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ABSTRACT

Density functional theory (DFT) is a useful theoretical and computational tool for elec-
tronic structure calculations, which form the basis for the classification of materials into
conductors, semiconductors or insulators. DFT started with a crude approximation by
Thomas and Fermi (TF theory) which calculated the kinetic energy of electrons using the
so-called local density approximation (LDA). Although TF is computationally inexpensive,
it provides a poor numerical result due to a lack of understanding of the density dependence
of the kinetic energy. Another approximation to the kinetic energy is the von-Weizsacker
(vW) term, which greatly improves the TF theory, yet the full functional form of the kinetic
energy remains unknown. We seek to develop a supplemental term to the kinetic energy
density functional and compute corrections to the Thomas-Fermi-von-Weizsacker kinetic
energy of closed shell atoms in order to improve its accuracy.
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CHAPTER 1

Introduction

The quantum mechanics of many-electron systems which have descriptions from time-
dependent and time-independent Schrödinger and Liouville equations, is to a good ap-
proximation ostensibly a well-understood subject. The Schrödinger equations present the
theoretical bases for the description of both the time evolution and pure stationary states
properties of atoms and molecules. In treating some quantum mechanical systems such as
biological molecules and liquids where the individuality of molecules ceases to exist, rather
collective effects becomes predominant, it is immaterial to talk of pure states but paramount
to consider ensemble of states describable with time-dependent and time-independent Li-
ouville equations in lieu of Schrödinger equations.

However, in each case of pure states and ensemble of non-trivial many-electron systems,
the equations involved are not without complicated and complex mathematical parame-
ters with little or no analytical or numerical solutions. In other words, systems containing
thousands of electrons and hundred of nuclei are computationally demanding and, in fact,
the problem is such that even if supercomputers were to be improved by several orders of
magnitude, both in speed and memory, it would still be difficult, if not impossible, to obtain
sufficiently accurate solutions to these equations [13].

Although, non-relativistic Hamiltonian operators for systems interacting Coulombically can
be written explicitly for these equations, understanding a priori, the subtleties of the many-
body behavior that ensues from these interactions remains a challenge. Thus, this calls
for the formulation of a rigorous quantum mechanical approach entirely equivalent to the
Schrödinger or Liouville equations which certainly opened ways for important developments
in atomic, molecular and condensed matter physics as well as in quantum chemistry, particu-
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larly, to avoid the particle-number dependency. This particle number dependence, perhaps,
had made it impossible to solve the equations for extended and realistic systems. Avoid-
ing particle-number dependence is a keystone behind the formulation of what has been
generically called “density functional theory (DFT)”.

1.1 What is Density Functional Theory (DFT)?

To better understand the properties of materials, and to classify materials so that they can
find application(s) in different spheres of life, one needs to calculate among other properties
the electronic ground state structure of the material. From an electronic structure calcu-
lations (e.g., band structure calculation), one can classify a material into a conductor, a
semiconductor or an insulator.

There are variety of, but not too many variant approaches, approximations, or principles
to these calculations, depending on the system. These include; starting form idealized one-
electron Schrödinger problem to many-electron problems and then, to real systems; many
approximations, principles and theories such as perturbation theory, variational method,
the Born-Oppenheimer approximation, the Hartree-Fork method, density functional the-
ory; not forgetting the symmetry requirements that employ Pauli’s exclusion principle and
the Slater determinant for non-interacting fermions, etc.

Among these approaches, Density Functional theory has been held to high esteem as a
linchpin of electronic structure calculation in solid state physics[1], and has made an un-
paralleled impact on the applications of quantum chemistry which include understanding
of electron transport in solar energy materials[2]. This, perhaps, is because analytical so-
lutions of the Schrödinger equations hold for only few simple systems, and numerical exact
solutions can be obtained for a small number of atoms and molecules. Again, the recent
progress in the calculation of the electronic structure of atoms, molecules and solids has
emphasized, mayhap, how far we are from the objective of being able to predict the physi-
cal properties of many-electron systems reliably and with less excessive computation which
DFT presents[3]. Thus, density functional theory is somewhat a completely different but
formally rigorous way of approaching any interacting problem, by mapping it exactly to
a much easier-to-solve non-interacting problem that is more computationally efficient than
Hartree-Fock; though it has its own problems but, in a nutshell,

Definition 1.1.1. DFT is a formalism or a way of simplifying the many-body (particle)
problem by working with the electronic charge density as fundamental variable rather than
the wave function and trying to find a direct relation between this density and the energy of
the system.
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1.2 Why DFT?

The reasons why, at present, density functional theory has become such an attractive theory
are really quite clear.
1. It provides reformulation in terms of the one-particle density, a unique and fundamental
quantity which depends only upon three spatial and one spin variables, regardless of the
number of particles of the physical system which it seeks to describe.
2. The one-particle density is an observable and a three-dimensional quantity that can be
measured experimentally which theorists believe will elucidate the conceptualization of the
properties of materials such as the nature of the chemical bond[4].
3. There is much to be gained in terms of the simplifications that such a reformulation
could bring in the numerical handling of quantum mechanical problems.
4. It furnishes interpretative tools which enable researchers to grasp the essential features
of physical systems; preferable, to have a vivid picture of the behavior of the wave func-
tions, a simple description of the essence of the factors which determine cohesion, and an
understanding of the origins in the variations in the properties from metal to metal.
5. The complications and cost associated with orbital manipulations, including orbital or-
thonormalization and localization are avoided
6. Particle number dependence of the wave function is avoided
7. DFT has many application in Chemistry and in physics such as calculating the binding
energy of molecules in chemistry the band structure of solids in physics.

1.3 Uses of DFT

1. Electronic structure calculation for band-gap, density of states (DOS), and material
classification.
2. Determination of the mechanical properties of a material, e.g toughness, bulk modulus
3. In Chemistry: to predict molecular properties (molecular structure, lattice constant, etc)
4. In the search for new materials with exceptional and novel properties
5. For molecular dynamics simulation, etc.

1.4 Focus of the Work

Our target in this work is to study the existing kinetic energy density functional of Thomas-
Fermi and von-Weizsäcker which has not given exact numerical or analytical solution for
systems with more than two electrons. We will compute corrections for the kinetic energy of
some closed shell atoms under the restricted Hartree-Fock scheme, and develop correction
terms for the kinetic energy functional that depend on the electron density and its gradient.
Our anticipation is that the correction will be useful for any system ofN -electrons.
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1.5 The Background: The Schrödinger Equation

DFT has been in application, historically. The idea as mentioned earlier is to regard the
total particle density as the fundamental quantity from which properties of a system can
be calculated (determined). So, we here capture some fundamental concepts with some
theoretical framework based on Time Independent Schrödinger Equation (TISE). We will
maintain natural units (Hartree atomic unit).

1.5.1 One Particle TISE

Our interest is to develop a correction term for the kinetic energy density functional
(KEDF) of many electron closed shell systems. A good point to start is the TISE for
a single particle in an external potential v(~r):

Ĥψ(~r) = Eψ(~r) (1.1)

where,

Ĥ = −1

2
∇2 + v(~r) (1.2)

Eq.(1.1) is an eigenvalue equation for the energy operator Ĥ and defines all possible states
of a system, ψ(~r) and their energies (eigenvalues), E. However, when there are disturbance
in the system such that the Hamiltonian differs from the ground state Hamiltonian,Ĥo,
some form of approximations (perturbation and variational theories) are employed to seek
for the ground state properties of the system (Note: we are interested in the ground state
properties because that is where the true properties of a system can be explored):

Ĥ = Ĥo + λĤ ′

Ĥ is the total Hamiltonian, Ĥo is the Hamiltonian for the undisturbed system and Ĥ ′ is the
Hamiltonian resulting from disturbance. λ is a non-negative fictitious small number ≤ 1[18].

Perturbation Theory is a systematic procedure of obtaining approximate solutions to
the perturbed problem by building on the known solution of the unperturbed case[19] and
is employed when we are able to solve exactly the TISE for the unperturbed case:

Ĥoψon = Eo
nψ

o
n

Variational theory states that the expectation value of the energy operator determined
from any trial function Ψtrial obeying the same boundary condition as the correct wave
function of the system cannot be lower than the exact ground state energy Eo or Egs of the
system[18] ∫

Ψ∗trial(~r)ĤΨtrial(~r)d
3~r∫

Ψ∗trial(~r)Ψtrial(~r)d3~r
≥ Egs (1.3)
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The method is employed when we are unable to solve exactly the TISE for the unperturbed
case of the the system and therefore are looking for approximate solution.

