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ABSTRACT 

 

In recent times, the rate of growth in information available on the internet has resulted in 

large amounts of data and an increase in online users. The Recommendation System has 

been employed to empower users to make informed and accurate decisions from the vast 

abundance of information. In this Research, we propose a hybrid recommender engine 

which combines Content-Based and Collaborative filtering recommendations. This seeks 

to explore how prediction accuracy can be enhanced in existing collaborative filtering 

frameworks.  

We investigate to see if a Recommendation System combining Content-based and 

Collaborative filtering, using a Mahout Framework and built on Hadoop will improve 

recommendation accuracy and also alleviate scalability issues currently experienced in 

processing large volumes of data for recommending items to users.  

 

We employed the Feature augmentation hybrid technique where the output from the 

Content-based recommendation is used as an input to Collaborative filtering. The well-

known MovieLens data was matched with the Internet Movie Database (IMDB) in order 

to extract user and item content features. The input files generated from the integration of 

both databases was converted to text files which serve as an input into the Collaborative 

filtering framework in Mahout.  

 

By means of various experiments, the best parameter optimization for Mahout Components 

was determined for our model. We further examined these models by comparing the Root 

Mean Square Error of our model against the state of art model.  

 

The proposed model showed significant improvement when compared with the pure 

collaborative model. It was demonstrated from our analysis that the extracted user and 

items content features can, in some cases, lead to a better prediction accuracy. To be more 

precise, it was discovered that the user feature, gender, has no marginal impact on our 

underlying model while an item feature like Country is more beneficial than genre, contrary 

to findings in some other research work. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

 

The rate at which information is growing on the internet has resulted in large amounts of 

data and an increase in online users. This huge explosion of data has flooded users with 

large volumes of information and hence poses a great challenge in terms of information 

overload. Resultantly, this has made it very difficult for human beings to process such 

information manually and quite difficult for them to find the right information. The ability 

to make informed and accurate decisions from the sheer abundance of information by users 

often creates immense confusion. . Large internet companies like Amazon, Google, and 

Facebook have been faced with a difficulty in managing this explosion of information. 

Recommendation systems have been employed in order to transform this problem in a 

smart way. Figure 1.1 shows how recommender engines have stepped in this regard to 

rescue users from such confusion.  

  

The vast increase in online data and users led to the rise of big data. The Big Data world 

has paid the most attention to the Recommendation System. Big Data has improved the 

capacity to do recommendations on a large scale. It has made the Recommendation System 

more important for the users as it predicts right piece of information out of vast amounts 

of information. The system is a particular form of information filtering that exploits users 

past behaviors or by the behavior of similar users to generate a list of information items 

that is personally tailored to an end user's preferences. 

 

At present, in E-commerce, Recommendation Systems (RSs) are broadly used for 

information filtering processes to deliver personalized information by predicting user’s 

preferences to particular items [1]. RSs attempt to suggest items (Movies, music, books, 

news, web pages, etc.) that are most likely to interest the users. Amazon, Netflix and other 

such portals use RSs extensively for suggesting content to their users. RSs aim to alleviate 
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information overload problems by presenting the most attractive and relevant content. RSs 

have become a basic need of every e-commerce portal.  

 

 

 
Figure 1.1: The relevance of a Recommendation Engine to Users 

 

1.2 PROBLEM STATEMENT 

Most recently, a number of machine learning techniques and hybrid filtering techniques 

have been implemented to achieve quality recommendations and to handle the problems of 

pure Collaborative Filtering (CF). Sparsity, cold start, scalability, neighbor transitivity, and 

accuracy are the main problems of CF [1]. To handle the problems of CF, other 

recommendation techniques such as Content-based filtering [1], [5] and Knowledge-based 

filtering [1], [4] have been combined with CF by using hybrid algorithms.  

 

In this work, we introduce a novel hybrid system that combines Content-based filtering 

and Collaborative techniques. It will be investigated if  a combination of content features 

from the matching of MovieLens Data and Internet Movie Database (IMDB), and 

Collaborative filtering based on the Mahout Framework built on top of Hadoop will solve 

the accuracy and scalability issue currently experienced in processing large volumes of 
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data for recommending items to users, and proposing an effective model that improves 

recommendation accuracy. 

1.3 AIM AND OBJECTIVES 

The aim of the project is to develop a Hybridized Recommendation System on movie data 

using Collaborative and Content-based filtering techniques on top of an Hadoop [9] 

platform using Apache Mahout [10] and MovieLens dataset [11] to see the performance 

on the base of scalability and speedup, and to alleviate data sparsity and cold start problems 

associated with pure CF. 

Objectives: 

The following steps have been outlined to achieve this aim: 

¶ To study the different ways to combine Collaborative filtering and Content-based 

methods into a Hybrid Recommender System.  

¶ To determine the most effective hybrid system by incorporating some content-based 

characteristics into a collaborative approach (implemented on Apache Mahout). 

¶ This will be implemented on top of Hadoop to improve scalability issues. 

¶  To determine the implication of adjusting different Mahout Component parameters on   

our hybridized model. 

¶ To evaluate the performance of the developed hybrid recommendation engine against 

existing models. Our novel approach will establish the influence of different content 

features on recommendation accuracy. 

¶ To use the well-known MovieLens datasets [11]. 

¶ The Movie Content features will be extracted from the Internet Movie Database 

(IMDB). Our goal is to match user ratings from the MovieLens  dataset and movie 

features from the IMDB in order to find appropriate item features. 

¶ To show that the Movie Content features that were extracted have a positive impact 

on the prediction accuracy of our hybrid recommendation system. 
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1.4  SIGNIFICANCE OF THE STUDY 

Collaborative filtering (CF) has been the most promising and widely used recommendation 

technique when compared to the different recommendation techniques that have been 

developed recently [2], [3]. Although CF has recorded success in many application settings, 

the CF approach still has enormous limitations, for instance, the ability to handle data 

sparsity, cold start problems and scalability [4]. Its appropriateness and relevance is 

reduced due to data sparsity. Data sparsity is a term used to refer to a situation whereby 

users in general rate only a limited number of items. Another limitation of the CF approach 

is when data is inadequate for both new users and new items (cold start), and its inability 

to handle the exponential growth of both users and items in the database (scalability 

problem). This research seeks to improve the prediction accuracy of the existing 

collaboration framework by incorporating Content-based features. 

 

It is expected that at the end of the study, we would have: 

Á Developed a hybridized recommender engine based on Content-based and 

Collaborative algorithms using Mahout on Hadoop in order to achieve scalability. 

Á Developed an effective Hybrid Recommendation engine with improved accuracy and 

efficiency. 

 

1.6 SYNOPSIS 

The rest of this thesis is organized as follows, chapter two reviews existing works in 

Recommendation systems, Collaborative filtering, Content-based Recommendation, 

Hybrid Recommendation, different ways to combine Collaborative and Content-based 

filtering , Big data implementation (Apache Mahout and Hadoop) and other related 

research areas that are  considered important to this study. Chapter three presents the 

methodology of the proposed system; Matching MovieLens data and IMDB to extract 

Movie content Features and the implementation of a java application based on Mahout 

Recommendation framework sitting on top of Hadoop for scalability purpose.  

Chapter four discusses the implementation of the system and evaluation of the obtained 

results as compared with existing models. Chapter five gives a conclusion with a summary 

of the work and proposed future areas of research in hybrid recommendation systems. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

2.1 INFORMATION RETRIEVAL AND FILTERING  

 

Information retrieval involves getting the information resources that are regarded relevant 

to an information need from a collection of resources. The relevance of the documents 

retrieved during the search denotes the effectiveness and efficiency of the information. 

