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ABSTRACT 

The basic understanding of the underlying techniques of growing Carbon Nanotubes (CNTs) 

with a specific chirality is still obscure and needs to be understood so as to properly harness its 

potentials. Using both Classical Molecular Dynamics (MD) simulation with empirical force 

fields  and a geometry optimization based on ab initio forces,  we show that the dynamics 

involved in the growth of CNT on iron nanoparicles is non linear but complex.  For a good 

geometry, the growth depends on the deposition rate of the carbon atoms on the iron 

nanoparticles. Observations show that defects in the CNT first appear in the cap formed and then 

propagate through the wall of the growing tube. Partial results from ab initio show the formation 

of a cap which is a precursor of an armchair type CNT. 
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CHAPTER ONE 

1.0.0  INTRODUCTION 

Carbon nanotubes (CNT) occur as allotropes of carbon, others being diamond, graphite and 

fullerenes. Their walls are formed by an  atom thick sheet of graphite(called graphene) rolled 

into cylinders[1]. The diameters are in the order of nanometer and the length in micrometers. In 

recent times, nanotubes of length-to-diameter ratio of 132,000,000:1 have been constructed. This 

big ratio leads to a huge and unusual electrical transport. The bonds present are sp
2 

 which is 

much similar to those of graphite[2] and the tubes align themselves together by a van der Waals 

forces (pi-stacking). 

When the graphite sheets are rolled up in a discrete(chiral) angle and a given radius with respect 

to a plane perpendicular to the tubes long axis, a CNT of specific chirality (either metallic or 

semiconducting) is formed depending on the combination of the rolling angle and the radius[3].  

   (a)        (b)     (c)  

 

Fig.1.1. The outlines of three types of nanotube: (a) a (10,0) zigzag nanotube; (b) a (5,5) 

armchair nanotube; (c) a (7,3) general chiral nanotube.(Rafil, 2008) 
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The angle usually can range from 0-30
o
[5]

. 
This rolling up of the graphene sheet is represented 

by a pair of indices (n1,n2) where  n1 and n2 denotes the number of unit vectors along the 

direction of the honey comb crystal lattice of graphene [4].For n2 =0 the nanotube is said to be 

zigzag with chiral angle=0, for n1=n2 it is armchair with chiral angle=30
o
, otherwise it is chiral. 

One can also show [18] that the bandgap of the CNT is a function of |n2 - n1| and, hence, the 

indices (n1,n2) determine whether the CNT is metallic or semiconducting. 

 Their discovery  by Sumio Lijima of NEC in 1991[5]has come to be a giant leap in Science and 

Technology and has since then been envisioned as a step to revolutionalizing nanotechnology. 

This is true considering their many unique properties ranging from being 100 times stronger than 

stainless steel and six times lighter, hard as diamond but  thermal capacity  twice that of pure 

diamond, current-carrying capacity of 1000 times higher than that of copper, and thermally 

stable up to 4000K[8]. 

Their wide range of applications are also astonishing in the sense that it opens the possibility of 

weaving them into clothes that are bullet proof and stab-proof, further miniaturization of 

electronic devices, production of paper batteries, production of solar cells of improved 

efficiencies, treatment of cancerous cells e.t.c. 

So far, there have been many growth techniques employed in the production of nanotubes. They 

include laser ablation, arc discharge, high pressure carbon monoxide disproportionate (Hipco) 

and chemical vapor deposition (CVD)[8]. Of all these, CVD approach has proven more 

promising for large scale production, and the ease to directly grow the CNT on any given 

substrate [8]. 
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The CVD approach involves using a substrate containing particles of metallic catalyst usually 

cobalt, iron, nickel or their combination[6].  

There are diverse opinions about the mechanism of CNT growth, but the most accepted one is 

described by Kumar [8]. A hydrocarbon is passed through a chamber containing transition metal 

nanoparticles at a very high temperature. Meyyapan reported that CNT growth does not occur 

below 550 degree Celsius [5]. The hydrocarbon (usually methane) is broken down and a carbon 

deposit is created while the hydrogen escapes[7]. The carbon deposit diffuses into the metal 

nanoparticles catalyst. It nucleates within it and latter precipitates out a cylindrical network with 

no dangling bond and energetically stable. This is the CNT and in other instances gives carbon 

nanofibres (CNFs). The process is sustained due to the thermal gradient inside the metal 

nanoparticles. There are two modes of growth namely, base growth (when the metallic catalyst is 

lifted by the growing carbon nanostructures) and tip growth (when the metallic catalyst remains 

at the bottom of the CNT), these he said depends on the energy gained as a result of adding 

carbon atoms from the carbon metal catalyst solution to the graphene sheets forming the carbon 

nanostructures [7]. However, Kumar reported that when the catalyst-substrate interaction is 

weak, the carbon diffuses down through the metal; the CNT precipitates out at the metal bottom 

thereby pushing the metal catalyst off the substrate. The growth continues as long as the metal's 

top is open for carbon diffusion but stops when the surface is completely covered with the excess 

carbon which stops the catalytic activities. When the catalyst-substrate interaction is strong, 

carbon diffuses into the metal catalyst, but this time the CNT precipitation fails to push the metal 

particles up so that the CNT emerge out from the metal apex.  
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Fig1.2.   Widely-accepted growth mechanisms for CNTs: (a) tip-growth model, (b) base- growth 

model (Banerjee etal,2008) 
 

Despite the huge advancement made so far in the production of CNT, yet there is no known 

mechanism for controlling the chirality of CNT  during the growth process whether it will be 

semiconducting or metallic[3]. Factors or parameters that influence a specific growth still needed 

to be understood. Is the mechanism sensitive to metal catalyst, catalyst size, carbon precursor, 

the substrate type, temperature, pressure e.t.c? These and many more are questions awaiting 

answers about CNT growth. 

Stephanie et. al. [3] proposed an idea for the chirality-selective growth of nanotubes by 

controlling the type of caps that form on the catalyst at the nucleation stage by ab-initio 

calculation. The work of Raty et. al. [2] (see fig2) further demonstrated convincingly the 

possibility of achieving the growth mechanism by ab- initio simulation.  

It is therefore in the interest of this work to attempt answering some of the questions above 

through both classical Molecular Dynamics (MD) and ab-initio simulation similar to that of Raty 

et. al. but by employing other necessary means to understand the nanotube growth mechanism. 
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Fig1.3. Schematic representation of the basic steps of SWCNT growth on a Fe catalyst, as  

observed in ab initio simulations. (I) Diffusion of single C atoms (red spheres) on  

the surface of the catalyst. (ii) Formation of a sp
2
 graphene sheet floating on the catalyst surface 

with edge atoms covalently bonded to the metal. (iii) Root incorporation of diffusing single C 

atoms.[Raty et. al., 2005]  

1.1.0 AIMS AND OBJECTIVES 

The aim of this work is to understand the mechanism by which certain chirality occur in carbon 

nanotube growth processes.  

