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Abstract

Algorithms for single-valued and multi-valued nonexpansive-type mappings
have continued to attract a lot of attentions because of their remarkable utility
and wide applicability in modern mathematics and other reasearch areas,(most
notably medical image reconstruction, game theory and market economy).
The first part of this thesis presents contributions to some crucial new concepts
and techniques for a systematic discussion of questions on algorithms for single-
valued and multi-valued mappings in real Hilbert spaces. Novel contributions
are made on iterative algorithms for fixed points and solutions of the split
equality fixed point problems of some single-valued pseudocontractive-type
mappings in real Hilbert spaces. Interesting contributions are also made on it-
erative algorithms for fixed points of a general class of multivalued strictly pseu-
docontractive mappings in real Hilbert spaces using a new and novel approach
and the thorems were gradually extended to a countable family of multi-valued
mappings in real Hilbert spaces.It also contains contains original research and
important results on iterative approximations of fixed points of multi-valued
tempered Lipschitz pseudocontractive mappings in Hilbert spaces.

Apart from using some well known iteration methods and identities, some
very new and innovative iteration schemes and identities are constructed. The
thesis serves as a basis for unifying existing ideas in this area while also gener-
alizing many existing concepts. In order to demonstrate the wide applicability
of the theorems, there are given some nontrivial examples and the technique
is demonstrated to be more valuable than other methods currently in the lit-
erature.

The second part of the thesis focuses on some related optimization problems
in some Banach spaces. Some iterative algorithms are proposed for common
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solutions of zeroes of a monotone mapping and a finite family of nonexpansive
mappings in Lebesgue spaces.

The thesis presents in a unified manner, most of the recent works of this author
in this direction, namely:

• LetH1, H2, H3 be real Hilbert spaces, S : H1 → H1 and T : H2 → H2 two
Lipschitz hemicontractive mappings, and A : H1 → H3 and B : H2 → H3

are two bounded linear mappings. Then the coupled sequence (xn, yn)
generated by the algorithm

(x1, y1) ∈ H1 ×H2, chosen arbitarily,
(xn+1, yn+1) = (1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)]

+αG(un, vn),

(un, vn) = (1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)]

+αG(xn, yn),

α ∈ (0, L−2(
√
L2 + 1− 1))

λ ∈ (0, 2α
λ̄(A,B)

),

converges weakly to a solution (x∗, y∗) of the Split Equality Problem.

• Let K be a nonempty, closed, convex subset of a real Hilbert space H.
Let T : K → CB(K) be a mapping satisfying

D(Tx, Ty) ≤ ‖x− y‖2 + kD(Ax,Ay), k ∈ (0, 1), A := I − T.

Assume that F (T ) 6= ∅ and Tp = {p} ∀p ∈ F (T ). Then, the sequence
{xn} generated by a certain Krasnolselskii type algorithm is an approx-
imate fixed point sequence of T and under appropriate mild conditions,
the sequence {xn} converges strongly to a fixed point of T .

• Let K be a nonempty, closed and convex subset of a real Hilbert space
H. For i = 1, 2, ...,m, let Ti : K → CB(K) be a family of mappings
satisfying

D(Tix, Tiy) ≤ ‖x− y‖2 + kiD(Aix,Aiy), ki ∈ (0, 1), Ai := I − Ti,

for each i. Suppose that ∩mi=1F (Ti) 6= ∅ and assume that for p ∈
∩mi=1F (Ti), Tip = {p}. Then, the sequence {xn} generated by the al-

iii



gorithm:

x0 ∈ K chosen arbitarily,

xn+1 = (λ0)xn +
m∑
i=1

λiy
i
n,

yin ∈ Sin :=
{
zin ∈ Tixn : D2({xn}, Tixn) ≤ ‖xn − zin‖2 + 1

n2

}
λ0 ∈ (k, 1),

m∑
i=0

λi = 1, and k := max{ki, i = 1, 2, ...,m, }.

is an approximate fixed point sequence for the finite family of mappings.

• Let Ti : K → CB(K) be a countably infinite family of mappings satis-
fying

D(Tix, Tiy) ≤ ‖x− y‖2 + kiD(Aix,Aiy), ki ∈ (0, 1), Ai := I − Ti.

Assume that κ := sup
i
ki ∈ (0, 1), ∩∞i=1F (Ti) 6= ∅ and for p ∈ ∩∞i=1F (Ti), Tip =

{p}. Then, the Krasnoselskii type sequence {xn} generated by the algo-
rithm:



x0 ∈ K, arbitrary,
ζ in ∈ Γin :=

{
zin ∈ Tixn : D2({xn}, Tixn) ≤ ‖xn − zin‖2 + 1

n2

}
xn+1 = δ0xn +

∞∑
i=1

δiζ
i
n,

δ0 ∈ (κ, 1),
∑∞

i=0 δi = 1,

is an approximate fixed point sequence of the family Ti.

• Let H be a real Hilbert space, K ⊆ H be a nonempty, closed and convex.
Let T : K → CB(K) be a multivalued mapping satisfying F (T ) 6= ∅,
diam(Tx ∪ Ty) ≤ L‖x− y‖ for some L > 0, and

D2(Tx, Tp) ≤ ‖x− p‖2 +D2(x, Tx), ∀x ∈ H, p ∈ F (T ). (0.0.1)

Let {xn} be a sequence defined by the algorithm:

x1 ∈ K
xn+1 = (1− λ)xn + λzn, λ ∈ (0, L−2[

√
1 + L2 − 1])

zn ∈ Γn := {un ∈ Tyn : D(xn, T yn) ≤ ‖xn − un‖2 + θn}
yn = (1− λ)xn + λwn,

wn ∈ Πn := {vn ∈ Txn : D(xn, Txn) ≤ ‖xn − vn‖2 + θn}

θn ≥ 0,
∞∑
n=1

θn <∞
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Then p ∈ F (T ), lim
n→∞

‖xn − p‖ exists and {xn} is an approximate fixed
point sequence of T .

• Let E = Lp, 1 < p ≤ 2, and E∗ = Lq,
1
p

+ 1
q

= 1. For k = 1, 2, ..., N, let
Tk : E → E be a finite family of nonextensive mappings and A : E →
E∗ be an η−strongly monotone mapping which is also L−Lipschitzian.
Assume that S := A−1(0)∩∩Nk=1Fix(Tk) 6= ∅. Then for arbitrary x1 ∈ E,
the sequence {xn} defined by

xn+1 = j−1
(
j(T[n]xn)− λA(T[n]xn)

)
, n ≥ 1 (0.0.2)

converges to the common solution of the problem VIP∗(A,F ix(T[n])),
where T[n] := TnmodN , and λ ∈ (0, η

2L2
1L2

), L1, L2 the Lipschitz constants
for the mappings A and j−1, respectively.

• Let E = Lp, 2 ≤ p <∞ and A : Lp → Lq,
1
p

+ 1
q

= 1, be an η-strongly
monotone mapping which is also Lipschitzian. For k = 1, 2, ..., N , let
Tk : Lp → Lp be a finite family of nonextensive mappings. Assume that
S := A−1(0)∩∩Nk=1Fix(Tk) 6= ∅. Then for arbitrary x1 ∈ E, the sequence
{xn} defined by

xn+1 = j−1
(
j(T[n]xn)− λnA(T[n]xn)

)
, n ≥ 1 (0.0.3)

converges strongly to the unique common solution of the problem VIP∗(A,F ix(Tk)),

where T[n] := TnmodN , and λn ∈
(

0, η

2L1L
p

p−1
2

)
satisfies

∞∑
n=1

λn = ∞,
∞∑
n=1

λ
p

p−1
n < ∞ , L1, L2 are the Lipschitz constants for the mappings A

and j−1, respectively.
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CHAPTER 1

General Introduction

Fixed Point Theory is concerned with solutions of the equation

x = Tx (1.0.1)

where T is a (possibly) nonlinear operator defined on a metric space. Any x
that solves (1.0.1) is called a fixed point of T and the collection of all such
elements is denoted by F (T ). For a multi-valued mapping T : X → 2X , a
fixed point of T is any x in X such that x ∈ Tx.

Fixed Point Theory is inarguably the most powerful and effective tools
used in modern nonlinear analysis today. It is still an area of current intensive
research as it has vast applicability in establishing existence and uniqueness of
solutions of diverse mathematical models like solutions to optimization prob-
lems, variational analysis, and ordinary differential equations. These models
represent various phenomena arising in different fields, such as steady state
temperature distribution, neutron transport theory, economic theories, chem-
ical equations, optimal control of systems, models for population, epidemics
and flow of fluids.

For example, given an initial value problem{
dx(t)
dt

= f(t, x(t)),
x(t0) = x0.

(1.0.2)

This system is transformed into the functional equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.
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To establish existence of solution to system (1.0.2), we consider the operator
T : X → X(X = C([a, b])) defined by

Tx = x0 +

∫ t

t0

f(s, x(s))ds.

Then finding a solution to the initial value problem (1.0.2) amounts to finding
a fixed point of T .

The existence(and uniqueness) of solution to equation (1.0.1), certainly, de-
pends on the geometry of the space and the nature of the mapping T . Ex-
istence theorems are concerned with establishing sufficient conditions under
which the equation (1.0.1) will have a solution, but does not neccesarily show
how to find them. There are very many existence and uniqueness theorems in
the literature(see e.g. Kirk [67], Kato [62], Kōmura [68]).

Though existence theorems do not indicate how to construct a process start-
ing from a nonfixed point and convergent to a fixed point, they nevertheless
enhance understanding of conditions under which the existence of such fixed
points is guaranteed.

On the other hand, iterative methods of fixed points theory is concerned with
approximation or computation of sequences which converge to solutions of
(1.0.1). This is part of the problem that is being addressed in this thesis.

The pivot of the iterative methods of fixed point theory is the Banach con-
traction mapping principle. It states that a self map T on a complete metric
space (X, d) satisfying

d(Tx, Ty) ≤ kd(x, y), 0 ≤ k < 1, ∀x, y ∈ X, (1.0.3)

neccesarily has a unique fixed point and for any starting point x1, the sequence
{T nx1} converges strongly to that fixed point.

Many authors, see for example Alber [7], Boyd and Wong [25], have now inves-
tigated more general conditions under which a mapping will have a unique fixed
point and also developed iterative sequences that converge to such fixed points.

If k = 1 in the inequality (1.0.3) above, the mapping T is tagged nonexpansive.
There are many examples that show that xn+1 = T n(x) need not converge to
a fixed point of a nonexpansive mapping T , even if it has a unique fixed point.
We then need to impose additional conditions on T (and/or the space X) and
also modify the sequence T n(x) to ensure convergence to a fixed point of T .
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These notable iterative algorithms were introduced for nonexpansive mappings,
namely, the Krasnosel’skii sequence presented in [69] as: x1 ∈ X and

xn+1 =
1

2
(xn + Txn),

the Krasnoselskii-Mann algorithm given by: x1 ∈ X,

xn+1 = (1− λ)xn + λTxn, λ ∈ (0, 1),

the Halpern algorithm given in [59] as: u ∈ X arbitrary and

xn+1 = αnu+ (1− αn)Txn,

and the more general Mann sequence presented in [72] as

xn+1 = (1− αn)xn + αnTxn.

Diverse convergence theorems have been proved for these sequences, depend-
ing on the smoothness of the underlying space and/or the compactness of the
mapping T.

Efforts to establish convergence theorems for nonexpansive mappings is likely
the most rewarding research venture in nonlinear analysis. It has helped in
the development of the geometry of Banach spaces and other related class of
mappings, namely, monotone and accretive operators.

A mapping M : X → X∗ is called η−strongly monotone if

〈x− y,Mx−My〉 ≥ η‖x− y‖2, ∀x, y ∈ X,

and A : X → X is called η−strongly accretive if

〈Ax− Ay, j(x− y)〉 ≥ η‖x− y‖2, ∀x, y ∈ X,

where 〈., .〉 is the duality pairing between X and X∗, j(x−y) ∈ J(x−y) where
J is the normalized duality mapping. When η = 0, these mappings are called
monotone and accretive, respectively. If X is Hilbert space, these two notions
agree and they are simply refered to as monotone.

Accretive mappings have properties that are similar to those of monotone map-
pings. However, the use of the strongly nonlinear mapping J make the study
of such mappings difficult. In a sense, the duality mapping on a Banach space
has all the properties of the Banach space that makes it differ from a Hilbert
space and the space can be characterized, almost, exclusive by the mapping.
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These two ideas have proved to be very useful in many areas of interest. The
idea of accretive operators appear very often in partial differential equation,
in the existence theory of nonlinear evolution equations. On the other hand,
the idea of monotone operators appear in optimization theory and that, in
particular, include the increasingly important set-valued mapping called the
subdifferential. Given a convex, lower semicontinous function f , the subdiffer-
ential is ∂f : X → 2X

∗ given by

∂f(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈y − x, x∗〉, ∀y ∈ X}.

The subdifferential is a monotone mapping and it is well known that 0 ∈ ∂f(x̄)
if and only if f(x̄) = inf

x∈X
f(x). This motivates the study of the more general

problem of finding a zero, i.e x̄ such that 0 ∈ Ax̄, of a monotone operator A.

The question on the existence of zeros is studied under the concept of maximal
monotone operators. A monotne mapping A is maximal monotone if the graph
G(A) is a maximal element when graphs of monotone operators in X×X∗ are
partially ordered by set inclusion. In that case, for any (x, y) ∈ X ×X∗, the
inequality

〈y1 − y2, x1 − x2〉 ≥ 0,∀x2 ∈ D(A), y2 ∈ Ax2

implies y1 ∈ Ax2. Maximal accretive mappings are defined accordingly.

The accretive operators are intimately connected with an important general-
ization of nonexpansive mappings called the pseudocontractive mappings. A
mapping is pseudocontractive in the terminology of Browder and Petryshyn
[23] if for x, y in X, and for all r > 0,

‖x− y‖ ≤ ‖(x− y) + r[(x− Tx)− (y − Ty)]‖, .

By a result of Kato [62], this is equivalent to

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ 0.

Thus, a mapping T is pseudocontractive if and only if the complementary op-
erator A := I − T is accretive. Moreover, the zeros of A coincides with the
fixed points of T .

Another interesting relationship is that the resolvent of an accretive mapping
A always exists(i.e I +λA is invertible ) and it is nonexpansive. The resolvent
of A is a set valued mapping Jλ : X → 2X defined by

Jλ(x) = (I + λA)−1x, λ > 0.
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In this case, A−1(0) = Fix(Jλ). More precisely, the mapping Jλ is in fact
firmly nonexpansive, i.e

‖Jλ(x)− Jλ(y)‖2 ≤ 〈x− y, Jλ(x)− Jλ(y)〉, ∀x, y ∈ X.

