & =D_{1} P_{1}(t)+D_{2} P_{2}(t) ; & D_{1} & \ll D_{2} \tag{3.20}
\end{align*}
$$

Here, we assume that the time-scale of the switching rates μ, λ is much longer than the time-scale of the rotational diffusion $\sim D_{r}^{-1}$ of the swimmer. Recall our choice of the transition rates λ and $\mu(t)$ from equation (3.2), it require us calculating the integral

$$
\int_{t-\tau}^{t} d s K(t-s) c(\mathbf{x}(s), s)
$$

The kernel function $K(t)$ can in principle be taken to be any real continuous function in the interval $[0, \tau]$, such as $K(t)=$ constant, or $K(t)=K_{0} e^{-|t| / \tau}$.

Furthermore, the concentration $c(\mathbf{x}(t), t)$ can be Taylor expanded around t_{0} as

$$
\begin{align*}
c\left(\mathbf{x}\left(t^{\prime}\right), t^{\prime}\right)= & \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{\left(\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)\right)^{l}}{l!} \frac{\left(t^{\prime}-t_{0}\right)^{m}}{m!} \frac{\partial^{l+m} c}{\partial \mathbf{x}^{l} \partial\left(t^{\prime}\right)^{m}}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \\
= & c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+\left(\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)\right) \cdot \nabla c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+\left(t-t_{0}\right) \partial_{t} c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \\
& +\frac{1}{2}\left(\left(\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)\right) \cdot \nabla\right)^{2} c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+\cdots \tag{3.21}
\end{align*}
$$

At the swimmer micro-scale, the chemoattractant concentration $c(\mathbf{x}(t), t)$ varies very slowly in space and time. This is justified by the swimmer being of micron-scale size (E-coli has typical length of $\sim 2 \mu m$ and $\sim 1 \mu m$ diameter) [1]. Hence, this implies we can take the concentration $c(\mathbf{x}(t), t)$ a constant function of time $\partial_{t} c=0$ (as viewed by the swimmer) and truncate the Taylor expansion of the concentration only to the quadratic order $\left(\nabla c, \nabla^{2} c\right.$ - which are also effectively constant to the swimmer). Concisely, we have
$c\left(\mathbf{x}\left(t^{\prime}\right), t^{\prime}\right)=c^{0}+\left(\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)\right) \cdot \mathbf{c}^{1}+\left(x_{i}\left(t^{\prime}\right)-x_{i}\left(t_{0}\right)\right)\left(x_{j}\left(t^{\prime}\right)-x_{j}\left(t_{0}\right)\right) c_{i j}^{2}+\mathcal{O}\left(\nabla^{3} c\right)$
where the constant coefficients are

$$
\begin{align*}
c^{0} & \equiv c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \tag{3.23}\\
\mathbf{c}^{1} & \equiv \nabla c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \tag{3.24}\\
c_{i j}^{2} & \equiv \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} c\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \tag{3.25}
\end{align*}
$$

We note that since $\mu(t)$ is the transition rate from run state (state 1) to tumble state (state 2), to calculate the expression of $\mu(t)$, the swimmer has speed v_{1} and rotational diffusion coefficient D_{1} at this time t and due to the assumption we made on the separation of the time-scales above, one can
freely write

$$
\begin{align*}
\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)= & \int_{t_{0}}^{t^{\prime}} d t_{1}\left(v_{1} \hat{\mathbf{n}}\left(t_{1}\right)+\boldsymbol{\xi}\left(t_{1}\right)\right) \tag{3.26}\\
\left(x_{i}\left(t^{\prime}\right)-x_{i}\left(t_{0}\right)\right)\left(x_{j}\left(t^{\prime}\right)-x_{j}\left(t_{0}\right)\right)=\int_{t_{0}}^{t^{\prime}} d t_{1} & \int_{t_{0}}^{t^{\prime}} d t_{2}\left(v_{1} \hat{n}_{i}\left(t_{1}\right)+\xi_{i}\left(t_{1}\right)\right) \\
& \times\left(v_{1} \hat{n}_{j}\left(t_{2}\right)+\xi_{j}\left(t_{2}\right)\right) \tag{3.27}
\end{align*}
$$

Substituting equation (3.22) into equation (3.2) of the transition rate $\mu(t)$

$$
\begin{align*}
\mu(t)= & \mu_{0}\left(1-\int_{t-\tau}^{t} d s K(t-s) c(\mathbf{x}(s), s)\right) \\
= & \mu_{0}-\mu_{0} \int_{t-\tau}^{t} d t^{\prime} K\left(t-t^{\prime}\right)\left(c^{0}+\left(\mathbf{x}\left(t^{\prime}\right)-\mathbf{x}\left(t_{0}\right)\right) \cdot \mathbf{c}^{1}\right. \\
& \left.+\left(x_{i}\left(t^{\prime}\right)-x_{i}\left(t_{0}\right)\right)\left(x_{j}\left(t^{\prime}\right)-x_{j}\left(t_{0}\right)\right) c_{i j}^{2}+\mathcal{O}\left(\nabla^{3} c\right)\right) \tag{3.28}
\end{align*}
$$