The objectives are 

1) Perform molecular dynamics  simulation using empirical force fields (with LAMMPS codes) of 

carbon on  nanoparticles of Fe 

2) Carry out Born-Oppeinheimer MD simulations and geometry optimization of carbon atoms on 

iron nanoclusters. Here, the program used will be Quantum Espresso. 
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CHAPTER TWO 

2.0.0 THEORY 

2.1.0 Geometry of a Graphene Sheet  

The geometry of a graphene sheet (i.e. atom thick graphite) is crucial to a good understanding of the 

various properties of Carbon Nanotube (CNT). Consider the graphene sheet as shown below 

 

Fig2.1. A 2-D graphene sheet showing the vectors that characterize SWCNT (Drasselhaus et. al.) 

Where the x1 and x2-axes are respectively parallel to a so-called armchair direction and a zigzag 

direction of the sheet. The point O is the origin in the sheet. Any other equivalent point, such as 

A, can be reached by the use of the Bravais lattice vector Ch of the graphene sheet. The vectors 

a1 and a2 are the primitive vectors of the unit cell. The vector T is another lattice vector, which is 

normal to the vector Ch, connecting the two equivalent points O and B. The vector Ch is referred 

to as the chiral vector and the angle θ that it makes with the zigzag axis of the graphene sheet 

passing through O is called the chiral angle. 

In Cartesian coordinates the primitive vectors are given as 
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 3 1

2 2
a
 

   
 

1 1 2a e e , 

 3 1

2 2
a
 

   
 

2 1 2a e e ----------------------------------------2.1 

Where 
1e  and 

2e  are unit vectors along the x1- and x2-axes, respectively, and a = 2.46 

Ang. is the lattice constant of graphite. This constant is related to the carbon–carbon bond length 

aC–C by  

3a aC C  ----------------------------------------------2.2 

The area of the unit cell for the basis vectors shown in Figure 2.1 is given by 

2

1 2

3
| |

2
G

a
S   a a ---------------------------------2.3 

The chiral vector is obtained from the basis vectors as 

h n m 1 2C a a -------------------------------------2.4 

Putting (2.1) into (2.4) gives 

 3
( ) ( )

2 2
h

a a
n m n m   

1 2
C e e ---------------------------------2.5 

 

Where (n, m) are a pair of integers that characterize the chiral vector, and are referred to as the 

chiral indices. The length L of the chiral vector is given as 
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1

2 2 2| | ( )hL a n m nm   C ----------------------------------------2.6 

The chiral angle, as depicted in Figure 2.1, can be obtained from 

.
cos

| || |

h

h

  1

1

a C

a C
------------------------------------------------------2.7 

Or, by using (2.1) and (2.5), 

1

2 2 2

2
cos

2( )

n m

n m nm






 

-------------------------------------------2.8 

So that 

1

2 2 2

3
sin

2( )

m

n m nm

 

 

, 

3
tan .

2

m

n m
 


---------------------------------------------------------2.9 

2.2.0 Geometry of an SWCNT 

Rolling the sheet shown in Figure 2.1 so that the end of the chiral vector Ch, i.e. the lattice point 

A, coincides with the origin O leads to the formation of an (n,m) nanotube whose circumference 

is the length of the chiral vector, and whose diameter dt is therefore 

1

2 2 2( )
t

L a n m nm
d

 

 
  --------------------------------------------------2.10 

Since the zigzag axis of the sheet corresponds to θ = 0, then if the rolling chiral vector is along 

this axis, a zigzag SWCNT is generated. From (2.11), we see that θ = 0 corresponds to m = 0, 
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and hence a zigzag SWCNT is an (n, 0) nanotube. On the other hand, the armchair axis of the 

sheet is specified by θ = π/6, and if this is the direction of the rolling chiral vector, an armchair 

nanotube is generated. Again from (2.10) we see that θ = π/6 corresponds to m = n, and hence an 

armchair SWCNT is an (n, n) nanotube. An SWCNT generated for any other value of θ, i.e. 0<θ 

<π/6, is referred to as a general chiral SWCNT. Figure 2.2 shows the schematic representations 

of these three types of nanotube.  

 

Fig. 2.2 Models of capped SWCNTs, showing: (a) a (5,5) armchair nanotube; (b) a zigzag (9,0) 

nanotube; (c) a general chiral (10,5) nanotube. (Drasselhaus et. al.) 

 

Therefore, each real lattice vector Ch defines a different way of rolling up the sheet into an 

SWCNT. The point-group symmetry of the lattice makes many of these nanotubes equivalent. So 

the unique SWCNTs are generated by using only a 1/12 irreducible wedge of the Bravais lattice, 

i.e. the wedge contained between θ = 0 and θ = π/6. The unit cell of an SWCNT, shown in Figure 

2.1, is the rectangle OAB‟B bounded by the vectors Ch and T. We need to derive an expression 
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for T in terms of the unit vectors a1 and a2, and the indices (n,m) that are used to construct the 

vector Ch. To do so, let us first write the unit vector along Ch on the basis of (2.5): 

  3
( ) ( )

3 2
h

a a
n m n m

L L
   

1 2
C e e  --------------------------------------------2.11 

The unit vector, along the vector T, perpendicular to hC  can be written as  

  .  1 2T e e  ---------------------------------------------------2.12 

Then from the condition 

  0,h  C T ----------------------------------------------------------2.13 

and the fact that the lengths of the two unit vectors hC  and T are equal, we obtain 

the following equations: 

3
( ) ( ) 0,

2 2

a a
n m n m

L L
     

2 2
2 2 2 2

2 2

3
( ) ( ) .

4 4

a a
n m n m

L L
      ---------------------------------2.14 

Solving these two equations gives 

( ),
2

a
n m

L



   

3
( ),

2

a
n m

L
   -----------------------------------------------------------2.15 



10 
 

And hence from (2.14) 

  ( ) 3( ) ,
2

a
n m n m

L
     
 1 2T e e -----------------------------------------2.16 

And the vector T is given by 

| | .T T T ----------------------------------------------------------------------------2.17 

We can express the magnitude of T as a proportion of the magnitude of vector Ch: 

| | ,LT ------------------------------------------------------------------------------------------------2.18 

Where   is the proportionality constant. Substituting from (2.16) and (2.18) into into (2.17), we 

have 

 ( ) 3( )
2

a
n m n m      

 1 2T e e ----------------------------------------------2.19 

On the other hand, since T is a chiral vector, we can write 

1 2t t 1 2T a a -----------------------------------------------------------------------2.20 

Where (t1, t2) are a pair of integers. Comparison of (2.19) and (2.20) gives 

1

( 2 )
,

3

n m
t

 


 

2

(2 )
.