1.5.2 System of Several Particles

The Hamiltonian operator for N many-particle system with zero order approximation (turn
off electron-electron interaction) is:

Ĥ = −
N∑
i=1

1

2
∇2
i + V (~ri · · ·~rN) (1.4)

The wave function is a very complicated function of the coordinates of the particles and
is given in what is known as orbital approximation[20]. In orbital approximation, the
first reasonable approximation to the exact wave functions is obtained by thinking of each
particle as occupying its ”own” orbital, i.e as a pure state describable by a wave function
then, the wave function of the ensemble or mixed state as the product of single particle
wave function:

Ψ(~r) = Ψ(~r1, ~r2, · · · , ~rN) = φ(~r1)φ(~r2) · · ·φ(~rN) (1.5)

If all the particles are of the same kind then Ψ(~r) must satisfy some special symmetry
properties since the expectation value of any operator, Ô

Ô =

∫
Ψ∗(~r1, · · · , ~rN)ÔΨ(~r1, · · · , ~rN)d3~r1 · · · d3~rN (1.6)

of a particular observable of a system must be invariant under the interchange of any two
identical particle’s coordinates, ~rj and ~rk

Ô =

∫
Ψ∗(~r1, · · · , ~rj, · · · , ~rk, · · · )ÔΨ(~r1, · · · , ~rj · · ·~rk · · · )d3~r1 · · · d3~rj · · ·~rk · · ·

=

∫
Ψ∗(~r1, · · · , ~rk, · · · , ~rj, · · · )ÔΨ(~r1, · · · , ~rk · · ·~rj · · · )d3~r1 · · · d3~rk · · ·~rj · · · (1.7)

This is true on the condition that the probability of finding a particle irrespective of inter-
change of coordinates remains the same:

Ψ∗(~rj, ~rk)Ψ(~rj, ~rk) = Ψ∗(~rk, ~rj)Ψ(~rk, ~rj) =⇒ |Ψ(~rj, ~rk)|2 = |Ψ(~rk, ~rj)|2 (1.8)

The necessary requirements for eqs (1.7) and (1.8) is

Ψ(~rj, ~rk) = ±Ψ(~rk, ~rj)

1. Ψ(~rj, ~rk) = +Ψ(~rk, ~rj) =⇒ symmetric and this is satisfied by bosons, and
2. Ψ(~rj, ~rk) = −Ψ(~rk, ~rj) =⇒ antisymmetric and it is satisfied by fermions (e.g. electrons)
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In the case of just two particles, the two particle wave function Ψ(~x1, ~x2) formed by taking
product of single orbital wave function of the individual particles is:

ΨHP (~x1, ~x2) = φa(~x1)φb(~x2)

Here, ~x consists of the spatial coordinate ~r and the spin coordinate s. So that φi(~x) =
φi(~r, s); i = a, b. But if the particle are electrons of the same spin, the antisymmetric
requirement is not satisfied since Ψ(~x1, ~x2) 6= −Ψ(~x2, ~x1). However, a two-electron orbital
wave function that satisfies the antisymmetric condition can be formed by adding a second
term that is negative of the first term with the coordinates labels interchanged[18].

Ψ(~x1, ~x2) =
1√
2

[φa(~x1)φb(~x2)− φa(~x2)φb(~x1)] (1.9)

The factor 1√
2

is to ensure normalization. We observe that Ψ(~x1, ~x2) = −Ψ(~x2, ~x1) and if the

spin orbitals φa(~x1) and φb(~x2) are the same, that is, if a = b then, Ψ(~x1, ~x2) = 0 ∀ ~x1, ~x2.
In this way, the Pauli exclusion principle (PEP) that no two electrons can occupy the same
spin-orbital is obeyed. A general way of forming an antisymmetric wave function from N
non-interacting system of electrons is given by Slater determinant:

Ψ(~x1, ~x2, · · · , ~xN) ≈ ΦSD =
1√
N !

∥∥∥∥∥∥∥∥∥
φ1(~x1) φ2(~x1) · · ·φN(~x1)
φ1(~x2) φ2(x2) · · ·φN(~x2)

...
...

...
φ1(~xN) φ2(~xN) · · ·φN(~xN)

∥∥∥∥∥∥∥∥∥ (1.10)

1.5.3 A Real System and The Born-Oppenheimer Approximation

In the many-electrons system considered, we neglected the repulsive interactions between
the electrons. However, this is an idealization because, it is not true for most practical
real systems. In real systems with very few exceptions, the particles interact. So, the
Hamiltonian has more terms in it than in the idealized case, and the wave function is
more complicated than what we have seen in a system of non-interacting electrons. The
wave function of the k-th state of a real system which depends on 3N spatial coordinates
{~rk}, and N spin coordinates {sk} of the electrons; denoted by {~xk} and the 3M spatial

coordinates {~Rk} of the nuclei is:

Ψk(~x, ~R) = Ψk(~x1, ~x2, · · · , ~xN , ~R1, ~R2, · · · , ~RM) (1.11)

Then, the TISE for the system is:

Ĥ(~r, ~R)Ψk(~x, ~R) = EkΨk(~x, ~R) (1.12)
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Ĥ(~r, ~R) is the Hamiltonian operator for a real system consisting of M nuclei and N electrons
and it represents the total energy of the system[16]:

Ĥ(~r, ~R) =
N∑
i=1

−1

2
∇2
i︸ ︷︷ ︸

T̂ele(~r)

−
M∑
A=1

1

2MA

∇2
A︸ ︷︷ ︸

T̂nuc(~R)

−
N,M∑
i,A=1

ZA
riA︸ ︷︷ ︸

V̂ele,nuc(~r, ~R)

+
N∑

i=1,j>i

1

rij︸ ︷︷ ︸
V̂ele,ele(~r)

+
M∑

A=1,B>A

ZAZB
RAB︸ ︷︷ ︸

V̂nuc,nuc(~R)

(1.13)

i and j run over the N electrons, whereas A and B run over the M nuclei. T̂elec and T̂nuc are
the kinetic energy operators of the electrons and the nuclei respectively. MA is the mass of
nucleus A. Vele,ele, Vele,nuc and Vnuc,nuc are the electron-electron repulsive, electron-nuclear
electrostatic attractive and nuclear-nuclear repulsive interaction potential operators respec-
tively. rij = |~ri − ~rj| is the distance between electrons i and j; RAB = |~RA − ~RB| is the

distance between nuclei A and B, and riA = |~ri − ~RA| is the distance between electron i
and nucleus A.

In an exact quantum mechanical treatment of a real system, TISE has to be solved for
M -nuclei and N -electrons, but this is practically not feasible. However, the problem is as-
suaged by the adoption of a number of approximations. The first approximation to solving
the problem is the Born-Oppenheimer approximation (B-OA) also called Clamped-Nuclei
approximation.

Born and Oppenheimer assumed that since the nuclei are much more massive than
the electrons, the motion of the electrons are rapid compared with the motion of the nuclei.
Thus, the nuclei can be assumed to be clamped at fixed inter-nuclear distances RAB. Hence,
the electrons are in motion in the field of the nuclei whereas the nuclei are in motion in the
electronic potential surfaced as Etot[18, 20].
With the B-OA, the kinetic energy of the nuclei is zero and the nuclear-nuclear repulsive
potential energy can be treated as constant for a fixed configuration of the nuclei. This
is because any constant added to an operator only adds to the operators eigenvalue and
has no effect on the operator eigenfunction. Thus, eq.(1.13) reduces to just the electronic
Hamiltonian:

Ĥ(~r, ~R) =
N∑
i=1

−1

2
∇2
i︸ ︷︷ ︸

T̂ele(~r)

−
N,M∑
i,A=1

ZA
riA︸ ︷︷ ︸

V̂ele,nuc(~r, ~R)

+
N∑

i=1,j>i

1

rij︸ ︷︷ ︸
V̂ele,ele(~r)

(1.14)

The TISE for the electronic motions is now given by:

ĤeleΨele(~r, ~R) = EeleΨele(~r, ~R) (1.15)

Ψele(~r, ~R) describes the motion of the electrons and depends explicitly on the electronic

coordinates {~ri} and parametrically on the nuclear coordinates {~RA}[17]. Parametric de-
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pendence means that for different arrangement of the nuclei, Ψele is a different function of
the electronic coordinate. Although, we did not mention spin which implies we have been
dealing on only spatial coordinate, the Ψele depends on the spin-orbital coordinate. To
fully describe the wave function, we will employ the choice of Slater determinant discussed
earlier.
The energy from the potential of the nuclear-nuclear interaction of clamped nuclei is:

Enuc =
M∑
A=1

M∑
B>A

ZAZB
|RA −RB|

(1.16)

Thus, the approximated total energy of a real system of electrons is:

Etot = Eelec + Enuc (1.17)

Through B-OA, the electronic Hamiltonian is successfully separated from the nuclear Hamil-
tonian and the wave function is also separated for every fixed value of R as:

Ψ(~r, ~R) = Φ(~r)Ψ(~R)

The quantity of interest is contained in the electronic Hamiltonian therefore, we will focus
on eq.(1.15) and detach the subscript “ele”.