The existence and approximation algorithms for zeros of maximal monotone
operators are usually formulated in relation with the corresponding problem
for fixed points of firmly nonexpansive mappings. This makes the study of
firmly nonexpansive, and the more general pseudocontractive mappings, an
important tool for monotone operators and the theory of optimization.

The metric projection operator has become a veritable tool in dealing with vari-
ational inequalities problem by iterative-projection method in Hilbert spaces.
Variational inequality problem V IP (A,C) involving an accretive operator A
and a convex set C can be proved to be equivalent to the fixed point problem
involving the nonexpansive mapping

T = PC(I − λA)

for arbitrary positive number λ. Conversely, given a differentiable functional
f , the V IP (∇f, C) is simply the optimality condition for the minimization
problem

min
x∈C

f(x).

Metric projection operators in Hilbert spaces are accretive and nonexpansive
and gives absolutely best approximations of any element of the closed convex
set. However, in the Banach space setting, this operator no longer possess
most of those properties that made them so effective in Hilbert spaces.

To study monotone-type mappings and the related pseudocontractive map-
pings in Banach spaces, some analogues of the Hilbert space type projection
operators were introduced. These mappings are natural extentions of the clas-
sical projection operators to Banach spaces. They have also helped in the
approximation of monotone operator in Banach spaces.

In the last five years or so, intensive effort are invested in developing feasible
iterative algorithm for approximating fixed points of multivalued pseudocon-
tractive type mappings and/or, correspondingly, zeros of monotone mappings
in Hilbert spaces and in the general Banach spaces. In each case, attempts
are made to recover Hilbert space type identities for these mappings. Most
of the study aim to derive a generalization of the multi-valued nonexpansive
mapping introduced in the classical work of Nadler [80]. Such method depends
heavily on the characterisation of the Hausdorf distance defined on closed and
bounded sets. The generalizations of existing ideas, on the other hand, should
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be due to the generalization of some properties of the Hausdorff distance.

In this thesis, we first establish some new characterizations of the Hausdorf
metric and use the ideas thereby to define some more general class of mul-
tivalued pseudocontractive mappings and prove convergent theorems for the
class of mappings defined. Attempts would be made to apply some of the
ideas obtained to real problems of interest. An example in this regard include
applications to split equality fixed point problems, introduced by Moudafi and
Al-Shemas[79] in (2013), which is formulated as finding a point x in a convex
set C and y in a convex set Q such that their images Ax and By under some
linear transformations A and B satisfy Ax = By. It serves as an inverse prob-
lem model in which constraints are imposed on the solutions in the domain of
a linear mapping as well as in its range.

This thesis gives new insight and direction in the study of a general class of
multivalued pseudocontractive mappings. It also studies a new method for
finding a common solution of a monotone operator and family of a general
class of nonexpansive mappings in some classical Banach spaces using the idea
of generalized projections.

The rest of the thesis is organized as follows. Chapter 2 introduces some no-
tions and recalls some basic definitions and ideas which are the bedrocks for
the formulation of our theorems and for effective reading of the subsequent
chapters.Detailed literature review involving multi-valued nonexpansive and
pseudocontractive-type mappings are presented. In Chapter 3, convergence
of a coupled iterative algorithm to a solution of some split equality problem
is presented. Chapter 4, deals with some contributions to convergence the-
orems for a general class of multivalued striclty pseudocontractive mappings
and Chapter 5 deals with the extension to finite and countable family. Chap-
ter 6 is devoted to convergence theorems for a class of multivalued Lipschitz
pseudocontractive mappings. We finally present in Chapter 7, an iterative al-
gorithm for common element of zeros of a monotone mapping and fixed points
of a general class of nonexpansive mappings in real Banach spaces.
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CHAPTER 2

Theoretical Framework

In this chapter, we aim to highlight some definitions on which the problems
are formulated and introduce some concepts and ideas used in the rest of the
chapters. This will include an overview of the geometry of some Banach spaces
and some well known iterative methods for single valued and multivalued pseu-
docontractive mappings.

2.1 Notions and Definitions
Unless otherwise specified, X represents a Banach space with norm ‖.‖. The
dual space X∗ of X is the Banach space of all bounded linear functionals on
X. It is endowed with the norm

‖x∗‖X∗ := sup
‖x‖=1

〈x, x∗〉,

where 〈., .〉 represent the pairing between the elements of X and X∗. Given
any sequence {xn} in X, we take xn → x∗ to mean {xn} converges strongly
to x∗ and xn ⇀ x∗ to mean that {xn} converges weakly to x∗. The set of real
numbers including +∞ is represented by R̄

2.1.1 Some Well known Definitions

Definition 2.1.1 A mapping T : X → X is called L−Lipschitzian if there
exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y,∈ X. (2.1.1)

7



Remark 2.1.1 If L = 1 in the inequality (2.1.1), the mapping is called non-
expansive and if L < 1, it is called a strict contraction. It is well known that
F (T ) is closed and convex whenever T is nonexpansive.

Definition 2.1.2 A mapping T : X → X is pseudocontractive in the termi-
nology of Browder and Petryshyn [23] if

‖x− y‖ ≤ ‖(x− y) + r[(x− Tx)− (y − Ty)]‖, ∀x, y ∈ X, r > 0. (2.1.2)

Remark: By the result of Kato [62], stated in Lemma (2.1.1) this is equivalent
to

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ 0.

Thus, a mapping T is pseudocontractive if and only if the the complementary
operator A := I − T is accretive.

A well known proper subclass of the class of pseudocontractive mappings
is the class of strictly pseudocontractive mapping.

Definition 2.1.3 Given a real Hilbert space H and a closed convex subset K
of H, let T : K → K be a mapping. Then T is said to be

• strictly pseudocontractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(x− Tx)− (y − Ty)‖2, ∀x, y ∈ K.
(2.1.3)

• demi-contractive if F (T ) 6= ∅ and there exists k ∈ [0, 1) such that

‖Tx− Tp‖2 ≤ ‖x− p‖2 + k‖x− Tx‖,∀(x, p) ∈ K × F (T ),

• hemicontractive if F (T ) 6= ∅ and

‖Tx− Tp‖2 ≤ ‖x− p‖2 + ‖x− Tx‖, ∀(x, p) ∈ K × F (T ).

2.1.2 The Notion of Subdifferential

We present in this section a few basic definitions about differentiability of
functions and in particular the subdifferential mapping.

Definition 2.1.4 Given a mapping f : X → R̄. We say that f is:

• proper if
D(f) := {x ∈ X : f(x) <∞} 6= ∅.
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• convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1), x, y ∈ D(f).

• lower semi-continuous (lsc) at x0 ∈ D(f) if

f(x0) ≤ lim inf
x→x0

f(x).

• G−differentiable at x0 ∈ D(f) if there exists a bounded linear mapping
f ′(x0) ∈ X∗ such that

〈h, f ′(x0)〉 = lim
t→0

f(x0 + th)− f(x0)

t
.

• Fre′chet−differentiable at x0 ∈ D(f) if it is G−differentiable, with deriva-
tive f ′(x0), and

lim
t→0

sup
‖h‖=1

∣∣∣f(x0 + th)− f(x0)

t
− 〈h, f ′(x0)〉

∣∣∣ = 0.

• subdifferentiable at x0 ∈ D(f) if there exists a bounded linear mapping
x∗ ∈ X∗, called a subgradient element, such that

f(x)− f(x0) ≥ 〈x− x0, x
∗〉, , ∀x ∈ X.

Remark 2.1.2 It is known, see for example Cioranescu [46], that every con-
vex lower semicontinous function f is subdifferentiable in the interior of its do-
main. Moreover, f is G−differentiable if and only if the subdifferential ∂f(x)
contains only one element, namely f ′(x) = ∇f(x), for each x ∈ D(f).

Definition 2.1.5 The subdifferential of a functional f at x0 is the set valued
mapping ∂f : X → 2X

∗ defined by

∂f(x0) := {x∗ ∈ X∗ : f(x)− f(x0)) ≥ 〈x− x0, x
∗〉} ∀x ∈ X.

The subdifferential is an increasing important multivalued mapping due to its
frequent use in the theory of optimization. Many functions of interest, for
example, the absolute value function f(x) = |x| on R, are not differentiable.
They may however be subdifferentiable. Therefore 0 ∈ ∂f(x̄) if and only
if f(x) ≥ f(x̄) holds for all x ∈ X. Finding a minimizer of f therefore is
equivalent to finding an x̄ ∈ X with 0 ∈ ∂f(x̄). This technique has been
applied successfully for example in game theory and market economy, in the
existence theory for equilibria.
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2.1.3 Duality Mappings and Characterization of Some
Banach Spaces

We present some characterizations of spaces according to their duality map-
pings.

It is a common knowlegde that the domain of a functional f is, almost, never
compact in the infinite dimensional spaces and therefore strong convergence
is almost never guaranteed. To enforce a form of convergence of a minimiz-
ing sequence, one uses some other properties of the functional. In particu-
lar, one assumes that f is weakly lower semicontinuous, i.e “if xn ⇀ u, then
f(u) ≤ lim inf f(xn)”. It is known that every convex lower semicontinous func-
tion is weakly lower semicontinous.

If the mapping f is differentiable, then the convexity can be characterized
exclusively by the derivative as follows

〈u− v, f ′(u)− f ′(v)〉 ≥ 0 ∀u, v ∈ X, (2.1.4)

where 〈., .〉 is the pairing between the elements of the dual X∗ and X. Any
mapping A : X → X∗ satisfying the type of inequality (2.1.4), i.e

〈u− v,A(u)− A(v)〉 ≥ 0 ∀u, v ∈ X,

is called a monotone mapping. We have noted that if f is convex and lower
semicontinuous but not neccesarily differentiable, we may still obtain the sub-
differential of f . The multivalued mapping ∂f satisfies the inequality (2.1.4)
in the sense that

〈u∗ − v∗, u− v〉 ≥ 0, ∀u, v ∈ X, u∗ ∈ ∂f(u), v∗ ∈ ∂f(v). (2.1.5)

This sugests that the inequality (2.1.4) is applicable to a wide range of areas
including multi-valued mappings.

Definition 2.1.6 Given a Banach space X with the topological dual X∗. We
recall that

• the modulus of convexity of X is a mapping δX : [0, 2]→ R defined by

δX(t) = inf{1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = t}, (2.1.6)

• and the modulus of smoothness is a mapping ρX : (0,∞)→ R defined by

ρX(t) = sup{1

2

(
‖x+ y‖+ ‖x− y‖

)
− 1 : ‖x‖ = 1, ‖y‖ = t}. (2.1.7)
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The space X is said to be uniformly convex whenever δX(t) > 0 for each
t ∈ (0, 2] and uniformly smooth if lim

t→0+

ρX(t)
t

= 0. Given real numbers p, q > 1,

the space X is called p−uniformly convex(resp. q−uniformly smooth) if for
some constant c > 0,

δX(t) ≥ ctp (resp. ρX(t) ≤ ctq).

Moreover, X is uniformly smooth if and only ifX∗ is uniformly convex and vice
versa. Also, if 1

p
+ 1

q
= 1, then X∗ is q−uniformly smooth if X is p−uniformly

convex and vice versa.

Common examples of p−uniformly convex spaces are the Lp spaces, 1 < p <
∞. Given a measure space (Ω,A, µ), we define a real Lebesgue space(Lp(Ω)),
1 < p <∞ as

Lp(Ω) := {f, f : Ω→ R̄, f A−measurable,
∫
Ω

|f |pdµ <∞}.

In this case, (Lp(Ω), ‖.‖p), where

‖f‖p =
(∫

Ω

|f |pdµ
) 1

p
,

is a normed linear space.

In the special case that Ω = N and µ is the counting measure δ, the space

Lp(N) = {f, f : N→ R, f(n) = xn,

∫
N

|f |p dδ <∞},

corresponds to

lp := {(xn)n :
∞∑
n=1

|xn|p <∞}.

Let q be the Holder conjugate exponent of p, i.e

q :=
p

p− 1
, 1 < p <∞.

For u ∈ Lq(Ω), we may define the linear functional Fu on (Lp(Ω))∗ by

Fu(f) :=

∫
Ω

f.u dµ, f ∈ Lp.
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The Holder inequality

|Fu(f)| =
∣∣∣ ∫

Ω

f.u dµ
∣∣∣ ≤ ‖u‖q‖f‖p

gives ‖Fu‖∗ ≤ ‖u‖q. Then, the mapping

Ip : Lq(Ω)→ (Lp(Ω))∗, u 7→ Fu,

is a one to one bounded linear operator with ‖Ip‖B(Lq ,(Lp)∗ ≤ 1.

With the isometry above in mind, we will habitually identify the space (Lp)
∗

with Lq in the sense that for any φ ∈ (Lp)
∗, there exist uφ ∈ Lq, such that

〈f, φ〉 =
∫

Ω
f.uφ dµ, ∀ f ∈ Lp, and ‖φ‖∗ = ‖uφ‖q.

It is well known, see for example Chidume [34], that

(a) X is p−uniformly convex if and only if X∗ is q−uniformly smooth,

(b) X is q−uniformly smooth if and only if X∗ is p−uniformly convex

Let X be a real p−uniformly convex and uniformly smooth Banach space with
the dual X∗ which is q−uniformly smooth and uniformly convex. We define
the functional fp : X → R by

fp(x) :=
1

p
‖x‖p, x ∈ X.

It is obvious that fp is striclty convex and lower semicontinuous. Then the
subdifferential of fp, which is actually the Fre’tchet derivative, is denoted by
Jp where

Jp(x) = {jp(x) ∈ X∗ : 〈jp(x), x〉 = ‖x‖p = ‖jp(x)‖p}. (2.1.8)

This mapping from X to X∗ is in most cases nonlinear and called the gener-
alized duality mapping of X with a guage function φ(t) = tp−1.

Topics on convex analysis and duality principles have expanded considerably
and have become increasingly popular in recent times. Among the applications,
we may mention the following:

(a) Game theory, market economy, optimization, convex programming; see
Aubin, [10], [11], Aubin and Ekeland [12], Barbu and Precupanu [14],

(b) Mechanics; see Moreau [77], Lions [70], Damlamian [49](for a problem
arising in plasma physics),
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(c) Theory of monotone operators and nonlinear semigroups, see Brezis[18],
Browder [20],

(d) Variational problems involving periodic solutions of Hamiltonian systems
and nonlinear vibrating strings; see Clark and Ekeland [47], Ekeland [55],

(d) Theory of large deviations in probability; see Azencott et al. [13]

For p = 2, in the functional fp above, the mapping J2 := J : X → 2X
∗ given

by

J(x) = {j(x) ∈ X∗ : 〈j(x), x〉 = ‖x‖2 = ‖j(x)‖2}, (2.1.9)

is called the normalized duality mapping. When it is understood that J is
single valued, we may use J(x) and j(x) interchangeably. Some of its very
useful properties are:

(a) For any x ∈ X, J(x) 6= ∅ (due to Hahn Banach theorem).

