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ABSTRACT

It is well know that many physically significant problems in different areas of re-
search can be transformed into an equation of the form

Au = 0, (0.0.1)

where A is a nonlinear monotone operator from a real Banach space E into its dual
E∗. For instance, in optimization, if f : E −→ R ∪ {+∞} is a convex, Gâteaux
differentiable function and x∗ is a minimizer of f , then f ′(x∗) = 0. This gives a
criterion for obtaining a minimizer of f explicitly. However, most of the operators
that are involved in several significant optimization problems are not differentiable.
For instance, the absolute value function x 7→ |x| has a minimizer, which, in fact,
is 0. But, the absolute value function is not differentiable at 0. So, in a case where
the operator under consideration is not differentiable, it becomes difficult to know
a minimizer even when it exists. Thus, the above characterization only works for
differentiable operators.
A generalization of differentiability called subdifferentiability allows us to recover
the above result for non differentiable maps.
For a convex lower semi-continuous function which is not identically +∞, the sub-
differential of f at x is given by

∂f(x) = {x∗ ∈ E∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) ∀ y ∈ E}. (0.0.2)

Observe that ∂f maps E into the power set of its dual space, 2E
∗
. Clearly, 0 ∈ ∂f(x)

if and only if x minimizes f . If we set A = ∂f , then the inclusion problem becomes

0 ∈ Au

which also reduces to (0.0.1) when A is single-valued. In this case, the operator
maps E into E∗. Thus, in this example, approximating zeros of A, is equivalent to
the approximation of a minimizer of f .

In chapter three and four of the thesis, we give convergence results for approxi-
mating zeros of equation (0.0.1) in Lp spaces, 1 < p < ∞, where the operator A
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Abstract vii

is Lipschitz strongly monotone and generalised Φ-strongly monotone and bounded
maps respectively.

As remarked by Charles Byrne [23], most of the maps that arise in image recon-
struction and signal processing are nonexpansive in nature. A more general class of
nonexpansive operators is the class of k-striclty pseudo-contractive maps. In chap-
ter five of this thesis, we prove some convergence results for a fixed point of finite
family of k-striclty pseudo-contractive maps in CAT (0) spaces. We also prove a
convergence result for a countable family of k-striclty pseudo-contractive maps in
Hilbert spaces in chapter six of the thesis.

Let Ω ⊂ Rn be bounded. Let k : Ω × Ω → R and f : Ω × R → R be measur-
able functions. An integral equation of Hammerstein has the form

u(x) +

∫
Ω
k(x, y)f(y, u(y))dy = w, (0.0.3)

where the unknown function u and inhomogeneous function w lie in the function
space E. In abstract form, the equation (0.0.3) can be written in the form

u+AFu = w (0.0.4)

where A : E → E∗ and F : E∗ → E are monotone operators.
In general, every elliptic boundary value problem whose linear part posses a Green’s
function (e.g., the problem of forced oscillation of finite amplitude pendulum) can
be transformed into an equation of Hammerstein type. Thus, approximating ze-
ros of the Hammerstein-type equation in (0.0.4) (when w = 0) is equivalent to
the approximation of solutions of some boundary value problems. Hammerstein
equations also play crucial role in variational calculus and fixed point theory. In
chapter seven of this thesis, we give convergence results for approximating solutions
of Hammerstein-type equations in LP spaces, 1 < p <∞.
In particular, we prove the following results in this thesis.

• Let E = Lp, 1 < p < 2. Let A : E → E∗ be a strongly monotone and
Lipschitz map. For x0 ∈ E arbitrary, let the sequence {xn} be defined by:

xn+1 = J−1(Jxn − λAxn), n ≥ 0,

where λ ∈
(

0, δ
)

. Then, the sequence {xn} converges strongly to x∗ ∈ A−1(0)

and x∗ is unique.

• Let E= Lp, 2 ≤ p < ∞. Let A : E → E∗ be a Lipschitz map. Assume that
there exists a constant k ∈ (0, 1) such that A satisfies the following condition:〈

Ax−Ay, x− y
〉
≥ k‖x− y‖

p
p−1 ,
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and that A−1(0) 6= ∅. For arbitrary x0 ∈ E, define the sequence {xn} itera-
tively by:

xn+1 = J−1(Jxn − λAxn), n ≥ 0,

where λ ∈ (0, δp). Then, the sequence {xn} converges strongly to the unique
solution of the equation Ax = 0.

• Let E = Lp, 1 < p < 2. Let A : E → E∗ be a generalized Φ-strongly
monotone and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define a
sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1,

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn =∞ and∑∞
n=1 α

2
n <∞. Suppose there exists γ0 > 0 such that if αn ≤ γ0 for all n ≥ 1.

Then, the sequence {xn}∞n=1 converges strongly to a solution of the equation
Ax = 0.

• Let E = Lp, 2 ≤ p < ∞. Let A : E → E∗ be a generalized Φ-strongly
monotone and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define a
sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1,

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn =∞ and∑∞
n=1 α

p
p−1
n <∞. Then, there exists γ0 > 0 such that if αn ≤ γ0, the sequence

{xn}∞n=1 converges strongly to a solution of the equation Ax = 0.

• LetK be a nonempty closed convex subset of a complete CAT (0) spaceX. Let
Ti : K → CB(K), i = 1, 2, . . . ,m, be a family of demi-contractive mappings
with constants ki ∈ (0, 1), i = 1, 2, . . . ,m, such that

⋂m
i=1 F (Ti) 6= ∅. Suppose

that Ti(p) = {p} for all p ∈
⋂n
i=1 F (Ti). For arbitrary x1 ∈ K, define a

sequence {xn} by

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ · · · ⊕ αmymn , n ≥ 1,

where yin ∈ Tixn, i = 1, 2, . . . ,m, α0 ∈ (k, 1), αi ∈ (0, 1), i = 1, 2, . . . ,m, such
that

∑m
i=0 αi = 1, and k := max{ki, i = 1, 2, . . . ,m}. Then, lim

n→∞
{d(xn, p)}

exists for all p ∈
⋂n
i=1 F (Ti), and lim

n→∞
d(xn, Tixn) = 0 for all i = 1, 2, . . . ,m.

• Let K be a nonempty closed and convex subset of a real Hilbert space H, and
Ti : K → CB(K) be a countable family of multi-valued ki-strictly pseudo-
contractive mappings; ki ∈ (0, 1), i = 1, 2, ... such that

⋂∞
i=1 F (Ti) 6= ∅; and

supi≥1 ki ∈ (0, 1). Assume that for p ∈
⋂∞
i=1 F (Ti), Ti(p) = {p}. Let {xn}∞n=1

be a sequence defined iteratively for arbitrary x0 ∈ K by

xn+1 = λ0xn +

∞∑
i=1

λiy
i
n,
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where yin ∈ Tixn, n ≥ 1 and λ0 ∈ (k, 1);
∑∞

i=0 λi = 1 and k := supi≥1 ki.
Then, limn→∞ d(xn, Tixn) = 0, i = 1, 2, ....

• Let E = Lp, 1 < p < 2. Let F : E → E∗ and K : E∗ → E be strongly
monotone and bounded maps. For (u0, v0) ∈ E × E∗, define the sequences
{un} and {vn} in E and E∗ respectively by

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 0,

vn+1 = J−1
∗ (J∗vn − αn(Kvn + un)), n ≥ 0,

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn = ∞,∑∞
n=1 α

2
n <∞ and

∑∞
n=1 α

q
q−1
n <∞, where q is such that 1

p + 1
q = 1. Assume

that the equation u+KFu = 0 has a solution. Then, there exists γ0 > 0 such
that if αn ≤ γ0 for all n ≥ 1, the sequences {un}∞n=1 and {vn}∞n=1 converge
strongly to u∗ and v∗, respectively, where u∗ is the solution of u+KFu = 0
with v∗ = Fu∗.

• Let E = Lp, 2 ≤ p < ∞. Let F : E → E∗ and K : E∗ → E be strongly
monotone and bounded maps. For (u0, v0) ∈ E × E∗, define the sequences
{un} and {vn} in E and E∗, respectively, by

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 0,

vn+1 = J−1
∗ (J∗vn − αn(Kvn + un)), n ≥ 0,

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn = ∞,∑∞
n=1 α

2
n <∞ and

∑∞
n=1 α

p
p−1
n <∞. Assume that the equation u+KFu = 0

has a solution. Then, there exists γ0 > 0 such that if αn ≤ γ0 for all n ≥ 1, the
sequences {un}∞n=1 and {vn}∞n=1 converge strongly to u∗ and v∗ respectively,
where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.



List of publications arising from the thesis and other peer-review
publications

[A] Papers Published/Accepted from the Thesis

1. C.E. Chidume, A.U. Bello, P. Ndambomve, Strong and ∆-Convergence The-
orems for a Finite Family of Demicontractive Mappings in CAT(0) Spaces,
Abstr. Appl. Anal., 2014, Art. ID 805168, 6 pp..

2. C.E. Chidume, A.U. Bello, M. A. Onyido, Convergence theorem for a count-
able family of multi-valued strictly pseudo-contractive mappings in Hilbert
Spaces, International Journal of Mathematical Analysis Vol. 9, 2015,
no. 27, 1331-1340.

3. C.E. Chidume, A.U. Bello, B. Usman; Iterative Algorithms For Zeros of
Strongly Monotone Lipschitz Maps in Classical Banach Spaces, Springer-
Plus, 2015, doi 10.1186/s40064-015-1044-1, 9 pp..

4. C.E. Chidume, C.O. Chidume, A.U. Bello, An algorithm for Computing
Zeros of Generalized Phi-Strongly Monotone and bounded Maps in Classical
Banach Spaces, in press, Optimization (Taylor and Francis),
doi:10.1080/02331934.2015.1074686.

x



Abstract xi

[B] Other Peer-reviewed Published/Accepted Papers

1. C.E. Chidume, P. Ndambomve, A.U. Bello, M.E. Okpala, The Multiple-set
Split Equality Fixed Point Problem for Finite Family of Multi-valued Demi-
contractive Mappings, International Journal of Mathematical Analysis,
Vol. 9, 2015, no. 10, 453-469.

2. C.E. Chidume, M.E. Okpala, A.U. Bello, P. Ndambomve, Convergence The-
orems for Finite Family of a General Class of Multi-valued Strictly Pseudo-
Contractive Mappings, Fixed Point Theory and Appl. (Springer-Verlag),
2015, DOI 10.1186/s13663-015-0365-7.

3. C.E. Chidume, P. Ndambomve, A.U. Bello, The Multiple-set Split Equality
Fixed Point Problem for Multi-valued Demicontractive Mappings in Hilbert
Spaces, (Accepted for publication, Dec. 2014), to appear in: Journal of
Nonlinear Analysis and Optimization.

[C] Other Papers Still in the Refereeing Process

1. C.E. Chidume, A.U. Bello, Approximation of solutions of Hammerstein
equations with strongly monotone and bounded operators in classical Banach
spaces, Submitted, Proceedings of the American Mathematical Soci-
ety.

2. C.E. Chidume, A.U. Bello, P. Ndambomve, M.E. Okpala, Strong Conver-
gence Theorem for Fixed Poins of Nearly Uniformly L-Lipschitzian Asymp-
totically generalized Hemicontractive Mappings, Submitted, International
Journal of Mathematical Analysis.



Contents

Dedication iii

Acknowledgements iv

Abstract vi

1 General introduction 1

General Introduction 1
1.1 Some Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Approximation of zeros of nonlinear mappings of monotone-
type in classical Banach spaces . . . . . . . . . . . . . . . . . 1

1.2 Approximation Methods for the Zeros of Nonlinear Mappings of
Accretive-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Iterative methods for zeros of monotone-type mappings . . . . . . . 7
1.4 Approximation of fixed points of a finite family of k-strictly pseudo-

contractive mappings in CAT (0) spaces . . . . . . . . . . . . . . . . 8
1.5 Fixed point of multivalued maps . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Game Theory and Market Economy . . . . . . . . . . . . . . 10
1.5.2 Non-smooth Differential Equations . . . . . . . . . . . . . . . 11

1.6 Iterative methods for fixed points of some nonlinear multi-valued
mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Hammerstein Integral Equations . . . . . . . . . . . . . . . . . . . . 14
1.8 Approximating solutions of equations of Hammerstein-type . . . . . 16

2 Preliminaries 19
2.1 Duality Mappings and Geometry of Banach Spaces . . . . . . . . . . 19
2.2 Some Nonlinear Functionals and Operators . . . . . . . . . . . . . . 23
2.3 Some Important Results about Geodesic Spaces . . . . . . . . . . . . 27

xii



Abstract xiii

3 Krasnoselskii-Type Algorithm For Zeros of Strongly Monotone
Lipschitz Maps in Classical Banach Spaces 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Convergence in LP spaces, 1 < p < 2 . . . . . . . . . . . . . . . . . . 32
3.3 Convergence in Lp spaces, 2 ≤ p <∞. . . . . . . . . . . . . . . . . . 33

4 An Algorithm for Computing Zeros of Generalized Phi-Strongly
Monotone and bounded Maps in Classical Banach Spaces 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Convergence Theorems in Lp spaces, 1 < p < 2 . . . . . . . . . . . . 36
4.3 Convergence Theorems in Lp spaces, 2 ≤ p <∞ . . . . . . . . . . . . 38

5 Strong and ∆-Convergence Theorems for Common Fixed Point
of a Finite Family of Multivalued Demi-Contractive Mappings in
CAT(0) Spaces 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Convergence Theorem for a Countable Family of Multi-Valued
Strictly Pseudo-Contractive Mappings in Hilbert Spaces 47
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Approximation of Solutions of Hammerstein Equations with Strongly
Monotone and Bounded Operators in Classical Banach Spaces 53
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Convergence Theorems in Lp spaces, 1 < p < 2 . . . . . . . . . . . . 54
7.3 Convergence Theorems in Lp spaces, p ≥ 2 . . . . . . . . . . . . . . . 57



CHAPTER 1

General introduction

1.1 Some Motivation

The contents of this thesis fall within the general area of nonlinear functional anal-
ysis, an area which has attracted the attention of prominent mathematicians due
to its diverse applications in numerous fields of sciences. The contributions of this
thesis concentrate mainly on the following three important topics. Namely;

• Approximation of zeros of nonlinear monotone mappings in classical Banach
spaces.

• Approximation of fixed points of a finite family of k-strictly pseudo-contractive
mappings in CAT (0) spaces, and a countable family of k-strictly pseudo-
contractive maps in Hilbert spaces.

• Approximating solutions of Integral equations of Hammerstein-type with mono-
tone operators in Banach spaces.

1.1.1 Approximation of zeros of nonlinear mappings of monotone-
type in classical Banach spaces

It is well known that many physically significant problems in different areas of
research can be transformed into an equation of the form

Au = 0, (1.1.1)

where A is a nonlinear monotone operator defined on a real Banach space E. Let H
be a real inner product space. A mapping A : D(A) ⊂ H → H is called monotone
if for each x, y ∈ D(A), the following inequality holds:

〈Ax−Ay, x− y〉 ≥ 0,

1



General Introduction 2

and is called strongly monotone if there exists k ∈ (0, 1) such that for all x, y ∈ D(A),
the following inequality holds:

〈Ax−Ay, x− y〉 ≥ k‖x− y‖2.

Monotone mappings were studied in Hilbert spaces by Zarantonello [118], Minty
[83], Kačurovskii [69] and a host of other authors. Interest in such mappings stems
mainly from their usefulness in numerous applications. Consider, for example, the
following: Let f : H → R ∪ {∞} be a proper convex function. The sub-differential
of f at x ∈ H is defined by

∂f(x) =
{
x∗ ∈ H : f(y)− f(x) ≥

〈
y − x, x∗

〉
∀ y ∈ H

}
.

It is easy to check that ∂f : H → 2H is a monotone operator on H, and that
0 ∈ ∂f(x) if and only if x is a minimizer of f . Setting ∂f ≡ A, it follows that
solving the inclusion 0 ∈ Au, in this case, is solving for a minimizer of f . In a case
where the operator A is single valued, the inclusion 0 ∈ Au reduces to equation
(1.1.1).

The extention of the monotonicity definition to operators from real Banach space
into its dual has been the beginning of nonlinear functional analysis as remarked
by Pascali and Sburian [91] as follows:

The extension of the monotonicity definition to operators from a Ba-
nach space into its dual has been the starting point for the develop-
ment of nonlinear functional analysis .... The monotone maps constitute
the most manageable class, because of the very simple structure of the
monotonicity condition. The monotone mappings appear in a rather
wide variety of contexts, since they can be found in many functional
equations. Many of them appear also in calculus of variations, as sub-
differential of convex funtions (Pascali and Sburian [91], p.101).

Unlike as in the case of Hilbert spaces, where the operator A maps H to H (in
this case H = H∗ by the virtue of Reiz representation theorem), in arbitrary real
Banach space E, the extension of monotonicity is split into two cases; a case where
A maps E to E in which A shall be called accretive, and the other case where A
maps E to E∗ (the dual of E) in which it retains its name as monotone.

Let E be a real normed space with dual E∗. An operator A : E −→ E is said
to be accretive if and only if ∀ x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 > 0,

where J is the normalized duality mapping on E defined by

J(x) = {j(x) ∈ E∗ : 〈j(x), x〉 = ‖j(x)‖‖x‖, ‖j(x)‖ = ‖x‖}.

and is called strongly accretive if and only if there exists k ∈ (0, 1), and for each
x, y ∈ D(A) there exists j(x − y) ∈ J(x− y) such that the following inequality
holds:

〈Ax−Ay, j(x− y)〉 ≥ k‖x− y‖2.
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An operator A : E −→ E∗ is said to be monotone if and only if

〈Ax−Ay, x− y〉 > 0 ∀ x, y ∈ E.

and is called strongly monotone if and only if there exists k ∈ (0, 1) such that for
each x, y ∈ E, the following inequality holds:

〈Ax−Ay, x− y〉 ≥ k‖x− y‖2.

In equation (1.1.1), setting T = I − A we obtain that zeros of A are precisely the
fixed points of the operator T (i.e., Au = 0 if and only if Tu = u). In the case that
A maps E to E the operator T is called pseudo-contractive whenever the operator
A is accretive.

Accretive operators were introduced independently in 1967 by Browder [14] and
Kato [73]. Interest in such mappings stems mainly from their firm connection with
the existence theory for nonlinear equations of evolution in Banach spaces. For
accretive-type operator A, solutions of the equation Au = 0, in many cases, repre-
sent equilibrium state of some dynamical system. The examples below show how
some problems in applications can be transformed into an equation of the form
(1.1.1).

Evolution Equations: Consider the following diffussion equation
∂u
∂t (t, x) = 4u(t, x) + g(u(t, x)), t ≥ 0, x ∈ Ω,
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω,
u(0, x) = u0(x), u0 ∈ L2(Ω),

(1.1.2)

where Ω is an open smooth subset of Rn.