Now we can write the transition rate in the form

$$
\begin{equation*}
\mu(t)=\mu_{0}+\delta \mu+\mathcal{O}\left(\nabla^{3} c\right) ; \quad \delta \mu=M_{0}(t) c^{0}+\mathbf{M}_{1}(t) \cdot \mathbf{c}^{1}+M_{2}^{j i}(t) c_{i j}^{2} \tag{3.29}
\end{equation*}
$$

where the time dependent coefficients are:

$$
\begin{align*}
& M_{0}(t)=-\mu_{0} \int_{t-\tau}^{t} d t_{1} K\left(t-t_{1}\right) \tag{3.30}\\
& \mathbf{M}_{1}(t)=-\mu_{0} \int_{t-\tau}^{t} d t_{1} K\left(t-t_{1}\right) \int_{t_{0}}^{t_{1}} d t_{2}\left(v_{1} \hat{\mathbf{n}}\left(t_{2}\right)+\boldsymbol{\xi}\left(t_{2}\right)\right) \tag{3.31}\\
& M_{2}^{i j}(t)=-\frac{\mu_{0}}{2} \int_{t-\tau}^{t} d t_{1} K\left(t-t_{1}\right) \int_{t_{0}}^{t_{1}} d t_{2} \\
& \quad \times \int_{t_{0}}^{t_{1}} d t_{3}\left(v_{1} \hat{n}_{i}\left(t_{2}\right)+\xi_{i}\left(t_{2}\right)\right)\left(v_{1} \hat{n}_{j}\left(t_{3}\right)+\xi_{j}\left(t_{3}\right)\right) \tag{3.32}
\end{align*}
$$

Therefore, we can now expand the expressions of the probabilities P_{1} and P_{2} (eqns $3.10,3.11$) using the approximate expression of $\mu(t)$ (eqn. 3.29) keeping
only linear terms in $\delta \mu$ (i.e keeping only the linear terms in $c^{0}, \mathbf{c}^{1}, c_{i j}^{2}$)

$$
\begin{align*}
& P_{1}(t)=\bar{P}_{1}+P_{1}^{(0)} c^{0}+\mathbf{P}_{1}^{(1)}(t) \cdot \mathbf{c}^{1}+P_{1}^{(2) j i}(t) c_{i j}^{2}+\mathcal{O}\left(\nabla^{3} c\right) \tag{3.33}\\
& P_{2}(t)=\bar{P}_{2}+P_{2}^{(0)} c^{0}+\mathbf{P}_{2}^{(1)}(t) \cdot \mathbf{c}^{1}+P_{2}^{(2) j i}(t) c_{i j}^{2}+\mathcal{O}\left(\nabla^{3} c\right) \tag{3.34}
\end{align*}
$$

where for the choice of the transitions rates: λ constant and $\mu(t)$ depends on the detections history for a chemotactic swimmer made in equation (3.2), we have

$$
\begin{align*}
& \bar{P}_{1}= \frac{\mu_{0}}{\mu_{0}+\lambda} \tag{3.35}\\
& P_{1}^{(0)}(t)= \int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right) M_{0}(s) \\
& \quad+\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime} M_{0}\left(t^{\prime}\right) \tag{3.36}\\
& \mathbf{P}_{1}^{(1)}(t)= \int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right) \mathbf{M}_{1}(s) \\
& \quad+\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime} \mathbf{M}_{1}\left(t^{\prime}\right) \tag{3.37}\\
& P_{1}^{(2) j i}(t)=\int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right) M_{2}^{j i}(s) \\
& \quad+\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime} M_{2}^{j i}\left(t^{\prime}\right) \tag{3.38}
\end{align*}
$$

similarly for $P_{2}(t) \equiv 1-P_{1}(t)$, using equation (3.11) the coefficients can in the same manner (note that calculating one of the probabilities is enough for our calculations).

Then, substituting these judiciously approximate values into the transla-
tional Langevin equation of motion (3.12)

$$
\begin{align*}
& \frac{d \mathbf{x}}{d t}(t)=\left(v_{1} P_{1}(t)\right. \\
&=\left(v_{2} P_{2}(t)\right) \hat{\mathbf{n}}(t)+\boldsymbol{\xi}(t) \\
&=\left(v_{1} \bar{P}_{1}+\right.\left.v_{2} \bar{P}_{2}\right) \hat{\mathbf{n}}(t)+\left[\left(v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right) \cdot \mathbf{c}^{1}\right] \hat{\mathbf{n}}(t) \tag{3.39}\\
&+\left(v_{1} P_{1}^{(2) j i}(t) c_{i j}^{2}+v_{2} P_{2}^{(2) j i}(t) c_{i j}^{2}\right) \hat{\mathbf{n}}(t)+\boldsymbol{\xi}(t)
\end{align*}
$$

Consequently, averaging the translational Langevin equation (3.12) over the rotational fluctuations $\beta(t)$ and the telegraph process we get

$$
\begin{align*}
\frac{d \mathbf{x}}{d t}=\langle & {[} \\
& \left.\left.\left(v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right) \cdot \mathbf{c}^{1}\right] \hat{\mathbf{n}}(t)\right\rangle_{\beta} \tag{3.40}\\
& +\left\langle\left(v_{1} P_{1}^{(2) j i}(t) c_{i j}^{2}+v_{2} P_{2}^{(2) j i}(t) c_{i j}^{2}\right) \hat{\mathbf{n}}(t)\right\rangle_{\beta}+\langle\boldsymbol{\xi}(t)\rangle_{\beta}
\end{align*}
$$

The first term can be simplified using triple product rule of vectors

$$
(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-\mathbf{a} \times(\mathbf{b} \times \mathbf{c})
$$

such that

$$
\begin{align*}
& \frac{d \mathbf{x}}{d t}=\left\langle\left[v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right] \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \mathbf{c}^{1} \\
&+\left\langle\left[v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right] \times\left(\mathbf{c}^{1} \times \hat{\mathbf{n}}(t)\right)\right\rangle_{\beta} \\
&+\left\langle\left[v_{1} P_{1}^{(2) j i}(t) c_{i j}^{2}+v_{2} P_{2}^{(2) j i}(t) c_{i j}^{2}\right] \hat{\mathbf{n}}(t)\right\rangle_{\beta}+\boldsymbol{\xi}(t) \tag{3.41}
\end{align*}
$$

It can easily be seen that the second term

$$
\left\langle\left[v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right] \times\left(\mathbf{c}^{1} \times \hat{\mathbf{n}}(t)\right)\right\rangle_{\beta}=0
$$

