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Abstract

The power conversion efficiency of perovskite solar cells has risen from as low as 3.8% to as
high as 19.3% in just five years with yet a projected value of over 20% in the next few years
by experimentalists. Such a tremendous breakthrough is one of its kind in photo-voltaic
research with thin film solar cells as the only major competitor. The light harvesting layer
in these new devices has a crystalline structure called the perovskite structure which is
capable of absorbing photons in both the visible and near infra-red regions of the solar
radiation spectrum. In this study, we carried out theoretical studies based on the detailed
balance theory originally proposed by Shockley and Queisser, and on a semi-emperical
approach based on measured optical absorption spectrum of the three most widely used
perovskite absorbers: CH3NH3SnI3, CH3NH3PbI3, and CH3NH3PbI3-xClx. We arrived at
an upper conversion efficiency limit for a single planar hetero-junction(PHJ) perovskite
solar cell with anti-reflection capabilities considering radiative losses as the only carrier loss
mechanism within the cell. The limiting efficiency was found to be 29.2% for CH3NH3PbI3,
27.5% for CH3NH3PbI3-xClx, and 24.8% for CH3NH3SnI3 under AM1.5 solar spectrum.
Issues such as the effect of exciton diffusion length and absorber thickness on the efficiency
are also discussed.
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CHAPTER 1

Introduction

“The dye-sensitized solar cell is a photo-voltaic converter that mimics natural
photosynthesis. Like green plants and algae, it uses a molecular absorber; the
dye, to harvest sunlight and generate electric charges”

Michael Gratzel

1.1 Excitons

a b

Figure 1.1: Excitons in inorganic and organic semiconductors [40]

An exciton is a bound state of an electron and an electron-hole held together by the
Coulombic interaction. It is a quantum mechanical particle found in both organic (e.g;
in the dye mentioned above), and inorganic semiconductors (e.g; silicon). The binding
energy of an exciton which is the minimum energy required to split the exciton into an
individual electron-hole pair can give useful insights on whether a semiconductor will be
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rewardful as a photon absorber for photo-voltaic applications in addition to other required
optical properties. For instance, in inorganic semiconductors, the exciton binding energy
is ≈ 10meV, and the electron-hole separation is ≈ 10nm Fig.(1.1a); with exciton diffusion
lengths of the order of ≈ 50nm−100nm. These are called Wannier excitons [19]. However,
organic semiconductors such as polymer blends are made of Frenkel excitons with binding
energies of the order of ≈ 1eV, electron-hole separation of the order of ≈ 1nm Fig.(1.1b);
and diffusion lengths of the order of ≈ 10nm [27]. This implies that the in-built electric
field generated at the pn junction can easily split excitons of the Wannier type; while their
longer diffusion lengths enable for almost complete extraction at the electrodes as opposed
to the Frenkel type.

In an organic-inorganic hybrid semiconductor such as methylammonium lead tri-iodide
(CH3NH3PbI3), only Wannier type excitons exist with diffusion lengths in order of ≈ 1µm
which is favourable for absorber thicknesses in the range of ≤ 100nm. Besides, the exciton
lifetime in CH3NH3PbI3 powder is high, up to 10ns [27]. The combination of these two
effects means that the excitons in the CH3NH3PbI3 film can travel a longer distance before
decay, increasing their likelihood of reaching the hetero-junction to dissociate into free
electron–hole pairs.
The origin of high efficiency in perovskite solar cells is therefore a combination of its excellent
light absorbing properties; which we intend to explore in chapter three of this study, and
the presence of these Wannier excitons.

1.2 The perovskite Solar Cell

Ever since the discovery of the photo-voltaic effect by the French Physicist Edmond Bec-
querel in 1839, a myriad of emerging solar technologies have been developed, with three of
the most heavily researched being organic photo-voltaics (OPVs), dye-sensitized solar cells
(DSSCs), and recently, perovskite solar cells.

(a) (b)

Figure 1.2: (a) Tetragonal structure of CH3NH3PbI3, MA: methylammonium ion, Pb: Pb+2

ion, and I: I– ion. (b) Schematic of a planar hetero-junction perovskite solar cell.[7]
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In 2013, Michael Gratzel and his group of energy scientists reported a power conversion
efficiency of 12.0% in a planar hetero-junction DSSC by replacing the dye with a methyl
ammonium lead iodide (CH3NH3PbI3) perovskite [1]. This solar cell is now called a MAPI
cell The light absorbing layer in perovskite solar cells is a family of organo-metal based
halide perovskite with the general molecular formula; RNH3BX3. R is an alkyl group
with general formula; CnH2n+1(usually methyl), B is a group 14 metal (usually Pb or Sn),
and X is a halogen (usually I, Cl, Br or mixed). On the other hand, the perovskite as a
crystal structure have been found to exist in three different phases namely cubic, tetragonal
and orthorhombic. The most stable phases being the tetragonal and cubic exist at room
temperature and above while the least stable orthorhombic phase exists at low temperatures
[9].

In most planar hetero-junction perovskite solar cells, the perovskite can play both the
role of a light absorber and a hole transport layer (HTL) [7]. The perovskite can also
be sandwiched between a HTL and an electron transport layer (ETL) [1, 8]. The HTL
is a p-type semiconductor that only allows holes to be transported across it, while the
ETL is an n-type semiconductor that only allows electrons to be transported across it;
Fig.(1.2b). The band gap alignments are such that carrier transport and extraction is
enhanced. The work functions of the metals used as cathode(Al) and anode(ITO-indium
tin oxide); Fig.(1.2b), are such that charge collection quickly occurs. The current density
of the solar cell is determined by the absorption spectrum of the perovskite-light absorbing
layer which generates free electron-hole pair under irradiation.

The power conversion efficiency(PCE) of a hetero-junction perovskite solar cell is limited
by several factors. These factors ranges from carrier recombination losses such as radiative
recombination of electron-hole pairs, non-radiative recombination due to interstitial defects
and defects within the perovskite that can act as traps for electrons and holes, Auger
recombination, losses at the hetero-junction interface due to band gap misalignment and
charge extraction and collection losses at the ohmic contacts [1, 6, 7, 8]. However, the
most predominant of these losses is radiative, leading to high radiative efficiency observed
in MAPI cells [6]. 1

1.3 Planckian Spectrum

The wave-particle duality of light allows us to treat photons as particles of light. Photons
travel with speed of light c0 in vacuum and with speed c in a material of refractive index n;
where c = c0/n. To describe quantum-like transport of particles, we need to treat photons
as bosons in accordance with quantum statistical mechanics.
A blackbody is a non-reflecting body which completely absorbs all photon energies ~ω = E

1Note that section (1.2) was only meant to serve as an introduction to the topic and does not in any form
explain all the features of the perovskite solar cell available in scientific literatures. Section (1.3) introduces
the concept of blackbody radiation which is also clearly elucidated in Wurfels’ book [5]
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incident on it. Hence, it has unity absorptivity: a(E) = 1. An approximate example is the
sun. The Planckian spectrum describes the photon density dn(E) in a blackbody cavity for
photon energies between E and E + dE. This is given by:

dn(E) = D(E)f(E)dE (1.1)

where D(E) is the photon density of states (number of states per unit volume per energy
interval dE) which the photons can occupy. f(E) is the probability of occupation which de-
termines the distribution of photons over the states as a function of the energy E. According
to Bose-Einstein statistics, f(E) is given by:

f(E) =
1

exp(E−µ
kT

)− 1
(1.2)

where k = 8.617× 10−5ev/K is the Boltzmann constant, T is the blackbody temperature;
and µ is the chemical potential of the photon which is zero for both thermal and solar
radiation [5].
To find the density of states D(E), we recall that in phase space, a state in the cavity has a
volume: h3 = ∆x∆px∆y∆py∆z∆pz in accordance with Heisenberg’s Uncertainty principle.
In such a cavity, photons are delocalized such that: ∆x∆y∆z = LxLyLz = V ; which is the
volume of the cavity. Similarly, ∆Px∆Py∆pz = ∆p3 = h3/V .
However, due to the polarization of light in two perpendicular directions, each volume
∆p3 therefore contains two photon states. All states in which the photons have energies
E ′ < E lie in a sphere of radius |~p|=E/c. The number of such states per unit volume is:

N/V = 2× (4πp3

3
)/h3 = 8πE3

3(hc)3 .