By simple transformation i.e., by setting v(t) = u(t, .), where

v : [0,+∞) −→ L2(Ω)

is defined by v(t)(x) = u(t, x) and f(ϕ)(x) = g(ϕ(x)), where

f : L2(Ω) −→ L2(Ω),

we see that equation (1.1.2) is equivalent to

{
v′(t) = Av(t) + f(v(t)), t ≥ 0,
v(0) = u0.

(1.1.3)

Setting f to be identically zero, at an equilibrium state (i.e., when the system
becomes independent of time) we see that equation (1.1.3) reduces to

Av = 0.
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Thus, approximatig zeros of equation (1.1.1) or equivalently fixed points of T , where
T = I −A, is equivalent to the approximation of solutions of the diffusion equation
(1.1.2) at an equilibrium state.

Optimization: Consider the following optimization problem:

find x∗ ∈ E such that f(x∗) ≤ f(x) ∀ x ∈ E, (1.1.4)

where f : E −→ R ∪ {+∞} is a map and E is a real normed linear space. It is well
known that if the function f is differentiable and x∗ exists, then f ′(x∗) = 0. This
gives a criterion for obtaining a minimizer explicitly. However, most of the operators
that are involved in several significant optimization problems are not differentiable
in the usual sense. For instance, the absolute value function x 7→ |x| has a minimizer,
which, in fact, is 0. But, the absolute value function is not differentiable at 0. So,
in a case where the operator under consideration is not differentiable, it becomes
difficult to compute a minimizer even when it exists. Thus, the above result only
works for differentiable operators.
A generalization of differentiability called subdifferentiability allows us to recover in
a sense, the above result for non differentiable maps.
Let E be a real normed linear space and f : E −→ R ∪ {+∞} be a convex and
proper function (i.e., f is not identically ∞). Then, the sub-differential of f at x
denoted by ∂f(x) is defined by

∂f(x) = {x∗ ∈ E∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) ∀ y ∈ E}. (1.1.5)

It is easy to see that 0 ∈ ∂f(x) if and only if x minimizes f . If we set A = ∂f , then
the optimization problem (1.1.4) reduces to the inclusion problem

0 ∈ Au

which also reduces to (1.1.1) when A is single-valued. In this case, the operator A
maps E into E∗. Thus, approximating zeros of A, is equivalent to the approxima-
tion of a minimizer of f .

1.2 Approximation Methods for the Zeros of Nonlinear
Mappings of Accretive-type

We recall that in Hilbert spaces accretive and monotone operators coincide. A
monotone operator from a real Hilbert space H into itself is said to be maximal
monotone if R(I + λA) = H ∀ λ > 0. For the approximation of zeros of maximal
monotone operators in Hilbert space, assuming existence, Martinet [82], introduced
the so-called proximal point algorithm which was further studied by Rockafellar [99]
and a host of other authors (see e.g., Reich [24, 94, 98], Ishikawa [80], Takahashi
and Ueda [108] ). Specifically, given xk ∈ H, an approximation of a solution of
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(1.1.1), the proximal point algorithm generates the next iterate xk+1 by solving the
following equation:

xk+1 =

(
1 +

1

λk
A

)−1

(xk) + ek, (1.2.1)

where λk > 0 is a regularizing parameter. If the sequence {λk}∞k=1 is bounded from
above, then the resulting sequence {xk}∞k=1 of proximal point iterates converges
weakly to a solution of (1.1.1), provided that a solution exists (Rockafellar [99]).
Rockafellar then posed the following question.

• Does the proximal point algorithm always converge strongly?

This question was resolved in the negative by Güler [66], who produced a proper
closed convex function g in the infinite-dimensional Hilbert space l2 for which the
proximal point algorithm converges weakly but not strongly. This naturally raises
the following question.

• Can the proximal point algorithm be modified to guarantee strong conver-
gence?

Solodov and Svaiter [105] were the first to propose a modification of the proximal
point algorithm which guarantees strong convergence in a real Hilbert space. Their
algorithm is as follows:
Choose arbitrary x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk choose µk > 0
and find (yk, vk) an inexact solution of 0 ∈ Tx+µk(x−xk), with tolerance σ. Define

Ck := {z ∈ H : 〈z − yk, vk〉 ≤ 0},

Qk := {z ∈ H : 〈z − xk, x0 − xk〉 ≤ 0}.

Take
xk+1 = PCk∩Qk

(x0).

The authors themselves noted ([105], p.195) that “. . . at each iteration, there are
two subproblems to be solved. . . ”: Firstly, to find an inexact solution of the prox-
imal point algorithm. Secondly, to find the projection of x0 onto Ck ∩ Qk, the
intersection of the two half spaces. They also acknowledged that these two sub-
problems constitute a serious drawback in their algorithm. This method of Solodov
and Svaiter is part of the so-called CQ-method which has been studied by various
authors.

Several authors have successfully extended the results of Martinet [82], and Rock-
afellar [99], to a more general space than Hilbert space in a case where the operator
A is accretive. (see e.g., Reich [24, 94, 98], Bruck [19], Browder [14, 18], Takahashi
[71], and a host of other authors).

Remark 1.2.1 We remark here that while many convergence results have appeared
on the extention of the results of Martinet [82], and Rockafellar [99] to a more
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general space than Hilbert space in a case where the operator A, is accretive, most
of the convergence results obtained are weak convergence, in a case where strong
convergence is obtained, virtually all the algorithms use CQ-method introduced by
Solodov and Svaiter [105], which is not suitable for implementation in applications
as Solodov and Svaiter acknowledged themselves.

We recall that a point x ∈ E is said to be fixed point of a map T : E → E if
Tx = x. The set of of fixed points of T is denoted by F (T ). A map T is said to be
Lipschitz if there exists L > 0 such that ‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ E. If
L = 1, then T is called nonexpansive. Also, a map T : E → E is said to be strongly
pseudo-contractive if (I − T ) is strongly accretive.

In 1986, Chidume [30], proved the following strong convergence theorem for Lips-
chitz strongly pseudo-contractive mappings in LP spaces, 2 ≤ p <∞.

Theorem 1.2.2 Let E = Lp, 2 ≤ p <∞, and K ⊂ E be nonempty closed convex
and bounded. Let T : K → K be a strongly pseudo-contractive and Lipschitz map.
For arbitrary x0 ∈ K, let a sequence {xn} be defined iteratively by

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.2.2)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)
∑∞

n=1 αn =∞,
(ii)

∑∞
n=1 α

2
n <∞. Then, {xn} converges strongly to the unique fixed point of T

The iteration formula (1.2.2) is the so-called Mann iteration formula in the light
of Mann in [81], to approximate fixed points of nonexpansive maps. Replacing T
by I − A in Theorem 1.2.2, the following theorem for approximating the unique
solution of Au = 0 when A : E → E is a strongly accretive and Lipschitz map is
easily proved.

Theorem 1.2.3 Let E = Lp, 2 ≤ p < ∞. Let A : E → E be a strongly accretive
and Lipschitz map. For arbitrary x0 ∈ K, let a sequence {xn} be defined iteratively
by

xn+1 = xn − αnAxn, n ≥ 0, (1.2.3)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)
∑∞

n=1 αn =∞,
(ii)

∑∞
n=1 α

2
n <∞. Then, {xn} converges strongly to the unique solution of Au = 0.

The main tool used in the proof of Theorem 1.2.2 is an inequality of Bynum [22].
This theorem signalled the return to extensive research efforts on inequalities in
Banach spaces and their applications to iterative methods for solutions of nonlin-
ear equations. Consequently, Theorem 1.2.2 has been generalized and extended in
various directions, leading to flourishing areas of research, for the past thirty years
or so, for numerous authors (see e.g., Censor and Riech [24], Chidume [26, 27],
Chidume and Ali [31], Chidume and Chidume [36, 37], Chidume and Osilike [48],
Deng [56], Moudafi [84, 85, 86, 87], Zhou and Jia [120], Liu [80], Qihou [92], Berinde
et al. [7], Reich [94, 95, 96], Reich and Sabach [97, 98], Weng [109], Xiao [111], Xu
[113, 116, 117], Xu and Roach [114], Xu [115], Zhu [121] and a host of other authors).
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Recent monographs emanating from these researches include those by Berinde [6],
Chidume [29], Goebel and Reich [65], and William and Shahzad [110].

Taking into account the references mentioned above (and the references contained
therein), it is readily clear that much has been done on the approximation of zeros
of mappings of accretive-type. However, little has been done in the case where the
operator A is monotone (i.e., A maps E into E∗). This is, perhaps, because of the
following two major difficulties.

• Well defineness of the scheme: If we consider, for instance, the Mann recursion
formula for approximatig zeros of accretive operators which is given by, x0 ∈ E
and

xn+1 = xn − αnAxn, n ≥ 0,

we see that in the case of monotone operators this formula is not applicable,
simply because of the fact that it is not well defined (i.e., we are adding two
elements from two different vector spaces. i.e., xn ∈ E and Axn ∈ E∗). So
there is a need to develope a scheme that is well defined and simple to imple-
ment in any possible application.

• Inequalities: Most of the inequalities developed for proving convergence re-
sults for iterative schemes for zeros of accretive operators are not applicable
in the case of monotone operators as they involved the generalized duality
mappings, where as the definition of monotone operators does not involve the
generalized duality mappings.

1.3 Iterative methods for zeros of monotone-type map-
pings

In trying to overcome these two major difficulties, recently, many authors have
successfully employed the notion of suppressive operators introduced by Alber [2]
and Bregman [8] respectively, to approximate zeros of monotone operators (see e.g.,
Aoyama et al. [5], Kamimura et al. [72], Takahashi [71], Zegeye and Shahzad [119]
and the references contained therein). A typical example of the algorithms used by
most of these authors is contained in the following result of Zegeye and Shahzad
[119]. We first remark that a map A : E → E∗ is said to be γ-inverse strongly
monotone if there exists γ ∈ (0, 1) such that for all x, y ∈ E the following inequality
holds

〈Ax−Ay, (x− y)〉 ≥ γ‖Ax−Ay‖2.

Theorem 1.3.1 (Zegeye and Shahzad [119]) Let E be uniformly smooth and 2-
uniformly convex real Banach space with dual E∗. Let A : E −→ E∗ be a γ-inverse
strongly monotone mapping and T : E −→ E be relatively weak nonexpansive map-

ping with A−1(0) ∩ F (T ) 6= ∅. Assume that 0 < αn ≤ b0 := γc2

2 , where c is the
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constants from the Lipschitz property of J−1, then the sequence generated by

x0 ∈ K, choosen arbitrary;
yn = J−1(Jxn − αnAxn);
zn = Tyn,
H0 =

{
v ∈ K : φ(v, z0) ≤ φ(v, y0) ≤ φ(v, x0)

}
;

Hn =
{
v ∈ Hn−1 ∩Wn−1 : φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)

}
;

W0 = E;
Wn =

{
v ∈Wn−1 ∩Hn−1 :

〈
xn − v, jx0 − jxn

〉
≥ 0
}

;
xn+1 = ΠHn∩Wn(x0), n ≥ 0,

(1.3.1)

converges strongly to ΠF (T )∩A−1(0)x0, where ΠF (T )∩A−1(0) is the generalised projec-
tion from E onto F (T ) ∩A−1(0).

In the above theorem J is the duality mapping on E and φ : E × E∗ → R is the
suppressive operator introduced by Alber in [2], which is given by

φ(x, y) = ‖x‖2 − 2〈x, j(y)〉+ ‖y‖2.

Remark 1.3.2 We point out the major weaknesses in scheme (1.3.1).

• The duality mapping J (resp. J−1) is not known precisely in any space more
general than Lp spaces, 1 < p < ∞. Therefore, the value of J (resp. J−1)
cannot be computed in spaces more general than LP spaces.

• At each step of scheme (1.3.1), one has to compute the inverse of the duality
mapping which like the duality mapping itself, is not known in spaces more
general than LP spaces. One has to compute some sets (e.g., Hn and Wn)
which are quite difficult to obtain as they involve generalized projections.

Even though the approximation method used in Thoerem 1.3.1 yields strong con-
vergence to a solution of the problem under consideration, it is clear that it is not
easy to be used in application.
In chapter three and four of this thesis we shall give one-step iterative algorithm that
does not involve projections for approximating zeros of Lipschitz strongly mono-
tone operators and bounded generalised Φ-monotone operators, respectively, in Lp
spaces, 1 < p <∞.

1.4 Approximation of fixed points of a finite family of
k-strictly pseudo-contractive mappings in CAT (0)
spaces

An important class of nonlinear operators is the class of nonexpansive mappings.
We recall that an operator T : D(T ) ⊂ E −→ E is said to be nonexpansive if

‖Tx− Ty‖ 6 ‖x− y‖ for all x, y ∈ D(T ),
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where D(T ) is the domain of T . Nonexpansive operators surface in many important
real world applications such as image reconstruction, signal processing, e.t.c. The
following quotation further shows the importance of iterative methods for approxi-
mating fixed points of nonexpansive mappings.

“Many well known algorithms in signal processing and image reconstruction are
iterative in nature. A wide variety of iterative procedures used in signal processing
and image reconstruction and elsewhere are special cases of the KM iteration pro-
cedure, for particular choice of ne operator. . ..” (Charles Byrne, [23]).

Note that KM in the above quotation stands for Krasnoselskii method and ne stands
for nonexpansive.

For x0 ∈ E, the recursion formula defined by

xn+1 = (1− λ)xn + λTxn, n > 0, (1.4.1)

is called the Krasnoselskii formula, while the formula defined by

xn+1 = (1− αn)xn + αnTxn, n > 0, (1.4.2)

is called the Mann iteration formula. The Mann iterative method has been suc-
cessfully employed in approximating fixed points (when they exist) of nonexpansive
mappings. This success does not carry over to the more general class of Lipschitz
pseudo-contractions (see Chidume and Mutangadura [45]). An important super-
class of the class of nonexpansive mappings and a subclass of the class of Lipschitz
pseudo-contractive mappings is the class of k-strictly pseudo-contractive mappings
introduced by Browder and Petryshyn in Hilbert spaces in [18]. They defined the
map in Hilbert and Banach spaces, respectively, as follows.

Let K be a nonempty subset of a real Hilbert space H. A map T : K → H is
called k-strictly pseudo-contractive if there exists k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − (Tx− Ty)‖2 ∀ x, y ∈ K. (1.4.3)

It is easy to see that every nonexpansive map is also pseudo-contractive.

Let K be a nonempty subset of a real normed space E. A map T : K → E
is called k-strictly pseudo-contractive (see, e.g., [29], p.145; [17] ) if there exists
k ∈ (0, 1) such that for all x, y ∈ K, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − k‖x− y − (Tx− Ty)‖2. (1.4.4)

It can be trivially shown that in Hilbert spaces (1.4.3) and (1.4.4) are equivalent.

The class of k-strictly pseudo-contractive operators is important for the follow-
ing two reasons; firstly, it is an important generalization of nonexpansive maps, and
secondly, it helps to have better understanding of the class of Lipschitz pseudo-
contractive mappings.
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1.5 Fixed point of multivalued maps

Interest in fixed point theory for multi-valued nonlinear mappings stems, perhaps,
mainly from their usefulness in real-world applications, such as in Game Theory
and Market Economy and in other areas of mathematics, such as in Non-Smooth
Differential Equations. We give below some examples that show the connection
between fixed point theory and some of the areas of applications in sciences.

1.5.1 Game Theory and Market Economy

In game theory and market economy, the existence of equilibrium was uniformly
obtained by the application of a fixed point theorem. In fact, Nash [88, 89] showed
the existence of equilibria for non-cooperative static games as a direct consequence
of Brouwer [13] or Kakutani [70] fixed point theorem. More precisely, under some
regularity conditions, given a game, there always exists a multi-valued map whose
fixed points coincide with the equilibrium points of the game. A model example of
such an application is the Nash equilibrium theorem (see, e.g., [88]).

Consider a game G = (un,Kn) with N players denoted by n, n = 1, · · · , N , where
Kn ⊂ Rmn is the set of possible strategies of the n’th player and is assumed to be
nonempty, compact and convex and un : K := K1×K2 · · · ×KN → R is the payoff
(or gain function) of the player n and is assume to be continuous. The player n can
take individual actions, represented by a vector σn ∈ Kn. All players together can
take a collective action, which is a combined vector σ = (σ1, σ2, · · · , σN ). For each
n, σ ∈ K and zn ∈ Kn, we will use the following standard notations:

K−n := K1 × · · · ×Kn−1 ×Kn+1 × · · · ×KN ,

σ−n := (σ1, · · · , σn−1, σn+1, · · · , σN ),

(zn, σ−n) := (σ1, · · · , σn−1, zn, σn+1, · · · , σN ).

A strategy σ̄n ∈ Kn permits the n’th player to maximize his gain under the condition
that the remaining players have chosen their strategies σ−n if and only if

un(σ̄n, σ−n) = max
zn∈Kn

un(zn, σ−n).

Now, let Tn : K−n → 2Kn be the multi-valued map defined by

Tn(σ−n) := Arg max
zn∈Kn

un(zn, σ−n) ∀σ−n ∈ K−n.

Definition. A collective action σ̄ = (σ̄1, · · · , σ̄N ) ∈ K is called a Nash equilibrium
point if, for each n, σ̄n is the best response of the n’th player to the action σ̄−n
made by the remaining players. That is, for each n,

un(σ̄) = max
zn∈Kn

un(zn, σ̄−n) (1.5.1)
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or equivalently,
σ̄n ∈ Tn(σ̄−n). (1.5.2)

This is equivalent to σ̄ is a fixed point of the multi-valued map T : K → 2K defined
by

T (σ) := [T1(σ−1), T2(σ−2), · · · , TN (σ−N )].

From the point of view of social recognition, game theory is perhaps the most
successful area of application of fixed point theory of multi-valued mappings. How-
ever, it has been remarked that the applications of this theory to equilibrium are
mostly static: they enhance understanding conditions under which equilibrium may
be achieved but do not indicate how to construct a process starting from a non-
equilibrium point and convergent to equilibrium solution. This is part of the prob-
lem that is being addressed by iterative methods for fixed point of multi-valued
mappings.

1.5.2 Non-smooth Differential Equations

The mainstream of applications of fixed point theory for multi-valued maps has
been initially motivated by the problem of differential equations (DEs) with dis-
continuous right-hand sides which gave birth to the existence theory of differential
inclusion (DIs). Here is a simple model for this type of application.

Consider the initial value problem

du

dt
= f(t, u), a.e. t ∈ I := [−a, a], u(0) = u0. (1.5.3)

If f : I×R→ R is discontinuous with bounded jumps, measurable in t, one looks for
solutions in the sense of Filippov [63] which are solutions of the differential inclusion

du

dt
∈ F (t, u), a.e. t ∈ I, u(0) = u0, (1.5.4)

where
F (t, x) = [lim inf

y→x
f(t, y), lim sup

y→x
f(t, y)]. (1.5.5)

Now, set H := L2(I) and let NF : H → 2H be the multi-valued Nemystkii operator
defined by

NF (u) := {v ∈ H : v(t) ∈ F (t, u(t)) a.e. on I}.