(b) For any real number α, J(αx) = αJ(x), for all x ∈ X.

(c) If X is a reflexive and smooth Banach space, then J is single-valued and
onto.

(d) If X is strictly convex, then J is injective.

(e) If X is reflexive and strictly convex and X∗ is strictly convex, then J∗ :
X∗ ⇒ X∗∗(= X) is a duality mapping on X∗ satisfying J−1 = J∗.

The normalized duality mapping is in most cases nonlinear and it is not sym-
metric unless X is a Hilbert space. Thus, in the conjectural formula

〈x, J(y)〉 = 〈y, J(x)〉 (?),

the left hand side is linear in x, but the right hand side is not, unless J is a
linear map.
The restriction of our study to Lp spaces is due to the fact that the exact
expression of the duality mapping is known only in Lp spaces.

Concrete examples: in `4, the duality map J : `4 → `4/3 is

J(x) = (x3
1, x

3
2, x

3
3, . . . )

Thus,
〈x, J(y)〉 =

∑
i

xiy
3
i
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which of course need not be the same as

〈y, J(x)〉 =
∑
i

x3
i yi

In an Lp space, 1 < p <∞,

J(f) :=
{
φq ∈ (Lp)

∗ = Lq : φq(f) =

∫
Ω

g(t)f(t)dµ
}
,

where
g(t) :=

|f |p−1sgnf(t)

‖f‖p−2
p

, f ∈ Lp(Ω).

It is easliy seen that Jp(x) = ‖x‖p−2J(x). The following additional properties
holds for the generalized duality mapping:

(i) Jp(αx) = αp−1J(x), ∀α > 0, x ∈ X.

(ii) 〈x, Jp(x)〉 = ‖x‖p and ‖Jp(x)‖ = ‖x‖p−1

(iii) ‖x− y‖p ≤ ‖x‖p − p〈y, Jp(x)〉+ cp‖y‖p, ∀x, y ∈ X, cp > 0.

(iv) For p > 1, Jp is single valued if X∗ is strictly convex.

(v) X∗ is uniformly convex if and only if Jp is strictly convex and uniformly
continuous on bounded subsets of X.

Given an arbitrary real normed linear space X = (X, ‖.‖), and a fixed x ∈ X.
Consider the functional

Ix : X∗ → R, x∗ 7→ 〈x∗, Ix〉 = 〈x, x∗〉.

Clearly, Ix ∈ (X∗)∗ = X∗∗. Moreover,

‖Ix‖∗∗ : = sup
‖x∗‖∗=1

〈x∗, Ix〉

= sup
‖x∗‖∗=1

〈x, x∗〉

= ‖x‖.

Thus, the mapping I : X → X∗∗, x 7→ Ix is a linear isometry, with ‖Ix‖∗∗ =
‖x‖. So we have a canonical isometric embedding of X into X∗∗. In general,
I(X) ⊆ X∗∗. The spaces X is called reflexive if equality holds.

The normalized duality mapping is strong enough to characterize the re-
flexivity of a spaces, as stated below
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Theorem 2.1.1 (Cioranescu [46]) Let X be a Banach space and J the nor-
malized duality mapping. Then X is reflexive if and only if⋃

x∈X

J(x) = X∗.

Other basic relationships between the geometric properties of the classes of
Banach spaces and its generalized duality, as can be found for example, in
Chidume [34], Cioranescu [46], is summarized as follows:

Proposition 2.1.1 Let X be a Banach space. Then the following assertions
hold:

(a) The space X is smooth if and only if the generalized duality mapping Jp
is single valued.

(b) The space X is uniformly smooth if and only if the generalized duality
mapping Jp is single valued and norm to norm uniformly continous on
bounded subsets of X.

(c) If X has a uniformly G−differentiable norm, then Jp is norm to weak∗
uniformly continuous on bounded subsets of X.

Definition 2.1.7 (Browder [21]) A Banach space X is said to have a weakly
continuous duality mapping if there exists a p > 1 such that Jp is single-valued
and weak∗ sequentially continuous, that is,

if xn ⇀ x, then , Jp(xn)
*
⇀ Jp(x)

An example of a space with weakly continuous duality mapping is lp, 1 < p <
∞. For spaces having a weakly contiunuous duality mapping, the following
holds.

Theorem 2.1.2 (Cioranescu [46], Riech [92] ) Suppose that X has a weakly
continuous duality mapping Jp and that the sequence {xn} converges weakly to
x. Then

lim sup
n→∞

‖xn − z‖p = lim sup
n→∞

‖xn − x‖p + ‖z − xn‖p

for all z ∈ X. In particular, X satisfies the Opial’s condition; that is,

if xn ⇀ x, , then lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − z‖

for all z ∈ X, z 6= x.

One more important property of the duality mapping in Banach spaces is
beautifully captured in the theorem of Kato as follows

Lemma 2.1.1 (Kato [62]) Let x, y ∈ X. Then ‖x‖ ≤ ‖x + αy‖ for every
α > 0 if and only if there exists j(x) ∈ J(x) such that 〈y, j(x)〉 ≥ 0.
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2.1.4 Metric Projections in Banach Spaces

Given a nonempty closed and convex subsubset K of a Hilbert space, the metric
projection or the proximal mapping on K is a mapping PK : H → K such that
for each x ∈ H, the uniquely existing element PKx ∈ K satisfies

‖x− Pkx‖ = min
y∈K
‖x− y‖.

A very important inequality that characterize the metric projection in Hilbert
spaces is stated below.

Proposition 2.1.2 For arbitrary x in H, z = PKx if and only if

〈x− z, y − z〉 ≤ 0,∀y ∈ K.
From this proposition we derive that

(i) ‖PKx−PKy‖2 ≤ 〈x− y, PKx−PKy〉 for all x, y ∈ H; that is, the metric
projection is firmly nonexpansive.

(ii) ‖x− PKx‖2 + ‖y − PKx‖2 ≤ ‖x− y‖2 for all x ∈ H and y ∈ K.

(iii) If K is a closed subspace, then PK coincides with the orthogonal projec-
tion from H onto K. Thus, for any y ∈ K, 〈x− PKx, y〉 = 0.

Remark: The convexity of the set K is very crucial in the existence of the
mapping PK. This can be seen in the example where K := {e1, e2, ..., en, ...} ⊂
l2, en = (0, 0, ..., n+2

n
, ...). Certainly, K is closed but not convex. It is easy

to see that PK0 = ∅. In some case when the structure of the convex set K is
simple, we can easily calculate the metric projection onto such a set.

Example 2.1.3:(a) Let K = B̄(u, r). Then

PKx =

{
u+ r (x−u)

‖x−u‖ , ifx 6∈ K,
x, ifx ∈ K.

(b) Given a nonzero mapping f : H → R and K := {y ∈ H : f(y) = α} a
hyperplane , then

PKx = x− f(x)− α
‖f‖2

f.

(c) Given a nonzero mapping f : H → R and K := {y ∈ H : f(y) ≤ α} a
closed half space, then

PKx =

{
x− f(x)−α

‖f‖2 f, iff(x) > α

x, iff(x) < α.

(d) If K is the image set of an m× n matrix A with full column rank, then

PKx = A(ATA)−1ATx.
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2.1.5 Generalised Projections in Banach Spaces

Definition 2.1.8 (Bregman [17]) Let f : X → (−∞,+∞] be a G-differentiable
function. The function ∆f : D(f)× intD(f)→ [0,+∞) defined by

∆f (x, y) := f(y)− f(x)− 〈y − x,∇f(y)〉 (2.1.10)

is called the Bregman Distance with respect to f .

This idea was introduced by Bregman [17] while defining a nonexpansive-type
mappings in Banach spaces, in the formulation process and analyses of feasibil-
ity and optimization problems. This type of mapping is now widely applied in
solving variational inequalities problems. The idea has also been employed for
convex minimization problems and other related problems in Banach spaces,
see for example, Alber [6] and Schȯpfer et al.[99], Bregman [17], Reich [89].
Alghamdi et al. [8], Ugwunnadi et al. [103] . For f = fp defined above, the
Bregman distance on X is

∆p(x, y) := fp(y)− fp(x)− 〈y − x, Jp(x)〉. (2.1.11)

With φp(x, y) := p∆p(x, y), this is equivalent to

φp(x, y) = ‖y‖p − p〈y, Jp(x)〉+ (p− 1)‖x‖p, (2.1.12)

and for p = 2 we obtain the Lyapunov functional introduced by Alber [3] and
given by

φ(x, y) = ‖y‖2 − 2〈y, J(x)〉+ ‖x‖2. (2.1.13)

In Hilbert spaces, the mapping J is simply the identity mapping and φ(x, y) =
‖x− y‖2. The following chain of inequalities also holds:

∆p(x, y) ≤ 〈x− y, Jp(x)− Jp(y)〉. (2.1.14)

2.1.6 Inequalities in Banach spaces

Among all Banach spaces, the Hilbert spaces generally have the simplest and
most clearly discernable geometric structure. Always available in a Hilbert
space is the parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (2.1.15)

which is equivalent to the polarisation identity

‖x+ y‖2 = ‖x‖2 + 2Re〈x, y〉+ ‖y‖2 (2.1.16)

17



and then the inequality

‖(1− λ)x+ λy‖2 = (1− λ)‖x‖2 + λ‖y‖2 − λ(1− λ)‖x− y‖2 (2.1.17)

Unfortunately, Hilbert spaces are luxulious and most real life problems do not
reside in it. We therefore look for other spaces which will be nearest to Hilbert
spaces and which will possibly possess analogues of identities (2.1.15), (2.1.16),
and (2.1.17). Many of the analogues of these identities have now been found(
see e.g Chidume [34], and Xu and Roach [109]). The most widely applicable
inequalities in Banach spaces are summarized below as follows:

Theorem 2.1.3 Let X be a real normed space, and Jp : X → 2X
∗
, 1 < p <

∞, be the generalized duality map. Then, for any x, y ∈ X, the following
inequality holds:

‖x+ y‖p ≤ ‖x‖p + p〈y, jp(x+ y)〉

for all jp(x+ y) ∈ J(x+ y). If p = 2, then

‖x+ y‖2 ≤ ‖x‖+ 2〈y, j(x+ y)〉

where j is the normalized duality mapping.

Henceforth, we define Wp(λ) := λp(1 − λ) + λ(1 − λ)p. where λ ∈ [0, 1] and
1 < p <∞. Then, then we obtain the following:

Theorem 2.1.4 Let X be a p−uniformly convex space. Then there exist con-
stants cp > 0, dp > 0 such that for every x, y ∈ X, and jp(x) ∈ Jp(x), the
following inequalities hold:

‖x+ y‖p ≥ ‖x‖p + p〈y, jp(x)〉+ dp‖y‖p, (2.1.18)
‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − cpWp(λ)‖x− y‖p, (2.1.19)

for all λ ∈ [0, 1].

Theorem 2.1.5 Let X be a real q−uniformly smooth Banach space. Then,
there exist constants cq > 0, dq > 0 such that for each x, y ∈ X,

‖x+ y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ dq‖y‖q, (2.1.20)
‖λx+ (1− λ)y‖q ≥ λ‖x‖q + (1− λ)‖y‖q − cqWq(λ)‖x− y‖q. (2.1.21)

2.1.7 Recurrent inequalities

In drawing inferences about the convergence or otherwise of a given iterative
sequence, one or more of these recurrence relations are often used.
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Lemma 2.1.2 [Xu [102]] Let {ρn} be a sequence of nonnegative real numbers
satisfying the following relation:

ρn+1 ≤ ρn + λn, n ≥ 0,

such that
∞∑
n=1

λn < ∞. Then, lim ρn exists. If, in addition, {ρn} has a subse-

quence that converges to 0, then ρn converges to 0 as n→∞.

Lemma 2.1.3 (Xu and Kim [108]) Assume that {ρn} is a sequence of non-
negative real numbers satisfying the conditions

ρn+1 ≤ (1− αn)ρn + αnβn,∀n ≥ 1 (2.1.22)

(i) {αn} ⊆ [0, 1], (ii)
∞∑
n=1

αn =∞ and (iii)
∞∑
n=1

αnβn <∞. Then, lim
n→∞

ρn = 0.

Lemma 2.1.4 (Xu [106]) Let {ρn} ⊂ R+ be a sequence such that

ρn+1 ≤ (1− λn)ρn + λnbn,

where λn ∈ (0, 1) satisfies (i) lim
n→0

λn = 0, and (ii)
∞∑
n=0

λn =∞. If lim sup
n→∞

bn ≤

0, the lim
n→∞

ρn = 0.

Lemma 2.1.5 (Maing’e [71]) Let {ρn} be a sequence satisfying

ρn+1 ≤ (1− λn)ρn + bn + cn,∀n ≥ 0,

where {cn} ⊂ R+, {λn} ⊆ (0, 1) and {bn} ⊆ R. Assume that
∞∑
n=0

cn < ∞.

Then the following results hold:

(i) If bn ≤ λnC for some C ≥ 0, then {ρn} is bounded. (ii) If
∞∑
n=0

λn =∞ and

lim sup
n→∞

bn
λn
≤ 0, then lim ρn = 0.

2.2 Iterative Algorithm for Single Valued Map-
pings

This section is concerned with established iterative methods for fixed points
of nonexpansive-type mappings.
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2.2.1 The Contraction Mapping Principle

Iterative methods for fixed points of maps were developed after an elegant
application of the method by Picard in the approximation of the fixed point of
a strict contraction. It states that in a complete metric space (X, d), a single
valued mapping T : X → X which satisfies

d(Tx, Ty) ≤ kd(x, y), ∀ x, y ∈ X, 0 ≤ k < 1, (2.2.1)

has a unique fixed point x∗. Moreover, such a fixed point is given by

x∗ = lim
n→∞

T nx1.

This easily follows from the fact that

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ d(x, Tx) + kd(x, y) + d(Ty, y), ∀x, y ∈ X,

and as a consequence

d(x, y) ≤ 1

1− k
[d(x, Tx) + d(Ty, y)]

This is the Fundamental Contraction Inequality [87]. It shows that a contrac-
tion mapping can have at most one fixed point. It also gives that

d(T nx, Tmx) ≤ 1

1− k
[d(T nx, T n(Tx)) + d(Tm(Tx), Tmx)]

≤ kn + km

1− k
d(x, Tx)

This shows that {T nx} is Cauchy and thus converges to some element x∗ ∈ X.