Hence, d(N/V ) = 8πE2

(hc)3 dE ⇒ D(E) = d(N/V )
dE

= 8πE2

(hc)3 . For a spherical cavity, photons within
it exhibit isotropic motion. Assuming that these photons pass through the spherical surface
through a solid angle dΩ subtended by a hole in the cavity; then it is necessary to define the
density of states per solid angle as: DΩ(E) = D(E)/4π; where 4π is the maximum value of
Ω. Equation(1.1) can therefore be re-written as:

dn(E)

dE
= DΩ(E)f(E)dΩ =

2dΩ

(hc)3

E2

exp( E
kT

)− 1
(1.3)

Equation(1.3) is the photon density per energy interval. The energy density per energy
interval follows directly from equation(1.3) as:

du(E)

dE
= EDΩ(E)f(E)dΩ =

2dΩ

(hc)3

E3

exp( E
kT

)− 1
(1.4)

where u(E) is the energy density of the photons in the cavity in units of J/m3. Equation(1.4)
can be expressed in terms of wavelength as:

du(λ)

dλ
=

2dΩ

λ5

hc

exp( hc
λkT

)− 1
(1.5)
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by making the substitutions E = hc/λ ⇒ dE = −hcdλ/λ2, where h = 4.13 × 10−15

eV s is Planck’s constant, and λ is the photon wavelength. Equation(1.5) is called the
wavelength spectrum while the energy density per photon energy du(E)/dE is called the
energy spectrum. Another useful quantity is the energy current density; j(E) = u(E)c in
units of W/m2. The energy current density per energy interval becomes:

dj(E)

dE
=

2dΩ

h3c2

E3

exp( E
kT

)− 1
(1.6)

Finally, we define the photon flux(the number of photons leaving the cavity through a solid
angle dΩ per unit area per unit time) as: φ(E) = n(E)c, so that we can write the photon
flux per energy interval as:

dφ(E)

dE
=

2dΩ

h3c2

E2

exp( E
kT

)− 1
(1.7)

Integrating equation(1.6) from 0 to∞ leads the to the famous Stefan-Boltzmann law which
holds for a planar blackbody emitting photons into the hemisphere of solid angle Ω = π,
i.e:

j(E) =
2π

h3c2

∫ ∞
0

E3dE

exp( E
kT

)− 1
=

2π5(kT )4

15h3c2
= σT 4 (1.8)

where σ = 2π5k4

15h3c2
= 5.67× 10−8W/m2K4 is the Stefan-Boltzmann constant.

1.4 Solar Spectrum

The solar spectrum is split into a spectrum of either energy (E) or wavelength (λ), both
being related by the equation:

E[eV ] =
hc

λ
=

1242

λ[nm]
=

1.242

λ[µm]
(1.9)

The solar radiation emanating from the sun comprises of photons of different energies
and wavelength. Since we are dealing with the band gap of semiconductors, we will adopt
the energy units in electron volts(eV) throughout the scope of this study. 2 The radiation
pattern on a solar cell is highly dependent upon its location. The solar flux striking a cell
lying above the atmospheric layer will be higher than that lying beneath due to absorption

2The solar spectrum is described in many solar physics textbooks. What I did in this section was to
provide a summarized perspective required for both theoretical and computational modeling of solar cells.
The concept is very important as it tells you what your solar cell actually absorbs! Note that AM1.5
is classified into AM1.5D, AM1.5G and so on depending on climatic conditions. The AM1.5G is used
throughout this work [17], which I simply call AM1.5.
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of some of the photons by molecules in the atmosphere. Due to this, the solar spectrum is
classified into three with respect to the thickness, t0 of the atmospheric airmass(AM); which
also accommodates for resonant absorption peaks of specific molecules in the atmosphere.
The path length t through the atmosphere for radiation from the sun incident at an angle
a relative to the normal to the earth’s surface is given by: t = t0/cosa. This characterizes
the real solar spectrum resulting from the absorption by a layer of air of thickness t. The
spectrum outside the atmosphere is called the extraterrestrial spectrum and it is designated
as AM0. On the surface of the earth for sun rays at normal incidence, the spectrum is
designated as AM1.0; since t/t0 = 1/cosa = 1.

Figure 1.3: Sketch of atmospheric airmass of thickness t0. The airmass coefficient; t/t0
depends on the tilt a from the normal.

A typical spectrum for moderate climate is AM1.5 where, t/t0 = 1/cosa = 1.5 corre-
sponding to an angle of incidence of solar radiation of a = 480 relative to the surface normal.
Both AM0 and AM1.5 are terrestrial spectra but AM1.5 is the standard spectrum for
measuring solar cell efficiencies [3].

The integral over the solar wavelength spectrum gives the energy current density onto
a surface normal to the sun as:

jAM1.5(λ) = 2

∫ λmax

λmin

hc0
2dΩdλ

λ5(exp( hc0
λkTs

)− 1)
=

∫ λmax

λmin

S(λ)dλ ≈ 1000W/m2 ≡ 1sun. (1.10)

where S(λ) is the energy current density of the solar photons per wavelength interval in
units of W/m2/nm also called the spectral irradiance, λmax = 4000nm, λmin = 280nm, Ts
is the temperature of the sun equal to 5800K, and dΩ = Ωs is the solid angle subtended by
the sun.
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Figure 1.4: The energy spectrum (a) and the wavelength spectrum (b) [17] of the solar
terrestrial and extraterrestrial spectra. The visible spectrum which ranges from 1.5eV −
3.0eV in the energy spectrum, and from 400nm − 700nm in the wavelength spectrum
corresponds to the maximum values of solar irradiance.

The absorption of solar radiation is mostly caused by gases such as H2O, CO2, and CH4

in the infrared/below infrared region of the solar spectrum; and in the ultraviolet region by
ozone; O3 and oxygen; O2 as can be seen in the AM1.5 wavelength spectrum.

From equation(1.7), we can write the photon flux per wavelength interval as:

dφ(λ)

dλ
=

2c0dΩdλ

λ4(exp( hc0
λkT

)− 1)
(1.11)
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Comparing equations(1.10) and (1.11), one arrives at the following very important rela-
tionship:

φ(λ) =

∫ λmax

λ

[
λ

hc0

][
djAM1.5(λ)

dλ
]dλ⇒ φ(E) =

∫ Emax

E

[
hc0

E3
][
djAM1.5(λ)

dλ
]dE (1.12)

Figure 1.5: Shows the integrated AM1.5G solar flux; eq.(1.12), and the energy spectrum
plotted on the same graph.

The importance of Fig.1.5 is that it gives the total number of photons contained in each
photon energy emitted from the sun’s surface per unit time. For instance, a photon of
energy 1.5eV contains 0.6 × 3 × 1020 photons per m2 per second. This is also one of the
reasons semiconductors with band gaps in the range 2.5eV − 4.5eV are not used for solar
cell applications.
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CHAPTER 2

Detailed Balance Theory of a pn junction Solar Cell

...every theoretical physicist who is any good knows six or seven different theo-
retical representations for exactly the same physics.

Richard Feynman

As with the case of many fields in physics, the efficiency of a solar cell can be derived through
different methods. One of those is the detailed balance model, which was first presented in
1961 by Shockley and Queisser, and it has been the standard model for calculating solar
cell efficiencies ever since [2, 3, 4]. There are other models such as those based on energy
and entropy exchange and those that employ the electron transport equations [10, 11, 12].
However, the detailed balance model is usually preferred because it is relatively simple
and insightful, and it requires much less extensive calculations than for example the more
realistic models using the electron transport equations. Moreover, it is fundamental and
parameter-free.

The detailed balance theory is based on the statistical balance between exciton generation
and the possible recombination of the electron and hole within the solar cell. Hence, we can
write that:

J = q(Rgen −Rrec) (2.1)

where q is the electronic charge, q = 1.602 × 10−19C, Rgen is the rate of generation of an
electron-hole pair due to the absorption of incident photons from the sun, Rrec is the total
rate of recombination of the photo-generated carriers, and J is the current extracted from
the cell per unit cell area. From this equation, the efficiency of a solar cell can be calculated
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as well as the current-voltage characteristics of the cell.
Since the first version was presented in 1961, several authors have extended the detailed

balance model [3, 11]. Their main contribution was to remove some approximations that
lead to optimistic results. For instance, getting rid of the assumptions that the cell has
an infinite dimension with a “step-function absorbance”. First, we will obtain the ultimate
efficiency limit for a lossless hypothetical solar cell. After this we shall show how from the
exact model, one obtains the original model proposed by Shockley and Queisser by using
the ideal diode approximation. Finally, the Shockley-Queisser model will be summarized
in order to present a detailed perspective based on the strong connection between power
conversion efficiency(PCE) of the cell and the band gap of the semi-conducting absorbing
layer. Also, the implications of the assumptions made in the detailed balance model will be
outlined since we plan to revisit some of them in the later part of this study.