Therefore, equation (3.41) reduces to

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\left\langle\left[v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right] \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \mathbf{c}^{1}+\boldsymbol{\xi}_{\text {new }}(t)+\boldsymbol{\xi}(t) \tag{3.42}
\end{equation*}
$$

Now written concisely,

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{v}_{\mathbf{e f f}}(\mathbf{x})+\boldsymbol{\xi}_{\mathrm{eff}}(t) \tag{3.43}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{v}_{\mathrm{eff}}(\mathbf{x})=\kappa \nabla c(\mathbf{x}) ; \quad \boldsymbol{\xi}_{\mathbf{e f f}}(t)=\boldsymbol{\xi}(t)+\boldsymbol{\xi}_{\text {new }} \tag{3.44}
\end{equation*}
$$

and

$$
\begin{align*}
\kappa & =\left\langle\left[v_{1} \mathbf{P}_{1}^{(1)}(t)+v_{2} \mathbf{P}_{2}^{(1)}(t)\right] \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \tag{3.45}\\
\boldsymbol{\xi}_{\text {new }}(t) & =\left\langle\left[v_{1} P_{1}^{(2) j i}(t) c_{i j}^{2}+v_{2} P_{2}^{(2) j i}(t) c_{i j}^{2}\right] \hat{\mathbf{n}}(t)\right\rangle_{\beta} \tag{3.46}
\end{align*}
$$

The parameter κ determines how effective the swimmer will chemotax in the presence of a gradient ∇c. It depends on the swimmer response function $K(t)$, the switching rates μ_{0}, λ, the fast and slow rotational diffusion constants D_{2}, D_{1} as well as the fast and slow swimming speeds v_{1}, v_{2}. We can notice some additional correlation term to the effective thermal fluctuations term $\boldsymbol{\xi}_{\text {new }}$ which comes from the complex rotational motion of the swimmer due to the chemotactic strategy and results in a net enhancement of the swimmer diffusivity (or mean square displacement, MSD).

Finally, given a particular form of the response kernel function $K(t)$, we can get explicit expressions of all state variables of interest.

3.3 Chemotaxis parameter κ and $\boldsymbol{\xi}_{\text {new }}$ noise

The expression of the chemotaxis parameter κ and $\boldsymbol{\xi}_{\text {new }}$ in the previous section are more intuitive for the model description, but tedious for specific swimmer calculations.

We can obtain similar results that contains only one of the probabilities and is much simpler to handle analytically.

From the Langevin equation (3.12) and the expressions $P_{1}(t)+P_{2}(t)=1$;
$v(t)=v_{1} P_{1}(t)+v_{2} P_{2}(t)$ (eqn. 3.5 and eqn. 3.19 respectively), one can write

$$
v(t)=\left(v_{1}-v_{2}\right) P_{1}(t)+v_{2}
$$

Also, we can re-write equation (3.39) as

$$
\begin{align*}
& \frac{d \mathbf{x}}{d t}(t)=\left(v_{1}-v_{2}\right) P_{1}(t) \hat{\mathbf{n}}(t)+v_{2} \hat{\mathbf{n}}(t)+\boldsymbol{\xi}(t) \\
&=\left(v_{1}-v_{2}\right) \\
& \hline \bar{P}_{1} \hat{\mathbf{n}}(t)+\left[\left(v_{1}-v_{2}\right) \mathbf{P}_{1}^{(1)}(t) \cdot \mathbf{c}^{1}\right] \hat{\mathbf{n}}(t) \tag{3.47}\\
& \quad+\left(v_{1}-v_{2}\right) P_{1}^{(2) j i}(t) c_{i j}^{2} \hat{\mathbf{n}}(t)+v_{2} \hat{\mathbf{n}}(t)+\boldsymbol{\xi}(t)
\end{align*}
$$

Averaging over the rotational fluctuations $\beta(t)$ and following same arguments as in the previous section, we get

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\left(v_{1}-v_{2}\right)\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \mathbf{c}^{1}+\left(v_{1}-v_{2}\right)\left\langle P_{1}^{(2) j i}(t) \hat{\mathbf{n}}(t)\right\rangle c_{i j}^{2}+\boldsymbol{\xi}(t) \tag{3.48}
\end{equation*}
$$

where now κ is equivalently

$$
\kappa=\left(v_{1}-v_{2}\right)\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}
$$

and the additional noise

$$
\boldsymbol{\xi}_{\text {new }}(t)=\left(v_{1}-v_{2}\right)\left\langle P_{1}^{(2) j i}(t) \hat{\mathbf{n}}(t)\right\rangle_{\beta} c_{i j}^{2}
$$

Now, from the expressions of $\bar{P}_{1}, P_{1}^{(0)}, \mathbf{P}_{1}^{(1)}$ and $P_{1}^{(2) j i}$ (eqns. 3.35 to 3.38)

$$
\begin{align*}
&\left\langle\bar{P}_{1} \hat{\mathbf{n}}(t)\right\rangle_{\beta}= \frac{\mu_{0}}{\mu_{0}+\lambda}\langle\hat{\mathbf{n}}(t)\rangle_{\beta} \tag{3.49}\\
&\left\langle P_{1}^{(0)}(t) \hat{\mathbf{n}}(t)\right\rangle_{\beta}=\langle\hat{\mathbf{n}}(t)\rangle_{\beta} \int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right) M_{0}(s) \\
&+\mu_{0}\langle\hat{\mathbf{n}}(t)\rangle_{\beta} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime} M_{0}\left(t^{\prime}\right) \tag{3.50}
\end{align*}
$$

$$
\begin{align*}
\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & \int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right)\left\langle\mathbf{M}_{1}(s) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \\
& +\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime}\left\langle\mathbf{M}_{1}\left(t^{\prime}\right) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \tag{3.51}\\
\left\langle P_{1}^{(2) j i}(t) \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & \int_{0}^{t} d s\left(e^{\left(\mu_{0}+\lambda\right)(s-t)}-\delta_{\alpha_{1}, \alpha_{0}} e^{-\left(\mu_{0}+\lambda\right) t}\right)\left\langle M_{2}^{j i}(s) \hat{\mathbf{n}}(t)\right\rangle_{\beta} \\
& +\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime}\left\langle M_{2}^{j i}\left(t^{\prime}\right) \hat{\mathbf{n}}(t)\right\rangle_{\beta} \tag{3.52}
\end{align*}
$$