Apart from the existence of solution, suppose one is willing to accept an error of
ε from the actual fixed point x∗ of T when your initial guess is x, the inequality
easily gives us an integer N such that x∗′ = TNx will be a satisfactory answer.
Since we seek d(T nx, x∗) ≤ ε, we may pick N large enough so that

kN

1− k
d(x, Tx) < ε.

If we take log on both sides of the inequality above, we obtain(see eg. [78])

Stopping Rule
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If N >
log(ε) + log(1− k)− logd(x, Tx)

logk
,

then d(T nx, x∗
′
) < ε. From the practical programming point of view, for ex-

ample, this gives a criteria for terminating the algorithm while still ensuring
the quality of the approximation of the solution.

2.2.2 Nonexpansive Mappings

It is obvious that a great deal of real life problems of interest do not belong
to the class of contractions.The fixed point theory for non-expansive mappings
includes the theory for contractive mappings and contain the isometries, in
particular, the identity mapping.

The theory of non-expansive mappings is different from that of contraction
mappings. For example, consider the mapping that rotates the unit ball in
R2 to the right by 180◦. This map is T : R2 → R2 defined by Tx = −x
is nonexpansive but not a strict contraction. Obviously, T has a unique fixed
point, namely x = 0, and d(Tx, Ty) = d(x, y). However, T is not a contraction
and for any x 6= 0, xn = T nx = (−1)nx does not converge. Thus the Picard
sequence does not converge to the fixed point of T and to obtain fixed point
theory for nonexpansive mapppings therefore, we need to modify the Picard
sequence.

The study of the class of nonexpansive mappings is the most productive area
of research in nonlinear analysis. It led to the development of the geometry of
Banach spaces and has also helped to develop the related theory of monotone
and accretive operators.
The Krasnoselski’s sequence defined by

xn+1 = (1− λ)xn + λTxn

has been established to be an effective iterative scheme for approximating the
fixed point of nonexpansive self mappings in real normed spaces. The more
general iterative sequence, namely, the Mann iterative scheme given by x1 ∈ X
and

xn+1 = (1− αn)xn + αnTxn,

where αn ∈ (0, 1) satisfies
∑
αn = ∞ and

∑
α2
n < ∞, has also proved to

be successful for approximating fixed points of nonexpansive mappings and
infact the slightly more general quasi-nonexpansive mappings i.e mappings T
satisfying F (T ) 6= ∅ and ‖Tx− Tp‖ ≤ ‖x− p‖, ∀x ∈ D(T ) and p ∈ F (T ).
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2.2.3 Pseudocontractive Mappings

For the more general class of strictly pseudocontractive mappings, the Mann
sequence has been developed to succesfully approximate the fixed point.
Pseudocontractive mappings are generalizations of nonexpansive mappings and
have been studied extensively, for example, by Browder and Petryshn [23],
Browder [24], Dhompongsa et al. [51], Kirk [52], Martinet [74], Xu [102] and
a host of other authors.

For several years, it was a problem of interest to know whether the Mann iter-
ation process would, always, converge strongly to a fixed point of an arbitrary
pseudocontractive mapping.

In 1974, in the setting where T is Lipschitzian and pseudocontractive with
compact domain, Ishikwa [60] introduced a new iteration process,(now known
as the Ishikawa process), namely,

xn+1 = αnT [βnTxn + (1− βn)xn] + (1− αn)xn, (2.2.2)

for suitable αn and βn, and proved a strong convergence theorems to a fixed
point of the map T.

Certainly, the Mann iteration process is less computationally involved than the
Ishikawa process. Moreover, the order of convergence of the Mann process is
1
n
whereas that of Ishikawa is 1√

n
. Thus, if the Mann process converges, then

it is more desirable than the Ishikawa process.

Already, strong convergence of the Ishikawa and Mann iteration processes to
a fixed point of T have been established(see, for example, Browder [24]), even
in normed linear spaces, in the case where T belongs to that proper subclass
of Lipschitz pseudocontractive mapping -the strictly pseudocontractive map-
pings.

In 2001, Chidume and Mutangadura [40] gave an example to show that, for a
Lipschitzian pseudocontractive mapping T defined on a real Hilbert space, a
Mann iteration process may fail to converge to a fixed point of T , even when
the set K is compact and the fixed point of T is unique. Thus the problem
was resolved in the negative. However, it is still a problem of interest on one
hand, to get a scheme more easily applicable than the Ishikawa, and on the
other hand to see if the Ishikawa process will work also for some Banach spaces.
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2.3 Some Important Results on Iterative Meth-
ods for Multivalued Mappings

Fixed point theory for multi-valued mappings continues to attract a lot of at-
tention because of its numerous real world applications in game theory and
market economy, differential inclusions, and constrained optimization. Itera-
tive methods for approximating fixed points of nonexpansive-type mappings
constitute the central tools used in signal processing and image reconstruction
(see, e.g., Byrne[27]). They are also used in devising critical points in optimal
control problems and energy management problems. The applications of fixed
point theory for multi-valued mappings on the problem of differential equa-
tions (DEs) with discontinuous right-hand sides gave birth to the existence
theory of differential inclusions (DIs).

Game theory and market economy is, perhaps, the most socially recognized
application of multi-valued mappings.

Consider, for example, a game G(xn, Kn) involving N players, namely n =
1, 2, ..., N . Here, Kn, a nonempty compact and convex subset of Rmn , is the
collection of possible strategies of the nth player. The continuous function
xn : ΠN

i=1Kn → R, is the gain(payoff) function. Any vector yn in Kn is the
action which is available to the individual n to take. The collective action of
all the N players is then y := (y1, y2, ..., yN) ∈ K := ΠN

i=1Kn. Given any n, y
and yn ∈ Kn, we use these standard notations:

K−n : = K1 ×K2 × ...×Kn−1 ×Kn+1 × ...×Kn

y−n : = (y1, ..., yn−1, yn+1, ..., yN)

(yn, y−n) = (y1, y2, ..., yn−1, yn, yn+1, ..., yN).

In this regard, the n′th player maximizes his own gain, using a strategy y∗n,
subject to the fact that the other players have choosen their strategies y−n if
and only if

xn(y∗n, y−n) = max
yn∈Kn

xn(yn, y−n).

Define a multi-valued mapping Tn : K−n → 2Kn by

Tn(y−n) = Arg max
yn∈Kn

xn(yn, y−n)

Then, the collective action y∗ = (y∗1, y
∗
2, ..., y

∗
N) is called a Nash equilibrium

point if each y∗n is the most effective response that the n′th player can make to
the actions y∗−n of the other N − 1 players. This is stated differently as

xn(y∗n) = max
yn∈Kn

xn(yn, y
∗
−n),
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or, in other words,
y∗n ∈ Tn(y∗−n).

Therefore, y∗ = (y∗1, y
∗
2, ..., y

∗
N) is a fixed point of the multi-valued mapping

T : K → 2K given by

T (y) = [T1(y−1), T2(y−2), ..., TN(y−N)]

For early results involving fixed points of multi-valued mapping, (see, for ex-
ample, Brouwer [19], Kakutani [61], Nash [82, 83], Geanakoplos [58], Downing
and Kirk [52]). For details on the applications of this type of mappings in
Nonsmooth Differential Equations, one may consult, for example, Chang [32],
Chidume [35], Deimling [50], Erbe and Krawcewicz [53], Nadler [80], Ofoedu
and Zegeye [85], Reich et al. [91, 94, 95] and the references therein.

Though many theory for multi-valued mappings in the literature have dealt
with the existence of fixed points for such mappings, only very few have dealt
with iterative algorithms for computing them.

2.3.1 Iterative Methods for Multivalued Nonexpansive-
type Mappings

Given a metric space (X, d), we denote by CB(X) the family of nonempty,
closed and bounded subsets of X and K(X) the family of all compact subsets
of X. Then, the Hausdorff distance defined by

D(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
,

is a metric on this family CB(X).

Remark 2.3.1 It is understood that the Hausdorff metric D on CB(X) de-
pends on the pressigned metric d of X and that a distinct metric will yeild a
distinct Hausdorff metric.

Remark 2.3.2 Elsewhere, the Hausdorff metric is defined as

D(A,B) := inf{ε > 0 : B ⊆ A+B(0, ε), A ⊆ B +B(0, ε)}.

Definition 2.3.1 A mapping T : X → CB(X) is called a multivalued Lips-
chitz mapping on X if

D(Tx, Ty) ≤ Ld(x, y), ∀x, y ∈ X, L ≥ 0.

If L = 1 the mapping is called nonexpansive and for L < 1, it is called a
multivalued contraction mapping.
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The first work on iterative methods for fixed points of multi-valued (nonex-
pansive) mappings by the application of Hausdorff metric was due to Markin
[73], and followed by an extensive work by Nadler [80]. Since then, several
authors have dealt with the problem of approximating fixed points of mul-
tivalued nonexpansive mappings in real Hilbert spaces using the Hausdorff
metric(see, e.g., Abbas et al. [1],Khan et al. [63, 64], Panyanak [88], Sastry et
al. [98, 100, 101], Zegeye and Shahzad [112] and the references therein) and
for their generalizations (see e.g., Chidume et al. [35], Chidume and Ezeora
[36] and the references therein).

In [80], the author combined an idea of multi-valued mappings and Lipschitz
mappings and proved an analogue of the Banach contraction mapping principle
for multi-valued contraction mappings. He proved that given a complete metric
space X, and a contraction mapping T : X → K(X) with constant κ(K(X)
is the set of all compact subsets of X), then the set-valued mapping T ∗ :
K(X)→ K(X) definded by T ∗A := ∪{Tz : z ∈ A} satisfies

D(T ∗A, T ∗B) ≤ κD(A,B)

Thus, since (K(X), D) is a complete metric space, the mapping T ∗ has a fixed
point due to the contraction mapping principle. However, this does not auto-
matically yield a fixed point of the mapping T .

Nevertheless, he proved that if T : X → CB(X) is a multi-valued contrac-
tion mapping, then T has a fixed point. For this, he used the fact that for

a contraction with constant κ < 1, there holds
∞∑
n=1

κn < ∞. Given sets A

and B in CB(X) and a ∈ A, though there may not be a points b such that
d(a, b) ≤ D(A,B), we nevertheless have by the definition of the Hausdorff
metric, that there exists b ∈ B satisfying d(a, b) ≤ D(A,B)+κ. This property
is now refered to as the Nadler’s condition.

Thus, an iterative procedure for the fixed point of T is as follows:
Given any x0 ∈ X, choose x1 ∈ Tx0 and x2 ∈ Tx1 such that

d(x1, x2) ≤ D(Tx0, Tx1) + κ.

Repeat this process such that at the nth stage, xn+1 is choosen with

d(xn, xn+1) ≤ D(Txn−1, Txn) + κn.

Then, there holds that for arbitrary k ≥ 1,

d(xn, xn+k) ≤
n+k−1∑
j=n

κjd(x0, x1) +
n+k−1∑
j=n

j.κj.
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Remark: The choice of the contraction constant κ does not play any essen-
tial role in the procedure above. Infact, we could have choosen an arbitrary

positive sequence {λn} satisfying
∞∑
n=1

nλn < ∞. In Chapters 4, 5, , 6 we will

demonstrate this idea using a reverse Nadler’s condition and prove convergence
thorems for some general classes of multivalued mappings.

Many well known researchers have proved other complementary convergence
theorems for the more general class of the multi-valued nonexpansive map-
pings, in some classical Banach spaces, in recent times. Example includes
Browder [22], Chidume et al.[35], Chidume and Okpala [39], Halpern[59],
Ofoedu and Zegeye [85], Panyanak [88], Reich[90], Reich and Zaslavski [91],
Sastry and Babu [98], and Xu [107] .

2.3.2 Iterative Methods for Multivalued Strictly Pseudo-
contractive Mappings

The study of fixed points for pseudocontractive mappings developed out of a
need to generalize certain ideas which are applicable to nonexpansive map-
pings. This class of mappings have been studied extensively, for example, by
Browder and Petryshn [23], Browder [24], Daffer and Kaneko [48], Deimling
[50], Downing and Kirk [52], Xu [102] and a host of other authors.

Fixed point problems involving a multi-valued mapping T can be reformulated
as a zero problem for a multi-valued mapping A, namely;

Find 0 ∈ Ax, where A = I − T

and I is the identity mapping of K.

Many problems in applications can be modeled in the form of 0 ∈ Ax,
where, for example. A : H → 2H is a monotone operator, that is 〈u−v, x−y〉 ≥
0 for all u ∈ Ax, v ∈ Ay, x, y ∈ H. Typical examples include the equilibrum
state of evolution equations and critical points of some functionals defined
on Hilbert spaces. For example, let f : H → (−∞,∞] be a proper, lower
semicontinuous and convex function. It is known (see e.g., Rockafellar [96],
Minty [76]) that the multi-valued mapping T := ∂f , the subdifferential of f , is
maximal monotone, where for each w ∈ H,

w ∈ ∂f(x)⇔ f(y)− f(x) ≥ 〈y − x,w〉, ∀y ∈ H,
⇔ x ∈ Argmin(f − 〈., w〉).

In this case, a solution of the inclusion problem 0 ∈ ∂f(x), if any, is a
critical point of f , which is precisely a minimizer of f .
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The proximal point algorithm introduced by Martinet [74], and studied ex-
tensively by Rockafeller [96] Aoyoma et al. [9], which has also been studied
by a host of other authors, is connected with the iterative algorithm for so-
lutions of 0 ∈ Ax where A is a maximal monotone operator on a Hilbert space.

In studying the equation Au = 0, Browder [24], defined an operator T := I−A,
where I is the identity mapping on H. He called such an operator a pseudo-
contractive mapping. It is that the solutions of Au = 0 when A is monotone
are precisely the fixed points of pseudocontractive mapping T . Every nonex-
pansive mapping is pseudocontractive and continuous but a pseudocontractive
mapping is not neccesarily continuous. Thus the study of iterative methods
for fixed points of pseudontractive mappings is established with additional as-
sumptions of continuity of the mappings (e.g., Lipschitz condition), in general.

While pseudocontractive mappings are generally not continuous, a subclass of
pseudocontractive mappings, the strictly pseudocontractive mappings, inherits
Lipschitz property from their definitions. The study of fixed point theory for
strictly pseudocontractive mappings helps in the study of fixed point theory for
nonexpansive mappings and for Lipschitz pseudocontractive mappings. Con-
sequently, the study by several authors of iterative methods for fixed points of
multi-valued strictly pseudocontractive mappings has motivated our study of a
more general class of multi-valued strictly pseudocontractive mappings which
certainly includes the important class of multi-valued nonexpansive maps.