The larger part of the work on Recommendation System’s is based on top-n 

recommendation or rating prediction; the former requires bi/unary interaction data 

between users and items, whereas the latter requires a dataset with ratings [15]. This type 

of evaluation is also common in information retrieval (IR) systems [16].  

 

Content-based systems recommend items to a given user based on their preference; they 

predict ratings for an unseen item based on how much its description (content) is similar 

to items which the user has highly rated in the past [17]. 

These approaches are based on information retrieval techniques [18] since the item 

description is usually a text, and identification of most relevant keywords appearing in 

the text gives rise to a vector (feature based) representation. But in Content-based RSs 

there is no match of what is a query for an IR system. In other words, the ranking 

produced by the system for a user is fixed and it represents the best (predicted) ordering 

of the items with respect to the relevance of the items for the user. 

 

RSs are usually considered as a special case of IR systems, specifically, one where no 

query is given and the information to be retrieved has to be inferred from previous user 

experiences. For this reason, some of the models and theories developed in IR have 

already been translated to RSs, such as the Vector Space Model and the Probability 

Ranking Principle [19]. 

 

In recent times researchers have attempted to unify recommender systems and 

information retrieval models together, by establishing matches between them [30] [31]. 

Instead, recommender systems have been traditionally investigated from a different 
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perspective, such as preference prediction and Machine Learning [37], upon which the 

main prediction models and evaluation metrics have been developed. 

 

2.2  RECOMMENDER SYSTEM TYPES AND TECHNIQUES 

 

Recommender systems have evolved in response to an apparent need: helping people deal 

with the huge explosion of information on the internet. Simply put, it was developed to 

alleviate the problem of information overload. In addition, it has become obvious that it 

can connect people who share similar interests, and not just with relevant information 

[38]. 

 

The Recommender System is a system that involves predicting user responses to options. 

It offers online users suggestions of what their interest might be, based on their past 

actions such as a history of purchases and/or product searches, clicks, and ratings. The 

ultimate aim of a RS is to provide a suggestion that is aimed at supporting users in 

various decision-making processes. 

 

Amazon uses this technique to display to a given user a list of recommended items that 

may be of interest, drawing information from the user's past preferences and actions. 

There are recommender engines that work behind the scenes to capture user behavior and 

recommend selected items based on their earlier actions. Facebook uses the same 

recommender technique to determine friends to suggest, thereby creating the “people you 

may know list”. 

 

2.2.1 ENTITIES IN RECOMMENDATION SYSTEMS 

 

Common classes of entities to be explained in a RS are underlined and explained below: 

¶ Item is a general term used to denote what the system recommends to users. 

¶ RSs collect from Users their preference or are inferred by interpreting user action 

for example clicking a product may serve as an implicit preference. Users have 
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preferences for certain items and these preferences must be separated out of the 

data. The data itself is represented as a Utility Matrix. 

¶ Utility Matrix represents a user-item pair where users rate items on a scale. This 

rating depicts the degree of preference of that user for that item. It is usually on a 

1-5 scale. 

¶ The goal of a recommender system is to predict the blanks in the Utility  Matrix 

[13] 

¶ Populating the Utility Matrix is a highly important task as it is almost impossible 

to recommend items without it. 

¶ Transactions refer to a recorded interaction between a user and the RS. 

Transactions are log-like data that store important information generated during 

the human-computer interaction and which are useful for the recommendation 

generation algorithm that the system is using. For instance, the transaction log 

may contain a reference to a selected item by the user and a description of the 

context (e.g., the user goal/query) for that particular recommendation. If seen, that 

transaction may also include a direct comment the user has provided, such as the 

rating for the selected item. Literally, ratings represent the most popular form of 

transaction data that a RS collects. 

These ratings may be collected explicitly or implicitly. In the explicit collection of 

ratings, the user is asked to rate a document on a pre-defined scale. User actions are 

recorded and a rating is inferred in implicit ratings. 

There are two general approaches to discover the value users place on items:  

1. Users can be asked to rate items. The limitations of this approach are based on the 

fact that : 

(a) Users  are generally unwilling to provide responses   

(b) The information may be biased by the fact  that it comes from people  

2. Inferences can be made from users’ behavior. One can infer interest from 

behavior other than purchasing, for instance, if a user watches a movie on 

Youtube, previews a book on Amazon, then we can infer that the user “likes” this 

item 

Specifically, recommender systems have the following components: 
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(i) background data, the initial information that the system starts with before the 

recommendation process begins, 

(ii)  input data, the information required of the user by the system in order to generate 

a recommendation, and 

(iii)  an algorithm that combines background and input data to arrive at its suggestions.  

 

According to Robin Burke [39], he distinguished five techniques of the recommendation 

(Figure 2.1) according to the type of a background and input data as well as the algorithm 

that is used to create the suggestions. 

 

 

Figure 2.1:  The example of taxonomy of the recommender systems [39] 

 

Some other researcher distinguishes three main categories of RSs as follows: 

Collaborative filtering, Content–based filtering, and Hybrid methods (Figure 2.2). For 

more general information and examples of these techniques, see F. Ricci et al [14] [1]. 

This thesis mainly focuses on Collaborative filtering, Content-based Recommendation, 

and the Hybrid approach. 
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Figure 2.2:  The example of taxonomy of the recommender systems [1] 

  

 

2.2.2 COLLABORATIVE FILTERING (CF) 

 

CF is considered to be the most popular and widely implemented technique in RS. 

Collaborative filtering recommends items based on similarity measures between:  

1. Users 

2. Items 

3. Users and/or items 

Items that are preferred by similar users are recommended to a user. It is determined by 

the similarity of the ratings of those items by the users who have rated both items. It 

focuses on the similarity of the user ratings for two items. 

Collaborative filtering explores a technique for recommending items based on matching 

people with similar interests.CF is based on the assumption that similar users tend to like 

similar items. Three pillars of this approach are (1) many people must be engaged (so that 

the probability of a given person finding others with similar preferences will be high), (2) 
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people representing their interests on the systems must be easy, and (3) algorithms must 

be able to match people with similar interests. [12]  

2.2.3 CONTENT-BASED RECOMMENDATION (CBR) 

Content-based systems recommend items based on the properties of the item. For 

instance, if a user has watched many romantic movies then it recommends a movie 

categorized in the database as a having the “romantic” genre. CBR focuses on attributes 

of the item. The similarity of items is determined by measuring similarities between their 

properties. It uses features of items determined by their similarity. 

What must be done in a CBR System is to:  

1. Construct for each item a profile which refers to item profiling 

2. Construct a user profile  

A profile is a record or collection of records representing important characteristics of the 

item. In simple cases, the profile consists of some characteristics of the item that are 

easily discovered e.g. consider the following features of a movie: 

¶ Set of actors of the movie 

¶ The director 

¶ The year in which the movie was made 

¶ The genre or general type of movie e.g. comedies, drama, romance. 

The genre of movies is not readily available as part of the description of the movies. It is 

an ambiguous concept. Internet Movie Database (IMDB) assigns a genre/genres to every 

movie. 

The ultimate goal for CBR is to create both an item profile consisting of a feature–value 

pair and a user profile summarizing the preferences of the user based on their row in the 

utility matrix. 

 

2.2.3.1 THE STRENGTH AND WEAKNESS OF CONTENT-BASED 

RECOMMENDATION 

 

When Content-based filtering is employed in RSs, it comes with several advantages 

compared to the Collaborative filtering approach: 
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1 USER INDEPENDENCE - Content-based recommenders rely completely upon on 

ratings that a given user provides to build her own profile. Instead, Collaborative 

filtering approach depends on ratings from other similar users in order to find the 

“nearest neighbors “of the given user. Similar users tend to have similar tastes since 

they rated the same items similarly. Then, the nearest neighbor’s preferences will be 

recommended to the given user. 

