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Abstract

The Maxwell equations of electrodynamics acquire an additional symmetry
if one assumes the existence of hypothetical particles-magnetic monopoles,
carrying a magnetic charge. The additional internal symmetry is the electro-
magnetic duality generated by the rotations in the space of electric and mag-
netic charges.

In this project we revise the electromagnetic duality in his global as-
pect starting with the celebrated Dirac monopole, a singular solution in a
slightly modified Maxwell theory. We then take account of the new in-
sight on the duality in the broken SO(3) gauge theory where the magnetic
monopoles arose as finite-energy smooth solution (found by ’t Hooft and
Polyakov). The stability of these monopoles is guaranteed by the conserva-
tion of topological invariants, i.e., these are topologically protected states.
The spectrum of the gauge theory states enjoys a symmetry between the
electrically charged gauge boson and the magnetic monopole, manifesting
a quantum electro-magnetic duality which turns out to be a part of larger
SL(2,Z)-group symmetry acting on the 2-dimensional charge lattice.

Recently the idea of magnetic monopoles and dyons was revived by the
discovery of new kind of materials known as topological insulators. The
theoretical considerations in the modified axion electrodynamics show that
the electric charges on the boundary of a topological insulator induce mirror
images carrying magnetic charges. We consider carefully the mirror images
in the case of topological insulator with planar and spherical boundary. We
then provide a description of the induced mirror images in a manifestly
SL(2,Z)-covariant form.
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Chapter 1

Introduction

This thesis will consider abelian U(1) and non-abelian SO(3) gauge the-
ories allowing for states carrying units of magnetic charge, the so called
magnetic monopoles. The existence of such magnetic monopoles was first
suggested by Dirac as a speculation and an outcome of a thought experi-
ment [3]. It attracts so much attention because if a monopole with magnetic
charge g exists in nature, would automatically imply the quantization of the
electric charge. In fact, the requirement that the wave-function solving the
Schrodinger in the presence of monopole is single-valued function implies
the Dirac quantization condition

eg = nh n ∈ Z

where h stays for the Plank constant h = 2π~ and then all electric charges
are multiples of a minimal electric charge e = h

g
.

The presence of magnetic charges would restore the broken symmetry
between electric and magnetic charges, and the extended Maxwell equa-
tions enjoys electromagnetic duality, an exchange symmetry of the electric
and magnetic components of the electromagnetic field. The electrodynam-
ics with magnetic monopoles becomes highly symmetric, reducing the dif-
ference between “electric” and “magnetic” to a matter of convention.

The Dirac monopole suffers from one defect, it is described by a sin-
gular potential. It is only in the ’70 after the advent of the non-abelian
gauge theories when ’t Hooft [9] and Polyakov [7] independently discov-
ered that in a model with non-abelian gauge group G spontaneously broken
to a U(1) through the Higgs mechanism there exists a non-singular non-
perturbative solution with a finite energy which is looking from outside like
a Dirac monopole. This finite energy solution is called ’t Hooft-Polyakov
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monopole, it is a static field configuration with potential non-vanishing
at spatial infinity and Higgs field asymptotically approaching one of the
Higgs vacuums. The stability of the finite energy solution is guaranteed
by the conservation of topological charges, these are topological invariants
of the field configuration. The magnetic charge of the ’t Hooft-Polyakov
monopole is a topological charge. The mass of the magnetic monopole has
a lower bound, found by Bogomol’nyi [1]; the states that saturate the bound
are called BPS-states (after Bogomol’nyi-Prasad-Sommerfeld). Montonen
and Olive put forward a conjecture [5] that there should exist a dual “mag-
netic” gauge theory in which the roles of the massive gauge bosons and
the magnetic BPS-monopoles are exchanged. This is an atractive possibil-
ity, since due to the Dirac quantization condition if the coupling constant
e of the original theory is small, the coupling constant g = h

e
of the dual

“magnetic” theory must be large, and vice versa. Therefore the strong cou-
pling regime of a gauge theory will be controlled by the weak coupling
regime of its dual gauge theory. An additional term in the Lagrangian of the
gauge theory describes the Witten effect, forcing the magnetic monopoles
to pick up non-trivial electric charges. Thus the excitation of the theory be-
come dyons, these are particles with both electric and magnetic charge. The
Montonen-Olive conjecture exchanging electric charged states with mag-
netic ones provides a quantum electromagnetic duality which can be en-
hanced to a larger group SL(2,Z) operating on the lattice of dyons charges,
that is, the two-dimensional lattice spanned by the quantized electric and
magnetic charges.

Magnetic monopoles came back to the scene in a new guise after the
discovery of the topological insulators. Topological insulators are new elec-
tronic materials insulating in bulk but having gapless edge or surface states
which are protected against the opening up of a gap as long as the time-
reversal symmetry is respected. Recently, Xiao-Liang Qi, Taylor Hughes
and Shou-Cheng Zhang [10] proposed that the topological band insulator
can provide a condensed-matter example of axionic electromagnetism. The
axion field θ is now disguised as a parameter of the medium, together with
the permittivity ε and the permeability µ. Only two disconected value of θ
are compatible with the time-reversal symmetry of the problem; these are
θ = 0 corresponding to an ordinary (trivial) insulator and θ = π corre-
sponding to a topological insulator. In the work [11] it was argued that an
electric charge near the interface of topological insulators (with an ordinary
insulator) induces as a mirror image a magnetic monopole in the bulk.
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We do a carefull analysis of the induces charges of a topological insula-
tor with a planar and spherical boundary. Finally we apply the ideas of the
Montonen-Olive duality in the context of topological insulators providing
a description of the induced mirror images into a SL(2,Z)-covariant form
clarifing the meaning of the image charges.
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Chapter 2

Electro-Magnetic Duality in
Maxwell Theory

2.1 Maxwell Theory with Magnetic Charges

Maxwell’s equations in the vacuum are given by :

−→
∇ ·

−→
E = ~0,

−→
∇ ·

−→
B = ~0

−→
∇ ∧

−→
E = −∂

−→
B
∂t
,

−→
∇ ∧

−→
B = ∂

−→
E
∂t

These equations are invariant under the electromagnetic duality transform

( ~E, ~B) → ( ~B,− ~E) .

Indeed, one can enlarge this duality to a rotation group. In order to see
this, it is convenient to write Maxwell equations in a manifestly Lorentz
covariant form, by introducing the field-strength F µν given by :

F i0 = Ei F ij = −εijkBk (2.1.1)

using gµν = (+ − −−) and εµναβ = −εµναβ = 1. Defining the dual ∗F µν

of the tensor F µν by ∗F µν = 1
2
εµναβFαβ we get

∗F i0 = Bi (2.1.2)

then the free Maxwell’s equations become

∂µF
µν = 0 ∂µ ∗ F µν = 0 (2.1.3)
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These two real equations can be combined in a single complex equation

∂µ(F
µν + i ∗ F µν) = 0 (2.1.4)

It easy to see this equation is invariant under complex multiplication

F µν + i ∗ F µν → exp(iϕ)(F µν + i ∗ F µν) (2.1.5)

where ϕ is a constant phase. In terms of the electric and magnetic fields,

Ei + iBi → exp(iϕ)(Ei + iBi) (2.1.6)

=⇒ {Ei → Ei cosϕ−Bi sinϕ;Bi → Ei sinϕ+Bi cosϕ}

Taking ϕ = −π
2
, it gives the previous particular transformation

( ~E, ~B) → ( ~B,− ~E) . (2.1.7)

This beautiful duality transformation is lost when we consider Maxwell’s
equation in the presence of matter,

∂µF
µν = jνe ∂µ ∗ F µν = 0 (2.1.8)

These equation are clearly not invariant under (2.1.4). In order to restore
the symmetry in the presence of matter, in 1931 Dirac [3] ”postulated” the
existence of a particles with magnetic charges and called them magnetic
monopoles. Schwinger and Zwanziger followed the Dirac idea, considering
the possibility of particles having both electric and magnetic charges, and
called them dyons. In either case, Maxwell’s equations read

∂µF
µν = jνe ∂µ ∗ F µν = jνm (2.1.9)

where jνm is the magnetic current. As before, these equations can be con-
combined as

∂µ(F
µν + i ∗ F µν) = (jνe + ijνm) (2.1.10)

where µ0 = c = 1. And it’s invariant under (2.1.4) if the currents transform
as

jνe + ijνm → exp(iϕ)(jνe + ijνm) . (2.1.11)

If the currents result from point particles, each one with electric and mag-
netic charge (qa, ga), we must have that

(qa + iga) → exp(iϕ)(qa + iga) (2.1.12)
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2.2 Dirac Monopole

In electromagnetism without magnetic monopoles ,

∂µ ∗ F µν = 0 (2.2.1)

which implies that the field strength F µν can be written as

Fµν = ∂µAν − ∂νAµ (2.2.2)

where Aµ is well defined vector function in all space time. If Aµ solve the
Maxwell equation (2.2.1) then

A′
µ = Aµ + ∂µα (2.2.3)

is also solution (giving the same electric
−→
B and magnetic

−→
B fields).