In this section, we study the notion of multi-valued stricly pseudocontractive
mappings (see e.g., [35], [85] ), which is a generalization of single-valued strictly
pseudocontractive mappings, defined by Browder and Petryshyn [23] on Hilbert
spaces.

Definition 2.3.2 A single-valued mapping T : K ⊆ H → H is called

• pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(x− Tx)− (y − Ty)‖2, ∀x, y ∈ K.
(2.3.1)

• monotone if
〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ D(T ).

Definition 2.3.3 A map T : K → CB(K) is said to be hemicompact if, for
any sequence {xn} such that lim

n→∞
d(xn, Txn) = 0, there exists a subsequence,

say, {xnk
} of {xn} such that xnk

→ p ∈ K.
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Note that if K is compact, then every multi-valued mapping T : K → CB(K)
is hemicompact.

The theory of multi-valued nonexpansive mappings(and, in particular, psuedo-

contractive mappings) is much harder than the corresponding theory of single
valued nonexpansive mappings(see e.g. Khan and Yildirim[63]). The exten-
sion of the notion of single valued pseudocontractive mappings to multi-valued
pseudocontractive mappings has some of these challenges:

• Definition of the mapping: There is a problem of getting a right definition
for the multi-valued analogue which would be a generalization of the
single-valued case. There are several definitions available which will be
a generalisation of the single valued case and one has to get the most
natural among them to be able to establish some convergence theorems.

• Identities: In multi-valued settings, the metric induced by the norm on
X is not applicable and there is the need to develop new identities and
other notions of distances which will be applicable. One notion of metric
for sets that is readily applicable here is the Hausdorf metric.

• Inference: Many thoerems and lemmas that are developed for single
valued mappings cannot be carried over to multi-valued cases and it is
always difficult to make conclusions.

In [98], Sastry and Babu proved the following result for multi-valued nonex-
pansive mappings in Hilbert spaces :

Theorem 2.3.1 (Sastry and Babu [98]) Let H be real Hilbert space, K be a
nonempty, compact and convex subset of H, and T : K −→ CB(K) be a multi-
valued nonexpansive map with a fixed point p. Assume that (i) 0 ≤ αn, βn < 1;
(ii) βn → 0 and (iii)

∑
αnβn = ∞. where αn and βn are sequences of real

numbers. Then, the sequence defined by
yn = (1− βn)xn + βnzn, zn ∈ Txn, ‖zn − x∗‖ = d(x∗, Txn),

xn+1 = (1− αn)xn + αnun, un ∈ Tyn, ‖un − x∗‖ = d(yn, x
∗).

(2.3.2)

converges strongly to a fixed point of T .

In [88], Panyanak extended the result of Sastry and Babu [98] to uniformly
convex spaces. He proved the following theorem.
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Theorem 2.3.2 ( Panyanak [88]). Let E be a uniformly convex real Banach
space, and let K be a nonempty, compact, and convex subset of E and T : K →
CB(K) a multivalued nonexpansive mapping with a fixed point p. Assume that
0 ≤ αn, βn < 1 (ii) βn → 0 (iii)

∑
n→∞

αnβn = ∞. Then, the sequence {xn}

given by

yn = (1− βn)xn + βnzn, zn ∈ Txn,
‖zn − p‖ = d(p, Txn),

xn+1 = (1− α)xn + αnun, un ∈ Tyn,
‖un − p‖ = d(Tyn, p).

converges strongly to a fixed point of T .

In [100], Song and Wang pointed out a gap in the theorem of Panyanak as
follows:

(i) The sequence {xn} depends obviously on the fixed point p which is un-
known and thus some conclusions cannot be reached.

(ii) The sequence is Ishikwa type which has a low rate of convergence and it
is therefore difficult to implement.

(iii) The condition ‖zn − p‖ = d(p, Txn) implies that Tx is proximinal for
each x ∈ D(T ) and it therefore further reduces the class of mappings to
which the theorem is applicable.

They modified the Ishikawa-type sequence of Panyanak [88] and used Nadler’s
condition to obtain an Ishikawa-type iterative sequence which is guaranteed
to converge to a fixed point of T . However, they still assumed that the multi-
valued mapping T satisfies the so-called Condition I. Moreover, they remarked
that their result holds for Mann iteration if βn ≡ 0, which leaves one won-
dering why they used an Ishikawa type sequence in the first place. On the
otherhand, it deals only with nonexpansive mappings which is a subclass of
strictly pseudocontractive mappings.

In [35], Chidume et al., gave a multivalued analogue of Definition (2.3.2)
as follows:

Definition 2.3.4 Let K be a closed, convex, and nonempty subset of H. A
mapping T : K → CB(K) is called a multivalued k−strictly pseudocontractive
mapping if for some k ∈ (0, 1) and for all x, y ∈ K, there holds

D2(Tx, Ty) ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, (2.3.3)

for all u ∈ Tx, v ∈ Ty.
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They used a certain Krasnoselskii’s-type sequence and proved the following
theorem:

Theorem 2.3.3 (Chidume et al. [35]) Let K be a nonempty, closed and con-
vex subset of a real Hilbert space H. Suppose that T : K → CB(K) is a
multi-valued k-strictly pseudocontractive mapping such that F (T ) 6= ∅. As-
sume that Tp = {p} for all p ∈ F (T ). Suppose that T is hemicompact and
continuous. Let {xn} be a sequence defined iteratively from x0 ∈ K by

xn+1 = (1− λ)xn + λyn, (2.3.4)

where yn ∈ Txn and λ ∈ (0, 1− k). Then, limn→∞ d(xn, Txn) = 0.

The result of Chidume et al. is certainly better than most of the results in
the literature because it deals with strictly pseudocontractive mappings which
is more general than nonexpansive mappings and also the problem of finding
zn ∈ Txn such that ‖zn − x∗‖ = d(x∗, Txn) as in Sastry and Babu does not
arise. However, as remarked in [38] , the inequaulity (2.3.3) is equivalent to

D2(Tx, Ty) ≤ ‖x− y‖2 + k inf
(u,v)∈(Tx,Ty)

‖(x− u)− (y − v)‖2. (2.3.5)

which is very restrictive and therefore not far ahead of the single-valued case
given by ineqaulity (2.3.2).

Nevertheless, Chidume et al. [35], extended the result to q-uniformly smooth
real Banach spaces and obtained the following result:

Theorem 2.3.4 (Chidume et al. [35]) Let q > 1 be a real number and K
be a nonempty, closed and convex subset of a q-uniformly smooth real Banach
space E. Let T : K → CB(K) be a multi-valued k-strictly pseudocontractive
mapping with F (T ) 6= ∅ and such that Tp = {p} for all p ∈ F (T ). Suppose that
T is continuous and hemicompact. Let {xn} be a sequence defined iteratively
from x1 ∈ K by

xn+1 = (1− λ)xn + λyn, (2.3.6)

where yn ∈ Txn and λ ∈ (0, µ). Then, the sequence {xn} converges strongly to
a fixed point of T .

We now pose the following questions of interest:
Question 1: Can an interative scheme be used for multivalued pseudocon-
tractive mappings which is easier than the so-called Ishikawa process?
Question 2: Can convergence theorems be proved for a class of mappings
more general than that proved by Chidume et al?

In the next chapters, we will provide affirmative and partial answers to these
questions as we show the results we have obtained so far.
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CHAPTER 3

Contributions on Iterative Algorithms for Some
Single-valued Pseudocontractive-type Mappings

Most important iteration procedures for single valued mappings currently in
the literature [16], can be summarised as follows:

(1) xn+1 = Txn, n ≥ 0 1890 Picard
⇑ λ = 1

(2) xn+1 =
1

2
(xn + Txn), n ≥ 0 ≥ 0 1955 Krasnoselski

⇑ λ =
1

2
(3) xn+1 = (1− λ)xn + λTxn, n ≥ 0, 0 ≤ λ ≤ 1, 1957 (Krasnoselski-)Shaeffer

⇑ an = λ(const.)

(4) xn+1 = (1− an)xn + anTxn, n ≥ 0, an ∈ [0, 1],

lim
n→∞

an = 0,
∑

an =∞ 1953 Mann

⇑ bn = 0

(5) xn+1 = (1− an)xn + anT [(1− bn)xn + bnTxn], n ≥ 0, 0 ≤ an ≤ bn ≤ 1,

lim
n→

bn = 0,
∞∑
n=0

anbn =∞ 1974 Ishikawa

There is a need for an iterative procedure that fills the gap between (4) and
(5) above in the sense that here an = bn = λ simply for some λ ∈ (0, 1).
In this chapter, we state a theorem in this regard and demonstrate how such
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algorithm is applicable in split equality fixed point problems..

3.1 On the Split Equality Fixed Point Problem
The split equality problem was introduced by Moudafi and Al-Shemas[79] in

(2013) as a generalization of the split feasibilty problem which appear as inverse
problems in phase retrivial, medical image recontruction, intensity modulated
radiation therapy(IMRT) and so on (see e.g., Byrne [26], Censor et al.[29],
Censor et al. [28], and Censor and Elfving [30]). It serves as a model for in-
verse problems in the case where constraints are imposed on the solutions in
the domain of a linear transformation and also in its range.

The split equality problem of Moudafi is stated as follows:

Find x ∈ C = F (S) and y ∈ Q = F (T ) such that Ax = By, (3.1.1)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators, H1,
H2, and H3 are real Hilbert spaces, while S : H1 → H1 and T : H2 → H2

firmly quasi-nonexpansive mappings, respectively.
They studied the convergence of a weakly coupled iterative algorithm given

by

(SEP )

{
xn+1 = S(xn − γnA∗(Axn −Byn));

yn+1 = T (yn + γnB
∗(Axn −Byn));n ≥ 1

(3.1.2)

where A∗ and B∗ are the adjoints of A and B, respectively, while λ is the sum
of the spectral radii of A∗A and γn ∈ (0, 2

λ
).

The iterative algorithm of Moudafi was for firmly quasi-nonexpansive mapping
which has very attractive properties that makes the use of this simple iterative
algorithm introduced suitable.
The algorithm of Moudafi and Al-shamas has great merits because it is imple-
mentable without the use of projections and yet it is a generalization of the
split feasibility problem if we set H3 = H2 and B = I. The algorithm was
extended by Yuan-Fang et al. [56] who introduced the following algorithm for
solving problem (3.1.2):


∀x1 ∈ H1, ∀y1 ∈ H2;
xn+1 = (1− αn)xn + αnS(xn − γnA∗(Axn −Byn));

yn+1 = (1− αn)yn + αnT (yn + γnB
∗(Axn −Byn)), ∀n ≥ 1,

(3.1.3)
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where S : H1 → H1, T : H2 → H2 are still two firmly quasi-nonexpansive
mappings, A : H1 → H3, B : H2 → H3 are bounded linear operators, A∗
and B∗ are the adjoints of A and B, respectively, γn ∈ (0, 2

λ
) , where λ is the

sum of the spectral radii of A∗A and B∗B, respectively, and {αn} ⊂ [α, 1] (for
some α > 0). Under suitable conditions, the authors obtained strong and weak
convergence results, respectively.

It was therefore natural to investigate if the split equality problem can be
extended to a more general class of mappings apart from the class of firmly
quasi-nonexpansive mappings studied by Moudafi and Al-Shamas [79], and
Yuan-Fang et al. [56].

Motiviated by the work of Moudafi and Al-Shamas, Chidume et al. [41] studied
convergence theorems for split equality problem involving two demi-contractive
mappings. They introduced the following Krasnoselskii-type iterative algo-
rithm



∀x1 ∈ H1, ∀y1 ∈ H2;

xn+1 = (1− α)
(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
;

yn+1 = (1− α)
(
yn + γB∗(Axn −Byn)

)
+ αT

(
yn + γB∗(Axn −Byn)

)
, ∀n ≥ 1,

(3.1.4)
where U : H1 → H1, T : H2 → H2 are two demi-contractive mappings defined
on Hilbert spaces. The class of demi-contractive mappings properly contains
the class of firmly quasi-nonexpansive mappings which was studied by Moudafi
and Al-Shemas [79].

The aim of the present study is to extend the split equality problem of Moudafi
and Al-Shamas [79], and Chidume et al. [41], to Lipschitz hemicontractive
mappings. The very important class of hemicontractive mapping contains
pseudocontractive mappings with nonempty fixed point sets. The later has
been studied extensively, for example, by Browder and Petryshn [23], Browder
[24], Chidume [33], Chidume and Zegeye [42], Kirk [52], Maruster[75], Xu [102]
and a host of other authors, and is known to properly contain the important
class of demicontractive mappings studied by Chidume et al. [41]. We will
discuss some weak and strong convergence theorem for a mean value sequence
introduced.

Our theorems and corollaries extend and generalize the results of Censor and
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Segal [31], Chidume it et al. [41], Maruster et al. [75], Moudafi and Al-Shemas
[79], Xu [105], Yuan-Fang et al. [56], and a host of other results.

3.2 Main Results
In this section we present a Krasnoselskii’s type algorithm for fixed points of
Lipschitz pseudocontractive mappings and propose a coupled iterative algo-
rithm for solving the split equality fixed point problem, involving hemicon-
tractive mappings.

We recall a well know lemma on Hilbert spaces which will be used in the se-
quel. We will first prove the following theorem for Lipschiptz pseudocontractive
mappings:

Theorem 3.2.1 Let H be a Hilbert space, K ⊆ H be a nonempty, closed and
convex. Let T be a Lipschitzian and pseudocontractive self-map of K, with
Lipschitz constant L > 0, such that F (T ) 6= ∅. Let {xn} be a sequence defined
by x1 ∈ K and

xn+1 = (1− λ)xn + λTyn, (3.2.1)
yn = (1− λ)xn + λTxn, (3.2.2)

where λ ∈ (0, L−2[
√

1 + L2−1]). Then, for each p ∈ F (T ), lim
n→∞

‖xn−p‖ exists
and lim

n→∞
‖xn − Txn‖ = 0.