2 TRANSPARENCY - CBR works by explicitly listing content features or 

descriptions that caused an item to occur in the list of recommendations. Those 

features are indicators to consult in order to decide on whether to trust a prediction 

accuracy of a recommendation. Contrarily, Collaborative systems are not as explicit 

as CBR since the only explanation for an item recommendation is that unknown users 

with similar tastes liked that item. 

3 NEW ITEM - Content-based recommenders are capable of recommending items not 

yet rated by any user. Consequently, they do not suffer from the new-item problem, 

which affects Collaborative recommenders which depend solely on ratings from other 

similar users to make recommendations. Therefore, until the new item is rated by a 

considerable number of users, the system would not be able to recommend it. 

 

Nonetheless, Content-based systems have several shortcomings: 

1. LIMITED CONTENT ANALYSIS - Content-based techniques have a natural limit 

in the number and type of features that are associated with the objects they 

recommend. Domain knowledge is often needed, for example, in movie 

recommendations, the system needs to know the actors and directors, and sometimes, 

formal definition of entities and their relations are also needed. Content-based 

recommendation systems cannot provide suitable suggestions if the analyzed content 

does not contain adequate information to differentiate items the user likes, from items 

the user does not like. Some representations capture only certain aspects of the 

content, but there are many others that would influence a user’s experience. For 

instance, often there is limited information in the word frequency to model the user’s 

interests in jokes or poems, while techniques for effective computing would be most 
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appropriate. Again, for web pages, feature extraction techniques from text completely 

ignore aesthetic qualities and additional multimedia. 

To sum it up, both automatic and manual assignment of features to items is not 

sufficient enough to define distinguishing aspects of items that turn out to be 

necessary for the elicitation of user interests. 

2. OVER-SPECIALIZATION - Content-based recommenders have no inherent 

method for finding something unexpected. The system suggests items whose scores 

are high when matched against the user profile, hence the user is not thrilled with the 

recommended items because the items suggested are similar to those already rated. 

This drawback is also called the serendipity problem, highlighting the tendency of 

Content-based systems producing recommendations with a limited degree of novelty. 

As an example, when a user has only rated movies directed by Matt Damon, she will 

be recommended just those kind of movies. A “perfect” Content-based technique has 

difficulty in recommending anything new, limiting the range of applications for 

which it would be useful. 

3. NEW USER - Enough ratings have to be collected before a Content-based 

recommender  system can really understand user preferences and provide accurate 

recommendations. So, when few ratings are available, as for a new user, the system 

will not be able to provide reliable recommendations. 

 

 

2.2.4 HYBRID RECOMMENDATION AND APPROACH 

 

One common occurrence in RSs research is the demand to combine recommendation 

techniques to achieve peak performance. All of the known recommendation techniques 

have advantages and disadvantages, and many researchers have chosen to combine 

techniques in different ways in order to leverage their advantages. This session surveys 

the different hybrid recommendation approaches. 

 

Hybrid systems combine two or more techniques in order to gain better performance with 

fewer limitations of each approach [60]. Many hybrid systems have been applied to travel 

and tourism applications. For instance F. Ricci et al. [14] illustrate a travel planning 

http://www.imdb.com/name/nm0000354/


13 
 

recommender system that is case-based, hence is knowledge-based, but also 

Collaborative-based since it recommends travel services that have been evaluated 

positively by others. 

 

Fab is a recommendation system designed to help users explore the enormous amount of 

information available on the internet. This hybrid system combines the Content-based 

and Collaborative methods of recommendation in a way that exploits the advantages of 

the two approaches while avoiding their shortcomings. Fab’s hybrid structure allows for 

automatic recognition of emergent issues relevant to various groups of users. It also 

enables two scaling problems pertaining to the rising number of users and documents, to 

be addressed. [5] 

 

One major tactic for improving recommendation is to combine Collaborative filtering 

with Content-based recommenders. We can illustrate the benefits of such hybrid systems 

with a simple example; suppose one user has rated the NBA page from CBSSports.com 

favorably, while another has rated the NBA page from CNNSI.com favorably, pure 

Collaborative filtering would find no correlation between the two users. However, 

Content analysis can show that the two items are in fact quite similar, thus indicating a 

match between the users. The Fab [5] system builds on this intuition. It analyzes the 

content of items that users rate favorably to build Content-based profiles of user interest. 

It then applies Collaborative filtering techniques to identify other users with similar 

interests. In another effort, the Group Lens research group is testing by using 

Collaborative filtering as a technique to combine the opinions of other users and personal 

information filtering agents [21]. 

 

2.2.4.1 POSSIBLE COMBINATION OF HYBRID RECOMMENDATION  

Hybrid recommender systems unify two or more recommendation techniques to gain 

better performance with fewer of the shortcomings of any individual one. Most 

commonly, Collaborative filtering is combined with some other technique in an attempt 

to avoid the ramp-up problem.  
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Table 2.1 shows seven (7) different ways by which Collaborative filtering can be 

combined with other recommendation techniques as proposed by [60] 

Table 2.1: Hybridization Methods [60] 

HYBRIDIZATION 

METHOD DESCRIPTION 

Weighted 

The scores (or votes) of several recommendation techniques 

are combined together to produce a single recommendation. 

Switching 

The system switches between recommendation techniques 

depending on the current situation. 

Mixed 

Recommendations from several different recommenders are 

presented at the same time. 

Feature combination 

Features from different recommendation data sources are 

thrown together into a single recommendation algorithm. 

Cascade 

One recommender refines the recommendations given by 

another. 

Feature Augmentation 

Output from one technique is used as an input feature to 

another. 

Meta-Level 

The model learned by one recommender is used as input to 

another. 

 

     

  

2.3 APACHE MAHOUT 

 

Mahout is an open source, highly scalable machine learning library from Apache. It is 

readily employed when there is a need to process very large data, especially large data 

that is far too large for a single machine .The implementation in Mahout is written in 

Java. As a java library, it has no graphical user interface nor an installer. There is no need 

to install it, rather it is a framework of tools intended to be used and adapted by 

developers. Mahout offers the programmer a ready-to-use framework for doing data 

mining tasks on large volumes of data. 

 

Some portions of Mahout’s work are built to work at scale on top of Apache’s Hadoop 

infrastructure at its background to process huge volumes of data. Mahout uses the Apache 

Hadoop library to scale effectively in the cloud. 
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Mahout abstracts a number of techniques and algorithms. The three key areas of machine 

learning focused on by Mahout are recommender engines, clustering, and classification. 

The focus of this research is the recommender engine. 

 

 

                  Figure 2.3: Mahout in the Apache Software Foundation [10] 

 

 

The components (JAVA classes) provided by Mahout to build a recommender engine are 

as follows:  

¶ DataModel  

¶ UserSimilarity 

¶ ItemSimilarity  

¶ UserNeighborhood  

¶ Recommender  

 

From the data store, the data model is prepared and is passed as an input to the 

recommender engine. The Recommender engine generates a list of recommendations for 

a given user. Figure 2.4 shows the architecture of a typical recommender engine. 
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    Figure 2.4: Architecture of a recommender engine via Mahout 

 

 

2.3.1 DEVELOPMENT OF A SIMPLE RECOMMENDER USING MAHOUT 

LIBRARY 

 

Figure 2.4 shows a typical architecture of a recommender engine via Mahout. 