The vector potential Aµ plays a central role in the quantum theory : a
particle with mass m and electric charge q satisfies the Shrodinger equation

i~
∂ψ

∂t
=

1

2m
(i~

−→
∇ − q

−→
A )2ψ + qA0ψ . (2.2.4)

In order that this equation to be invariant under the gauge transformation(2.2.3),
the wave function must be transform as

ψ′ = exp(−iαq
~
)ψ (2.2.5)

Consider now a magnetic monopole at the origin . It will produce a mag-
netic field

−→
Bm =

g

4πr3
~r =⇒

−→
∇ ·

−→
Bm = gδ3(~r) (2.2.6)

Since
−→
∇ ·

−→
Bm 6= 0 we can not have an

−→
A regular for all the space and satis-

fying the equations (2.2.2) and (2.2.6). However, we can use the ambiguity
(2.2.3) and use the vector potential in one part of space and another vector
potential in the other part of space.
let’s work in spherical coordinates and take

−→
AN =

g

4πr

1− cos(θ)

sin(θ)
êθ (2.2.7)

7



which satisfies
−→
∇ ∧

−→
AN =

−→
Bm. It is obvious that AN is well defined in the

whole space, except for θ = π. Now let us take

−→
A S = − g

4πr

1− cos(θ)

sin(θ)
êθ (2.2.8)

which is well defined on all space except θ = 0. Since

−→
A S =

−→
AN +

−→
∇α =⇒ α(φ) = − g

2π
φ (2.2.9)

in the region where both are well defined, we can conclude that
−→∇ ∧−→

A S =−→
Bm. Therefore

−→
Bm can be written as a curl of the potential

−→
AN in the

north hemisphere and
−→
A S in the south hemisphere. In each hemisphere we

shall have a wave-funtion ψN and ψS , which will differ by phase (2.2.5).
We know from quantum mechanics that wave-functions must single-valued.
But from eq. (2.2.5) we can conclude that ψN and ψS can only be simulta-
neously single-valued if

exp(−iqα(φ)
~

) = exp(−iqα(φ+ 2π)

~
) (2.2.10)

From (2.2.8) we see that the periodicity of the exp-function implies that

qg = 2πn~ n ∈ Z (2.2.11)

This can be extend to the situation with various electric charges and mag-
netic monopoles, which result in the condition

qigj = 2πnij~ nij ∈ Z (2.2.12)

This quantization condition has every important consequence; suppose that
at least one magnetic monopole exist in the whole Universe, with a magnetic
charge g = g0. Then, condition (2.2.12), would imply that all particles
would have electric charges of the form

qi = niq0 where q0 =
2π~
g0

ni ∈ Z (2.2.13)

So the electric charge would be integer multiples of a fundamental charge
q0. If one considers the more genra case with not just magnetic monopoles
but also dyons, it results the Dirac- Schwinger-Zwanziger quantization con-
dition

qigj − qjgi = 2πnij~ (2.2.14)
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A good property of this more general condition is that it is invariant under
the duality transformation (2.1.6). This can be easily seen by noting that this
condition is the imaginary part of (qi + igi)(qj + igj)

∗ which is manifestly
invariant under duality (2.1.12).

2.3 Angular Momentum of EM field

We begin by examining the simplest possible solution of a particle of mass
m and electric charge q moving in the field of a magnetic monopole of
strength g located at the origin

−→
B =

g

4πr3
~r .

The equation of motion of the particle reads

m~̈r = q~̇r ∧
−→
B . (2.3.1)

Remark that the magnetic field is spherically symmetric and one therefore
expects something like the conservation of angular momentum. However
the orbital momentum of the charge q alone is not conserved because the
force (2.3.1) is not central. The rate of change of orbital angular momentum
:

d

dt
(~r ∧m~̇r) = ~r ∧m~̈r (2.3.2)

=
qg

4πr3
~r ∧ (~̇r ∧ ~r) (2.3.3)

=
d

dt
(
qg

4π
r̂) (2.3.4)

where r̂ is the unit vector r̂ := ~r
r
.

This result, due to Poincaré, suggests that one can define the total angu-
lar momentum to be

−→
J = ~r ∧m~̇r − qg

4π

~r

r
(2.3.5)

and this expression will be intergral of motion, i.e., conserving quantity.
To give a physical interpretation to the second term in the equation

(2.3.5) we must consider the other possible source of angular momentum,
which is the electromagnetic field. Classicaly the angular momentum of the
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electromagnetic field is obtained by integrating the moment of the Poynting
vector,

−→
E ∧

−→
B , over all space

−→
J em =

∫
R3
d3r ~r ∧ (

−→
E ∧

−→
B ) . (2.3.6)

Here
−→
B is the radial field given and

−→
E is the field due to the electric charge

q at ~r′, thus :

J i
em =

∫
R3

d3r
g

4πr3
~r ∧ (

−→
E ∧ ~r)

=

∫
R3

d3r
g

4πr3
εijkr

j(
−→
E ∧ ~r)k

=

∫
R3

d3r
g

4πr3
εijkεklmr

jElrm

=

∫
R3

d3r
g

4πr3
(δilδjm − δimδjl)r

jElrm

=

∫
R3

d3r
g

4πr3
(rjEirj − rjEjri)

=

∫
R3

d3rEj g

4πr
(δij − r̂ir̂j)

=

∫
R3

d3rEj ∂

∂rj

( g
4π
r̂i
)

=

[
Ejg

4π
r̂i
]
S∞

−
∫
R3

d3r
( g
4π
r̂i
)
∇ · Ej

= −
∫
R3

d3r
( g
4π
r̂i
)
qδ3(r − r′)

= − qg

4π
r̂i (2.3.7)

Here we use the unit vector r̂i = ri

r
and the fact that ∇ · E = qδ3(r − r′)

then −→
J em = − qg

4πr
~r (2.3.8)

Thus we conclude that the total angular momentum which is conserved is
indeed the sum of the orbital angular momentum of the particle and the
angular momentum of the electromagnetic field. Moreover, requiring that
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the angular momentum be quantized in unit ~
2

yields the Dirac quantization
condition

|
−→
J em| =

n~
2

(2.3.9)

| − qg

4πr
~r| =

n~
2

(2.3.10)

qg

4π
=

n~
2

(2.3.11)

Hence we got the Dirac quantization condition

qg = 2πn~, n ∈ Z. (2.3.12)

2.4 CP-symmetry and Dyon Quantization

Dyons are particles that carry both electric and magnetic charges. Consider
dyon with charges (q1, g1) fixed at the origin with another with charges
(q2, g2) orbiting about it . Angular momentum analysis of (2.3.6) can be
repeated. The contribution of the electromagnetic field to the angular mo-
mentum is now

q1g2 − q2g1
4πr

~r (2.4.1)

Imposing the quantization condition (2.3.9) yields
q1g2 − q2g1

4π
=

1

2
n~ (2.4.2)

so if deal with two dyons of charges (q = e~, g) and (q′ = e′~, g′) we got
Hence we got the Zwanziger-Schwinger quantization condition about

the dyon charges
eg′ − e′g = 2πn . (2.4.3)

In Dirac’s symmetrized form of electromagnetodynamics, the Maxwell
equations are replaced by

−→
∇ ·

−→
E (t, ~r) =

ρe
ε0

(2.4.4)

−→
∇ ·

−→
B (t, ~r) = µ0ρm (2.4.5)

−→
∇ ∧

−→
E (t, ~r) = −µ0

~jm − ∂
−→
B (t, ~r)

∂t
(2.4.6)

−→
∇ ∧

−→
B (t, ~r) = µ0

~je +
1

c2
∂
−→
E (t, ~r)

∂t
(2.4.7)
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We now study the charge conjugation C and the parity conjugation P of
these equations. The constants t, c, µ0, ε0 are ordinary scalar and are there-
fore unaffected by coordinates changes. The charge density transforms
sililarly as the charge ρe ≈ q and the electric currents read

~je = ρe
d~r

dt
. (2.4.8)

Under charge conjugation the electric charge changes its sign

C : q → q′ = −q (2.4.9)

so do the electric charge densities and currents

C : ρe → ρ′e = −ρe (2.4.10)

C : ~je → ~j′e = −~je (2.4.11)

The coordinates are not affected by the charge conjugation

C :
−→
∇ →

−→
∇ ′ =

−→
∇ (2.4.12)

C :
∂

∂t
→ ∂

∂t′
=

∂

∂t
(2.4.13)

The conjugation C applied to Maxwell equation (2.4.4) yields

C :
−→
E →

−→
E ′ = −

−→
E .

Next from eq. (2.4.7) we got

C :
−→
B → −→

B ′ = −−→
B

and then from the Maxwell equations (2.4.5) and (2.4.6) we haven’t used
yet one sees that the magnetic charges and currents also change sign under
the charge conjugation

C : ρm → ρ′m = −ρm jm → j′m = −jm . (2.4.14)

Under parity symmetry P : ~r → ~r′ = −~r we get

ρe → ρ′e = ρe (2.4.15)
~je → ~j′e = −~je (2.4.16)

−→
∇ →

−→
∇ ′ = −

−→
∇ (2.4.17)

∂

∂t
→ ∂

∂t′
=

∂

∂t
(2.4.18)
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Then the Maxwell equation (2.4.4) implies the electric field
−→
E transforms

as a vector
P :

−→
E →

−→
E ′ = −

−→
E

whereas the eq. (2.4.7) implies that the magnetic field transforms as a pseu-
dovector (axial vector)

P :
−→
B →

−→
B ′ =

−→
B .

Finally from Maxwell equations (2.4.5) and (2.4.6) we conclude that under
the parity conjugation P the magnetic charges and currents transform as

ρm → ρ′m = −ρm (2.4.19)
~jm → ~j′m = ~jm (2.4.20)

(2.4.21)

To resume: the dyonic charge under the charge conjugationC and the parity
conjugation P will transform as, respectively

C : (q, g) −→ (−q,−g) (2.4.22)
P : (q, g) −→ (q,−g) (2.4.23)

Consequantly under conjugation CP the dyonic charge is transformed as

CP : (q, g) −→ (−q, g) (2.4.24)

The quantization condition alone

qg′ − q′g = 2πn

is not enough to fix the values of the charge of the monopole but it implies
a condition for the difference

q − q′ = ne = n(2π/g) .

The difference q− q′ to be integer means that the charges q lie on a “charge
lattice”, the minimal electric charge e being the period of the lattice

Qe := {q = ne+ re|n ∈ Z, 0 ≤ r < 1} = Ze+ re

where 0 ≤ r < 1 since 0 ≤ θ < 2π and r = θ
2π

.
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Under the conjugation CP the lattice Qe gets reflected

CP : Qe → −Qe

and this conjugation is a symmetry (that is the lattice Qe is the same as the
lattice −Qe) if and only if r = 0 or r = 1/2. Meaning that the points of
Qe ⊂ R are with integer or half-integer coordinates.

We conclude that the electric charge spectrum of the dyon in CP non-
violated theory can be written as :

q = ne or q = (n+
1

2
)e (2.4.25)

Remark : If we assume that q = 0 is in the spectrum, the half-integers will
be eliminated.
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Chapter 3

’t Hooft-Polyakov monopole

’t Hooft-Polyakov found a classical static solution of Georgi-Glashow SO(3)

gauge model with a triplet of Higgs field
−→
φ , which was finite energy and

represents a non singular model of a magnetic monopole with an internal
structure.