2.1 The Ultimate Limit

To calculate the ultimate efficiency limit ηul for a solar cell with a light absorber of certain
cut-off photon energy (in this case given by the band gap energy Eg of the absorber)
Shockley and Queisser made the following assumptions:

1. The solar cell has an infinite thickness, and hence an infinite volume.

2. The solar cell consists of a single pn junction as the ideal junction for splitting of e−h+

pairs via photon absorption.

3. The cell is lossless; it does not undergo carrier recombination losses(Rrec = 0).

4. Both the solar cell and the sun are blackbodies.

5. Light absorption within the cell follows a step-function:

a(E) =
{1, E≥Eg

0, E<Eg
(2.2)

where a(E) is the absorbance or absorptivity of the cell which depends on both the
photon energy E , the absorption coefficient; α(E) of the absorber, and the absorber
thickness, l which in this case, l → ∞. This means that only incident photons with
energy, E ≥ Eg are absorbed while those with E < Eg are not absorbed(i.e are
transmitted)

6. A single e−h+ pair is created per absorbed photon and it is extracted at a voltage
Vg = Eg/q.

7. No optical means is used to concentrate sunlight.

10



8. An absorbed photon with energy E > Eg does to cause thermalization losses due to
its excess kinetic energy which it might deliver to the phonons in the crystal.

The above assumptions leads to the ultimate efficiency limit defined as:

ηul =
Pout
Pin

=
JscVg
jAM1.5

(2.3)

where Jsc is the photo-generated current density also called the short-circuit current density.
The expression for Jsc follows from eq.(1.12) with the modifications λ = hc0/E, dλ =
−hc0dE/E

2, and Rgen = φ(E) as:

Jsc = qRgen = q

∫ Emax

Emin

a(E)φsun(E)dE = q

∫ Emax

Eg

[
hc0

E3
][
djAM1.5(λ)

dλ
]dE. (2.4)

Figure 2.1: The ultimate efficiency as a function of the semiconductor band gap. The
peak of the curve corresponds to the optimal value of the ultimate efficiency. This gives an
optimum value of ηul = 44% at Eg = 1.17eV . ηul goes to zero at both Eg → 0 and Eg →∞
respectively.

2.2 The Solar Cell Equation

In simple terms, a solar cell is not different from a pn junction diode under illumination.
In order to arrive at such an equation, equation(2.1) needs to be re-visited. To do so, let

11



us define a term; χ 1 called the external quantum efficiency(EQE) of the cell also known as
radiative efficiency such that:

χ =
Rrad
rec

Rrec

=
Rrad
rec

Rrad
rec +Rnon−rad

rec

(2.5)

Re-arranging equation(2.5) leads to:

Rnon−rad
rec = Rrad

rec

(1− χ
χ

)
(2.6)

Equation(2.6) allows us to define the radiative limit of a solar cell as the limit which cor-
responds to χ = 1; a situation where all the losses are indeed radiative. Rrad

rec is the re-
combination rate of free carriers due to radiative losses, i.e the emission of a photon from
the cell due electron-hole recombination, Rnon−rad

rec is the total rate of carrier recombination
which does not involve the emission of a photon. This can be Auger recombination, which
occurs when free carriers recombine but instead transfers energy to phonons in the crystal,
Shockley-Reed-Hall(SRH) recombination, which occurs when free carriers are trapped within
the crystal due to voids arising from crystal defects, or thermalization losses, which occur
when high energy photons transfer excess kinetic energy to the crystal lattice. However,
in perovskite solar cells, it has been observed that the existence and behavior of Warnier
excitons [19] causes radiative losses to dominate [6].

The detailed balance limit also called the Shockley-Queisser limit is a modification of
the ultimate limit with two extra basic assumptions considered [2];

1. Radiative loss was considered as the only loss mechanism of photons from the solar
cell. The term for radiative recombination from the semiconductor follows from the
Van Roosbroeck-Shockley(vRS) relation [16]; which is quite similar to the blackbody
radiation but in addition it accounts for the chemical potential; µ of the cell:

Rrad
rec =

2Ωcn
2

h3c2
0

∫ ∞
0

e(E)
E2dE

exp(E−µ
kTc

)− 1
(2.7)

where µ = qV ; is assumed to be constant throughout the semiconductor, V is the
voltage extracted from the cell, Tc is the cell’s temperature at 300k,and Ωc is the solid

1Note that this is different from the internal quantum efficiency, IQE defined as a measure of the charge
extracted per photon absorbed. It is given by: ηIQE = ηED × ηCT × ηCC , where ηED =exciton diffusion
efficiency, ηCT =charge transfer efficiency, and ηCC =charge collection efficiency. IQE approaching unity
implies that almost every photon absorbed is converted to a pair of charge carriers, and that almost all
the charge carriers generated are efficiently collected at the positive and negative electrodes. It is entirely
material dependent.
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Figure 2.2: Simplified band diagram showing some of the different recombination pathways,
carrier generation due to absorption of a green energy photon, blue energy photon create
free carriers that thermalize, while purple and indigo photons are either transmitted or
reflected. A free electron can also be trapped in a defect site within the absorber and fails
to make it to the conduction band.

angle through which photons exit the top surface of the cell; given as Ωc = π for a
planar cell. 2

2. Kirchorff’s law for blackbody radiation holds, i.e the emittance e(E) of the cell is also
a step-function as in equation(2.2) both in the dark, and under illumination; where
the condition for steady-state is that the total rate of photon emission be the same as
the rate at which solar photons are absorbed corrected by the fraction that is drawn
off as current in the external circuit.

Hence, substituting equations (2.5),(2.6),and (2.7) into eq.(2.1), and re-writing eq.(2.4)
in terms of the blackbody spectrum leads to:

J = q(Rgen −Rrad
rec −Rnon−rad

rec ) (2.8)

2Its origin is traced back to electron and hole population densities, n and p within the cell; such that the
rate of radiative recombination Rrad

rec = R0np/n
2
i where R0 is the radiative loss for a solar cell in the dark

and it is proportional to the Boltzmann factor exp(−E/kTc), and np/n2i is proportional to exp(µ/kTc),
ni is the intrinsic carrier concentration, and µ is the difference between the quasi-fermi energy levels of the
electron and hole respectively. [5, 18, 2, 15] . See section (5.1.3) for the derivation of eq.(2.7) and other
required derivations such as for Ωs and Ωc .
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J = q
[ 2Ωs

h3c2
0

∫ ∞
0

a(E)
E2dE

exp( E
kTs

)− 1
− 2πn2

χh3c2
0

∫ ∞
0

e(E)
E2dE

exp(E−qV
kTc

)− 1

]
(2.9)

A crucial part in the performance of a solar cell is that the cell voltage, Vc = kTc/q never
approaches the band gap voltage Vg = Eg/q, i.e Eg − qV > kTc, where V is the voltage
extracted from the cell. This is called the ideal diode approximation. Hence, we can re-write
equation(2.9) as:

J = Jsc − J0exp(
qV

kTc
) = (Jsc − J0) + J0(1− exp[ qV

kTc
]) = Jsc + J0(1− exp[V

Vc
]) (2.10)

where we have used that; Jsc − J0 ≈ Jsc under illumination. J0 is the dark saturation
current density which should be minimized as much as possible in a solar cell. It is given
by:

J0 = q
2πn2

χh3c2
0

∫ ∞
0

a(E)
E2dE

exp( E
kTc

)
=
q

χ

∫ ∞
0

a(E)φcell(E)dE (2.11)

in units of mA/cm2. A solar cell in its radiative limit; where all recombination is indeed
radiative will have an χ of unity and hence a low dark saturation current. Equation(2.10)
is the solar cell equation.