Below are steps to building a recommender engine according to F. Maxwell Harper et al 

[61]. The similarity matrix used is the Pearson Correlation. 

Step1: CreateDataModel Object  

The constructor of PearsonCorrelationSimilarity class requires a data model object which 

holds a file that contains the Users, Items, and Preference details of a product. The 

DataModel object requires the file object which contains the path of the input file. 

 
Step2: Create UserSimilarity Object  

Create UserSimilarity object using PearsonCorrelationSimilarity(it can be any other 

UserSimilarity class) class . 

 

Step3: Create UserNeighborhoodobject  

This object defines the concept of ‘neighborhood’  
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There are two types of neighborhoods:  

● NearestNUserNeighborhood: This class computes a neighborhood consisting of the 

nearest n users to a given user. "Nearest" is defined by the given UserSimilarity.  

● ThresholdUserNeighborhood: This class computes a neighborhood consisting of all the 

users whose similarity to the given user meets or exceeds a certain threshold. The 

similarity is defined by the given UserSimilarity.  

 

Step4: Create Recommender Object  

Create UserbasedRecomender object. Pass all the above-created objects to its constructor.  

 

Step5: Recommend Items to a User  

This recommends products to a user using the Recommender interface. This method 

requires two parameters. The first is the user id of the active user to whom we need to 

send the recommendations, and the second refers to the number of recommendations to 

be sent.  

2.4 HADOOP 

 

Hadoop is an open-source software framework from Apache that facilitates storage and 

processing of big data in a distributed environment across computer clusters using simple 

programming models. 

Hadoop is an open source Apache project written in Java and designed with a storage part 

known as a distributed file system (HDFS) and a processing capacity for distributed 

computation. It’s established on the Google proprietary distributed file system and 

MapReduce programming paradigm which gives an enabling environment for 

programmers to write applications with intensive computations across millions of 

computers. 

 

2.5  RELATED WORK 

  

Clearly, we are not the first to point out potential benefits of combining the Content-

based approach and Collaborative filtering techniques, but our novel approach combines 

http://hadoop.apache.org/
http://www.apache.org/
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the extraction and integration of MovieLens data and IMDB data to form input files for 

Collaborative framework achieved via Mahout . The research was extended to build the 

model on Hadoop to achieve scalability. 

 

The P-Tango system [40] uses a weighted hybrid recommender. The scores of 

recommended items are computed from the results of all the available recommendation 

techniques. It initially assigns Content-based and Collaborative recommenders equal 

weight, but steadily fine-tunes the weighting as predictions about user ratings are firmly 

established or not confirmed.  

 

The DailyLearner system [41] uses a switching hybrid recommendation in which 

Content-based recommendation was employed first. If CBR cannot make an adequate 

recommendation, then CF is attempted to come up with recommendations that are not 

near in a semantic way to the items previously rated highly, but are still important and 

relevant. 

 

The Personalised TV(PTV) system [42] uses a mixed approach to capturing users’ 

preferences about television viewing. It employs CBR based on textual descriptions of TV 

programs. Then the Collaborative technique is employed to gather information about the 

preferences of other users. Recommendations both Content-based and Collaborative are 

combined together in the final suggested program. In PTV, the Content-based 

recommendation takes priority over Collaborative responses. 

 

Other implementations of the mixed hybrid are ProfBuilder [43] and PickAFlick [44], 

where recommendations from more than one technique are presented together. They 

present multiple recommendation sources side-by-side. 

  

The feature combination hybrid was employed by Basu, C et al [45]. It reports on 

experiments in which the inductive rule learner Ripper was employed in recommending 

movies using both user ratings and content features, and achieved significant 

improvements in prediction accuracy over a purely collaborative approach. However, this 
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gain was only achieved by hand-filtering content features. The authors discovered that 

applying all of the available content features improved recall but not precision.  

 

The Restaurant Recommender EntreeC [39], is a cascaded knowledge-based and 

collaborative recommender. Its knowledge of restaurants was required to make 

recommendations based on the user’s declared interests. The recommendations are 

lodged in jars of equal preference, then collaborative filtering is employed to break ties, 

further ranking the suggestions in each jar. 

 

The Libra system’s approach of content-based approach is a recommendation of books 

based on data found on the Amazon site. It employs a naive Bayes text classifier. The 

collaborative engine used by Amazon is used to extract content information in the text 

data used by the system. These content features were found to have a weighty 

contribution to the quality of recommendations. 

 

The GroupLens research team combined Collaborative filtering with Knowledge-based 

techniques to Usenet news. It employed feature augmentation [20]. They implemented a 

set of Knowledge-based “filterbots” using distinct criteria, such as the size of included 

messages and the number of spelling errors. Ratings are contributed by these bots to the 

database of ratings used by the Collaborative portion of the system, acting as artificial 

users. With implementations of fairly simple agents, email filtering was improved. 
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CHAPTER THREE 

 

RESEARCH METHODOLOGY  

3.1  INTRODUCTION 

 

As mentioned earlier, we aim to develop a hybrid recommender that is able to achieve 

higher prediction accuracy than ordinary single component systems. User rating 

information was extracted from Movie lens dataset and content features from IMDB. Our 

aim was to match the well-known MovieLens [11] rating data with the corresponding 

IDMB [48] movie features. Although this research merely focused on movie data, it also 

sought to design a universal model that could be deployed for other domains. 

Generally, Collaborative recommender systems thrive in two major areas: it can be 

employed either to predict how much a user will like an item, or to recommend a list of 

items to a user [49]. In other words, it mainly deals with the prediction of unknown user-

item ratings or item recommendation. 

Before we can made any design decisions regarding our hybrid recommender, we analyzed 

all system constraints firstly. In the following sections, the proposed methodology and 

components that make up the system are discussed.  

 

3.2 METHODOLOGY 

 

Figure 3.1 gives an overview of the proposed methodology. This is divided into two parts: 

Content-based Recommendation and Collaborative filtering using Mahout Libraries. 

The high-level approach is to firstly extract and integrate the MovieLens Dataset and 

IMDB data and finally, Collaborative filtering using Mahout Libraries is applied on the 

integrated data to recommend a list of items to a user. 

The following steps have been outlined to achieve the aim of this project: 

¶ Using the well-known MovieLens datasets [11]. 

¶ Extraction of the Movie Content features from the internet Movie Database (IMDB).  

¶ Matching the user ratings from the MovieLens dataset and movie features from the 

IMDB in order to find appropriate item features. 
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¶ Using the results obtained above as an input in Collaborative filtering. 

¶ Determining the most effective hybrid system by incorporating different Content-

based characteristics into a Collaborative approach(on Apache Mahout). 

¶ Evaluating the different combinations of the parameters of the Mahout Libraries  and 

determining the  most effective configuration for our model.This will be implemented 

on top of Hadoop to improve scalability issues. 

¶ Evaluating the performance of the developed hybrid recommendation engine against 

existing models. Our novel approach will establish the influence of different content 

features and the implication of adjusting different parameters on recommendation 

precision. 

¶ Demonstrating how the extracted content features are beneficial to the prediction 

accuracy of our hybrid recommendation system. 
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Figure 3.1: Methodology for improving Recommendation Prediction Accuracy 

 

3.3 CONTENT BASED RECOMMENDATION 

 

Content-based recommendation takes into account the content or attributes of items. 

Because Mahout does not implement Content-based approaches, in our research we adopt 

the approach outside Mahout, and then incorporate the movie features into the 

Collaborative framework in order to improve prediction accuracy. 

