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Chapter 1

INTRODUCTION AND
PRELIMINARIES

1.1 Preliminaries

1.1.1 σ-algebra:

Let Ω be a non empty set, and β a non empty collection of subsets of Ω.
Then β is called a σ-algebra if the following properties hold:
(i) Ω ∈ β
(ii) If A ∈ β, then A

′ ∈ β
(iii) If {Aj : j ∈ J} ⊂ β, then ⋃

j∈J

Aj ∈ β

for any finite or infinite countable subset of N.

1.1.2 Borel σ-algebra:

Let X be a non empty set and τ a topology on X i.e. τ is the collection
of subsets of X. Then σ(τ) is called the Borel σ-algebra of the topological
space (X, τ)
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1.1.3 Probability Space:

Let Ω be a non-empty set and β be a σ-algebra of subsets of Ω. Then the
pair (Ω,β) is called a measurable space, and a member of β is called a
measurable set. Let (Ω,β) be a measurable space and µ be a real-valued
map on β. Then µ is called a probability measure on (Ω,β) if the following
properties hold:
I µ(A) ≥ 0,∀A ∈ β
II µ(Ω)=1
III For {An}n∈N ⊂ β with Aj ∩ Ak = ∅, and i 6= j, then

µ(
⋃
n∈N

An) =
∑
n∈N

µ(An)

i.e. µ is σ-additive (or countably additive).
Now if (Ω,β) is a measurable space and µ is a probability on (Ω,β), then the
triple (Ω, β, µ) is called a probability space.

1.1.4 Measurable Map:

Let (Ω, β) and (Γ, ζ) be two measurable spaces. Then a map X : Ω −→ Γ is
called measurable if the set X−1(A) = {ω ∈ Ω : X(ω) ∈ A} is in β whenever
A ∈ ζ. In particular, we take (Γ, ζ) to be (R, β(R)) or (Rn, β(Rn)) where
n ∈ N and β(R) is the Borel σ-algebra of R.

1.1.5 Random variables/vectors:

Let (Ω, β, µ) be an arbitrary probability space and (Rn, β(Rn)) be the n-
dimensional Borel measurable space. Then a measurable map X : Ω −→ Rn

is called a random vector. If n = 1, then X is called a random variable.
We denote by L◦(Ω,Rn) the set of all Rn-valued random vectors on Ω, and
L1(Ω, β, µ) the space of random variables.

1.1.6 Probability Distribution:

Let (Ω, β, µ) be a probability space, (Rn, β(Rn)) be the n-dimensional Borel
measurable space, and X : Ω −→ Rn a random vector. Then the map
µX : β(Rn) −→ [0, 1] defined by µX(A) = µ(X−1(A)), A ∈ β(Rn) is called
the probability distribution of X.
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1.1.7 Mathematical Expectation:

Let (Ω,β,µ) be a probability space. If X ∈ L1(Ω, β, µ), then

E(X) =

∫
Ω

X(ω)dµ(ω)

is called the mathematical expectation or expected value or mean of X.

1.1.8 Variance and Covariance of random variables:

Let (Ω, β, µ) be a probability space and X an R-valued random variable on Ω,
such that X ∈ L2(Ω, β, µ). Then X is automatically in L1(Ω, β, µ) (because
in general if p ≤ q, then Lq(Ω, β, µ) ⊂ Lp(Ω, β, µ) for all p ∈ [1,∞) ∪ {∞}.)
The variance of X is defined as

V ar(X) = E((X − E(X))2).

The number σX =
√
V ar(X) is called the standard deviation/error. Now

let X, Y ∈ L2(Ω, β, µ). Then the covariance of X and Y is given by:

Cov(X, Y ) = E((X − E(X))(Y − E(Y )))

1.1.9 Stochastic Process:

Let (Ω,β,µ) be a probability space. A stochastic process X indexed by a
totally ordered set T (time), is a collection X = {X(t) : t ∈ T}, where each
X(t) or Xt is a random variable on Ω. We denote X(t) by Xt and write the
value of X(t) or Xt at ω ∈ Ω by X(t, ω) or Xt(ω). Thus, a stochastic process
or random process is a collection of random variables, often used to represent
the evolution of some random value, or system overtime.

1.1.10 Brownian Motion:

The Brownian motion refers to the ceaseless, irregular random motion of
small particles immersed in a liquid or gas, as observed by R. Brown in
1827. The phenomena can be explained by the perpetual collisions of the
particles with the molecules of the surrounding medium. Mathematically,
let (Ω, β, µ) be a probability space, and W = {W (t) ∈ L◦(Ω,Rn) : t ∈ T},
where T ⊆ R+ = [0,∞), be an Rn-valued stochastic process on Ω with the
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following properties:
(i) W (0) = 0, almost surely.
(ii) W has continuous sample paths. i.e. If X is a stochastic process and
ω ∈ Ω then the map t 7−→ X(t, ω) ∈ Rn is called a sample path or trajectory
of X. Now if the map is continuous we say X has a continuous sample paths.
(iii) W (t)−W (s) is an N(0, (t−s)T) random vector for all t > s ≥ 0, where
T is the n× n identity map.
(iv) W has a stochastically independent increments i.e. For every 0 < t1 <
t2 < · < tk, the random vectors W (t1), W (t2)−W (t1), ·,W (tk)−W (tk−1)
are stochastically independent.
ThenW is called the standard n-dimensional Brownian motion or n-dimensional
Wiener process.

For the n-dimensional Brownian motion W (t) = (W1(t), · · · , Wn(t))
we have the following useful properties:
(I) E(Wj(t)) = 0, j = 1, 2, 3, · · ·, n
(II) E(Wj(t)

2) = t, j = 1, 2, 3, · · ·, n
(III) E(Wj(t)Wk(s)) = min(t, s) for t, s ∈ T.

To show the result in III above, we assume t > s (without loss of
generality) and consider

E[Wj(t)Wk(s)] = E[(Wj(t)−Wk(s))Wk(s) +Wk(s)
2]

= E[(Wj(t)−Wk(s))Wk(s)] + E[Wk(s)
2]

(because E is linear). Then, since Wj(t)−Wk(s) and Wk(s) are independent
and both Wj(t)−Wk(s) and Wk(s) have zero mean, so

E[Wj(t)Wk(s)] = E[Wk(s)
2] = s = min(t, s)

1.1.11 Filtrations and Filtered Probability space:

Let (Ω, β, µ) be a probability space and consider F(β) = {βt : t ∈ T} a family
of σ-algebras of β with the following properties:
(i) For each t ∈ T , βt contains all the µ-null members of β,
(ii) βs ⊆ βt whenever t ≥ s, s, t ∈ T .
Then F(β) is called a Filtration of β and (Ω, β,F(β), µ) is called a Filtered
Probability Space or Stochastic Basis.
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1.1.12 Adaptedness:

A Stochastic process X = {X(t) ∈ L◦(Ω,Rn) : t ∈ T} is said to be adapted
to the filtration F(β) = {βt : t ∈ T} if X(t) is measurable with respect to
βt for each t∈T. It is plain that every stochastic process is adapted to its
natural filtration.

1.1.13 Conditional Expectation:

Let (Ω, β, µ) be a probability space, X a real random variable in L1(Ω, β, µ)
and ξ a σ-subalgebra of β. Then the conditional expectation of X given ξ
written E(X | ξ) is defined as any random variable Y such that:
(i) Y is measurable with respect to ξ i.e. for any A ∈ β(R), the set Y −1(A) ∈
ξ.
(ii)

∫
B
X(ω)dµ(ω) =

∫
B
Y (ω)dµ(ω) for arbitrary B ∈ ξ.

A random variable Y which satisfies (i) and (ii) is called a version of E(X | ξ).

1.1.14 Martingales:

The term martingale has its origin in gambling. It refers to the gambling tac-
tic of doubling the stake when losing in order to recoup oneself. In the stud-
ies of stochastic processes, martingales are defined in relation to an adapted
stochastic process. Let X = {X(t) ∈ L1(Ω, β, µ) : t ∈ T} be a real-valued
stochastic process on a filtered probability space (Ω, β,F(β), µ). Then X is
called a
(i) Supermartingale if E(X(t) | βs) ≤ X(s) almost surely whenever t ≥
s.
(ii) Submartingale if E(X(t) | βs) ≥ X(s) almost surely whenever t ≥ s.
(iii) martingale if X is both a submartingale and a supermartingale i.e. If
E(X(t)| βs) = X(s) almost surely whenever t ≥ s.

1.1.15 Ito Calculus:

Let (Ω, β,F(β), µ) be a filtered probability space and W a Brownian motion
relative to this space. We define an integral of the form

W (f, t) =

∫ t

0

f(s)dW (s), t ∈ R+
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where f belongs to some class of stochastic processes adapted to (Ω, β,F(β, µ).

1.1.16 Quadratic Variation:

Let X be a stochastic process on a filtered probability space (Ω, β,F(β), µ).
Then the quadratic variation of X on [0, t], t > 0, is the stochastic process
〈X〉 defined by

〈X〉(t) = lim
|P|→ 0

n−1∑
j=0

|X(tj+1)−X(tj))|2

where P = {t◦, t1, ·, tn} is any partition of [0, t] i.e. 0 = t1 < t2 < · < tn = t
and |P| = max0≤j≤n−1|tj+1 − tj|
If X is a differentiable stochastic process, then 〈X〉=0.

1.1.17 Stochastic Differential Equations:

These are equations of the form

dX(t) = g(t,X(t))dt+ f(t,X(t))dW (t)

with initial condition X(t◦) = x◦

1.1.18 Ito Formula and Lemma:

Let (Ω, β,F(β), µ) be a filtered probability space, X an adapted stochas-
tic process on (Ω, β,F(β), µ) whose quadratic variation is 〈X〉 and U ∈
C1,2([0, 1]× R).
Then,

U(t,X(t)) = U(s,X(s)) +

∫ t

s

∂U

∂t
(τ,X(τ))ds+

∫ t

s

∂U

∂x
(τ,X(τ))dX(τ)

+
1

2

∫ t

s

∂2U

∂x2
(τ,X(τ))d〈X〉(τ)

which may be written as
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dU(t, x) =
∂U

∂t
(t,X(t))dt+

∂U

∂x
(t,X(t))dX(t)

+
1

2

∂2U

∂x2
(t,X(t))d〈X〉(t)

The equation above is normally referred to as the Ito formula. If X
satsifies the stochastic differential equation (SDE)

dX(t) = g(t,X(t))dt+ f(t,X(t))dW (t)

X(t◦) = x◦;

then
dU(t,X(t)) = gu(t,X(t))dt+ fu(t,X(t))dW (t)

U(t◦, X(t◦)) = U(t◦, x◦)

where

gu(t, x) =
∂U

∂t
(t, x) + g(t, x)

∂U

∂x
(t, x) +

1

2
(f(t, x))2∂

2U

∂x2
(t, x);

fu(t, x) = f(t, x)
∂U

∂x
(t, x)

We obtain a particular case of the Ito formula called the Ito lemma, if we
take X = W , where g ≡ 0 and f ≡ 1 on T× R. Then

dU(t,W (t)) = [
∂U

∂t
(t,W (t)) +

1

2

∂2U

∂x2
(t,W (t))]dt+

∂U

∂x
(t,W (t))dW (t)

The equation above is referred to as the Ito lemma.

1.1.19 Risk-neutral Probabilities:

These are probabilities for future outcomes adjusted for risk, which are then
used to compute expected asset values. The benefit of this risk-neutral pric-
ing approach is that once the risk-neutral probabilities are calculated, they
can be used to price every asset based on its expected payoff. These the-
oretical risk-neutral probabilities differ from actual real world probabilities;
if the latter were used, expected values of each security would need to be
adjusted for its individual risk profile. A key assumption in computing risk-
neutral probabilities is the absence of arbitrage. The concept of risk-neutral
probabilities is widely used in pricing derivatives.
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1.1.20 Log-normal Distribution:

A random variable X is said to have a lognormal distribution if its logarithm
has a normal distribution. i.e. ln(X) ∼ N(µ, σ), meaning logrithim of X is
distributed normal with mean µ and variance σ.