2.2.1 Short-circuit current

The short-circuit current density Jsc in units of mA/cm2 is the current extracted from the
cell per unit area when the solar cell is not matched to an external load or when it is
matched to a load with zero resistance. i.e at V = 0. It follows directly from equations
(2.10), and (1.7); for a blackbody as:

Jsc = q

∫ ∞
0

a(E)φ(E)dE = q
2Ωs

h3c2
0

∫ ∞
0

a(E)
E2dE

exp( E
kTs

)− 1
. (2.12)

2.2.2 Open-circuit voltage

The open-circuit voltage defined as Voc in units of volts (V) is the voltage extracted from
the cell when it does not deliver current to an external circuit or when it is matched to a
load with an infinite resistance i.e at J = 0. Thus, setting J = 0 in equation (2.10) leads
to:

Voc = Vc ln(
Jsc
J0

+ 1) (2.13)

where Vc = kTc/q is the cell’s thermal voltage. The first option to increase Voc is to lower J0

by changing the spectral shape of a(E): the sharper the step shape the higher the Voc. The
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Figure 2.3: (a): Short-circuit current density as a function of the semiconductor band gap.
Low band gap semiconductors give higher values of short-circuit current; which decreases
with increasing band gap. (b): Open-circuit voltage as a function of the semiconductor
band gap. It increases with increasing band gap. Note that it is never equal to the band
gap voltage due to potential loss.

only other, and more potent option to increase the Voc is instead to increase the χ towards
unity by minimizing the non-radiative recombination pathways, bringing Voc closer to the
radiative limit. The radiative efficiency hence relates to the offset between band gap and
open circuit voltage defined by: VLoss = (Eg/q)−Voc. This offset is called the potential loss.

2.3 Nominal Limit

The nominal limit accounts for the inherent radiative recombination of electron-hole pair in
calculating the power conversion efficiency of a solar cell. Hence, it is more useful than the
ultimate limit. The efficiency of the cell at this limit, called the nominal efficiency ηnl, is
further reduced when the solar cell is matched to an external load. It leads to the definition
of the nominal power point as: JVoc|V=0.
Hence, the nominal power, Pn = JscVoc, and the nominal efficiency becomes:

ηnl =
Pn
Pin

=
1

Pin
JscVoc (2.14)

2.4 Fill factor

In the same eponymous paper is a term called the impedance matching factor,m (now called
fill factor, FF )[1, 6, 7, 8] introduced by Shockley and Queisser to account for the discrepancy
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Figure 2.4: (a): The nominal efficiency as a function of the semiconductor band gap. The
peak of the curve corresponds to the optimal value of the nominal efficiency. This gives an
optimum value of ηul = 34% at Eg = 1.23eV . (b): Fill factor as a function of band gap. It
rises sharply with band gap but quickly saturates at Eg ≈ 1.50eV . Values of the fill factor
are in the range of 0.80 − 0.90 in the radiative limit. Note that it never approaches 1.0
except for a lossless cell.

betweeen the power extracted from the cell at both open-circuit and short-circuit conditions;
called the nominal power,Pn, and the power extracted from the cell when it is matched to
an external load; called the maximum power,Pm. It is an important parameter in solar cell
analysis since it tells us by how much Pm approaches Pn, and because it is related to the
power conversion efficiency(PCE) of the cell as well as the semiconductor band gap; Eg.
Thus, efficient solar cells always have a high fill factor. It is defined as:

FF =
Pm
Pn

=
Pm
JscVoc

=
J(Vm)Vm
JscVoc

(2.15)

where Vm is the voltage extracted from the cell at the maximum power point; JV ≡
maximum. Hence, at the maximum power point:

d(JV ) = 0⇒ JdV + V dJ = 0⇒ dJ

dV
|V=Vm = −Jm

Vm
(2.16)

From equations(2.10) and (2.16), we arrive at the expression:

J0

Vc
exp(

Vm
Vc

) =
Jm
Vm
⇒ Jm = J0(

Vm
Vc

)exp(
Vm
Vc

) = Jsc + J0(1− exp[Vm
Vc

]) (2.17)

where Jm = J(Vm) = is the current density at the maximum power point. Hence, using
optimization techniques the fill factor, FF can be evaluated by optimizing equation (2.15)
for Vm.
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2.5 The Detailed Balance Limit

The detailed balance limit of efficiency ηdb also known as the Shockley-Queisser limit is
the efficiency of the solar cell at the maximum power point. This is the uppermost power
conversion efficiency of a hypothetical solar cell with a step-function absorbance, and unity
internal quantum efficiency [2]. It is also called the radiative limit of efficiency at χ = 1 or
the non-radiative limit of efficiency at 0 < χ < 1. It is defined as:

ηdb =
Pm
Pin

=
JmVm
Pin

=
1

Pin
FFJscVoc (2.18)

Equation(2.16) can be further re-arranged such that:

ηdb =
1

PinVg
FFJscVgVoc = ηulFF

Voc
Vg

= ηnlFF (2.19)

Figure 2.5: (a): The Shockley-Queisser efficiency limit as a function of the absorber band
gap. The peak of the curve corresponds to the optimal value of the power conversion
efficiency. This gives an optimum value of ηdb = 30% at Eg = 1.32eV . Note that ηdb goes
to zero at both Eg → 0 and Eg → ∞ respectively. (b): The radiative limit at χ = 1 as a
function of band gap. The radiative efficiency is ≈ 88% in GaAs (Eg = 1.42eV ) solar cells,
while it is over 90% in MAPI (Eg = 1.50eV ) cells [6] .

The radiative limit allows us to find an approximate expression for the fill factor as well
as most of the important parameters in a solar cell as follows:
First, let us revisit the meaning of radiative limit. From equation(2.11) we recognize that
at χ = 1:

J0 = Jrad0

else

J0 =
Jrad0

χ
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defines the non-radiative limit
(2.20)

where:

Jrad0 = q
2πn2

h3c2
0

∫ ∞
0

a(E)E2exp(−E/kTc)dE = q

∫ ∞
0

a(E)φcell(E)dE (2.21)

Substituting equation(2.20) into (2.13) leads to:

Voc = Vc ln(
χJsc
Jrad0

+ 1) ≈ Vc ln(
χJsc
Jrad0

) (2.22)

Upon re-arranging, we get that:

χ =
Jrad0

Jsc
exp(

Voc
Vc

) (2.23)

Combining equations(2.22) and (2.17) gives:

exp(
Voc − Vm

Vc
) = 1 +

Vm
Vc

(2.24)

Upon re-arranging, we get that:

Vm ≈ Voc − Vc ln(1 +
Voc
Vc

) (2.25)

where we have used Vm ≈ Voc inside the logarithm. Hence, equation (2.15) can be re-written
as:

FF =
Jm
Jsc

[1− Vc
Voc

ln(1 +
Voc
Vc

)] (2.26)
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CHAPTER 3

Efficiency Limits of Perovskite Solar Cells

...“ Our plan was to continuously optimize our perovskite solar cells towards a
goal of more than 20% efficiency but these results are ahead of expectations. I
see no reason why we can’t aim higher now and accelerate the transfer of our
technology into production.”

Henry Snaith

Just as it was mentioned above by the CEO of Oxford PV, the power conversion effi-
ciency(PCE) of perovskite-based solar cells has been continuously optimized from a value
of 3.8% [29] since it was first used in 2009 to 9.7% and 10.9% in 2012 [20, 25], 12.0% and
15.4% in 2013 [21, 23], and just recently PCEs of 17.0% [30] and 19.3% [24] were attained.
This tremendous rise in PCE in just five years has triggered a lot of active research involving
the use of organic-inorganic halide perovskites as light absorbers in solar cells compared to
its organic and inorganic counterparts [27].
However, this new, cheap, easy-processable material has some downsides which ranges from
low stability and hysteresis losses [7, 21], losses at the hetero-junction interface [8] to Auger
and trap-assisted recombinations [30] which generally affect the PCE of the solar cell, in
addition to the inevitable radiative recombination [6, 20].

In this chapter, we restrict ourselves to the radiative limit; first with a step-function
absorbance, and secondly using the optical absorption spectrum of the three most stud-
ied direct band gap halide perovskites; CH3NH3PbI3 with a band gap Eg ≈ 1.50eV [21],
CH3NH3PbI3-xClx with a band gap Eg ≈ 1.60eV [20], and CH3NH3SnI3 with a band gap;
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Eg ≈ 1.20eV [30] 1 .We will determine the theoretical efficiency limits of these most fre-
quently used active layers in perovskite solar cells.

3.1 Light Absorption in a Perovskite Solar Cell

Figure 3.1: The solar cell geometry considered in this study, with zero reflectivity top surface
and unity reflectivity back surface. The emitted photons exit the top surface through a solid
angle Ωc = π.