The IMDB is an enormous assembly of movie information (auto-claimed to be the earth’s 

biggest movie database). The IMDB website [48] provides 49 text files in ad-hoc format 

(called lists) containing different characteristics about movies (e.g. director.List or 

country.List). For the purpose of this project, we imported only a few of the IMDB text 

files namely; Country, Director, Genre, and Release Dates. 
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MovieLens is a movie recommender project developed by the Department of Computer 

Science and Engineering at the University of Minnesota. It is a system that uses 

Collaborative filtering. Movie preferences are collected from users and then users with 

similar taste are grouped together. Based on the movie ratings expressed by all the users 

in a group, it attempts to predict for each individual their opinion on movies they have 

not yet seen. A relational database about movies is built, viz. different tables containing 

movie descriptions and user ratings. In order to accomplish this, we extract, transform 

and integrate data provided by MovieLens and IMDB sites. This database is used to 

generate the input file for the Data model in Mahout. 

 

The extraction and integration of data have 5 main steps:  

(i) Extraction of MovieLens data, 

(ii)  Extraction of IMDb data,  

(iii)  Matching of MovieLens and IMDb movie titles,  

(iv) Construction of the integrated database, 

(v) Generation of an input file for the Collaborative framework. 

 

Figure 3.2 shows an overview of these steps. 
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Figure 3.2: Content-Based Recommendation - Extraction and integration of MovieLens   

and IMDB Data 

3.4 COLLABORATIVE FILTERING USING MAHOUT 

 

Mahout implements a Collaborative filtering framework. A Java/J2EE application 

invokes a Mahout Recommender whose DataModel is based on a set of User preferences 

that are built on the ground of a physical Datastore (input files). Figure 3.3 outlines the 

order in which the Collaborative framework via Mahout is achieved: 

(i) The mapping of the input files into a DataModel Mahout-compliant. 

(ii)  Tuning the Recommender components. 

(iii)  Computing Rating Estimations. 

(iv) Evaluating Recommendation.  
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Figure 3.3: Collaborative Filtering Using Mahout Libraries 

 

3.5 RECAP 

We proposed a methodology that combines the Content-based features with Collaborative 

Filtering. 

The next chapter discusses the implementation and experiments carried out using the 

proposed model as well as detailed results, comparison of the results with state of the art 

recommendation engine to verify the correctness as well as specific achievements and 

contributions of this work. 
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CHAPTER FOUR 

IMPLEMENTATION, RESULTS, PRESENTATION AND DISCUSSION 

4.1 OVERVIEW OF THE IMPLEMENTATION APPROACH 

 

This chapter discusses the implementation of the proposed model with focus on the 

recommender engine, tools and methods used, as well as the results obtained. In presenting 

the experimental results, we discuss how our model compares to the classic Collaborative 

filtering algorithm using standard benchmarks: Root Mean Square Error. The result of this 

work shows significant improvement in recommendation accuracy when compared to state 

of the art models. This implementation was achieved on windows 7 operating system. 

 

4.2 EXTRACTION OF IMDB DATA 

 

IMDb data set exist in files with extension .list.gz. They come with different formats, 

including tabular lists, tagged text and hierarchical-organized text. These files are available 

for download from their website [48]. From past work, Movie features can be retrieved 

from the Internet Movie Database (IMDB) in several ways [56] [57]. We decided to create 

a copy of the IMDB data files on our local system to avoid performance loss due to 

unreliable network connections. The next sub-sections describe software tools, source files, 

target schemas, extraction processes and cleaning processes. 

 

4.2.1 SOFTWARE TOOLS 

 

Previous work in recommendation engines has explored several software packages and 

tools for extracting IMDB data. This section will highlight the software tools that were 

employed to implement the extraction of IMDB text files. 
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IMDBPY 4.7 

 

Installing Python programming language is a prerequisite before an IMDPY application 

can be installed. Python version 2.7.11 was employed for our implementation. It is worth 

noting that adding the installation directory to the user and system variable is highly 

important [52]. 

 

IMDbPY is a Python application provided for easy retrieval, storing and management of 

IMDB data.  It abstracts the difficulties associated with extracting and storing valuable 

information from the IMDB movie database. The imdbpy2sql.py script used to populate 

the IMDB database created on PostgreSQL, using the data in the IMDb's plain text data 

files, is an important aspect of IMDbPY.  This application was installed [51] in the same 

location as the python27 directory. 

4.2.1.1 SQLObject 

 

SQLOBJECT is a major requirement for the script to run. It is a Python object-relational 

mapper between a SQL database and Python objects. In this case, it is used to map the 

PostgreSQL database and the IMDPY python script. This is automatically installed as part 

of site-packages during the installation of a Python programming language. 

4.2.1.2 PSYCOPG  

 

Psycopg is one of the PostgreSQL adapters for the Python programming language. Its main 

use is to provide a platform for the implementation of Python DB API 2.0 specifications. 

Several extensions allow access to many of the features offered by PostgreSQL [54]. 

Psycopg 2.6.1 was used for the implementation. 

4.2.1.3 POSTGRESQL 

 

The database used for this extraction is PostgreSQL (Version1.22.1) [53]. 

A database named "imdb" was created via the PSQL console:  # create database -W imdb 
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In order to create the tables and to populate the database, you must run the imdbpy2sql.py 

script:   # imdbpy2sql.py -d /dir/with/plainTextDataFiles/ -u 'URI' 

Where the “/dir/with/plainTextDataFiles/” was replaced with “C:\python” which is the 

location of the downloaded List files in our local directory. The file must have an extension 

“.gz” and the “URI” replaced with “postgres://postgres:postgres@localhost/imdb” 

4.3 EXTRACTION OF MOVIELENS  DATA 

 

Unlike the IMDB data, the MovieLens data was easier and straightforward to extract into 

a database. The dataset was imported into the PostgreSQL database in order to match their 

tables with the IMDB tables. Currently, there are four data sets available at the MovieLens   

website ([11]). The first one is MovieLens 100K Dataset which consists of 1700 movies 

with 100,000 ratings from 1000 users. Released in April 1998. The second one is the 

MovieLens 1M Dataset which consists of 4000 movies with 1 million ratings from 6000 

users. Released in February 2003. The third one is MovieLens 10M Dataset which consists 

of 10 million ratings and 100,000 tag applications applied to 10,000 movies by 72,000 

users. Released in January 2009. The fourth one is MovieLens  20M Dataset which consists 

of 20 million ratings and 465,000 tag applications applied to 27,000 movies by 138,000 

users. Released in April 2015. All the ratings in these data sets range from 1 to 5. The big 

number indicates users' high preferences. 

 

This thesis used the100k data set that is composed of RATINGS, USERS, and MOVIES 

data sets with the following fields:  

MOVIERATINGS: [User ID, Movie ID, Rating, Timestamp]  

USERS: [User ID, Gender, Age, Occupation, Zip-code]  

MOVIES: [Movie ID, Title, Genres] 

 

4.3.1 MOVIELENS RATING INFORMATION 

 

Even though previous work has successfully employed the time factor for Collaborative 

filtering [55], we were mainly interested in the first three fields < userID; itemID; rating >. 
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Samples of rating information was provided as a text file. The fields are illustrated in Table 

4.1. 