Finally, let T : H → 2H be the multi-valued map defined by T := NF ◦ L−1, where
L−1 is the inverse of the derivative operator Lu = u′ given by

L−1v(t) := u0 +

∫ t

0
v(s)ds.

One can see that problem (1.5.4) reduces to the fixed point problem: u ∈ Tu.
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Finally, a variety of fixed point theorems for multi-valued maps, with non empty and
convex values is available to conclude the existence of solution. We used a first order
differential equation as a model for simplicity of presentation but this approach is
most commonly used with respect to second order boundary value problems for or-
dinary differential equations or partial differential equations. For more about these
topics, one can consult [25, 55, 61, 64] and references therein as examples.

1.6 Iterative methods for fixed points of some nonlinear
multi-valued mappings

Let E be a real normed linear space and K be a nonempty subset of E. The set K
is called proximinal (see e.g., [90, 101, 106]) if for each x ∈ E, there exists u ∈ K
such that

d(x, u) = inf{‖x− y‖ : y ∈ K} = d(x,K),

where d(x, y) = ‖x−y‖ for all x, y ∈ E. Let CB(K) and P (K) denote the families of
nonempty closed bounded subsets of K and nonempty proximinal bounded subsets
of K, respectively. The Hausdorff metric on CB(K) is defined by:

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K). Let T : D(T ) ⊆ E → CB(E) be a multi-valued mapping on
E. A point x ∈ D(T ) is called a fixed point of T if and only if x ∈ Tx. The fixed
point set of T is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}.

A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L- Lipschitzian if there
exists L > 0 such that

H(Tx, Ty) ≤ L‖x− y‖ ∀ x, y ∈ D(T ). (1.6.1)

When L ∈ (0, 1) in (1.6.1), we say that T is a contraction, and T is called nonex-
pansive if L = 1.

Several results on the approximation of fixed points of multi-valued nonexpansive
mappings in real Hilbert spaces have appeared in the literature (see e.g., Abbas et
al. [1], Khan et al. [74], Panyanak [90], Sastry and Babu [101], Song and wong [106]
and the references contained therein). For their generalizations (see e.g., Chidume
et al. [39], Chidume and Ezeora [41] and the references contained therein). In
[101], Sastry and Babu proved the following result for multi-valued nonexpansive
mappings:

Theorem 1.6.1 (Sastri and Babu [101]) Let H be real Hilbert space, K be a nonempty,
compact and convex subset of H, and T : K −→ CB(K) be a multi-valued nonex-
pansive map with a fixed point p. Assume that (i) 0 ≤ αn, βn < 1; (ii) βn → 0 and
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(iii)
∑
αnβn =∞. where αn and βn are sequences of real numbers. Let x∗ ∈ F (T ),

then the sequence defined by
yn = (1− βn)xn + βnzn, zn ∈ Txn, ‖zn − x∗‖ = (x∗, Txn),

xn+1 = (1− αn)xn + αnun, un ∈ Tyn, ‖un − x∗‖ = d(yn, x
∗),

(1.6.2)

converges strongly to a fixed point of T .

In [90], Panyanak extended the result of Sastry and Babu to a uniformly convex
real Banach spaces. He proved the following result.

Theorem 1.6.2 (Panyanak, [90]) Let E be a uniformly convex real Banach space,
K be a nonempty, closed, bounded and convex subset of E, and T : D(T ) ⊆ E →
CB(K) a multi-valued nonexpansive map with a fixed point p. Assume that (i) 0 ≤
αn, βn < 1; (ii) βn → 0 and (iii)

∑
αnβn = ∞. where αn and βn are sequences

of real numbers. Then, the sequence defined by (1.6.2) converges strongly to a fixed
point of T .

Remark 1.6.3 In the recursion formular (1.6.2) the authors imposed condition
that, zn ∈ Txn such that ‖zn − x∗‖ = (x∗, Txn). The existence of such zn in each
step of the iteration process is guaranteed when Txn is proximinal. In general to
pick zn is very difficult and hence this makes the iterative process to be inconvenient
in any possible application.

Chidume et al., [39], introduced multi-valued k-strictly pseudo-contractive map-
pings. They gave the following definition.

Definition 1.6.4 A multi-valued map T : D(T ) ⊂ H → CB(H) is called k-strictly
pseudo-contractive if there exists k ∈ (0, 1) such that for all x, y ∈ D(T ),(

H(Tx, Ty)
)2 ≤ ‖x− y‖2 + k‖x− y − (u− v)‖2 ∀u ∈ Tx, v ∈ Ty.

They constructed a Krasnoselskii-type algorithm and showed that it converges
strongly to a fixed point of T under some additional mild condition. More pre-
cisely, they proved the following result.

Theorem 1.6.5 (Chidume et al. [39]) Let K be a nonempty, closed and convex
subset of a real Hilbert space H. Suppose that T : K → CB(K) is a multi-valued
k-strictly pseudo-contractive mapping such that F (T ) 6= ∅. Assume that Tp = {p}
for all p ∈ F (T ). Suppose that T is semi-compact and continuous. Let {xn} be a
sequence defined iteratively from x0 ∈ K by

xn+1 = (1− λ)xn + λyn, n ≥ 0, (1.6.3)

where yn ∈ Txn and λ ∈ (0, 1− k). Then, the sequence {xn} converges strongly to
a fixed point of T .
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Remark 1.6.6 This result of Chidume et al. is an important improvement of
several results in the literature. It deals with the class of multi-valued k-strictly
pseudo-contractive mappings which is an important generalization of the class of
multi-valued nonexpansive mappings. Moreover, the condition zn ∈ Txn such that
‖zn−x∗‖ = (x∗, Txn) imposed by Sastry and Babu in the recusion formular (1.6.2)
is dispensed with in the theorem of Chidume et al. [39].

Later on, Chidume et al. [40] extended their result to q-uniformly smooth real
Banach space. The following is their main result.

Theorem 1.6.7 (Chidume et al. [40]) Let q > 1 be a real number and K be a
nonempty, closed and convex subset of a q-uniformly smooth real Banach space E.
Let T : K → CB(K) be a multi-valued k-strictly pseudo-contractive mapping with
F (T ) 6= ∅ and such that Tp = {p} for all p ∈ F (T ). Suppose that T is continuous
and semi-compact. Let {xn} be a sequence defined iteratively from x1 ∈ K by

xn+1 = (1− λ)xn + λyn, (1.6.4)

where yn ∈ Txn and λ ∈ (0, µ). Then, the sequence {xn} converges strongly to a
fixed point of T .

This leads us to the following important question.

Question: Can an iterative algorithm be obtained to approximate fixed points of
multi-valued k-strictly pseudo-contractive mappings in a more general metric space?
That is, can we obtain the analogue of the results of [39] in important space that do
necessarily have a norm?

In chapter five of this thesis, we answer the above question in the affirmative by
constructing a Krasnoselskii-type algorithm that converges strongly to a fixed point
of T in a complete CAT (k) space, k ≤ 0, which has been studied by various world-
class mathematicians (see e.g., Bridson and Haefliger [12], Bruhat [20], Burago et
al. [21], Kirk [75, 76, 77]).

In chapter six of this thesis, we also prove a convergence result for a countable
family of k-strictly pseudo-contractive mappings in Hilbert spaces.

1.7 Hammerstein Integral Equations

Let Ω ⊂ Rn be bounded. Let k : Ω×Ω→ R and f : Ω×R→ R be measurable real-
valued functions. An integral equation (generally nonlinear) of Hammerstein-type
has the form

u(x) +

∫
Ω
k(x, y)f(y, u(y))dy = w(x), (1.7.1)

where the unknown function u and inhomogeneous function w lie in a Banach space
E of measurable real-valued functions. If we define F : F(Ω,R) → F(Ω,R) and
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K : F(Ω,R)→ F(Ω,R) by

Fu(y) = f(y, u(y)), y ∈ Ω,

and

Kv(x) =

∫
Ω
k(x, y)v(y)dy, x ∈ Ω,

respectively, where F(Ω,R) is a space of measurable real-valued functions defined
from Ω to R, then equation (1.7.1) can be put in an abstract form

u+KFu = w. (1.7.2)

Without loss of generality we can assume that w ≡ 0 so that (1.7.2) becomes

u+KFu = 0. (1.7.3)

Indeed, if w 6= 0, then u− w +KFu = 0. setting h = u− w we obtain that

h+KFh = 0,

where F (h) = F (h+ w).

Interest in (1.7.1) stems mainly from the fact that several problems that arise in
differential equations, for instance, elliptic boundary value problems whose linear
part posses Green’s function can, as a rule, be transformed into the form (1.7.1)
(see e.g., Pascali and Sburian [91], chapter 4, p. 164). Among these, we mention
the problem of the forced ocsillation of finite amplitude of a pendulum.

Example. We consider the problem of the pendulum
d2v(t)
dt2

+ a2 sin v(t) = z(t), t ∈ [0, 1],

v(0) = v(1) = 0.

(1.7.4)

where the driving force z is odd. The constant a (a 6= 0) depends on the length of
the pendulum and gravity. Since the Green’s function of the problem

v′′(t) = 0; v(0) = v(1) = 0

is the function defined by

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1,
(1.7.5)

it follows that problem (1.7.4) is equivalent to the nonlinear integral equation

v(t) =

∫ 1

0
k(t, s)[z(s)− a2 sin v(s)]ds, t ∈ [0, 1]. (1.7.6)
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Setting g(t) =
∫ 1

0 k(t, s)z(s)ds and u(t) = v(t)− g(t), then we have

u(t) +

∫ 1

0
k(t, s)a2 sin(u(s) + g(s))ds = 0

which is in Hammerstein equation form

u(t) +

∫ 1

0
k(t, s)f(s, u(s))ds = 0,

where f(s, t) = a2 sin(t+ g(s)).

Equations of Hammerstein-type play a crucial role in the theory of optimal control
system and in automation and network theory (see e.g., Dolezale [60]). Several ex-
istence results have been proved for equations of Hammerstein-type (see e.g., Brézis
and Browder [9, 10, 11], Browder [15], Browder, De Figueiredo and Gupta [16]).

1.8 Approximating solutions of equations of Hammerstein-
type

In general, equations of Hammerstein-type are nonlinear and there is no known
method to find a close form solutions for them. Consequently, methods of approxi-
mating solutions of such equations are of interest.

Let H be a real Hilbert space. A nonlinear operator A : H → H is said to be
angle-bounded with angle β > 0 if and only if

〈Ax−Ay, z − y〉 ≤ β〈Ax−Ay, x− y〉 (1.8.1)

for any triple elements x, y, z ∈ H. For y = z inequality (1.8.1) implies the mono-
tonicity of A.

A monotone linear operator A : H → H is said to be angle bounded with angle
α > 0 if and only if

|〈Ax, y〉 − 〈Ay, x〉| ≤ 2α〈Ax, x〉
1
2 〈Ay, y〉

1
2 (1.8.2)

for all x, y ∈ H. In the special case where the operator is angle bounded Brézis
and Browder [9, 11] proved the strong convergence of a suitably defined Galerkin
approximation to a solution of (1.7.2). In fact, they prove the following theorem.

Theorem 1.8.1 (Brézis and Browder [11]) Let H be a separable Hilbert space
and C be a closed subspace of H. Let K : H → C be a bounded continuous monotone
operator and F : C → H be angle-bounded and weakly compact mapping. For a given
f ∈ C, consider the Hammerstein equation

(I +KF )u = f (1.8.3)
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and its nth Galerkin approximation given by

(I +KnFn)un = P ∗f, (1.8.4)

where Kn = P ∗nKPn : H → C and Fn = PnFP
∗
n : Cn → H.

Then, for each n ∈ N, the Galerkin approximation (1.8.4) admits a unique
solution un in Cn and {un} converges strongly in H to the unique solution u ∈ C
of the equation (1.8.3).

In the theorem above all the symbols used have their usual meanings (see e.g., [91]).

It is obvious that if an iterative algorithm can be developed for the approxi-
mation of solutions of equation of Hammerstein-type (1.7.3), this will certainly be
preferred.
Attempts have been made to approximate solutions of equations of Hammerstein-
type using Mann-type iteration scheme. However, the results obtained were not
satisfactory (see e.g., [49]). The recurrance formulas used in early attempts in-
volved K−1 which is also required to be strongly monotone, and this, apart from
limiting the class of mappings to which such iterative schemes are applicable, it is
also not convenient in applications. Part of the difficulty is the fact that the com-
position of two monotone operators need not to be monotone. It suffices to take
K : R2 → R2, F : R2 → R2, where

K =

(
1 2
−2 1

)
and F =

(
0 1
−1 2

)
.

The first satisfactory results on iterative methods for approximating solutions of
Hammerstein equations, as far as we know, were obtained by Chidume and Zegeye
[51, 52, 53]. Under the setting of a real Hilbert space H, for F,K : H → H, they
defined an auxillary map on the Cartesian product E := H ×H, T : E → E by

T [u, v] = [Fu− v,Kv + u].

We note that
T [u, v] = 0⇐⇒ u solves (1.7.3) and v = Fu.

With this, they were able to obtain strong convergence of an iterative scheme defined
in the Cartesian product space E to a solution of Hammerstein equation (1.7.3).
Extensions to a real Banach space setting were also obtained.

Let X be a real Banach space and F,K : X → X be accretive-type mappings.
Let E := X ×X. The same authors (see [51, 52]) defined T : E → E by

T [u, v] = [Fu− v,Kv + u]

and obtained strong convergence theorems for solutions of Hammerstein equations
under various continuity conditions in the Cartesian product space E.
The method of proof used by Chidume and Zegeye provided the clue to the estab-
lishement of the following couple explicit algorithm for computing a solution of the



General Introduction 18

equation u + KFu = 0 in the original space X. With initial vectors u0, v0 ∈ X,
sequences {un} and {vn} in X were defined iteratively as follows:

un+1 = un − αn(Fun − vn), n ≥ 0, (1.8.5)

vn+1 = vn − αn(Kvn + un), n ≥ 0, (1.8.6)

where {αn} is a sequence in (0, 1) satisfying appropriate conditions. The recursion
formulas (1.8.5) and (1.8.6) had been used successfully to approximate solutions
of Hammerstein equations involving nonlinear accretive-type mappings. Following
this, Chidume and Djitte [43, 44] studied this explicit couple iterative algorithm
and proved several strong convergence theorems.

We remark here that even though monotone-type operators have more applications
than accretive-type operators in Banach spaces, virtually all the results on the ap-
proximation of solutions of Hammerstein equations are either proved in Hilbert
spaces or in a Banach space in the case where the operators K and F are accretive-
type mappings (see [42], [46], [48] and [50]). To the best of our knowledge, there is
no single result on the approximation of solutions of Hammerstein-type equations
in Banach spaces (in the case where the operators K and F are monotone-type
operators) that has appeared in the literature. Perhaps, part of the problem is that
since the operator F maps E to E∗ and K maps E∗ to E the recursion formulas
used for accretive-type mappings may no longer make sense.

In chapter seven, we proved convergence results for solutions of equations of
Hammerstein-type in Lp spaces, 1 < p <∞, in the case where the operators K and
F are of monotone-type using Mann-type algorithms.



CHAPTER 2

Preliminaries

In this chapter, we give some fundamental definitions and results that shall be used
subsequently in the thesis. While we give proof of some of the results presented in
this chapter, the proof of the rest can be found in the references mentioned in the
result.

2.1 Duality Mappings and Geometry of Banach Spaces

Definition 2.1.1 A real normed linear space E is said to be uniformly convex if
for any ε ∈ (0, 2] there exists a δ = δ(ε) > 0 such that for each x, y ∈ E with
‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x− y‖ ≥ ε, we have that ‖1

2(x+ y)‖ ≤ 1− δ.

Definition 2.1.2 A normed linear space E is said to be strictly convex if for all
x, y ∈ E x 6= y, ‖x‖ = ‖y‖ = 1, the following inequality holds

‖αx+ (1− α)y‖ < 1 for all α ∈ (0, 1).

Remark 2.1.3 Every uniformly convex space is stricly convex. However the con-
verse may not hold (see e.g., [29]). Moreover, it is well known that every uniformly
convex space is reflexive.

Lp spaces, 1 < p <∞, and lp spaces, 1 < p <∞, are both uniformly convex spaces.
Thus, stricly convex spaces.

Let E be a real normed linear space with dual E∗ and let S := {x ∈ E : ‖x‖ = 1}.
The space E is said to have Gâteaux differentiable norm, in this case, E is called
smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1.1)

19
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exists for all x, y ∈ S. The space E is said to have uniformly Gâteaux differentiable
norm if for each y ∈ S, the limit in (2.1.1) is attained uniformly for x ∈ S. If the
limit exists uniformly for all x, y ∈ S, E is said to be uniformly smooth.

Let E be a real normed linear space of dim(E) ≥ 2, where dim(E) denotes the
dimension of the space E. The modulus of smoothness of E , ρE , is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if lim
τ→0

ρE(τ)

τ
= 0. It is well

known (see, e.g. [29], [79]) that ρE is nondecreasing. If there exist a constant
c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q, then E is said to be q-
uniformly smooth. Typical examples of such spaces are the Lp, `p and Wm

p spaces
for 1 < p <∞ where

Lp (or lp) or W
m
p is

{
2− uniformly smooth if 2 ≤ p <∞;
p− uniformly smooth if 1 < p < 2.

Lemma 2.1.4 (Lindenstrauss and Tzafriri, [79]) In Lp(or `p) spaces, 1 < p <
∞,

ρLp(τ) =

{
(1 + τp)

1
p − 1 < 1

pτ
p; 1 < p < 2

p−1
2 τ2 + o(τ2) < p−1

2 τ2; p ≥ 2.

Definition 2.1.5 Let E be a real normed linear space and p > 1, Then, the gener-
alized duality map Jp : E −→ 2E

∗
is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖||x∗||, ||x∗|| = ||x||p−1}, (2.1.2)

where 〈., .〉 denotes the duality pairing between elements of E and E∗ (see e.g., [54]).

For p = 2, we have from (2.1.2) that,

J2(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖||x∗||, ||x∗|| = ||x||}.

J2 is called the normalized duality mapping on E and is simply denoted by J .

We make the following remarks.

• The normalized duality mapping exists in any Banach space and its domain
is whole E.

• In Hilbert spaces, normalized duality mappings are precisely the identity
maps, while in LP spaces, 1 < P <∞, the duality map is given by

J(f) = |f |p−1 · sign f

‖f‖p−1
.



General Introduction 21

• The value of the duality mappings in spaces higher than LP spaces is not
known hitherto.

Lemma 2.1.6 (see e.g., [4], p.34) If E is a strictly convex space, then J is a
strictly monotone operator. If E∗ is strictly convex, then J is single-valued.