3.1 Georgi-Glashow model

We will start by considering Yang-Mills theory with a gauge group SO(3)
and the scalar Higgs field in the adjoint representation which is known under
the name Georgi-Glashow model. This theory is an exemple of Yang-Mills-
Higgs theory. The gauge group SO(3) is broken to a U(1) factor. This
factor can be identified as the electromagnetic theory. The U(1) factor is
compact (i.e. isomorphic to the circle) and then it can be shown that these
theories always possess magnetic monopole solutions. The Lagrangian of
Georgi-Glashow model reads

L = −1

4

−→
Gµν ·

−→
Gµν +

1

2
Dµ−→φ · Dµ

−→
φ − V (φ) (3.1.1)

Here the gauge field-strength Ga
µν is defined through the vector gauge po-

tential W a
ν taking values in the SO(3) Lie algebra with structure constants

εabc
Ga

µν = ∂µW
a
ν − ∂νW

a
µ − eεabcW

b
µW

c
ν . (3.1.2)

The three components of the Higgs field
−→
φ = (φ1, φ2, φ3) transform in the

adjoint SO(3)-representaion, but φa is a scalar with respect to the Lorentz
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transformations. The components φa are minimally coupled to the gauge
field through the gauge-covariant derivative

Dµφa = ∂µφa − eεabcW
b
µφc . (3.1.3)

The field
−→
φ is subject to the Higgs potential

V (φ) =
λ

4
(φ2 − a2)2 with φ2 =

−→
φ ·

−→
φ (3.1.4)

where λ is assumed to be non-negative constant and a is a reel number.
The equations of motion are obtained by variation of the Lagrangian

(3.1.1) with respect to W a
µ and φa

DνG
µν
a = −eεabcφbD

µφc (3.1.5)

DµDµφa = −λφa(φ
2 − a2) (3.1.6)

Further we have the Bianchi identity

Dµ ∗Gµν = 0 (3.1.7)

with
−→
Gµν = εµναβ

−→
Gαβ . The associated symmetric tensor

Θµν = −Gµλ · Gν
λ +Dµφ ·Dνφ− ηµνL (3.1.8)

Analogously to the Maxwell case, the non-abelian electric and magnetic
field are defined as

Gi0 = Ei ∗Gi0 = Bi . (3.1.9)

Then the total energy can be written as

E =

∫
d3xΘ00 =

∫
d3x{1

2
[(Ei)

2 + (Bi)
2 + (D0φ)

2 + (Diφ)
2] + V (φ)} .

(3.1.10)
Note that Θ00 ≥ 0 and vanishes if and only if

Ei = Bi = 0 Dµφa = 0 V (φ) = 0 . (3.1.11)

A field configuration which satisfies (3.1.11) everywhere has total energy
zero E = 0 and it is the vacuum configuration whereas a configuration
satisfying only the conditions

Dµφa = 0 V (φ) = 0 (3.1.12)
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is called a Higgs vacuum. The condition V (φ) = 0 implies that φ2 = a2

for the Higgs vacuum, i.e., geometrically the Higgs vacua are located on a
two-dimensional sphere S2.

Consider a small pertubation ϕ along the φ3 direction around the con-
stant vector ~a := (0, 0, a) such as

−→
φ = (0, 0, a+ ϕ) (3.1.13)

The expansion of the Higgs potential in ϕ reads

V (a+ ϕ) = λ(ϕ2 + a2 + aϕ3 + ϕ4) .

The covariant derivative Dµ−→φ of the Higgs field is expressed in terms of ϕ
as

Dµφ1 = −eW µ
2 (a+ ϕ) (3.1.14)

Dµφ2 = eW µ
1 (a+ ϕ) (3.1.15)

Dµφ3 = ∂µϕ (3.1.16)

thus its square gives rise to the terms

1

2
Dµ−→φ Dµ

−→
φ =

1

2
(∂µϕ)

2 +
1

2
e2(ϕ2 + a2 + 2aϕ)[(W 1

µ)
2 + (W 2

µ)
2]

Let us introduce new fields as linear combinations of the old ones W±
µ =

W 1
µ±iW 2

µ√
2

. Then the Lagrangian becomes

L = −1

4

−→
Gµν−→Gµν +

1

2
(∂µ~ϕ)

2 +
1

2
(
a~

√
2λ

~
)2ϕ2 + (

ae~
~

)2W+W−

+ (2aϕ+ ϕ2)W+W− +
λ

4
(ϕ4 + 4aϕ3) (3.1.17)

from where the masses mH = a~
√
2λ and mW = ae~ can be read off as

the properly normalized coefficients in front of the quadratic terms.
We see that the symmetry SO(3) is spontaneously broken down to U(1).

Consequently, after symmetry breaking we are left with a U(1) gauge the-
ory which has all the characteristics of Maxwell’s electromagnetic theory.

The Lagrangian (3.1.17) after the symmetry breakdown contains: a mass-
less vector boson Aµ = 1

a
~a ·

−→
W µ which we will identify with the photon; a

massive scalar field ϕ = 1
a
~a ·

−→
φ of mass mH ; two massive vector bosons
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W±
µ of mass mW . The quantum numbers of the particles are given in the

following table

particles mass spin electric charge
Higgs particle ϕ a~

√
2λ 0 0

Photon Aµ 0 ~ 0
massive bosons W±

µ ae~ ~ ±e~

The electric charge is obtained by comparing the SO(3) covariant derivative
with electromagnetic covariant derivative Dµ = ∂µ + iQ~Aµ, we find

Q =
~
−→
φ ·

−→
T

a
(3.1.18)

where
−→
T are the SO(3) generators and |

−→
φ | = a in the vacuum.

3.2 Finite Energy solutions

For a given field configuration the energy is defined asE =
∫
d3xΘ00 where

Θ00 is the energy density. The finite-energy mean that the integral is con-
vergent. The finite-energy requirement forces the fields to be in the Higgs
vacuum asymptotically at large distances. Physically one would expect the
solution with a lowest non-zero energy to be time independent and to have
a high degree of symmetry. These conditions are satisfied by taking :

φ2 = a2 W a
µ = 0 Ea

i = πa
i = 0 (3.2.1)

3.3 t’ Hooft-Polyakov ansatz

Using some symmetry considerations ’t Hooft-Polyakov constructed the
monopole solution, starting from a spherical radially symmetry ansatz for
the Higgs field

−→
φ and the gauge field

−→
W µ

φa =
ra

r2
H(ξ) , (3.3.1)

W i
a = −εaij

rj

er2
(1−K(ξ)) , (3.3.2)

W 0
a = 0 . (3.3.3)
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Where H and K are some arbitrary functions and the variable ξ := aer.
Plugging this ansatz in the expression for the energy (3.1.10) and us-

ing the non-zero radial component φ(ξ) = aH(ξ)
ξ

together with V (φ) =
λa4

4ξ4
(H2 − ξ2)2

1

2
Di

−→
φ Di

−→
φ =

a4e2

ξ4
[
1

2
(ξ
dH

dξ
−H)2 +H2(1−K)2]

1

2

−→
B i

−→
B i =

a4e2

ξ4
[(ξ
dK

dξ
− (1−K))2 +

1

2
(1−K)4]

we get

E =
4πa

e

∫ ∞

0

dξ

ξ2
[ξ2(

dK

dξ
)2+

1

2
(ξ
dH

dξ
−H)2+

1

2
(K2−1)2+K2H2+

λ

4e2
(H2−ξ2)2] .

(3.3.4)
Since each term in the integrand has a finite contribution: as ξ goes to zero
(ξ → 0) the second and third term in the integrand implies

H → 0 K = ±1 ( we shall use 1 ) .

At large radius the solution must satisfy the point monopole conditionDµφ =
0 and ∂V

∂φ
= 0. The scalar field must be such that V (φ) is minimal. So

φ2 = a2 =⇒ ξ → ∞ .

Thus H → ±∞ ( we shall use +∞) and the third term in the integrand
implies that K → 0.

To avoid singularity at the origin and achieve non-trivial spatial condi-
tion φ = a, the functions H and K must satisfy the following boundary
condition:

K(ξ) → 1 H(ξ) → 0 when ξ → 0
K(ξ) → 0 H(ξ) → ξ when ξ → ∞ .

(3.3.5)

Extremizing E by use of the Euler-Lagrange equation one obtain the fol-
lowing ordinary differential equations in ξ. The same result is obtained if
we plug the ansatz in the equations of motion.

∂E

∂K
− d

dξ

(
∂E

∂K ′

)
= 0

∂E

∂H
− d

dξ

(
∂E

∂H ′

)
= 0
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where K ′ = dK
dξ

and H ′ = dH
dξ

ξ2 d
2K
dξ2

= KH2 +K(K2 − 1)

ξ2 d
2H
dξ2

= 2K2H + λ
e2
H(H2 − ξ2)

(3.3.6)

It is worth noting that the existence of solution for the system (3.3.6) of the
equations was first indicated by numerical simulations.

We remark that in the limit ξ → ∞ using the boundary conditions
(3.3.5)

d2K

dξ2
= K (3.3.7)

d2h

dξ2
= 2

λ

e2
h (3.3.8)

where h = H−ξ and we have used the fact that H
ξ
∼ 1 andK ∼ 0. One can

readily solve the equations (3.3.7) and (3.3.8). The solutions compatibles
with boundary conditions read

K = exp(−ξ) = exp(−mW

~
r)

H = exp(−mH

~
r)

HeremH andmW stand for the masses of the Higgs and the vector bosonW
particles, respectively, these were read from the Lagrangian (3.1.17). The
pace of the asymptotic form is thus given by the Compton wavelengths ~

mW

or ~
mH

of the massive particle associated to the field in question. This mean
that the solution describes an object of finite size given by the largest of the
Compton wavelengths.