 

Table 4.1: Extract of Rating Data 

User ID      Item ID      Rating        Timestamp 

196 242 3 892685437 

186 302 3 874795795 

22 377 1 878887116 

244 51 2 880606923 

166 346 1 886397596 

 

4.3.2  MOVIELENS   ITEM INFORMATION 

 

This research was interested in additional item features, which helped in giving more 

precise item descriptions. Some sample records of the MovieLens item file are illustrated 

in the following table: 

 

Table 4.2: Extract of MovieLens Item File 

movie 

id 
movie title release date imdb url genre00 ... genre18 

1 Toy Story (1995) 01-Jan-95 
http://us.imdb.com/M/title-

exact?Toy%20Story%20(1995)   

0………...1 

2 GoldenEye (1995) 01-Jan-95 
http://us.imdb.com/M/title-

exact?GoldenEye%20(1995) 
1…………..0 

3 Four Rooms (1995) 01-Jan-95 
http://us.imdb.com/M/title-

exact?Four%20Rooms%20(1995)   

0…………..0 

4 Get Shorty (1995) 01-Jan-95 
http://us.imdb.com/M/title-

exact?Get%20Shorty%20(1995)   

0…………..1 

5 Copycat (1995) 01-Jan-95 
http://us.imdb.com/M/title-

exact?Copycat%20(1995) 
1…………...1 

 

 

 

The last 19 fields represent different genres, whereas a 1 indicates that the movie is of that 

genre and a 0 indicates it is not. It is possible that movies can be in several genres at once. 

http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)
http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)
http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)
http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)
http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995)
http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995)
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For instance, the Golden Eye belongs to the categories Adventure and Action. The movie 

IDs are those used for item IDs in the rating data (Table 4.1).  

 

4.3.3 EXTRACTING MOVIELENS USER FEATURES 

 

Firstly, the user id column in the rating data from MovieLens was replaced by the user’s 

age.  Secondly, the users were grouped or classified by their age. Thirdly, the average rating 

was computed by adding all users’ ratings per item divided by the number of users. This 

procedure was also applied to the User-Occupation and User-gender features. This script 

was executed to generate the input file for further processing by our Collaborative 

recommendation engine. The similarity between users was therefore based on these 

demographic features which represented the attributes of the item itself. The following 

scripts (Figure 4.1) were executed on the SQL editor of PostgreSQL to extract the 

demographic user content features. 
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Figure 4.1: Scripts for extraction of User-age, User-gender, User-occupation and User 

Features 

 

4.4 ITEM FEATURES EXTRACTION AND COMBINATION 

 

Each of the IMDB files contained information about an independent item feature. Despite 

that, we decided on Table 4.3 with movie features to use as a support for the obtained rating 

information. Among the bulk of features, some seemed more promising than others. For 

further investigation we selected the following MovieLens and IDBM item features as 

candidates: 
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Table 4.3: Selected Movie Features 

IMDB MOVIELENS   

Item Features User Feature 

Genre 

Country 

Director 

Release date 

 

Age 

Occupation 

Gender 

 

In our approach, we were mainly interested in the Movie and User entities, and their 

relations to any other available features. Possible movie features were the actor, country, 

and genre, as well as users that gave ratings on these items. From the perspective of a user, 

we had the features gender, age, and occupation, plus items that were rated by the users.  

Our goal was to combine the original rating data with all extracted feature information in 

a single model.  

Other than the selected user features selected from MovieLens data, IMDB contained more 

movie attributes. Further item attributes shown in Table 4.3 were extracted from IMDB via 

a stored procedure (Appendix A) written in PostgreSQL. The real benefits of these features 

on recommendation prediction accuracy were determined by testing on our system 

performance. We checked whether the input files generated from these content features 

would actually improve the state of art Collaborative framework. 

As discussed in the literature review, the weakness of this Content Based recommendation 

should be strengthened by the Collaborative Algorithm implemented in Apache Mahout. 

The following sub-section describes the research papers implementation of recommender 

engine using Apache Mahout. 

 

4.5 IMPLEMENTATION OF RECOMMENDER ENGINE BY APACHE 

MAHOUT 

 

Apache Mahout is basically a Java style framework, therefore, to run or develop java 

packages, a useful integrated development environment (IDE) Eclipse was employed. 



33 
 

Since Apache Mahout working with Java, installation, and configuration of environment 

for Java in windows 7 is indispensable. According to James, G. et al. [50], the Java 

programming language is a language designed to be simple enough that many programmers 

can achieve fluency in the language. Appendix B shows the extract of Java codes that was 

employed in this implementation. 

 

As discussed earlier, the input data for the Collaborative filtering algorithm was generated 

by matching MovieLens data with IMDB data using their movie titles. Input files were then 

fed into the FileDataModel class. It accepted data in the format userId, itemId, 

pref(long,long,Double).  

The following sub-section describes the software tools and the parameter configuration of 

Mahout components in order to achieve optimal recommendation. 

4.5.1 CLOUDERA 

 

Cloudera is an open source platform built on Apache Hadoop.  It is considered as a one-

stop hub for big data.In order to realize the UNIX-like environment on Microsoft Windows, 

Cloudera QuickStart VM was installed . Installing Vmware Workstation 12 player was a 

prerequisite to having Cloudera on our windows 7 operating system(OS). It required a 64-

bit host OS. The installation of Apache Mahout and Apache Maven was made rather easy 

on Cloudera .The instruction of the installation of Cloudera can be found on their 

website[58]. Operation according to the instruction allowed for the easy download and 

installation of it on the computer. 

The PC memory (RAM) was extended from 4gigabytes(4G) to 8gigabytes(8G) in order to 

boost the system performance. 4G Ram was allocated to the Virtual Machine. 

4.5.2 APACHE MAVEN 

 

Apache Maven helped to manage dependencies, compile code and package source by 

automatically downloading the necessary libraries for the projects. Apache Maven 

distribution is provided in several formats [58]. The project's dependencies were defined 

in the <dependencies> section of our POM (Project Object Model). The POM is an XML 

representation of a Maven project held in a file named POM.XML . 
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4.6 MAHOUT RECOMMENDER COMPONENTS – PARAMETERS 

OPTIMIZATION 

 

The Mahout Recommender engine was preconfigured with a variety of built-in 

components. These components were adjusted to meet varying system requirement 

specifications and to improve recommendation performance. This section highlights the 

various parameter configurations for our model 

 

4.6.1 DATASET 

 

The rationale behind the choice of the ratio of data used for our implementation was derived 

from the analysis done in (Table 4.4). 

 Even though user rating increased as dataset increased, the sparsity of data also increased. 

The table gives an overview of dataset features over varying size. The 100k dataset with 

0.063 density had 6.3% of its cell populated with ratings, while 93.7% of its cell were 

sparse (not filled with ratings). The densities for the remaining dataset were 0.042 for 1M 

data, 0.013 for 10M data and 0.005 for 20M data. We can, therefore, deduce that the 

sparsity of the 100K data was lower than the other three, therefore it was best for 

optimization.  

Also, the 100k dataset required shorter computational time and smaller memory utilization 

in order to tune the different recommender components for optimization.  
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Table 4.4: Analysis of MovieLens Dataset for optimization 

Dataset Users Items Ratings 

Avg 

Ratings/

Movies 

Rating 

Scale 

Possible 

Ratings  

(users*items) 

Ratings 

/Possible 

Ratings 

(Density) 

 

100k 

 

943 

 

1682 

 

100,000 

 

59 

 

[1-5] 1586126 0.063 

 

IM 

 

6040 

 

3883 

 

1,000,209 

 

258 

 

[1-5] 23453320 0.042 

 

10M 

 

69,878 

 

10,681 

 

10,000,054 

 

936 

 

[0.5-5] 746366918 0.013 

 

20M 

 

138,493 

 

27,278 

 

20,000,263 

 

733 

 

[0.5-5] 3777812054 0.005 

 

  

4.6.2 SIMILARITY METRICS AND NEIGHBORHOOD CRITERIA 

 

To obtain a good result, and obtaining them fast required a long process of 

experimentation and refinement in order to create an optimized recommender engine. The 

user-based recommender was chosen over the item-based recommender.  Both 

implementations were experimented to achieve the best optimization. Resultantly, the 

result of the algorithm was improved with a GenericUserBasedRecommender class. 