Remark 2.1.7 From Lemma 2.1.6, we can infer that, if E is uniformly convex
(hence strictly convex and reflexive) and E∗ is strictly convex, then the inverse of
the normalized duality map J−1 : E∗ → E is well defined.

We give the following result which gives the relation between the inverse of the
normalized duality mapping J−1, and the duality mapping J∗ on E∗

Lemma 2.1.8 (see e.g., [4], p.36) Let E be a reflexive strictly convex Banach
space with strictly convex dual space E∗. If Jp : E → E∗ and J∗q : E∗ → E are the

duality mappings on E and E∗, respectively, such that 1
p + 1

q = 1, then J−1
p = J∗q .

In Lemma 2.1.8 above, if p = 2, then it is readily clear that J−1 = J∗, where J∗ is
the normalized duality mapping on E∗.

Lemma 2.1.9 (see e.g., [29], p. 55) Let E = Lp. Then, the following inequali-
ties hold:

If 1 < p < 2, then we have for all x, y in Lp, and some constant cp > 0,

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉+ cp‖y‖2, (2.1.3)

〈x− y, J(x)− J(y)〉 ≥ (p− 1)‖x− y‖2. (2.1.4)

Observe that inequality (2.1.4) yields

||J−1(x)− J−1(y)|| ≤ L1||x− y||,

where L1 := 1
p−1 .

Lemma 2.1.10 (Alber and Ryazantseva [4], p.48) Let E = Lp, 2 ≤ p < ∞.
Then, J−1 is Hölder continuous on each bounded set, i.e., ∀u, v ∈ E∗ such that
‖u‖ ≤ R and ‖v‖ ≤ R, the following inequality holds:

‖J−1(u)− J−1(v)‖ ≤ mp‖u− v‖
1

p−1 ,

where mp := (2p+1Lpcp2)
1

p−1 , for some constants c2 > 0, L ∈ (1, 1.7).

Proof This follows from the following inequality which holds on bounded sets:

〈Jx− Jy, x− y〉 ≥ ‖x− y‖
p

2p+1Lpcp2
, c2 = 2 max{1, R}, L ∈ (1, 1.7). (2.1.5)

(see e.g., Alber and Ryazantseva [4], p.48).
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Definition 2.1.11 Let f : E −→ R∪ {+∞} be a proper convex function (i.e., f is
not identically +∞). Then, the sub-differential operator ∂f : D(f) ⊂ E → 2E

∗
, is

defined by

∂f(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) ∀y ∈ E}.

We remarked that if x is not in D(f) then ∂f(x) = ∅.

Lemma 2.1.12 Let f : E −→ R ∪ {+∞} be a function defined by

f(x) =
1

2
‖x‖2 ∀ x ∈ E.

Then, for each x ∈ E, ∂f(x) = J(x), where J is the duality map on E.

Indeed, let x∗ ∈ J(x). Then, for any y ∈ E we have

〈y − x, x∗〉 = 〈y, x〉 − ‖x‖2 ≤ ‖y‖‖x‖ − ‖x‖2

≤ 1

2
‖y‖2 − 1

2
‖x‖2

= f(y)− f(x).

Thus we have x∗ ∈ ∂f(x). Conversely, for x∗ ∈ ∂f(x) we have

〈y − x, x∗〉 ≤ f(y)− f(x) ∀y ∈ E.

For t ∈ (0, 1), set y = x+ ty, then we have

〈x∗, y〉 ≤ 1

2t
(‖x+ ty‖2 − ‖x‖2) ≤ ‖x‖‖y‖+

t

2
‖y‖2.

As t→ 0+ we have 〈x∗, y〉 ≤ ‖x‖‖y‖, which implies ‖x∗‖ ≤ ‖x‖. Also using the fact
that x∗ ∈ ∂f(x) and setting y = x− tx, t ∈ (0, 1), we have

2t〈−x, x∗〉 ≤ ‖x− tx‖2 − ‖x‖2 = (t2 − 2t)‖x‖2.

So we have (2− t)‖x‖2 ≤ 2〈x, x∗〉. Now as t→ 0+ we obtained

‖x‖2 ≤ 〈x, x∗〉 ≤ ‖x‖‖x∗‖ which implies ‖x‖ ≤ ‖x∗‖.

Therefore, we have ‖x‖ = ‖x∗‖ and 〈x, x∗〉 = ‖x‖2. Thus, x∗ ∈ J(x).

The following theorem gives the general form of Lemma 2.1.12.

Theorem 2.1.13 (see e.g., [29], p.32) For p ≥ 1, Jp is the sub-differential of
the functional 1

p‖x‖
p.
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2.2 Some Nonlinear Functionals and Operators

Let E be a smooth real Banach space with dual E∗. The function φ : E × E → R,
defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for x, y ∈ E, (2.2.1)

where J is the normalized duality mapping from E into 2E
∗

was introduced by Alber
in [2], and it has been studied by Alber and Guerre-Delabriere [3], Kamimura and
Takahashi [71], Reich [93] and a host of other authors. If E = H, a real Hilbert
space, then equation (2.2.1) reduces to φ(x, y) = ‖x−y‖2 for x, y ∈ H. It is obvious
from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for x, y ∈ E. (2.2.2)

Lemma 2.2.1 (Kamimura and Takahashi, [71]) Let E be a real smooth and
uniformly convex Banach space, and let {xn} and {yn} be two sequences of E. If
either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n →∞, then ‖xn − yn‖ → 0
as n→∞.

Lemma 2.2.2 Let E = Lp, 2 ≤ p <∞. Then, the following inequality holds:

||x− y||2 ≥ φ(x, y)− p||x||2 ∀ x, y ∈ E.

Proof The following inequality holds for all x, y ∈ Lp, p ≥ 2, (see e.g., Chidume
[29], p. 54):

||x+ y||2 ≤ ||x||2 + 2〈y, J(x)〉+ (p− 1)||y||2.

Interchanging x and y, we obtain:

||x+ y||2 ≤ ||y||2 + 2〈x, J(y)〉+ (p− 1)||x||2.

Replacing y by (x+ y) and x by (−x) we get:

||y||2 ≤ ||x+ y||2 − 2〈x, J(x+ y)〉+ (p− 1)||x||2,

which implies,

||x+ y||2 ≥ ||y||2 + 2〈x, J(x+ y)〉+ ||x||2 − p||x||2

= (||x||2 + 2〈x, J(x+ y)〉+ ||y||2) + 2〈x, J(y)〉 − 2〈x, J(y)〉 − p||x||2.

Replacing y by (−y) and using the fact that the normalized duality map is mono-
tone, we obtain:

||x− y||2 ≥ (||x||2 − 2〈x, J(y)〉+ ||y||2) + 2[〈x, J(y)− J(y − x)〉]− p||x||2

= φ(x, y) + 2[〈x, J(y)− J(y − x)〉]− p||x||2

≥ φ(x, y)− p||x||2,

establishing the lemma.
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Let V : E × E∗ → R be a map defined by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2. (2.2.3)

Then, it is easy to see that

V (x, x∗) = φ(x, J−1(x∗)) ∀x ∈ X, x∗ ∈ X∗. (2.2.4)

Lemma 2.2.3 (Alber, [2]) Let E be a reflexive striclty convex Banach space with
with striclty convex dual E∗. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.2.5)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof For arbitrary x ∈ E, x∗, y∗ ∈ E∗, we have

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

= ‖x‖2 − 2〈x, x∗ + y∗〉+ ‖x∗ + y∗‖2 + ‖x∗‖2 − ‖x∗ + y∗‖2 + 2〈x, y∗〉
= V (x, x∗ + y∗) + ‖x∗‖2 − ‖x∗ + y∗‖2 + 2〈x, y∗〉

Using the sub-differential inequality, and the fact that ∂f(1
2‖ · ‖

2) = J∗ = J−1 (see
Lemmas 2.1.12 and 2.1.8), where ‖ · ‖∗ and J∗ are the norm and the normalized
duality map of E∗ respectively, we have

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗, y∗〉 − 2〈−x, y∗〉
≤ V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉.

The proof is complete.

A map A : E → E∗ is called monotone if for all x, y ∈ E, the following inequality
holds: 〈

Ax−Ay, x− y
〉
≥ 0. (2.2.6)

The mapping A is called maximal monotone if the graph of A is not properly
contained in any other graph of monotone operator defined on E. i.e., A is maximal
monotone if for any (u, v) ∈ E × E∗ such that〈

Ax− v, x− u
〉
≥ 0 ∀x ∈ D(A)

we have u ∈ D(A) and Au = v.

The mapping A is called strongly monotone if there exists k ∈ (0, 1) such that
for all x, y ∈ E, the following inequality holds:〈

Ax−Ay, x− y
〉
≥ k‖x− y‖2. (2.2.7)

A mapping A : E → E is called generalized Φ− strongly monotone if there exists
a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that

〈Ax−Ay, j(x− y)〉 ≥ Φ(‖x− y‖) ∀ x, y ∈ D(A). (2.2.8)
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If Φ(t) = φ(t)t, where φ : [0,∞) → [0,∞) is a strictly increasing function with
φ(0) = 0, then A is called φ− strongly monotone.

Every strongly monotone operator is generalized Φ-strongly monotone (by setting
Φ(t) = kt2, k ∈ (0, 1)), and every generalized Φ-strongly monotone operator is
obviously monotone.

Simillarly, a map A : E → E is called accretive if for all x, y ∈ E, there exists
j(x− y) ∈ J(x− y) such that〈

Ax−Ay, j(x− y)
〉
≥ 0. (2.2.9)

A is called strongly accretive if there exists k ∈ (0, 1) such that for each x, y ∈ E,
there exists j(x− y) ∈ J(x− y) such that〈

Ax−Ay, j(x− y)
〉
≥ k‖x− y‖2. (2.2.10)

A mapping A : E → E is called generalized Φ− strongly accretive if there exists
a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0 such that for each
x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ Φ(‖x− y‖) ∀ x, y ∈ D(A).

If Φ(t) = φ(t)t, where φ : [0,∞) → [0,∞) is a strictly increasing function with
φ(0) = 0, then the mapping A is called φ− strongly accretive.

Remark 2.2.4 If u is a solution of the equation Au = 0, where A is a generalized
Φ-strongly monotone or generalized Φ-strongly accretive, then u is unique. Indeed,
if u1, u2 ∈ E are two different solutions of Au = 0 (i.e., u1 6= u2 such that Au1 =
Au2 = 0), then 0 = 〈Au1 − Au2, (u1 − u2)〉 ≥ Φ(‖u1 − u2‖) > 0 since u1 6= u2

and Φ(t) > 0 for t > 0. Hence a contradiction. Thus, u1 = u2. However, if A
is just monotone, it is easy to see that the solution of the equation Au = 0 is not
necessarily unique.

Lemma 2.2.5 (Kato, [29]) Let E be real Banach space and let J be the normal-
ized duality map. Then for any x, y ∈ E, the following are equivalent:

(i) ‖x‖ ≤ ‖x+ y‖ ∀ λ > 0
(ii) there exists u∗ ∈ Jx such that 〈y, u∗〉 ≥ 0.

By virtue of Lemma 2.2.5, it can be shown that A is accretive if and only if for all
λ > 0 and for all x, y ∈ E

‖x− y‖ ≤ ‖x− y + λ(Ax−Ay)‖. (2.2.11)

A map T : E → E is said to be peudo-contractive if I − T is accretive. Setting
A = I − T , it is easy to see that fixed points of T are precisely the zeros of A.
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Let E be a real normed linear space. A map T : E → E is said to be nonex-
pansive if

‖Tx− Ty‖ 6 ‖x− y‖ for all x, y ∈ E.

It is easy to see that every nonexpansive map is also pseudo-contractive.

Let K be a nonempty subset of a real Hilbert space H. A map T : K → H is
called k-strictly pseudo-contractive if and only if there exists k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − (Tx− Ty)‖2 ∀x, y ∈ K. (2.2.12)

Let K be a nonempty subset of a real normed space E. A map T : K → E is called
k-strictly pseudo-contractive (see, e.g., [29], p.145; [17] ) if there exists k ∈ (0, 1)
such that for all x, y ∈ K, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − k‖x− y − (Tx− Ty)‖2. (2.2.13)

In Hilbert spaces, (2.2.12) and (2.2.13) are equivalent.

Let E be a real normed linear space and A : E → 2E be a multi-valued map.
Then, the domain and range of T are defined by

D(T ) = {x ∈ E : Tx 6= ∅},

and
R(T ) = ∪

x∈D(T )
Tx,

respectively. A point x ∈ E is called a fixed point of T if x ∈ Tx. The set
F (T ) = {x ∈ E : x ∈ Tx} is called the fixed point set of T .

Let (E, d) be a metric space. We denote by CB(E), the collection of all nonempty
closed and bounded subsets of E. Let H be the Hausdorff metric with respect to
the metric distance d, i.e.,

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

for all A,B ∈ CB(E), where d(a,B) = infb∈B d(a, b) is the distance from the point
a to the subset B. A multi-valued mapping T : E → 2E is said to be

(i) Nonexpansive if and only if

H(Tx, Ty) 6 d(x, y) ∀ x, y ∈ E;

(ii) Quasi-nonexpansive if and only if F (T ) 6= ∅ and

H(Tx, p) 6 d(x, p) ∀ x ∈ E, p ∈ F (T );



General Introduction 27

(iii) Demi-contractive if and only if F (T ) 6= ∅ and there exists k ∈ (0, 1) such that

H(Tx, Tp)2 6 d(x, p)2 + kd(x, Tx)2 ∀ x ∈ E, p ∈ F (T ),

where H(Tx, Tp)2 = [H(Tx, Tp)]2 and d(x, p)2 = [d(x, p)]2.

(iv) Hemi-contractive if k = 1 in (iii) above, i.e.,

H(Tx, Tp)2 6 d(x, p)2 + d(x, Tx)2 ∀ x ∈ E, p ∈ F (T ).

It is clear that, every multi-valued nonexpansive mapping with nonempty fixed
point set is quasi-nonexpansive, and every quasi-nonexpansive mapping is demi-
contractive mapping.

The following example shows that the class of demi-contractive mappings strictly
contains the class of quasi-nonexpansive mappings.

Example 2.2.6 Let X = R (the set of real numbers with the usual metric). Define
T : E → 2E by

Tx =

{
[−3x,−5x

2 ], x ∈ [0,∞),

[−5x
2 ,−3x], x ∈ (−∞, 0].

(2.2.14)

Then, F (T ) = {0}, and T is demi-contractive mapping which is not quasi-nonexpansive.

Indeed, for each x ∈ (−∞, 0) ∪ (0,∞), we have

H(Tx, T0)2 = | − 3x− 0|2 = 9|x− 0|2,

which implies that T is not quasi-nonexpansive.

We also have that;

d(x, Tx)2 =

∣∣∣∣x− (−5

2
x)

∣∣∣∣2 =
49

4
|x|2.

Thus,

H(Tx, T0)2 = |x− 0|2 + 8|x− 0|2 = |x− 0|2 +
32

49
d(x, Tx)2.

Hence, T is a demi-contractive mapping with constant k = 32
49 ∈ (0, 1).

2.3 Some Important Results about Geodesic Spaces

Let (E, d) be a metric space. A geodesic path joining x ∈ E and y ∈ E is a
continuous map c from a closed interval [0, l] ⊂ R to E such that c(0) = x, c(l) = y
and d(c(t), c(t

′
)) = |t − t′ | for all t, t

′ ∈ [0, l]. In particular, the mapping c is an
isometry and d(x, y) = l. The image α of c is called a geodesic segment joining x
and y. When it is unique, this geodesic segment is denoted by [x, y]. The space
(E, d) is called a geodesic space if any two points of E are joined by a geodesic,
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and E is said to be uniquely geodesic if there is exactly one geodesic joining x and
y ∈ E. A subset K of E is said to be convex if for all x, y ∈ K, the segment [x, y]
remains in K.
A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (E, d) consists of three
points in E (the vertices of 4), and a geodesic segment between each pair of points
(the edges 4). A comparison triangle for 4(x1, x2, x3) in (E, d) is a triangle
4(x1, x2, x3) = 4(x1, x2, x3) in the Euclidean plane R2 such that dR2(xi, xj) =
d(xi, xj), for i, j ∈ {1, 2, 3}. A geodesic metric space E is called a CAT (0) space if
all geodesic triangles satisfy the following comparison axiom:
Let 4 be a geodesic triangle in E, and let 4 be its comparison triangle in R2.
Then, 4 is said to satisfy CAT (0) inequality, if for all x, y ∈ 4 and all comparison
points x, y ∈ ∆,

d(x, y) 6 d(x, y).

If x, y1, y2 are points in CAT (0) space, and if y0 is the midpoint of the segment
[y1, y2], then, the CAT (0) inequality implies

d(x, y0)2 6
1

2
d(x, y1)2 +

1

2
d(x, y2)2 − 1

4
d(y1, y2)2. (CN)

This is the (CN) inequality of Bruhat and Tits [20]. In fact, (cf.[12], p.163), a
geodesic space is a CAT (0) space if and only if it satisfies the (CN) inequality.
We now collect some elementary facts about CAT (0) spaces.

Lemma 2.3.1 (See e.g., [57]) Let (E, d) be a CAT (0) space. Then,

(i) (E, d) is uniquely geodesic.

(ii) For all x, y ∈ E, and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (2.3.1)

For convenience, from now on, we shall use the notation (1− t)x⊕ ty for the unique
point z satisfying (2.3.1).
Also, for α1, α2, α3 ∈ (0, 1) such that α1 + α2 + α3 = 1, and x1, x2, x3 ∈ E, we will
use the notation α1x1 ⊕ α2x2 ⊕ α3x3 to denote the unique point satisfying

d(x1, z) = (α2 + α3)d(x1, α
′
2x2 ⊕ α

′
3x3), and

d(α
′
2x2 ⊕ α

′
3x3, z) = α1d(x1, α

′
2x2 ⊕ α

′
3x3), α

′
i :=

αi
(α2 + α3)

, i = 2, 3.
(2.3.2)

In particular, taking α1 = α2 = α3 = 1
3 , we compute the point 1

3x1 ⊕ 1
3x2 ⊕ 1

3x3 as
follows:

From the illustration above, 1
3x1 ⊕ 1

3x2 ⊕ 1
3x3 := 1

3x1 ⊕ 2
3

(
1
2x2 ⊕ 1

2x3

)
, where

1
2x2 ⊕ 1

2x3 denotes the unique point z1 ∈ [x2, x3] such that d(x2, z1) = 1
2d(x2, x3),

and d(z1, x3) = 1
2d(x2, x3).
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Thus, we have 1
3x1 ⊕ 1

3x2 ⊕ 1
3x3 := 1

3x1 ⊕ 2
3z1, where 1

3x1 ⊕ 2
3z1 denotes the unique

point z2 ∈ [x1, z1] satisfying d(x1, z2) = 2
3d(x1, z1), and d(z2, z1) = 1

3d(x1, z1). Hence
we have z2 := 1

3x1 ⊕ 1
3x2 ⊕ 1

3x3.