1.1.21 Bivariate Normal Density Function:

The bivariate normal density function is given by:

f(x, y) =
1

2π
√

1− ρ2
exp[−x

2 − 2xyρ+ y2

2(1− ρ2)

1.1.22 Cumulative Bivariate Normal Distribution Func-
tion:

The standardised cumulative normal distribution function returns the prob-
ability that one random variable is less than ”a”, and that a second random
variable is less than ”b” when the correlation between the two variables is ρ
and is given by:

M(a, b; ρ) =
1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp[−x

2 − 2xyρ+ y2

2(1− ρ2)
]dxdy

1.1.23 Markov Process:

A Markov process is a stochastic process satisfying a certain property, called
the Markov property. Let (Ω, β, µ) be a probability space with a filtration
F(β) = {βt : t ∈ T} for some totally ordered set T , and let (S, κ) be a mea-
surable space. An s-valued stochastic process X = {Xt : t ∈ T} adapted
to the filtration is said to posses the Markov property with respect to the
filteration F(β) if, for each A ∈ κ and s, t ∈ T with s < t,

P (Xt ∈ A|βs) = P (Xt ∈ A|Xs)

A Markov process is a stochastic process which satisfies the Markov prop-
erty with respect to its natural filtration.
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1.1.24 Backward Kolmogorov Equation:

The Kolmogorov backward equation (diffusion) is a partial differential eqau-
tion (PDE) that arises in the theory of continuous-time Markov processess.
Assume that the system state X(t) evolves according to the stochastic dif-
ferential erquation

dXt = µ(Xt, t)dt+ σ(Xt, t)dW (t)

then the Kolmogorov backward equation is as follows

− ∂

∂t
p(x, t) = µ(x, t)

∂

∂x
+

1

2
σ2(x, t)

∂2

∂x2
p(x, t)

for t ≤ s, subject to the final condition p(x, s) = us(x). This can be derived
using Ito’s lemma on p(x, t) and setting the dt term equal to zero.

1.1.25 Forkker-Planck Equation:

The Fokker-Planck equation describes the time evolution of the of the veloc-
ity of a particle, and can be generalised to other observables as well. It is
also known as the Kolmogorov forward equation (diffusion). In one spatial
dimension X, for an Ito process given by the stochastic differential equation

dXt = µ(Xt, t)dt+
√

2D(Xt, t)dWt

with drift µ(Xt, t) and diffusion coefficient D(Xt, t), the Fokker-Planck
equation for the probability density f(x, t) of the random variable Xt is

∂

∂t
f(x, t) = − ∂

∂x
[µ(x, t)f(x, t)] +

∂2

∂x2
[D(x, t)f(x, t)]

The Fokker-Planck also exist in many dimensions, but we are going to restrict
ourselves to one dimension only.

1.1.26 Diffusion Process:

A diffusion process is a solution to a stochastic differential equation. It
is a continuous-time Markov process with almost surely continuous sample
paths. Mathematically, it is a Markov process with continuous sample paths
for which the Kolmogorov forward equation is the Forkker-Planck equation.
Brownian motion, reflected Brownian motion and Ornstein-Uhlenbeck pro-
cesses are examoles of diffusion process.
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1.2 Introduction

An option is a financial instrument that specifies a contract between two
parties for a future transaction at a reference price. This transaction can be
to buy or sell an underlying assets such as stocks, bonds, an interest rate
e.t.c. The option holder has the right but not the obligation to carry out the
specific transaction (i.e. to buy if it is a “call option” or to sell if it is a “put
option”) at or by a specified date (reference time).

A European option give the holder the right but not the obligation to buy,
(if it is a call) or to sell (if it is a put), an underlying asset on the specified
time or maturity date at the specified price. While an American option, give
the holder the right but not the obligation to buy, or sell an underlying asset
on or prior to the specified time or maturity date at the specified price.

A compound option is an option on an option. Hence, the compound op-
tion, or the mother option gives the holder the right but not the obligation
to buy, or sell another underlying option, the daughter option; for a certain
strike price K1 at a specified time T1. The daughter option then gives the
holder another right to buy or sell a financial asset for another strike price
K2 at a later point in time T2. So, a compound option has two strike prices,
and two expiration dates. Also, Compound options are very frequently en-
countered in capital budgeting problems when projects require sequential
decisions. For example, when dealing with development projects, the initial
development expense allows one later to make a decision to wait or, to engage
in further development expenses eventually leading to a final capital invest-
ment project. All R&D expenditures involve a sequence of decisions. In the
mining and extraction industries, one conducts geological surveys that will
lead to the opening of a mine, or to the decision to drill. Then, the owner
of the mine, or the drilling platform can any day stop operations, and begin
them again later. An investment in the production of a movie, might lead to
sequels. The value of a sequel is the value of a compound option.

This project is divided into five chapters; chapter one is the preliminar-
ies and introduction, chapter two is the Literature Review. Chapter three
will consist of financial derivatives and compound options, where we’ll give
a full explanation of what compound option is all about. As in the case
of pricing and valuation of other financial instruments (bonds or stocks) or
derivatives (futures or swaps), options too can be priced to avoid underesti-
mates or overestimates of the prices. As such, option pricing theory is one of
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the cornerstones, and most successful theory in finance and economics as de-
scribed by Ross. Therefore, chapter four will deal with pricing of compound
options, where we are going to give some methods that are used in pricing
compound options, which is the main work of the project. Black-Scholes
formula for pricing compound options, forward valuation of compound op-
tions will also be discussed, where we use the Forkker-Planck equation and
backward Kolmogorov equation to obtain the formula for pricing compound
options. We will also discuss the binomial lattice model or binomial tree
model for pricing sequential compound options. Finally, chapter five will
deal with applications.
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Chapter 2

LITERATURE REVIEW

Black and Scholes (1973) mentioned in their seminal paper that, most cor-
porate liabilities may be seen as options. As well as their famous pricing
formulas for vanilla European call and put options. They also discussed how
to evaluate the equity of a company that has coupon bonds outstanding.
They suggested that the equity can be viewed as a ”Compound option”, be-
cause the equity ”is an option on an option on . . . an option on the
firm. Geske (1977) derived formulas for valuing coupon bonds and subordi-
nated debt as compound options; while Ross (1977) has used this technique
to value American options on stocks paying constant dividend. Myer in the
same year, also suggested that corporate investment opportunities may be
represented as options. In that settling, common stock is again a compound
option. Insurance policies with sequential premiums offer another application
policies with compound options.

As we knew earlier, compound options are options with other options
as underlying assets. The fold number of a compound option counts the
number of option layers attached to directly onto underlying options. Geske
(1979) developed the original closed-form formula of 2-fold compound option
(or vanilla European call on a European call), and shows that the standard
Black and Scholes framework is a special case of such a formula. Rubbistein
(1991) generalises this result to all four possible combinations: Call on a call,
call on a put, put on a call, and put on a put, and includes techniques for
American options.

Specific multi-fold compound option pricing formula were proposed by
Geske and Johnson (1984) and Carr (1988), while the pricing formula for
sequential compound call is proved by Thomassen and Van Wouwe (2001).
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Gukhal (2003) derives analytical valuation formulas for compound options
when the underlying asset follows a Jump-diffusion process, applying these
results to value extendible options, American call options on stock that pay
discrete dividends, and American options on assets that pay continuous pro-
portional dividends.

Chen (2002) and Lajeri-Chaherli (2002) simultaneously derive the price
formula for 2-fold compound options through risk neutral method. Agliardi
and Agliardi (2003) generalise the result to 2-fold compound options calls
with time dependent parameters, while Agliardi and Agliardi (2005) extend
the multi-fold compound calls to parameters varying with time. Roll (1977),
Whalley (1981) and Selby and Hodges (1987) also study compound options.

It turns out that a wide variety of important problems are closely related
to the valuation of compound options. Some include pricing American puts
& hedging volatility risk by trading options on straddles in Brenner & Zhang
(2006). Han (2003) in his thesis and Fuoque & Han (2005) introduce a fast,
and robust approximation to compute the prices of compound options, such
as call-on-call options, within the context of stochastic volatility models.
However, they only consider the case of a European option on a European
option.

Furthermore, their method relies on certain expansions so its range of
validity is not entirely clear. The main difficulties in using the Black-Scholes
differential equation when dealing with compound options is that it assumes
that the variance of the return/volatility on the stock is constant. However,
with Compound options, this variance is not constant, but depends on the
level of the stock price, or more fundamentally, on the value of the firm.

Several papers focused on issues related to Compound options, particu-
larly on their valuation. One reason for such an interest is that Compound
options form an important foundation for the pricing of many of options.
First and foremost, in a straightforward manner, for options whose payoff is
the function of a European vanilla option at a future point in time, such as
chooser, forward start and cliquet options.

In addition, compound options can also be used as building blocks to
options with a more exotic payoff, so that their valuation is instrumental
for the valuation of the exotic option. Moreover compound options can be
employed to approximate options involving a sequence of exercise decisions,
like Bermudan options, instalment options and American options.

Most importantly, compound options can provide a useful instrument to
traders for hedging volatility risk in practice. Additionally, compound op-
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tions widely consist in staged investments, such as investment in new tech-
nologies, pharmaceutical drug development program, and investments into
technology platforms.

It is difficult to find a literature studying the Compound option pricing
problem under both stochastic volatility and stochastic interest rates. Some
authors though, discuss the American option pricing problem under these dy-
namics. Boyarchenko and Levendorski (2007), formulate the option pricing
problem by a Partial Differential Equation (PDE) approach, and they calcu-
late the option prices with the help of an iteration method based on Wiener-
Hopf factorization. Medvedev and Scallet (2010), introduce a new analytical
approach. After using an explicit and intuitive proxy for the exercise rule,
the derive tractable pricing formulate using short-maturity asymptotic ex-
pansion. Depending on model parameters, this method can accurately price
options with time-to-maturity up to several years.

Considering European options on European options under Geometric
Brownian Motion (GBM) dynamics, there exists almost explicit integral-
form solution. Nevertheless, in situation involving more general dynamics
like stochastic volatility, either explicit solutions do not exist, or the inte-
grals become difficult to evaluate. In contrast, it turns out that the PDE
approach provides a very accurate, efficient and flexible way to compute
prices of compound options. One interesting thing is that, the use of this
approach is not restricted to European type options, and can also include
American type, Asian type or other exotic options.
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Chapter 3

FINANCIAL DERIVATIVES
AND COMPOUND OPTIONS

3.1 FINANCIAL DERIVATIVES

A financial derivative is a contract between individuals, or institution whose
value at the maturity date (or expiry date), is uniquely determine by the
value of the underlying assets at time T, or until time T. In practice, it is a
financial contract between two parties that specifies (conditions especially the
dates, resulting values, and definitions of the underlying variables, the parties
contractual obligations, and the national amount) under which payments are
to be made between the parties. Common examples of underlying assets are
stocks, bonds, commodities, and currencies.

A derivative can also be regarded as a kind of asset, the ownership of
which entitles the holder to receive from the seller a cash payment, or possi-
bly a series of each payments at some point in time in the future; depending
in some pre-specified way on the behaviour of the underlying assets over the
relevant time interval. In some instances, instead of a cash payment another
asset might be delivered. For example, a basic stock option allows the holder
to purchase shares at some point in the future for a specified price. In deriva-
tives transactions, one party’s loss is always another party’s gain. As such,
the main aim of derivatives is to transfer risk from one person or firm to
another, that is, to provide insurance. If a farmer before planting can guar-
antee a certain price he will receive, he is more likely to plant. Derivatives
improve overall performance of the economy.
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3.2 CATEGORIES OF DERIVATIVES

3.2.1 Forwards

A forward, or forward contract, is an agreement between a buyer, and a seller
to exchange a commodity, or a financial asset, for a pre-specified price called
the delivery price, on a prearranged future date called the delivery time (T ).
One of the parties to a forward contract assumes a long position, and agree
to buy the underlying asset on a certain specified future date for a certain
specified price. The other party assumes a short position, and agrees to sell
the asset on the same date for the same price. At the time the contract is
entered into, the delivery price is chosen so that the value of the forward
contract to both parties is zero. This means that it costs nothing to take
either a long or a short position.

The payoff from a long position in a forward contract on one unit of an
asset is S(T )−K. This is because the holder of the contract is oblige to buy
an asset worth S(T ) for K. Similarly, the payoff from a short position in a
forward contact on one unit of an asset is K − S(T ). These payoffs can be
positive or negative. Since it costs nothing to enter into a forward contract,
the payoff from the contract is also the investor’s total gain or loss from the
contract.

3.2.2 Futures

A futures contract like a forward contract , is an agreement between two
parties to buy or sell an asset at a certain time in the future for a certain
price. Unlike forward contracts, futures contracts are normally traded on
exchange. This kind of contract is marked to market daily, i.e. it is revalued
daily to reflect the current values of relevant market variables. A futures
contract generally has commodity as its underlying asset, consequently if
specialization is often more detailed.

To make trading possible, the exchange specifies certain standardized
features of the contract. As the two parties to the contract do not necessarily
know each other, the exchange also provides a mechanism which gives the
two parties a guarantee that the contract will be honoured.
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3.2.3 Swaps

A swap is a contract in which the two investors undertake to exchange at
known dates in the future, various financial assets. An example is a currency
swap; commodity swaps and interest rate swaps.