However, in order to obtain the value of the magnetic charge of ’t Hooft-
Polyakov monopole, one need only use the boundary condition at ξ → ∞
which implies that

W i
a → −εaij

rj

er2
φa → a

ra

er
for ξ → ∞ (3.3.9)

and therefore
Gij

a ≈ 1

er4
εaijr

ark =
1

ear3
εijkr

kφa
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Gij
a =

1

a
φaεijk

1

er3
rk

Using the fact that Foi = 0 ( static solution) and
−→
Gµν = 1

a

−→
φ ·

−→
F µν . So

Gij
a =

1

a
φaF

ij =
1

a
φaε

ijk 1

er3
rk

hence

Fij = εijk
rk

er3
(3.3.10)

Therefore the asymptotic magnetic field is

F µν =

−→
φ ·

−→
Gµν

a
=⇒ ∗F µν =

−→
φ · ∗

−→
Gµν

a

then

∗F 0i =
∗G0iφ

a
=⇒ Bi = −1

e

ri

r3

Hence
−→
B = − 1

er3
~r (3.3.11)

Comparing with equation (2.2.6) we see that the magnetic charge of the ’t
Hooft-Polyakov monopole is

g = −4π

e
(3.3.12)

Since the electromagnetic U(1) is embedded in SO(3), it is generated by
T3 element which has eigenvalues ±1, 0 in the 3 dimensional irreducible
representation and ±1

2
in 2 dimensional irreducible representation. Also by

Noether procedure one obtains q = e~T3 . Therefore the smallest charge
which enter in the theory is q0 = e~

2
. Thus we conclude that ’t Hooft-

Polyakov monopole satisfies Dirac quantization condition (2.2.11)

q0g = −2π~ (3.3.13)

and g assume the lowest value compatible with Dirac quantization.
Note that q0 is the charge of another particle since the ’t Hooft-Polyakov

monopole has no electric charge. This electrical neutrally monopole is ob-
tained due to the fact that we imposed the condition W 0

a = 0.
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3.4 Topological Charges

We will now prove that the Dirac quantization condition holds not just for ’t
Hooft-Polyakov but for any monopole solution. To do it, we take such field
φ that satisfy φ2

a = a2 and Dµφ = 0 asymptotically. From

Dµ

−→
φ = ∂

−→
φ − e

−→
W µ ∧

−→
φ = 0 =⇒

−→
φ ∧

−→
W µ = −1

e
∂µ
−→
φ . (3.4.1)

The multiplication by
−→
φ ∧

−→
φ ∧ (

−→
φ ∧ −→

W µ) = −1

e
(
−→
φ ∧ ∂µ

−→
φ )

produces the expression

(
−→
φ ·

−→
W µ)

−→
φ − φ2−→W µ = −1

e
(
−→
φ ∧ ∂µ

−→
φ ) .

Hence the gauge field asymptotically has the form

−→
W µ =

1

ea2
(
−→
φ ∧ ∂µ

−→
φ )− 1

a
Aµ

−→
φ (3.4.2)

where we denote by Aµ the projection of Wµ along
−→
φ , Aµ :=

−→
φ ·−→Wµ

a
.

With the help of eq. (3.4.2) we can obtain the gauge field-strength

−→
Gµν = ∂µ

−→
W ν − ∂ν

−→
W µ − e

−→
W µ ∧

−→
W ν

as a function of the new broken potential Aµ and the Higgs fileds.
To this end we calculate step by step the needed pieces, starting by

∂µ
−→
W ν =

1

a2e
(∂µ

−→
φ ∧ ∂ν

−→
φ +

−→
φ ∧ ∂µ∂ν

−→
φ ) +

1

a
(Aν∂µ

−→
φ +

−→
φ ∂µAν)

then its antisymmetrization reads

∂µ
−→
W ν − ∂ν

−→
W µ =

2

ea2
(∂µ

−→
φ ∧ ∂ν

−→
φ ) +

1

a

−→
φ (∂µAν − ∂νAµ)

and the non-linear term yields

−→
W µ ∧

−→
W ν = (

1

a2e

−→
φ ∧ ∂µ

−→
φ +

1

a

−→
φ Aµ) ∧ (

1

a2e

−→
φ ∧ ∂ν

−→
φ +

1

a

−→
φ Aν)
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And then for the gauge field-strength we got the expression

−→
Gµν =

1

a2e
(∂µ

−→
φ ∧ ∂ν

−→
φ ) +

1

a

−→
φ (∂µAν − ∂νAµ) .

Remarkably enough the field-strength
−→
Gµν points in the

−→
φ -direction which

follows from the alternative form

−→
Gµν =

1

a

−→
φ [

−→
φ

a3e
(∂µ

−→
φ ∧ ∂ν

−→
φ ) + ∂µAν − ∂νAµ]

Then we can define a new field-strength Fµν for the gauge U(1) theory after
the symmetry breaking

−→
Gµν =

1

a
Fµν

−→
φ (3.4.3)

where
Fµν =

1

a3e

−→
φ · (∂µ

−→
φ ∧ ∂ν

−→
φ ) + ∂µAν − ∂νAµ . (3.4.4)

Let’s check whether Fµν satisfies Maxwell’s equation. Since

Dν
−→
Gµν =

1

a
(DνFµν ·

−→
φ + FµνDν

−→
φ )

or Dν

−→
φ = 0 and Dν

−→
Gµν = −e

−→
φ ∧Dµ

−→
φ = ~0. Thus

∂νF
µν = 0 (3.4.5)

Using Bianchi identity one obtains

Dµ ∗
−→
Gµν = 0 where ∗

−→
Gµν =

1

2
εµνλρ

−→
Gλρ.

Thus
Dµ ∗Gµν =

1

2
εµνλρDµ

−→
Gλρ = 0

Dµ ∗Gµν =
1

a

1

2
εµνλρ[Dµ

−→
φ Fλρ +

−→
φ ∂µFλρ] = 0

∂µ(
1

2
εµνλρFλρ) = 0

Hence
∂µ ∗ F µν = 0 (3.4.6)
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We note that asymptotically the only non-zero component of the
−→
Gµν is the

component in the
−→
φ direction which is the generator of the electromagnetic

U(1) and satisfies Maxwell equation (3.4.5) and (3.4.6). Now let’s consider
a global characteristic of the field vacuum and study the magnetic flux, gΣ
through the closed surface Σ. The magnetic flux through Σ measures the
magnetic charge. Also by Maxwell’s equations gΣ will be non-zero only if
the surface Σ encloses a region in which

−→
B =

−→
∇ ∧

−→
A fails we deal with a

potential monopole

gΣ =

∫
Σ

−→
B · d

−→
S .

Using eq. (3.4.4) and the fact that the contribution of Aµ vanishes by
Stokes’ theorem one obtain

gΣ =

∫
Σ

−→
B · d

−→
S = − 1

2ea2

∫
Σ

εijk
−→
φ · (∂j

−→
φ ∧ ∂k

−→
φ )dSi (3.4.7)

Where

Bi = − 1

ea2
εijk

−→
φ (∂j

−→
φ ∧ ∂k

−→
φ ) +

1

a

−→
φ (∂jAk − ∂kAj)

Notice that the derivative ∂j
−→
φ occuring in ( 3.3.7) are those tangential to

Σ and only contribute to the integral so that the magnetic within Σ depends
only on the behaviour of Σ and

−→
φ . In fact, if we consider a slightly different

Higgs field satisfying (3.1.11)

−→
φ ′ =

−→
φ + δ

−→
φ

−→
φ · δ

−→
φ = 0 (3.4.8)

Then

δ[
−→
φ ·(∂j

−→
φ ∧∂k

−→
φ )] = 3δ

−→
φ ·(∂j

−→
φ ∧∂k

−→
φ )+∂j[

−→
φ ·(δ

−→
φ ∧∂k

−→
φ )]−∂k[

−→
φ ·(δ

−→
φ ∧∂j

−→
φ )]

The integral of the last two terms in this expression vanishes by Stokes
theorem. Moreover, from ( 3.3.8) we have

−→
φ ·(∂j

−→
φ ∧∂k

−→
φ ) = 0 thus ∂j

−→
φ ∧

∂k
−→
φ is parallel to

−→
φ . Hence δ

−→
φ · (∂j

−→
φ ∧∂k

−→
φ ) = 0. Consequently,δg∑ =

0. This is a funda mental result. It extends to any change in
−→
φ which can be

built up by a small continuous deformation. Such a deformation is called
a homotopy. Consequently gΣ is time independent, gauge invariant, and
unchanged under any continuous deformation of the surface Σ containing
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the monopole or monopoles and hence the magnetic charge is additive in
domain, in which unshaded region are close to the Higgs vacuum . Thus

gΣ =
n∑

i=1

gi (3.4.9)

Then, the magnetic charge will be

g = −4π

e
NΣ (3.4.10)

where
NΣ =

1

8πa3

∫
Σ

εijk
−→
φ (∂j

−→
φ ∧ ∂k

−→
φ )dSi

NΣ has the geometric interpretation of being the number of times Σ is
wrapped about the sphere M0 by the map

−→
φ : Σ → M0, which is the

classical definition of the degree of a map. It easy to see that NΣ can only
take an integer value, since the integrand is Jacobian of

−→
φ . To prove that

every integer N may be realised for a suitable
−→
φ we consider

−→
φ N(~r) = [cos(Nϕ) sin(θ), sin(Nϕ) sin(θ), cos(θ)] (3.4.11)

where (r, θ, ϕ) are spherical polar coordinates. Thus

dSi =
1

2
εijk

∂xj

∂ξα
∂xk

∂ξβ
εαβd2ξ

∫
dSiεijk

−→
φ (∂j

−→
φ ∧ ∂k

−→
φ ) =

1

2

∫
d2ξεαβεabcφ

a ∂φ
b

∂ξα
∂φc

∂ξβ

where

J = εabcφ
a ∂φ

b

∂ξα
∂φc

∂ξβ

is the Jacobian and

φ1 = sin θ cosNϕ , φ2 = sin θ sinNϕ , φ3 = cos θ

computing J by

J =

∣∣∣∣∣∣
φ1 φ2 φ3

∂θφ1 ∂θφ2 ∂θφ3

∂ϕφ1 ∂ϕφ2 ∂ϕφ3

∣∣∣∣∣∣
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one obtain J = N sin θ hence doing the intergration in spherical coordinates

1

2

∫
d2ξN sin θ = 2πN .

Therefore
N∑ = N (3.4.12)

for any integer and yields N in equation ( 3.3.10). Hence the magnetic
charge is topologically conserved and quantized in units of 4π

e
, i.e.,

g =
4π

e
nm (3.4.13)

Moreover the smallest electric charge is q0 = e~
2

, thus

q0g = −2π~nm (3.4.14)

and therefore we see that Dirac’s quantization holds for any magnetic monopole
of this theory.