Therefore, using eqns $(3.31,3.32)$ and the correlation $\left\langle\hat{n}_{i}(t) \hat{n}_{j}(s)\right\rangle=\frac{1}{2} \delta_{i j} e^{-\int_{s}^{t} D_{r}\left(t^{\prime}\right) d t^{\prime}}$

$$
\begin{align*}
\left\langle\mathbf{M}_{1}(s) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & -\mu_{0} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \\
& \times \int_{t_{0}}^{t_{1}} d t_{2}\left(v_{1}\left\langle\hat{\mathbf{n}}\left(t_{2}\right) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}+\boldsymbol{\xi}\left(t_{2}\right)\langle\hat{\mathbf{n}}(t)\rangle_{\beta}\right) \\
= & -\mu_{0} v_{1} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \int_{t_{0}}^{t_{1}} d t_{2} e^{-D_{1}\left(t-t_{2}\right)} \\
= & -\frac{\mu_{0} v_{1}}{D_{1}} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right)\left(e^{-D_{1}\left(t-t_{1}\right)}-e^{-D_{1}\left(t-t_{0}\right)}\right) \tag{3.53}
\end{align*}
$$

Taking the Taylor expansion of the concentration profile (eqn. 3.22) to be around the swimmer current vicinity or simply $t_{0}=t$, we have

$$
\begin{equation*}
\left\langle\mathbf{M}_{1}(s) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}=\frac{\mu_{0} v_{1}}{D_{1}} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right)\left(1-e^{-D_{1}\left(t-t_{1}\right)}\right) \tag{3.54}
\end{equation*}
$$

and the noise

$$
\begin{align*}
\left\langle M_{2}^{i j}(s) \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & -\frac{\mu_{0} v_{1}}{2} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \int_{t_{0}}^{t_{1}} d t_{2} \\
& \times \int_{t_{0}}^{t_{1}} d t_{3}\left(e^{-D_{1}\left(t-t_{2}\right)} \xi_{j}\left(t_{3}\right), e^{-D_{1}\left(t-t_{3}\right)} \xi_{i}\left(t_{2}\right)\right) \\
=- & \frac{\mu_{0} v_{1}}{2} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \\
& \times \int_{t_{0}}^{t_{1}} d t^{\prime} e^{-D_{1}\left(t-t^{\prime}\right)}\left(\int_{t_{0}}^{t_{1}} d t_{3} \xi_{j}\left(t_{3}\right), \int_{t_{0}}^{t_{1}} d t_{2} \xi_{i}\left(t_{2}\right)\right) \\
=- & \frac{\mu_{0} v_{1}}{2} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \\
& \times \int_{t_{0}}^{t_{1}} d t^{\prime} e^{-D_{1}\left(t-t^{\prime}\right)}\left(W\left(t_{1}\right)-W\left(t_{0}\right), W\left(t_{1}\right)-W\left(t_{0}\right)\right) \\
=- & \frac{\mu_{0} v_{1}}{2} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right) \\
& \times \int_{t_{0}}^{t_{1}} d t^{\prime} e^{-D_{1}\left(t-t^{\prime}\right)}\left(W\left(t_{1}\right)-W\left(t_{0}\right)\right) \hat{\boldsymbol{\xi}}_{\text {new }} \tag{3.55}
\end{align*}
$$

with

$$
\int_{t_{0}}^{t_{1}} d s \xi_{j}(s)=\int_{t_{0}}^{t_{1}} d W_{s}=W\left(t_{1}\right)-W\left(t_{0}\right)
$$

a wiener process [11] and $\hat{\boldsymbol{\xi}}_{\text {new }}$ a unit vector. This shows that

$$
\begin{equation*}
\left\langle M_{2}^{i j}(s) \hat{\mathbf{n}}(t)\right\rangle_{\beta, W_{s}}=0 ; \quad \Rightarrow \quad\left\langle\boldsymbol{\xi}_{\text {new }}(t)\right\rangle_{\beta, W_{s}}=0 \tag{3.56}
\end{equation*}
$$

Equation (3.55) indicates that the term $\boldsymbol{\xi}_{\text {new }}$ is a fluctuating function (noise) with zero mean and represents the enhanced diffusion of the swimmer due to the complex correlations from the chemotactic strategy as noted earlier.

We can now conveniently look at some swimmer specific examples.

I. Swimmer with $K(t)=K_{0}$ (constant)

A swimmer with constant response kernel will have

$$
\begin{align*}
\left\langle\mathbf{M}_{1}(s) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} & =-\frac{\mu_{0} v_{1}}{D_{1}} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right)\left(e^{-D_{1}\left(t-t_{1}\right)}-e^{-D_{1}\left(t-t_{0}\right)}\right) \\
& =-\frac{\mu_{0} v_{1} K_{0}}{D_{1}} \int_{s-\tau}^{s} d t_{1}\left(e^{-D_{1}\left(t-t_{1}\right)}-e^{-D_{1}\left(t-t_{0}\right)}\right) \\
& =\frac{\mu_{0} v_{1} K_{0}}{D_{1}} \tau e^{-D_{1}\left(t-t_{0}\right)}-\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-D_{1} \tau}\right)}{D_{1}^{2}} e^{-D_{1}(t-s)} \\
& =A+B e^{-D_{1}(t-s)} \tag{3.57}
\end{align*}
$$

where

$$
A=\frac{\mu_{0} v_{1} K_{0}}{D_{1}} \tau ; \quad B=-\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-D_{1} \tau}\right)}{D_{1}^{2}}
$$