Proof. 3.2.1 Let p ∈ F (T ). Using Lemma ??, and following a procedure
similar to that of Ishikawa [60], we have

‖xn+1 − p‖2 = ‖(1− λ)(xn − p) + λ(Tyn − p)‖2

= (1− λ)‖xn − p‖2 + λ‖Tyn − p‖2 − λ(1− λ)‖xn − Tyn‖2, (3.2.3)

‖Tyn − p‖2 = ‖Tyn − Tp‖2 ≤ ‖yn − p‖2 + ‖yn − Tyn‖2, (3.2.4)

‖yn − p‖2 = ‖(1− λ)(xn − p) + λ(Txn − p)‖2,

= (1− λ)‖xn − p‖2 + λ‖Txn − p‖2 − λ(1− λ)‖xn − Txn‖2, (3.2.5)

‖yn − Tyn‖2 = ‖(1− λ)(xn − Tyn) + λ(Txn − Tyn)‖2,
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= (1− λ)‖xn − Tyn‖2 + λ‖Txn − Tyn‖2 − λ(1− λ)‖xn − Txn‖2, (3.2.6)

and

‖Txn − p‖2 = ‖Txn − Tp‖2 ≤ ‖xn − p‖2 + ‖xn − Txn‖2 (3.2.7)

Substituting (3.2.4)-(3.2.7) into (3.2.15), we have

‖xn+1 − p‖2 = (1− λ)‖xn − p‖2 + λ‖Tyn − p‖2 − λ(1− λ)‖xn − Tyn‖2

≤ (1− λ)‖xn − p‖2 + λ[‖yn − p‖2 + ‖yn − Tyn‖2]− λ(1− λ)‖xn − Tyn‖2.

Thus

‖xn+1 − p‖2 ≤ (1− λ)‖xn − p‖2 + λ[(1− λ)‖xn − p‖2 + λ‖xn − p‖2 + λ‖xn − Txn‖2

− λ(1− λ)‖xn − Txn‖2 + (1− λ)‖xn − Tyn‖2 + λ‖Txn − Tyn‖2

− λ(1− λ)‖xn − Txn‖2]− λ(1− λ)‖xn − Tyn‖2

= ‖xn − p‖2 + λ2‖xn − Txn‖2 − 2λ2(1− λ)‖xn − Txn‖2 + λ2‖Txn − Tyn‖2

≤ ‖xn − p‖2 − λ2(1− 2λ− λ2L2)‖xn − Txn‖2. (3.2.8)

From (3.2.8), we have

‖xn+1 − p‖ ≤ ‖xn − p‖, (3.2.9)

and

λ2(1− 2λ− λ2L2)‖xn − Txn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2. (3.2.10)

Using (3.2.9) and Lemma 2.1.2, we have that

lim
n→∞

‖xn − p‖

exists. Moreover, 1− 2λ− λ2L2 > 0 ⇔ |λ+ 1
L2 | < L−2

√
L2 + 1. Therefore,

since 0 < λ ∈ (0, L−2[
√

1 + L2− 1]), we have 1− 2λ−λ2L2 > 0. Taking limits
on both sides of (3.2.10), we have

lim
n→∞

‖xn − Txn‖ = 0

Thus the theorem is established.

We recall the following definition.

Definition 3.2.1 (Demiclosedness principle) Let T : K → K be a map-
ping. Then I − T is called demiclosed at zero if for any sequence {xn} in H
such that xn ⇀ x, and ‖xn − Txn‖ → 0, then Tx = x.
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Lemma 3.2.1 [Opial’s Lemma [86]] Let H be a real Hilbert space and {xn}
be a sequence in H for which there exists a nonempty set Γ ⊆ H such that for
every x ∈ Γ, lim

n→∞
‖xn − x‖ exists and any weak-cluster point of the sequence

belongs to Γ. Then, there exists x∗ ∈ Γ such that {xn} converges weakly to x∗.

Lemma 3.2.2 Let H1 and H2 be two real Hilbert spaces. Then, the product
H1×H2 is a Hilbert with inner product 〈(x1, x2), (y1, y2)〉∗ := 〈x1, y1〉1+〈x2, y2〉2
where 〈., .〉1, 〈., .〉2 are the inner products on H1 and H2 respectively.

The Split Equality Problem for hemicontractive mappings is stated as:

Find x ∈ C = F (S) and y ∈ Q = F (T ) such that Ax = By, (3.2.11)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators, H1,
H2, and H3 are real Hilbert spaces, while S : H1 → H1 and T : H2 → H2

hemicontractive mappings, respectively.

Henceforth, given two Lipschitz hemicontractive mappings S and T , we define
the set

Γ := {(p, q) ∈ H1 ×H2 : Sp = p, Tq = q}, (3.2.12)

and a mapping G : H1 ×H2 → H1 ×H2 by

G(x, y) := (S(x− λA∗(Ax−By)), T (y + λB∗(Ax−By)). (3.2.13)

It is easy to see that G is Lipschitz. Moreover, for (p, q) ∈ Γ, G(p, q) = (p, q).
Now consider the coupled iterative algorithm given below

(x1, y1) ∈ H1 ×H2, chosen arbitarily,
(xn+1, yn+1) = (1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)] + αG(un, vn),

(un, vn) = (1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)] + αG(xn, yn),

α ∈ (0, L−2(
√
L2 + 1− 1))

λ ∈ (0, 2α
λ̄(A,B)

),

(3.2.14)

where λ̄(A,B) is the sum of the spectral radii of A∗A and B∗B and L the
Lipschitz constant of G. We show in what follows that the iterative sequence
generated by the algorithm above converges weakly to a solution of the split
equalty problem (3.2.11).

Theorem 3.2.2 Let H1, H2, H3 be real Hilbert spaces, S : H1 → H1 and T :
H2 → H2 two Lipschitz hemicontractive mappings, and A : H1 → H3 and
B : H2 → H3 are two bounded linear mappings. Then the coupled sequence
(xn, yn) generated by the algorithm (3.2.14) converges weakly to a solution
(x∗, y∗) of problem (3.2.11).

36



Proof: Define ‖(x, y)‖2
∗ = ‖x‖2

1+‖y‖2
2. Taking (p, q) ∈ Γ and using Lemma

3.2.2, we obtain

‖(xn+1, yn+1)− (p, q)‖2
∗ = ‖(1− α)((xn − λA∗(Axn −Byn), yn

+ λB∗(Axn −Byn))− (p, q)) + α(G(un, vn)− (p, q))‖2
∗

≤ (1− α)
[
‖(xn, yn)− (p, q)‖2

∗ − 2λ‖Axn −Byn‖2
∗ + λ2(λ̄(A,B))‖Axn −Byn‖2

]
+ α‖G(un, vn)− (p, q)‖2

∗

− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(un, vn)‖2
∗,

It follows from the definition of the mapping G and the hemicontractive prop-
erties of S and T we get

‖G(un, vn)− (p, q)‖2
∗ = ‖G(un, vn)−G(p, q)‖2

∗

≤ ‖(un − λA∗(Aun −Bvn), vn + λB∗(Aun −Bvn))− (p, q)‖2
∗

+ ‖(un − λA∗(Aun −Bvn), vn + λB∗(Aun −Bvn))−G(un, vn)‖2
∗

≤ ‖(un, vn)− (p, q)‖2
∗ − λ(2− λ(λ̄(A,B)))‖Aun −Bvn‖2

+ ‖(un − λA∗(Aun −Bvn), vn + λB∗(Aun −Bvn))−G(un, vn)‖2
∗.

In view of the inequalities above, we obtain

‖(xn+1, yn+1)− (p, q)‖2
∗ ≤ (1− α)

[
‖(xn, yn)− (p, q)‖2

∗ (3.2.15)

− λ(2− λ(λ̄(A,B))‖Axn −Byn‖2
]

(3.2.16)

+ α
[
‖(un, vn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Aun −Bvn‖2 (3.2.17)

+ ‖(un − λA∗(Aun −Bvn), vn + λB∗(Aun −Bvn))−G(un, vn)‖2
∗.
]
(3.2.18)

− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(un, vn)‖2
∗,

(3.2.19)

Using the definition of un and vn, we have the folowing chain of inequalities:

‖(un, vn)− (p, q)‖2
∗ = ‖(1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))

− (p, q) + α[G(xn, yn)− (p, q)]‖2
∗

≤ (1− α)
[
‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2
]

+ α
[
‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2

+ ‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

]
− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2

∗,
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and

‖(un − λA∗(Aun −Bvn), vn + λB∗(Aun −Bvn))−G(un, vn)‖2
∗.

= ‖(1− α)[(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(un, vn)]

+ α[G(xn, yn)−G(un, vn)‖2,

≤ (1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(un, vn)‖2

+ α‖G(xn, yn)−G(un, vn)‖2

− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(xn, yn)‖2,

If we substitute these inequalities into their rightful positions in the inequality
(3.2.15), we get the following:

‖(xn+1,yn+1)− (p, q)‖2
∗ ≤ (1− α)

[
‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B))‖Axn −Byn‖2
]

+ α
[
(1− α)

[
‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2
]

+ α
[
‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2

+ ‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

]
− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2

∗.

− λ(2− λ(λ̄(A,B)))‖Aun −Bvn‖2
]

+ (1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(un, vn)‖2

+ α‖G(xn, yn)−G(un, vn)‖2

− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn))−G(xn, yn)‖2,
]

− α(1− α)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(un, vn)‖2
∗.

Gathering all the similar terms together, we obtain

‖(xn+1,yn+1)− (p, q)‖2
∗ ≤ ‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2

− (α2 − 2α3)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

− αλ(2− λ(λ̄(A,B)))‖Aun −Bvn‖2
]

+ α2‖G(xn, yn)−G(un, vn)‖2
∗

Again since S and T are Lipschiptz with Lipschitz constant, say, Ls and Lt
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respectively. Set L = max{Ls, Lt}. Then,

‖G(xn, yn)−G(un, vn)‖2 = ‖S(xn − λA∗(Axn −Byn)− S(un − λA∗(Aun −Bvn)‖2
1

+ ‖T (yn + λB∗(Axn −Byn)− T (vn + λB∗(Aun −Bvn)‖2
2

≤ L2
s‖(xn − λA∗(Axn −Byn))− (un − λA∗(Aun −Bvn)‖2

1

+ L2
t‖(yn + λB∗(Axn −Byn)− (vn + λB∗(Aun −Bvn)‖2

2

≤ L2
[
‖(xn − λA∗(Axn −Byn))− un‖2

1

+ ‖(yn − λB∗(Axn −Byn))− vn‖2
2,

+ 2λ〈Axn − Aun − λ(Axn −Byn), Aun −Bvn〉,
− 2λ〈Byn −Bvn − λ(Axn −Byn), Aun −Bvn〉,

+ λ2(λ̄(A,B))‖Aun −Bvn‖2
]
.

≤ L2
[
α2‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2

∗

+ 2λ〈Axn −Byn, Aun −Bvn〉 − λ(2− λλ̄(A,B))‖Aun −Bvn‖2
]

Since 2λ〈Axn − Byn, Aun − Bvn〉 ≤ 2λ‖Axn − Byn‖2 + 2λ‖Aun − Bvn‖2, we
conclude that

‖G(xn, yn)−G(un, vn)‖2 ≤ L2
[
α2‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)

−G(xn, yn)‖2
∗ + 2λ‖Axn −Byn‖2 + λ2λ̄(A,B))‖Aun −Bvn‖2

]

Substituting this in its rightful place gives

‖(xn+1,yn+1)− (p, q)‖2
∗ ≤ ‖(xn, yn)− (p, q)‖2

∗ − λ(2− λ(λ̄(A,B)))‖Axn −Byn‖2

− (α2 − 2α3)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

− αλ(2− λ(λ̄(A,B)))‖Aun −Bvn‖2
]

+ α2L2
[
α2‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2

∗

2λ‖Axn −Byn‖2 + λ2λ̄(A,B))‖Aun −Bvn‖2
]

= ‖(xn, yn)− (p, q)‖2
∗

+ [−2λ+ 2λα2L2 + λ2(λ̄(A,B))]‖Axn −Byn‖2

− α2(1− 2α− α2L2)

× ‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

+ [−2αλ+ αλ2λ̄(A,B)) + α2L2λ2λ̄(A,B))]‖Aun −Bvn‖2
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Finally, if we observe that 1 − 2α − α2L2 > 0 is the same as |α + 1
L2 | <

L−2
√
L2 + 1, then, since α ∈ (0, L−2[

√
1 + L2 − 1]), we have 1− 2α− α2L2 >

0. Therefore, we have α2L2 < 1 − 2α and 2 − 2α2L2 > 0. Certainly,
α < min{1

2
, 1
L
}, and −2λ + 2λα2L2 + λ2(λ̄(A,B)) < −2λ + 2λ(1 − 2α) +

λ2(λ̄(A,B)) = −4αλ + λ2(λ̄(A,B)) < 0 since λ < 2α
λ̄(A,B)

. Finally, −2αλ +

αλ2λ̄(A,B)) + α2L2λ2λ̄(A,B) < −2αλ+ αλ2λ̄(A,B)) + λ2λ̄(A,B)(1− 2α) <
−2αλ + λ2λ̄(A,B) < 0.From the previous chain of inequalities we may now
conclude the following,

‖(xn+1,yn+1)− (p, q)‖2
∗ ≤ ‖(xn, yn)− (p, q)‖2

∗, (3.2.20)

[2λ− 2λα2L2 − λ2(λ̄(A,B))]‖Axn −Byn‖2 (3.2.21)
≤‖(xn, yn)− (p, q)‖2

∗ − ‖(xn+1, yn+1)− (p, q)‖2
∗ (3.2.22)

and

[α2(1− 2α− α2L2)‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗

≤ ‖(xn, yn)− (p, q)‖2
∗ − ‖(xn+1, yn+1)− (p, q)‖2

∗. (3.2.23)

Using Lemma (2.1.2) we have by (3.2.20) that ‖(xn, yn)− (p, q)‖2
∗ has a limit.

Therefore, taking limits on both sides of (3.2.21), and (3.2.23) respectively, we
have that

lim
n→∞

‖Axn −Byn‖2 = 0, (3.2.24)

lim
n→∞

‖(xn − λA∗(Axn −Byn), yn + λB∗(Axn −Byn)−G(xn, yn)‖2
∗ = 0.

(3.2.25)

Next, we show that lim
n→∞

‖xn − S(xn)‖1 = 0 and lim
n→∞

‖yn − S(yn)‖2 = 0. The
fact that ‖(xn, yn) − (p, q)‖2

∗ has a limit shows that both {xn} and {yn} are
bounded. Suppose that x∗ and y∗ are weak cluster points of the sequences
{xn} and {yn} such that xnk

⇀ x∗ and ynk
⇀ y∗ repectively. Then

lim
k→∞
‖S(xnk

−λA∗(Axnk
−Bynk

))−Sxnk
‖ ≤ Lsλ̄(A,B) lim

k→∞
‖Axnk

−Bynk
‖ = 0,

and similarly,

lim
k→∞
‖T (ynk

+λB∗(Axnk
−Bynk

))−Tynk
‖ ≤ Ltλ̄(A,B) lim

k→∞
‖Axnk

−Bynk
‖ = 0.
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Therefore we have

‖xnk
− S(xnk

)‖ ≤ ‖xnk
− (xnk

− λA∗(Axnk
−Bynk

)‖
+ ‖(xnk

− λA∗(Axnk
−Bynk

))− S(xnk
− λA∗(Axnk

−Bynk
))‖

Lsλ̄(A,B)‖Axnk
−Bynk

‖ → 0 as k →∞.