Let us denote the incident intensity at the point of contact by: I(E), where I(E)|l=0 = I0.
This intensity decays as it penetrates through the absorber by an amount:

dI(E)

dl
= −α(E)I(E) (3.1)

where α(E) is the absorption coefficient of the perovskite. Re-arranging and integrating

eq.(3.1) gives:
∫ dI(E)

I
= −

∫ l
0
α(E)dl ⇒ ln I(E) = −α(E)l + k ⇒ k = ln I0. Solving for

I(E) leads to:
I(E) = I0exp(−α(E)l) (3.2)

A solar photon with energy E and intensity I1(E) strikes the top surface of the cell. It is
partly reflected as I2(E) and partly transmitted as I3(E) eq.(3.1b). The law of conservation
of energy requires that: I3(E) = I1(E)−I2(E); where r(E) = I2(E)/I1(E) is the reflectance
of the top surface. Hence, I3(E) = I1(E) − I1(E)r(E) is absorbed by the perovskite as:

1These values are experimental band gaps deduced from the absorption spectra of the perovskites of
interest.
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I4(E) = I1(E)[1− r(E)]exp(−α(E)l) according to eq.(3.2). The perfect reflector below the
cell prevents this from being transmitted, and reflects I4(E) as I5(E). It is then re-absorbed
as: I6(E) = I1(E)[1− r(E)]exp(−α(E)l)exp(−α(E)l); which finally exists the absorber as:
I7(E).
The total intensity of the absorbed photon becomes:

Ia(E) = I3(E)− I6(E) = I1(E)[1− r(E)]− I1(E)[1− r(E)]exp(−2α(E)l) (3.3)

⇒

a(E) = [1− r(E)][1− exp(−2α(E)l)] (3.4)

where a(E) = Ia(E)/I1(E) is the absorbance of the perovskite. We have assumed that
the solar cell we are considering is anti-reflecting at the top but perfectly reflecting at the
bottom. This allows us to set r(E) = 0 from top, and r(E) = 1 from below; which ensures
that an incident photon is completely absorbed through a distance of 2l. This leads to the
expression:

a(E) = 1− exp(−2α(E)l) for incident photons through the top. (3.5)

Observe that eq.(3.4) is a modified version of the Bourger’s-Beer-Lambert law as it accounts
for the double pass due to the reflecting back surface.

3.2 Radiative Limit For Step-Function Absorbance

Figure 3.2: Sketch of the step-function absorbance for an ideal absorber. The absorbance of
a semiconductor deviates from the ideal. It only approaches the ideal for infinite absorber
thicknesses, very high absorption coefficients, and for textured surfaces that allows for light
trapping.
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Using the step-function absorbance e.q.(2.2), and the AM1.5G solar spectrum fig.(1.4)
in place of the blackbody spectrum; the optimum power conversion efficiencies of the three
perovskites studied were found only as a function of their band gap.

The optimum values of the short-circuit current density Jsc, open-circuit voltage Voc,
and the fill factor FF were also determined.

Figure 3.3: (a) The power conversion efficiency limits under AM1.5G solar spectrum as
a function of band gap in the range of band gaps of interest (b) Fill factor (c) Short-
circuit current density and (d) Open-circuit voltage variation with absorber band gap under
AM1.5G solar spectrum with step-function absorbance.
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Parameter CH3NH3SnI3 CH3NH3PbI3 CH3NH3PbI3-xClx
Jsc[mA/cm

2] 40 29 26
Voc[V ] 0.94 1.20 1.30
FF 0.879 0.900 0.906
ηdb[%] 32.8 31.5 30.0

Table 3.1: Optimal values of the solar cell parameters of interest based on the step-function
absorbance.

The importance of table 3.1 is to ward-off against computational errors. The values in
the table are valid only for a hypothetical solar cell satisfying all the assumptions in the
Shockley-Queisser model. Hence, we expect that real perovskite solar cells will therefore
deviate from table 3.1 .

3.3 Radiative Limit For Continuously Varying Absorbance

The active layers in perovskite solar cells can only absorb photons with energy greater than
or equal to their band gap, a phenomenon which is very common in inorganic semiconduc-
tors. However, to arrive at the most optimistic operating conditions for the solar cell in
Fig.3.1; we have made the following assumptions:

1. The solar cell is anti-reflecting for incident photons from the top. Hence, reflection
losses are completely eliminated.

2. The internal quantum efficiency(IQE) of the cell is unity; i.e every absorbed pho-
ton leads to exciton generation which completely diffuses and gets extracted at the
electrodes.

3. Every recombination event produces a luminescent photon which is lost and not re-
absorbed; i.e re-generation of free-carriers through absorption of the recombination
radiation is not considered.
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Figure 3.4: The optical absorption coefficients of the perovskites considered at 300K in the
vicinity of their band edge. Graphs were reproduced from experimental data: [31],[20], and
[29] respectively. The absorption coefficient varies with the energy of the incident photons

as: α(E) =
(
A + B

E

)
(E − Eg)

1
2 [29], where A and B are absorption constants, and Eg is

the absorber bandgap.

Figure 3.5: Absorbance as a function of thickness for the perovskites considered based on
Fig.(3.4).

3.4 Excitons revisited

Having mentioned earlier that the photo-excited carriers in perovskites can be treated in
the same manner as with inorganic semiconductors due to the presence of Wannier-type
excitons in both materials, it is pertinent to recognize that the exciton diffusion lengths are
quite dissimilar 2 , and therefore demands some careful consideration.

The ideal condition would have been that all the charge carriers produced by the ab-
sorption of photons should flow towards the electrodes. Unfortunately, the electrons and
holes recombine after a lifetime and must be able to reach the electrodes in this time. To see
how far an exciton can travel (i.e after separation into free carriers by the in-built electric
field in the absorber) by diffusion before it vanishes by radiative recombination, we consider

2For instance, the exciton diffusion length in silicon is up to 100µm, with exciton lifetime in the order
of 1µs. [5]
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a simplified example as shown. Under illumination, an electron is injected into the p-type
absorber(CH3NH3PbI3) as a minority charge carrier. The electron will move in the positive
x-direction (i.e towards the electron transport layer).

Figure 3.6: (a): a sketch of carrier diffusion process in a p-type perovskite active layer.
The minority carrier (electron) moves to the electron transport layer after being injected
into the active layer by illumination, hence, an electric field is established in the absorber.
(b): The plot of r(x) = ∆n(x)

∆n(0)
= exp(−x/LD) against x (taken as the absorber thickness).

It shows how the minority carriers decay in each perovskite absorber. Thick absorbers are
disadvantageous for exciton dissociation and carrier transport. Recombination reduces the
charge current only if it affects the minority carriers produced by the illumination.

The distribution of the injected electron in the x-direction is given by the diffusion
equation:

Jn = −Dn
dn(x)

dx
and (3.6)

the continuity equation:
∂n(x)

∂t
+
dJn
dx

= Gn −Rn (3.7)

where Jn is diffusion current density, n(x) is the electron concentration, Dn is the electron
diffusivity, Gn and Rn are the rate of generation and recombination of the electron respec-
tively.

Under illumination, Gn = G0
n = n0

τn
, Rn = n(x)

τn
= R0

n + ∆Rn = n0

τn
+ ∆n(x)

τn
, where n0 is

the equilibrium concentration, τn is the diffusion lifetime, and ∆n(x) is injected electron

due to illumination. At steady-state, ∂n(x)
∂t

= 0. Hence eq.(3.7) reduces to:

dJn
dx

= Gn −Rn = −∆n(x)

τn
(3.8)
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and eq.(3.6) becomes:
dJn
dx

= −Dn
d2n(x)

dx2
= −Dn

d2∆n(x)

dx2
(3.9)

Combining(3.8) and (3.4), and re-arranging leads to:

d2∆n(x)

dx2
−∆n(x)

1

τnDn

= 0 (3.10)

Solving for ∆n(x) leads to:

∆n(x) = ∆n(0)exp(− x√
τnDn

) = ∆n(0)exp(− x

Ln
) (3.11)

where we have taken the part of the solution that decays with increasing value of x. From
eq.(3.11), we observe that: Ln =

√
τnDn is the minority carrier diffusion length; (electrons

in this case). The diffusivity Dn is related to the carrier mobility µn by the Einstein relation:
Dn = µnkT

q
. This relation also holds for holes with n replaced by p.

Perovskite LD(nm) D(cm2s−1) τD(ns) minority carrier
CH3NH3PbI3 129 0.017 9.79 Electrons

CH3NH3PbI3-xClx 1213 0.054 272.48 Holes
CH3NH3SnI3 30 0.045 0.2 Electrons

Table 3.2: The perovskites of interest and the minority carrier diffusion lengths, diffusivity,
and lifetimes [39] and [29]. Error bounds have been neglected. τD was calculated from
LD =

√
τDD. In an illuminated cell, only those electrons (or holes) generated in the p-type

(or n-type) will reach the n-type (or p-type) at a distance x ≤ LD. This becomes very
crucial in choosing absorber thicknesses for solar cell applications.
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CHAPTER 4

Results and Discussion

4.1 Radiative Limit at an optimum thickness

So far, we have seen that the Shockley-Queisser model does not provide any information
concerning the absorber thickness l as well as exciton diffusion length LD. In this chapter, we
discuss the various dependencies of the different solar cell parameters on absorber thickness.
The optimum results are found to deviate greatly from experiment, and the reasons for these
deviations are discussed.