Now, assuming $\alpha_{0}=\alpha_{2}$ (it does not matter which state the swimmer starts with since the term(s) involving $\delta_{\alpha, \alpha_{0}}$ decays rapidly with time)

$$
\begin{align*}
\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)}\left(A+B e^{-D_{1}(t-s)}\right) \\
& +\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime}\left(A+B e^{-D_{1}\left(t-t^{\prime}\right)}\right) \\
= & \frac{A\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)}+\frac{B\left(1-e^{-\left(\mu_{0}+\lambda+D_{1}\right) t}\right)}{\left(\mu_{0}+\lambda+D_{1}\right)} \\
& -\frac{\mu_{0} A t\left(e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)}-\frac{\mu_{0} A\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)^{2}} \\
& +\frac{\mu_{0} B\left(1-e^{-\left(\mu_{0}+\lambda+D_{1}\right) t}\right)}{D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} B\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{D_{1}\left(\mu_{0}+\lambda\right)} \tag{3.58}
\end{align*}
$$

In which the limiting expression of $\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}$ for $t \gg 1 / \mu, 1 / \lambda$ is

$$
\begin{align*}
\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \simeq & \frac{A}{\left(\mu_{0}+\lambda\right)}+\frac{B}{\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} A}{\left(\mu_{0}+\lambda\right)^{2}} \\
& +\frac{\mu_{0} B}{D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} B}{D_{1}\left(\mu_{0}+\lambda\right)} \\
= & \frac{\mu_{0} \lambda v_{1} K_{0} \tau}{D_{1}\left(\mu_{0}+\lambda\right)^{2}}\left[1-\frac{\left(1-e^{-D_{1} \tau}\right)\left(\mu_{0}+\lambda\right)}{\tau D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}\right] \tag{3.59}
\end{align*}
$$

Hence

$$
\begin{equation*}
\kappa \simeq\left(v_{1}-v_{2}\right) \frac{\mu_{0} \lambda v_{1} K_{0} \tau}{D_{1}\left(\mu_{0}+\lambda\right)^{2}}\left[1-\frac{\left(1-e^{-D_{1} \tau}\right)\left(\mu_{0}+\lambda\right)}{\tau D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}\right] \tag{3.60}
\end{equation*}
$$

II. Swimmer with $K(t)=K_{0} e^{-|t| L}$ (K_{0}, L are constants)

Similarly for a swimmer with an exponential kernel, we will have

$$
\begin{align*}
\left\langle\mathbf{M}_{1}(s) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} & =\frac{\mu_{0} v_{1}}{D_{1}} \int_{s-\tau}^{s} d t_{1} K\left(s-t_{1}\right)\left(1-e^{-D_{1}\left(t-t_{1}\right)}\right) \\
& =\frac{\mu_{0} v_{1} K_{0}}{D_{1}} \int_{s-\tau}^{s} d t_{1} e^{-\left(s-t_{1}\right) L}\left(1-e^{-D_{1}\left(t-t_{1}\right)}\right) \\
& =\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-L \tau}\right)}{D_{1} L}-\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-\left(D_{1}+L\right) \tau}\right)}{D_{1}\left(D_{1}+L\right)} e^{-D_{1}(t-s)} \\
& =A+B e^{-D_{1}(t-s)} \tag{3.61}
\end{align*}
$$

where

$$
A=\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-L \tau}\right)}{D_{1} L} ; \quad B=-\frac{\mu_{0} v_{1} K_{0}\left(1-e^{-\left(D_{1}+L\right) \tau}\right)}{D_{1}\left(D_{1}+L\right)}
$$

Therefore,

$$
\begin{align*}
\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta}= & \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)}\left(A+B e^{-D_{1}(t-s)}\right) \\
& +\mu_{0} \int_{0}^{t} d s e^{\left(\mu_{0}+\lambda\right)(s-t)} \int_{t}^{s} d t^{\prime}\left(A+B e^{-D_{1}\left(t-t^{\prime}\right)}\right) \\
= & \frac{A\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)}+\frac{B\left(1-e^{-\left(\mu_{0}+\lambda+D_{1}\right) t}\right)}{\left(\mu_{0}+\lambda+D_{1}\right)} \\
& -\frac{\mu_{0} A t\left(e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)}-\frac{\mu_{0} A\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{\left(\mu_{0}+\lambda\right)^{2}} \\
& +\frac{\mu_{0} B\left(1-e^{-\left(\mu_{0}+\lambda+D_{1}\right) t}\right)}{D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} B\left(1-e^{-\left(\mu_{0}+\lambda\right) t}\right)}{D_{1}\left(\mu_{0}+\lambda\right)} \tag{3.62}
\end{align*}
$$

For our macroscopic long time $t \gg 1 / \mu, 1 / \lambda$

$$
\begin{align*}
\left\langle\mathbf{P}_{1}^{(1)}(t) \cdot \hat{\mathbf{n}}(t)\right\rangle_{\beta} \simeq & \frac{A}{\left(\mu_{0}+\lambda\right)}+\frac{B}{\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} A}{\left(\mu_{0}+\lambda\right)^{2}} \\
& +\frac{\mu_{0} B}{D_{1}\left(\mu_{0}+\lambda+D_{1}\right)}-\frac{\mu_{0} B}{D_{1}\left(\mu_{0}+\lambda\right)} \\
= & \frac{\mu_{0} \lambda v_{1} K_{0}\left(1-e^{-L \tau}\right)}{D_{1} L\left(\mu_{0}+\lambda\right)^{2}}\left[1-\frac{\left(1-e^{-\left(D_{1}+L\right) \tau}\right)\left(\mu_{0}+\lambda\right) L}{\left(1-e^{-L \tau}\right)\left(\mu_{0}+\lambda+D_{1}\right)\left(D_{1}+L\right)}\right] \tag{3.63}
\end{align*}
$$