A similar computation gives that lim
k→∞
‖ynk

− T (ynk
)‖ = 0. Since S and T are

demiclosed at zero, we conclude that x∗ = S(x∗) and y∗ = T (y∗). Again, since
xnk

⇀ x∗ and ynk
⇀ y∗, we have that

Axnk
−Bynk

⇀ Ax∗ −By∗,

and by the weak lower semi-continuity of norm,

‖Ax∗ −By∗‖ ≤ lim
n→∞

inf ‖Axnk
−Bynk

‖ = 0,

So, Ax∗ = By∗ and thus (x∗, y∗) ∈ Γ. In conclusion, we have obtain thus far
that for each (p, q) ∈ Γ, the sequence ‖(xn, yn)−(p, q)‖2

∗ has a limit. Moreover,
each weak cluster point of the sequence (xn, yn) is an element of Γ. We may
now invoke the celebrated Opial’s Lemma 3.2.1 to conclude that there exist
(x∗, y∗) ∈ Γ such that (xn, yn) converges weakly to (x∗, y∗). Hence the iterative
sequence (xn, yn) converges weakly to a solution of the spit equality problem
(3.2.11). The proof is complete.

We may stregthen the conditions of the theorem and obtrain strong con-
vergence of the sequence as follows:

Theorem 3.2.3 Suppose that the assupmtions of Theorem (3.2.2) are fulfilled.
Assume, in addition, that the mappings S and T are also hemicompact. Then,
for any initial point (x1, y1), the coupled iterative sequence (xn, yn) derived from
the algorithm converges strongly to a solution of problem (SEP).

Proof: We have obtained fromTheorem 3.2.2 that (xn, yn) is bounded, and
that lim

n→∞
‖xn − S(xn)‖ = 0, and lim

n→∞
‖yn − T (yn)‖ = 0. On the other hand,

since S and T are hemicompact, we have some subsequence {xnk
} and {ynk

}
of {xn} and {yn}, respectively, such that xnk

→ x∗ and ynk
→ y∗. The

subsequence also converge weakly and therefore Axnk
− Bynk

⇀ Ax∗ − By∗.
As we have shown above, this yields Ax∗ = By∗ and (x∗, y∗) ∈ Γ. Going back
to the proof of Theorem (3.2.2), we have that lim

n→∞
‖(xn, yn)− (x∗, y∗)‖2

∗ exists
and then lim

k→∞
‖(xnk

, ynk
)−(x∗, y∗)‖2

∗.We may conclude by Lemma (2.1.2) that
(xn, yn) → (x∗, y∗) ∈ Γ. So our iterative algorithm converges to a solution of
(SEP ) and the proof is complete.
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Corollary 3.2.1 Suppose that the mappings S and T in Theorem (3.2.3) are
hemicompact and demicontractive. Then, for any initial point (x1, y1), the
coupled iterative sequence (xn, yn) derived from the algorithm converges strongly
to a solution of problem (SEP).

In conclusion, our theorems extend and complement the results of Chidume
et al. [41], Xu[105], Moudafi and Al-Shamas [79] and many other authors to
the more general class of Lipschitz hemicontractive mappings.

Remark: The main theorems of this chapter namely, Theorem 3.2.1 and The-
orem 3.2.2 are contents of the journal articles

• M.E. Okpala, A Remark On the Theorem of Ishikawa, British Journal
of Mathematics and Computer Science Vol 7 Issue 7 2015

• M. E. Okpala Split equality fixed point problem for Lipschitz Hemi-contractive
mappings,(Accepted(2015) Advances in Fixed Point Theory).
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CHAPTER 4

Contributions on Iterative Algorithms for a General Class
of Multivalued Strictly Pseudocontractive mappings

In this chapter we will survey some techniques for approximating fixed points
of a more general class of multivalued pseudocontractive mappings which we
will define shortly.

First, we recall the single valued definition of strictly pseudocontractive map-
ping due to Browder and Petryshin [23] as follows:

Definition 4.0.2 Let K be a nonempty subset of a Hilbert space H. A map
T : K → H is called strictly pseudocontractive if there exists k ∈ [0, 1) such
that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(x− Tx)− (y − Ty)‖2, ∀x, y ∈ K. (4.0.1)

The following definition of multivalued strictly pseudocontractive mappings
was introduced in Chidume et al. [35]:

Definition 4.0.3 Let H be a real Hilbert space and let D be a nonempty, open
and convex subset of H. Let T : D → CB(D) be a mapping. Then, T is called
a multi-valued k−strictly pseudocontractive mapping if there exists k ∈ (0, 1)
such that for all x, y ∈ D(T ), we have

D2(Tx, Ty) ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, (4.0.2)

for all u ∈ Tx, v ∈ Ty.
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Remark 4.0.1 It is easy to see that inequality (4.0.2) is equivalent to

D2(Tx, Ty) ≤ ‖x− y‖2 + k inf
(u,v)
‖(x− u)− (y − v)‖2.

Remark 4.0.2 • For k = 1, in definition (4.0.3), the mapping T was
called multi-valued pseudocontractive and k = 0, is the multi-valued non-
expansive introduced in Nadler [80].

• The definition is an extension of the definition of single-valued strictly
pseudocontractive mappings to multi-valued maps.

Definition 4.0.4 A map T : K → CB(K) is said to be hemicompact if, for
any sequence {xn} such that lim

n→∞
d(xn, Txn) = 0, there exists a subsequence,

say, {xnk
} of {xn} such that xnk

→ p ∈ K.

Note that if K is compact, then every multi-valued mapping T : K → CB(K)
is hemicompact.

Definition 4.0.5 Let H be a real Hilbert space and let T be a multi-valued
mapping. The multi-valued mapping I − T is said to be strongly demiclosed
at 0 (see, e.g., [57]) if for any sequence {xn} ⊆ D(T ) such that xn → p and
d(xn, Txn) converges strongly to 0, then d(p, Tp) = 0.

We will recall the following important characterization of the metric pro-
jection in Hilbert spaces which is also stated in proposition 2.1.2.

Lemma 4.0.3 Let H be a Hilbert space, K ⊂ H be nonempty, closed and
convex, z ∈ H and x ∈ K. Then x = PKz if and only if

〈z − x,w − x〉 ≤ 0 ∀w ∈ K.

4.1 Main Results
We first prove the following important preliminary results.

Lemma 4.1.1 Let E be a normed linear space , A,B ∈ CB(E) and x0, y0 ∈ E
arbitrary. The following hold;

(a) D(A,B) = D(x0 + A, x0 +B).

(b) D(A,B) = D(−A,−B).
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(c) D(x0 + A, y0 +B) ≤ ‖x0 − y0‖+D(A,B).

(d) D({x0}, A) = sup
a∈A
‖x0 − a‖.

(e) D({x0}, A) = D({0}, x0 − A).

Proof: (a) By definition, we have

D(x0 + A, x0 +B) = max
{

sup
a∈A

d(x0 + a, x0 +B); sup
b∈B

d(x0 + b, x0 +B)
}

= max{sup
a∈A

d(a,B); sup
b∈B

d(b;A)}

= D(A,B).

(b) We have

D(−A,−B) = max{ sup
−a∈−A

d(−a;−B); sup
−b∈−B

d(−b;−A)}

= max{sup
a∈A

d(a;B); sup
b∈B

d(b;A)}

= D(A,B).

(c) It is known that for any set B ⊆ E, x, y ∈ E arbitrary, the inequality

d(x,B) ≤ ‖x− y‖+ d(y,B)

holds. Using this inequality we have

d(x0 + a, y0 +B) ≤ ‖(x0 + a)− (y0 + a)‖+ d(y0 + a, y0 +B)

= ‖x0 − y0‖+ d(a,B),

and similarly
d(y0 + b, x0 + A) ≤ ‖x0 − y0‖+ d(b, A).

Therefore, taking sup over A and B respectively, we have

sup
a∈A

d(x0 + a, y0 +B) ≤ ‖x0 − y0‖+ sup
a∈A

d(a,B),

and
sup
b∈B

d(y0 + b, x0 + A) ≤ ‖x0 − y0‖+ sup
b∈B

d(b, A).

Thus D(x0 + A, y0 +B) ≤ ‖x0 − y0‖+D(A,B).
(d) It is obvious that d(x0;A) = sup

x0∈{x0}
d(x0, A). On the otherhand, for any

a ∈ A, we have
d(a; {x0}) = ‖a− x0‖ ≥ d(x0;A).

45



Taking sup over A we have

sup
a∈A

d(a, {x0}) ≥ d(x0, A),

and therefore

D({x0}, A) := max{sup
a∈A

d(a; {x0}); sup
x0∈{x0}

d(x0;A)} = sup
a∈A

d(a, {x0}).

(e)

D({x0}, A) := max{sup
a∈A

d(a, {x0}), d(x0, A)}

= max{sup
a∈A
‖x0 − a‖), inf

a∈A
‖x0 − a‖}

= max{sup
a∈A

d(0, x0 − A), d(0, x0 − A)}

= D({0}, x0 − A).

This lemma has many intersting implications. For example, recall the Nadler’s
condition, that is,

Lemma 4.1.2 (Nadler [80]) Given A and B ∈ CB(H) and a ∈ A. For
every γ > 0, there exists b ∈ B such that

‖a− b‖ ≤ D(A,B) + γ.

From the property (d), we obtain the following lemma which gives the reverse
of the Nadler’s lemma as follows.

Lemma 4.1.3 Let B ∈ CB(H) and γ > 0 be given. Then for any a ∈ H,
there exist b ∈ B such that

D({a}, B) ≤ ‖a− b‖+ γ.

We now introduce the following class of generalized k− strictly pseudocontrac-
tive multi-valued mappings.

Definition 4.1.1 Let H be a real Hilbert space and let K be a nonempty subset
of H. Let T : K → CB(K) be a multi-valued mapping. Then T is called gen-
eralized k−strictly pseudocontractive multi-valued mapping if there
exists k ∈ (0, 1) such that for all x, y ∈ D(T ), we have

D2(Tx, Ty) ≤ ‖x− y‖2 + kD2(Ax,Ay), A := I − T, (4.1.1)

and I is the identity operator on K.
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Remark 4.1.1 Definition (4.1.1) seems to be a more natural generalization of
the single-valued definition (2.1.3) given by Browder and Petryshin [23] than
the definition (4.0.3) given by Chidume et al. [35].

We now prove that the class of generalized k−strictly pseudocontractive map-
pings properly contains the class introduced in the Definition (4.0.3).

Proposition 4.1.1 Let T : K → CB(K) be a multi-valued k−strictly pseu-
docontractive mapping, then T is a generalized k−strictly pseudocontractive
multi-valued mapping.

Proof Given that T is a multi-valued k−strictly pseudocontractive mapping,
we have

D2(Tx, Ty) ≤ ‖x− y‖2 + k inf
(u,v)∈(Tx,Ty)

‖(x− u)− (y − v)‖2. (4.1.2)

We now show that inequality (2.3.5) implies inequality (4.1.1).

D(x− Tx, y − Ty) : = max
{

sup
u∈Tx

d(x− u; y − Ty); sup
v∈Ty

d(y − v;x− Tx)
}

≥ sup
u∈Tx

d(x− u; y − Ty)

≥ d(x− u0; y − Ty), u0 ∈ Tx.

Now, given ε > 0, there exist vε ∈ Ty such that

d(x− u0; y − Ty) ≥ ‖(x− u0)− (y − vε)‖ − ε
≥ inf

(u,v)∈(Tx,Ty)
‖(x− u)− (y − v)‖ − ε.

Thus, for arbitrary ε > 0, we have

inf
(u,v)∈(Tx,Ty)

‖(x− u)− (y − v)‖ ≤ D(x− Tx, y − Ty) + ε,

and therefore, since ε > 0 is arbitrary, we have:

inf
(u,v)∈(Tx,Ty)

‖(x− u)− (y − v)‖ ≤ D(x− Tx, y − Ty). (4.1.3)

We therefore obtain from (4.1.2) and (4.1.3) that:

D2(Tx, Ty) ≤ ‖x− y‖2 + kD2(x− Tx, y − Ty).

Thus, every multi-valued k−strictly pseudocontractive mapping is also a gen-
eralized k−strictly pseudocontractive multi-valued mapping.

We now give an example to show that this inclusion is proper.

For the example, we shall need the following lemma which is trivially proved.
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Lemma 4.1.4 Let a, b be real numbers such that 0 ≤ a ≤ 4b. Then,

(a− b)2 ≤ b2 +
1

2
a2. (4.1.4)

Example 4.1.1 Let H be a real Hilbert space. Define a mapping

T : H → CB(H) by

Tx :=

{
B(−x, ‖x‖), ‖x‖ > 0

{0}, x = 0,

where
B(−x, ‖x‖) = {u ∈ H : ‖u+ x‖ ≤ ‖x‖}.

Then, for distinct nonzero x and y, we have the following identities which
follow from the definition of T :

x− Tx = B(2x, ‖x‖),
y − Ty = B(2y, ‖y‖),

Tx = {w ∈ H : ‖w + x‖ ≤ ‖x‖},
T y \ Tx = {z ∈ H : ‖z + y‖ ≤ ‖y‖, ‖z + x‖ > ‖x‖}.

We now establish the following equation:

D(Tx, Ty) = ‖x− y‖+
∣∣∣‖y‖ − ‖x‖∣∣∣. (4.1.5)

First, we assume without loss of generality that ‖y‖ ≥ ‖x‖. Then we proceed
as follows:

Claim 1: ∀z ∈ Ty \ Tx, d(z, Tx) = ‖z − P(Tx)z‖, where

P(Tx)z := −x+
‖x‖
‖x+ z‖

(
z + x

)
(see also Example 2.1.3(a)). (4.1.6)
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Proof of Claim 1. Let w ∈ Tx. Then, ‖w + x‖ ≤ ‖x‖. Furthermore,

〈z − P(Tx)z, w − P(Tx)z〉 =
〈
z + x− ‖x‖

‖x+ z‖
(z + x), w + x− ‖x‖

‖x+ z‖
(z + x)

〉
=
‖x+ z‖ − ‖x‖
‖x+ z‖

(
〈z + x,w + x〉 − ‖x‖

‖x+ z‖

〈
z + x, z + x

〉)
=
‖x+ z‖ − ‖x‖
‖x+ z‖

(
〈z + x,w + x〉 − ‖x‖‖z + x‖

)
≤ ‖x+ z‖ − ‖x‖

‖x+ z‖

(
‖z + x‖‖w + x‖ − ‖x‖‖z + x‖

)
≤ (‖x+ z‖ − ‖x‖)

(
‖x‖ − ‖x‖

)
= 0.