Table 4.5 shows the prediction error when the different neighborhood size was modified 

and evaluated with five similarity metrics. Table 4.6 shows the prediction error when the 

threshold neighborhood was applied to the same similarity metric. Table 4.5 and 4.6 

below give an overview of components that were assembled to arrive at our best 

optimization for similarity metrics and neighborhood criteria. 
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Table 4.5: The relative performance of a user-based recommender with different similarity 

metrics and nearest-n Neighborhood 

 Nearest-n User Based Neighborhood 

Similarity n = 10 n = 12 n = 15 n = 20 n = 50 n=100 n=150 n=200 

Euclidean Distance 1.218 1.206 1.202 1.087 1.121 1.059 1.029 1.011 

Log Likelihood 1.101 1.099 1.087 1.071 1.04 1.036 1.032 1.031 

Tanimoto 

Coefficient 
1.102 1.099 1.094 1.087 1.056 1.035 1.029 1.032 

Spearman 

correlation 
1.220 1.214 1.211 1.185 1.149 1.122 1.093 1.079 

Pearson 

Correlation 
1.202 1.190 1.167 1.158 1.153 1.109 

1.084 
1.080 

 

 

 
Figure 4.2: Visualization of values in Table 4.5 
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Table 4.6. The relative performance of a user-based recommender with different similarity metrics, 

using Threshold-based Neighborhood 

 Threshold-based User Neighbourhood 

Similarity t=0.9 t=0.8 t=0.7 t=0.6 t=0.5 t=0.4 t=0.3 t=0.2 t=0.1 

Euclidean Distance 1.112 1.112 1.106 1.051 0.993 0.991 1.019 1.024 1.024 

Log Likelihood 1.031 1.0292 1.029 1.030 1.032 1.031 1.031 1.031 1.031 

Tanimoto 

Coefficient 
NaN NaN NaN NaN NaN NaN 0.0 1.031 1.043 

Spearman 

correlation 
1.124 1.118 1.109 1.085 1.065 1.052 1.042 1.036 1.030 

Pearson Correlation 1.146 1.119 1.100 1.075 1.058 1.046 1.034 1.030 1.030 

 

 
Figure 4.3: Visualization of values in Table 4.6 
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4.7 SYSTEM EVALUATION 

4.7.1 PERFORMANCE MEASURE 

 

The effectiveness or otherwise of a recommendation engine is often measured by the 

prediction accuracy of the result. Mahout provides classes for the evaluation of a 

recommender system. We employed the prediction-based measures, the precise Root Mean 

Square Error (RMSE). 

RMSE is a typical measure of the accuracy of a recommender system. It is a score 

indicating how well a Recommender performed. The lower the RMSE, the higher the 

prediction accuracy. It returns an error value that describes the deviation of our model from 

the actual data. It measures how close the computed estimates are to the values actually 

observed. In our case estimates were the outcomes of our hybridized model, and actual 

values were given through our test dataset. 

 

The Tables 4.5 and 4.6 above illustrated the performance of each similarity metric. The 

similar users were defined either by the fixed number or by the threshold. The most suitable 

similarity metric from the table was the Euclidean distance. It was significantly more 

suitable for the 100K movie data than all the other similarity metrics. 

 

 We deduced that a high number of nearest neighborhood represented a low threshold 

value. The best performance for nearest-n user based neighborhood occurred at a prediction 

error of 1.011, with 200 user neighbors (cell painted in red in Table 4.5). The corresponding 

threshold based neighborhood produced its optimum recommendation at a threshold of 0.4 

and 0.5. Consequently, the neighborhood criteria according to threshold resulted in a better 

evaluation value than those based on neighborhood numbers; the best evaluations occurred 

when a threshold between 0.4 and 0.5 was used. 

 

Further investigation revealed that the ratio of data had an insignificant impact on the 

evaluation result. Both the 100k data and 1M data were fed separately as input data into 

our recommendation engine. The RMSE were 0.964 and 0.941 respectively. The difference 

was quite close. This was helpful because the 1M data took a longer computational time to 
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get the result. Therefore, it was advisable to use the 100k data for the remaining 

computation as the bigger dataset was too time-consuming to be usable for the Content 

features analysis. 

 Accordingly, we took the best solution for our implementation to be the: 

¶ User-based recommender  

¶ Euclidean distance similarity metric 

¶ Threshold neighborhood  

 

4.7.2 USER CONTENT FEATURES  

 

Table 4.5 refers to the influence of various user content features on the prediction accuracy 

of our recommender engine. The prediction error (RMSE) of our original User-Movie data 

was compared to that of User-Age, User-Occupation and User-Gender. 

Ranking the performance of the examined user-features, we can say that these features had 

a positive influence on the prediction accuracy of our original model. For the User-

Occupation category, the prediction error was lower than the User-Movie between the 

threshold values of 0.5 to 0.1. For the User-Age category, the prediction error was lower 

than the User-Movie for all ranges of the neighborhood threshold. Even though the 

optimum recommendation of User- Age occurred at a threshold between 0.7 and 0.9 as 

opposed to the optimal performance of User movie at 0.4 and 0.5. 

 

It was clearly observable that the User–Occupation performed better than the User-Age at 

threshold values of 0.5 to 0.1. 

 

All values for User–gender were NaN (not a number). It means the values were undefined. 

This can probably be explained by the fact that all movies cannot be recommended to an 

individual just because of the gender only. With gender typically being female and male, 

it is no surprise that the experiment could not find any impact on the accuracy of 

recommendations. 
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Table 4.7: Evaluation of a User-based recommender with Euclidean distance similarity 

using neighborhood threshold – USER FEATURES  

 

 RMSE 

Threshold 

 

(User-Movie) 

 

( User-Age) 

 

( User-Occupation) 

 

(User-Gender) 

0.1 1.024 0.9 0.87 NAN 

0.2 1.024 0.9 0.87 NAN 

0.3 1.019 0.9 0.87 NAN 

0.4 0.991 0.891 0.86 NAN 

0.5 0.993 0.845 0.77 NAN 

0.6 1.051 0.83 NAN NAN 

0.7 1.106 0.79 NAN NAN 

0.8 1.112 0.79 NAN NAN 

0.9 1.112 0.79 NAN NAN 

 

  

 

 
Figure 4.4: Illustrates the influence of the examined user content features on the system 

performance 
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4.7.3  ITEM CONTENT FEATURES 

Further to our experiment, we investigated the influence of various item features listed in 

Table 4.8 on the recommendation prediction accuracy. These item features; genre, director, 

country and release date were extracted from the IMDB data and then matched with the 

MovieLens data. 

 

Table 4.8 refers to the influence of various item content features on the prediction accuracy 

of our recommender engine. The prediction error (RMSE) of our original User-Movie data 

was compared to that of Movie-Genre, Movie-Country, Movie-Director and Movie-

Release date. These item features RMSE were further compared to the lowest RMSE for 

User-Occupation which was 0.77, this occurred at a threshold of 0.5. 

 

Ranking the performance of the examined item-features based on Table 4.8, we can safely 

deduce the following: 

¶ The Movie-Director feature produced a marginal improvement over our original 

User-Movie model. 

¶ The Movie-Release date feature performed less in improving recommendation 

accuracy than the Movie-Genre for all range of threshold values except at 0.6.  