3.2.4 Options

An option is a contract that gives the holder the right but not the obligation
to exercise a certain transaction on the maturity date T, or until the maturity
date at a fixed price K, the so-called exercise price, (or strike price). Options
are agreements between two parties. The seller of the option is called the
option writer, while the buyer of the option is called an option holder. The
buyer of the option gains the right but not the obligation, to engage in that
transaction, while the seller incurs the corresponding obligation to fulfil the
transaction. There are two types of option namely: Call option and Put
option.

CALL OPTION

A call option gives a holder the right to buy an asset at a predetermined
price (strike price), on or before a specific date. The holder is said to hold a
long position on the option. If the asset price at maturity date T is higher
than the strike price i.e. S(T ) > K, then the option is in-the-money. If the
asset price at maturity date T is exactly the strike price i.e. S(T ) = K, then
the option is at-the-money, and If the asset price at maturity date T is lower
than the strike price i.e. S(T ) < K, then the option is out-of-the-money.
Obviously would not exercise an option that is out of the money.

PUT OPTION

A put option gives a holder the right to sell an asset at a predetermined price
(strike price), on or before a specific date. The financial agent is said to hold
a short position on the option. If the asset price at maturity date T is lower
than the strike price i.e. S(T ) < K, then the option is in-the-money. If the
asset price at maturity date T is exactly the strike price i.e. S(T ) = K, then
the option is in-the-money, and If the asset price at maturity date T is higher
than the strike price i.e. S(T ) > K, then the option is out- of-the-money.
Which is the opposite of a call option.
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The process of activating an option and thereby trading the underlying
asset at the agree-upon price is referred to as exercising it. Most options has
an expiration date. So, if the option is not exercised by expiration date, it
becomes void and worthless.

EUROPEAN AND AMERICAN OPTIONS

EUROPEAN OPTIONS
A European option gives the holder the right, but no obligation to buy (if
it is a call option), or to sell (if it is a put option) only on the expiry (or
maturity) date at the specified price.
AMERICAN OPTIONS
An American option gives holder the right, but no obligation to buy (if it
is a call option), or to sell (if it is a put option), on or prior to the expiry
(maturity) date. i.e. any time before the maturity date, at the specified
price.

Some race track terms have slipped into the options vocabulary: An op-
tion finishes in-the-money; if it has a positive value at expiration. It finishes
out-of-the-money if its exercise value is negative at expiration. Before expi-
ration, options would be in-the-money , at-the-money , or out-of-the-money,
if they, when exercised immediately, resulted in a positive, zero, or negative
value, respectively.

A hedge portfolio is a riskless portfolio with respect to changes in the price
of its components. Holding a long position of a security is a strategy that
involves owning the security itself and leads to profits when prices increase.
Holding a short position of a security is equivalent to selling a security that
is not owned. It involves borrowing the security and is profitable when prices
fall.

PAYOFF OF A EUROPEAN OPTION

Since an option gives the holder a right, it has a value which is called option
price.
Call Option:
We denote by C(t) the value of a call option at time t, and by S(t) the value
of the financial asset at time t. We distinguish the following two cases:

1. At the maturity date T , the value S(t) of the asset is higher than the
strike price K. The call option is then exercised; i.e. the holder buys
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the asset for market price S(T ) and sells it to the writer at price K.
The holder realizes the profit V (S(T ), T ) = C(T ) = S(T )−K.

2. At the maturity date T , the value S(T ) of the asset is less than or equal
to the strike price. In this case, the holder does not exercise the call
option. i.e. the option expires worthless with V (S(T ), T ) = C(T ) = 0.

In summary, at the maturity date T , the value of the call is given by
the payoff function

V (S(T ), T ) = (S(T )−K)+ = max(S(T )−K, 0)

Put Option: We denote by P (t) the value of a put option at time t, and by
S(t) the value of the financial asset at time t. We distinguish the following
cases as well:

1. At the maturity date T , the value S(t) of the asset is less than the
strike price K. The put option is then exercise. i.e. the holder buys
the asset for market price S(T ) and sells it to the writer at price K.
The holder realizes the profit V (S(T ), T ) = P (T ) = K − S(T ).

2. At the maturity date T , the value S(T ) of the asset is greater than
or equal to the strike price. In this case, the holder does not exercise
the put option. i.e. the option expires worthless with V (S(T ), T ) =
P (T ) = 0.

In summary, at the maturity date T , the value of the put is given by the
payoff function

V (S(T ), T ) = (K − S(T ))+ = max(K − S(T ), 0)

PUT-CALL PARITY

Put-call parity gives a relationship between the price of a European call
option, and a European put option, both with identical strike price, and
expiry; namely that a portfolio of a long a call option and short a put option
is equivalent to (and hence has the same value as) a single forward contract
at this strike price, and expiry.
Theorem: (Put-call parity)
A European call C(S(T ), T ) and a European put P (S(T ), T ) with the same
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strike price K and maturity T on an underlying asset S paying no dividend
are related as follows:

S(t) + P (S(T ), T )− C(S(T ), T ) = Ke(−r(T−t))

where r is the riskless interest rate and market price is arbitrage-free.

3.2.5 FINANCIAL MARKETS

A market is an actual, or nominal place where forces of demand, and supply
operates, and where buyers, and sellers interact (directly or through inter-
mediaries) to trade goods, services, contracts or instruments, for money or
barter. Markets include mechanisms, or means for determining price of the
traded item, communicating the price information, facilitating deals, and
transactions, and effecting distribution. The market for a particular item
is made up of existing, and potential customers who need it, and have the
ability, and willingness to pay for it.

Derivatives market is the financial market for derivatives, financial instru-
ments like futures contracts, or options which are derived from other assets.
Financial derivatives are traded in two kinds of markets namely: Derivative
exchange and Over-the-counter (OTC) markets.

Derivative exchange:

These are regulated markets where investors trade standardised contracts.

Over-the-counter (OTC) markets:

This kind of market is done by telephone, or computer, and is often between
two financial institutions.

3.2.6 TYPES OF TRADERS

Hedgers

Hedgers use futures, forwards, options, and swap to reduce the risk that
they face from potential future movements in market variables. They are
interested in reducing risk that they already face. Hedgers prefer to forgo
the chance to make exceptional profits, even if future uncertainty appears to
work to their advantage; by protecting themselves against exceptional loss.
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Speculators

Whereas hedgers want to eliminate an exposure to movements in the price
of an asset, speculators wish to take a position in the market. They use
derivative securities to bet on the future direction of a market. They take
the opposite position to hedgers, in that they are always out to make oppor-
tunistically high profits. Either they are betting that a price will go up, or
they are betting that it will go down.

Speculators are needed in financial markets to make hedging possible.
Since a hedger wishing to lay off risk cannot do so unless someone is willing
to take it on. Forward contracts can be used for speculation. An investor who
thinks that sterling pounds will increase in value relative to the US dollar,
can speculate by taking a long position in a forward contract on sterling
pounds.

There is an important difference between speculating using forward mar-
kets, and speculating by buying the underlying asset (in this case, a currency)
in the spot market. Buying a certain amount of the asset in the spot market
requires no initial cash payment equal to the total value of what is bought.
Entering into a forward contract on the same amount of the assets, require
no initial cash payment. Speculating using forward markets therefore pro-
vides an investor with a much higher level of leverage than speculating using
spot markets. Option too gives extra leverage when used for speculation.
Sellers of futures bet on price decreases, while buyers of futures bet on price
increases.

Arbitrageurs

Practice of simultaneously buying, and selling financial instruments to benefit
from temporary price difference is called arbitrage. They try to lock in risk
less profit by simultaneously engaging themselves into transactions in two
or more markets. In other words, Arbitrageurs borrows funds to buy an
instrument(s), and sells the futures contract, get the difference in prices as
instant profits. For example, an instrument can be bought in Kano at one
price, and sold at a slightly higher price in Abuja. Market eliminates such
opportunities. i.e. there are no arbitrage opportunities. This eliminates the
presence of Arbitrageurs.

Financial derivatives are used for a number of purposes including: Risk
management, trading efficiency, speculation. e.t.c.
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3.2.7 EXOTIC OPTIONS

Derivatives securities with more complicated payoffs than the standard Euro-
pean or American calls, and puts are sometimes referred to as Exotic options.
Some of the Exotic options include:

Asian Options:

An Asian option is a special type of option contract. It is like the European
option, but with the difference that the final underlying asset price is taken
as the average of the underlying asset price over the period of the option.
The payoff P of an Asian option is given by:

P = max{ 1

T

∫ T

0

S(t)dt−K, 0}

Barrier Option

A Barrier option differs from a vanilla option in that part of the option
contract is triggered if the asset price hits some barrier, S = X, say, at any
time prior to expiry. Being either calls or puts, barrier options are categorized
as follows:

Up and In

The option expires worthless unless the barrier S = X is reached from below
before expiry.

Down and In

The option expires worthless unless the barrier S = X is reached from above
before expiry.

Up and out

The option expires worthless if the barrier S = X is reached from below
before expiry.
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Down and out

The option expires worthless if the barrier S = X is reached from above
before expiry.
Some barrier options specify a rebate, usually a fixed amount paid to the
holder if the barrier is reached in the case of outbarriers or not reached in
the case of in-barriers.

Lookback option

This is an option whose payoffs depend on the maximum, or minimum price
reached during the life of the option. If S1 is the minimum price reached, S2

is the maximum price reached, and S(T ) is the final price reached, the payoff
from a lookback call is max(0, S(T ) − S1), and the payoff from a lookback
put is max(0, S2 − S(T )).

Basket option

A type of financial derivative where the underlying asset is a group of com-
modities, securities, or currencies. Like other options, a basket option gives
the holder the right, but not the obligation, to buy, or sell an underlying as-
set at a specific price, on or before a certain date (the holder has the option
to buy or sell, or to let the option expire worthless). With a basket option,
however, the holder has the right, but not the obligation, to buy, or sell a
group of underlying assets.

A currency basket option provides a more cost effective method for multi-
national corporations to manage multi-currency exposures on a consolidated
basis. For example, a global corporation such as McDonald’s might buy
a basket option involving Indian rupees, and British pounds, in exchange
for U.S. dollars. The currency basket option has all the characteristics of a
standard option, but the strike price is based on the weighted value of the
component currencies (calculated in the holder’s base currency). A basket
option often costs less than multiple single options.

Real options

Real options can include opportunities to expand, and cease projects if cer-
tain conditions arise, amongst other options. They are referred to as ”real”
because they usually pertain to tangible assets such as capital equipment,
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rather than financial instruments. Taking into account real options can
greatly affect the valuation of potential investments. Often times, however,
valuation methods, such as NPV, do not include the benefits that real op-
tions provide. Note that this kind of option is not a derivative instrument,
but an actual option (in the sense of ”choice”) that a business may gain by
undertaking certain endeavours. For example, by investing in a particular
project, a company may have the real option of expanding, downsizing, or
abandoning other projects in the future. Other examples of real options may
be opportunities for R&D, M&A, and licensing.
Some types of real options are:
I Option to expand: Here the project is built with capacity in excess of
the expected level of output so that it can produce at higher rate if needed.
Management then has the option (but not the obligation) to expand i.e.
exercise the option should conditions turn out to be favourable. A project
with the option to expand will cost more to establish, the excess being the
option premium, but is worth more than the same without the possibility of
expansion. This is equivalent to a call option.
II Option to abandon: When market conditions, or operation performance
became worse, and cash flows are far below expectations, it is useful to have
the option to bail out, and recover the value of the project’s plant, equip-
ment, or other assets (Brealey et al, 2006). This option is called option to
abandon.

Chooser option

A Chooser option, or an as-you-like-it option, gives its owner the right to
purchase, for an amount/price K1 at time T1, either a call or a put with
exercise price K2 at time T2 i.e. call on a call or put.

Compound Options

A compound option is simply an option on an option. It is an option whose
underlying is another option. Hence, compound option (the mother option)
gives the holder the right, but not the obligation to buy (long), or sell (short)
the underlying option (the daughter option). The option holder has the right
at time T1 to pay price K1 (compound strike) to buy, or sell the daughter
option. The daughter option then gives the holder another right to buy, or
sell a financial asset for another price K2 at time T2. At first exercise date T1,
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you must decide whether it is worth exercising the first option (daughter),
depending on the strike price K1 (compound strike) and the current asset
price S. If so, you get a further option with strike price K2 and maturity T2.