Although, it appears very simple the resulting equation is not a soft nut to chew.

ĤΦ(~r) = EΦ(~r) (1.18)

Its exact solution even for the simplest molecules with two nuclei and an electron remains
to the present day a major challenge. So, the quoted words of Paul-Dirac, 1929 as contained
in Von[21] remains the same

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble.

Its difficulties lie in the electron-electron interaction term 1
rij

which leads to particle (elec-

tron) number dependence of the wave function and difficulty in writing the wave function
of the ensemble and 3N or 4N degrees of freedom of the electrons. As a result, these have
called for many approximate methods and theories of solutions

8



1.6 The Hartree-Fock Approximation

It is hopeless to anticipate an analytical or numerical solution of eq.(1.18) whose Hamilto-
nian is eq.(1.14) with such a complicated potential energy terms, however, if an effective
potential Veff (~r) can be found for such potential energy term such that a single particle
wave function Φi(~x) that satisfies one particle-like TISE:[

− 1

2
∇2 + Veff (~r)

]
Φi(~x) = εiΦi(~x) (1.19)

is obtained then, computational techniques can be applied to give detailed and reliable
numerical result. This is the essence of the Hartree-Fock (HF) approximation. It replaces
the complicated many-electron problem by a one-electron problem[17]. This is achieved by
reducing the many-electron Hamiltonian to a single-electron Hamiltonian with an effective
potential:

Veff (~r)φi(~r) =

∫
n(~r′)φi(~r)

|~r − ~r′|
d3~r′︸ ︷︷ ︸

Coulomb repulsion

−
∫
n(~r, ~r′)φi(~r

′)

|~r − ~r′|
d3~r′︸ ︷︷ ︸

exchange

−
M∑
A=1

ZAφi(~r)

|~r − ~RA|︸ ︷︷ ︸
external term

(1.20)

The Coulomb repulsion is the electrostatic interaction between two electrons at points ~r and
~r′, which manifests in the effective potential through 1

|~r−~r′| and prevents the two electrons
from coming too close to each other. The exchange has no classical analogue. It is in no way
connected to the charge of the electrons, but it is a direct consequence of Pauli’s exclusion
principle[16] which the Slater determinant that defined the Hartree-Fock product of single
particle wave function is satisfies.

Recall that if there are no electron-electron interaction (zero order approximation) in
the system, eq.(1.20) reduces to a single particle problem with

Veff (~r) = Vext(~r) =
M∑
A=1

−ZA
|~r − ~RA|

(1.21)

To obtain a one-particle wave function that satisfy eq.(1.19), D. R. Hartree made an ap-
proximation for the wave function by taking the product of N one-electron orbital wave
functions

Φ(~r1, ~r2, · · · , ~rN) −→ φ1(~rN) · · ·φN(~rN)

while V. Fock modified the product by introducing the anti-symmetrization property. The
antisymmetric product is the HF approximation and it is given by the Slater determinant
of eq.(1.10). The choice of Slater determinant guaranteed that Pauli’s Exclusion Principle
(PEP) is obeyed. Eq.(1.19) is the HF equation. So, the HF approximation consists of
approximating the N -electron orbitals by an antisymmetric product of N one-electron wave
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function Φi(~x) composed of the spin coordinate functions1σ(s) and the spatial coordinate
functions φi(~r) The optimal trial wave function is the one that minimizes the Hartree-Fock
energy according to the variational method

EHF = min{Φi}Ni=1

〈
Φtrial(~x)|[−1

2
∇2 + Veff (~r)]|Φtrial(~x)

〉
〈Φtrial(~x)|Φtrial(~x)〉

≥ EGS (1.22)

{Φi}Ni=1 is a set of single particle orbitals. Full minimization of the functional EHF with
respect to all allowed N-electrons wave functions will give the true ground state Φ0 and
energy EHF (Φ0) = EGS. EGS is the true ground state energy.

It necessary to note that the single-determinant description from the Slater determinant
for orbits of many-electron is an approximation and can never give the exact energy for
the many-electrons system. For higher accuracy in the energy calculations, the exact wave
function for a system of many interacting electrons is never a single-determinant or a sim-
ple combination of a few determinants. Owing to variational principle, EHF is necessarily
always larger than the exact ground state energy EGS. The difference between these two
energies is called correlation energy EHF

c :

EHF
c = EGS − EHF ≥ 0 (1.23)

EHF
c is a negative quantity since EGS < 0 and EHF < 0, therefore, |EGS| > |EHF |. Thus,

EHF
c is a measure for the error introduced through the HF scheme. Electron correlation

is actively caused by instantaneous repulsion of the electrons, which is not covered by the
effective HF potential.

The HF method is also called the self consistent field (scf) method. It involves solving
the HF equation by assuming a trial wave function then, the new solution obtained (wave
function) becomes the new trial wave function, and the iteration is continued that way until
the subsequent iterations produce consistent result with the previous ones.

Expansion of eq.(1.19) for some basis functions, gives the HF energy terms as:

Kinetic energy term ≡
∫
φ∗p(~r)

−1

2
∇2φq(~r)d~r (1.24)

Electron-Nuclear attraction term ≡
∫
φ∗p(~r1)

1

r1A

φq(~r1)d~r1 (1.25)

e− − e−repulsive energy term ≡
∫ ∫

φ∗p(~r1)φq(~r1)
1

r12

φa(~r2)φ∗b(~r2)d~r1d~r2 (1.26)

1The spin function denoted by σ(s) is either α(s) or β(s)
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The Hartree-Fock energy EHF 6= EGS. Its calculation is computer intensive. Density
Functional Theory (DFT) is a computational technique employed for solving these equations
in order to determine the electronic properties of any system and EGS an the expense of
Hartree-Fock. There are two theorems which establishes DFT.

1.7 Hohenberg-Kohn Theorems

Theorem 1.7.1 (The first Hohenberg-Kohn theorem). The external potential ν(~r) is (to
within a constant) a unique functional of the ground state electron density n(~r); since, in
turn, ν(~r) fixes Ĥ we see that the complete many-body ground state is a unique functional
of the density n(~r)[22]

The theorem is just saying that for an isolated many-electron system, its ground-state one-
electron density n(~r) uniquely determines the external potential, and in turn, the density
is a functional of the external potential. Thus, the external potential and the density are
in a one-to-one relation[13, 14, 15, 16]: n(~r)⇐⇒ ν(~r)

To prove this theorem, we consider two systems each of N -electrons at the ground state2.
Suppose there were two external potentials ν(~r) and ν ′(~r) not restricted to Coulomb po-
tentials, and that differ not only by a constant. From the two external potential, there are
two Hamiltonians Ĥ = T +Vee +Ven and Ĥ ′ = T +Vee +V ′en corresponding to two different
ground state eigenfunctions Ψ with energy E and Ψ′ with energy E ′[15, 16, 22]. Hohenberg-
Kohn assumed that the different potentials will give different Hamiltonians with different
ground state properties but the same ground state electron density, i.e, n(~r) = n′(~r). This
proof uses variational principle therefore, if we take Ψ to be a trial wave function for Ĥ ′

then,

E ′ <
〈

Ψ|Ĥ ′|Ψ
〉

=
〈

Ψ|Ĥ + Ĥ ′ − Ĥ|Ψ
〉

= E + 〈Ψ|ν ′(~r)− ν(~r)|Ψ〉

=⇒ E ′ = E +

∫
n(~r)[ν ′(~r)− ν(~r)]d3~r (1.27)

also taking Ψ′ as a trial wave function for Ĥ , we obtain

E <
〈

Ψ′|Ĥ|Ψ′
〉

=
〈

Ψ′|Ĥ ′ + Ĥ − Ĥ ′|Ψ
〉

= E ′ + 〈Ψ|ν(~r − ν ′(~r))|Ψ〉

=⇒ E = E ′ −
∫
n(~r)[ν ′(~r)− ν(~r)]d3~r (1.28)

2So that their kinetic energy T and electron-electron potential Vee(~r) are equal
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By adding eqs (1.27) and (1.28) we have:

E ′ + E < E + E ′ or 0 < 0

which is a contradiction. This implies that there are no two different external potential that
can give the same ground state electron density.