Extending this notation up to some n > 3, we use
∑n

i=1⊕αixi to denote the unique
point z ∈

[
x1,
∑n

i=2⊕
αi
σ xi

]
satisfying

d(x1, z) = σd

(
x1,

n∑
i=2

⊕αi
σ
xi

)
,

d

(
n∑
i=2

⊕αi
σ
xi, z

)
= α1d

(
x1,

n∑
i=2

⊕αi
σ
xi

)
,

(2.3.3)

where αi ∈ (0, 1), i = 1, 2, . . . , n such that
∑n

i=1 αi = 1, xi ∈ E, i = 1, 2, . . . , n,
σ =

∑n
i=2 αi = (1− α1).

Lemma 2.3.2 (See e.g., [57], lemmas 2.4 and 2.5) Let (E, d) be a CAT (0) space.
For x, y ∈ E, and t ∈ [0, 1], the following inequalities hold:

(i) d((1− t)x⊕ ty, z) 6 (1− t)d(x, z) + td(y, z);

(ii) d((1− t)x⊕ ty, z)2 6 (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2;

where d(x, z)2 = (d(x, z))2.

Let {xn} be a bounded sequence in a CAT (0) space E. For x ∈ E, we set
r(x, {xn}) = lim sup d(x, xn). The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn})},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is well known that in a CAT (0) space, A({xn}) consists of exactly one point.

Definition 2.3.3 A sequence {xn} in a CAT (0) space E is said to ∆-converge to
x ∈ E if x is the unique asymptotic center of every subsequence {un} of {xn}. In
this case we write ∆− limxn = x and x is called the ∆-limit of {xn}.

Lemma 2.3.4 (i) (See e.g., [77]) Every bounded sequence in a complete CAT (0)
space has a ∆-convergent subsequence.

(ii) (See e.g., [59]) If C is a nonempty closed and convex subset of a complete
CAT (0) space, and if {xn} is a bounded sequence in C, then the asymptotic center
of {xn} is in C.

(iii) (See e.g., [57]) If {xn} is a bounded sequence in a complete CAT (0) E, with
A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and the
sequence {d(xn, u)} converges, then x = u.
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Lemma 2.3.5 (Tan and Xu, [107]) Let {an} be a sequence of non-negative real
numbers satisfying the following relation:

an+1 ≤ an + σn, n ≥ 0, (2.3.4)

such that
∑∞

n=1 σn < ∞. Then, limn→∞an exists. If, in addition, the sequence
{an} has a subsequence that converges to 0, then the sequence {an} converges to 0.



CHAPTER 3

Krasnoselskii-Type Algorithm For Zeros of Strongly Monotone
Lipschitz Maps in Classical Banach Spaces

3.1 Introduction

In this chapter, we construct and prove strong convergence of a Krasnoselskii-type
sequence to the unique zero of Lipschitz strongly monotone operator in LP spaces,
1 < p < ∞. Furthermore, our technique of proof is of independent interest. We
first recall the follwing useful definitions and Lemmas.

Definition 3.1.1 An operator T : E → E∗ is called ψ-strongly monotone if there
exists a continuous, strictly increasing function ψ : R→ R with ψ(0) = 0 such that〈

Tx− Ty, x− y
〉
≥ ψ(‖x− y‖)‖x− y‖ ∀ x, y ∈ D(T ). (3.1.1)

Definition 3.1.2 Let E be a real normed linear space and T : E → E∗ be a map.
Then, T is said to be hemicontinuous if for all x1, x2, y ∈ E and λ ∈ R the function
R→ R defined by λ→ 〈y, T (x1 + λx2)〉 is continuous.

Lemma 3.1.3 Let T : E → E∗ be a hemicontinuous ψ-strongly monotone operator.
Then, R(T ) = E∗.

Proof See chapter III, page 48 of [91].

Lemma 3.1.4 (Alber, [2]) Let E be a reflexive striclty convex and smooth Ba-
nach space with E∗ as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (3.1.2)

for all x ∈ E and x∗, y∗ ∈ E∗, where V (x, x∗) = ‖x‖2 − 2〈x, J−1x∗〉+ ‖x∗‖2 for all
(x, x∗) ∈ E × E∗.

31



General Introduction 32

Lemma 3.1.5 Let E = Lp, 1 < p ≤ 2. Then J−1 is Lipschitz, i.e., there exists
L1 > 0 such that for all u, v ∈ E∗, the following inequality holds:

‖J−1(u)− J−1(v)‖ ≤ L1‖u− v‖. (3.1.3)

Lemma 3.1.6 (Alber and Ryanzantseva [4], p.48) Let E = Lp, 2 ≤ p < ∞.
Then, the inverse of the normalized duality map J−1 : E∗ → E is Hölder continuous
on balls. i.e., ∀ u, v ∈ X∗ such that ‖u‖ ≤ R and ‖v‖ ≤ R,2

‖J−1(u)− J−1(v)‖ ≤ mp‖u− v‖
1

p−1 , (3.1.4)

where mp := (2p+1Lpcp2)
1

p−1 > 0, for some constant c2 > 0.

Proof This follows from the following inequality which holds on bounded sets:

〈Jx− Jy, x− y〉 ≥ ‖x− y‖
p

2p+1Lpcp2
, c2 = 2 max{1, R}, L ∈ (1, 1.7). (3.1.5)

(see e.g., Alber and Ryazantseva [4], p.48).

3.2 Convergence in LP spaces, 1 < p < 2

In the sequel, k is the strong monotonicity constant of A, L > 0 is its Lipschitz
constant, and δ := k

2(L1+1)(L+1)2
, where L1 is the Lipschitz constant of J−1.

Theorem 3.2.1 Let E = Lp, 1 < p < 2. Let A : E → E∗ be a strongly monotone
and Lipschitz map. For x0 ∈ E arbitrary, let the sequence {xn} be defined by:

xn+1 = J−1(Jxn − λAxn), n ≥ 0, (3.2.1)

where λ ∈
(

0, δ
)

. Then, the sequence {xn} converges strongly to the unique zero

of A.

Proof Let ψ(t) = kt in inequality (3.1.1). By Lemma 3.1.3, A−1(0) 6= ∅, which
implies Remark 2.2.4 that A−1(0) = {x∗} for some x∗ ∈ E (since every strongly
monotone operators is also generalized monotone). Using the definition of xn+1,
equation (2.2.4) and inequality (3.1.2) with y∗ = λAxn, we compute as follows:

φ(x∗, xn+1) = V (x∗, Jxn − λAxn)

≤ V (x∗, Jxn)− 2λ〈J−1(Jxn − λAxn)− x∗, Axn −Ax∗〉
= φ(x∗, xn)− 2λ〈xn − x∗, Axn −Ax∗〉
+ 2λ〈xn − x∗, Axn −Ax∗〉
− 2λ〈J−1(Jxn − λAxn)− x∗, Axn −Ax∗〉
= φ(x∗, xn)− 2λ〈xn − x∗, Axn −Ax∗〉
− 2λ〈J−1(Jxn − λAxn)− J−1(Jxn), Axn −Ax∗〉.
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Using the strong monotonocity of A, Lipschitz property of J−1 (see Lemma 3.1.5)
and the Lipschitz property of A with Lipschitz constants L1 and L, respectively, we
have :

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2λk‖xn − x∗‖2

+ 2λ‖J−1(Jxn − λAxn)− J−1(Jxn)‖‖Axn −Ax∗‖
≤ φ(x∗, xn)− 2λk

∥∥xn − x∗∥∥2
+ 2λ2L1L

2
∥∥xn − x∗∥∥2

≤ φ(x∗, xn)− λk‖xn − x∗‖2.

Thus, φ(x∗, xn) converges, since it is monotone decreasing and bounded below by
zero. Consequently,

λk‖xn − x∗‖2 ≤ φ(x∗, xn)− φ(x∗, xn+1)→ 0, as n→∞.

This yields xn → x∗ as n→∞.

3.3 Convergence in Lp spaces, 2 ≤ p <∞.

Remark 3.3.1 We remark that for E = Lp, 2 ≤ p < ∞, if A : E → E∗ satisfies
the following conditions: there exists k ∈ (0, 1) such that〈

Ax−Ay, x− y
〉
≥ k‖x− y‖

p
p−1 ∀ x, y ∈ E, (3.3.1)

and A−1(0) 6= ∅, then the Krasnoselskii-type sequence (3.2.1) converges strongly to
the unique solution of Au = 0. In fact, we prove the following theorem.

In the next theorem, we set δp :=
(

k

2mpL
p

p−1

)p−1
.

Theorem 3.3.2 Let E= Lp, 2 ≤ p < ∞. Let A : E → E∗ be a Lipschitz map.
Assume that there exists a constant k ∈ (0, 1) such that A satisfies the following
condition: 〈

Ax−Ay, x− y
〉
≥ k‖x− y‖

p
p−1 , (3.3.2)

and that A−1(0) 6= ∅. For arbitrary x0 ∈ X, define the sequence {xn} iteratively by:

xn+1 = J−1(Jxn − λAxn), n ≥ 0, (3.3.3)

where λ ∈ (0, δp). Then, the sequence {xn} converges strongly to the unique solution
of the equation Ax = 0.

Proof We first prove that {xn} is bounded. This proof is by induction.
Then, there exists r > 0 such that φ(x∗, x1) ≤ r, where x∗ is unique solution of
Ax = 0. Suppose that φ(x∗, xn) ≤ r, for some n ≥ 1. We prove that φ(x∗, xn+1) ≤
r.
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Using equation (2.2.4) and inequality (3.1.2) with y∗ = λAxn, we have:

φ(x∗, xn+1) = φ(x∗, J−1(Jxn − λAxn)) = V (x∗, Jxn − λAxn)

≤ V (x∗, Jxn)− 2〈J−1(Jxn − λAxn)− x∗, λAxn〉
= V (x∗, Jxn)− 2λ〈xn − x∗, Axn −Ax∗〉
−2λ〈J−1(Jxn − λAxn)− J−1(Jxn), Axn −Ax∗〉.

≤ φ(x∗, xn)− 2λ〈xn − x∗, Axn −Ax∗〉
+2λ‖J−1(Jxn − λAxn)− J−1(Jxn)‖‖Axn −Ax∗‖.

Using condition (3.3.2) on A and inequality (3.1.4), we obtain:

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2kλ‖xn − x∗‖
p

p−1 + 2λλ
1

p−1mp‖Axn‖
1

p−1 ‖Axn −Ax∗‖

≤ φ(x∗, xn)− 2kλ‖xn − x∗‖
p

p−1 + 2λλ
1

p−1mp‖Axn −Ax∗‖
p

p−1 .

≤ φ(x∗, xn)− 2kλ‖xn − x∗‖
p

p−1 + 2λλ
1

p−1mpL
p

p−1 ‖xn − x∗‖
p

p−1

≤ φ(x∗, xn)− kλ‖xn − x∗‖
p

p−1

≤ r.

Hence, by induction, {xn} is bounded. We now prove that {xn} converges strongly
to x∗ = A−1(0). From the same computation as above, we have that:

φ(x∗, xn+1) ≤ φ(x∗, xn)− λk‖xn − x∗‖
p

p−1 ,

which implies φ(x∗, xn) is decreasing and bounded below by zero, so the limit of
φ(x∗, xn) exists. Therefore,

0 ≤ lim
(
λk‖xn − x∗‖

p
p−1

)
≤ lim

(
φ(x∗, xn)− φ(x∗, xn+1)

)
= 0.

Hence, xn → x∗ as n→∞.

All the results of this chapter are the results obtained in [33], which was published
in SpringerPlus, June, 2015.



CHAPTER 4

An Algorithm for Computing Zeros of Generalized Phi-Strongly
Monotone and bounded Maps in Classical Banach Spaces

4.1 Introduction

In this chapter, we construct and prove strong convergence of a Mann-type sequence
to the unique zero of Generalized Phi-Strongly Monotone and bounded Maps in LP
spaces, 1 < p <∞. We first recall the following lemma.

Lemma 4.1.1 (see e.g., [29], p. 55) Let E = Lp, 1 < p < 2, then the following
inequalities hold for all x, y in Lp, and some constant cp > 0.

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, J(x)〉+ cp‖y‖2, (4.1.1)

〈x− y, J(x)− J(y)〉 ≥ (p− 1)‖x− y‖2. (4.1.2)

Let E = Lp, 1 < p < 2. Define φp : E × E → R by

φp(x, y) = ‖y‖2 − 2〈x, J(y)〉+ cp‖x‖2, (4.1.3)

where cp is the constant appearing in inequality (4.1.1). Then, from (4.1.1) we have
that

‖x− y‖2 ≥ φp(x, y). (4.1.4)

Also, following the pattern of proof of Lemma 3.1.4 (which was proved in Chapter
2), the following inequality can be established:

Vp(x, x
∗) + 2〈J−1x∗ − x, y∗〉 ≤ Vp(x, x∗ + y∗) (4.1.5)

for all x ∈ E and x∗, y∗ ∈ E∗, where Vp(x, x
∗) = φp(x, J

−1x∗). Moreover, it can be
easily seen that

φ(x, y) = φp(x, y) + (1− cp)‖x‖2. (4.1.6)

35
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Thus, the following inequality follows from inequality (2.2.2).

‖y‖ ≤
√
φp(x, y) + (1− cp)‖x‖+ ‖x‖ ∀ x, y ∈ E. (4.1.7)

It is also easy to see from inequality (2.2.2) and equation (4.1.6) that

(cp − 1)‖x∗‖ ≤ φp(x, y). (4.1.8)

4.2 Convergence Theorems in Lp spaces, 1 < p < 2

Theorem 4.2.1 Let E = Lp, 1 < p < 2. Let A : E → E∗ be a generalized Φ-
strongly monotone and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define
a sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1, (4.2.1)

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn = ∞ and∑∞
n=1 α

2
n < ∞. Then, there exists γ0 > 0 such that if αn ≤ γ0 ∀ n ≥ 1, the

sequence {xn}∞n=1 converges strongly to a solution of the equation Ax = 0.

Proof We first prove that {xn}∞n=1 is bounded. This proof is by induction. Let
ψ(t) = kt in inequality (3.1.1). By Lemma 3.1.3, A−1(0) 6= ∅, which implies by
Remark 2.2.4 that A−1(0) = {x∗} for some x∗ ∈ E (since every strongly monotone
operators is also generalized monotone). Let r > 0 be such that φp(x

∗, x1) ≤ r.
Since A is bounded, define:

M0 := 2L1 sup{‖Ax‖2 : ‖x‖ ≤
√
r + (1− cp)‖x∗‖+ ‖x∗‖}+ 1, (4.2.2)

where L1 > 0 is the Lipschitz constant of J−1. Futhermore, define the following
constants.

hp :=
[( 1

L2

)(1

2
(p− 1)

√
r
)]p−1

; γ0 :=
1

2
min

{
1,

√
r(p− 1)

M0
,
Φ(hp)

2M0

}
. (4.2.3)

where L2 := mp is the constant of Hölder continuity of J (obtained from inequality
(3.1.4)). We show that φp(x

∗, xn) ≤ r ∀ n ≥ 1. By construction, φp(x
∗, x1) ≤ r.

Suppose that φp(x
∗, xn) ≤ r for some n ≥ 1. This implies, from inequality (4.1.7),

that ‖xn‖ ≤
√
r + (1− cp)‖x∗‖ + ‖x∗‖. We prove that φp(x

∗, xn+1) ≤ r. Assume
this is not the case. Then, φp(x

∗, xn+1) > r. Using the definition of xn+1 and
inequality (4.1.5) with y∗ = αnAxn we obtain:

φp(x
∗, xn+1) = φp(x

∗, J−1(Jxn − αnAxn)) = Vp(x
∗, Jxn − αnAxn)

≤ Vp(x
∗, Jxn)− 2〈J−1(Jxn − αnAxn)− x∗, αnAxn〉

= Vp(x
∗, Jxn)− 2αn〈xn − x∗, Axn −Ax∗〉

−2αn〈J−1(Jxn − αnAxn)− J−1(Jxn), Axn −Ax∗〉.
≤ φp(x

∗, xn)− 2αn〈xn − x∗, Axn −Ax∗〉
+2αn‖J−1(Jxn − αnAxn)− J−1(Jxn)‖‖Axn −Ax∗‖.
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Using the fact that A is generalized Φ-strongly monotone and that J−1 is Lipschitz
(see Lemma 3.1.5, Chapter 3) we obtain:

φp(x
∗, xn+1) ≤ φp(x

∗, xn)− 2αnΦ(‖xn − x∗‖) + 2αnαnL1‖Axn‖2 (4.2.4)

≤ φp(x
∗, xn)− 2αnΦ(‖xn − x∗‖) + αnγ0M0.

From recursion formular (4.2.1), inequalities (4.1.2) and (7.1.7) which are valid for
all x, y ∈ Lp, 1 < p < 2, we obtain that,

||J(xn)− Jx∗|| = ||Jxn+1 − Jx∗ + αnAxn||
≥ (p− 1)||xn+1 − x∗|| − γ0M0

> (p− 1)
√
r − γ0M0 ≥

1

2
(p− 1)

√
r.

Using the fact that J is Hölder continuous (obtained from inequality (3.1.4)), since
J−1 on Lp, 2 ≤ p <∞ is J on Lp, 1 < p < 2, we have:

||xn − x∗|| ≥
[( 1

L2

)(1

2
(p− 1)

√
r
)]p−1

= hp.

Hence,
Φ(||xn − x∗||) ≥ Φ(hp).

Substituting this inequality in inequality (4.2.4), we obtain that

φp(x
∗, xn+1) ≤ φp(x∗, xn)− αnΦ(hp) +

1

2
αnΦ(hp). (4.2.5)

Hence, we have that:

r ≤ r − 1

2
αnΦ(hp) < r,

a contradiction. Hence, φp(x
∗, xn+1) ≤ r. By induction, φp(x

∗, xn) ≤ r ∀ n ≥ 1.
Consequently, from inequality (4.1.7) and (4.1.8), we have that {xn}∞n=1 is bounded.
We now prove that {xn}∞n=1 converges strongly to x∗. Repeating the same method
of computation as above with φ instead of φp, the boundedness of the sequence
{xn}∞n=1, and Lemma (3.1.4), there exists M > 0 such that:

φ(x∗, xn+1) 6 φ(x∗, xn)− 2αnΦ(‖xn − x∗‖) + α2
nM.