3.5 Bogomol’nyi-Prasad-Sommerfeld(BPS) state

We would like calculate the mass of an arbitrary finite energy solution. To
do so, we will first use the fact that in the rest frame the mass coincides with
the energy, M = E. Notice that in the Higgs vacuum the electromagnetic
tensor Fµν = 1

a

−→
φ ·

−→
Gµν . For any solution the magnetic charge is naturally

g =

∫
Σ

−→
B · d~S =

1

a

∫
Ba

kφ
adSk =

1

a

∫
R3

Ba
k(Dkφ)

ad3r . (3.5.1)

here the surface integral is to be understood as taken in limiting sense over
the sphere at spacial infinity and we have used the Bianchi identity and
Stokes theorem. Similary using equation of motion and Bianchi identity,
one finds the electric charge of a solution

q =

∫
Σ

−→
E · d~S =

1

a

∫
R3

Ea
k(Dkφ)

ad3r . (3.5.2)

Therefore for a given static field configuration the mass (3.1.10) is

M =

∫
R3

[
1

2
(
−→
E k ·

−→
E k +

−→
B k ·

−→
B k +Dk

−→
φ ·Dk

−→
φ ) + V (φ)]d3r .
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Neglecting positively definite ters we get the lower bound

M ≥ 1

2

∫
R3

(
−→
E k ·

−→
E k +

−→
B k ·

−→
B k +Dk

−→
φ ·Dk

−→
φ )d3r

Next step in the estimation is to add and subtractEa
kDkφ sin θ andBa

kDkφ cos θ
with an arbitraty angle θ to the integrand

M ≥ 1

2

∫
R3

{
[Ea

k − (Dkφ)
a sin(θ)]2 + [Ba

k − (Dkφ)
a sin(θ)]2

}
d3r

+

∫
R3

[Ea
k(Dkφ)

a sin(θ) +Ba
k(Dkφ)

a cos(θ)]d3r (3.5.3)

Once again we can drop some non-negative terms

M ≥ sin(θ)

∫
R3

Ea
k(Dkφ)

ad3r + cos(θ)

∫
R3

Ba
k(Dkφ)

ad3r

Using (3.5.1) and (3.5.2) one finally obtains the mass bound

M ≥ a(q sin θ + g cos θ) . (3.5.4)

The sharpest bound occurs when the right side is a maximum, which
happens for tan(θ) = q

g
. Plugging this back into (3.5.4) we find the Bogo-

mol’nyi bound
M ≥ a

√
q2 + g2 = |a(q + ig)| (3.5.5)

This is an important result. It holds for any finite energy solutions of the
equation of motion.

A natural question is “What are the solutions that saturates the Bogo-
mol’nyi bound?” From an inspection at the way we derived the bound
we conclude that such kind of solution, with electric and magnetic charges
(q, g) must satisfy the following equations throughout the space

D0φ = 0 (3.5.6)
Ea

k = (Dkφ)
a sin θ (3.5.7)

Ba
k = (Dkφ)

a cos θ (3.5.8)

where tan θ = q
g
. We will now consider a static solutions which saturates

the bound. Static solutions satisfy

Ea
k = 0 (D0φ)

a = 0 . (3.5.9)
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In particular they have no electric charge hence sin θ = 0. This mean that
cos θ = ±1 correlated to the sign of the magnetic charge. Then the satu-
ration of the bound should require that the so called Bogomol’nyi equation
holds

Ba
k = ±(Dkφ)

a . (3.5.10)

at the top of the vanishing of the Higgs potential V (φ) = 0.
The solutions saturating the Bogomol’nyi bound are called BPS-states,

after the names of Bogomol’nyi, Prasad and Sommerfeld.
The Bogomol’nyi equation (3.5.10) is compatible with the vanishing

of the potential V (φ) = 0 only if the parameter λ vanishes. However this
condition must be understood as limit λ→ 0, in order to retain the boundary
condition

φ2 → a2 as r → ∞ (3.5.11)

responsible for the spontaneous breaking. Note that λ → 0 implies that the
scalar field is massless.

The equation of motion for the Yang-Mills-Higgs system with λ = 0 for
static solution follows from Bianchi identity and the Bogomol’nyi equation.
Indeed one has

−→
G 0i = −

−→
E i hence

0 = Di ∗
−→
G 0i = Di

−→
B i = DiD

i−→φ

which together with D0

−→
φ = 0 implies the equation of motion (3.1.6) with

λ = 0
DµD

µ−→φ = 0 .

The advantage of the Bogomol’nyi equation lies in its simplicity. In
fact, it is not hard to find an explicit solution to the Bogomol’nyi in the ’t
Hooft-Polyakov ansatz. Recall

Bi
a = − δai

er2
ξK ′ +

rira

er4
(ξK ′ + 1−K2)

(Diφ)a =
δai

er2
HK +

rira

er4
(ξH ′ −H(1 +K))

Inserting in the Bi
a = ±(Diφ)a one get

ξ
dK

dξ
= −KH (3.5.12)

ξ
dH

dξ
= H + 1−K2 (3.5.13)
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We introduce the new functions

H = −1− ξh(ξ) K = ξk(ξ) (3.5.14)

in which the system got simplified{ dh
dξ

= k2

dk
dξ

= hk
=⇒ d

dξ
(k2 − h2) = 0

Therefore k2−h2 = C with a constant C which is determined by imposing
the boundary condition

lim
ξ→0

k(ξ) = 0 lim
ξ→0

h(ξ) = −1 .

The latter boundary conditions require C = −1 hence h2 − k2 = 1 and
finally

dh

dξ
= h2 − 1

with a solution given by h(ξ) = − coth(ξ + β) where β is a constant to be
determined. Then for the other function k(ξ) we get

dk

dξ
= −k coth(ξ + β)

whose solution is k(ξ) = B
sinh(ξ+β)

. where B is another constant.
The finiteness of the energy require that limξ→0 k

2 = 1. This limit is
possible only if β = 0. Then B2 = 1. Choosing B = 1 we conclude that

h(ξ) = − coth ξ k(ξ) =
1

sinh ξ

and then got a solution called the BPS-monopole

K =
ξ

sinh ξ
H =

ξ

tanh ξ
− 1 . (3.5.15)

Notice that for the BPS-monopole the mass density is

(Di

−→
φ )2 = Di(

−→
φ Di

−→
φ )

∇2(φ2) =
1

r

d

dr2

(
H2

e2r

)
.
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But H(ξ) = 1
6
ξ2 +O(ξ2) for small ξ (ξ ∼ 0). Hence

(Di

−→
φ )2 =

a4e2

6ξ

d2

dξ2
(ξ3) = a4e2 (3.5.16)

Therefore the mass density at the origin is finite, not merely integrable.
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Chapter 4

Duality Conjectures

4.1 Montonen-Olive Conjecture

We have seen that the mass for the BPS-monopole satisfying the BPS is
mM = 4πa

e
. Due to the spontaneous symmetry breaking, the gauge par-

ticles W±
µ , which have electric charge qW±

µ
= ±e~ will acquire masses

mW± = ae~ = aq and the W3 remains massless like the Higgs.

particle electric charge magnetic charge mass spin
photon 0 0 0 ±1
Higgs 0 0 0 0
W± ±e~ 0 aq 1
M± 0 ±4π

e
ag 0

From this table we observe the following features
• all particles saturate the Bogomol’nyi bound m = |a(q + ig)|
• the mass of the BPS-monopole (W±) of one theory with coupling con-
stant e is equal to the mass of the W±( BPS-monopole) of a dual theory
with coupling e′ = 4π

e~ .
Based on these observations, Montonen and Olive conjecture that at the

quantum level, the monoples of one theory would be described by the W±

particles of the dual theory. Similary theW± ’s of the original theory would
be the monopoles of the dual theory.

So far there is no rigorous proof for this conjecture. Note also that this
duality conjecture is not a symmetry, because it relates a theory with one
value of the coupling constant with the same theory with a different cou-
pling constant.
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4.2 The Witten Effect

The Witten effect refers to the shift of the allowed electric charges carried
by magnetic monopoles. In other words, the dyonic spectrum of the theory
depends on the CP violating θ vacuum parameter. The θ parameter enters
throught the addition of a topological term to the Lagrangian

Lθ =
θe2

32π2
∗
−→
Gµν ·

−→
Gµν (4.2.1)

often called the θ-term.
The θ-term is a total derivative and therefore does not affect the field

equation. Let’s introduce this θ-term in the Georgi-Glashow model and
as consequence, we will show that the electric charge of a dyon gets an
extra contribution. To do this we consider a gauge rotation with a small
angle ϕ around the direction of the gauge field φa with the gauge parameter
Ξa = φa

a
, where φa is the Higgs field in the monopole background. At

spatial infinity this is a gauge transformation corresponding to the unbroken
U(1). Its generator corresponds to U(1) electric charge defined in (3.1.18)
Qe = e

a
Taφa~ = eT3~. Under this transformation the Higgs field is left

invariant while the vector potential gets transformed as follows

δW a
µ = − 1

ea
Dµφ

a . (4.2.2)

The generator of this transformation is obtained from the Lagrangian (3.1.1)
of the Georgi-Glashow with the addition of the θ-term

LGG −→ LGG + Lθ

and is given by

N =

∫
R3

d3x

(
∂L

∂(∂0W a
µ )
δW a

µ

)
(4.2.3)

The θ-extended Georgi-Glashow Lagrangian reads

LGG = −1

4

−→
Gµν ·

−→
Gµν+

θe2

32π2
∗
−→
Gµν ·

−→
Gµν+

1

2
Dµ

−→
φ ·Dµ−→φ −V (φ) (4.2.4)

thus on the top of the contribution

∂(Gµν
a G

a
µν)

∂(∂0W a
i )

= −4Goi
a = −4Ei

a

32



one has also the contribution

∂(∗Gµν
a G

a
µν)

∂(∂0W a
i )

= −4 ∗Gi0
a = −4Bi

a .