4.1.1 Short-circuit Current density

At short-circuit condition, a solar cell should experience little or no recombination (i.e
Jsc−J0 ≈ Jsc), since it delivers current to a load of zero resistance. The absorber thickness
affects Jsc in one very important way. Efficient light absorption demands thicker absorbers
Fig.(3.4). Hence we observe high short-circuit current in CH3NH3SnI3 approaching the
Shockley-Queisser Limit(SQL) compared to CH3NH3PbI3 and CH3NH3PbI3-xClx. In each
of the halide perovskites, we observed that the thicker the absorber, the higher the Jsc
which approaches its own SQL. The converse is the case for thinner absorbers, The reason
for this is that charge collection at short-circuit is always assisted by the electric field in the
absorber, thus the impact of LD on Jsc is rather small. Hence, high Jsc is easily obtained
in practice.
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Figure 4.1: Short-circuit current density variation with absorber thickness for each of the
perovskite studied.

Figure 4.2: Open-circuit voltage variation with absorber thickness.

4.1.2 Open-circuit Voltage

With a load of infinite resistance, a solar cell ends up at Voc and no external current is
allowed to flow. Hence, all free carriers generated must also recombine. Hence, the best
absorber; generating the highest Voc will be the one where the absorbed photon flux equals
the emitted flux under open-circuit conditions. Our results show that thinner absorbers
give the highest Voc approaching the SQL. We must emphasize though, that the potential
loss; V SQL

oc − Voc(l) is rather insignificant; which is expected in the radiative limit. Hence,
Voc has a weak dependence on absorber thickness and on the exciton diffusion length , since
it has a stronger dependence on absorber band gap in accordance with detailed balance
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theory. Hence, we can easily infer that higher open-circuit voltages will always be observed
in CH3NH3PbI3-xClx compared to CH3NH3SnI3 and CH3NH3PbI3.

4.1.3 Fill Factor

Figure 4.3: Variation of fill factor with absorber thickness.

There is a quick drop in FF as we move away from thinner absorbers, which is more
predominant in CH3NH3PbI3. Also, the saturation point is quickly reached in CH3NH3PbI3,
while it takes thicker absorbers to achieve saturation in FF for CH3NH3SnI3 and
CH3NH3PbI3-xClx; Fig.(4.3). This is one factor that the FF and Voc also have in common
besides their dependence on LD which is stronger in FF . The reason for this is that the
electric field created in the absorber upon illumination decreases with increasing forward
bias, and collection of photo-generated carriers which was initially assisted by the electric
field, becomes weaker. In general, high FF requires a high quality absorber. Thus, we have
the highest FF values in CH3NH3PbI3-xClx.

4.1.4 Efficiency

The variation of ηRL(RL: radiative limit) with the absorber thickness depends on the Jsc(l),
Voc(l), and FF (l), (i.e ηRL(l) = Jsc(l) × Voc(l) × FF (l)). The results show that thicker
absorbers give high efficiencies. However, we must emphasize that the efficiency saturates
within the range l = 300nm-400nm in each absorber. We also recall that thick absorbers
are not good for the FF . Hence, a reasonable conclusion on the behavior of ηRL(l) must
take into account table (3.2),Fig.(3.5), and Fig.(3.6). In view of this, I came up with two
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Figure 4.4: Dependence of the power conversion efficiency on the absorber thickness.

tables: one based on efficient light extraction using thicker absorbers, and the other based
on efficient charge extraction using thinner absorbers.

Parameter CH3NH3SnI3 CH3NH3PbI3 CH3NH3PbI3-xClx
Eg[eV ] 1.20 1.50 1.60
l[nm] 400 300 1000

Jsc[mA/cm
2] 37.94 27.29 23.66

Voc[V ] 0.924 1.190 1.280
FF 0.8778 0.8995 0.9050
ηdb[%] 30.76 29.20 27.48

Table 4.1: Optimal values of the solar cell parameters of interest based on efficient light
absorption.

Parameter CH3NH3SnI3 CH3NH3PbI3 CH3NH3PbI3-xClx
Eg[eV ] 1.20 1.50 1.60
l[nm] 100 200 1000

Jsc[mA/cm
2] 30.29 27.29 23.66

Voc[V ] 0.933 1.190 1.280
FF 0.8787 0.8995 0.9050
ηdb[%] 24.82 29.20 27.48

Table 4.2: Optimal values of the solar cell parameters of interest based on efficient charge
extraction.
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4.2 Theory versus experiment

The fact that the halide perovskites are stable in dry ambient air(with the exception of
CH3NH3SnI3 [29]), and can be deposited by low-cost solution processing [34] have opened
up new avenues for future development of high efficiency, low-cost photo-voltaic cells. It is
encouraging to realize how far experimentalists have gone by allowing their device to operate
at one sun and without using anti-reflection coatings. For instance, in CH3NH3PbI3-xClx;
Voc, Jsc, FF , and η in the range 1.06V −1.13V , 19.9mA/cm2−22.8mA/cm2, 0.6544−0.7536,
and 13.8% − 19.3% respectively have been reported for absorber thicknesses in the range
200nm − 2µm [24] . Notice that the Voc and Jsc reported approaches the the upper limit
Figs.(4.1,4.2). However, Voc, Jsc, FF , and η with values 1.07V , 21.50mA/cm2, 0.68, and
15.40% respectively, have also been reported with absorber thickness of 465nm [28].

In CH3NH3PbI3, Voc, Jsc, FF , and η with values 1.08V , 18.90mA/cm2, 0.55, and 11.20%
respectively, have also been reported for absorber thickness of 250nm [6] . Voc, Jsc, FF , and
η with values 0.80V , 17.70mA/cm2, 0.62, and 8.70% respectively have also been reported
for absorber thickness of 450nm [22]. In perovskite solar cells that use CH3NH3PbI3 as both
a hole transporter and an absorber, Voc, Jsc, FF , and η with values 0.631V , 16.10mA/cm2,
0.57, and 5.50%, and 0.905V , 17.80mA/cm2, 0.65, and 10.49%, respectively have also been
reported with absorber thicknesses ≤ 400nm [34] and [25] .

In CH3NH3SnI3, Voc, Jsc, FF , and η with values 0.88V , 16.80mA/cm2, 0.42, and 6.00%
respectively, have been reported for absorber thickness of 400nm [29] . This result reveals
the role which exciton diffusion length plays on charge extraction in CH3NH3SnI3 since
FF and η are far beyond the upper limit. However, the low stability of the Sn2+ ion, and
non-radiative recombination are also responsible for poor performance of the CH3NH3SnI3

absorber.
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CHAPTER 5

Conclusion and Recommendation: Beyond the Current Limit

Using a modified version of the Shockley-Queisser model that depends on a continuously
varying absorbance, absorber thickness, and anti-reflecting capabilities; we have succeeded
in developing the most optimistic operating conditions for the three most widely used per-
ovskite absorbers by purely working in the radiative limit. This led us to the definition of
radiative efficiency as a key figure of merit that provides information on how far a solar cell
is from its own upper limit.

First, we observed that if the absorber is too thin, then it will not absorb sufficient sunlight.
This effect is observed to be more predominant in CH3NH3SnI3 and CH3NH3PbI3-xClx than
in CH3NH3PbI3. Hence, for efficient light absorption, thicker absorbers should be used
in CH3NH3SnI3 and CH3NH3PbI3-xClx based solar cells in order to achieve high Jsc and
Voc. On the other hand, we observed that if the absorber is too thick, charge extraction
will be generally poor. This effect is observed to be more predominant in CH3NH3SnI3

and CH3NH3PbI3 than in CH3NH3PbI3-xClx. Hence, for efficient charge extraction, thinner
absorbers should be used in CH3NH3SnI3 and CH3NH3PbI3 based solar cells in order to
achieve high FF and η.
However, as will be slightly discussed in this chapter, a more rigorous and generalized
approach should not be limited to only the radiative limit.