Theorem 1.7.2 (The second Hohenberg-Kohn theorem). The energy Eν [n] of any v-
representable trial density n(~r) places an upper bound to the ground state energy Eν [no],
i.e,

Eν [n] ≥ Eν [no] (1.29)

The theorem uses variational principle under the constraints that for some external poten-
tial, the trial density satisfy these conditions

• n(~r) ≥ 0

•
∫
n(~r)d3~r = N

•
∫
|∇n 1

2 (~r)|2d3~r <∞

Therefore, the theorem is put as: for any trial density n(~r) which satisfies the conditions
that n(~r) ≥ 0,

∫
n(~r)d3~r = N and is associated with some external potential νext(~r), the

energy obtained from the functional E[n] = FHK [n] + Ven[n] places an upper bound to the
ground state energy EGS, but equals EGS if the true ground state density is the trial[14, 16].
Where FHK [n] = T [n] + Vee[n] is the Hohenberg-Kohn universal energy functional.

1.7.1 Represent-ability of Density

Represent-ability of density is the restriction for density to be eligible in variational principle

Definition 1.7.3. V -represent-ability: an electron density is v-representable if it stems
from an antisymmetric ground-state wave function and its Hamiltonian is associated with
some external potential ν(~r) other than the electron-nuclear potential.

Definition 1.7.4. N-represent-ability: an electron density is N-representable if it is the
density obtained from some antisymmetric wave function.

Thus, for a given density to be able to determine all the ground state properties of a system,
it must be v-representable. Therefore, since the wave function determines the density and
vice versa, it implies that the density and the wave function are in a one-to-one relationship.
Hence, the first theorem can be restated as:

12



Theorem 1.7.5. First Hohenberg-Kohn theorem: There is a one-to-one mapping between
ground-state wave functions and v-representable electron densities. It is through this unique
mapping that a v-representable density determines the properties of its associated ground-
state.

A direct consequence of the former theorem is that if all ground-state properties are func-
tionals of the electron density, then these functionals are defined only for v-representable
densities. Unfortunately, the conditions for a density to be v- representable are not yet
completely known, since there are densities in single particle systems that do not come
from the ground state wave function of any Vext(~r)[6, 23]

Fortunately, Density Functional Theory can be formulated in a way that only requires
the density both in functionals and in variational principle to satisfy the N-represent-ability
condition 3. It was shown by Gilbert[24] that any reasonable electron density satisfying the
three conditions given under theorem (1.7.2) is N-representable

3The N-represent-ability condition is weaker condition
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CHAPTER 2

Basic Tools

2.1 Density Approximations

2.1.1 Uniform Electron Gas (UEG) Model

Definition 2.1.1. Uniform electron gas (UEG) or Homogeneous electron gas (HEG) is a
system in which electrons are smeared out like a jelly (rather than being point charge) on a
positive background charges distributed such that the whole ensemble is electrically neutral.
The number of electrons N and the volume V containing them are considered to tend to
infinity while the density n(~r) = N

V
remains finite and constant.

The model is a good physical model for simple metals such as Sodium consisting of a perfect
crystal of valence electrons and positive cores where the cores is smeared out to arrive at a
uniform positive background charges. On the other hand, the model is far from reality for
atoms and molecules which are usually characterized by rapid varying densities[12].

2.1.2 Local Density Approximation (LDA)

Definition 2.1.2. LDA is an approximation on the electron density at each point in space,
in which the electron density is treated locally as uniform. It implies ignoring the inhomo-
geneity of the electron density.

Local density approximation employs the kinetic energy density calculated for a homoge-
neous electron gas of non-interacting electrons as a functional dependence of the electron
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density[25]. This over simplified model is justified for systems whose density changes slowly
with ~r. Despite its simplicity LDA can give good results for a great number of systems.

2.1.3 Gradient Expansion Approximation (GEA)

Definition 2.1.3. Gradient expansions is a systematic corrections to LDA for electron
densities that vary slowly over space.

The von-Weizsäcker functional plus the Thomas-Fermi functional (vide infra) or simply
the second-oder gradient expansion approximation (GEA2) has been in application for
estimating the total kinetic energy of atom and molecules with densities obtainable from
accurate methods like the Hartree-Fock method[26]. GEA is thus, the simplest improvement
that can be done to LDA in order to account for the inhomogeneities of atomic and molecular
electron densities by adding to the LDA potential corrections that depend on the local
gradient of the electron density.

2.2 Thomas-Fermi Theory

The Thomas-Fermi model uses the electron density as the only physical quantity in treating
semi-classically a system of many-particles by assuming a plane wave function of a one-
particle non-interacting homogeneous electron gas for the many-particle system.

φk(~r) = (2π)−
3
2 ei

~k.~r (2.1)

To obtain the Thomas-Fermi kinetic energy, a particle in a box model is considered in
which we have cubes of sides l and volume ∆V = l3 each containing some fixed number of
electrons ∆N and with the assumption that the electrons in each cell behave like indepen-
dent fermions at the temperature 0K, with the cells independent of one another[6]. From
quantum mechanics,the energy levels of a particle in a 3-dimensional infinite well are given
by:

ε(nx, ny, nz) =
h2

8ml2
R2 where R2 = n2

x + n2
y + n2

z defined a radius of a sphere

R =
(8ml2ε

h2

) 1
2

(2.2)

Since R must be positive therefore, 1
8

of the volume of the sphere in the whole space defined
the number of distinct energy levels Φ(ε) with energy smaller than ε, thus

Φ(ε) =
1

8

(4πR3

3

)
15



Putting eq (2.2), we have:

Φ(ε) =
π

6

(8ml2ε

h2

) 3
2

(2.3)

The number of energy levels between ε and ε+ dε is given by

g(ε)dε = Φ(ε+ dε)− Φ(ε)

Where g(ε) is the density of states at energy ε. By Taylor expansion about ε we obtain with
error of order O((dε)2):

g(ε)dε = Φ̇(ε)dε =
π

4

(8ml2

h2

) 3
2
ε
1
2dε (2.4)

The probability of an electron with energy ε occupying a quantum state is given by the
Fermi-Dirac:

f(ε) =
1

1 + eβ(ε−εf )
=
{1, ε<εf

0, ε>εf
T = 0K and εf=Fermi energy (2.5)

The total energy ∆E in each volume ∆V of doubly occupied state of energy ε < εf is:

∆E = 2

∫
εf(ε)g(ε)dε =

π

2

∫ εf

0

(8ml2

h2

) 3
2
ε
3
2dε =

π

5

(8ml2

h2

) 3
2
ε
5
2
f (2.6)

The number of electrons ∆N doubly occupying a state in a volume ∆V is:

∆N = 2

∫
f(ε)g(ε)dε =

π

2

∫ εf

0

(8ml2

h2

) 3
2
ε
1
2dε =

π

3

(8ml2

h2

) 3
2
ε
3
2
f (2.7)

Evaluating eq.(2.7) for εf we obtain

εf =
(3∆N

πl3

) 2
3 h2

8m
(2.8)

Substituting eq.(2.8) into eq.(2.6) and noting that the electron density n(~r) = ∆N
∆V

, we
obtain the expression for energy in each cell in term of density as:

∆E =
3h2

10m

( 3

8π

) 2
3
n

5
3 (~r)∆V (2.9)

We recall here that

} =
h

2π
−→ h2 = (2π)}2

Therefore,

∆E =
3}2

10m
(3π2)

2
3n

5
3 (~r)∆V =

3

10
(3π2)

2
3n

5
3 (~r)∆V in atomic unit (2.10)
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Hence, the Thomas-Ferm kinetic total energy of the electrons in the entire system in terms
of density functional is obtained by integrating eq.(2.10) over the whole ensemble:

TTF [n] = C0

∫
n

5
3 (~r)d3~r =

∫
t[n(~r)]d3~r (2.11)

Where t[n(~r)] = C0n
5
3 (~r) C0 =

3

10
(3π2)

2
3 (2.12)

t[n(~r)] is the kinetic energy density of a non-interacting homogeneous gas. The total number
of electons in the space (nx, ny, nz) is obtained by integrating ∆N = n(~r)∆V :

N [n(~r)] =

∫
n(~r)d3~r (2.13)

2.3 The von Weizsäcker Functional (vW)

In the search for improved TF kinetic energy functional, von Weizsäcker modified the plane
wave function used by Thomas-Fermi to the from;

(1 + ~a.~r)ei
~k.~r (2.14)

where ~a is a constant vector and ~k is a local wave vector4. The result was the von Weizsäcker
correction to the TF kinetic energy [6]. Although the von Weizsäcker functional can be
written in different form, the most common in literature is[11, 9]:

TvW [n(~r)] =
1

8

∫
|∇n(~r)|2

n(~r)
d3~r (2.15)

A way of improving the Thomas-Fermi functional is to introduce terms that depend on
the local gradient of the density and few other higher derivatives of the density in series
expansion. The new von Weizsäcker functional has a factor λ. The total kinetic energy
functional is then given as:

TTFλvW [n(~r)] = TTF [n(~r)] + λTvW [n(~r)] (2.16)

The parameter λ is 1 in the original work of Weizsäcker, but was later shown to be 1
9

from the gradient expansion approach[6]. The factor was introduced to make the correction
consistent with the limit of small moments in the linear response function of the free electron
gas[26].