Then

N =

∫
d3x

∂L

∂(∂0W a
i )
δW a

i = − 1

ea

∫
R3

[Ei
aDiφ

a − θe2

8π2
Bi

aDiφ
a]d3x

From the definitions (3.5.1) and (3.5.2) of the magnetic and electric
charges we get the expression

N = −1

e
(q − θe2

8π2
g) .

Since Qe

e
is an integer, the finite U(1) transformation generated by rotation

on 2π

exp

(
i2π

Qe

e

)
= 1

must be equal to the identity. This implies that the same finite transforma-
tion generated by N must also be equal to 1 and therefore also N must be
an integer

exp(2iπN) = 1 =⇒ N = −1

e
(q − θe2

8π2
g) = −n .

Taking g = 4π
e
m we get

q = ne−m
θe

2π
. (4.2.5)

Here m,n ∈ Z and we have not restricted ourselves to a monopole with
topological charge k = 1, but we have allowed for any value of k = m.

In absence of θ-term the electric charge is quantized in agreement with
( 3.4.4), while in presence of a θ-term, one gets an extra term proportional
to θ and to the magnetic charge of the dyon. The translation θ → θ + 2π
(4.2.5) implies that if dyon with a certain value of the electric charge n exist
, then dyons with any integer value must exist. In conclusion the electric
charge of the dyon is not only quantized, but dyons with any integer value
n of the electric charge must exist in the spectrum. This is a consequence
of the θ periodicity which will be important in the following.
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4.3 SL(2,Z)- Duality

The SL(2,Z)-duality conjecture means that the dyonic spectrum of our the-
ory should be invariant under the SL(2,Z) transformations.

The Georgi-Glashow model with the addition of the θ-term can be rewrit-
ten in more compact way in terms of gauge fields normalized in a way to
include the gauge coupling constant in the rescaled field

−→
W µ −→ e

−→
W µ . (4.3.1)

With the help of the complex coupling constant

τ =
θ

2π
+ i

4π

e2
=

θ

2π
− i

g

e
(4.3.2)

and the complex quantity Gµν
a = Gµν

a + i ∗ Gµν
a the Lagrangian (4.2.4) can

be written as

L = − 1

32π
Im[τGµν

a Ga
µν ] +

1

2
(Dµφ)

2 − V (φ) (4.3.3)

After the rescaling (4.3.1) we have to reformulate the mass formula in eq.
(3.5.5) as follows

M =
a

e
|q + ig| = a|n− τm| . (4.3.4)

Let g be an element of SL(2,Z) which is defined as

g =

(
a b
c d

)
with a, b, c, d ∈ Z and ad− cb = 1.

The parameter τ transforms as

τ −→ τ ′ =
aτ + b

cτ + d
. (4.3.5)

The group SL(2,Z) is generated by two transformations, the S-transformation

T : τ −→ τ + 1 with matrix T =

(
1 1
0 1

)
(4.3.6)
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and the T -transformation

S : τ −→ −1

τ
with matrix S =

(
0 1
−1 0

)
(4.3.7)

The generator T generates a shift of θ over 2π, while for θ = 0 the S gen-
erator corresponds to the original Montonen-Olive duality transformation
(e → g = −4π

e
). Indeed, when the θ-term is not present, i.e., θ = 0 so the

complex parameter is completely imaginary

τ = −ig
e
.

We have a basis (f1, f2) in the complex plane C, such that f1 = e, f2 = −ig
and the ratio τ = f2

f1
. The Montonen-Olive duality e↔ g then yields a new

basis f ′
1 = g, f ′

2 = −ie having ratio

τ ′ =
f ′
2

f ′
1

= −i e
g
= −1

τ

thus coinciding with the S-transformation (4.3.7).
If we consider the states saturating the BPS bound M2 = a2|n − τm|2

the the allowed values for the dyons charges (g, q) belong to a two dimen-
sional charge lattice Q ∼= Z2 which is naturally embedded in the complex
plane C

Q = q + ig with
g = m4π

e

q = ne−m eθ
2π

for m,n ∈ Z . (4.3.8)

The BPS mass formula (4.3.4) is invariant under SL(2,Z)-duality transfor-
mation which transform as

(m,n) −→ (m′, n′) = (m,n)g−1 (4.3.9)

where

g−1 =

(
d −b
−c a

)
.

The SL(2,Z) transformations keep the lattice Q (4.3.8) invariant. Indeed
the BPS mass formula can be written as

M2 = 4πa2(m,n)

(
τ τ̄ −Reτ

−Reτ 1

)(
m
n

)
. (4.3.10)
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The only effect of the SL(2,Z)-transformation (4.3.9) will be the change
(4.3.5) of the modular parameter τ → τ ′ = aτ+b

cτ+d
of the lattice Q. Note that

since e2 > 0, the parameter τ belong to the upper half-plane, Imτ > 0.
Taking into account the θ-periodicity, we can restrict −1

2
≤ Reτ ≤ 1

2
.

Furthermore by SL(2,Z)-transformation, or equivalently a sequence of T
(4.3.6) and S (4.3.7) transformations any modular parameter τ ∈ C can be
brought into the fundamental domain

D = {τ |Imτ > 0, |Re| ≤ 1

2
, |τ | > 1} . (4.3.11)
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Chapter 5

Topological Insulators

5.1 Axion Electrodynamics

The Maxwell Lagrangian can be modified by an axion term describing a
magneto-electric effect

∆Laxion =
θ

2π

αcε

2π

−→
E ·

−→
B (5.1.1)

In the resulting extended electrodynamics the electric field induces a mag-
netic polarization, and the magnetic field induces electric polarization. The
field θ(x) is called axion and the resulting “axion electrodynamics” is de-
fined by the action

S =

∫
d3xdt[

1

8π
(ε
−→
E 2 − 1

µ

−→
B 2) +

θ

2π

αcε

2π

−→
E ·

−→
B ]

where ε and µ are permittivity and permeability of the medium. In matter
the speed of light is c = 1

(µε)1/2
. The electric and magnetic field are given by

−→
E = −

−→
∇φ − ∂ ~A

∂t
and ~B =

−→
∇ ∧ ~A thus the extended Lagrangian in terms

of field strength Fµν = ∂µAν − ∂νAµ is

S = εc2
∫
d4x

(
1

16π
F µνFµν +

θ

2π

α

8π
Fµν ∗ F µν

)
. (5.1.2)

The parameter α = e2

c~ is the fine structure constant, and θ is the phenomeno-
logical axionic parameter. The permittivity ε varies for different dielectric
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materials. The axionic Maxwell equations in the vacuum when θ is a func-
tion on space and time are obtained by variation of the action S

∂µF
µν = −α

π
∂µθ(∗F µν)

The additional term revises both the Gauss’ law and Ampere’s law in the
Maxwell’s equations by adding extra terms

−→
∇ ·

−→
E =

cα

π
(
−→
∇θ ·

−→
B ) (5.1.3)

−→
∇ ∧

−→
B =

1

c2
∂t
−→
E − α

πc
(
−→
B∂tθ +

−→
∇θ ∧

−→
E ) . (5.1.4)

Importantly, when expressed in terms of the vector potential
−→
E ·

−→
B

is a total derivative, so a constant θ has no effect on the electrodynamics
(seen also directly from eqs. (5.1.3) and (5.1.4)). However, to an interface
across which the θ changes by ∆θ one associates a surface Hall conductivity
σxy = ∆θ e2

2πh
.

One can continue to work with the conventional Maxwell equations

−→
∇ ·

−→
D = ρe

−→
∇ ∧

−→
H = ∂t

−→
D + ~je−→

∇ ·
−→
B = ρm

−→
∇ ∧

−→
E = −∂t

−→
B − ~jm

(5.1.5)

at the expense of redefinition of the constitutive relations

−→
D = ε

−→
E − εαθ

π
(c
−→
B ) (5.1.6)

c
−→
H =

c
−→
B

µ
+
αθ

−→
E

πµ
(5.1.7)

The normalized field P3(x) = θ(x)/2π is called the magneto-electric po-
larization.

5.2 Topological Insulators with Planar Boundary

Topological insulators are electronic materials that behave like insulators or
semiconductors in the bulk, but are surrounded by a topologically protected
conduting layer near the surface of the materials. One of the predicted fea-
tures in these materials is the response to external electromagnetic field, the
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magneto-electric effect. Recently, it has been argued that the low energy ef-
fective action for so called topological insulator is described by the ”axion
electrodynamics”[10]. A key manifestation of the axion term (5.1.1) is the
Witten effect: a unit magnetic monopole placed inside a medium with θ 6= 0
is predicted to bind a (generally fractional) electric charge −e( θ

2π
+n) with

n integer.
The dielectric material-insulator in the axion electrodynamic is charac-

terized by 3 parameters: permittivity ε, permeability µ and the field θ. For
a periodic system, there are only two values of the field θ for which the
system is time-reversal invariant

θ = 0 =⇒ trivial insulator (5.2.1)
θ = π =⇒ non-trivial insulator ( topological insulator) (5.2.2)

There is no time-reversal invariant perturbation that can switch from trivial
to non-trivial topological insulator, that’s why one says that the states are
topologically protected. We deal with topological band theory based on Z2

topological band invariant of single particles states.
Following [11] we consider a planar interface between a topological

insulator (with non trivial µ2 and ε2 as well as θ = π, that is P3 = 1
2
) and

trivial insulator (with ε1, µ1 and P3 = 0). Consider a single static point
charge q inside the trivial insulator at distance d away from the surface of
the topological insulator. Let’s find the electromagnetic field made by the
point particle of electric charge q for general µ and ε at position z = d by
the image method. Notice that the Topological Insulator occupy the z < 0
region of the space. The curl of the electric and magnetic field are vanishing
outside the interface, rot

−→
E = 0 and rot

−→
B = 0. So one can introduce the

electric and magnetic potentials, φe and φm

−→
E = −

−→
∇φe

−→
B = −

−→
∇φm .