By Lemma 2.3.5, we obtain that limφ(x∗, xn) exists. Futhermore, using the con-
dition condition

∑
αn = ∞, we obtain that lim inf Φ(‖xn − x∗‖) = 0. From the

properties of Φ, it is easy to see that lim inf ‖xn−x∗‖ = 0. In fact, if this is not the
case, then we have lim inf ‖xn−x∗‖ > 0. Thus, there exist ε0 > 0 and a subsequence
{xnk

} of {xn} such that ‖xnk
− x∗‖ > ε0 ∀ n > 1. Since Φ is strictly increasing, we

have Φ(‖xnk
−x∗‖) > Φ(ε0) > 0. Taking lim inf on both sides, we have a contradic-

tion since Φ(ε0) > 0. Hence, lim inf ‖xn − x∗‖ = 0. So, there exists a subsequence
{xnk

} of {xn} such that xnk
→ x∗. Using the definition of φ and the continuity

of J , we have φ(x∗, xnk
) = ‖x∗‖ − 2〈x∗, J(xnk

)〉 + ‖xnk
‖ → 0 as k → ∞. Thus,

again by Lemma 2.3.5, we obtain that limφ(x∗, xn) = 0, and by Lemma 2.2.1, we
conclude that, lim ‖xn − x∗‖ = 0. This completes the proof.
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4.3 Convergence Theorems in Lp spaces, 2 ≤ p <∞
We prove the following theorem.

Theorem 4.3.1 Let E = Lp, 2 ≤ p < ∞. Let A : E → E∗ be a generalized Φ-
strongly monotone and bounded map with A−1(0) 6= ∅. For arbitrary x1 ∈ E, define
a sequence {xn} iteratively by:

xn+1 = J−1(Jxn − αnAxn), n ≥ 1, (4.3.1)

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn = ∞ and∑∞
n=1 α

p
p−1
n < ∞. Then, there exists γ0 > 0 such that if αn ≤ γ0 ∀ n ≥ 1, the

sequence {xn}∞n=1 converges strongly to the unique solution of the equation Ax = 0.

Proof We first prove that {xn}∞n=1 is bounded. This proof is by induction.
Let x∗ be the unique solution of Ax = 0. Clearly, there exists r > 0 such that

r ≥ max{4p‖x∗‖2, φ(x∗, x1)}. Thus, φ(x∗, x1) ≤ r. (4.3.2)

Since A is bounded, define:

M0 := 2mp sup{‖Ax‖
p

p−1 : ‖x‖ ≤ ‖x∗‖+
√
r}+ 1 <∞, (4.3.3)

where

mp :=
( 1

2p+1Lpcp2

) 1
p−1

, c2 = 2 max{1, R}, L ∈ (1, 1.7). (4.3.4)

Also, define the following constants:

δp :=
( 1

2(p− 1)r

L3

) 1
p−1

; hp :=
( 1

L3

)(1

2
mp(

√
r − 4p‖x∗‖2)p−1

)
, (4.3.5)

where L3 is the Lipschitz constant of J on bounded sets. Define

γ0 := min
1

2

{
1,
mp(

√
r − 4p‖x∗‖2)p−1

2M0
,
Φ(hp)

M0

}
.

We show that φ(x∗, xn) ≤ r ∀ n ≥ 1. By construction, φ(x∗, x1) ≤ r. Suppose that
φ(x∗, xn) ≤ r for some n ≥ 1. We prove that φ(x∗, xn+1) ≤ r. Suppose this is not
the case. Then, φ(x∗, xn+1) > r. Following the method of proof of Theorem 4.2.1,
we obtain that:

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2αn〈xn − x∗, Axn −Ax∗〉
+2αn‖J−1(Jxn − αnAxn)− J−1(Jxn)‖‖Axn −Ax∗‖.

Using the fact that A is generalized Φ-strongly monotone and that J−1 is Hölder
continuous on balls, we obtain, since {xn} is bounded by our induction hypothesis:

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2Φ(‖xn − x∗‖) + 2αnα
1

p−1
n mp‖Axn‖

p
p−1 . (4.3.6)



General Introduction 39

Observe that, from the recurrance relation (4.3.1), inequality (3.1.4) and the fact
that J is Lipschitz (see inequality (4.1.2)), we have:

‖xn+1 − x∗‖ = ‖J−1(Jxn − αnAxn)− J−1Jx∗‖

≤ mp(‖Jxn − Jx∗‖+ γ0M0)
1

p−1

≤ mp(L3(‖x∗‖+
√
r + 1) + γ0M0)

1
p−1 ,

which implies that ‖xn+1‖ ≤ R for some constant R > 0. Now, from recursion
formula (4.3.1), Lemma 2.2.2, and the fact that φ(x∗, xn+1) > r we obtain that

||J(xn)− Jx∗|| = ||Jxn+1 − Jx∗ + αnAxn||
≥ mp||xn+1 − x∗||p−1 − γ0M0

> mp(
√
r − 4p‖x∗‖2)p−1 − γ0M0 ≥

1

2
mp(

√
r − 4p‖x∗‖2)p−1.

Using the fact that J is Lipschitz with Lipschitz constant L3, we obtain that

||xn − x∗|| ≥
( 1

L3

)(1

2
mp(

√
r − 4p‖x∗‖2)p−1

)
= hp.

Hence,
Φ(||xn − x∗||) ≥ Φ(hp).

Substituting in inequality (4.3.6), we obtain that

φ(x∗, xn+1) ≤ φ(x∗, xn)− αnΦ(hp) +
1

2
αnΦ(hp). (4.3.7)

Hence, we have that:

r ≤ r − 1

2
αnΦ(hp) < r,

a contradiction. Hence, φ(x∗, xn+1) ≤ r. By induction, φ(x∗, xn) ≤ r ∀ n ≥ 1. From
inequality (2.2.2), {xn} is bounded. We now prove that {xn}∞n=1 converges strongly
to x∗. Using inequality (4.3.6) and the boundedness of the sequence {xn}∞n=1, there
exists M > 0 such that:

φ(x∗, xn+1) 6 φ(x∗, xn)− 2αnΦ(‖xn − x∗‖) + α
p

(p−1)
n M.

The conditon
∑∞

n=1 α
p

p−1
n <∞ implies, by Lemma 2.3.5, that lim

n→∞
φ(x∗, xn) exists.

The condition
∑∞

n=1 αn = ∞ now implies that lim inf Φ(‖xn − x∗‖) = 0, which
further implies (using the properties of Φ) that lim inf ‖xn − x∗‖ = 0. Hence, there
exists a subsequence {xnk

}∞k=1 of {xn}∞n=1 such that, (as in the proof of Theorem
7.2.1), xnk

→ x∗ as k →∞. Futhermore, from

φ(x∗, xnk
) = ‖x∗‖2 − 2

〈
x∗, J(xnk

)
〉

+ ‖xnk
‖2

and the fact that J is continuous, we obtain that, {φ(x∗, xn)}∞n=1 has a subsequence
which converges to 0. Thus, by Lemma 2.3.5, {φ(x∗, xn)}∞n=1 converges strongly to
0. Applying Lemma 2.2.1, we obtain that ||xn − x∗|| → 0 as n → ∞, completing
the proof.
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Remark 4.3.2 It is easy to see that our theorems hold for φ- strongly monotone
and bounded operators and for k-strongly monotone and bounded operators in Lp
spaces, 1 < p <∞, by simply setting Φ(s) = sφ(s) and Φ(s) = ks2, respectively, in
Theorems 4.2.1 and 4.3.1.

A prototype of the parameter in our theorems is the canonical choice
αn = 1

n , n ≥ 1.

All the results of this chapter are the results obtained in [38], which was accepted
for publication in Optimization (Taylor and Francis).



CHAPTER 5

Strong and ∆-Convergence Theorems for Common Fixed Point of
a Finite Family of Multivalued Demi-Contractive Mappings in

CAT(0) Spaces

5.1 Introduction

In this chapter, we prove strong and ∆-convergence theorems for common fixed
point of a finite family of multivalued demi-contractive mappings in a complete
CAT (0) space. The results in this chapter extend and improve the results of
Chidume and Ezeora [41], Chidume et al. [39], Isiogugu and Osilike [68], and com-
plement the results of Dhompongsa and Panyanak [57], Dhompongsa et al. [58],
Leustean [78], Shahzad and Markin [102], Sokhuma [104], and results of a host of
other authors on iterative approximation of fixed points in CAT (0) spaces.

We start by recalling the following definition and lemmas.

Definition 5.1.1 A mapping T : K → CB(K) is called semi-compact if, for any
sequence {xn} in K such that d(xn, Txn)→ 0 as n→∞, there exists a subsequence
{xnk

} of {xn} such that xnk
→ p ∈ K.

Remark 5.1.2 If K is compact, then every multi-valued mapping T : K → CB(K)
is semi-compact.

Lemma 5.1.3 (See e.g., [57]) Let (E, d) be a CAT (0) space. Then,

(i) (E, d) is uniquely geodesic.

(ii) For each x, y ∈ E, and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such
that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (5.1.1)

41
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Lemma 5.1.4 (See e.g., [57], Lemmas 2.4 and 2.5) Let (E, d) be a CAT (0) space.
For x, y, z ∈ E, and t ∈ [0, 1], the following inequalities hold:

(i) d((1− t)x⊕ ty, z) 6 (1− t)d(x, z) + td(y, z);

(ii) d((1− t)x⊕ ty, z)2 6 (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2;

where d(x, z)2 = (d(x, z))2.

Lemma 5.1.5 (i) (See e.g., [77]) Every bounded sequence in a complete CAT (0)
space has a ∆-convergent subsequence.

(ii) (See e.g., [59]) If C is a nonempty closed and convex subset of a complete
CAT (0) space, and if {xn} is a bounded sequence in C, then the asymptotic center
of {xn} is in C.

(iii) (See e.g., [57]) If {xn} is a bounded sequence in a complete CAT (0), with
A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and the
sequence {d(xn, u)} converges, then x = u.

5.2 Main Results

Lemma 5.2.1 Let E be a CAT(0) space. Let {xi, i = 1, 2, . . . , n} ⊂ E, and
αi ∈ (0, 1), i = 1, 2, . . . , n such that

∑n
i=1 αi = 1. Then, the following inequality

holds:

d

(
n∑
i=1

⊕αixi, z

)2

6
n∑
i=1

αid(xi, z)
2 −

n∑
i,j=1,i 6=j

αiαjd(xi, xj)
2, ∀z ∈ E. (5.2.1)

Proof The proof is by induction. For n = 2, the result follows from Lemma
5.1.4(ii). For simplicity, we shall give the proof for n = 3. From Lemma 5.1.4(ii),
we have that

d

(
3∑
i=1

⊕αixi, z

)2

= d(α1x1 ⊕ (α2 + α3)(α
′
2x2 ⊕ α

′
3x3), z)2, α

′
i :=

αi
(α2 + α3)

, i > 2

6 α1d(x1, z)
2 + (α2 + α3)d(α

′
2x2 ⊕ α

′
3x3, z)

2

− α1(α2 + α3)d(x1, α
′
2x2 ⊕ α

′
3x3)2

6 α1d(x1, z)
2 + (α2 + α3)[α

′
2d(x2, z)

2

+ α
′
3d(x3, z)

2 − α′2α
′
3d(x2, x3)2]

− α1(α2 + α3)
[
α
′
2d(x1, x2)2 + α

′
3d(x1, x3)2 − α′2α

′
3d(x2, x3)2

]
=

3∑
i=1

αid(xi, z)
2 − α2α

′
3d(x2, x3)2 − α1α2d(x1, x2)2

− α1α3d(x1, x3)2 − α1α2α
′
3d(x2, x3)2
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=
3∑
i=1

αid(xi, z)
2 −

3∑
i,j=1,i 6=j

αiαjd(xi, xj)
2.

Now, suppose (5.2.1) holds up to some k > 3, i.e.,

d

(
k∑
i=1

⊕αixi, z

)2

6
k∑
i=1

αid(xi, z)
2 −

k∑
i,j=1,i 6=j

αiαjd(xi, xj)
2.

Then, again from Lemma 5.1.4 we have

d

(
k+1∑
i=1

⊕αixi, z

)2

=d

(
α1x1 ⊕ σ

(
k+1∑
i=2

⊕αi
σ
xi

)
, z

)2

, σ =
k+1∑
i=2

αi,

6 α1d(x1, z)
2 + σd

(
k+1∑
i=2

⊕αi
σ
xi, z

)2

− α1σd

(
x1,

k+1∑
i=2

⊕αi
σ
xi

)2

= α1d(x1, z)
2 + σd

(
k∑
i=1

⊕αi+1

σ
xi+1, z

)2

− α1σd

(
x1,

k∑
i=1

⊕αi+1

σ
xi+1

)2

.

Using the induction hypothesis, we have

d

(
k+1∑
i=1

⊕αixi, z

)2

6 α1d(x1, z)
2 +

k∑
i=1

αi+1d(xi+1, z)
2

−
k∑

i=1,j,i6=j

αi+1αj+1

σ
d(xi+1, xj+1)2

−
k∑
i=1

α1αi+1d(x1, xi+1)2

+
k∑

i=1,j,i6=j

α1αi+1αj+1

σ
d(xi+1, xj+1)2

=
k+1∑
i=1

αid(xi, z)
2 −

k+1∑
i,j=1,i 6=j

αiαjd(xi, xj)
2.

Hence, by induction we have that inequality (5.2.1) holds for all n ≥ 1. The proof
is complete.
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Lemma 5.2.2 Let K be a nonempty closed convex subset of a complete CAT (0)
space E. Let Ti : K → CB(K), i = 1, 2, . . . ,m be a family of multi-valued
demi-contractive mappings with constants ki ∈ (0, 1), i = 1, 2, . . . ,m such that⋂m
i=1 F (Ti) 6= ∅. Suppose that Ti(p) = {p} for all p ∈

⋂n
i=1 F (Ti). For arbitrary

x1 ∈ K, define a sequence {xn} by

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ · · · ⊕ αmymn , n ≥ 1, (5.2.2)

where yin ∈ Tixn, i = 1, 2, . . . ,m, α0 ∈ (k, 1), αi ∈ (0, 1), i = 1, 2, . . . ,m, such that∑m
i=0 αi = 1, and k := max{ki, i = 1, 2, . . . ,m}. Then, lim

n→∞
{d(xn, p)} exists for

all p ∈
⋂n
i=1 F (Ti), and lim

n→∞
d(xn, Tixn) = 0 for all i = 1, 2, . . . ,m.

Proof Let p ∈
⋂n
i=1 F (Ti). By Lemma 5.2.1 and the fact that Ti is k-strictly

pseudo-contractive for i = 1, 2, 3 . . . , we have

d(xn+1, p)
2 = d(α0xn ⊕ α1y

1
n ⊕ α2y

2
n ⊕ · · · ⊕ αmymn , p)2

≤ α0d(xn, p)
2 +

m∑
i=1

αid(yin, p)
2

−
m∑
i=1

α0αid(xn0 , y
i
n)−

m∑
i,j=2,i 6=j

αiαjd(yin, y
j
n)

≤ α0d(xn, p)
2 +

m∑
i=1

αi(H(Tixn, Tp))
2 −

m∑
i=1

α0αid(xn, y
i
n)2

≤ α0d(xn, p)
2 +

m∑
i=1

αid(xn, p)
2 +

m∑
i=1

kiαid(xn, y
i
n)2 −

m∑
i=1

αiα0d(xn, y
i
n)2

≤ d(xn, p)
2 − (α0 − k)

m∑
i=1

αid(xn, y
i
n)2

≤ d(xn, p)
2 − (α0 − k)

m∑
i=1

αd(xn, y
i
n)2 ≤ d(xn, p)

2, α = min
0≤i≤m

αi,

which shows that {d(xn, p)} is non-increasing and bounded. Hence, its limit exists.

Moreover, we have that

α(α0 − k)

m∑
i=1

d(xn, y
i
n)2 ≤ d(x1, p)

2 <∞.

Therefore, limn→∞ d(xn, y
i
n) = 0 ∀ i = 1, 2, ...,m. Consequently,

lim
n→∞

d(xn, Tixn) = 0 ∀ i = 0, 1, . . . ,m.
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Theorem 5.2.3 Let K be a nonempty closed convex subset of a complete CAT (0)
space. Let Ti : K → CB(K), i = 1, 2, . . . ,m be a family of demi-contractive map-
pings with constants ki ∈ (0, 1), i = 1, 2, . . . ,m such that

⋂m
i=1 F (Ti) 6= ∅. Sup-

pose that Ti is ∆−demi-closed at 0 for all i = 1, 2, . . . ,m and Ti(p) = {p} for all
p ∈

⋂n
i=1 F (Ti). For arbitrary x1 ∈ K, define a sequence xn by

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ · · · ⊕ αmymn , n ≥ 1,

where yin ∈ Tixn, i = 1, 2, . . . ,m, α0 ∈ (k, 1), αi ∈ (0, 1), i = 1, 2, . . . ,m such that∑m
i=0 αi = 1 and k := max{ki, i = 1, 2, ...,m}. Then, {xn} ∆− converges to a point

p ∈
⋂m
i=1 F (Ti).

Proof Define W∆(xn) := ∪A({un}), where the union is taken over all subsequences
{un} of {xn}. We shall show that, W∆(xn) ⊆

⋂m
i=1 F (Ti), and that W∆(xn) consists

of exactly one point.
Let u ∈ W∆(xn), this implies that there exists a subsequence {un} of {xn} such
that A({un}) = {u}. Since by Lemma 5.2.2 {un} is bounded, this implies from
Lemma 5.1.5((i) and (ii)) that, there exists a subsequence {vn} of {un} such that
∆− lim

n→∞
vn = v ∈ K.

Using Lemma 5.2.2 and the fact that Ti, i = 1, 2, ...,m is ∆−demi-closed at 0 for all
i = 1, 2, ...,m we have that v ∈

⋂m
i=1 F (Ti), and hence, d(un, v) converges. Lemma

5.1.5(iii) implies that u = v. Thus, we have W∆(xn) ⊆
⋂m
i=1 F (Ti).

We now show that W∆(xn) consists of exactly one point. Let A({xn}) = {x}
and {un} be arbitrary subsequence of {xn} such that A({un}) = {u} Since u ∈
W∆(xn) ⊆

⋂m
i=1 F (Ti), we have by Lemma 5.2.2 that d(xn, u) converges. Lemma

5.1.5(iii) implies that u = v. The proof is complete.

Corollary 5.2.4 Let K, E, Ti, i = 1, 2, . . . ,m and {xn} be as in Theorem 5.2.3.
Suppose there exists i0 ∈ {1, 2, ...,m} such that Ti0 is semi-compact, then {xn} con-
verges strongly to a common fixed point of Ti, i = 1, 2, ...,m.

Proof Since by Lemma 5.2.2 d(xn, Ti0xn) → 0, and Ti0 is semi-compact, then,
there exists a subsequence {un} of {xn} such that {un} → u ∈ K, which implies
∆ − lim

n→∞
un = u ∈ K. By Theorem 5.2.3 we have that u ∈

⋂n
i=1 F (Ti), which

implies by Lemma 5.2.2 that, xn → u.