3

n m
t

 
 ---------------------------------------------------------------2.21 
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To determine the constant η, we should remember that, as we have said before, the 

Vector T connects the origin O to the first equivalent lattice point B. This implies that 

the integers t1 and t2 cannot have a common divisor, save for unity. In consequence, 

1

3 d




R

-----------------------------------------------------2.22 

Where 

( 2 ,2 ),d hcd n m n m  
R ----------------------------------------2.23 

and hcd stands for the highest common divisor. Therefore, 

1

( 2 )
,

n m
t

d




R

 

2

( 2 )
.

n m
t

d

 


R

 ----------------------------------------------------2.24 

If  

( , ),d hcd n m  ----------------------------------------------------2.25 

then 

 

 

d  if   n m  is not a multiple of 3d,

3d  if   n m  is a multiple of 3d.
d

  
  

  
R

--------------------------2.26 

Substituting for   from (2.22) into (2.18), we obtain the length of the vector T as 
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3
| | .

L
L

d
 

R

T  -----------------------------------------------------2.27 

For example, if we consider the chiral vector 

17 5 .h  
1 2

C a a  ---------------------------------------------------2.28 

in the Cartesian coordinate system, the basis vectors are given by in this case by d = 1, and, since 

the second condition in (2.26) holds, then dR = 3, and hence, from (2.20) and (2.24) the vector T 

is given by 

9 13 . 
1 2

T a a
----------------------------------------------------2.29

 

To compute the number of atoms per unit cell of the SWCNT, we need to divide the area of the 

SWCNT unit cell ST by the area of the graphene unit cell SG given in (2.13). The area of the 

SWCNT unit cell is given by 

3
| || | ,T h

R

L
S T L

d
 C

-------------------------------------------------------2.30

 

or employing (2.8) 

2 2 23 ( )
.T

a n m nm
S

d

 


R -------------------------------------------------2.31

 

Therefore, the number of atoms NT per unit cell of the SWCNT is given by 

2 24( )
2 ,T

T

G R

S n m nm
N

S d

 
 

---------------------------------------------2.32
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Where the factor two is included to account for the two atoms per unit cell of the graphene sheet. 

The expressions for the geometry of an SWCNT derived above assume, implicitly, that the act of 

rolling the graphene sheet into a cylindrical nanotube does not significantly distort the relative 

distance of the two carbon atoms within the hexagonal shells. This means that the carbon–carbon 

bond length on the surface of the nanotube is still aC–C, introduced in (2.11). 

The graphene sheet is a semi metallic material with a zero band gap. The electronic states of an 

infinitely long SWCNT are continuous in the axial direction of the nanotube, but are quantized in 

the circumferential direction. The electronic properties of these nanotubes are determined by 

their (n,m) chiral indices according to the rules[18] 

integer,  then the nanotube is metallic( )

integer,  then the nanotube is semiconducting3

n m
if

 
 
  -----------------------------------------2.33

 

The armchair SWCNT is, therefore, always metallic, and, for a semiconducting SWCNT of diameter dt, 

the bandgap scales as 1
td
[1,18].However, the breaking of the bond symmetry due to curvature can give 

rise to the appearance of a small band-gap even in the metallic SWCNTs, hence turning them into small-

gap semiconducting materials.[1] 

2.3.0 Classical Molecular Dynamics (MD) Simulation Method 

An MD simulation is often carried out on a model nano sized system composed of N interacting atoms, or 

molecules. The interactions, described by appropriate interatomic potentials, can be of either a pair-wise, 

or many-body, type. These potentials characterize the physics of the nano systems, which can be in any 

phase, i.e. solid, liquid or gas. One of the objectives of MD simulations is to obtain the properties of the 

nano system as time-averages of the instantaneous properties when the constituent atoms move in the 

course of the simulation time, and the nano system switches from one state to another state. Given the 

initial position coordinates and velocities of the atoms in the nano system, the subsequent motion of 
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individual atoms is described either by deterministic Newtonian dynamics or by Langevin type stochastic 

dynamics, depending on the type of system we are dealing with. In a classical MD simulation, the model 

nano system is confined to a simulation cell of volume V. This cell, called the central simulation cell, is 

then typically replicated in all spatial dimensions, corresponding to the dimensionality of the system. This 

replication generates the periodic images of the cell, as well as the periodic images of the original N 

atoms within this cell, giving rise to the so- called the periodic boundary condition (PBC). The imposition 

of the PBC is necessary to compensate for the unwanted effects of the artificial surfaces that accompany a 

model system with a finite size, when computation of the bulk properties is required. For example, for a 

system composed of 1000 molecules located in a 10 × 10 × 10 cubic simulation cell, about 488 molecules 

are located on the faces of the cell, and these molecules experience different forces from those in the 

interior of the cell. In the course of an MD simulation, the atoms in the original model system, placed in 

the central simulation cell, move in this cell, and correspondingly their periodic images execute an exactly 

identical motion in their respective image cells. When one atom leaves the central cell from one side, one 

of its periodic images enters from the opposite side, via the implementation of the PBC. This keeps the 

number of atoms in the central cell constant. 

 2.3.1  Computation of forces 

This computation is by far the most important, and time-consuming, part of MD code. If the  

energetics of the atoms are described by a potential energy function HI(rij) then, in a Newtonian  

dynamics-based simulation, the force experienced by each atom at each simulation time-step is  

computed from this potential according to 

( ),i i I ij

j i

H r


   rF

--------------------------------------------------------------2.34

 

where rij is the separation distance between two atoms i and j. If the potential energy function is  

described by a two-body interaction function, then a particular atom in the simulation cell  

interacts with N − 1 atoms in the same cell, as well as with the periodic images of these atoms  
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located in the image cells. This amounts to a prohibitively large number of interactions and  

computational time. When the inter atomic potential is short-ranged then, in order to save  

computing time, the simplifying assumption is often made, in the module that computes the  

forces, that each atom in the simulation cell interacts only with the nearest periodic images of the  

N −1 neighbors. This involves the computation of [N (N − 1)]/2 interactions. This assumption,   

named the minimum-image convention , is implemented in practice by imagining the   

particular atom under consideration to be located at the centre of a box, of the same shape and  

size as the central simulation cell, and interacting with all the atoms that fall within this box, i.e.  

with the nearest periodic images of the remaining N − 1 atoms. Further simplification involves  

imposing a cut-off distance on these neighbors of the atom and considering only those  

neighbors, from among the reduced number of neighbors, that are located within a specified  

cut-off sphere within this imaginary box whose centre coincides with that of the box. For a cubic  

central simulation cell, the radius of this cut-off sphere must not be greater than half the length of  

the simulation cell. To find the neighbors of the atoms, a module that creates a list of   

neighbors of the atoms is called after every few time-steps. 