Above the interface they are given by ( let’s weight all electric charge by ε0
for convenience , and also use ε1 for q on both sides of the interface, these
are just definitions of our mirror charges )

φI
e =

q

4πε1R1

+
q2

4πε0R2

φI
m =

g2
4πR2

(5.2.3)

φII
e =

q

4πε1R1

+
q1

4πε0R1

φII
m =

g1
4πR1

(5.2.4)
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Here q1,2 and g1,2 are the mirror charges located a distance d above ( for
q1, g1 ) and below ( for q2, g2 ) the interface. R2

1 = x2 + y2 + (d − z)2 and
R2

2 = x2 + y2 + (d + z)2. Maxwell’s equations in the absence of surface
currents or charges as usual demand continuty ofD⊥,B⊥,H‖ andE‖. Since
at z = 0 R1 = R2 and ∂zR1 = −∂zR2 we get th system

(q − ε1
ε0
q2) = (

ε2
ε1
q +

ε2
ε0
q1)−

ε0αθ

π
(cg1) (5.2.5)

g1 = −g2 (5.2.6)
g2
µ1

=
g1
µ2

+
αθ

π

q
ε1
+ q1

ε0

µ0c
(5.2.7)

q1 = q2 (5.2.8)

Solving these equations we get the mirrors charges

q2 = q1 =
ε0
ε1

(ε1 − ε2)(
µ0

µ1
+ µ0

µ2
)− ε0α

2 θ2

π2

(ε1 + ε2)(
µ0

µ1
+ µ0

µ2
) + ε0α2 θ2

π2

q (5.2.9)

g2 = −g1 =
1

ε0

2α θ
π
q

(ε1 + ε2)(
µ0

µ1
+ µ0

µ2
) + ε0α2 θ2

π2

(5.2.10)

The system consisting a charge q and a magnetic charge g gives rise to an-
gular momentum

−→
J =

qg

4πr
~r

For the interface , we calculate the contribution to the angular momentum in
the two regions independently. Inside the topological insulator both electric
and magnetic charge are pointing radially outward from the point at z = d,
so the angular momentum vanishes (

−→
E and

−→
B are parallel and so pointing

vector vanishes ). For the region above the interface, we get a non-zero con-
tribution to the angular momentum due to the charge ( monopole ) system
formed by the original charge q at z = d and the mirror magnetic charge g2
at z = −d ( the electric mirror charge q2 at z = −d does not contribute, as
the charge at z = d is purely electric ). Then

Jz = −qg2
8π

= − 1

4πc

αθ
π

(ε1 + ε2)(
µ0

µ1
+ µ0

µ2
) + ε0α2

q2 = − α2~
( ε1
ε0
+ ε2

ε0
)(µ0

µ1
+ µ0

µ2
) + α2

(5.2.11)

40



where α = q2
4πε0~c in SI , we use the fact that we get equal contributions to

the angular momentum from lower and the upper half plane, as in our case
we only get a contribution from the upper half plane, the angular momentum
to the charge and mirror charge system is exactly half of what it would be
for charge and monopole pair. The angular momentum reads

~r ∧ (
−→
E ∧

−→
B ) ∼ d

~r ∧ (~r ∧ êz)
|~r − dêz|2|~r + dêz|2

(5.2.12)

which expression is symmetric under ~r → −~r. Therefore the statistical
angle is

|θS| = 2π
Jz
~

= 2π
α2

( ε1
ε0
+ ε2

ε0
)(µ0

µ1
+ µ0

µ2
) + α2

. (5.2.13)

5.3 Spherical Topological Insulators

We consider a spherical topological insulator of radius a and magneto-
electric polarization P3 centered at the origin, and a point electric charge
q is located at (0, 0, d), with d > a. The constants ε1 and µ1 are the dielec-
tric constant and the magnetic permeability outside the sphere, respectively
ε2 and µ2 the corresponding quantity inside the sphere.It’s shown that the
electric and magnetic fields inside and outside the sphere can be viewed
as induced by a point electric charge or magnetic monople plus a line of
image electric or magnetic charge density. Inside the sphere , the total elec-
tric charge and total magnetic charge vanish. Both inside and outside the
sphere, the curl of electric and magnetic fields is zero, thus we can find a
scalar potentials in both region:

−→
E i = −

−→
∇φi

e (5.3.1)
−→
B i = −

−→
∇φi

m (5.3.2)

where i = 1, 2 stand for outside and inside region. The most general solu-
tion for the potential in equation (5.3.1) and (5.3.2) can be written in terms
of Legendre polynomials since the problem has azimuthal symmetry(there
will be no dependence on the azumuthal angle ϕ). Moreover both inside
and outside the sphere, the electric and magnetic scalar potential satisfy the
Laplace’s equation and are expressed as:
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φ1
e =

q

ε1

∞∑
l=0

rl

dl+1
Pl(cos θ) +

∞∑
l=0

Al(
a

r
)l+1Pl(cos θ) (5.3.3)

φ2
e =

∞∑
l=0

Bl(
r

a
)lPl(cos θ) (5.3.4)

φ1
m =

∞∑
l=0

Cl(
a

r
)l+1Pl(cos θ) (5.3.5)

φ2
m =

∞∑
l=0

Dl(
r

a
)lPl(cos θ) (5.3.6)

Matching the boundary condition for the interface between trivial (vac-
uum) and topological insulator means to continuity of the transversal (to
the boundary) components

−→
D⊥ and

−→
B⊥ as well as parallel components

−→
H ‖

and
−→
E ‖ ):

−→
D 1

⊥ =
−→
D 2

⊥ (5.3.7)
−→
B 1

⊥ =
−→
B 2

⊥ (5.3.8)
−→
E 1

‖ =
−→
E 2

‖ (5.3.9)
−→
H 1

‖ =
−→
H 2

‖ (5.3.10)

or in more details

ε1
∂φ1

e(a)

∂r
= ε2

∂φ2
e(a)

∂r
− 2αP3

∂φ2
m(a)

∂r
(5.3.11)

∂φ1
m(a)

∂r
=

∂φ2
m(a)

∂r
(5.3.12)

∂φ1
e(a)

∂θ
=

∂φ2
e(a)

∂θ
(5.3.13)

1

µ1

∂φ1
m(a)

∂θ
=

1

µ2

∂φ2
m(a)

∂θ
+ 2αP3

∂φ2
e(a)

∂θ
(5.3.14)
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Plugging the expressions of the potentials we obtain:

∂φ1
e(a)

∂r
=

q

ε1

∑
l

lala−1

dl+1
Pl(cos θ)−

∑
l

(l + 1)Ala
−1

∂φ2
a(a)

∂r
=

∑
l

lBla
−1Pl(cos θ)

∂φ1
m(a)

∂r
= −

∑
l

(l + 1)Cla
−1Pl(cos θ)

∂φ2
m(a)

∂r
=

∑
l

lDla
−1Pl(cos θ)

∂φ1
e(a)

∂θ
=

q

ε1

∑
l

al

dl+1

d

dθ
(Pl(cos θ)) +

∑
l

Al
d

dθ
(Pl(cos θ))

∂φ2
e(a)

∂θ
=

∑
l

Bl
d

dθ
(Pl(cos θ))

∂φ1
m(a)

∂θ
=

∑
l

Cl
d

dθ
(Pl(cos θ))

∂φ2
m(a)

∂θ
=

∑
l

Dl
d

dθ
(Pl(cos θ))

And we get the following equations:

ql
al

dl+1
− ε1(l + 1)Al = lε2Bl − 2αP3lDl

Cl = − l

(l + 1)
Dl

q

ε1

al

dl+1
+ Al = Bl

1

µ1

Cl =
1

µ2

Dl + 2αP3ε1Bl

Dl = − µ1µ2(l + 1)

lµ2 + µ1(l + 1)
2αP3Bl
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After some straightforward calculations we get:

Al =
q

ε1

al

dl+1

[
(lε1 − lε2)[

l
µ1

+ l+1
µ2

]− (2αP3)
2l(l + 1)

(2αP3)2l(l + 1) + [ε1(l + 1) + lε2][
l
µ1

+ (l+1)
µ2

]

]

Bl =
q

ε1

al

dl+1

[
(lε1 − lε2)[

l
µ1

+ l+1
µ2

]− (2αP3)
2l(l + 1)

(2αP3)2l(l + 1) + [ε1(l + 1) + lε2][
l
µ1

+ (l+1)
µ2

]
+ 1

]

Cl = q
al

dl+1

2αP3l(2l + 1)

(2αP3)2l(l + 1) + [ε1(l + 1) + lε2][
l
µ1

+ (l+1)
µ2

]

Dl = q
al

dl+1

−2αP3(2l + 1)(l + 1)

(2αP3)2l(l + 1) + [ε1(l + 1) + lε2][
l
µ1

+ (l+1)
µ2

]

The fields here could be considered to be generated by a point image elec-
tric charge, magnetic monople, and a line of image electric or magnetic
charges. Now for simplicity we take ε1 = ε2 = µ1 = µ2 = 1 and consider
a potentials in the region a < z < d assuming that the magnetic field is
generated by an image magnetic monople of the magnitude g2 = a

d
g′ at the

reverse point (0,0,a
2

d
) of the applied charge, and a line of image magnetic

charge density stretching from the center of the sphere to the reverse point,
with magnetic charge density

η2(z) =
g′

a
[c1(

zd

a2
)−t1 + c2(

zd

a2
)−t2 ] (0 ≤ z ≤ a2

d
) (5.3.15)

The potential induced by the image magnetic monopole and magnetic charge
density is∑

l

g′
a2l+1

(zd)l+1
[

c1
−t1 + l + 1

+
c2

−t2 + l + 1
+ 1]Pl(cos θ) (5.3.16)

where g2 = a
d

αP3

1+(αP3)2
q ; t1,2 = 1

2
[1± αP3√

1+(αP3)2
]; c1,2 = −1

4
[1± αP3√

1+(αP3)2
]

Further we assume the electric field induced by the topological insulator
can be regarded as being generated by an image electric charge q = a

d
q′ at

the reverse point and a line of image electric charge density stretching from
the center of the sphere to the reverse point, with an electric charge density:

ρ2(z) =
q′

a
[c1(

zd

a2
)−t1 + c2(

zd

a2
)−t2 ] (0 ≤ z ≤ a2

d
) (5.3.17)
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Where q2 = −a
d

(αP3)2

1+(αP3)2
q ; t1,2 = 1

2
[1± αP3√

1+(αP3)2
] ;c1,2 = ± 1

4αP3

√
1+(αP3)2
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z

Figure 5.1: The image magnetic(right) and electric(left) charge densities as seen
from outside the sphere. The parameters are taken as a = 1, d = 4, P3 =

1
2 , q = 1.
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We easily verify that the integrals of the image electric and magnetic
charge densities cancel the point image electric and magnetic monopole, as
expected.