Corollary 5.2.5 Let K be a nonempty compact convex subset of a complete CAT (0)
space. Let Ti : K → CB(K), i = 1, 2, ...,m be a family of demi-contractive mappings
with constants ki ∈ (0, 1), i = 1, 2, ...,m such that

⋂m
i=1 F (Ti) 6= ∅. Suppose that Ti

is ∆−demi-closed at 0 for all i = 1, 2, ...,m and Ti(p) = {p} for all p ∈
⋂n
i=1 F (Ti).

For arbitrary x1 ∈ K, define a sequence xn by

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ ...⊕ αmymn , n ≥ 1,
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where yin ∈ Tixn, i = 1, 2, . . . ,m, α0 ∈ (k, 1), αi ∈ (0, 1), i = 1, 2, . . . ,m such that∑m
i=0 αi = 1 and k := max{ki, i = 1, 2, ...,m}. Then, {xn} converges strongly to

some point p ∈
⋂m
i=1 F (Ti).

Proof The proof follows from the fact that, if K is compact, then every multi-
valued mapping T : K → CB(K) is semi-compact (see remark 5.1.2). Thus, the
conclusion follows from Corollary 5.2.4.

Corollary 5.2.6 Let K be a nonempty closed convex subset of a complete CAT (0)
space. Let Ti : K → CB(K), i = 1, 2, ...,m be a family of quasi-nonexpansive
mappings such that

⋂m
i=1 F (Ti) 6= ∅. Suppose that Ti is ∆−demi-closed at 0 for all

i = 1, 2, ...,m Ti(p) = {p} for all p ∈
⋂n
i=1 F (Ti), and there exists i0 ∈ {1, 2, ...,m}

such that Ti0 is semi-compact. For arbitrary x1 ∈ K, define a sequence xn by

xn+1 = α0xn ⊕ α1y
1
n ⊕ α2y

2
n ⊕ ...⊕ αmymn , n ≥ 1,

where yin ∈ Tixn, i = 1, 2, . . . ,m, α0 ∈ (k, 1), αi ∈ (0, 1), i = 1, 2, . . . ,m such that∑m
i=0 αi = 1. Then, {xn} converges strongly to some point p ∈

⋂m
i=1 F (Ti).

Remark 5.2.7 It is worth mentioning that our result is true for all CAT (k) spaces,
k 6 0. Since for k 6 k

′
, CAT (k) ⊆ CAT (k

′
) see (Bridson and Haefliger [12]).

Remark 5.2.8 Our results extend the results of Chidume and Ezeora [41] to a more
general space than Hilbert space (CAT (0) spaces). Futhermore, the condition im-
posed on λi, i = 0, 1, 2, . . . ,m in Theorem 2.2 of [41] (λi ∈ (k, 1), i = 0, 1, 2, . . . ,m
such that

∑m
i=0 λi = 1) restricts the class of operators for which the theorem is

applicable. In our result, the condition is reduced to λ0 ∈ (k, 1), λi ∈ (0, 1), i =
1, 2, . . . ,m such that

∑m
i=0 λi = 1, thereby making our results to be applicable to all

classes of demi-contractive mappings.

Remark 5.2.9 It is worth mentioning that the result proved in Lemma 5.2.1 is of
special interest.

Remark 5.2.10 The result of Chidume et al. (Theorem 3.1 of [39]), Isiogugu and
Osilike (Theorem 3.1 of [68]) are special cases of our results.

Remark 5.2.11 All the results of this chapter are the results obtained in [34],
which was published in: Abstract and Applied Analysis.



CHAPTER 6

Convergence Theorem for a Countable Family of Multi-Valued
Strictly Pseudo-Contractive Mappings in Hilbert Spaces

6.1 Introduction

In this chapter, a Krasnoselskii-type algorithm is constructed and proved to be an
approximate fixed point sequence for a countable family of multi-valued strictly
pseudo-contractive mappings in a real Hilbert space. Under some additional mild
conditions, the sequence is proved to converge strongly to a common fixed point of
the family.
Our theorems complement and improve the results of Chidume and Ezeora [41],
Abbas et al. [1], Chidume et al. [39] and a host of other important results. Before
proving the the main results of this chapter we start with the following definition
and lemmas which shall be used subsequently in the chapter.

Definition 6.1.1 A mapping T : K → CB(K) is called semi-compact if, for any
sequence {xn} in K such that d(xn, Txn)→ 0 as n→∞, there exists a subsequence
{xnk

} of {xn} such that xnk
→ p ∈ K.

Remark 6.1.2 If K is compact, then every multi-valued mapping T : K → CB(K)
is semi-compact.

Lemma 6.1.3 Let H be a real Hilbert space. Let {xi, i = 1, ...,m} ⊂ H. For αi ∈
(0, 1), i = 1, ...,m such that

∑m
i=1 αi = 1, the following identity holds:∥∥∥∥∥

m∑
i=1

αixi

∥∥∥∥∥
2

=
m∑
i=1

αi‖xi‖2 −
m∑

i,j=1,i 6=j
αiαj‖xi − xj‖2 . (6.1.1)

The proof of Lemma 6.1.3 can be found in [62]. We now state and prove its gener-
alization.

47
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Lemma 6.1.4 Let H be a real Hilbert space. Let {xi}∞i=1 ⊂ H and αi ∈ (0, 1), i =
1, 2, ..., such that

∑∞
i=1 αi = 1. If {xi}∞i=1 is bounded, then∥∥∥∥∥

∞∑
i=1

αixi

∥∥∥∥∥
2

=
∞∑
i=1

αi‖xi‖2 −
∞∑

i,j=1,i 6=j
αiαj‖xi − xj‖2. (6.1.2)

Proof We observe that setting M := supi≥1 ‖xi‖, we have
∑∞

i=1 αi‖xi‖
2 < ∞.

Moreover, since
∑∞

i=1 αi = 1, we have

n∑
i=1

αi = 1−
∞∑

i=n+1

αi

Thus setting

αni =
αi

1−
∑∞

i=n+1 αi
, we see that

n∑
i=1

αni = 1. (6.1.3)

We also have from Lemma 6.1.3 that, for each n ≥ 1,∥∥∥∥∥
n∑
i=1

αni xi

∥∥∥∥∥
2

=
n∑
i=1

αni ‖xi‖
2 −

n∑
i,j=1,i 6=j

αni α
n
j ‖xi − xj‖

2 . (6.1.4)

Since,

lim
n→∞

∥∥∥∥∥
n∑
i=1

αni xi

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
i=1

αixi

∥∥∥∥∥
2

and

lim
n→∞

( n∑
i=1

αni ‖xi‖
2−

n∑
i,j=1,i 6=j

αni α
n
j ‖xi − xj‖

2
)

=
( ∞∑
i=1

αi‖xi‖2−
∞∑

i,j=1,i 6=j
αiαj‖xi − xj‖2

)
.

We have, ∥∥∥∥∥
∞∑
i=1

αixi

∥∥∥∥∥
2

=
∞∑
i=1

αi‖xi‖2 −
∞∑

i,j=1,i 6=j
αiαj‖xi − xj‖2 (6.1.5)

This proves the result.

The following result is proved in [39] .

Lemma 6.1.5 Let T : K → CB(K) be a multi-valued k-strictly pseudo-contractive

mapping, then T is Lipschitz with Lipschitz constant 1+
√
k

1−
√
k

.

Remark 6.1.6 In Lemma 1.1 of [39], the authors required that for each x ∈ K,
Tx be weakly closed. However, it was later on proved in Lemma 3.7 of [47] that,
this condition is not necessary. Thus, it is dispensed with in Lemma 6.1.5.
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As a consequence of Lemma 6.1.5, we obtain the following lemma.

Lemma 6.1.7 Let Ti : K → CB(K) be a countable family of multi-valued ki-
strictly pseudo-contractive mappings, ki ∈ (0, 1), i = 1, 2, .... If supi≥1 ki ∈ (0, 1),
then Ti is uniformly Lipschitz; that is, there exists L > 0, such that

H(Tix, Tiy) ≤ L‖x− y‖ ∀ x, y ∈ K

Proof From Lemma 6.1.5, we have that Ti is Lipschitz for each i, with Lipschitz

constant Li = 1+
√
ki

1−
√
ki

. Now, since ki ∈ (0, 1), i = 1, 2, ..., setting k := supi≥1 ki, we

have,

H(Tix, Tiy) ≤
(1 +

√
ki

1−
√
ki

)∥∥∥x− y∥∥∥ ≤ (1 +
√
k

1−
√
k

)∥∥∥x− y∥∥∥.
Hence, Ti is uniformly Lipschitz.

6.2 Main Results

We now prove the following theorem.

Theorem 6.2.1 Let K be a nonempty closed and convex subset of a real Hilbert
space H, and Ti : K → CB(K) be a countable family of multi-valued ki-strictly
pseudo-contractive mappings; ki ∈ (0, 1), i = 1, 2, ... such that

⋂∞
i=1 F (Ti) 6= ∅; and

supi≥1 ki ∈ (0, 1). Assume that for p ∈
⋂∞
i=1 F (Ti), Ti(p) = {p}. Let {xn}∞n=1 be a

sequence defined iteratively for arbitrary x0 ∈ K by

xn+1 = λ0xn +

∞∑
i=1

λiy
i
n, (6.2.1)

where yin ∈ Tixn, n ≥ 1 and λ0 ∈ (k, 1);
∑∞

i=0 λi = 1 and k := supi≥1 ki. Then,
limn→∞ d(xn, Tixn) = 0, i = 1, 2, ....

Proof We first show that {xn} is well defined for each n ≥ 1. It suffices to show
that

∑∞
i=1 λi

∥∥yin∥∥ <∞ for each n ∈ N. Indeed, for p ∈
⋂∞
i=1 F (Ti), we have,∥∥yin − p∥∥ ≤ sup

i≥1

∥∥yin − p∥∥ = H(Tixn, {p}) ≤ L‖xn − p‖ := Mn.

Thus ‖yin‖ − ‖p‖ ≤
∥∥yin − p∥∥ ≤ Mn. That is ‖yin‖ ≤ Mn + ‖p‖ Therefore, for each

n, {yin} is bounded. Hence,

∞∑
i=1

λi
∥∥yin∥∥ ≤ (Mn + ‖P‖)

∞∑
i=1

λi = (Mn + ‖P‖)(1− λ0) <∞.
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Using Lemma 6.1.4, the fact that Ti is strictly pseudo-contractive for each i =
1, 2, . . . and the fact that λ0 ∈ (k, 1) we have:

‖xn+1 − p‖2 =

∥∥∥∥∥λ0(xn − p) +
∞∑
i=1

λi(y
i
n − p)

∥∥∥∥∥
2

= λ0‖xn − p‖2 +
∞∑
i=1

λi
∥∥yin − p∥∥2 −

∞∑
i=1

λiλ0

∥∥xn − yin∥∥2

−
∞∑

i,j=1,i 6=j
λiλj

∥∥yin − yjn∥∥2

≤ λ0‖xn − p‖2 +

∞∑
i=1

λi
∥∥yin − p∥∥2 −

∞∑
i=1

λiλo
∥∥xn − yin∥∥2

≤ λ0‖xn − p‖2 +

∞∑
i=1

λi(H(Tixn, Tip))
2 −

∞∑
i=1

λiλo
∥∥xn − yin∥∥2

≤ λ0‖xn − p‖2 +
∞∑
i=1

λi

(
‖xn − p‖2 + k

∥∥xn − yin∥∥2
)

−
∞∑
i=1

λiλ0

∥∥xn − yin∥∥2

=

∞∑
i=0

λi‖xn − p‖2 −
∞∑
i=1

λi(λ0 − k)
∥∥xn − yin∥∥2

(6.2.2)

= ‖xn − p‖2 −
∞∑
i=1

λi(λ0 − k)
∥∥xn − yin∥∥2

. (6.2.3)

Thus, limn→∞ ‖xn − p‖ exists. Moreover,

∞∑
i=1

λi
∥∥xn − yin∥∥2 ≤ 1

λ0 − k

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
,

which implies that

λi
∥∥xn − yin∥∥2 ≤ 1

λ0 − k

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
.

Therefore,

λi

∞∑
n=1

∥∥xn − yin∥∥2 ≤ 1

(λ0 − k)

∞∑
n=1

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
<∞.

Hence, limn→∞
∥∥xn − yin∥∥ = 0 ∀i = 1, 2, .... Since yin ∈ Tixn, i = 1, 2, ..., it follows

that
0 ≤ d(xn, Tixn) ≤

∥∥xn − yin∥∥.
Thus, limn→∞ d(xn, Tixn) = 0 ∀ i = 1, 2, ....

The proof is complete.
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Theorem 6.2.2 Let K be a nonempty, closed and convex subset of a real Hilbert
space H and T : K → CB(K) be a countable family of multi-valued ki-strictly
pseudo-contractive mappings, ki ∈ (0, 1), i = 1, 2, ..., such that

⋂∞
i=1 F (Ti) 6= ∅.

Assume that for p ∈
⋂∞
i=1 F (Ti), Ti(p) = {p}. Let {xn} be a sequence defined by

x0 ∈ K,

xn+1 = λ0xn +
∞∑
i=1

λiy
i
n (6.2.4)

where yin ∈ Tixn, n ≥ 1 and λi ∈ (k, 1), i = 1, 2, ... such that
∑∞

i=0 λi = 1 and
k := supi≥1 ki. Suppose ∃ i0 ∈ N such that Ti0 is semi-compact. Then, the sequence
{xn} converges strongly to an element of

⋂∞
i=1 F (Ti).

Proof From Theorem 6.2.1, we have limn→∞ d(xn, Tixn) = 0, i = 1, 2, .... Since Ti0 ,
is semi-compact, there exists a subsequence {xnk

} of {xn} such that xnk
→ q ∈ K as

k →∞. Also, by continuity of Ti, i = 1, 2, ..., we have d(xnk
, Tixnk

)→ d(q, Tiq), i =
1, 2, ... as k →∞. Therefore, d(q, Tiq) = 0, i = 1, 2, ..., and so q ∈ F (Ti), i = 1, 2, ...
Thus, from (6.2.2), we have that limn→∞ ‖xn − q‖ exists; and since xnk

→ q, it
follows that limn→∞ ‖xn − q‖ = 0. So, {xn} converges strongly to q ∈

⋂∞
i=1 F (Ti).

The following corollary follows from Theorem 6.2.2 and Remark 6.1.2

Corollary 6.2.3 Let K be a nonempty, compact and convex subset of a real Hilbert
space H and T : K → CB(K) be a countable family of multi-valued ki-strictly
pseudo-contractive mappings, ki ∈ (0, 1), i = 1, 2, ..., such that

⋂∞
i=1 F (Ti) 6= ∅, and

supi≥1 ki ∈ (0, 1). Assume that for p ∈
⋂∞
i=1 F (Ti), Ti(p) = {p}. Let {xn} be a

sequence defined iteratively for arbitrary x0 ∈ K by

xn+1 = λ0xn +

∞∑
i=1

λiy
i
n (6.2.5)

where yin ∈ Tixn, n ≥ 1 and λ0 ∈ (k, 1), i = 1, 2, ...;
∑∞

i=0 λi = 1 and k := supi≥1 ki,
then the sequence {xn} converges strongly to an element of

⋂∞
i=1 F (Ti).

Remark 6.2.4 It is worth mentioning that the recursion formulas studied in this
chapter are of the Krasnoselskii-type which is well known to be superior to the recur-
sion formula of either the Mann algorithm or the so-called Ishikawa-type algorithm
(see [67]).

Remark 6.2.5 Our theorems extend the results of Chidume et al. [39] and Chidume
and Ezeora [41] from a single multi-valued strictly pseudo- contractive mappings
and a finite family of multi-valued strictly pseudo-contractive mappings, respec-
tively, to a countable family of multi-valued strictly pseudo-contractive mappings.
Furthermore, under the setting of Hilbert spaces, our theorems and corollaries im-
prove the convergence theorems for multi-valued nonexpansive mappings studied
in Sastry and Babu [101], Panyanak [90] to a more general class of multi-valued
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strictly pseudo-contractive mappings. Also, in our algorithms, yn ∈ Txn is arbitrary
and is not required to satisfy the very restrictive condition, “yn ∈ Txn such that
‖yn − x∗‖ = d(x∗, Txn)” imposed in [74] and [103].

All the results of this chapter are the results obtained in [35] which was published
in: International Journal of Mathematical Analysis.



CHAPTER 7

Approximation of Solutions of Hammerstein Equations with
Strongly Monotone and Bounded Operators in Classical Banach

Spaces

7.1 Introduction

Let Ω ⊂ Rn be bounded. Let k : Ω×Ω→ R and f : Ω×R→ R be measurable real-
valued functions. An integral equation (generally nonlinear) of Hammerstein-type
has the form

u(x) +

∫
Ω
k(x, y)f(y, u(y))dy = w(x), (7.1.1)

where the unknown function u and inhomogeneous function w lie in a Banach space
E of measurable real-valued functions. If we define F : F(Ω,R) → F(Ω,R) and
K : F(Ω,R)→ F(Ω,R) by

Fu(y) = f(y, u(y)), x ∈ Ω,

and

Kv(x) =

∫
Ω
k(x, y)v(y)dy, x ∈ Ω,

respectively, where F(Ω,R) is a space of measurable real-valued functions defined
from Ω to R, then equation (7.1.1) can be put in an abstract form

u+KFu = w. (7.1.2)

Without loss of generality we may assume that w ≡ 0 so that (7.1.2) becomes

u+KFu = 0. (7.1.3)

In this chapter, we shall construct a coupled iterative process and prove its strong
convergence to a solution of the Hammerstein equation (7.1.3) in Lp spaces, 1 < p <

53
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∞, where the operators F : Lp → Lp
∗ and K : Lp

∗ → Lp are strongly monotone and
bounded operators. Futhermore, our technique of proof is of independent interest.
Before stating the main results of this chapter we start with the following definitions
and lemmas that will be useful subsequently.

Lemma 7.1.1 (see e.g., [29], p. 55) Let E = Lp, 1 < p < 2, then the following
inequalities hold for all x, y in Lp, and some constant cp > 0.

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉+ cp‖y‖2, (7.1.4)

〈x− y, J(x)− J(y)〉 ≥ (p− 1)‖x− y‖2. (7.1.5)

Observe that this inequality yields

||J−1(x)− J−1(y)|| ≤ L1||x− y||,

where L1 := 1
p−1 .

Let E = Lp, 1 < p < 2. Define φp : E × E → R by

φp(x, y) = ‖y‖2 − 2〈x, j(y)〉+ cp‖x‖2, (7.1.6)

where cp is the constant appearing in inequality (7.1.4). Then, from (7.1.4) we have
that

‖x− y‖2 ≥ φp(x, y). (7.1.7)

Also, following the pattern of proof of Lemma 2.2.3, the following inequality can
be established.