Now, it follows that

$$
\begin{equation*}
\kappa \simeq\left(v_{1}-v_{2}\right) \frac{\mu_{0} \lambda v_{1} K_{0}\left(1-e^{-L \tau}\right)}{D_{1} L\left(\mu_{0}+\lambda\right)^{2}}\left[1-\frac{\left(1-e^{-\left(D_{1}+L\right) \tau}\right)\left(\mu_{0}+\lambda\right) L}{\left(1-e^{-L \tau}\right)\left(\mu_{0}+\lambda+D_{1}\right)\left(D_{1}+L\right)}\right] \tag{3.64}
\end{equation*}
$$

Chapter 4

Discussion

So far, we have successfully coupled the random telegraph process (representing chemotaxis strategy) to the swimmer associated Langevin equation. We were able to obtain an explicit expression of the chemotaxis parameter κ for a given microswimmer characterized by chemotactic response function, $K(t)$, run, $\left(v_{1}, D_{1}\right)$, and tumble phases with switching rates (μ, λ), in the presence of concentration profile $c(\mathrm{x}(t), t)$. It is shown that the swimmer actually drifts in the presence of a concentration gradient ∇c and the swimmer drift velocity is limited by its characteristics. This highlights the dependence of swimmer's chemotaxis efficiency to its physical traits (such as the swimming speeds v_{1}, v_{2} and rotational diffusion constant D_{1}).

This model could be a step more towards the right paradigm for designing a two-state artificial microswimmer.

Part of the goals of this thesis originally includes obtaining swimmer mean square angular deviation (MSAD) and mean square displacement (MSD) for different possible swimmer response functions. But, due to time constraint, this is only partially achieved. However, using the expressions of the chemotaxis parameter κ and the effective Langevin equation, One can easily calculate any quantity of interest (e.g MSAD, MSD, drift velocity v_{d}). For example, in Appendix I below, it is shown how this could be done in prin-
ciple (i.e generic procedure). In addition, to illustrate a simple scenario, a simple swimmer in a homogeneous concentration profile $(\nabla c=0)$ MSAD and MSD were obtained.

In case of swimmer population, additional interaction terms may significantly affect the chemotaxis parameter. Also, detail numerical simulations of this model may open up new investigation paradigms.

APPENDICES

A: Mean-Squared Angular Deviation (MSAD)

MSAD estimates the precision to which a swimmer swims along a straight path. It gives the average deviation to the deterministic swimming direction. Integrating equation (3.16), one gets

$$
\begin{equation*}
\theta(t)-\theta(0)=\int_{0}^{t} d t^{\prime} \beta\left(t^{\prime}\right) \tag{4.1}
\end{equation*}
$$

and the rotational diffusion coefficient

$$
D_{r}(t)=D_{1} P_{1}(t)+D_{2} P_{2}(t)
$$

Squaring the integral in equation (4.1) and averaging over the random processes (random torques, the telegraph process and all possible trajectories),

$$
\begin{align*}
\left\langle\triangle \theta^{2}(t)\right\rangle & =\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle\beta\left(t_{1}\right) \beta\left(t_{2}\right)\right\rangle \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} 2 D_{r}\left(t_{2}\right) \delta\left(t_{2}-t_{1}\right) \\
& =2 \int_{0}^{t} d t_{1} D_{r}\left(t_{1}\right) \tag{4.2}
\end{align*}
$$

substituting the expression for the rotational diffusion coefficient $D_{r}(t)$ equation (??),

$$
\begin{align*}
\left\langle\triangle \theta^{2}(t)\right\rangle & =2 \int_{0}^{t} d t_{1}\left[D_{2}-\left(D_{2}-D_{1}\right) P_{1}\left(t_{1}\right)\right] \\
& =\left(\frac{\lambda D_{1}+\mu_{0} D_{2}}{\lambda+\mu_{0}}\right) t-2\left(D_{2}-D_{1}\right) \int_{0}^{t} d t_{1}\left\langle P_{1}^{(0)} c^{0}\right\rangle \\
& -2\left(D_{2}-D_{1}\right) \int_{0}^{t} d t_{1}\left\langle\mathbf{P}_{1}^{(1)}\left(t_{1}\right) \cdot \mathbf{c}^{1}\right\rangle-2\left(D_{2}-D_{1}\right) \int_{0}^{t} d t_{1}\left\langle P_{1}^{(2) j i}\left(t_{1}\right) c_{i j}^{2}\right\rangle \tag{4.3}
\end{align*}
$$

We can easily notice the different contributions from the swimmer intrinsic properties $v_{1,2}, K(t), D_{1,2}$ and the external (environmental conditions) to the average mean deviation of the swimming direction. The first term is the mean deviation of a non-chemotactic swimmer irrespective of the environmental conditions, since for this swimmer $K(t)=0$ and therefore the deviation remains always constant. The second term is the contribution that comes from the nature of the swimmer's response kernel $K(t)$. While the third and the fourth terms comes from the nature of the concentration gradient present in the swimmer environment.

B: Mean-Squared Displacement (MSD)

This is the average displacement or translational diffusion displacement of a swimmer undergoing random walk motion (here runs and tumbles). Starting with the swimmer trajectory (i.e integrating equations 3.14,3.15)

$$
\begin{align*}
& x(t)-x(0)=\int_{0}^{t} v(t) \cos \theta\left(t_{1}\right) d t_{1}+\int_{0}^{t} \xi\left(t_{1}\right) d t_{1} \tag{4.4}\\
& y(t)-y(0)=\int_{0}^{t} v(t) \sin \theta\left(t_{1}\right) d t_{1}+\int_{0}^{t} \eta\left(t_{1}\right) d t_{1} \tag{4.5}
\end{align*}
$$

In which the (chemotactic) swimmer extract a net propulsion with an
average displacement components

$$
\begin{align*}
& \langle\Delta x(t)\rangle=\int_{0}^{t}\left\langle v(t) \cos \theta\left(t_{1}\right)\right\rangle d t_{1} \tag{4.6}\\
& \langle\Delta y(t)\rangle=\int_{0}^{t}\left\langle v(t) \sin \theta\left(t_{1}\right)\right\rangle d t_{1} \tag{4.7}
\end{align*}
$$

where the angle brackets $\langle\ldots\rangle$ denotes averaging over all the fast variables including the all possible trajectories X_{t}.