5.1 Recommendation: Beyond the Current Limit

In real solar cells, non-radiative losses are always encountered. These pathways do not
include the emission of a photon and are highly device dependent. For instance, trap-states
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Figure 5.1: [26]Experimental power conversion efficiency limits of different technologies.
Perovskites have thin film technologies as its major competitor. Projected values of PCE
are up to 20% for perovskite solar cells. Recent laboratory records debut at 17% [30] and
19.3% [24] respectively.

and defects have been detected and studied in CH3NH3PbI3-xClx [20] . They are not needed
and should be minimized as much as possible, a task that is generally not easy in practice.
For a more rigorous calculation of the theoretical upper limit of efficiency of perovskite solar
cells, I propose the inclusion of either one or more of the following non-radiative pathways:

1. Free carrier absorption: An incident photon can be absorbed by a free carrier within
the semiconductor. The free carrier in turn dissipates the energy as heat by interacting
with the phonons in the lattice. To distinguish this from the absorption process α(E)
in eq.(3.5) which generates electron-hole pairs, we denote it by: α0(E). Hence eq.(5.4)
can be re-written as:

a(E) =
{ α(E)

α(E)+α0(E)+ 1
4n2l

, n>1, textured surfaces

1−exp(−2
α(E)
α0(E)

l), n≥1, specular surfaces
(5.1)

in the presence of free carrier absorption. However, the free carrier absorption spec-
trum can only be determined experimentally.

2. Auger recombination: which occurs when free carriers recombine but instead of emit-
ting a photon with a particular energy, the energy is rather transferred to phonons in
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the crystal. Auger recombination takes place at a rate given by: [3]

RAuger = Cnn
2p+ Cpp

2n (5.2)

where Cp and Cn are Auger coefficients for holes and electrons respectively measured
from experiment. n and p are the electron and hole concentration respectively.

3. Shockley-Reed-Hall(SRH)recombination: occurs when free carriers are trapped within
the voids created by crystal defects in a semiconductor. It takes place at a rate given
by: [5]

RSRH =
{ np−n2

i
(n+ni)τp+(p+ni)τn

, general case

qw
2
σVthNtniexp(

qV
kT

), single trap level
(5.3)

The first case holds if a single trap level dominates and assuming that the majority of
the recombination takes place in the depletion region. w is the junction width, Vth is
the thermal velocity of minority carriers, Nt is the trap-density, V is the cell ’s output
voltage, q is the electronic charge, T is the ambient temperature, σ is the capture
cross-sectional area which gives the probability of an electron or hole being captured
in a defect state. In the general case, ni is the intrinsic carrier concentration,τp and
τn are hole and electron lifetimes respectively.

However, in an attempt to overcome the detailed balance limit for a single junction
device, Physicists have developed different schemes which show a lot of promise in theory.
The challenge so far is the implementation of some these schemes in the laboratory since
they have their own limitations. These methods have been applied to silicon [3], GaAs, and
CdTe solar cells [14]. They include; Photon recycling(PR): a process which involves the
re-generation of an electron-hole pair due to re-absorption of the emitted photon within the
cell, Multiple exciton generation(MEG): this involves the creation of two or more electron-
hole pairs by a single incident photon. The chances of this occurring increases if the energy of
the incident photon, E ≥ 3Eg where Eg is the absorber band gap. [2][4]. Other methods in-
clude; Photon down conversion,(DC), Photon up conversion(UC), Solar concentration(SC),
and the use of multi-junctions or tandem cells [37] . In perovskite solar cells, mesoscopic
structures have also been used. [34][29] . In this structure; mesopores(nanosize pores)are
created on the the electron transport material(ETM) and perovskite nano-particles are al-
lowed to infiltrate into the pores. This is an attempt to enhance electron transport and
extraction. We now proceed to discuss a few of these schemes.

5.1.1 Light Trapping

It is possible to increase the absorbance in materials with refractive index n > 1 by texturing
the surfaces [3]. In this case, incident light is deflected away from the angle of incidence
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at one or both interfaces and it is trapped inside the material until is either absorbed or
scattered back into the escape cone. The light trapping effect increases the mean path length
for a light ray inside the absorber from 2l to 4n2l [9][37]. It follows that the probability
per unit internal path length for a photon to be absorbed is a ratio of the competing rates;
namely the rate at which absorption takes place divided by the rate at which absorption
plus escape through the loss cone take place. The absorbance is therefore:

a(E) =
{ α(E)

α(E)+ 1
4n2l

, n>1, textured surfaces

1−exp(−2α(E)l), n≥1, specular surfaces
(5.4)

5.1.2 Plasmonic structures

A plasmon is a collective oscillation of the conduction electrons. The idea behind plasmonic
structures is to minimize some of the drawbacks mentioned earlier. For example, in [36],
Copper nano-plasmonic structures were used to enhance exciton generation in a halide
perovskite absorber while simultaneously reducing the film thickness of the perovskite. Two
degenerate transverse plasmon modes are supported by two-dimensional ordered Copper
nano-plasmonic structure embedded in the absorber. Excitons were effectively generated at
the interface between Copper and the absorber. Copper nano-plasmonic structures could
reduce the absorber thickness from 400nm to 300nm while keeping the absorption strength.

5.1.3 Oxide Perovskites

Figure 5.2: The lines show the absorption co-
efficients of bulk LaVO3 and LaVO3|SrTiO3

compared to experimental data on bulk
LaVO3 and a calculation for CdTe. In the
background is AM1.5 solar spectrum [38].

An unexplored class of absorbers for high
efficiency solar cells include oxide hetero-
structures of transition metal oxides with
a perovskite structure. Example: LaVO3

grown on SrTiO3 has a direct-band gap of
1.1eV [38]. Hence, photons carrying the
band gap energy can create electron-hole
pairs without the aid of phonons or another
indirect scattering processes. The optical
absorption of LaVO3|SrTiO3 over the solar
spectrum is comparable to CdTe; a direct
band gap material currently used for high-
efficiency thin film solar cells.
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Appendices

A Derivations

Following eq.(1.2) , let us now look at a situation whereby photons are emitted from a body
with a non-zero chemical potential. A good example of such a body is a semiconductor.
[2, 3, 5]. The photon density per energy interval follows from eq.(1.3) but with f(E, 0)
replaced by f(E, µ) as:

dn(E)

dE
= DΩc(E)f(E, µ)dΩc =

2dΩc

(hc)3

E2

exp(E−µ
kTc

)− 1
(5.5)

⇒
dΦ(E)

dE
= c

dn(E)

dE
= cDΩc(E)f(E, µ)dΩc =

2dΩc

h3c2

E2

exp(E−µ
kTc

)− 1
(5.6)

defines the emitted photon flux per energy interval. Ωc is the solid angle through which
photons exit the top surface of the semiconductor, Tc is the temperature of the cell. The
angle θ called the limiting angle of restriction for the emission of photons lies within 0 ≤
θ ≤ π/2 fig.(5.3a), while the azimuth angle φ lies within 0 ≤ φ ≤ 2π. The emitted photon
flux follows from the integration of eq.(5.6) as:

Φ(E) =

∫ ∞
0

e(E)

∫
2

h3c2

E2dΩc

exp(E−µ
kTc

)− 1
dE (5.7)

The integral on dΩc; i.e
∫
dΩc=

∫ 2π

0

∫ π/2
0

sinθdθ
′
dφ, where dθ

′
is a projection of dθ to the

horizontal plane; i.e dθ
′
= cosθdθ. Hence,

∫
dΩc becomes:

Ωc =

∫ 2π

0

∫ π/2

0

sinθdθ
′
dφ =

∫ 2π

0

∫ π/2

0

sinθcosθdθdφ = 2π
[−cos2θ

4

]π/2
0

= π
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(a) (b)

Figure 5.3: (a): a planar cell(abfg) emitting photons through the top surface. (b): a solar
concentrator focuses sun rays on a planar cell.

Equation(6) can now be re-written as:

Φ(E) = Rrad
rec =

∫ ∞
0

e(E)
2π

h3c2

E2

exp(E−µ
kTc

)− 1
dE (5.8)

where e(E) is the emissivity of the planar cell which has a value of unity for a blackbody
emitter, and c is the speed of light in the medium.