The purchaser is entitled to purchase a call option (put option) with a
fixed strike price, and fixed maturity at an agreed price, at a pre-determined
future date. In this case, the price at which the agreed option may be pur-
chased at maturity is the strike price (compound strike). At maturity, the
current market price is compared with the agreed price. If the market price
is lower than the compound strike, the client allows the option to expire;
if the compound strike is lower than the market price, the client achieves
cost-effective hedging. The higher the price the client is prepared to pay
immediately, the more attractive the compound strike. However, the total
price is always more expensive than that of a normal option. In the best-
case scenario (not exercised), the hedge works out less expensive because of
the relatively small advance price. For this reason, this option is particu-
larly suitable for a company that cannot gauge whether, or not a pending
transaction (bid deadline) might subsequently entail a degree of currency
risk.

Compound options are common in many multiphase projects, such as
product, and drug development, where initiation of one phase of the project
depends on the successful completion of the preceding phase. For example,
launching a product that involves a new technology requires successful testing
of the technology; drug approval is dependent on successful phase two trials,
which can be conducted only after the end of each phase one tests. With
compound options, at the end of each phase, one has the option to continue
to the next phase, abandon the project, or defer it to a later time. Each phase
becomes an option that is contingent upon the exercise of earlier options. For
phased projects, two, or more phases may occur at the same time (parallel
options), or in sequence (staged or sequential options).

A compound option provides their owner with the right to buy, or sell
another option; and these options create positions with greater leverage than
do traditional options. There are four basic types of compound options:

Call on a Call:

A type of compound option in which the holder has the right to exercise a
call on the underlying asset, which is an option. A holder who owns a call on
a call option has until the expiration date to exercise the compound option.
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If exercised, the holder will receive the underlying call option, which will
have a set expiration date and a new exercise price. If the underlying option
is exercised, the holder receives the underlying assets. The value of the call
on a call option (with the underlying good being a stock) increases as the
stock’s price increases. The holder will exercise the call on a call option if,
at the expiration date, the price of the underlying call option is worth more
than the exercise price of the option.

In summary, a call on a call option gives the holder the right at time T1,
to buy an underlying call option at price K1, and then the underlying call
option again provides the holder with another right at time T2 to buy the
underlying asset at price K2.

Call on a Put:

This is a call option on an underlying put option. If the option holder
exercises the call option, he or she receives a put option, which is an option
that gives the holder the right but not the obligation to sell a specific asset
at a set price within a defined time period. The value of a call on a put
changes in inverse proportion to the stock price, i.e. it decreases as the stock
price increases, and increases as the stock price decreases. Also known as a
split-fee option. A call on a put will have therefore two strike prices and two
expiration dates, one for the call option and the other for the underlying put
option.

As well, there are two option price involved; the initial price is paid
upfront for the call option; the additional price is only paid if the call option
is exercised, and the option holder receives the put option. The price in this
case would generally be higher than if the option owner had only purchased
the underlying put option to begin with.

For example, consider a U.S. company that is bidding on a contract for
a European project; if the company’s bid is successful, it would receive say
10 million Euro upon project completion in one year’s time. The company is
concerned about the exchange risk posed to it by the weaker Euro if it wins
the project. Buying a put option on 10 million Euro expiring in one year
would involve significant expense for a risk that is as yet uncertain (since
the company is not sure that it would be awarded the bid). Therefore, one
hedging strategy the company could use would be to buy, for example, a
two-month call on a one-year put on the Euro (contract amount of 10 million
Euro). The price in this case would be significantly lower than it would be
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if it had instead purchased the one-year put option on the 10 million Euro
outright. On the two-month expiry date of the call option, the company has
two alternatives to consider. If it has won the project contract, or is in a
winning position, and still desires to hedge its currency risk, it can exercise
the call option, and obtain the put option on 10 million Euro. Note that
the put option will now have ten months (i.e. 12− 2 months) left to expiry.
On the other hand, if the company does not win the contract, or no longer
wishes to hedge currency risk, it can let the call option expire unexercised,
and walk away.

Put on a Put:

This is a put option on another underlying put option. The buyer of a put on
a put has the right but not the obligation to sell the underlying put option -
also known as the vanilla option - on the expiration date. This type of option
is used when leverage is desired, and the trader is moderately bullish on the
underlying asset.

The value of a put on a put changes in direct proportion to the price
of the underlying asset, i.e. it increases as the asset price increases, and
decreases as the asset price decreases. A put on a put has two strike prices
and two expiration dates, one for the initial compound put option, and the
other for the underlying vanilla put option. Since one of the variables that
determines the cost of an option is the price of the underlying asset, the cost
of a put on a put option will generally be lower than the cost of a put on the
corresponding asset. It can therefore provide a great deal of leverage to the
options trader.

So, a put on a put option, gives the holder the right to sell a put option,
and later the put option gives the holder another right to sell the underlying
asset.

Put on a Call:

This is a ”put” option on an underlying ”call” option. The buyer of a put
on a call has the right but not the obligation to sell the underlying call
option on the expiration date. This type of option is used when leverage is
desired, and the trader is bearish on the underlying asset. The value of a put
on a call changes in inverse proportion to the price of the underlying asset,
i.e. it decreases as the asset price increases, and increases as the asset price
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decreases. A put on a call has two strike prices, and two expiration dates,
one for the initial put option, and the other for the underlying call option.
The cost of a put on a call option will generally be much lower than the cost
of a put on the corresponding asset. It can therefore provide a great deal of
leverage to the options trader.

3.2.8 Simultaneous and Sequential Compound Options

Compound options are options whose value is contingent on the value of
other options. There are simultaneous compound options and sequential
compound options. In simultaneous compound options, the life of the first
option is longer (or equal to) the life of the second option. During the life of
the second option, both options are alive simultaneously. Example, Geske’s
compound option is a simultaneous compound option because the options
are alive at the same time, the equity, and the call option on equity are alive
simultaneously.

In sequential compound options, the second option is created only when
the first option is exercised. Hence, sequential compound options occur when
an earlier option must be exercised to keep later options open. In a sense, the
first option chronologically is the right to buy the second option. Sequential
Compound Options are path-dependent options, where one phase depends
on the success of another.
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Chapter 4

PRICING COMPOUND
OPTIONS

In this chapter, we explain some methods that are used in pricing compound
options. But before that, we outline the factors affecting the price of an
option.

4.1 FACTORS AFFECTING OPTION PRICES

4.1.1 Exercise Price of the Option

As a key characteristic, the strike price will impact the value of option. Such
as, the value of the call option declines as the strike price increases. However,
in the case of puts, the value will increase as the strike price increases.

4.1.2 Current value of the Underlying Asset

Options are contracts that derive value from an underlying asset. Moreover,
the underlying asset price is positively related to the value of a call option and
negatively related to the put option. Since the call option provides the right
to purchase the underlying asset at a fixed price, the higher the underlying
asset price, the more valuable the call is. On the other hand, the put option
will become less valuable as the value of the underlying asset increases.

34



4.1.3 Time to Expiration on the Option

As the time to expiration increases, both call and put options become more
valuable. As a reason, the longer time to expiration provides more time for
the value of the underlying asset to move, increasing the value of both types
of options (Damodaran,1996).

4.1.4 Variance in Value of underlying asset

Being different from other securities, the higher the variance in the value
of the underlying asset will lead greater value of the option. According to
the characteristic, the buyers of options will never lose more than the price
they pay for them, and potentially earn significant returns form large price
movement.

4.1.5 Risk free Interest Rate

Since the buyer of an option pays the price of the option up front, there is
an opportunity cost involved. This opportunity cost will depend on the level
of interest rates, and the time to expiration on the option. Additionally, risk
free interest rate also enters into the valuation of options when the present
value of the exercise price is calculated, since the exercise price does not have
to be paid (received) until expiration on calls (puts). Therefore, an increase
in the interest rate will increase the value of calls and reduce the value of
puts (Damodaran, 1996).

4.2 BLACK-SCHOLES-MERTON MODEL

4.2.1 Black-Scholes Option Pricing

The Black-Scholes option pricing model is based on a normal distribution
of underlying asset return, which is the same thing as saying that the un-
derlying asset prices themselves are log-normally distributed. A log-normal
distribution has a longer right tail compared with a normal, or bell-shaped
distribution. The log-normal distribution allows for a stock price distribution
of between zero and maturity (i.e. no negative prices), and has an upward
bias (representing the fact that a stock price can only drop 100% but can rise
by more than 100%) See [3]. European options can be best estimated using
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the Black-Scholes-Merton model. Now consider the Black-Scholes-Merton
formula;
Let S be the price of the stock
V (S, t) be the price of a derivative as a function of time and stock price
C(S, t) and P (S, t) be the price of European call option and European put
option respectively
K be the strike price of the option
r be the annualised risk-free interest rate, continuously compounded
µ be the drift rate of S, annualised
σ be the volatility of the stock’s return, this is the square root of the quadratic
variation of the stock’s log price process
t be the time in years; we generally use: now= 0, expiry= T .
Finally we will use N(x) which denotes the standard normal cumulative dis-
tribution function:

N(x) =
1√
2π

∫ x

−∞
e−

ω2

2 dω

N
′
(x) which denotes the standard normal probability density function:

N
′
(x) =

e−
x2

2

√
2π

The Black-Scholes model of the market for a particular stock makes the
following explicit assumptions:

1. There is no arbitrage opportunity (i.e. there is no way to make risk
less profit).

2. It is possible to borrow and lend cash at a known constant risk-free
interest rate.

3. It is possible to buy and sell any amount, even fractional, of stock (this
includes short selling).

4. The volatility and interest rate are constant throughout the life of the
option.

5. The above transactions do not incur any fees or costs (i.e. frictionless
market).

6. The underlying security does not pay a dividend.
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7. There are no costs associated with buying and selling the stock.

8. There is no risk of default.

Several of these assumptions of the original model have been removed in
subsequent extensions of the model. Modern versions account for changing
interest rates (Merton, 1976), transaction costs, and taxes (Ingersoll, 1976),
and dividend payout. The use of more sophisticated tools, such as stochas-
tic calculus, has proved to be an even better foundation for the theory, and
practice of option pricing, and hedging. These tools can be used to derive
the famous Black-Scholes (and Merton), or BSM option-pricing model, and
formulae. The Black-Scholes equation is a partial differential equation which
describes the price of the option over time:
The Equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

The price of the underlying asset S (typically a stock) follows a geometric
Brownian motion. That is,

dS

S
= µdt+ σdW (4.1)

where W is a Brownian motion. Note that W, and consequently its infinites-
imal increment dW, represents the only source of uncertainty in the price
history of the stock. Intuitively, W (t) is a process that ”wiggles up and
down” in such a random that its expected change over any time interval is 0.
(In addition, its variance over time T is equal to T; a good discrete analogue
for W is a simple random walk. Thus, equation (4.1) above states that the
infinitesimal rate of return on the stock has an expected value of µdt and
a variance of σ2dt. The value of a call option for a non-dividend paying
underlying stock in terms of the Black-Scholes parameters is:

C(S, t) = N(d1)S −N(d2)Ke−r(T−t),

d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

,

d2 =
ln( S

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

= d1 − σ
√
T − t
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We obtain the value of a European call option by solving the Black-Scholes
PDE:

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

SKETCH OF THE PROOF

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (4.2)

where C = C(t, S) is the European call option. The boundary conditions
are:

C(t, 0) = 0

C(T, S) = max(S −K, 0)

C(t, S)→ S if S →∞
First the parabolic PDE of the European call option is transformed into the
heat equation form. Then, the heat equation is solved using Fourier trans-
form, and hence making some transformations and changes of variables leads
to the famous formula of the European call option derived by Black and Sc-
holes. The sketch of the proof is as follows:
We change the original variables to get a simple PDE. Since our goal is to
obtain the heat equation which we know its solution; we try to obtain a new
PDE in terms of V (τ, x):

1.

S = Kex,
dS

dx
= Kex ⇒ dx

dS
=

1

K
e−x (4.3)

2.

t = T − τ
1
2
σ2
⇒ τ =

1

2
σ2(T − τ),

dτ

dt
= −1

2
σ2 (4.4)

3.
C(t, S) = KV (τ, x) (4.5)

We find the derivatives ∂C
∂t

, ∂C
∂S

, ∂2C
∂S2 ; so that we substitute in equation 4.2.