Hence, the swimmer have an average drift velocity (average speed a swimmer swim up a concentration gradient) up a chemoattractant gradient. The drift velocity can be obtained from the effective Langevin equation (3.43) by averaging over the translational thermal noise $\boldsymbol{\xi}(t)$ and all possible trajectories.

$$
\begin{align*}
\left\langle\frac{d \mathbf{x}}{d t}\right\rangle & =\left\langle\mathbf{v}_{\mathrm{eff}}(\mathbf{x})\right\rangle+\left\langle\boldsymbol{\xi}_{\mathrm{eff}}(t)\right\rangle \\
\Rightarrow \quad v_{d} & =\kappa \nabla c(\mathbf{x}) \tag{4.8}
\end{align*}
$$

However, for a mutant swimmer undergoing runs and tumbles without a strategy (directional bias) $v(t)=\bar{v}=v_{1} \bar{P}_{1}+v_{2} \bar{P}_{2}$

$$
\left(\bar{v}\left\langle\cos \theta\left(t_{1}\right)\right\rangle, \bar{v}\left\langle\sin \theta\left(t_{1}\right)\right\rangle\right)=0 \quad \Rightarrow \quad v_{d}=0
$$

while for a swimmer with chemotactic strategy in the presence of a gradient, generally,

$$
\left(\left\langle v(t) \cos \theta\left(t_{1}\right)\right\rangle,\left\langle v(t) \sin \theta\left(t_{1}\right)\right\rangle\right) \neq 0 \quad \Rightarrow \quad v_{d}=\kappa \nabla c(\mathbf{x})
$$

Another quantity of interest is the swimmer effective diffusivity, which is related to MSD through the fluctuation-dissipation relation [1,14]. Therefore, to get the MSD, one need to square and eliminate the fast variables (averaging
over the fast variables) in the effective Langevin equation (3.43):

$$
\begin{align*}
\left\langle\triangle L^{2}(t)\right\rangle & =\left\langle\triangle x^{2}(t)\right\rangle+\left\langle\Delta y^{2}(t)\right\rangle \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left(\kappa \nabla c\left(\mathbf{x}\left(t_{1}\right)\right)+\boldsymbol{\xi}_{\text {eff }}\right) \cdot\left(\kappa \nabla c\left(\mathbf{x}\left(t_{2}\right)\right)+\boldsymbol{\xi}_{\text {eff }}\right) \\
& =\left(4 D+\left|\boldsymbol{\xi}_{\text {new }}\right|^{2}\right) t+\kappa^{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \nabla c\left(\mathbf{x}\left(t_{1}\right)\right) \cdot \nabla c\left(\mathbf{x}\left(t_{2}\right)\right) \tag{4.9}
\end{align*}
$$

Lets analyze the dynamics for a simple swimmer environmental condition (with constant response function, $K(t)=$ constant).

Homogeneous (constant) concentration profile

$$
c(\mathbf{x}, t)=c^{0}
$$

From the expression of mean rotational coefficient (??), it simplifies to

$$
\begin{equation*}
\left\langle D_{r}(t)\right\rangle=D_{1}+\left(D_{2}-D_{1}\right)\left(\bar{P}_{1}+P_{1}^{(0)}(t) c^{0}\right) \tag{4.10}
\end{equation*}
$$

while the mean squared angular deviation (MSAD)

$$
\begin{equation*}
\left\langle\triangle \theta^{2}(t)\right\rangle=D_{1} t+\left(D_{2}-D_{1}\right) \int_{0}^{t} d t_{1}\left(\bar{P}_{1}+P_{1}^{(0)}\left(t_{1}\right) c^{0}\right) \tag{4.11}
\end{equation*}
$$

with limiting behaviours

$$
\left\langle\triangle \theta^{2}(t)\right\rangle \approx \begin{cases}\left(D_{1}+D_{2}\right) t-\left(\frac{\lambda D_{1}+\mu_{0} D_{2}}{\lambda+\mu_{0}}\right) & t \gg 1 / \mu_{0}, 1 / \lambda \tag{4.12}\\ 2 D_{1} t+\left(\lambda D_{1}-\mu_{0} D_{2}\right) t^{2} & t \ll 1 / \mu_{0}, 1 / \lambda\end{cases}
$$

and the mean squared displacement (MSD)

$$
\begin{align*}
\left\langle\Delta L^{2}(t)\right\rangle & =\left\langle\Delta x^{2}(t)\right\rangle+\left\langle\Delta y^{2}(t)\right\rangle \\
& =\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left(\kappa \nabla c\left(\mathbf{x}\left(t_{1}\right)\right)+\boldsymbol{\xi}_{\text {eff }}\right) \cdot\left(\kappa \nabla c\left(\mathbf{x}\left(t_{2}\right)\right)+\boldsymbol{\xi}_{\text {eff }}\right) \\
& =4 D t+\left|\boldsymbol{\xi}_{\text {new }}\right|^{2} t+\kappa^{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \nabla c\left(\mathbf{x}\left(t_{1}\right)\right) \cdot \nabla c\left(\mathbf{x}\left(t_{2}\right)\right) \tag{4.13}
\end{align*}
$$

which simplifies to

$$
\begin{equation*}
\triangle L^{2}(t)=4 D t \tag{4.14}
\end{equation*}
$$

since $\left|\boldsymbol{\xi}_{\text {new }}\right|^{2}$ is a function $c_{i j}^{2}$ - second derivative of the concentration field.