4The dot product ~a.~r is suppose to takes care of the slowly varying electron densities over space
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2.4 Conceptualization of Density Matrices

2.4.1 Electron Density

Simply put, the electron density is the number of electrons per unit volume in a given state.
In terms of wave function Ψ(~x) = φ(~r)α(s), for a single one-electron system, the electron
density, n(~x) is determined by the probability density function:

n̂(~x) = |Ψ(~x)|2 (2.17)

Thus, the electron probability density is given by

n̂(~x)d~x = |Ψ(~x)|2d~x = |φ(~r)|2|α(s)|2d~rds (2.18)

That is, the electron density is the probability of finding an electron in an elemental spin-
orbital volume d~x = d~rds. It suffices to say here that the electron density is dependent
only on the spatial coordinate ~r. To obtain the electron probability in an orbital volume
element d~x without spin[14], we integrate over all the spins α(s), which integrates to unity,
and obtain:

n(~r)d~r = d~r

∫
|φ(~r)|2|α(s)|2ds = |φ(~r)|2d~r =⇒ n(~r) = |φ(~r)|2 (2.19)

For an N−electron system in a state corresponding to the wave function, Ψ(~x1, ~x2, ..., ~xN),
the electron probability density is obtained by integrating over all the spin coordinates of
all electrons and over all the spatial coordinates of all the electrons except one. However,
since electrons are indistinguishable, the probability of finding any electron at a position
d~r1 is just N times the probability of finding one particular electron at that point[6].

n(~r1) = N

∫
...

∫
|Ψ(~x1, ~x2, ..., ~xN)|2ds1d~x2...d~xN (2.20)

or in general,

n(~r1) = N

∫
...

∫
Ψ∗(~x1, ~x2, ..., ~xN)Ψ(~x1, ~x2, ..., ~xN)ds1d~x2...d~xN (2.21)

The electron density discussed above is a one-particle probability density with the property
of being a non-negative function of only three (not 3N) variables x, y, z; which vanishes at
infinity and integrates to the total number of electrons in the system.

i) n(~r) ≥ 0 ii)

∫
n(~r)d3~r = N (2.22)

In a nutshell, n(~r) determines the probability of finding any of the N electrons within the
volume element d~r but with arbitrary spin while the other (N − 1) electrons have arbitrary
positions and spin in the state represented by Ψ(~x1, ..., ~xN) [16]
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2.4.2 Pair Density: n2(1, 2)

One may ask, “is it possible to find the probabilities for different configurations or “clusters”
of any number of particles?”. This question is addressed as quoted below[16]:

The concept of electron density, which provides an answer to the question ‘how
likely is it to find one electron of arbitrary spin within a particular volume el-
ement while all other electrons may be anywhere, can now be extended to the
probability of finding not one but a pair of electrons with spins α(s1) and α(s2)
simultaneously within two volume elements d~r1 and d~r2 while the remaining
electrons have arbitrary positions and spins.The quantity which contains this
information is the pair density ρ2(~x1, ~x2), which is defined as

ρ2(~x1, ~x2) = N(N − 1)

∫
...

∫
|Ψ(~x1, ~x2, ..., ~xN)|2 d~x3d~xN .

More generally

n̂2(~x1, ~x2) = N(N − 1)

∫
...

∫
Ψ∗(~x1, ~x2, ..., ~xN)Ψ(~x1, ~x2, ..., ~xN)d~x3...d~xN (2.23)

determines the probability of any two electrons being found simultaneously at spin-orbital
“points” ~x1, ~x2, while

n2(~r1, ~r2) = N(N − 1)

∫
...

∫
Ψ∗(~x1, ~x2, ..., ~xN)Ψ(~x1, ~x2, ..., ~xN)ds1ds2d~x3...d~xN (2.24)

is the probability of finding them at orbital “points” ~r1 and ~r2 with any combination of
spins (one up, one down; both up, both down)[14]. The pair (two electron) density has
similar properties as the one electron density

i) n2(~r1, ~r2) ≥ 0 ii) n2(~r1, ~r2) = n2(~r2, ~r1) iii)

∫ ∫
n2(~r1, ~r2)d3~r1d

3~r2 = N(N−1) (2.25)

Since electrons are viewed as idealized mass points with no extended volume, there are
possibilities that both electrons are simultaneously found in both volume element [12]. In
such case, the pair density would reduce to the product of the individual probabilities of
indistinguishable particles:

n2(~r1, ~r2) =
N − 1

N
n(~r1)n(~r2) (2.26)

n(~r1) is the probability that any of the N−electrons is at ~r1 while N−1
N
n(~r2) is the probability

that another electron is simultaneously at ~r2 since the particles are identical. Therefore,
the probability is reduced by the factor N−1

N
because of Pauli exclusion principle. The

two-particle function (pair density) tell us how the motions of two different electrons are
“correlated” as a result of their interactions. Because electrons interact only in pairs, there
is no need to consider distribution functions higher than the pair function n2(~r1, ~r2) for
orbital wave functions or, n̂2(~r1, ~r2) if spin-orbital properties are considered.
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2.4.3 Reduced Density Matrix (RDM)

We learned from quantum mechanics that all information about a system is contained in,
and can be extracted from its wave function. Equivalently, a system of N particles can be
described by its N -body density matrix or density operator generally defined as[17];

γN(~x′i, · · · , ~x′N ; ~xi, · · · , ~xN) = Ψ∗N(~x′i, · · · , ~x′N)ΨN(~xi, · · · , ~xN) (2.27)

The primed factors are sets of independent quantities that can give a numerical value. If
~xi = ~x′i ∀ i, we obtain a diagonal element of the matrix. Because nature provides us with
systems constituting of fermions that can be described with two-particle interactions only,
we will only use the first and the second order of eq.(2.27)
Beside that electrons are fermions and have antisymmetric wave function, they are charged
particles and interact via Coulomb repulsion; they try to stay away from each other as much
as possible. These properties influence the pair density and reduce it to what is in general
known as Reduced Density Matrix (RDM ).
The Nth order density matrix for a pure state of an N -electron system is given by the
probability function; and can be defined in terms of the reduced density matrix of order p
by the expression[15, 14, 13]:

γp(~x
′
1, ..., ~x

′
p; ~x1, ..., ~xP )

=

(
N
p

)∫
...

∫
γN(~x′1, ..., ~x

′
p, ~xp+1, ..., ~xN ; ~x1, ..., ~xp, ..., ~xN)d~xp+1, ..., d~xN (2.28)(

N
p

)
is a binomial coefficient. In addition to electrons interacting in pairs, the electronic

Hamiltonian operators consist of one electron and two electron terms, i.e, operators that
involve the coordinate of one and two electrons only. Therefore, to compute the energy, the
knowledge of two-particle probability density is sufficient. In particular, we have for the
first and second order reduced matrices as:

γ1(~x′1; ~x1) = N

∫
...

∫
Ψ∗(~x′1~x2...~xN)Ψ(~x1~x2...~xN)d~x2...d~xN (2.29)

γ2(~x′1~x
′
2; ~x1~x2) =

N(N − 1)

2

∫
...

∫
Ψ∗(~x′1~x

′
2~x3...~xN)Ψ(~x1~x2~x3...~xN)d~x3...d~xN (2.30)

The RDM has the property of its trace normalizing to the number of electrons pair(s). So
eqs (2.29) and (2.30) yield:

Tr γ1(~x′1; ~x1) =

∫
γ1(~x1, ~x1)d~x1 = N (2.31)

Tr γ2(~x′1, ~x
′
2; ~x1~x2) =

∫ ∫
γ2(~x1, ~x2; ~x1~x2)d~x1d~x2 =

N(N − 1)

2
(2.32)
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CHAPTER 3

Calculation of Corrections for KEDF of closed shell systems

3.1 Kinetic Energy Expectation Value

The Hamiltonian operator contains one- and two-particle terms. The former (one-particle
term) consists of the kinetic energy and the electron-nuclear interaction energy, while the
latter is the electron-electron Coulomb interaction. We consider the expectation value T [Ψ]
of the kinetic energy operator

T̂ = −1

2

N∑
i=1

∇i
2 (3.1)

with respect to the wave function φ which is a set of normalized antisymmetric N-particle
wave function given by the Slater determinant

Ψ(~x) = (N !)−
1
2det

[
φ1(~x1)φ2(~x2)...φN(~xN)

]
.