Simplifying and collecting like terms we have:

1

2
σ2∂

2V

∂x2
+ (r − 1

2
σ2)

∂V

∂x
− 1

2
σ2∂V

∂τ
− rV = 0 (4.6)
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Let n = r
1
2
σ2 ⇒ r = 1

2
nσ2, substituting in 4.6 we have:

∂V

∂τ
=
∂2V

∂x2
+ (n− 1)

∂V

∂x
− nV (4.7)

Now we need to change the boundary conditions. According to our transfor-
mation, the terminal condition becomes an initial one, so we have:
t = T ⇒ τ = 0. Using the substitution above in 4.5, we have an initial
condition for the problem in terms of V(.), which is:

V (0, x) = max(ex − 1, 0) (4.8)

We are going to make another transformation in the PDE. We have a PDE
in V (τ, x) and we will transform it into a new PDE in U(τ, x) where both
these functions are related as follows:

V (τ, x) = eαx+βτU(τ, x) (4.9)

where α and β will be defined later. Considering the initial value for the new
function U(.):

V (0, x) = eαxU(0, x)⇒ U(0, x) = e−αxV (0, x) (4.10)

Again we find the derivatives ∂V
∂τ

, ∂
2V
∂x2

, and ∂V
∂x

, so as we substitute in equation
4.7. Using these derivatives into the equation we have the PDE with the
function U(.):

∂U

∂τ
=
∂2U

∂x2
+ (2α + n− 1)

∂U

∂x
+ [(α + n)(α− 1)− β]U (4.11)

(α + n)(α− 1)− β = 0⇒ β = α2 + α(n− 1)− n (4.12)

2α + n− 1 = 0⇒ α = −1

2
(n− 1) (4.13)

Substituting 4.13 into 4.12, we have:

β = −1

4
(n+ 1)2 (4.14)

Hence we obtain the value of α and β above. Using the values of α and β
obtained, we then substitute in equation 4.9 to get:

V (τ, x) = e(− 1
2

(n−1)− 1
2

(n+1)2τ)U(τ, x) (4.15)
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The final PDE in U(.) is:

∂U

∂x
=
∂2U

∂x2
, −∞ < x <∞ and τ > 0 (4.16)

Hence we obtain the heat equation in equation 4.16. Next we find the bound-
ary conditions for the equation. Substituting 4.8 in 4.10 we have:

U(0, x) = e−αxmax(ex − 1, 0)⇒ U(0, x) = max(e(1−α)x − e−αx, 0)
Substituting 4.13 we get:

U(0, x) = max(e
1
2

(n+1)x − e
1
2

(n−1)x, 0)

Rewriting the problem we have:{
∂U
∂x

= ∂2U
∂x2

, −∞ < x <∞, τ > 0

U(0, x) = φ(x) = max[e
1
2

(n+1)x − e 1
2

(n−1)x, 0]
(4.17)

The problem in 4.17 is the classical heat equation. Its solution is well known
from Physics, and is given by:

U(τ, x) =
1√
4πτ

∫ ∞
−∞

φ(y)e−
(x−y)2

4τ dy (4.18)

The reader interested in the solution of the heat equation can consult Churchill
(1963) or See[27]. Taking the solution of heat equation we are almost done.
We will require a simple algebra to get the closed form solution of Black and
Scholes PDE. All we need is to solve the integral above and find the function
U(.). After this we come back to function V(.), and finally get C(.). Let’s
examine the function φ(y).

φ(y) = max[e
1
2

(n+1)y − e 1
2

(n−1)y, 0]

φ(y) = e
1
2

(n+1)y − e 1
2

(n−1)y if e
1
2

(n+1)y − e 1
2

(n−1)y ≥ 0

⇔ 1
2
(n+ 1)y ≥ 1

2
(n− 1)y ⇔ n+ 1 ≥ n− 1.

The last inequality is true whatever n, since we have y > 0 . So taking
the integral for positive values of y we can write:

U(τ, x) =
1√
4πτ

∫ ∞
0

φ(y)e−
(x−y)2

4τ dy
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To solve this integral we change variables. So we consider:
x
′
= y−x√

2τ
⇒ dy=

√
2τdx

′

Substituting in the integral, and applying the definition of φ function, we
have:

U(τ, x
′
) =

1√
2π

∫ ∞
− x√

2τ

φ(
√

2τx
′
+ x)e−

1
2
x
′2
dx
′

⇒
U(τ, x

′
) = 1√

2π

∫∞
− x√

2τ

[e
1
2

(n+1)(
√

2τx
′
+x) − e− 1

2
(n−1)(

√
2τx
′
+x)]e−

x
′2
2 dx

′

Let’s break this integral into I1 and I2: i.e. U(τ, x
′
) = I1 − I2, where:

I1 =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(n+1)x+ 1
2

(n+1)
√

2τx
′−x

′2
2 dx

′

and

I2 =
1√
2π

∫ ∞
− x√

2τ

e
1
2

(n−1)x+ 1
2

(n−1)
√

2τx
′−x

′2
2 dx

′

Next we compute I1 and I2 as follows:

I1 =
1√
2π
e

1
2

(n+1)x

∫ ∞
− x√

2τ

e−
1
2

(−(n+1)
√

2τx
′
+x
′2)dx

′

Completing the square in the exponential of the integral we have:

I1 =
1√
2π
e

1
2

(n+1)xe
1
4

(n+1)2τ

∫ ∞
− x√

2τ

e−
1
2

(x
′− (n+1)

√
2τ

2
)2dx

′

We then again change the variable of integration as follows:
Let ρ = x

′ − n+1
2
⇒ dρ = dx

′
and for the lower limit of integration;

If x
′
= − x√

2τ
⇒ ρ = − x√

2τ
− (n+1)

√
2τ

2

Finally we have:

I1 = e
1
2

(n+1)xe
1
4

(n+1)2τ [
1√
2π

∫ ∞
−d1

e−
1
2
ρ2dρ]

where −d1 = − x√
2τ
− (n+1)

√
2τ

2
.

The term in the bracket is the area under the standard normal distribution
between −d1 and∞. And by the symmetry of normal distribution, this area
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is the same as the area between −∞ and d1 which we call N(d1). N(.) is the
cumulative normal distribution function. Hence, we have;

I1 = e
1
2

(n+1)xe
1
4

(n+1)2τN(d1) (4.19)

where d1 = x√
2τ

+ (n+1)
√

2τ
2

.
We do similar algebra for I2, and hence we get:

I2 = e
1
2

(n−1)xe
1
4

(n−1)2τN(d2) (4.20)

where d2 = x√
2τ

+ (n−1)
√

2τ
2

.

The function U(τ, x) is given by:

U(τ, x) = I1 − I2 = e
1
2

(n+1)xe
1
4

(n+1)2τN(d1)− e
1
2

(n−1)xe
1
4

(n−1)2τN(d2) (4.21)

Substituting 4.21 in 4.15 we have:

V (τ, x) = exN(d1)− e−τnN(d2) (4.22)

Also, from 4.3, x = ln( S
K

). Substituting 4.5, x, and the value of τ in 4.4 we
get:

C(t, S) = K[eln( S
K

)N(d1)− e−r(T−t)N(d2)]

Therefore we finally have the popular Black and Scholes solution of the PDE
described by equation 4.2 as follows:

C(t, S) = SN(d1)−Ke−r(T−t)N(d2) (4.23)

where

d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

and

d2 =
ln( S

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

after the above substitution.
The price of a corresponding put option based on put-call parity is:

P (S, t) = Ke−r(T−t) − S + C(S, t) = N(−d2)Ke−r(T−t) −N(−d1)S
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Therefore, the price of put option is;

P (S, t) = N(−d2)Ke−r(T−t) −N(−d1)S,

where;
N(·) is the cumulative distribution function of the standard normal distribu-
tion,
T − t is the time-to-maturity,
S is the spot price of the underlying asset
K is the strike price
r is the risk-free interest rate (annual rate, expressed in terms of continuous
compounding)
σ is the volatility of returns of the underlying asset.
If we observe, we will see that the Black-Scholes model has five main inputs,
which are as follows:

1. Stock price: The market price of the underlying asset on the valuation
date is stock price. This can be a difficult input to estimate for op-
tions on illiquid assets; however under normal circumstances the closing
market price can usually be used.

2. Strike price: This is the price level at which the option holder has the
right to buy, or sell the underlying asset. It is the most straightforward
input as it will always be given in the option contract.

3. Time to Maturity: The time (in years) until the option expires, and
the holder is no longer entitled to exercise the option.

4. Risk free Interest Rate: The risk free interest rate for the period until
the option expires. The risk free rate should typically be a zero coupon
government bond yield.

5. Volatility: Volatility is the standard deviation of the continuously com-
pounded return on the stock. It is probably the most important single
input to any option pricing model. There are several methods for es-
timating volatility (See [25]). Historic volatility entails using historic
price data for share price movements. A useful rule of thumb is to
collect data from as far back as the options term (e.g an option with a
5 year life would require an input of historic volatility calculated from
the last 5 years of historic data). Historic volatility is often considered
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as flawed as it assumes the past will reflect the future thus several
forward-looking measures of volatility can be more powerful, and accu-
rate.

Example:
Consider for example a European call option over a certain stock has a term
of six months. The current price of the stock is $10·00, and the strike of
the option is $11·00. The risk-free interest rate is 3·92% per annum. The
volatility of the stock is 20% per annum. What is the value of the option
using Black-Scholes formula?
Solution:
Thus, S = 10 · 00, r = 0 · 0392, σ = 0 · 20, and K = 11 · 00. Now we find
C =?, which is the value of the European call.
First we find the value of d1 and d2. Manually, substituting the values into
the equation for d1 we have:

d1 =
ln(10

11
) + (0 · 0392 + 0·202

2
)0 · 5

0 · 2
√

0 · 5
= −0 · 464641

d2 = d1 − σ
√
T − t = −0 · 464641− 0 · 2

√
0 · 5 = −0 · 606062

The calculation of N(d1) and N(d2) can be done easily using standard nor-
mal tables.
Hence N(d1) = 0 · 391024 and N(d2) = 0 · 272237
Now, we then value the call option:

C = N(d1)S −N(d2)Ke−r(T−t) = (0 · 391024× 10)− (0 · 272237

× 11e−0·0392×0·2)

= 0 · 2744

Therefore, the value of the European call option is 0 · 2744. The value of the
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European put option (other facts constant) would be:

P = −N(−d1)S +N(−d2)Ke−r(T−t)

where N(−d1) = 0 · 678906 and N(−d2) = 0 · 727763
Then,

P = (−0 · 678906× 10) + (0 · 727763× 11e−0·0392×0.5) = 1 · 0610

Hence the value of the European put option is 1 · 0610.
An alternative way to find the Black-Scholes option value is to solve the
Black-Scholes partial differential equation (PDE) numerically using several
different methods (See[1]).

4.2.2 The Generalised Black-Scholes-Merton option pric-
ing formula

The Black-Scholes-Merton model can be ”generalized” by incorporating cost-
of-carry rate b. This model can be used to price European options on stocks,
stocks paying a continuous dividend yield, options on futures, and currency
options: The generalised BSM formula for European call option, and Euro-
pean put option is given by:

CBSM(S, t) = Se(b−r)(T−t)N(d1)−Ke−r(T−t)N(d2)

PBSM(S, t) = Ke−r(T−t)N(−d2)− Se(b−r)(T−t)N(−d1)

where

d1 =
ln( S

K
) + (b+ σ2

2
)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t

and b is the cost-of-carry rate; which is generally referred to as the risk-free
interest rate that could be earned by investing currency in a theoretically safe
investment minus any future cash-flows that are expected from holding an
equivalent instrument with the same risk (generally expressed in percentage).
This is the generalised Black-Scholes-Merton PDE, and this PDE is derived
using the Ito’s lemma (See [1]):

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ bS

∂V

∂S
− rV = 0
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We got the generalised Black-Scholes formula for pricing options, by solv-
ing the Black-Scholes-Merton PDE with appropriate boundary conditions
in terms of asset price S. An alternative is to solve the PDE numerically
(See[1]). The method is slower but more flexible. With the aid of the gen-
eralised Black-Scholes-Merton formula, we’ll be able to find the formulas for
pricing all the four types of compound options.

4.2.3 Compound Options

Call on Call:

If we recall, in the previous Chapter, we explained all the four types of
compound options. A call on a call option gives the owner the right to buy
an underlying option, which is a call option at a price K1, at time T1. Then
the call option gives the owner another right to buy the underlying asset at
price K2, at a later point in time T2. Under the BSM model, the payoff of
the call on call is given by:
Payoff=max(CBSM(S,K1, T2) − K2; 0), where K1 is the strike price of the
underlying option, K2 is the strike price of the option on option, and
CBSM(S,K1, T2) is the generalised BSM call option formula with strike K1

and time to maturity T2. The value of the call on call is given by:

Ccall = Se(b−r)T2M(z1, y1; ρ)−K1e
−rT2M(z2, y2; ρ)−K2e

−rT1N(y2)

where

y1 =
ln(S

I
) + (b+ σ2

2
)T1

σ
√
T1

y2 = y1 − σ
√
T1

z1 =
ln( S

K1
) + (b+ σ2

2
)T2

σ
√
T2

z2 = z1 − σ
√
T2

and
ρ =

√
T1
T2

, where T2 is the time to maturity on the underlying option, and

T1 is the time to maturity of the option on the option, and M(a, b; ρ) is the
cumulative bivariate normal distribution function.