Vp(x, x
∗) + 2〈J−1x∗ − x, y∗〉 ≤ Vp(x, x∗ + y∗) (7.1.8)

for all x ∈ E and x∗, y∗ ∈ E∗, where Vp(x, x
∗) = φp(x, J

−1x∗). Moreover, it can be
easily seen that

φ(x, y) = φp(x, y) + (1− cp)‖x‖2. (7.1.9)

Thus, the following inequality follows from inequality (2.2.2).

‖y‖ ≤
√
φp(x, y) + (1− cp)‖x‖+ ‖x‖ ∀ x, y ∈ E. (7.1.10)

7.2 Convergence Theorems in Lp spaces, 1 < p < 2

In the following we assume that R(F ) = D(K) = E∗.

Theorem 7.2.1 Let E = Lp, 1 < p < 2. Let F : E → E∗ and K : E∗ → E be
strongly monotone and bounded maps. For (u0, v0) ∈ E × E∗, define the sequences
{un} and {vn} in E and E∗ respectively by

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 0, (7.2.1)
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vn+1 = J−1
∗ (J∗vn − αn(Kvn + un)), n ≥ 0, (7.2.2)

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn =∞,
∑∞

n=1 α
2
n <

∞ and
∑∞

n=1 α
q

q−1
n < ∞, where q is such that 1

p + 1
q = 1. Assume that the equa-

tion u + KFu = 0 has a solution. Then, there exists γ0 > 0 such that if αn ≤ γ0

for all n ≥ 1, the sequences {un}∞n=1 and {vn}∞n=1 converge strongly to u∗ and v∗,
respectively, where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.

Proof We first prove that the sequences {un}∞n=1 and {vn}∞n=1 are bounded. The
proof is by induction. For (un, vn), (u∗, v∗) ∈ Lp × Lq where u∗ is the solution of
(7.1.3) with v∗ = Fu∗, set wn = (un, vn) and w∗ = (u∗, v∗). Define Φp : (E ×E∗)×
(E × E∗)→ R and Φ : (E × E∗)× (E × E∗)→ R by

Φp(w1, w2) = φp(u1, u2) + φ(v1, v2) (7.2.3)

and
Φ(w1, w2) = φ(u1, u2) + φ(v1, v2), (7.2.4)

respectively, where w1 = (u1, v1) and w2 = (u2, v2). Let E × E∗ be endowed with

the norm ‖(u, v)‖ = (‖u‖2E + ‖v‖2E∗)
1
2 . Let r > 0 be such that

r ≥ max {Φp(w
∗, w0), 6q‖v∗‖2}. (7.2.5)

Since F and K are bounded, define

M1 := L1 sup{‖Fu− v‖2 : ‖u‖ ≤
√
r + (1− cp)‖u∗‖+ ‖u∗‖; ‖v‖ ≤ ‖v∗‖+

√
r}+ 1;

and

M2 := mq sup{‖Kv+u‖
q

q−1 : ‖u‖ ≤
√
r + (1− cp)‖u∗‖+‖u∗‖; ‖v‖ ≤ ‖v∗‖+

√
r}+1,

where cp is the constant appearing in inequality (7.1.4), mq (2 ≤ q < ∞) is the
Hölder continuity constant appearing in Lemma 2.2.3 (Chapter 3) and L1 is the
Lipschitz constant of J−1. Define

γ0 :=
[1

2
min

{ kr

6M1
,
kr

6M2

}]q−1
,

where k = min{k1, k2}, k1 and k2 are the constants of strong monotonicity of F and
K, respectively. We claim that Φp(w

∗, wn) ≤ r ∀ n ≥ 1. Indeed, by construction,
we have Φp(w

∗, w0) ≤ r. Suppose that Φp(w
∗, wn) ≤ r for some n ≥ 1. This implies

that
φp(u∗, un) + φ(v∗, vn) ≤ r, ∀ n ≥ 1.

So, from inequalities (7.1.10) and (2.2.2), we have:

‖un‖ ≤
√
r + (1− cp)‖u∗‖+ ‖u∗‖ and ‖vn‖ ≤ ‖v∗‖+

√
r, ∀ n ≥ 1,
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respectively. We now prove that Φp(w
∗, wn+1) ≤ r. Using the definition of un+1

and inequality (7.1.8) with y∗ = αn(Fun − vn) we obtain:

φp(u
∗, un+1) = φp(u

∗, J−1(Jun − αn(Fun − vn))) = Vp(x
∗, Jun − αn(Fun − vn))

≤ Vp(u
∗, Jun)− 2〈J−1(Jun − αn(Fun − vn))− u∗, αn(Fun − vn)〉

= Vp(u
∗, Jun)− 2αn〈un − u∗, (Fun − vn)〉

−2αn〈J−1(Jun − αn(Fun − vn))− J−1(Jun), (Fun − vn)〉.
≤ φp(u

∗, un)− 2αn〈un − u∗, (Fun − vn)〉
+2αn‖J−1(Jun − αn(Fun − vn))− J−1(Jun)‖‖(Fun − vn)‖.

Observe that

〈un − u∗, (Fun − vn)〉 = 〈un − u∗, (Fun − Fu∗)〉+ 〈un − u∗, (Fu∗ − vn)〉.

Now, using the fact that A is strongly monotone and that J−1 is Lipschitz we
obtain:

φp(u
∗, un+1) ≤ φp(u

∗, un)− 2αnk1‖un − u∗‖2 + 2αnαnL1‖Fun − vn‖2

+ 2αn〈un − u∗, (vn − Fu∗)〉

Using inequality (7.1.7), definition of M1 and the fact that k = min{k1, k2} we have

φp(u
∗, un+1) ≤ (1− 2αnk)φp(u

∗, un) + 2αnαnM1 (7.2.6)

+ 2αn〈un − u∗, (vn − Fu∗)〉.

Similarly, using Lemma 3.1.4 with yn = αn(Kvn + un) we obtain:

φ(v∗, vn+1) ≤ φ(v∗, vn)− 2αnk‖vn − v∗‖2

+ 2αn‖J−1
∗ (J∗vn − αn(Kvn + un))− J−1

∗ (J∗un)‖‖(Kvn + un)‖
+ 2αn〈vn − v∗,−(Kv∗ + un)〉.

Using the fact that J−1
∗ is Hölder continuous on bounded sets, the definition of M2

and Lemma 2.2.2 we have

φ(v∗, vn+1) ≤ (1− 2αnk)φ(v∗, vn) + 2αnα
1

q−1
n M2 + 2αnqk‖v∗‖2 (7.2.7)

+ 2αn〈vn − v∗,−(Kvn + un)〉.

Adding (7.2.6) and (7.2.7), we have

Φp(w
∗, wn) ≤ (1− 2αnk)Φp(w

∗, wn) + 2αnαnM1

+ 2αnα
1

q−1
n M2 + 2αnkq‖v∗‖2

≤ (1− 2αnk)Φp(w
∗, wn) + 2αnγ0M1

+ 2αnγ0M2 + 2αnkq‖v∗‖2.
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Using definition of γ0, induction hypothesis and inequality (7.2.5) we have:

Φp(w
∗, wn) ≤ (1− 2αnk)r +

αnk

3
+
αnk

3
+
αnk

3
≤ (1− αnk)r ≤ r.

Hence, Φp(w
∗, wn+1) ≤ r. By induction, Φ(w∗, wn) ≤ r ∀ n ≥ 1. Consequently,

we have φp(u
∗, un+1) ≤ r and φ(v∗, vn+1) ≤ r. Thus from inequalities (7.1.10) and

(2.2.2) we have that {un} and {vn} are bounded, respectively.

We now prove that Φ(w∗, wn+1) → 0 as n → ∞. If we set M0 = L1 sup{‖Fun −
vn‖2}, following the same method of computation above with φ(u∗, un+1) instead
of φp(u

∗, un+1) and using Lemma 2.2.3 obtain that

φ(u∗, un+1) ≤ φ(u∗, un)− 2αnk‖un − u∗‖2 + 2α2
nM0 (7.2.8)

+ 2αn〈un − u∗, (vn − Fu∗)〉

Simillarly, we have

φ(v∗, vn+1) ≤ φ(v∗, vn)− 2αnk‖vn − v∗‖2 + 2αnα
1

q−1
n M2 (7.2.9)

+ 2αn〈vn − v∗,−(Kv∗n + un)〉

Adding (7.2.8) and (7.2.9) we obtain:

Φp(w
∗, wn+1) ≤ Φp(w

∗, wn)− 2αnk(‖un − u∗‖2 + ‖vn − v∗‖2) (7.2.10)

+ 2α2
nM0 + 2α

q
q−1
n M2.

By Lemma 2.3.5, we obtain that lim Φ(w∗, wn) exists. Futhermore, using the con-
dition

∑
αn = ∞, we obtain that lim inf(‖un − u∗‖2 + ‖vn − v∗‖2) = 0. So,

there exist a subsequences {unk
} of {un}, {vnk

} of {vn} such that unk
→ u∗ and

vnk
→ v∗. Using the definition of φ and the continuity of J , we have φ(u∗, unk

) =
‖x∗‖ − 2〈x∗, J(unk

)〉 + ‖unk
‖ → 0 as k → ∞. Simillarly, using the continu-

ity of J∗ we have φ(v∗, vnk
) = ‖x∗‖ − 2〈x∗, J∗(vnk

)〉 + ‖vnk
‖ → 0 as k → ∞.

Thus, again by Lemma 2.3.5, we obtain that lim Φ(w∗, wn) = 0. Hence we have
limφ(u∗, un) = limφ(v∗, vn) = 0. Therefore, by Lemma 2.2.1, we conclude that,
lim ‖un − u∗‖ = lim ‖vn − v∗‖ = 0. This completes the proof.

7.3 Convergence Theorems in Lp spaces, p ≥ 2

In the theorem below, we assume R(F ) = D(K) = E∗. We now prove the following
theorem.

Theorem 7.3.1 Let E = Lp, 2 ≤ p < ∞. Let F : E → E∗ and K : E∗ → E be
strongly monotone and bounded maps. For arbitrary (u0, v0) ∈ E × E∗, define the
sequences {un} and {vn} in E and E∗, respectively, by

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 0, (7.3.1)



General Introduction 58

vn+1 = J−1
∗ (J∗vn − αn(Kvn + un)), n ≥ 0, (7.3.2)

where {αn}∞n=1 ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn =∞,
∑∞

n=1 α
2
n <

∞ and
∑∞

n=1 α
p

p−1
n < ∞. Assume that the equation u + KFu = 0 has a solution.

Then, there exists γ0 > 0 such that if αn ≤ γ0 for all n ≥ 1, the sequences {un}∞n=1

and {vn}∞n=1 converge strongly to u∗ and v∗ respectively, where u∗ is the solution of
u+KFu = 0 with v∗ = Fu∗.

Proof We first prove that the sequences {un}∞n=1 and {vn}∞n=1 are bounded. The
proof is by induction. For (un, vn), (u∗, v∗) ∈ Lp × Lq where u∗ is the solution of
(7.1.3) with v∗ = Fu∗, set wn = (un, vn) and w∗ = (u∗, v∗). Define Φq : (E ×E∗)×
(E × E∗)→ R and Φ : (E × E∗)× (E × E∗)→ R by

Φq(w1, w2) = φ(u1, u2) + φq(v1, v2) (7.3.3)

and
Φ(w1, w2) = φ(u1, u2) + φ(v1, v2), (7.3.4)

respectively, where w1 = (u1, v1), w2 = (u2, v2) and q is such that 1
p + 1

q = 1. Let

E ×E∗ be endowed with the norm ‖(u, v)‖ = (‖u‖2E + ‖v‖2E∗)
1
2 . Let r > 0 be such

that
r ≥ max {Φq(w

∗, w0), 6p‖v∗‖2}. (7.3.5)

Since F and K are bounded, define

M1 := mp sup{‖Fu− v‖2 : ‖u‖ ≤ ‖u∗‖+
√
r; ‖v‖ ≤

√
r + (1− cq)‖v∗‖+ ‖v∗‖}+ 1;

and

M2 := L1 sup{‖Kv+u‖
q

q−1 : ‖u‖ ≤ ‖u∗‖+
√
r; ‖v‖ ≤

√
r + (1− cq)‖v∗‖+‖v∗‖}+1,

where cq is the constant appearing in inequality (7.1.4), mp is the Hölder continuity
constant appearing in Lemma 2.2.3 and L1 is the Lipschitz constant of J−1. Define

γ0 :=
[1

2
min

{ kr

6M1
,
kr

6M2

}]p−1
,

where k = min{k1, k2}, k1 and k2 are the constants of strong monotonicity of F and
K, respectively. We claim that Φq(w

∗, wn) ≤ r ∀ n ≥ 1. Indeed, by construction,
we have Φq(w

∗, w0) ≤ r. Suppose that Φq(w
∗, wn) ≤ r for some n ≥ 1. This implies

that
φ(u∗, un) + φq(v

∗, vn) ≤ r, ∀ n ≥ 1.

So, from inequalities (7.1.10) and (2.2.2), we have:

‖un‖ ≤ ‖u∗‖+
√
r and ‖vn‖ ≤

√
r + (1− cq)‖v∗‖+ ‖v∗‖, ∀ n ≥ 1,



General Introduction 59

respectively. We prove that Φq(w
∗, wn+1) ≤ r. Using the definition of un+1 and

inequality (7.1.8) with y∗ = αn(Fun − vn), we obtain that:

φ(u∗, un+1) = φ(u∗, J−1(Jun − αn(Fun − vn))) = V (x∗, Jun − αn(Fun − vn))

≤ V (u∗, Jun)− 2〈J−1(Jun − αn(Fun − vn))− u∗, αn(Fun − vn)〉
= V (u∗, Jun)− 2αn〈un − u∗, (Fun − vn)〉
−2αn〈J−1(Jun − αn(Fun − vn))− J−1(Jun), (Fun − vn)〉.

≤ φ(u∗, un)− 2αn〈un − u∗, (Fun − vn)〉
+2αn‖J−1(Jun − αn(Fun − vn))− J−1(Jun)‖‖(Fun − vn)‖.

Observe that

〈un − u∗, (Fun − vn)〉 = 〈un − u∗, (Fun − Fu∗)〉+ 〈un − u∗, (Fu∗ − vn)〉.

Now, using the fact that A is strongly monotone and that J−1 is Hölder continuous
we obtain:

φ(u∗, un+1) ≤ φ(u∗, un)− 2αnk1‖un − u∗‖2 + 2αnα
1

p−1
n mp‖Fun − vn‖

p
p−1

+ 2αn〈un − u∗, (vn − Fu∗)〉

Using Lemma 2.2.2, definition of M1 and the fact that k = min{k1, k2} we have

φ(u∗, un+1) ≤ (1− 2αnk)φ(u∗, un) + 2αnα
1

p−1
n M1 + 2αnkp‖v∗‖2 (7.3.6)

+ 2αn〈un − u∗, (vn − Fu∗)〉.

Similarly, using inequality (7.1.8) with y∗ = αn(Kvn + un) we obtain:

φp(v
∗, vn+1) ≤ φp(v

∗, vn)− 2αnk‖vn − v∗‖2

+ 2αn‖J−1
∗ (J∗vn − αn(Kvn + un))− J−1

∗ (J∗un)‖‖(Kvn + un)‖
+ 2αn〈vn − v∗,−(Kv∗ + un)〉.

Using the fact that J−1
∗ is Lipschitz, the definition of M2 and inequality (7.1.7) we

obtain:

φp(v
∗, vn+1) ≤ (1− 2αnk)φp(v

∗, vn) + 2α2
nM2 (7.3.7)

+ 2αn〈vn − v∗,−(Kvn + un)〉.

Adding (7.3.6) and (7.3.7), we have

Φp(w
∗, wn+1) ≤ (1− 2αnk)Φp(w

∗, wn) + 2αnαnM2 (7.3.8)

+ 2αnα
1

q−1
n M1 + 2αnkp‖v∗‖2

≤ (1− 2αnk)Φp(w
∗, wn) + 2αnγ0M2

+ 2αnγ0M1 + 2αnkp‖v∗‖2.
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Using definition of γ0, induction hypothesis and inequality (7.3.5) we have:

Φp(w
∗, wn+1) ≤ (1− 2αnk)r +

αnk

3
+
αnk

3
+
αnk

3
≤ (1− αnk)r ≤ r.(7.3.9)

Hence, Φp(w
∗, wn+1) ≤ r. By induction, Φ(w∗, wn) ≤ r ∀ n ≥ 1. Consequently,

we have φp(v
∗, vn+1) ≤ r and φ(u∗, un+1) ≤ r. Thus from inequalities (7.1.9) and

(2.2.2) we have that {un} and {vn} are bounded, respectively.

We now prove that Φ(w∗, wn+1) → 0 as n → ∞. If we set M0 = mp sup{‖Fun −
vn‖

p
p−1 }, following the same method of computation above we obtain:

φ(u∗, un+1) ≤ φ(u∗, un)− 2αnk‖un − u∗‖2 + 2α
p

p−1
n M0 (7.3.10)

+ 2αn〈un − u∗, (vn − Fu∗)〉

Simillarly, we have

φ(v∗, vn+1) ≤ φ(v∗, vn)− 2αnk‖vn − v∗‖2 + 2α2
nM2 (7.3.11)

+ 2αn〈vn − v∗,−(Kv∗n + un)〉

Adding (7.3.10) and (7.3.11) we obtain:

Φp(w
∗, wn+1) ≤ Φp(w

∗, wn)− 2αnk(‖un − u∗‖2 + ‖vn − v∗‖2) (7.3.12)

+ 2α
p

p−1
n M0 + 2α2

nM2.

By Lemma 2.3.5, we obtain that lim Φ(w∗, wn) exists. Futhermore, using the con-
dition

∑
αn = ∞, we obtain that lim inf(‖un − u∗‖2 + ‖vn − v∗‖2) = 0. So,

there exist a subsequences {unk
} of {un}, {vnk

} of {vn} such that unk
→ u∗ and

vnk
→ v∗. Using the definition of φ and the continuity of J , we have φ(u∗, unk

) =
‖x∗‖ − 2〈x∗, J(unk

)〉 + ‖unk
‖ → 0 as k → ∞. Simillarly, using the continu-

ity of J∗ we have φ(v∗, vnk
) = ‖x∗‖ − 2〈x∗, J∗(vnk

)〉 + ‖vnk
‖ → 0 as k → ∞.

Thus, again by Lemma 2.3.5, we obtain that lim Φ(w∗, wn) = 0. Hence we have
limφ(u∗, un) = limφ(v∗, vn) = 0. Therefore, by Lemma 2.2.1, we conclude that,
lim ‖un − u∗‖ = lim ‖vn − v∗‖ = 0. This completes the proof.

Remark 7.3.2 Since every Lipschitz map is bounded, it is easy to see that our
theorems hold for Lipschitz φ- strongly monotone operators in Lp spaces, 1 < p <∞.

A prototype of the parameter in our theorems is the canonical choice αn = 1
n , n ≥ 1.

All the results of this chapter are the results obtained in [32], which was sub-
mitted to the Proceedings of the American Mathematical Society for consideration
for publication.
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