The kinetic energy expectation value is

T = 〈Ψ(~x)|T̂ |Ψ(~x)〉 =

∫
Ψ∗(~x)T̂ (~x)Ψ(~x)d~x =

∫ [
T̂ (~x)Ψ∗(~x′)Ψ(~x)

]
~x′=~x

d~x (3.2)

We see that T̂ works on the functions of ~x only, and we change the name of the variables
in Ψ∗(~x) from ~x to ~x′ to protect them from the effect of T̂ [14]. It implies that the primed
coordinates are changed to unprimed ones after the T̂ operates on Ψ(~x), then follows the
integration. Now, let us compute

Ψ∗(~x′)Ψ(~x) =
1

N !
det
[
φ∗1(~x′1)φ∗2(~x′2)...φ∗N(~x′N)

]
det
[
φ1(~x1)φ2(~x2)...φN(~xN)

]
=

21



1

N !
|{φ∗1(~x′1)φ∗2(~x′2)...φ∗N(~x′N)}{φ1(~x1)φ2(~x2)...φN(~xN)}| = γN(~x′1, · · · , ~x′N ; ~x1, · · · , ~xN) =

1

N !

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

φ∗1(~x
′
1)φ1(~x1) + · · ·+ φ∗N (~x′1)φ1(~xN ) φ∗1(~x

′
1)φ2(~x1) + · · ·+ φ∗N (~x′1)φ2(~xN ) φ∗1(~x

′
1)φN (~x1) + · · ·+ φ∗N (~x′1)φN (~xN )

φ∗1(~x
′
2)φ1(~x1) + · · ·+ φ∗N (~x′2)φ1(~xN ) φ∗1(~x

′
2)φ2(~x1) + · · ·+ φ∗N (~x′2)φ2(~xN ) φ∗1(~x

′
2)φN (~x1) + · · ·+ φ∗N (~x′2)φN (~xN )

...
...

...
φ∗1(~x

′
N )φ1(~x1) + · · ·+ φ∗N (~x′N )φ1(~xN ) φ∗1(~x

′
N )φ2(~x1) + · · ·+ φ∗N (~x′N )φ2(~xN ) φ∗1(~x

′
N )φN (~x1) + · · ·+ φ∗N (~x′N )φN (~xN )

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(3.3)

Taken that besides being normalized the set of one electron wave functions in eq.(3.3) is
orthogonal, i.e orthonormalized, we observe that for N = 1, 2, · · · , the determinant equals
the corresponding order of the reduced density matrix each determined by the the first order
reduced density function γ1(~x; ~x′). Expressing the two or many electrons density in terms
of one electron density is peculiar to the single Slater determinant approximation[14], For
example,N=2,

γ2(~x1, ~x2; ~x′1, ~x
′
2) =

1

2

∣∣∣∣ γ1(~x1; ~x′1) γ1(~x1; ~x′2)
γ1(~x2; ~x′1) γ1(~x2; ~x′2)

∣∣∣∣ (3.4)

implies that every thing in the determinant is determined through γ1(~x, ~x′) often called the
Fock-Dirac density matrix given by[13, 14, 15, 17]:

γ1(~x; ~x′) =

Noccupied∑
i=1

φi(~x)φ∗i (~x
′) (3.5)

We have been writing φi(~xi) to mean the spin-orbital, that is, φi(~xi) = φi(~ri, si) and similarly
γi(~xi; ~x

′
i) = γi(~ri, si;~r

′
i, s
′
i). Since the kinetic energy operator T̂ is spin independent and

integral over all spin is unity, we can now write, dropping the subscripts

γ(~x, ~x′) ≡ γ(~r;~r′) =

Noccupied∑
i=1

φi(~r)φ
∗
i (~r
′) (3.6)

Eq(3.6) has a symmetric property, i.e γ(~r;~r′) = γ(~r′;~r) and is positive. Now, we can evaluate
the determinant directly in terms of reduced density matrix defined by eq (2.27). The kinetic
energy operates is one-electron operator therefore the determinant is approximated to the
first order reduced density matrix of the orbital coordinate[13]:

Ψ(~r′)Ψ(~r) =
1

N !
|{φ∗1(~x′1)φ∗2(~x′2)...φ∗N(~x′N)}{φ1(~x1)φ2(~x2)...φN(~xN)}| u γ(~r′1;~r1) (3.7)

Therefore, eq.(3.2) becomes5:

T =

∫
d3~rT̂ γ(~r;~r′)

∣∣∣
~r=~r′

=

∫
−1

2
∇2
~rγ(~r;~r′)

∣∣∣
~r=~r′

d3~r =

∫
to[γ(~r, ~r′)]d3~r (3.8)

5~r = ~r′ is applied after the operator operates on γ(~r;~r′) with respect to ~r,
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to[γ(~r, ~r′)] = −1

2
∇2
~rγ(~r;~r′)|~r=~r′ (3.9)

Also, T can be expressed in a different form as follows:

T =

Noccupied∑
i=1

∫
−1

2
φ∗i (~r

′)∇2φi(~r)d
3~r =

Noccupied∑
i=1

∫
−1

2

[
∇·
(
φ∗i (~r

′)∇φi(~r)
)
−∇φ∗i (~r′)∇φi(~r)

]
d3~r

=

Noccupied∑
i=1

−1

2

∫
∇·
(
φ∗i (~r

′)∇φi(~r)
)
d3~r︸ ︷︷ ︸

=0, ∀ ~r ∈ <3 −→∞ by Gauss’ theorem

+

Noccupied∑
i=1

∫
1

2
∇φ∗i (~r′)∇φi(~r)d3~r

=

Noccupied∑
i=1

∫
1

2
∇~r∇~r′φ∗i (~r′)φi(~r)d3~r =

∫
1

2
∇~r∇~r′γ(~r;~r′)|~r′=~rd3~r =

∫
t[γ(~r;~r′)]d3~r (3.10)

where,

t[γ(~r;~r′)] =
1

2
∇~r∇~r′γ(~r;~r′)|~r′=~r (3.11)

3.2 Expression for First Order RDM

The motion of a pair of electrons in an N-electron system is not independent. They are
correlated through an antisymmetric wave function that must be chosen so that Pauli
exclusion principle is satisfied, and through the 1

r12
term controlling the electron-electron

repulsion in the Hamiltonian[12]. The correlation is not a real physical quantity as it reflects
a given level of approximation chosen for quantum mechanical description of a system. The
approximation is based on the choice of reference state where by definition, all correlation
is absent.

Definition 3.2.1. The reference state or level of description of a system of interacting par-
ticles is basically defined as that where particles are independent in a statistical sense. [13].

In such a case, for example, correlation could be measured as the difference between the
exact pair density n2(~r1, ~r2), the diagonal part of the reduced two-particle density operator,
and the product of the exact one-electron densities for particles 1 and 2, i.e., n(~r1)n(~r2) the
product of the reduced one-particle densities at points ~r1and ~r2[14, 27, 28].

From eq.(3.4), the two-particle (second order) reduced density matrix for spin-less or-
bitals is:

2γ2(~r1, ~r2;~r′1, ~r
′
2) = γ1(~r1, ~r

′
1)γ1(~r2, ~r

′
2)− γ1(~r1, ~r

′
2)γ1(~r2, ~r

′
1) (3.12)
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By comparison of eqs.(2.22iii and 2.31) and eqs.(2.25iii and 2.32) assuming spin-less orbitals,
we obtain, respectively:

γ1(~ri, ~ri) = n(~ri) and 2γ2(~r1, ~r2;~r1, ~r2) = n2(~r1, ~r2) (3.13)

With the symmetric property of γ(~r, ~r′), we substitute eq(3.13) appropriately into (3.12)
and obtain6:

n(~r, ~r′) = n(~r)n(~r′)− γ(~r, ~r′)2 (3.14)

For systems with definite spins, the electron density and the pair density may be written
in their spin coordinates as[13, 14]

n(~r) = n↑(~r) + n↓(~r) (3.15)

n(~r, ~r′) = n�(~r, ~r′) + n↑↓(~r, ~r
′) + n↓↑(~r, ~r

′) + n�(~r, ~r′) (3.16)

That is, for instance, n�(~r, ~r′) gives the probability of finding electrons with spins-up at
points ~r and ~r′ simultaneously. For a correlated electronic motion, the pair density is defined
in terms of the electron density and the correlation factor g(~r, ~r′) between parallel spin
electrons, e.g spin-ups (g�(~r, ~r′)) and anti-parallel spin electrons (g↑↓(~r, ~r

′))[6, 13, 14, 29, 30]:

n�(~r, ~r′) = n↑(~r)n↑(~r
′)
(

1 + g�(~r, ~r′)
)

(3.17)

n↑↓(~r, ~r
′) = n↑(~r)n↓(~r

′)
(

1 + g↑↓(~r, ~r
′)
)

(3.18)

We note that the correlation between electrons of different spins is zero in the Hartree-Fock
level where it is assumed that

g↑↓(~r, ~r
′) = g↓↑(~r, ~r

′) = 0 (3.19)