From fig.(5.3b), the solid angle subtended by the the sun rays at o due to the solar concen-
trator is [3]:

Ωs =
base area of the cone

height of the cone squared
= π

D2
s

4d2
≈ 6.8× 10−5 steradian

where Ds = 1.39million km is the sun’s diameter and d = 149million km is the earth-
sun distance. The concentration factor f is a dimensionless quantity that defines both the
condition for maximum concentration and no concentration of solar radiation. It is defined
as:

f =
Ωc

ΩsC

where C is the solar concentration. It follows that:{f= Ωc
Ωs
, no concentration, ⇒C0=1 sun

f=1, maximum concentration⇒ Ωc
ΩsCmax

=1, Cmax≈46,000suns
(5.9)
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B Summary and Outlook

Figure 5.4: RL: radiative losses, NRL: non-radiative losses, ARC: anti-reflection coat-
ing, MEG: multiple exciton generation, SQL: Shockley-Queisser limit, MSQL: modified
Shockley-Queisser limit, PETE: photon enhanced thermionic emission, PZT: piezoelectric
theory.
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C Fortran and Octave Codes

program flux! calculates solar flux, sf(1/m2s)
implicit none! and writes out terrestrial solar irradiance,f(i)(W/m2nm)
integer,parameter::nmax=2500
real(8)::et(nmax),ans1,sf(nmax),f(nmax),wl(nmax),E(nmax),ans2,h,c
integer(8)::i
open(40,file=’fort.40’,status=’old’)
read(40,*)
do i=1,2002
read(40,*)wl(i),E(i),st(i),et(i),f(i)
end do
!E(i)=Photon energy(eV), wl(i)=wavelength(nm)
!et(i)=AM0, st(i)=AM1.0,f(i)=AM=1.5
h=6.63e-34!h=Planck’s constant(Js)
c=3e8 !c=speed of light(m/s)
ans1 = 0.0
do i = 1,2001
ans1 = ans1 + ((f(i) + f(i+1))*(wl(i+1)-wl(i))*wl(i))
sf=ans1/(3*10e20*2.0*h*c*10**9)
write(13,*)E(i),et(i),f(i),sf
end do
end

clc %calculates solar cell parameters using blackbody spectrum and step-function absorbance
clear all
global kTs kTc wc ws k g
format long E
kTs=0.5168;%in eV
g=15/((kTs ∗ pi)4);%pre-multiplier
kTc=0.0258;%in eV
wc=pi;%solid angle subtended by the cell
ws=6.85e-5;%solid angle subtended by the sun
k=ws/2*wc;
function temp1=z(E)
global kTs
temp1=E.2./(exp(E./kTs)− 1);
end
function y=n(Eg)%calculates short-circuit current density
y=quadcc (@z,Eg,inf);
end
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function temp2=h(E)
global kTc
temp2=E.2./(exp(E/kTc));
end
function d=B(Eg)%calculates dark current density
d=quadcc(@h,Eg,inf);
end
function temp=p(Eg)%calculates open circuit voltage
global kTc k
temp=kTc*log(k*n(Eg)/B(Eg));
end
function temp=ff(Eg)%calculates fill factor
global kTc
vc=kTc;
temp=((p(Eg)/vc)-log(1+(p(Eg)/vc)))/(1+(p(Eg)/vc));
end
function temp3=m(Eg)%calculates detailed balance efficiency
global g
temp3=-n(Eg)*p(Eg)*ff(Eg);
end
pt=fminunc(@m,1.3)
val=-m(pt)*100*g
N=500;
db=zeros(N,1);
Eg=zeros(N,1);%bandgap
for e=1:N
Eg(e)=(e-1)*0.01;
db(e)=-100*g*m(Eg(e));%converts detailed balance efficiency to percentage
end
plot(Eg,db,”pg”)
axis([0.1 5 0 40])
xlabel ”Solar cell bandgap[ev]”;
ylabel ”Detailed balance limit of efficiency[%]”;
title(’The Shockley-Queisser limit’)
print(”db.pdf”, ”-dpdf”)

program ocv!calculates solar cell parameters using AM1.5 spectrum and step-function ab-
sorbance
implicit none
integer,parameter::nmax=2500,pi=3.141592654
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real(8)::d(nmax),f(nmax),wl(nmax),E(nmax),ans,q,ans1,hh,h,c
integer::i
real(8)::wc,vc,Jsc,Jo,Voc,ff,eta1,eta2,eta3,ans2,x,xx,vm,Jm
h=6.63e-34 !Planck’s constant in Js
c=3e8 !speed of light in m/s
wc=pi
vc=0.025
q=1.602e-19%electronic charge
hh=4.13e-15 !Planck’s constant in eVs
x=1.0! External quantum efficiency
open(17,file=’fort.17’,status=’old’)
read(17,*)
do i=1,2001
read(17,*)E(i),wl(i),f(i),d(i)
end do
ans1 = 0.0
do i = 1,2001
ans1 = ans1 + ((f(i) + f(i+1))*(wl(i+1)-wl(i)))
end do
ans1=ans1/2.0 !incident intensity in units of W/m2 (1 sun)
ans2=0.0
ans=0.0
Jo=0.0
do i=1,2001
ans2=ans2+((d(i) + d(i+1))*(E(i)-E(i+1))*0.5)
Jo=ans2*q*2*wc*0.1/((hh**3)*x*c**2)! dark current density
ans=ans+((f(i) + f(i+1))*(wl(i+1)-wl(i))*wl(i)*0.5)
Jsc=ans*q*0.1/(h*c*10**9)! Short-circuit current density
voc=vc*log((Jsc/Jo)+1) !Open-circuit voltage
vm= voc-vc*log(1+(voc/vc))! maximum voltage
Jm= Jsc+Jo*(1-exp(vm/vc)) !maximum current density
ff=(Jm*vm)/(Jsc*voc)!fill factor
xx=(exp(voc/vc))*(Jo/Jsc)! radiative efficiency
eta1=Jsc*E(i)*100/(0.1*ans1)!ultimate efficiency
eta2=Jsc*Voc*100/(0.1*ans1)!norminal efficiency
eta3=eta2*ff! detailed balance efficiency
write(18,*)E(i),Jsc,voc,ff
write(19,*)E(i),xx,eta1,eta2,eta3
end do
end
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program alll !calculates solar cell parameter for the CH3NH3SnI3 perovskite
!(a similar code is used for the other perovskites studied)
implicit none ! using AM1.5 spectrum and continuously varying absorbance
integer,parameter::nmax=2500
real(8),parameter::c=3e8,wc=pi,pi=3.141592654,vc=0.025 !in eV,hh=4.13e-15 ! in eVs
real(8)::d(nmax),f(nmax),wl(nmax),E(nmax),a(nmax),ans,q,ans1,hh,h,c,ans2,abb
integer::i,t
real(4)::wc,vc,Jsc,Jo,Voc,ff,eta1,eta2,eta3,l,n,ans3,x,vm,Jm,y
q=1.602e-19! electronic charge
ans3 = 1000.2 !incident intensity in units of W/m2

n=1.0!n=refractive index of absorber
x=1.0!EQE
y=1.0 !IQE
open(58,file=’fort.58’,status=’old’)
read(58,*)
do i=1,622
read(58,*)wl(i),E(i),f(i),a(i),d(i)
end do
do t=25,1000,25 !E(i)=photon energy in eV, t=absorber thickness in nm
l=t*0.001 !um !a(i)=absorption coefficient
ans1=0.0 !wl(i)=wavelength
ans2=0.0 !f(i)=AM1.5 solar irradiance in W/m2/nm
!d(i)=E(i)**2/exp(E(i)/Vc)
do i=1,621 !a(i) is in 1/cm units(convert to 1/um by division by 10000)
abb=1-exp(-2*a(i)*l/10000)! absorbance ans1=ans1+((f(i)*wl(i)*(1-exp(-2*a(i)*l/10000))
+ f(i+1)*wl(i+1)*(1-exp(-2*a(i+1)*l/10000)))*(wl(i+1)-wl(i)))
ans2=ans2+((d(i)*(1-exp(-2*a(i)*l/10000)) + d(i+1)*(1-exp(-2*a(i+1)*l/10000)))*(E(i)-E(i+1)))
end do
Jsc=(y*ans1*q*0.1)/(2*h*c*10**9) !short-circuit current density
Jo=(ans2*q*2*wc*0.1*n**2)/(2*(hh**3)*x*c**2)!dark current density
voc=vc*log((Jsc/Jo)+1) !open-circuit voltage
vm= voc-vc*log(1+(voc/vc))! maximum voltage
Jm= Jsc+Jo*(1-exp(vm/vc)) !maximum current density
ff=(Jm*vm)/(Jsc*voc)!fill factor
eta2=Jsc*Voc*100/(0.1*ans3)!norminal efficiency
eta3=eta2*ff !Power conversion efficiency
write(64,*)t,abb,Jsc,voc,ff,eta3
end do
end
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