2.3.2  Equations of Motion 

Once the forces experienced by individual atoms are computed, the motion of the N atoms is  

obtained by integrating 3N simultaneous coupled Newton‟s equations of motion. These  

equations can be integrated numerically by a variety of algorithms. These algorithms are based  

on the finite-difference method, wherein the time-variable is discretized on a finite grid.  

Knowledge of the position ri(t), velocity vi(t) and force Fi(t) experienced by the atom i at  

simulation time t allows the integration scheme to compute the same quantities at a later time  

(t+dt).Among the many integration schemes that are available, one very popular algorithm is the 
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velocity Verlet algorithm. According to this algorithm, the positions ri and velocities vi of  

the atoms of mass mi are updated after each simulation time-step dt by 

2 ( )1
( ) ( ) ( ) ( ) ,

2

i
i i i

i

t
t dt t t dt

m
   

F
r r v

-----------------------------------------------2.35

 

( )1 1
( ) ,

2 2

i
i i

i

t
t dt t dt

m

 
   

 

F
v v  

( )1 1
( ) ,

2 2

i
i i

i

t dt
t dt t dt dt

m

 
    

 

F
v v

--------------------------------------------2.36

 

where the choice of the size of dt depends on several factors, such as the temperature, density  

and masses of the atoms involved and the nature of the force law . Once the velocities are  

computed, the instantaneous kinetic energies, and hence the instantaneous temperature and the  

instantaneous pressure can be computed. Such data on the instantaneous values allow for the  

computation of time-averaged values at the conclusion of the simulation. 

 

2.4.0  Ab-initio molecular dynamics simulation methods 

In classical MD simulation method the forces experienced by the atoms in many-body nanoscale  

systems are obtained from prescribed interatomic potential energy functions, and these potentials  

express the basic physics of the model system at hand. In this approach, access to pertinent  

potential energy functions is crucial. Such functions can be constructed either as pair-potentials,  

or as cluster expansions involving pair-potentials, plus three-body and many body potentials, or   

they can be expressed as functionals of pair-potentials[1]. 

Alternative, quantum-mechanical-based methods that are free from interaction potentials have  

been developed, and these are referred to as ab initio molecular dynamics simulation methods.  

The essence of an ab initio method consists of deriving the forces experienced by the atomic  
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nuclei in a nanosystem, not from predefined interatomic potentials fixed in advance, but from  

electronic structure calculations as the simulation is progressing and the particle trajectories are 

evolving in the phase space of the system. Therefore, the electronic degrees of freedom become  

explicitly relevant to the understanding of the behavior of the nanosystem. Consequently, when  

the ab initio MD methods are used, the priority is shifted from the construction of approximate  

potential energy functions beforehand, to the choice of the approximate schemes for computing  

the many-body Schrödinger equation. The advantage of these ab initio methods lies in the fact  

that many scenarios unforeseen before the start of the simulation are allowed to develop during  

the course of the simulation. 

In non relativistic quantum mechanics, the energy level of a system composed of N nuclei  

located at positions 

{RI} ≡ {R1,R2, . . . ,RN },------------------------------------------------------2.37 

with momenta 

{PI} ≡ {P1, P2, . . . , PN },------------------------------------------------------2.38 

and Ne electrons located at positions 

 {ri} ≡ {r1, r2, . . . , rNe},--------------------------------------------------------2.39 

with momenta 

{pi} ≡ {p1, p2, . . . , pNe},--------------------------------------------------------------2.40 

 

and spin variables 
 

{si} ≡ {s1, s2, . . . , sNe},---------------------------------------------------------2.41 
 

are obtained from the independent Schrodinger equation 
 

({ },{ }) ({ },{ }),i I i IH E X R X R ----------------------------------------------2.42 

Where  
 

{xi} ≡ ({ri}, {si}),----------------------------------------------------------------2.43 
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denotes the set of position and spin variables. The corresponding total Hamiltonian is given by 
 

 

 
2 22 22

1 ,

({ }) ({ }) ({ },{ }),
2 2 | | | | |

eNN
tot ee NN eNi I JI I

N e I i I I I i I

I I i j i j i II i j I J I i

Z Z e Z ee
H K K H H R H

M m  

         
  

    
PP

r r R
r r R R R r

---------------------2.44 
 

where m and MI are respectively the masses of the electron and the Ith nucleus, ZIe is the 

charge on the Ith nucleus, NK , eK , ee

IH , NN

IH and eN

IH  are, respectively, the operators 

representing the nuclear kinetic energy, the electron kinetic energy, the electron–electron 

interaction, the nucleus–nucleus interaction and the electron– nucleus interaction. The 

Schrödinger equation (2.42) is therefore written as 

[ ({ }) ({ }) ({ },{ })] ({ },{ }) ({ },{ }).ee NN eN

N e I i I I I i I i I i IK K H H H E      r R r R X R X R ------2.45 

We look for the eigenfunctions and eigenvalues of (2.45). While obtaining an exact solution of 

(2.45), even for simple molecules, is impractical, an approximation scheme, called the Born–

Oppenheimer approximation (BOA), can be invoked to obtain an approximate solution. The 

BOA is based on separating the fast and slow motions present in the system, i.e. separating the 

nuclear and electronic motions, because of the large disparity that exists between the nuclear 

and electronic masses. To implement the BOA scheme, the total wave function is expressed as 

the product ansatz 

({ },{ }) ({ },{ }) ({ }),eI nuc

i I i I I  X R X R R -----------------------------------------------------------2.46 

where ({ })nuc

I R  is the nuclear wave function, and ({ },{ })eI

i I X R  is the electronic wave 

function, whose dependence on nuclear positions is parametric. 