46



Put on call:

Under the BSM model, the payoff of the put on call is given by:
Payoff=max(K2 − CBSM(S,K1, T2); 0). Then the value of the put on call is:

Pcall = K1e
−rT2M(z2,−y2;−ρ)− Se(b−r)T2M(z1,−y1;−ρ)

+K2e
−rT1N(−y2)

where the value of I called the critical value in the formula for valuing both
call on call option, and put on call option is found by solving the equation

CBSM(I,K1, T2 − T1) = K2

Call on Put:

Under the BSM model, the payoff of the call on put is given by:
Payoff = max(PBSM(S,K1, T2); 0). Now the value of the call on put is
given by:

Cput = K1e
−rT2M(−z2,−y2; ρ)− Se(b−r)T2M(−z1,−y1; ρ)

−K2e
−rT1N(−y2)

Put on put:

Under the BSM model, the payoff of the put on call is given by:
Payoff=max(K2 − PBSM(S,K1, T2); 0)). Then the value of the put on put is
given by:

Pput = Se(b−r)T2M(−z1, y1;−ρ)−K1e
−rT2M(−z2,−y2; ρ)

+K2e
−rT1N(y2),

where the critical value I in the formula for valuing both call on put option,
and put on put option is found by solving the equation

PBSM(I,K1, T2 − T1) = K2.

In summary, we show how to price European call option, and European put
option using the Black-Scholes-Merton model. Whereby, certain assumptions
has to be met for Black-Scholes option pricing model to be applicable, one
of which is that, the volatility σ has to be constant throughout the life of
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the option, so is the risk-free interest rate r. Also, we saw that the Black-
Scholes-Merton model has five inputs: the underlying price, the strike price
(exercise price), the risk-free interest rate, the time to expiration, and the
volatility. Having laid that foundation, we also give the generalised Black-
Scholes-Merton formula by incorporating the cost-of-carry rate ”b”; which is
generally referred to as the risk-free interest rate that could be earned by
investing currency in a theoretically safe investment minus any future cash-
flows that are expected from holding an equivalent instrument with the same
risk (generally expressed in percentage). When we obtained the generalised
Black-Scholes-Merton model, we used it to give the formula for pricing all
the four types of compound options.

4.2.4 Put-Call Parity Compound Options

Schilling (2001) gives the Put-Call parity between options on options.
Theorem 1.1: The European call on call Ccall, and European put on call
Pcall, with the same strike prices K1 and K2, and maturities T1 and T2 on an
underlying asset are related as follows:

Ccall(S,K1, K2, T1, T2, r, b,σ) +K2e
−rT1

= Pcall(S,K1, K2, T1, T2, r, b, σ)

+ CBSM(S,K1, T2, r, b, σ)

where r, σ, b are the interest rate, volatility, and cost-of-carry rate respec-
tively. And CBSM(S,K1, T2, r, b, σ) is the generalised BSM formula for a
European call option.

In other words, the theorem is saying; a call on a call plus the discounted
strike price of the compound option, is equal in value to a put on a call
plus a standard call with strike K1, and time to maturity T2. Hence, if we
know the value of a call on a call, we can use the put-call parity to obtain
the value of a put on a call, and vice versa.

Similarly, we have a relationship between a call on a put, and a put on a
put given below:
Theorem 1.2: The European put on put Pput, and European call on put
Cput, with the same strike prices K1 and K2, and maturities T1 and T2 on an
underlying asset are related as follows:
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Cput(S,K1, K2, T1, T2, r, b,σ) +K2e
−rT1

= Pput(S,K1, K2, T1, T2, r, b, σ)

+ PBSM(S,K1, T2, r, b, σ)

where r, σ, b are the interest rate, volatility, and cost-of-carry rate respec-
tively. And PBSM(S,K1, T2, r, b, σ) is the generalised BSM formula for a
European put option.

In other words, the theorem is also saying; a call on a put plus the
discounted strike price of the compound option, is equal in value to a put
on a put plus a standard put with strike K1, and time to maturity T2.
Hence, if we know the value of a call on a put, we can use the put-call parity
to obtain the value of a put on a put, and vice versa.

4.3 BINOMIAL LATTICE MODEL

4.3.1 Compound option model in a two period Bino-
mial tree

The binomial pricing model popularly known as binomial tree, observes the
evolution of the options price in discrete time. This technique, introduced by
Cox. et al in 1979 is applied using binomial lattice for a number of time steps
between the valuation, and expiration dates, where each node represents a
possible value at a given time. The accuracy of the result increases with an
increase in the number of time-steps.

In a compound option analysis, the value of the option depends on the
value of another option. For example, exercise of the first option give the
holder the right to acquire the second option, and the second option gives
the holder the right to buy or sell the underlying asset. Thus, the value of
the first option is dependent on the second option. The typical compound
model based on binomial lattice approach has three valuation steps: first,
value underlying asset (underlying lattice); second, value second option on
the underlying asset (equity lattice); finally, value the first option (valuation
lattice).

Consider an underlying asset with value (asset price) S, a second call with
strike price K2, and a first call with strike K1. The value of the underlying
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asset after one period say year one will either be uS (”up”, S multiply by
the variable u), or dS (”down”, S multiply by variable d) with probability P
and 1−P , respectively. We also assume u > 1 > d, so the value uS, and dS
represent the up-movement, and down-movement of the of the asset’s price,
respectively. At year two (period two), uS can take two more values: uuS
(”up up”, uS multiply by variable u), and udS (”up down”, uS multiply by
variable d). The same applies dS: values udS (”up down”, dS multiply by
variable u), and ddS (”down down”, dS multiply by variable d). The whole
scenario is transferred into a binomial tree below:

Fig: Binomial lattice of the underlying asset based on the up and down
factors.

The probability (risk-neutral probability) P , the parameters u, and d are
given by the following:

u = eσ
√

T
n

d = 1/u

P =
erfT − d
u− d

where rf is the risk-free interest rate, σ is the volatility, n is the number of
binomial lattice steps or periods, and T is the option maturity. Some text
usually write dt, or ∆t instead of T

n
meaning the same thing. The risk-free

interest rate rf , and the volatility σ are assumed to be constant throughout
the life of the option. Now, we consider year 1 to be the maturity of the first
option, and year 2 to be the maturity of the second option.
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At year two, maturity of the second option, the call can take three values:

C
′′
uu = max[uuS −K2, 0]

C
′′
ud = max[udS −K2, 0]

C
′′
dd = max[ddS −K2, 0]

Fig: Binomial lattice for the second call option.

At year one, price of the second call C
′′
u is a discounted value of C

′′
uu,

and C
′′
ud weighted by the probability P , and (1 − P ). Also, C

′′
d is a dis-

counted value of C
′′
ud, and C

′′
dd weighted by the probability P , and (1−P ).

i.e.

C
′′
u =

PC
′′
uu+ (1− P )C

′′
ud

1 + rf

and

C
′′
d =

PC
′′
ud+ (1− P )C

′′
dd

1 + rf

The price of the second call today is a discounted value of C
′′
u and C

′′
d

weighted by the probability P and (1− P ) i.e.

C
′′

=
PC

′′
u+ (1− P )C

′′
d

1 + rf

At this point we computed the value of the second call. Hence, we find the
value of the first call option which is the compound option, since it is an
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option on the second call option.

Fig: Tree for the first call option.

At year one, the maturity of the first call option, the call can only take
two values as follows:

C
′
u = max[C

′′
u−K1, 0]

and
C
′
u = max[C

′′
d−K1, 0]

Note: At the maturity of the second option, the call can only take three
values, one of which is C

′′
ud = max[udS − K2, 0], i.e. maximum between

the value of the underlying asset after an ”up down” movement minus the
strike of the option, and 0. So the value of the call here depends on the value
of the underlying asset at this up down movement (which is true in all the
remaining two cases). Unlike the value of the first option at expiration, it
depends on the value of the call option. i.e. C

′′
u and C

′′
d.

Now, the value of C
′
u being the maximum value of 0, or the value of C

′′
u

from the second option minus the first option strike price K1. The same
calculation applied to C

′
d being the maximum value of 0, or the value of

C
′′
d from the second option minus the strike price K1 of the first option.

The price of the first call today, which is obviously the value of the com-
pound option is a discounted value of C

′
u and C

′
d weighted by the prob-

ability P and (1− P ) i.e.

C
′
=
PC

′
u+ (1− P )C

′
d

1 + rf

Generally, the method consist mainly of the following three steps:
First Step: Lattice of the underlying asset, based on the up and down
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factors.
Second Step: Calculate the second long-term option, using risk neutral
probabilities, and the backward induction technique.
Third Step: Calculate the option value lattice. The analysis depends on
the lattice of the second long-term option.

4.3.2 Four-Period Binomial lattice model

Four-period binomial lattice model is used to value sequential compound
options. For sequential compound options, any type of phased investment
fits this category. For instance, research and development (R&D) programs
usually have four-phase investment scenario. When the firm invests in Phase
1 today, it acquires the option to investment in Phase 2 in year 1. If and
when the firm invests in Phase 2, it then acquires the option to investment
in Phase 3 in year 2. Similarly, investment in phase 3 will bring the option
to invest in phase 4 in year 4. We will put the relevant variables into the
table below.
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From the table, it can be found that only the third option is the standard op-
tion, since its underlying asset is the total value of the project, V . Assuming
that its value is uV with probability P or dV with probability (1− P ) after
one year. The values of P , u and d are calculated using the same approach
in the 2-period model above.

Following, we turn the project value into an event tree below, which is
our first step.

With the sequential compound options, the order of economic priority is the
opposite of the time sequence, just as in simultaneous compound option.
Hence, we start first by valuing the third option which is a simple option on
the value of the project. The values of the third option, second option, and
first option at different time and various situations separately are given by
C0

3 , C0
2 , and C0

1 respectively.
At the end of the first time period, the first option expires. Therefore,

it must be exercised at a cost of I1, or left un-exercised. i.e. no cost. If
it is exercised, the payouts are not directly dependent on the value of the
underlying project, but dependent on the value provided by the option to
investment at the next stage (i.e. second stage). Similarly, if the second
option is exercised, the payouts will depend on the value provided by the
option to investment at the third stage. But, only the third option is the
standard European call option on the value of the project, thus we choose
to firstly value the third option. At all end nodes, the intrinsic values of the
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third option expiring at T = 4 need to be solved, i.e. C4,1
3 , C4,2

3 , C4,3
3 , C4,4

3 ,
and C4,5

3 . The values of C4,1
3 , C4,2

3 , C4,3
3 , C4,4

3 , and C4,5
3 are given below, just

like in the 2-period:

C4,1
3 = max(uuuuV − I3, 0)

C4,2
3 = max(uuudV − I3, 0)

C4,3
3 = max(uuddV − I3, 0)

C4,4
3 = max(udddV − I3, 0)

C4,5
3 = max(ddddV − I3, 0)

Using the risk-neutral probability and risk-free rate, we can obtain the various
values of the third option at T = 3:

C3,1
3 =

PC4,1
3 + (1− P )C4,2

3

1 + rf

C3,2
3 =

PC4,2
3 + (1− P )C4,3

3

1 + rf
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C3,3
3 =

PC4,3
3 + (1− P )C4,4

3

1 + rf

C3,4
3 =

PC4,4
3 + (1− P )C4,5

3

1 + rf

We still use the same method to acquire the values of the third option at
T = 2:

C2,1
3 =

PC3,1
3 + (1− P )C3,2

3

1 + rf

C2,2
3 =

PC3,2
3 + (1− P )C3,3

3

1 + rf

C2,3
3 =

PC3,3
3 + (1− P )C3,4

3

1 + rf

Secondly, we calculate the values of the second option. The second option is
the compound option and its underlying asset is the third option. Intrinsic
values of the second option expiring at T = 2 are:

C2,1
2 = max(C2,1

3 − I2, 0)

C2,2
2 = max(C2,2

3 − I2, 0)

C2,3
2 = max(C2,3

3 − I2, 0)

After discounting these values multiplied by risk neutral probabilities, the
values of the second option at T = 1 can be obtained.

C1,1
2 =

PC2,1
2 + (1− P )C2,2

2

1 + rf

C1,2
2 =

PC2,2
2 + (1− P )C2,3

2

1 + rf

Finally, standing at time zero, node C0
1 , we can estimate the present value

of the compound option:
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C0
1 =

PC1,1
1 + (1− P )C1,2

1

1 + rf

In summary, the binomial lattice tree can be applied to any phased in-
vestment, depending on the number of phases. But, no matter the number
of steps involved in the project, the approach of finding the value of the op-
tion will remain the same, only that the calculation will be long and time
consuming.