Appendix II

Unit Director Auto-correlation Function

For a Gaussian noise $\beta(t)$, the distribution functional is [17]

$$
\begin{equation*}
P[\beta(t)]=\frac{1}{Z} \exp \left(-\int d t^{\prime} \frac{\beta^{2}\left(t^{\prime}\right)}{4}\right) \tag{4.15}
\end{equation*}
$$

$$
\begin{equation*}
\text { with } Z=\int \mathcal{D} \beta\left(t^{\prime}\right) \exp \left(-\int d t^{\prime} \frac{\beta^{2}\left(t^{\prime}\right)}{4}\right) \quad \text { and } \mathcal{D} \beta(t) \equiv \prod_{t} d \beta(t) \tag{4.16}
\end{equation*}
$$

The unit director autocorrelation function $\left\langle\hat{\mathbf{n}}\left(t_{1}\right) \cdot \hat{\mathbf{n}}\left(t_{2}\right)\right\rangle$ goes

$$
\begin{aligned}
\left\langle\hat{\mathbf{n}}\left(t_{1}\right) \cdot \hat{\mathbf{n}}\left(t_{2}\right)\right\rangle & =\int \frac{\mathcal{D} \beta\left(t^{\prime}\right)}{Z} \exp \left[-\int d t^{\prime} \frac{\beta\left(t^{\prime}\right)^{2}}{4} \mp i \int_{t_{1}}^{t_{2}} d t^{\prime} \sqrt{D_{r}\left(t^{\prime}\right)} \beta\left(t^{\prime}\right)\right] \\
& =\int \frac{\mathcal{D} \beta\left(t^{\prime}\right)}{Z} \exp \left[-\int_{t_{1}}^{t_{2}} d t^{\prime}\left(\frac{\beta\left(t^{\prime}\right)^{2}}{4} \pm i \sqrt{D_{r}\left(t^{\prime}\right)} \beta\left(t^{\prime}\right)\right)\right]
\end{aligned}
$$

completing the square:

$$
\begin{aligned}
\left\langle\hat{\mathbf{n}}\left(t_{1}\right) \cdot \hat{\mathbf{n}}\left(t_{2}\right)\right\rangle & =\int \frac{\mathcal{D} \beta\left(t^{\prime}\right)}{Z} \exp \left(-\int_{t_{1}}^{t_{2}} d t^{\prime} \frac{\beta\left(t^{\prime}\right)^{2} \pm i 4 \sqrt{D_{r}\left(t^{\prime}\right)} \beta\left(t^{\prime}\right)}{4}\right) \\
& =\int \frac{\mathcal{D} \beta\left(t^{\prime}\right)}{Z} \exp \left[-\int_{t_{1}}^{t_{2}} d t^{\prime}\left(\frac{\left(\beta\left(t^{\prime}\right) \pm i 2 \sqrt{D_{r}\left(t^{\prime}\right)}\right)^{2}}{4}+D_{r}\left(t^{\prime}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\hat{\mathbf{n}}\left(t_{1}\right) \cdot \hat{\mathbf{n}}\left(t_{2}\right)\right\rangle & =e^{-\int_{t_{1}}^{t_{2}} d t^{\prime} D_{r}\left(t^{\prime}\right)} \int \frac{\mathcal{D} \beta\left(t^{\prime}\right)}{Z} \exp \left(-\int_{t_{1}}^{t_{2}} d t^{\prime} \frac{\left(\beta\left(t^{\prime}\right) \pm i 2 D_{r}\left(t^{\prime}\right)\right)^{2}}{4}\right) \\
& =\exp \left(-\int_{t_{1}}^{t_{2}} d t^{\prime} D_{r}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\langle e^{ \pm i \int_{t_{1}}^{t_{2}} d t^{\prime} \beta\left(t^{\prime}\right)}\right\rangle=e^{-\int_{t_{1}}^{t_{2}} d t^{\prime} D_{r}\left(t^{\prime}\right)} \tag{4.17}
\end{equation*}
$$

Bibliography

[1] H. Berg, E-coli in motion. Springer, 2004.
[2] Eisenbach, Chemotaxis. Imperial College Press, 2004.
[3] J. Adler et al, "Chemotaxis in bacteria," Science, 1966.
[4] E. M. Purcell, "Life at low reynolds number," American Journal of Physics, 1976.
[5] J. E. Segall et al, "Temporal comparisons in bacterial chemotaxis," PNAS, 1986.
[6] S. E. Lyshevski, Nano- and Microelectromechanical systems. CRC Press, 2001.
[7] A. Najafi, "Hydrodynamics of a microswimmer: A chemotactic scenario," Physical Review E, 2011.
[8] R. Golestanian and T. Liverpool, "Designing phoretic micro- and nanoswimmers," New Journal of Physics, 2007.
[9] Celani and Vergassola, "Bacterial strategies for chemotactic response," PNAS, 2009.
[10] S. Ebbens et al, "Self-assembled autonomous runners and tumblers," Physical Review E, 2010.
[11] Gardiner, Handbook of stochastic methods. Springer, 1997.
[12] M. Scott, Applied stochastic process. ICP, 2011.
[13] N. G. Van Kanmpen, Stochastic Proecesses in Physics and Chemistry. Elsevier Science and Technology Books, 2007.
[14] H. Berg, Random Walks in Biology. Princeton University Press, 1993.
[15] F. W. Dahlquist, R. A. Elwell, and P. S. Lovely, "Studies of bacterial chemotaxis in defined concentration gradients. a model for chemotaxis toward l-serine," Journal of Supramolecular Structure, 1976.
[16] J. T. Locsei, "Persistence in direction increases the drift velocity of run and tumble chemotaxis," Journal of Mathematical Biology, 2007.
[17] Risken, The Fokker-Planck Equation. Springer, 1989.
[18] D. Chakraborty, "Velocity autocorrelation function of a brownian particle," ArXiv e-prints, oct 2011.