 Operating KN on (2.46) gives 
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2 22

1

1
[ ({ },{ }) ({ }) ({ }) ({ },{ })

({ },{ }) ({ }) .
2

2 ({ },{ }) ({ })]

N
eI nuc nuc eI

i I I I I I i IeI nuc
I IN i I I

eI nuc

i I I

MK

I I

   
 

 



 
   

  
    

 X R R R X R
X R R

X R R



--------------2.47 

The use of the BOA implies neglecting the terms ({ },{ })eI

i II X R , since the nuclear 

wavefunction is more localized than the electronic wavefunction , and hence it is expected that 

({ }) ({ },{ })nuc eI

I i II I  R X R ---------------------------------------------------2.48 

Substitution of (2.46) into (2.45) and invoking the BOA leads to 

[ ({ }) ({ },{ })] ({ },{ }) ({ }) ({ },{ }) ({ })

({ }) ({ },{ }) ({ }) ({ },{ }) ({ }).

ee eN eI nuc eI nuc

e I i I i I i I I i I N I

NN eI nuc eI nuc

I I i I I i I I

K H H K

H E

   

   

   



r r R X R R X R R

R X R R X R R
-----

--------------2.49 

Dividing both sides of (3.162) by ({ },{ }) ({ })eI nuc

i I I X R R , 

[ ({ }) ({ },{ })] ({ },{ }) [ ({ }) ({ })

({ },{ }) ({ })

ee eN eI NN nuc

e I i I i I i I N I I I

eI nuc

i I I

K H H K H
E

 

 

  
 

r r R X R R R

X R R
---------2.50 

An examination of (2.50) shows that its right-hand side is a function of {RI} alone, and if this 

dependence is expressed by a function f({RI}), i.e. 

[ ({ }) ({ },{ })] ({ },{ })
({ })

({ },{ })

ee eN eI

e I i I i I i I
IeI

i I

K H H
f





 


r r R X R
R

X R
----------------------------------------2.51 

then (2.50) can be written as 

[ ({ }) ({ },{ })] ({ },{ }) ({ }) ({ },{ })ee eN eI eI

e I i I i I i I I i IK H H f   r r R X R R X R ----------------------2.52 

This is an eigenvalue equation from which the Hamiltonian for electrons can be read: 

({ }) ({ }) ({ },{ }).el ee eN

I e I i I i IH K H H  R r r R ------------------------------------------------------------2.53 

The dependence of the associated sets of eigenfunctions and eigenvalues, 

({ },{ })el

n i I X R  and ( })n If R  respectively, on { }IR  is parametric. 
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Corresponding to every solution of (2.53), there is an associated nuclear eigenvalue equation 

 [ ({ }) ( })] ({ }).NN nuc

N I I n I IK H f E R R R --------------------------------------------------------2.54 

Furthermore, the nuclear dynamics unfold on an electronic surface which is generated by every 

eigenvalue fn({RI}) of the electronic eigenvalue equation (2.52). The nuclear dynamics follow the 

time dependent Schrödinger equation 

[ ({ }) ( })] ({ }, ) ({ }, )NN nuc nuc

N I I n I I IK H f t i t
t

 


  


R R R R -----------------------------------2.55 

where ({ }, )nuc

I t R  is the time-dependent nuclear wavefunction. The implication of (2.55) is 

that the electrons respond instantaneously to the nuclear motion and, therefore, for each 

configuration {RI} of nuclei it is sufficient to obtain a set of electronic eigenvalues and 

eigenfunctions. These eigenvalues, in turn, generate a family of uncoupled potential surfaces 

on which the nuclear wavefunction can unfold. These uncoupled surfaces can become coupled 

as a result of taking into account non-adiabatic effects. This type of response by the electrons 

to the motion of the nuclei is the central theme of the BOA. Neglecting the non-adiabatic 

effects, which couple the potential surfaces together, and adopting the adiabatic 

approximation, wherein the electronic wavefunction adjusts itself quasi-statically to the nuclear 

motion, the motion may be considered only on the ground-state electronic surface. In that 

case, (2.52) and (2.55) become 

0 0 0[ ({ }) ({ },{ })] ({ },{ }) ({ }) ({ },{ })ee eN el el

e I i I i I i I I i IK H H f   r r R X R R X R  

[ ({ }) ( })] ({ }, ) ({ }, )NN nuc nuc

N I I n I I IK H f t i t
t

 


  


R R R R ---------------------2.56 
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By neglecting the quantum effects in the description of nuclear dynamics, a WKB semi-classical 

representation for ({ }, )nuc

I t R  can be adopted, and by neglecting terms involving, the classical 

Hamilton–Jacobi equation is obtained in terms of the classical nuclear Hamiltonian 

2

1

({ },{ }) ({ }) ( }).
2

N
nuc NNI

I I I I n I

I I

H H f
M

  
P

P R R R ---------------------------------------2.57 

The classical equation for the motion of nuclei on the ground-state surface, defined by the 

energy 

0 0({ }) ({ }) ({ }),NN

I I I IE f H R R R ------------------------------------------------------------2.58 

Is given by 

0({ }).I I I IM E R R ----------------------------------------------------------------------------2.59 

To compute the ground-state energy eigenvalue f0({RI}), the electronic eigenvalue equation 

(2.56) must be solved. However, an exact solution of this equation is not generally possible, and 

approximation schemes must be adopted. One such scheme is the use of the density functional 

theory (DFT), based on the Hohenberg–Kohn theorem [16]. This is an exact theory, formulated 

in the 1960s, to compute the ground-state of a many-electron system. In this theory, the 

central notion is that of electron density n({ri}), and the formalism is constructed in terms of 

functionals of density. Accurate approximations of these functionals are required, and one 

approximation of these functionals is the so-called local density approximation (LDA) wherein 

the properties of an inhomogeneous interacting many-electron system are related to the 

properties of a homogeneous electron gas. According to the DFT, the total ground-state energy 

f0({RI}) of the electrons corresponding to a given configuration {RI} of the nuclei is obtained by 

minimizing a certain functional, called the Kohn–Sham energy EKS [17], i.e. 
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0

0 0 0({ }) min{ ({ }) | | ({ }) } min [{ ],
el

i

el el el KS

I I I if H E


     R R R -----------------------------2.60 

where the ψi are the Kohn–Sham orbitals and EKS[{ψi}] is the Kohn–Sham energy functional [17], 

given by 

1
[{ ] [{ ] ( ) ( ) ( ) [ ] ({ }),

2

KS ext Har

i s i I I xc ions IE K d H n d H n E n E      r r r r r R -------------2.61 

where r refers to a single position, and the ψi form a set of doubly occupied single-particle 

states 

( ), 1,2,....., ,
2

e
i

N
i r  

and each orbital contains an electron with spin up and an electron with spin down, and 