¶ Comparing the item Features, the Movie-Country produced surpassing prediction 

results. Surprisingly, the Movie-Country feature produced the optimal 

recommendation at a threshold of 0.9 to 0.8. The prediction accuracy gradually 

reduced as the threshold reduced. In spite of this gradual reduction, the prediction 

error was lower for all range of neighborhood threshold when compared to the 

remaining item features. 
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Table 4.8: Evaluation of a User-based recommender with Euclidean distance similarity 

using neighborhood threshold – ITEM FEATURES  

 RMSE 

Threshold 

 

 

(Movie-Genre) (Movie-Country) ( Movie-Director) (Movie-Release date) 

0.1 0.742 0.7 1.013 0.795 

0.2 0.742 0.7 1.013 0.795 

0.3 0.737 0.697 1.005 0.79 

0.4 0.708 0.659 0.958 0.745 

0.5 0.674 0.583 0.921 0.672 

0.6 0.637 0.500 0.965 0.618 

0.7 0.646 0.46 1.049 0.676 

0.8 0.654 0.381 1.064 0.792 

0.9 0.654 0.333 1.064 0.797 

 

 

 

 

 

Figure 4.5: Illustrates the influence of the examined Item content features on the system 

performance 
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4.7.4 COMPARING USER/ITEM CONTENT FEATURES 

 

Our analysis revealed that the overall performance improvement of the item features was 

much higher than the user features, even though the Movie-Director feature performed less 

in improving recommendation accuracy than the User-age and User-Occupation. 

This was further buttressed by the graph in Figure 4.6. Appendix C gives an overview of 

the experimental result of the comparison between user and item features. 

 

Accordingly, the features were ranked in the order of positive influence over our 

recommender engine as shown below: 

1. Movie-Country 

2. Movie-Genre  

3. Movie-Release date 

4. User-Occupation 

5. User-Age 

6. Movie-Director 

7. User-Movie 

8. User-Gender 
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Figure 4.6: The Ranking Performance of User/Item Features 
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 CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

5.1  SUMMARY 

 

In the course of the study, we proposed a novel approach to improving recommendation 

accuracy. In order to achieve better recommendation results, we combined both the 

Content-based and Collaborative filtering techniques to build a Hybrid Recommender 

engine.  

 

Our model is novel because rating and content information from the MovieLens data and 

IMDB data were combined to a unified model through a simple yet unique approach. We 

extracted user demographic features such as user content features and some movie item 

attributes as item features.  

The main advantages of this unified model were the fewer parameters and more reasonable 

prediction results. 

 

Our hybrid recommender was implemented by using Apache Mahout. The recommender 

components were tuned to determine the most effective parameter for recommendation. By 

means of various experiments, we demonstrated that the extracted content features were 

beneficial to the prediction accuracy of our hybrid recommendation engine. In addition, we 

were able to confirm that the examined item features performed better than the user 

features.  

 

5.2  CONCLUSION 

 

From this study, it can be concluded that the developed hybrid recommendation engine 

using a combination of the Content-based recommendation and Collaborative filtering 

framework perform better than pure Collaborative filtering. This improvement can be 

attributed to the various user and item features extracted from the MovieLens data and 

IMDB data. 
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Also, it is believed the hybrid recommendation engine proposed in this work will be of 

great benefit in the design of recommendation systems with the ability to generate more 

individual and accurate prediction results. 

 

5.3  RECOMMENDATION AND FUTURE WORKS 

 

One of the challenges faced during the course of this study was the implementation of 

matching IMDB data and MovieLens data. The unstructured manner in which the IMDB 

data are stored made the process time consuming. Since the MovieLens data are more 

structured, it is therefore recommended as future work that more item content features are 

included in the MovieLens dataset. 

 

For the evaluation of our hybrid approach, we employed the MovieLens-100K dataset, 

which contained 100000 user-item ratings. However, it would be quite interesting to 

explore the impact of tag applications which come with bigger MovieLens dataset and the 

recent tag genome on prediction accuracy. 

 

It is recommended that more user and item features be explored apart from the examined 

ones in this thesis. In addition, a hybrid of user content and item content features can also 

be explored to check the influence on recommendation prediction accuracy over our model. 

 

Information retrieval metrics like Precision and Recall can also be employed to evaluate 

the accuracy of the recommender. 
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APPENDIX A: SOURCE CODE SNIPPET 

 

FEATURE RETRIEVAL – POSTGRESQL  
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FEATURE RETRIEVAL – POSTGRESQL  
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APPENDIX B: RECOMMENDER ENGINE - JAVA PROGRAM 

 

 

 1 class userbasedrecommedation {        1 

2   // private static int neighbourhoodSize= 0.7;        

3       public static void main(String args[])        3 

4       {         4    

5 

            String recsFile="C:\\text\\imdb_data.csv"; 

        5    

6             //for Recommendation evaluations             

7 

            RecommenderBuilder userSimRecBuilder =   

new RecommenderBuilder() {        7    

8                   @Override   

9                   public Recommender buildRecommender(DataModel model)throws TasteException  

10                   {         10    

11 

                      UserSimilarityuserSimilarity = new 

EuclideanDistanceSimilarity(model);        

12                         /*Threshold-Based Neigborhood*/     

13 

                       UserNeighborhood neighborhood =new 

ThresholdUserNeighborhood(0.5, userSimilarity, model);        13   

14                          

16 

                        //Recommender used in your real time 

implementation        16    

17                         Recommender recommender =new GenericUserBasedRecommender(model, neighborhood, userSimilarity);    

18                                     }         18   

19             };         

20             try {   

21 

                  //Creating a data model to be passed on to 

RecommenderEvaluator - evaluate method        21   

22 

                  FileDataModel dataModel = new 

FileDataModel(new File(recsFile));        22   

23                        

24                   //*RecommenderEvaluator  is RMSE*/ 

25 

                  RecommenderEvaluator evaluator = new 

RMSRecommenderEvaluator(););         25   

26                          26    

27 

                  //for obtaining User Similarity Evaluation 

Score        27    

28 

                  double userSimEvaluationScore = 

evaluator.evaluate(userSimRecBuilder,null,dataModel, 

0.7, 1.0);        28   

29                   System.out.println("User Similarity Evaluation score : "+userSimEvaluationScore);   

30                                                     

31             } catch (IOException e) {        31    

32                   // TODO Auto-generated catch block        

33                   e.printStackTrace();    

34             } catch (TasteException e) {        34    

35                   // TODO Auto-generated catch block       

36                   e.printStackTrace();  

1 class userbasedrecommedation {    

38       }           

39 }           
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APPENDIX C: EXPERIMENTAL RESULT 

 

Comparison of User and Item Features 

  USER/ITEM FEATURES 

THRESHOLD 
(Movie-

Country) 

 (Movie-

Genre) 

( User-

Occupation) 

(Movie-

Release date) 
( User-Age) 

( Movie-

Director) 
(User-Movie) (User-Gender) 

0.9 0.333 0.654 NAN 0.797 0.79 1.064 1.112 NAN 

0.8 0.381 0.654 NAN 0.792 0.79 1.064 1.112 NAN 

0.7 0.46 0.646 NAN 0.676 0.79 1.049 1.106 NAN 

0.6 0.5 0.637 NAN 0.618 0.83 0.965 1.051 NAN 

0.5 0.583 0.674 0.77 0.672 0.845 0.921 0.993 NAN 

0.4 0.659 0.708 0.86 0.745 0.891 0.958 0.991 NAN 

0.3 0.697 0.737 0.87 0.79 0.9 1.005 1.019 NAN 

0.2 0.7 0.742 0.87 0.795 0.9 1.013 1.024 NAN 

0.1 0.7 0.742 0.87 0.795 0.9 1.013 1.024 NAN 

 

 

 