Now consider the fields inside the sphere and assuming that the magnetic
field is generated by an image magnetic monopole of the magnitude g1 at
(0,0,d), and a line of image charge density stretching from (0,0,d) to infinity
along z axis, with a magnetic charge density :

η1(z) =
g1
d
[c1(

z

d
)−t1 + c2(

z

d
)−t2 ]; (d ≤ z <∞) (5.3.18)

The potential induced by the image magnetic monopole and magnetic charge
density is ∑

l

g1
rl

dl+1
[
c1

t1 + l
+

c2
t2 + l

+ 1]Pl(cos θ) (5.3.19)

By matching with the existing solution we easily obtain

g1 = − αP3

1 + (αP3)2
q (5.3.20)

t1,2 =
1

2
[1± αP3√

1 + (αP3)2
] (5.3.21)

c1,2 =
1

4
[1± αP3√

1 + (αP3)2
]. (5.3.22)

Then we assume the electric field can be regarded as being generated by
the effective charge q

ε1
plus an image electic charge q1 at (0,0,d) and a line

of image electric charge density stretching from (0,0,d) to infinity along z
axis,with an electric charge density

ρ1 =
q1
d
[c1(

z

d
)−t1 + c2(

z

d
)−t2 ] (0 ≤ z <∞) (5.3.23)

And then we obtain
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q1 = − (αP3)
2

1 + (αP3)2
q (5.3.24)

t1,2 =
1

2
[1± αP3√

1 + (αP3)2
] (5.3.25)

c1,2 = ± 1

4αP3

√
1 + (αP3)2

. (5.3.26)
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Figure 5.2: The image magnetic(left) and electric(right) charge densities as seen
from inside the sphere. The parameters are taken as a = 1, d = 4, P3 =

1
2 , q = 1.
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5.4 Topological insulator and SL(2,Z)

The constitutive relations (5.1.6) can be brought to a beautiful and concise
matrix form. We first rewrite (5.1.6) as

−→
D = ε

−→
E − θ

2π
(2αεc

−→
B ) (5.4.1)

−→
H =

−→
B

µ
+

θ

2π
(αεc

−→
E ) (5.4.2)

Then defining the normalizing constant κ = 2αεc

−→
D = κ

εc2
[ ( θ2

4π2 + ( 1
2α
)2)(κ

−→
E ) − θ

2π

−→
H ]

κ
−→
B = κ

c2ε
[ − θ

2π
(κ
−→
E ) +

−→
H ]

(5.4.3)

and replacing c2ε = 1/µ we obtain

( −→
D

κ
−→
B

)
= M

(
κ
−→
E
−→
H

)
M = κµ

(
θ2

4π2 + ( 1
2α
)2 − θ

2π

− θ
2π

1

)
.

(5.4.4)
It is worth noting the parallel of the matrix M with the BPS-mass formula
(4.3.10) which explains the underlying SL(2,Z)-symmetry.

Classically the constitutive relations are invariant under shifts of θ by
any constant, θ = θ′ + C together with

( −→
D

κ
−→
B

)
= Λ

( −→
D ′

κ
−→
B ′

)
,

(
κ
−→
E
−→
H

)
= (ΛT )−1

(
κ
−→
E ′
−→
H ′

)
(5.4.5)

(
ρe
κρm

)
= Λ

(
ρ′e
κρ′m

)
,

(
~je
κ ~jm

)
= Λ

(
~j′e
κ ~j′m

)
where the matrix Λ stands for

Λ =

(
1 − C

2π
0 1

)
⇒ (ΛT )−1 =

(
1 0
C
2π

1

)
Classically we dispose with this symmetry to set θ to zero however quantum
mechanically shifts in θ are only a symmetry if C is an integer multiple of
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2π. As long as the electric and magnetic fluxes are properly quantized the
normalized action Sθ

~ apearing in the path integral is an integer multiple of
θ, thus a shift of θ by 2πn do not alter the path integral. Thus only the
values of θ between 0 and 2π are physically distinct. Among this values
only θ = 0 and θ = π give a time-reversal symmetric theory. The shift
θ′ = θ − 2π gives the T -transformation (4.3.6) of SL(2,Z).

Suppose now that we are in trivial insulators with θ = 0. Then the
Maxwell equations (5.1.5) are invariant under the rotation

Oβ =

(
cos β sin β
− sin β cos β

)
if the quatities transforms simultanously( −→

D

κ
−→
B

)
= Oβ

( −→
D ′

κ
−→
B ′

)
,

(
κ
−→
E
−→
H

)
= Oβ

(
κ
−→
E ′
−→
H ′

)
(

ρe
κρm

)
= Oβ

(
ρ′e
κρ′m

)
,

(
~je
κ ~jm

)
= Oβ

(
~j′e
κ ~j′m

)
Classically rotation on arbitrary angle β ∈ [0, 2π) are symmetry. But

the quantization of charges forces the total electric charge qe to be multiple
of the electron electric charge e

qe =

∫
d~S · ~D = nee ne ∈ Z

and the total magnetic charge qm to be a multiple of the minimal magnetic
charge g = e

2α

qm =

∫
d~S · ~B = nmg nm ∈ Z .

The integrations are done on a closed surface containing all charges.
Only the special rotation with angle β = π/2,

Oπ/2 =

(
0 1
−1 0

)
= S

which is the duality transformation (2.1.7), is compatible with the quanti-
zation. This transformation is reffered to as S-transformation (4.3.7). Note
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that S leaves the constitutive relations (5.1.6) invariant if we exchange the
values of the parameters as follows

ε/κ ↔ κµ .

The speed of light c = 1
εµ

is invariant under S-transformation.
The full quantum mechanical duality group SL(2,Z) is written as a se-

quence of S and T -transformation. Let us now denote by Λ the generic
element in SL(2,Z)

Λ =

(
a b
c d

)
such that ad− bc = 1 .

The action of general Λ ∈ SL(2,Z) transformation on the three parameters
ε, µ, and θ

From the constitutive relations (5.4.4) follows that the transformation
(5.4.5) with generic Λ ∈ SL(2,Z) is a symmetry if and only if

M = ΛM′ΛT M = µκ

(
θ2

4π2 + ( 1
2α
)2 − θ

2π

− θ
2π

1

)
(5.4.6)

Note that the speed of light is SL(2,Z)-invariant, due to detM = 1
c2

.
The transformation (5.4.6) of the matrix M is equivalent to the modular

transformation
τ ′ =

aτ + b

cτ + d

of the complexified parameter

τ =
θ

2π
+ i

1

2α

With the new formalism using the matrix M we can repeat and gener-
alize the calculations for the planar insulator [11] (given in section 5.2) and
determine the mirror charges in manifestly SL(2,Z)-covariant form.

Suppose we have a planar interface z = 0 between the two insulators
with parameters ε1, µ1 and θ1 and ε2, µ2 and θ2, respectively. Equivalently
the insulators are specified by the matrices M1 and M2. Suppose now that
the test charge ~q at distance d from the interface has two components

~q =

(
qe
κqm

)
.
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We introduce the electric and magnetic potentials Φe,m

~D = −~∇Φe
~B = −~∇Φm .

Above the interface z > 0 these potentials are given by

ΦI
e =

qe
R1

+
q
(2)
e

R2

ΦI
m =

qm
R1

+
q
(2)
m

R2

and below the interface z < 0 are given by

ΦII
e =

qe
R1

+
q
(1)
e

R1

ΦII
m =

qm
R1

+
q
(1)
m

R1

where q(1)e,m (q(2)e,m) are the mirror charges located at a distance d above
(below) the interface and R2

1,2 = x2 + y2 + (d∓ z)2.
The continuity on the boundary of the transvesal components of ~B and

~D implies relations about the mirror charges(
D

(1)
⊥

κB
(1)
⊥

)
=

(
D

(2)
⊥

κB
(2)
⊥

)
⇒ ~q(1) = −~q(2)

Similarly, the continuity of the parallel components of ~E and ~H(
κE

(1)
‖

H
(1)
‖

)
=

(
κE

(2)
‖

H
(2)
‖

)
⇒ M−1

1

(
D

(1)
‖

κB
(1)
‖

)
= M−1

2

(
D

(2)
‖

κB
(2)
‖

)

and therefore if we denote by T = M1M−1
2(

D
(1)
‖

κB
(1)
‖

)
= T

(
D

(2)
‖

κB
(2)
‖

)
⇒ ~q + ~q(2) = T (~q + ~q(1))

The SL(2,Z)-transformation law of the matrix M implies the transforma-
tion properties of the matrix T

T = ΛT ′Λ−1 (5.4.7)

and these expressions are manifestly covariant.
The covariant system of equations

~q(1) = −~q(2) (~q + ~q(2)) = T (~q + ~q(1)) (5.4.8)
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has a unique solution

~q(2) = −~q(1) = (T + 1)−1(T − 1)~q (5.4.9)

Let us fix ε0 = µ0 = c0 = 1 and compare the latter results with the
mirror charges (5.2.10) and (5.2.9) (see also [11]). We observe that for the
magnetic charges q(1)m = −q(2)m the latter expression is in perfect agreement
with g1 = −g2 (5.2.10) whereas for the electric charges there seems to be
a disagreement with the values obtain in (5.2.9). In particular, the mirror
electric charges q(1)e = −q(2)e are equal opposite while q1 = q2 in (5.2.9).

The apparent paradox can be resolved by noting that q1 and q2 are not
the induced electric mirror charges. Proper electric charges are sources of
the flux of the displacement ~D. The electric mirror charges q1 and q2 were
defined as sources of the flux of the electric field ~E instead.

The discrepancy is due to the modified constitutive relations in the pres-
ence of the θ term and the two definitions differ by a multiple of the mag-
netic charge.

So the proper mirror electric charges are related to the quantities calcu-
lated in (5.2.9) by

1

ε2
(q + q(1)e + 2αq(1)m

θ2
2π

) = (
q

ε1
+ q1)

and
1

ε1
(q(2)e + 2αq(2)m

θ2
2π

) = q2

Thus we obtain after substitution the compatibility of the two expressions.
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