( ')
( ) '

| ' |

Har

I

n
H d


r

r r
r r

-----------------------------------------------------------------------------2.62 

is the Hartree potential, related to the charge density via Poisson’s equation. In terms of the 

Kohn–Sham orbitals, the charge density is given by 

2( ) | ( ) | ,
occ

i i

i

n O r r -------------------------------------------------------------------------------2.63 

where {Oi} are integer occupation numbers. The Kohn–Sham energy functional (2.63) is 

minimized by variation, for a fixed number of electrons, with respect to the set of Kohn–Sham 

orbitals satisfying the orthonormality condition 

|i j ij    
--------------------------------------------------------------------------------------------------2.64 

leading to the Kohn–Sham equations [17] 

21
( ) [ ]( ) ( ) ( ),

2

Har xc

I I i ij j

j

H H n  
 
      
 

r r r r ---------------------------------------2.65 

or 
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2
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I i ij j

j

H  
 
     
 

r r r -----------------------------------------------2.66 

Or 

( ) ( ),KS

eff i ij j

j

H   r r ------------------------------------------------------------------2.67 

where 
[ ]

[ ]( )
( )

xc xc
I

E n
H n

n




r

r
-----------------------------------------------------------------------2.68 

is the exchange-correlation potential, and 
ij are a set of Lagrange multipliers. The Kohn–Sham 

equations are one-electron equations, and can be expressed in terms of an effective one-

electron Hamiltonian KS

effH   with KS

IH  representing the local potential. The effective one-

electron Hamiltonian contains the many-electron effects because of the presence of the 

exchange-correlation potential, defined in (2.68). The minimization of the Kohn–Sham energy 

functional (2.61) is performed for each nuclear configuration. Therefore, if the nuclear equation 

(2.58) is integrated in an MD simulation, then the minimization should be carried out at each 

MD step and the forces obtained, by using the orbitals thus obtained. 

2.4.1 Ab initio Born- Oppenheimer Molecular Dynamics (BOMD) 

Contrary to the classical MD where the forces are being derived from classical potentials 

HI ({r
N
}) and {r

N
} represents the spatial coordinates of the individual atoms without the electron  

dynamics directly considered. Here, the electronic structure is included explicitly in the classical  

MD simulation. One of the most popular techniques employed to do this is the Born- 

Oppenheimer MD simulation in which the Kohn-Sham energy functional E
KS

 plays the same role  

as HI{r
N
} 

2

1

1
({ },{ }) min [{ };{ }]

2

NBO KS

I I I I i II
L M E 


 R R R R 

----------------------------------2.69
 

Then the equation of motion of the nuclei is obtained as 
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min [{ ;{ }]
i

KS

I I I i IM E


  
  

R R
--------------------------------------------------------------2.70

 

Subject to the condition that 

|i j ij    
---------------------------------------------------------------------------------------------2.71

 

The forces needed for the MD simulation are given as 

( ) | .
KS

KS

I ij i j

ijI I

E
F  

 
      

 
R

R R
---------------------------------------------------2.72 

[1]  
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CHAPTER THREE 

3.0.0 METHODOLOGY 

For the classical molecular Dynamics, the following procedures are taken. 

Using the NVT ensemble for MD, the number of atoms, temperature and volume are kept 

constant at every instant. For these, the Nose-Hoover thermostat is used to rescale the 

temperature of the system to 800K. 

The catalyst used is Fe nanoparticles with core atoms at fcc position. For this work, no substrate 

is incorporated as a base for the nanoparticle but the growth is still expected to go on well since 

the substrate only defines the type of growth as to whether it will be either a tip growth or a base 

growth. 

The simulation is carried out using Large Atom/Molecule Massively Parallel Simulator 

(LAMMPS) code under periodic boundary condition. There were 200 carbon atoms deposited on 

the Fe nanoparticles which serve as the catalyst each at the rate varying from 20-30 ps per atom. 

The modified embedded atom potential method (MEAM) potential [15] was used as the 

interaction potential that existed between the C-C, C-Fe and the Fe-Fe. 

The procedure for the ab initio simulation goes thus; 

The atomic positions for the fcc iron and the carbon atoms arranged on it are determined and 

placed in an „scf‟ calculation input script. It is then visualized with XCRYSDEN [13] 

The equilibrium lattice constant and bulk modulus are determined for a cutoff of 60 Ry and 

4x4x4 k-point grid. The experimental lattice constants for iron and carbon used are 6.7463bohr 

and 5.4235 bohr respectively. The resulting curve of E (total) against lattice parameter is fitted 

using the Murnaghan equation of state. Here, the code used is the  QUANTUM ESPRESO [19]. 

PBESOL functional [21] is used which is obtained by changing some parameters in the Pedrew-
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Burke-Enzerhof (PBE) [20] functional and it is designed for solids. The pseudopotentials are 

ultrasoft type having eight electrons (3d
6
4s

2
) and six electrons (1s

2
2s

2
2p

2
) for Fe and C, 

respectively.  

The one electron wavefunction can be expanded using PWSCF code in basis functions that are 

plane waves. The plane waves are chosen such that its periodicity is compatible with the periodic 

boundary condition of the simulation cell. Therefore, the plane waves used extends to a cutoff 

value which makes the expansion finite during calculations. The units of the cutoff are in 

Rydberg (Ry.).  Using PWSCF code, the energy of carbon and iron as a function of ecutwfc is 

determined by varying the cutoff from 60 to 200 Ry at interval of 5 while every other variables 

like the lattice parameter and k-points are kept constant. The required cutoff energy for a 

convergence of the energy to within 1 mRy is to be determined. 

For carbon (fcc) which crystallizes to a diamond structure, the accuracy of 1 mRy per atom 

corresponds to a cutoff of 75 Ry. Similarly for iron (bcc), the cutoff corresponding to 1mRy per 

atom is 80 Ry. Therefore, a cutoff of 80 Ry is suitable for the calculation. 

The corresponding plots are displayed below. 
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Fig. 4.4 A plot of total energy against the ecutwfc for carbon. 

 

Fig 4.5 A plot of total energy against the ecutwfc for iron. 

The energy decreases monotonically with increasing cutoff being a direct consequence of the 

variational principle which predicts the over estimation of the ground state for a set of basis that 
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is not infinite. In this case, large number of cutoff energy (i.e. 200 Ry) is required so as to get to 

the ground state energy approximately.  