With eqs.(3.17),(3.18) and (3.19), eq.(3.14) becomes:

n(~r, ~r′) = n↑(~r)n↑(~r
′) + n↓(~r)n↓(~r

′) + n↑(~r)n↑(~r
′)g�(~r, ~r′) + n↓(~r)n↓(~r

′)g�(~r, ~r′)

= n(~r)n(~r′) + n(~r)n(~r′)g(~r, ~r′) = n(~r)n(~r′)
(

1 + g(~r, ~r′)
)

(3.20)

Comparison of eqs.(3.14) and (3.20) yields:

γ(~r, ~r′) =
√
n(~r)n(~r′)

√
−g(~r, ~r′) =

√
n(~r)n(~r′)Γ(~r, ~r′) (3.21)

6We will drop all subscripts and use unprimed and primed ~r to mean positions 1 and 2 respectively, and
also keep in mind that n(~r, ~r′) is pair density. i = 1, 2

24



Γ(~r, ~r′) =
√
−g(~r, ~r′) (3.22)

We can show that Γ(~r, ~r′)|~r=~r′ is positive and equals one. It is defined as the statistical
correlation term. Recall that the pair density is the probability of simultaneously finding
two electrons at points ~r and ~r′; and by Pauli exclusion principle, n(~r, ~r′)|~r=~r′ = 0; therefore
from eq.(3.20) we have7:

g(~r, ~r′)|~r=~r′ = −1 =⇒ from eq(3.22) that: Γ(~r, ~r′)|~r=~r′ = 1 (3.23)

3.3 The Kinetic Energy Density

Equations (3.9), and (3.11) are the kinetic energy density functionals. They are related by
or differ by:

t[n(~r)]− to[n(~r)] =
1

4
∇2n(~r) (3.24)

tdiv[n(~r)] = 1
4
∇2n(~r) is a divergence term whose contribution to the total kinetic energy

varnishes upon integration over all space. While the two kinetic energy densities integrate
to the same correct total kinetic energy with the difference existing between them, t[n] is a
better well behaved function than to[n], in that: it is finite, non-negative, continuous and
varies smoothly for all points ~r ∈ <3, except for internuclear region for molecules[31, 30].
Therefore, substituting eq.(3.21) into eq.(3.11), and applying eq.(3.23) after performing the
operations, one obtains:

t[n(~r)] =
|∇n(~r)|2

8n(~r)
+
n(~r)

2
∇~r· ∇~r′Γ(~r, ~r′)

∣∣∣
~r=~r′

+
∇n(~r)

4

[
∇~rΓ(~r, ~r′)

∣∣∣
~r=~r′

+∇~r′Γ(~r, ~r′)
∣∣∣
~r′=~r

]
︸ ︷︷ ︸

=0

(3.25)
To show that the last term in eq.(3.25) is zero, consider eqs (3.21) and (3.6). This implies
that:

∇~rγ(~r, ~r′)
∣∣∣
~r=~r′

=
∇n(~r)

2
+ n(~r)∇~rΓ(~r, ~r′)

∣∣∣
~r=~r′

=
Nocc.∑
i=1

φ∗i (~r)∇~rφi(~r) (3.26)

Similarly,

∇~r′γ(~r, ~r′)
∣∣∣
~r′=~r

=
∇n(~r)

2
+ n(~r)∇~r′Γ(~r, ~r′)

∣∣∣
~r′=~r

=
Nocc.∑
i=1

φi(~r)∇~rφ∗i (~r) (3.27)

Addition of eqs.(3.26) and (3.27) results in:

∇n(~r) +
[
∇~rΓ(~r, ~r′)

∣∣∣
~r=~r′

+∇~r′Γ(~r, ~r′)
∣∣∣
~r′=~r

]
=

Nocc.∑
i=1

φ∗i (~r)∇~rφi(~r) +
Nocc.∑
i=1

φi(~r)∇~rφ∗i (~r) (3.28)

7Any further consideration takes us into discussing correlation holes
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We note that

n(~r) = γ(~r, ~r′)
∣∣∣
~r=~r′

=
Nocc.∑
i=1

φi(~r)φ
∗
i (~r)

=⇒ ∇n(~r) =
Nocc.∑
i=1

φ∗i (~r)∇~rφi(~r) +
Nocc.∑
i=1

φi(~r)∇~rφ∗i (~r) (3.29)

Therefore putting eq.(3.29) into eq.(3.28) we have that:[
∇~rΓ(~r, ~r′)

∣∣∣
~r=~r′

+∇~r′Γ(~r, ~r′)
∣∣∣
~r′=~r

]
= 0 (3.30)

Hence, eq.(3.25) becomes:

t[n(~r)] =
|∇n(~r)|2

8n(~r)
+
n(~r)

2
∇~r · ∇~r′Γ(~r, ~r′)

∣∣∣
~r=~r′

(3.31)

Putting eq.(3.24) into eq.(3.31) gives:

t0[n(~r)] =
|∇n(~r)|2

8n(~r)
− 1

4
∇2n(~r) +

n(~r)

2
B(r) (3.32)

B(r) = ∇~r · ∇~r′Γ(~r, ~r′)
∣∣∣
~r=~r′

(3.33)

At this juncture, we revert to computing the various terms in eq.(3.32) and then determine
the correction for the kinetic energy density of various closed shell systems.

3.4 Kinetic Energy Corrections for some closed shell

Systems

The correction for the kinetic energy is the last term of eq.(3.32) which we solved compu-
tationally for some closed shell atoms.

tcorrection[n(~r)] =
n(~r)

2
B(r) = t0[n(~r)]− |∇n(~r)|2

8n(~r)
+

1

4
∇2n(~r) (3.34)

The total energies are calculated by method of numerical integration and results are reported
in table 3.1. The result obtained for the helium atom is exactly in agreement with the
Hartree-Fock. The Weizsäcker term TvW [n(~r)] gives the exact kinetic energy of two electron
(helium) system. This result provides a check for the correctness of the numerical code used
in evaluating the kinetic energy density T0[n(~r)], the von-Weizsäcker term TvW [n(~r)] and

the divergent term Tdiv[n(~r)] = ∇2n(~r)
4

. The code is found valid because it gives zero for the
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Atoms Z HF T0 TvW Tdiv Texact Exp Texact − TvW
He 2 2.860 2.860 2.860 0.000 2.860 2.904 0.000
Be 4 14.567 14.562 13.690 0.020 14.582 14.667 0.892
Ne 10 128.412 126.724 90.748 1.677 128.401 128.928 37.653
Mg 12 199.487 191.834 132.532 7.648 199.482 200.042 66.960
Ar 18 527.784 502.059 308.412 24.624 526.683 527.549 218.271
Ca 20 676.758 626.788 383.306 49.402 676.190 — 292.883

Table 3.1: Correction energy for some closed shell atoms in Hartree units.

1. The Hartree-Fock energies calculated directly from the PyQuante package are in good
agreement with HF calculations by Clementi and Roetti (1974)[34]

2. The experimental values are as calculated by Veillard and Clementi (1968) and refer-
enced in Eugene[13]

correction as expected for the two electron system.
The exact kinetic energy value is computed according to equation (3.24) or (3.31), that is:

Texact[n(~r)] = TvW [n(~r)] + Tcorrection[n(~r)] = Tdiv[n(~r)] + T0[n(~r)] (3.35)

The total kinetic energy Texact for the other closed shell atoms are closer to the Hartree-
Fock energy and are comparable to the experimental results with a relative errors as shown in
table 3.1. The results could be improved by employing more accurate numerical integration
methods such as trapezoidal or Simpson’s rules in lieu of the triangular rule employed here.
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CHAPTER 4

Development of a Correction term and Discussion of Results

4.1 Development of a correction term

We record here attempts we made towards developing a correction term for the kinetic
energy density. Solving eq.(3.34) one obtains the correction term as:

n(~r)B(~r)

2
=

Nocc∑
i,j=1

Dij∇φi · ∇φj −
|∇n(~r)|2

8n(~r)
(4.1)

Computationally eq.(4.1) can be evaluated and the statistical correlation term is deter-
mined from it numerically. However, even though this rightly gives the correction to the
total energies of the trial closed shell systems, it is not yet our target because we have just
represented the correction term and of-course the statistical correlation term in a ”hybrid”
of orbitals and density terms.