4.4 THE FORWARD VALUATION OF COM-

POUND OPTIONS

The forward valuation of compound options derives a solution for pricing
compound options, when the underlying asset follows a diffusion process that
is not a geometric Brownian motion. The solution is expressed as a forward
integral of the price of the price surface of European vanilla options. The
result can be applied to price defaultable corporate coupon-paying bonds
when the value of the common stock is modelled as an option on the value of
the firm. The forward solution is significantly more efficient than alternative
numerical methods, to compute a cross-section of compound option prices.
The majority of option pricing methods provide the price of options by a
calculation that casts backward in time, starting from maturity date.

One exception is the forward partial differential equation of Dupire (1994),
which provides the current prices of a panel of options as a function of their
maturity dates, and strike prices, treating as a given constant the current
price of the underlying asset. It has been believed that only European options
could be priced by this method. So, we will show that compound options
can also be priced by a forward method given the price surface of European
options. Whence, we explain and show how to price a European (call) option
on a European (call) option.

As we knew earlier, compound options are options written on an option,
and it is characterised by two maturity dates: the intermediate maturity T1,
which is the date at which the buyer of the compound option may exercise
the claimoption, and receive a European Option. And the final maturity
T2, at which the European option expires. At the intermediate date T1, the
underlying asset’s price needs to be above a strike price say K1, in order for
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the option to have positive value which makes this kind of option a path-
dependent derivative.

Assume that the underlying asset follows a diffusion process different from
a Brownian process. In this model we work with a generalised deterministic
volatility i.e. a general diffusion process with deterministic volatility. We
show how to obtain the price of a compound option on the basis of pure Eu-
ropean option prices, starting with today as an intermediate maturity date
for which an initial condition is applied, and continuing the calculation to
any actual intermediate maturity date. This is a “forward“ calculation of the
option price in the spirit of Dupire’s forward equation for European options.
It gives a solution as a function of the strike price, and the time-to-maturity,
just as any broker would quote an option.
We make the following assumptions, and assignments:

Let t = 0 be the initial date, T1 be the intermediate maturity date, T2

be the final maturity date. Let also K1 be the intermediate strike price, and
K2 the strike price of the second stage-stage European option. Let S0 be the
underlying spot price at date 0, the dummy variables for the prices of the
underlying asset at date t are denoted by x. We also assume that an option
would require no payment at the intermediate date, and also we require that
the underlying asset price fall some strike value inorder for the option to
remain alive and continue in existence.

We denote by BT the accumulated value of the cash account earning a

continuously compounded interest rate equal to r(t), BT = e
∫ T
0 r(u)du. Ob-

serve that the interest rates here is time varying. We do restrict interest rate
to be deterministic, an assumption that would clearly be too restrictive if we
were interested in pricing interest rate derivatives.

Harrison and Kreps show that the absence of arbitrage opportunities is
equivalent to the existence of a risk-neutral probability measure say Q such
that the price πt(X) of any tradable contingent claim with pay off X that
settles at T is equal to

πt(X) = BtEQ(B−1
T |Ωt)

where EQ is the conditional expectation under the risk-neutral probability
Q.
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We assume that under the risk-neutral measure Q, the spot price of the
underlying asset is:

dS(t) = S(t)r(t)dt+ S(t)σ(S(t), t)dW (t) (4.24)

where W is a d-dimensional standard Brownian motion under Q. Here the
local volatility σ is time-varying, and restricted to be a bounded function of
the price level of the underlying asset, and time. We express the values of
tradable securities in terms of numeraire. Let the numeraire be the accumu-
lated value of the cash account, and let us call S∗(t) = B−1

T S(t) the relative,
or forward price of the underlying asset, and X∗T = B−1

T XT the discounted
payoff.

With no loss of generality, when interest rates are deterministic, we can
re-parametrize the local volatility as a function of the forward price, so that

σ∗(S∗t , t) = σ(BtS
∗
t , t)

See[26]. The relative price S∗(t) follows a local martingale under risk-neutral
probability;

dS∗(t) = S∗(t)σ∗(S∗(t), t)dW (t) (4.25)

Let q(S∗0 ;x, t) be the risk-neutral probability density of a transition of the
relative price from S∗0 at date 0 to x at date t. The relative price π∗t (X

∗
T ) of

any tradable security can be obtained as the risk-neutral expected value of its
future cash flows, expressed in units of the numeraire π∗t (X

∗
T ) = EQ(X∗T |Ω)

In the case of compound option, its relative price Γ∗0 at the initial date is
therefore equal to:

Γ∗0(S∗0 , 0;K1, K2, T1, T2) =

∫ ∞
K∗1

q(S∗0 ;x, t)C∗(x, T1;K2, T2)dx (4.26)

where C∗(x, T1;K2, T2) is the relative price at date T1 of a European call with
srike price K2, maturing on date T2, conditional on the underlying asset being
equal to x. However, the compound option is exercised when ST1 > K1.

To proceed, we need to use the Fokker-Planck (forward) partial differ-
ential equation under the risk neutral probability. Since the relative price
follows a local martingale

dS∗(t) = S∗(t)σ∗(S∗(t), t)dW (t)
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So, the drift term is zero here, and the diffusion coefficient is
1
2
(S∗

2
(t)σ∗

2
(S∗(t), t)). Then, the Fokker-Planck (forward) partial differential

equation for the transition probabilities is given by equation 4.5:

∂

∂t
q(S∗0 ;x, t) = 0 +

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t)) (4.27)

− ∂

∂t
C∗(x, t;K2, T2) =

1

2
σ∗

2

(x, t)x2 ∂
2

∂x2
C∗(x, t;K2, T2) (4.28)

such that C∗(x, T1;K2, T2) = max(0, x−K2BT−1
2

) (4.29)

Equation 4.6 is the (backward) Black-Scholes partial differential equation for
the relative price C∗(t) of the European call, and 4.7 is the relative price of
the European call. Both the Fokker-Planck (forward) PDE and backward
Black-Scholes PDE are written at date t, 0 ≤ t < T1.

Our aim is to obtain an ordinary differential equation for Γ∗0 as a function
of the intermediate date of the compound option. Toward this end, we obtain
the intermediate-maturity partial derivative:

∂

∂t
Γ∗0(S∗0 , K1, K2, t, T2) =

∫ ∞
K∗1

∂

∂t
q(S∗0 ;x, t)C∗(x, t;K2, T2)dx

Using the product rule, we have:

∂

∂t
Γ∗0(S∗0 , K1, K2, t, T2) =

∫ ∞
K∗1

∂

∂t
q(S∗0 ;x, t)C∗(x, t;K2, T2)dx (4.30)

+

∫ ∞
K∗1

q(S∗0 ;x, t)
∂

∂t
C∗(x, t;K2, T2)dx

We take the first term of the right hand side and integrate it by parts twice
as follows: i.e. ∫ ∞

K∗1

∂

∂t
q(S∗0 ;x, t)C∗(x, t;K2, T2)dx

We substitute 4.5 in the integral:∫ ∞
K∗1

∂

∂t
q(S∗0 ;x, t)C∗(x, t;K2, T2)dx =

∫ ∞
K∗1

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2)

× q(S∗0 ;x, t)C∗(x, t;K2, T2)dx
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Let u = C∗(x, t;K2, T2), dv = ∂2

∂x2
(1

2
σ∗

2
(x, t)x2q(S∗0 ;x, t))dx.

Then v = ∂
∂x

(1
2
σ∗

2
(x, t)x2q(S∗0 ;x, t))

Now,∫ ∞
K∗1

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2q(S0∗ ;x, t))C
∗(x, t;K2, T2)dx

= limx→∞[C∗(x, t;K2, T2)
∂

∂x
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]

− limx→K∗1 [C∗(x, t;K2, T2)
∂

∂x
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]

−
∫ ∞
K1∗

[
∂

∂x
(
1

2
σ∗

2

(x, t)x2q(S0∗ ;x, t))]
∂

∂x
C∗(x, t;K2, T2)dx

The third term on the right hand side can further be integrated by parts
again:∫ ∞

K1∗

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))C∗(x, t;K2, T2)dx

= limx→∞[C∗(x, t;K2, T2)
∂

∂x
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]

− limx→K∗1 [C∗(x, t;K2, T2)
∂

∂x
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]

− limx→∞
∂

∂x
[C∗(x, t;K2, T2)

1

2
σ∗

2

(x, t)x2q(S0∗ ;x, t))]

+ limx→K1∗
∂

∂x
[C∗(x, t;K2, T2)]

1

2
σ∗

2

(x, t)x2q(S0∗ ;x, t))

+

∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
[C∗(x, t;K2, T2)]dx

(4.31)

Then,
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∫ ∞
K∗1

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))C∗(x, t;K2, T2)dx

= − ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]

+

∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
C∗(x, t;K2, T2)dx

If we observe, we will see that some terms in equation 4.9 vanishes, this is
due to the assumption that the probability density goes to zero fast enough
as x goes to infinity, so that all the boundary contributions at infinity are
equal to zero. i.e.

limx→∞
∂

∂x
[
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]C∗(x, t;K2, T2) = 0

and

limx→∞[
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))]
∂

∂x
[C∗(x, t;K2, T2)] = 0

Thus, we have∫ ∞
K∗1

∂

∂t
q(S∗0 ;x, t)C∗(x, t;K2, T2)dx

=

∫ ∞
K∗1

∂2

∂x2
(
1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))C∗(x, t;K2, T2)dx

= − ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]

+

∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
C∗(x, t;K2, T2)dx

(4.32)

Now we add the other term in equation 4.8 to equation 4.10, therefore, we
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have:

∂

∂t
Γ∗0(S∗0 , K1,K2, t, T2) =

− ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+

∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
C∗(x, t;K2, T2)dx

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]

+

∫ ∞
K∗1

q(S∗0 ;x, t)
∂

∂t
C∗(x, t;K2, T2)dx

Substituting 4.6 we get:

∂

∂t
Γ∗0(S∗0 , K1,K2, t, T2) =

− ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]

+

∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
C∗(x, t;K2, T2)dx

−
∫ ∞
K∗1

1

2
σ∗

2

(x, t)x2q(S∗0 ;x, t))
∂2

∂x2
C∗(x, t;K2, T2)dx

So,

∂

∂t
Γ∗0(S∗0 , K1,K2, t, T2) =

− ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]

(4.33)

Whence we obtain an ordinary differential equation for Γ∗0 as a function of
the intermediate date of the compound option, which may be trivially solved
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by integration for any given S∗0 , K1, K2, T2, with an initial condition

Γ∗0(S∗0 , K1, K2, 0, T2) = C∗(S∗0 , 0;K2, T2)× 1(S∗0 > K1)

where 1 is the indicator function. Integrating both sides of 4.11 we get:

Γ0(S0,K1, K2, T1, T2)− Γ∗0(S0, K1, K2, 0, T2)

=

∫ T1

0

[− ∂

∂K∗1
[
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]dt

Now,

Γ0(S0, K1,K2, T1, T2) = C(S0, 0;K2, T2)× 1(S0 > K1)

+

∫ T1

0

[− ∂

∂K∗1
(
1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t)))C

∗(K∗1 , t;K2, T2)

+
∂

∂K∗1
C∗(K∗1 , t;K2, T2)[

1

2
σ∗

2

(K∗1 , t)K
∗2
1 q(S

∗
0 ;K∗1 , t))]dt.

(4.34)

Observing that Γ∗0 = Γ0, S∗0 = S0, and C∗0 = C0.