 

 

Fig. 4.6 The XCRYSDEN [13] was used to display the figure. 

A „vc-relax‟ (variable cell relaxation) calculation is then carried out with nstep of 50 for 

achieving an optimization of the geometry. 
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CHAPTER FOUR 

4.0.0 RESULTS 

4.1.0  Classical MD Simulation 

The following the results were obtained from the simulation using the LAMMPS code. 

The simulation was carried out at different deposition rates. For a deposition of 1 C randomly at 

every 20ps near the nanocluster surface, some of the carbon atoms were observed to be floating 

in air, this is rather too fast and leads to inability to anneal the structure formed before adding 

another carbon atom. Thus a deformed geometry observed. 

For a deposition time of between 25-30ps per 1 C atom, most of the carbon came together to 

form a tube- like structure on the Fe nanocluster. 

  

 Fig. 4.1 1 C added randomly every 20ps near the Fe nanocluster surface. 
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Fig. 4.2a 1 C added randomly every 25ps            Fig 4.2b 1 C added randomly every 30ps 

A closer study at the early stage of the process reveals the gradual formation of the cap and 

revealing the sp2 hybridization. 

 

Fig. 4.3 Top view of nanotube cap formation at the early stage of 40secs. 
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4.2.0 AB  INITIO OPTIMIZATION 

 

In our quest to understand the growth processes leading to CNTs, we optimized a small cluster of 

carbon atoms on iron atoms (catalyst). We started with nine carbon atoms placed randomly atop 

a small cluster of iron atoms in the BCC configuration (see Fig. 4.6 below). 

The PBESOL density functional by GI Csonka et. al. [21] is used with ultrasoft pseudopotentials 

having eight electrons (3d
6
4s

2
) and six electrons (1s

2
2s

2
2p

2
) for Fe and C, respectively.  

 

4.2.1 DETERMINATION OF THE EQUILLIBRUM LATTICE CONSTANT AND 

BULK MODULUS 

First, to ascertain the accuracy of the functional and the pseudopotentials which we plan to use 

for the Fe-C system, we computed the equilibrium lattice constants and bulk moduli for bulk iron 

(FCC) and bulk carbon (Diamond). For carbon and iron separately, and using an energy cutoff of 

60 Ry and a symmetric K-point grid of 4x4x4, the lattice constants are calculated by varying the 

lattice constants for various values around the known experimental value. The results obtained 

are presented with column 1 being the lattice constant and column 2 their corresponding total 

energy. Finally, the result is then fitted to the Murnaghan equation of state [14] to obtain the 

lattice parameter (a0) and the equilibrium bulk modulus (K0) at the minimum position. 

The following are obtained. 

 

 

 

 

 

 



32 
 

4.2.2 RESULTS OF THE MURNAGHAN FIT FOR CARBON 

 

Table 4.1 Showing the Murnaghan fit for Carbon Calculations. 

equation of state: murnaghan.        chisq = 0.4993D-04 

a0 =  6.75 a.u., k0 = 3841 kbar, dk0 =  3.31 d2k0 =  0.000 emin =  -36.22400 

a0 =  3.575 Ang, k0 = 384.1 GPa,  V0 =  77.055 (a.u.)^3,  V0 = 11.418 A^3 

Lat.par (a.u.) E-calc (Ry) E_fit (Ry) E_diff (Ry) Pressure (GPa) Enthlpy (Ry) 

  8.246                    -35.92983          -35.92293           -0.00690              -100.08        -36.88363 

  7.746                  -36.06616           -36.07637            0.01021                -86.29          -36.74782 

  7.246                  -36.17821           -36.18283            0.00462                -58.28          -36.55509 

  6.746                  -36.23087          -36.22398            -0.00689                 1.46            -36.22324 

  6.246                  -36.16922          -36.16173            -0.00749                 136.35         -35.60446 

  5.746                  -35.90564          -35.91396             0.00832                 461.70         -34.41677 

  5.246                  -35.29634          -35.29447            -0.00186                1309.90         -32.08169 

 

Fig. 4.7 
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4.2.3 RESULTS OF THE MURNAGHAN FIT FOR IRON 

Table 4.2 Showing the Murnaghan fit for Iron Calculations. 

equation of state: murnaghan.        chisq = 0.1540D-03 

 a0 =  5.26 a.u., k0 = 2207 kbar, dk0 =  3.74 d2k0 =  0.000 emin = -326.87384 

 a0 =  2.781 Ang, k0 = 220.7 GPa,  V0 =  72.599 (a.u.)^3,  V0 = 10.758 A^3 

Lat.par (a.u.) E-calc (Ry) E_fit (Ry) E_diff 

(Ry) 

Pressure (GPa) Enthlpy (Ry) 

  6.717               -326.66596        -326.64937        -0.01659         -55.24             -327.23495 

  6.217              -326.75304        -326.76267        0.00962          -50.04             -327.16172 

  5.717              -326.83514        -326.84332        0.00818          -36.04             -327.06400 

  5.217              -326.88029        -326.87356       -0.00673           5.14               -326.85549 

  4.717              -326.81421        -326.80218       -0.01203          139.69            -326.31591 

  4.217             -326.45010        -326.47110         0.02100          639.70            -324.81958 

  3.717             -325.33752        -325.33407         -0.00345        2821.17           -320.41317 

 

Fig. 4.8 
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Table 4.3 Comparism of the experimental with the obtained values of a0 and K0 

 Experiment Obtained 

Element Lattice constant a0 

(bohr) 

Bulk modulus K0 

(GPa) 

Lattice constant 

a0 (bohr) 

Bulk modulus 

K0 (GPa) 

C 6.7403(b) 442(b) 6.75 384.1 

Fe 5.4235(a) 168.3(a) 5.26 220.7 

a-C.Kittel, introduction to solid state Physics, 7th ed. (Wiley, New York,1996) 

 b-Javier Junquera etal. Phys. Rev.B64, 235111(2001). 

 

4.2.4 VARIABLE CELL CALCULATION 

A variable cell calculation is often performed to achieve a geometry optimization of a given  

system for which the lattice parameters and atomic positions are not  known exactly. It might be  

difficult to find a ground state structure with a large lattice constant if the supercell used is very  

small since the atoms are brought very close to one another. The usual thing to do is to perform a  

variable cell calculation which allows the optimization of both the size and shape of the supercell  

along with the atomic positions. Therefore, a „vc-relax‟ (variable cell relaxation) calculation is  

carried out. This is done so as to achieve a geometric optimization with variable unit cell  

coordinates. 
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Below is a view of the atomic positions obtained from the „vc-relax‟ calculations. 