Considering eq.(3.32), for LDA, the von-Weizsäcker and the divergent terms are zero, that
is the gradient of density; since density is assumed constant ( the same every where) in the
system; is zero. Again, following the LDA approximation, there should not be correction
for the kinetic energy of a system such as Helium atom, i.e tcorr should be zero. But if
tvW , tdiv and nB

2
are each zero then, t0 is zero and this is a contradiction for the kinetic

energy of the electronic motion. Nevertheless, a numerical result tabulated in table (3.1)
as obtained from coding in Pyquante package shows for the He atom that Tdiv is to three
decimal places (3 d.p.) zero; Tcorr is much insignificant (order of 10−17, therefore it is zero)
and T0 is to 3 d.p. equal to tvW .
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But the simplest improvement that can be done to LDA is to correct for the inhomogeneities
of atomic electron density. This can be done by adding to the LDA, corrections that depend
on the local gradient of the electron density. In this way, the correct treatment of the shell
structure may be achieved[22, 24, 25]. Also, at a lowest limit of LDA (i.e. as we come down
to UEG), the kinetic energy of the system is given by the Thomas-Fermi energy. Thus,
gradient expansions, which offer systematic corrections to LDA for electron densities that
vary slowly over space, is employed here. Hence we write the correction term as:

tucorr =
nB

2
= C0n

5
3

[
1 + C1|∇n|pnq

]
(4.2)

C0n
5
3 = tTF is the Thomas-Fermi kinetic energy density for a uniform electron gas, C1 is a

numerical constant which we will determine, C0 = 2.871234 is given by eq. (2.12), p and q
are index powers. Dimensionally, tcorr and tTF each has a dimension of inverse length of
order five, so C1|∇n|pnq must be a dimensionless quantity. For this to be true, we have
from the dimension of the product:

4p+ 3q = 0 =⇒ q = −4p

3

For first trial, we take p = 2 and then, q = −8
3
, so that:

tucorr = C0n
5
3

[
1 + C1

|∇n|2

nn
5
3

]
= tTF + C0C1

|∇n|2

n
(4.3)

Hence, we can generally written that:

t0 = tvW − tdiv + tTF + C0C1
|∇n|2

n

Integrating the equation above gives:

KE = TvW + TTF − (Tdiv
?
= 0) + C0C1

∫
|∇n|2

n
d3~r (4.4)

TvW is given by eq. (2.15) and Tdiv = 0 if ~r approaches∞, i.e. the volume integral could be
taken as surface integral and by Gauss or divergence theorem, Tdiv will be zero. Assuming
~r approaches infinity then, eq. (4.4) could be written as:

KE = TTF +
(1

8
+ C0C1

)∫ |∇n|2
n

d3~r (4.5)

This could be compared with the gradient expansion:

KE =

∫
C0n

5
3d3~r +

1

72

∫
|∇n|2

n
d3~r
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truncated at the second term. But the accuracy when the series is truncated at zeroth-
or second-order is poor by any contemporary standard[35]. More authentically, we solve
for C1 from eq. (4.4) but with Tdiv 6= 0 because from our computational calculations, the
integral of tdiv did not turn out to be zero. This may probably be that our largest |~r| in the
integration is not large enough for it to be a surface integral. Thus, we write from eq.(4.4):

A0C1 = A1 =⇒ C1 =
A1

A0

(4.6)

A1 = KE − TvW − TTF + Tdiv and A0 = C0

∫
|∇n|2

n
d3~r

The result obtained computationally is recorded in Table (4.1):

Atoms Z A1(Hartree) A0(Hartree) C1

He 2 0.000 0.000 0.000
Be 4 -12.211 314.451 -0.0387
Ne 10 -79.892 2084.475 -0.0383
Mg 12 -116.587 3044.253 -0.0383
Ar 18 -268.807 7084.195 -0.0379
Ca 20 -331.756 8804.497 -0.0377

Table 4.1: Values of C1 for some closed shell atoms

Averaging C1 over the number of contributing atoms, we write generally and hope that
it works for any restricted closed shell atom:

C1 −→ 〈C1〉 = −0.03818 (4.7)

We verify the correctness of eq.(4.7) using our numerical codes and obtain Table(4.2). The
numerical code(s) used for these calculation is added as attachment at the last page of this
document.

Atom Z Tcorr(Hartree) Tucorr(Hartree)
Be 4 0.892 1.117
Ne 10 37.653 37.930
Mg 12 66.950 67.308
Ar 18 218.271 216.630
Ca 20 292.883 288.480

Table 4.2: Comparison of the correction to kinetic energy of trial systems computed using
eqs. (3.34) and (4.3)

30



4.2 Discussion of Results

Fig.4.1 is the plot of density against position which shows that the density is a positive
quantity. It also shows that the density varies slowly and decays as ~r increases; a behavior
that is not accounted for by the LDA; but has maximum around the nucleus.
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Figure 4.1: Graph of density versus position for some closed shell atoms
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Figure 4.2: Graph of B(r) versus position for some closed shell atoms

Fig.4.2 is the plot of B(r) against position r. We noted from Fig.4.1 that the density
does not die off abruptly but dies off slowly.
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The correlation at these regions places difficulty in precisely determining how the density
varies within the inter-shell region and with different electron positions; thus the LDA of
von-Weizsäcker underestimates the density at these regions. Therefore, one may say that
the correlation between electrons influences the electronic kinetic energy and is determined
by the function Γ(~r, ~r′) which essentially depends on the correlation effect between electrons.
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Figure 4.3: Graph of B(r) versus density for some closed shell atoms

From Fig.(4.3), we observe that the statistical correlation term B(r) does not have abrupt
decay behavior with density and varies slowly in a non-linear rise and exponential decay
trend. Its jointed rise and decay order perhaps depicts the correlation between the density
function of two electrons.
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The result shown in Table(4.2) is with a slight deviation, in agreement with the values
of the correction to the kinetic energies of the closed shell atoms computed from eq.(3.34).
Numerically, we will say this result is satisfactory and therefore, eq.(4.3) can be used as a
functional for the correction term then when inverted gives an expression for the statistical
correlation term.

4.3 Results of the Correction Terms
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Figure 4.4: Plots of the statistical correlation functions against position for B(r) of eq.(3.34)
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Figure 4.5: Plots of the statistical correlation functions against position for B(r) of eq.(4.3)

The graphs of Fig.(4.4) and Fig.(4.5) are comparable except that Fig.(4.5) predicts that
B(r) can have negative values at some points. This contradiction is however an indication
that tucorr is not completely adequate for describing the correction to the kinetic energy
though it delivered almost the same result as tcorr.

35



 0

 5000

 10000

 15000

 20000

 0  50  100  150  200  250  300  350  400

K
E

 i
n

 H
a

rt
re

e

Density in particle number per (bohr)3

Plot of KE against Density

Ne
Mg

ArCa

Figure 4.6: Plots of kinetic energy density terms against density for tcorr
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Figure 4.7: Plots of kinetic energy density terms against density for t0
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Figure 4.8: Plots of kinetic energy density terms against density for tucorr

Figures (4.6 and 4.8) are respectively, comparison of tcorr and tucorr with t0 of Fig.(4.7).
We observe that tucorr takes after t0. However, this does not mean that tcorr is not correct,
the three graphs have the same pattern when one zooms in on Fig.4.6.
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Figure 4.9: Statistical correlation function plotted against density for B(r) of eq.(3.34).
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Figure 4.10: Statistical correlation function plotted against density for B(r) of eq.(4.3).
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Figure 4.11: Plot of correction to kinetic energy density, tcorr against position.
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Figure 4.12: Plot of correction to kinetic energy density, tucorr against position.

4.4 Conclusion

These energy plots of tucorr could be said to arise from a more local density functional than
tcorr or that the Thomas-Fermi term in eq.(4.3) dominates over the gradient term. This
could be justified from Fig.(4.11) and Fig.(4.12) which shows that tucorr decays more rapidly
than tcorr. On the other hand, our equation does not off set the non-locality of the electron
density. Thus, this calls for reformulation of a qualitative statistical correlation functional
that could depend on the position of the electrons in the system as well.
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4.5 Further work

Possible things that could be tried are suggested here. Work should be done on functions
such as:

1.

Bu(r) = |~r|3
(7|∇n|2

8n
+

1

2

∇2n

4

)
that produces Fig.(4.13) which is a plot of Bu(r) in comparison to

B(r) =
2

n

(
t0 − tvW + tdiv

)
against n and the energies computed from the Bu(r) is recorded in Table 4.5(a) in
comparison to those computed from B(r).

2.

Bu(r) = (|~r|n2)
2
3 + 8.5|~r|3 |∇n|

2

8n

plotted against n in Fig.(4.14) and compared with B(r) versus n, gives the energy
values given in Table 4.5(b).

Atom tucorr(Hartree) tcorr(Hartree)
Be 3.550 0.892
Ne 39.051 37.653
Mg 62.780 66.950
Ar 180.010 218.271
Ca 235.529 292.882

Table 4.5(a)

Atom tucorr(Hartree) tcorr(Hartree)
Be 2.865 0.892
Ne 34.880 37.653
Mg 58.089 66.950
Ar 177.831 218.271
Ca 236.741 292.882

Table 4.5(b)
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Figure 4.13: Plot of B(r) and Bu(r) against density
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