The price of compound option is given by equation 4.12, which is equal
to the sum of three terms. The first term is the value at time 0 of a plain
vanilla European option with strike equal to the final strike price, and ma-
turity equal to the final date, truncated at the intermediate strike price of
the compound option. The second term is a weighted average over the time
dimension 0 ≤ t ≤ T1 of the prices of plain vanilla European option with
strikes K2 considered only for a value of the underlying asset equal to K∗1 .
The third term is a weighted average of the strike sensitivities of these same
plain vanilla European options.
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Chapter 5

APPLICATIONS

5.1 Black-Scholes-Merton Model

Consider a put-on-call option that gives the option holder the right to sell a
call option for $50, three months from today. The strike on the underlying
call option is $520, the time to maturity on the call is six months from today,
the price on the underlying stock index is $500, the risk-free-rate is 8%, and
the stock index pays dividends at a rate of 3% annually and, has a volatility
of 35%. Calculate the value of the option (Put-on-call) using the BSM model.
Solution:
S=500, K1=520, K2=50, T1=0.25, T2=0.5, r=0.08, b=0.08-0.03=0.05, and
σ=0.35.
We use the formula to value the put-on-call option. The formula is as follows:

Pcall = K1e
−rT2M(z2,−y2;−ρ)− Se(b−r)T2M(z1,−y1;−ρ) +K2e

−rT1N(−y2)

where

y1 =
ln(S

I
) + (b+ σ2

2
)T1

σ
√
T1

y2 = y1 − σ
√
T1

z1 =
ln( S

K1
) + (b+ σ2

2
)T2

σ
√
T2

z2 = z1 − σ
√
T2
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and

ρ =
√
T1/T2

So to obtain the value of the option we have to first evaluate the value of the
critical value I, and we get the value of I by solving the equation

CBSM(I,K1, T2 − T1) = K2

Substituting the values K1, T2, T1 and K2 we have:
CBSM(I,K1, T2 − T1) = K2

=⇒
CBSM(I, 520, 0.5− 0.25) = 50
=⇒
CBSM(I, 520, 0.25) = 50.
Using the generalised BSM formula we get:

CBSM(I, 520, 0.25) = Ie(b−r)0.25N(d1)− 520e−r(0.52)N(d2)

We substitute the values of r and b as follows:

CBSM(I, 520, 0.25) = Ie(0.05−0.08)0.25N(d1)− 520e−(0.08)(0.52)N(d2)

Now,
Ie(0.05−0.08)0.25N(d1)− 520e−(0.08)(0.52)N(d2) = 50

=⇒
Ie−0.0075N(d1)− 520e−0.0416N(d2) = 50

To find the value of N(d1) and N(d2) we first evaluate d1 and d2. Therefore,

d1 =
ln( S

K1
)+(b+σ2

2
)(T )

σ
√
T

=
ln( 500

520
)+(0.05+

(0.35)2

2
)0.25

0.35
√

0.25
= ln(0.9615)+0.0278

0.175

=⇒ d1 = −(0.0393)+0.0278
0.175

= −0.0657. Therefore, d1 = −0.0657. So,

d2 = d1 − σ
√
T = −0.0657− 0.175 = −0.2407.

Hence, d1 = −0.0657, and d2 = −0.2407.
Now,

N(d1) = N(−0.0657) = 0.4761 and N(d2) = N(−0.2407) = 0.4052
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We obtain the value of N(d1) and N(d2) using the cumulative normal distri-
bution table.

Ie−0.0075N(d1)− 520e−0.0416N(d2) = I × 0.4761e−0.0075

−520× 0.4052e−0.0416 = 50

=⇒
0.4725I − 202.1284 = 50

=⇒
0.4725I = 252.1284

=⇒
I = 533.6051

Next we compute the values of y1, y2, z1, z2, and ρ.

y1 =
ln(S

I
)+(b+σ2

2
)T1

σ
√
T1

=
ln( 500

533.6051
)+(0.05+

(0.35)2

2
)0.25

0.35
√

0.25
= ln(0.9370)+0.00278

0.175

=⇒
y1 = −0.2131

Therefore, y2 = y1 − σ
√
T1 = −0.2131− 0.175 = −0.3881

Next we compute z1 and z2 as follows:

z1 =
ln( S

K1
)+(b+σ2

2
)T2

σ
√
T2

=
ln( 500

520
)+0.0556

0.2475
= −0.0393+0.0556

0.2475
= 0.0659

Then, z2 = z1 − σ
√
T2 = 0.659− 0.2475 = −0.1816, and

ρ =

√
T1

T2

= 0.7071.

Having known the values of y1, y2, z1, z2 and ρ, the value of the option after
substitution is given by:

Pcall = 520e−0.08×0.5M(−0.1816, 0.3881,−0.7071)− 500e(0.05−0.08)0.5

×M(0.0659, 0.2131,−07071) + 50e−0.08×0.25N(0.3881).

To find the value of the option we have to again compute the value of the
bivariate cumulative distribution function i.e. M(−0.1816, 0.3881,−0.7071)
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and M(0.0659, 0.2131,−07071)
To calculate the value for the bivariate cumulative normal distribution func-
tion we use the Drezner and Wesolowsky Algorithm. The algorithm is as
follows:
Drezner and Wesolowsky (1990) suggest two algorithms for calculating the
bivariate cumulative normal distribution function. Their first algorithm is
much simpler, and four to five times as fast as the Drezner (1978) algorithm.
The simplest version of the Drezner and Wesolowsky (1990) algorithm is

M(a, b, ρ) = N(a)N(b) + ρ

5∑
i=1

xie
2abyiρ−a

2−b2

2(1−y2
i
ρ2)√

1− y2
i ρ

2

where N(·) is the cumulative normal distribution function and

x1 = 0.01885404 y1 = 0.04691008

x2 = 0.038088059 y2 = 0.23076534

x3 = 0.0452707394 y3 = 0.50000000

x4 = 0.038088059 y4 = 0.76923466

x5 = 0.018854042 y5 = 0.95308992

We apply the following algorithm to find the value of the two bivariate cumu-
lative normal distributions. Let’s first consider M(0.0659, 0.2131,−0.7071).
Here, our a = 0.0659, b = 0.2131, and ρ = −0.7071.

M(a, b, ρ) = N(a)N(b) + ρ{x1e
2aby1ρ−a

2−b2

2(1−y21ρ
2)√

1− y2
1ρ

2
+
x2e

2aby2ρ−a
2−b2

2(1−y22ρ
2)√

1− y2
2ρ

2
+
x3e

2aby3ρ−a
2−b2

2(1−y23ρ
2)√

1− y2
3ρ

2

+
x4e

2aby4ρ−a
2−b2

2(1−y24ρ
2)√

1− y2
4ρ

2
+
x5e

2aby5ρ−a
2−b2

2(1−y25ρ
2)√

1− y2
5ρ

2
}

(See [1]) Substituting the values of a, b, and ρ we can compute the values
separately as follows:

x1e
2aby1ρ−a

2−b2

2(1−y21ρ
2)√

1− y2
1ρ

2
=

0.018854042e
2×0.0659×0.2131×0.04691008×(−0.7071)−0.0043−0.0454

2(1−(0.04691008)2(−0.7071)2)√
1− (0.04691008)2(−0.7071)2

=
0.018854042× 0.975

0.9994
= 0.0179
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x2e
2aby2ρ−a

2−b2

2(1−y22ρ
2)√

1− y2
2ρ

2
=

0.038088059e
−0.0199×0.23076534−0.0043−0.0454

2(1−(0.23076534)20.499)√
1− (0.23076534)20.499

=
0.038088059× 0.9725

0.9866
= 0.0375

x3e
2aby3ρ−a

2−b2

2(1−y23ρ
2)√

1− y2
3ρ

2
=

0.0452707394e
−0.0199×0.5−0.0043−0.0454

2(1−(0.5)20.499)√
1− (0.5)20.499

=
0.0452707394× 0.9666

0.9355
= 0.0582

x4e
2aby4ρ−a

2−b2

2(1−y24ρ
2)√

1− y2
4ρ

2
=

0.038088059e
−0.0199×0.76923466−0.0043−0.0454

2(1−(0.76923466)20.499)√
1− (0.76923466)20.499

=
0.038088059× 0.954

0.8411
= 0.0432

x5e
2aby5ρ−a

2−b2

2(1−y25ρ
2)√

1− y2
5ρ

2
=

0.018854042e
−0.0199×0.95308992−0.0043−0.0454

2(1−(0.95308992)20.499)√
1− (0.95308992)20.499

=
0.018854042× 0.9392

0.7394
= 0.0239

Therefore,

ρ

5∑
i=1

xie
2abyiρ−a

2−b2

2(1−y2
i
ρ2)√

1− y2
i ρ

2
= (−0.7071){0.0179 + 0.0375 + 0.0582 + 0.0432 + 0.0239}

= −0.7071× 0.1807

= −0.1278

Now we find the value of N(0.0659) and N(0.2131) using the cumulative
normal distribution table. So, N(0.0659) = 0.5239 and N(0.2131) = 0.5832.
Then

N(0.0659)×N(0.2131) = 0.3055
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Now

M(0.0659, 0.2131,−0.7071) = 0.3055 + (−0.1278) = 0.1777

We also compute the value of M(−0.1816, 0.381,−0.7071) in a similar way,
and it happens to be 0.1596. Now, we can compute the value of the option
as follows:

Pcall = 520e−0.08×0.5 × 0.1596− 500e(0.05−0.08)0.5 × 0.1777

+50e−0.08×0.25N(0.3881)

=⇒
Pcall = 520× 0.9608× 0.1596− 500× 0.9851× 0.1777

+50× 0.9802× 0.6480

=⇒
Pcall = 79.7387− 87.5261 + 31.7585 = 23.97

Hence, the value of the put-on-call option is $23.97.

5.2 Binomial Lattice Model

Suppose a project has two phases, of which the first cost $500 million and
takes a year to complete. The second phase’s expiration is one year also and
cost $700 million. Suppose that the volatility of the logarithmic returns on
the projected future cash flows is calculated to be 20%. The risk-free rate
on a risk-less asset is found to be yielding 7.7%. The static valuation of
future profitability using a discounted cash flow model, in other words the
present value of the future cash flows discounted at an appropriate market
risk-adjusted discount rate is found to be $1000 million; and could increase
by 50% or decrease by 33.3% in a year. What is the present value of this
project?
Solution:
S = 1000, rf = 0.077, σ = 0.2, K1 = 500, K2 = 700.
First, we calculate the value of u, d, and P .
u = 1.5, d = 1

u
= 1

1.5
= 0.67 and

P =
erfT − d
u− d

=
e0.077×1 − 0.67

1.5− 0.67
=

1.08− 0.67

0.83
= 0.49
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Hence, 1− P = 1− 0.49 = 0.51.
First Step: Since we obtain the values of u, d, and P , we directly go to
the first step. i.e. lattice of the underlying asset based on the up, and down
factors (here our underlying asset is the total value of the project). The
figure below gives the value of the project at different nodes. That is, either
by multiplying S by u for an up-movement, or multiplying S by d for a
down-movement.

So, at period one we got the value of the project by multiplying the value
S with the variable u (uS) for up-movement, and multiplying S by d (dS)
for the down-movement. Likewise at period two, we have uS, and dS, where
uS can take two more values: uuS for ”up up-movement” (i.e. uS multiplied
by the variable u), and udS for ”up down-movement”, (i.e. uS multiplied by
the variable d). Also, dS can take two values: duS for ”down up-movement”,
and ddS for ”down down-movement. We turn the value of the project into
an event tree below:

Fig: Tree for the value of the project.
Second Step: Next, we use the tree, and move to the second step. i.e. We
calculate the value of the second option using the risk-neutral probabilities,
and the backward induction technique. The following step is as follows:

At year two, maturity of the second option (second phase), the value of
the call can take three values as follows:

C
′′
uu = max[uuS −K2, 0] = max[2250− 700, 0] = max[1550, 0] = 1550

C
′′
ud = max[udS −K2, 0] = max[1005− 700, 0] = max[305, 0] = 305

C
′′
dd = max[ddS −K2, 0] = max[448.89− 700, 0] = max[−251.11, 0] = 0
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At year one, value of the second call C
′′
u is a discounted value of C

′′
uu

and C
′′
ud weighted by the probability P and (1 − P ). Also price C

′′
d is

a discounted value of C
′′
ud and C

′′
dd weighted by the probability P and

(1− P ). i.e.

C
′′
u =

PC
′′
uu+ (1− P )C

′′
ud

1 + rf
=

0.49× 1550 + 0.51× 305

1 + 0.077

=
759.5 + 155.55

1.077
= 849.63

C
′′
d =

PC
′′
ud+ (1− P )C

′′
dd

1 + rf
=

0.49× 305 + 0.51× 0

1.077
=

149.45

1.077
= 138.77

The price of the second call today is a discounted value of C
′′
u and C

′′
d

weighted by the probability P and (1− P ) i.e.

C
′′

=
PC

′′
u+ (1− P )C

′′
d

1 + rf
=

0.49× 849.63 + 0.51× 138.77

1.077

=
495.32

1.077
= 459.91

Therefore the value of the second call today is $459.91 million. Hence, we
evaluated the value of the second call, we then move to the third and final
step.
Third Step: The next step is the final step. i.e. We find the option value
lattice, whereby its analysis depends on the second option.
At year one, the maturity of the first call option (first phase), the call can
take two values:

C
′
u = max[C

′′
u−K1, 0] = max[849.63− 500, 0] = max[349.63, 0] = 349.63

C
′
u = max[C

′′
d−K1, 0] = max[13877− 500, 0] = max[−361.23, 0] = 0
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Fig: Tree for the value of the first call option (compound option).
Finally, the price of the first call today, is a discounted value of C

′
u and C

′
d

weighted by the probability P and (1− P ) i.e.

C
′
=
PC

′
u+ (1− P )C

′
d

1 + rf
=

0.49× 349.63 + 0

1.077
=

171.32

1.077
= 159.02

Hence, the present value of the project is $159.02 million.
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