  

Fig. 4.9 A view of the new arrangement of the carbon after a „vc-relax‟ calculation. The cap 

formed reveals the origin of an armchair CNT.  
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4.3.0 DISCUSSION 

From out of classical MD simulations, the structures formed are not of the right CNT geometry 

and the cap not properly formed due to defects in the structure. Many factors could have been 

responsible for these some of which are; the operating temperature at which the nucleation and 

growth is carried out, the non- equilibrium conditions, assumptions made during the MD 

simulations and the inability to simulate correctly the thermodynamic conditions that favor the 

nucleation growth among others. From observation, CNT growth process is a complicated 

mechanism with unpredictable  and disordered dynamics[9]. This disordered dynamics most 

likely gives birth to the defects in the CNT during the growth process. 

The result obtained is however in good coherence with the work of Alister et. al. [9] which 

established that SWNT growth is an „inherently defective process‟. They further re-iterated that 

defects in polyyne chains formations, non hexagonal ring structures and the imbedded vacancies 

in the sp
2
-hybridized carbon network are all inherently peculiar to the growth process of SWNT 

which is no different in the present work. Crucial to the observation of this work is the fact that 

the cap formation on the catalyst reveals a defect in the ring. These defects are thus being 

propagated through the walls of the tube during the process. One can therefore infer that the 

difficulty in the selection process of a specific chirality is partly due to these facts. 

For the ab- initio simulation, the lattice constant and the bulk modulus of the C and Fe obtained 

is in good comparism with experimental values. After the „vc-relax‟ calculation, the viewing of 

the new atomic positions reveals the formation of a CNT cap. 
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4.4.0  CONCLUSION AND RECOMMENDATION 

This work reveals the defects resulting from the nucleation and growth of SWCNT and how they 

are propagated throughout the structure. It discovers that the chirality alteration and the variation 

in the physical properties of the material were due to the defects incurred in the growth process. 

It further supports the results of Alister et. al.[9] about the non-linear dynamics of SWNT 

process. The results from the ab initio simulation are promising but not concluded yet. 

I therefore recommend that further work be carried out based on the proper understanding of the 

chemical kinetics of the growth process. Also the QM simulation aspect of this work should be 

completed and relevant comparism be made and conclusions drawn out. 
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4.5.0    APPENDIX 

4.5.1 LAMMPS Codes for the Classical Molecular Dynamics 

# michael's thesis 

# ------------------------ INITIALIZATION ---------------------- 

clear 

units   metal 

dimension 3 

boundary p p p 

atom_style atomic 

 

 

# ----------------------- ATOM DEFINITION ----------------------- 

 

lattice              sc  3.56 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

region  upper1 block  -1.0  1.0  -1.0  1.0  5  5  units lattice  

region  upper2 block  -1.0  1.0  -1.0  1.0  6  6  units lattice  

lattice              fcc  2.87  orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

region  lower block -1.0  1.0  -1.0  1.0  0  4.0 units lattice  

region              big block    -7.5 7.5  -7.5  7.5 0 25  units lattice  

region  whole union 2 lower big 

create_box 2 whole 

lattice              sc  2.87  orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

create_atoms 1 region lower 

lattice              fcc 3.56 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 

#create_atoms 2 region upper1 

group Carbon  region upper1 

 

# ------------------------ FORCE FIELDS ----------------------- 

 

pair_style meam 

pair_coeff * * FeC.library.meam  Fe  C  FeC.meam  Fe  C 

 

  

#---------------------------Settings---------------------------- 

compute csym all centro/atom fcc 

compute eng all pe/atom 

compute eatoms all reduce sum c_eng 

compute strs all stress/atom 

 

#----------------------Run Minimization------------------------- 

#fix 1 all box/relax  iso  0.0  vmax  0.001 

dump 1 all atom 200 dumpTemp.lammpstrj 
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thermo 100 

  

reset_timestep 0 

thermo 100 

neighbor 0.3 bin 

timestep 0.25e-3 

velocity all create 800 123 dist gaussian 

fix 1 all nvt temp 800.0  800.0 0.01  tchain 4 

 

run 800000 

 

fix 2 Carbon deposit 200 2 100 1145788 region upper1 global 5.0  5.0   near 0.25  target 0.0  0.0 

6.0 

fix 1 all nvt temp 800.0  800.0 0.01  tchain 4 

 

run 800000 

 

###################################### 

# SIMULATION DONE 

print "All done" 

 

4.5.2 Quantum Espresso input for the geometry and variable-cell optimization 

 

&control 

 calculation='vc-relax' 

    restart_mode='from_scratch'  

    prefix='FeC', 

    pseudo_dir = './', 

    outdir='./', 

    nstep=50, 

    dt=20, 

 

 

  / 

 &system     

    ibrav=  1, celldm(1) = 20.00, nat= 18, ntyp= 2, 

    ecutwfc= 80.0, 

    occupations= 'smearing', smearing= 'marzari-vanderbilt' 

    ecutrho= 960, starting_magnetization (1)=0.7, 

    degauss= 0.05, nbnd=120 

 

 / 

 &electrons 

!conv_thr = 1.0e-8 

mixing_beta = 0.7 

mixing_mode = 'local-TF' 
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diagonalization='cg' 

 / 

 

 &ions 

 ion_dynamics='damp', 

 / 

&cell 

cell_dynamics = 'damp-w', 

wmass = 0.0001, 

 

 / 

 

ATOMIC_SPECIES 

 Fe  55.847 Fe.pbesol-spn-kjpaw_psl.0.2.1.UPF 

 C   12.00  C.pbesol-n-kjpaw_psl.0.1.UPF 

 

     

ATOMIC_POSITIONS (angstrom) 

 Fe 0.00 0.00 0.00 

 Fe 2.87 0.00 0.00 

 Fe 2.87 2.87 0.00 

 Fe 2.87 0.00 2.87 

 Fe 2.87 2.87 2.87 

 Fe 0.00 2.87 0.00 

 Fe 0.00 2.87 2.87 

 Fe 0.00 0.00 2.87 

 Fe 1.435 1.435 1.435 

 C 0.00 0.00 4.50 

 C 0.00 2.87 4.50 

 C 2.87 2.87 4.50  

 C 2.87 0.00 4.50 

 C 1.435 1.435 3.92 

 C 0.00 0.00 5.50 

 C 0.00 2.87 5.50 

 C 2.87 2.87 5.50 

 C 2.87 0.00 5.50 

 

K_POINTS (automatic) 

4  4  4  1  1  1  
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