Thus, it follows that,

〈z − P(Tx)z, w − P(Tx)z〉 ≤ 0,

and applying Lemma(4.0.3), the claim is proved. Now, set

z0 := −x+
(

1 +
‖y‖
‖x− y‖

)
(x− y). (4.1.7)

Clearly z0 ∈ Ty \ Tx since

‖z0 + y‖ =
∥∥∥ ‖y‖
‖x− y‖

(x− y)
∥∥∥ = ‖y‖

and,

‖z0 + x‖ =
(

1 +
‖y‖
‖x− y‖

)
‖x− y‖ = ‖x− y‖+ ‖y‖

≥ ‖x− y‖+ ‖x‖
> ‖x‖.

Moreover, from equation (4.1.6),

P(Tx)z0 = −x+
‖x‖

‖x+ z0‖

(
z0 + x

)
= −x+

‖x‖
‖x− y‖+ ‖y‖

[‖x− y‖+ ‖y‖
‖x− y‖

(x− y)
]

= −x+
‖x‖
‖x− y‖

(
x− y

)
. (4.1.8)

49



Therefore by (4.1.8) and (4.1.7) we obtain that

d(z0, Tx) = ‖z0 − P(Tx)z0‖ = ‖x− y‖+ ‖y‖ − ‖x‖, (4.1.9)

establishing Claim 1.

Claim 2: d(z0, Tx) = sup
v∈Ty

d(v, Tx).

Proof of Claim 2. Let z ∈ Ty \ Tx be arbitrary. We have,

‖z + y‖ ≤ ‖y‖, ‖z + x‖ > ‖x‖,

and so, using equation (4.1.9),

‖z − P(Tx)z‖ =
∥∥∥z + x− ‖x‖

‖x+ z‖

(
z + x

)∥∥∥
= ‖z + x‖

(
1− ‖x‖
‖x+ z‖

)
= ‖x+ z‖ − ‖x‖
≤ ‖x− y‖+ ‖z + y‖ − ‖x‖
≤ ‖x− y‖+ ‖y‖ − ‖x‖
= ‖z0 − P(Tx)z0‖.

For z ∈ (Ty ∩ Tx), we have d(z, Tx) = 0. Thus, we obtain that,

d(z, Tx) ≤ ‖z0 − P(Tx)z0‖ ∀z ∈ Ty.

Using the fact that z0 ∈ Ty, we obtain

sup
v∈Ty

d(v, Tx) = ‖z0 − P(Tx)z0‖ = ‖x− y‖+ ‖y‖ − ‖x‖.

Thus, Claim 2 is established.

We now consider the case ‖x‖ ≥ ‖y‖.
For ‖x‖ ≥ ‖y‖, we have by interchanging the roles of x and y,

sup
u∈Tx

d(u, Ty) = ‖x− y‖+ ‖x‖ − ‖y‖.

Therefore,

max
{

sup
y∈Ty

d(y, Tx), sup
x∈Tx

d(x, Ty)
}

= ‖x− y‖+
∣∣∣‖y‖ − ‖x‖∣∣∣. (4.1.10)
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For x = y, Tx = Ty, and D(Tx, Ty) = 0. Moreover, for x = 0, y 6= 0, a
straightforward computation gives

D(0, T y) = 2‖y‖ = ‖0− y‖+
∣∣∣0− ‖y‖∣∣∣.

Thus, the identity (4.1.5) is fully established for arbitrary x, y ∈ H.

Following similar procedure, we obtain

D(x− Tx, y − Ty) = 2‖x− y‖+
∣∣∣‖y‖ − ‖x‖∣∣∣ ∀x, y ∈ H. (4.1.11)

We set

a := D(x− Tx, y − Ty).

b := ‖x− y‖.

Then, using equations (4.1.11) and (4.1.5), we obtain that,

a− b = D(Tx, Ty).

Clearly, by equation (4.1.11),

a = 2‖x− y‖+
∣∣∣‖y‖ − ‖x‖∣∣∣ ≤ 4‖x− y‖ = 4b.

Therefore, by Lemma (4.1.4),

D2(Tx, Ty) ≤ ‖x− y‖2 +
1

2

(
D(x− Tx, y − Ty)

)2

∀x, y ∈ H.

Therefore, T is a generalized k−strictly pseudocontractive multi-valued map-
ping with k = 1

2
.

We now show that T is not a multi-valued k−strictly pseudocontractive map-
ping in the sense of definition (4.0.3).
We establish this by contradiction. So, assume that there exists k ∈ [0, 1) such
that inequlity (4.0.2) holds. Choose x ∈ H \ {0}. Set y = 2x, u = v = 0 ∈
(Tx ∩ Ty). Then,

‖x− y|| = ‖x‖,

D(Tx, Ty) = ‖x− y‖+
∣∣∣‖y‖ − ‖x‖∣∣∣ = 2‖x‖,

and
‖(x− u)− (y − v)‖ = ‖x− y‖ = ‖x‖.
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Thus,

4‖x‖2 = D2(Tx, Ty) ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2 ≤ 2‖x‖2.

This is a contradiction to x ∈ H \ {0}. Therefore, T is not a multi-valued
k−strictly pseudocontractive mapping for any k ∈ (0, 1).

To prove our main theorem, we first prove the following important propositions.

Proposition 4.1.2 Let K be a nonempty subset of a real Hilbert space H and
T : K → CB(K) be a generalized k−strictly pseudocontractive multi-valued
mapping. Then T is Lipschitzian.

Proof: Let x, y ∈ D(T ). Then,

D2(Tx, Ty) ≤ ‖x− y‖2 + kD2(x− Tx, y − Ty)

≤ ‖x− y‖2 + k
(
‖x− y‖+D(Tx, Ty)

)2

, by Lemma (4.1.1), (c), (b).

≤
(
‖x− y‖+

√
k‖x− y‖+

√
kD(Tx, Ty)

)2

.

Thus,

D(Tx, Ty) ≤ (1 +
√
k)‖x− y‖+

√
kD(Tx, Ty),

and hence,

D(Tx, Ty) ≤ 1 +
√
k

1−
√
k

∥∥∥x− y∥∥∥,
as proposed.

Remark 4.1.2 Propostion (4.1.2) is an improvement of Proposition 8 of [35]
because it does not assume that Tx is weakly closed for each x ∈ K.

Proposition 4.1.3 Let K be a nonempty and closed subset of a real Hilbert
space H and let T : K → CB(K) be a generalized k−strictly pseudocontractive
multi-valued mapping. Then, (I − T ) is strongly demiclosed at zero.

Proof: Let {xn} be a sequence in K such that xn → x and d(xn, Txn) → 0.
For each n ∈ N, take yn ∈ Txn such that ‖xn − yn‖ ≤ d(xn, Txn) + 1

n
.

Then,

d(x, Tx) ≤ ‖x− xn‖+ ‖xn − yn‖+ d(yn, Tx)

≤ ‖x− xn‖+ d(xn, Txn) +
1

n
+D(Txn, Tx)

≤ ‖x− xn‖+ d(xn, Txn) +
1

n
+

1 +
√
k

1−
√
k

∥∥∥xn − x∥∥∥.
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Thus, taking limits on both sides as n→∞, we have d(x, Tx) = 0. Since Tx
is closed, x ∈ Tx.

Observe that for any given sequence {xn} ⊆ K, the set

Un :=
{
yn ∈ Txn : D2({xn}, Txn) ≤ ‖xn − yn‖2 +

1

n2

}
,

is nonempty for each n ∈ N due to Lemma 4.1.3.

We now prove the following theorem.

Theorem 4.1.1 Let K be a nonempty, closed, convex subset of a real Hilbert
space H. Let T : K → CB(K) be a generalized k−strictly pseudocontractive
multi-valued mapping such that F (T ) 6= ∅. Assume Tp = {p} ∀p ∈ F (T ).
Define a sequence {xn} by the algorithm


x0 ∈ K chosen arbitarily,
xn+1 = (1− λ)xn + λyn

yn ∈ Un :=
{
zn ∈ Txn : D2({xn}, Txn) ≤ ‖xn − zn‖2 + 1

n2

}
,

λ ∈ (0, 1− k),

Then, d(xn, Txn)→ 0 as n→∞.

Proof: Let p ∈ F (T ). Then, using Lemma4.1.1, (d) and (e), we have

‖xn+1 − p‖2 = ‖(1− λ)(xn − p) + λ(yn − p)‖2

= (1− λ)‖xn − p‖2 + λ‖yn − p‖2 − λ(1− λ)‖xn − yn‖2

≤ (1− λ)‖xn − p‖2 + λD2(Txn, Tp)− λ(1− λ)‖xn − yn‖2

≤ (1− λ)‖xn − p‖2 + λ
(
‖xn − p‖2 + kD2(xn − Txn, 0)

)
− λ(1− λ)‖xn − yn‖2

= (1− λ)‖xn − p‖2 + λ‖xn − p‖2 + λkD2({xn}, Txn)− λ(1− λ)‖xn − yn‖2

≤ (1− λ)‖xn − p‖2 + λ‖xn − p‖2 + λk
(
‖xn − yn‖2 +

1

n2

)
− λ(1− λ)‖xn − yn‖2.

= ‖xn − p‖2 +
λk

n2
− λ(1− λ− k)‖xn − yn‖2.

Thus,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
λk

n2
− λ(1− λ− k)‖xn − yn‖2. (4.1.12)
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By Lemma 2.1.2, the sequence
{
‖xn − p‖

}
has a limit and therefore, {xn} is

bounded. Moreover, we have from inequality (4.1.12) that

λ(1− λ− k)‖xn − yn‖2 ≤ ‖xn − p‖2 +
λk

n2
− ‖xn+1 − p‖2.

Taking lim sup on both sides, we get that

λ(1− λ− k) lim sup
n→∞

‖xn − yn‖ ≤ 0,

and therefore lim
n→∞

‖xn−yn‖ = 0. Since d(xn, Txn) ≤ ‖xn−yn‖, it follows that
lim
n→∞

d(xn, Txn) = 0.

Remark 4.1.3 Theorem (4.1.1) is quite interesting because it dealt with a
much larger class of multi-valued mappings and yet did not face the problem
of computing zn ∈ Txn such that ‖zn − x∗‖ = d(x∗, Txn) as it is, for example,
in Sastry and Babu [98] and a host of other articles.

Corollary 4.1.1 Let K be a nonmepty, closed and convex subset of a real
Hilbert space H, and let T : K → CB(K) be a generalized k−strictly pseudo-
contractive multi-valued mapping, with F (T ) 6= ∅ and assume Tp = {p} for
each p ∈ F (T ). Suppose that T is hemicompact. Then, the sequence {xn}
defined in Theorem 4.1.1 converges strongly to a fixed point of T .

Proof: By Theorem 4.1.1, we have lim
n→∞

d(xn, Txn) = 0. Since T is hemi-
compact, let {xnk

} be a subsequence of {xn} such that xnk
→ q as n → ∞

and let ynk
∈ Txnk

such that
‖xnk

− ynk
‖ ≤ d(xnk

, Txnk
) + 1

k
.. Then

d(q, T q) ≤ ‖q − xnk
‖+ ‖xnk

− ynk
‖+ d(ynk

, T q)

≤ ‖q − xnk
‖+ d(xnk

, Txnk
) +

1

k
+D(Txnk

, T q)

≤ ‖q − xnk
‖+ d(xnk

, Txnk
) +

1

k
+

1 +
√
k

1−
√
k

∥∥∥xnk
− q
∥∥∥.

Thus, taking limits on the righthand side as k → ∞, we have d(q, T q) = 0.
Since Tq is closed, q ∈ Tq. Moreover, xnk

→ q as n→∞ gives ‖xnk
− q‖ → 0

as n→∞. Thus, using inequality 4.1.12 and Lemma 2.1.2, lim
n→∞

‖xn− q‖ = 0.

Therefore {xn} converges strongly to a fixed point q of T as claimed.

Remark 4.1.4 Observe that we did not assume that Tx is proximinal for each
x ∈ K neither did we require any continuity assumption on T nor any com-
pactness assumption on K. Consequenctly, Corollary (4.1.1) is a significant
improvement Chidume etal. [35].
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Corollary 4.1.2 Let K be a nonmepty, compact and convex subset of a real
Hilbert space H, and let T : K → CB(K) be a generalized k−strictly pseudo-
contractive multi-valued mapping, with F (T ) 6= ∅ and assume Tp = {p} for
each p ∈ F (T ). Then, the sequence {xn} defined in Theorem 4.1.1 converges
strongly to a fixed point of T .

Proof: Since K is compact, every map T : K → CB(K) is hemicompact.
Thus, by Corollary 4.1.1, we have that {xn} converges strongly to some p ∈
F (T ).

Remark 4.1.5 Our theorem and corollaries in this section improve and gen-
eralize convergence theorems for multi-valued nonexpansive mappings in [1],
[35], [63, 64],[88, 98, 100], in the following sense:

(i) The class of mappings considered in this secction contains the class of
multi-valued k− strictly pseudocontractive mappings as special case, which
itself properly contain the class of multi-valued nonexpansive maps.

(ii) The algorithm here is Krasnoselkii type, which is known to have a geomet-
ric order of convergence, and the theorem is proved for the much larger
class of generalized multi-valued strict pseudocontractive mappings.

(iii) Inequality (4.1.1) of definition (4.1.1) is a more natural generalisation of
the single-valued psudo-contractive mappings as given by inequality(2.1.3).

(iv) The condition that Tx be weakly closed for each x ∈ K imposed in [35]
is dispensed with here.

We conclude, by saying that the condition T (p) = {p} for all p ∈ F (P ) ,
which is imposed in our theorem and corollaries is not crucial. Certainly our
example (4.1.1) satisfies the condition since T0 = {0} is the unique fixed point
of T . However, some work in the litrature shows that this condition can be
replaced with other conditions which does not assume that the multi-valued
mapping is single-valued on the nonempty fixed point set. Details of this can
be found, for example, in [101] and [112].

Remark: The main theorems and examples of this chapter appeared in

• C. E. Chidume and M.E. Okpala On a general class of multi-valued
strictly pseudocontractive mapping, Journal of Nonlinear Analysis
and Optimization, Theory & Applications Vol 5 No 2. (2014).
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CHAPTER 5

Contribution on Countable Family of Multi-valued Strictly
Pseudocontractive Mappings

In this Chapter, we discuss the extension of the main theorem of the last
chapter to finite family and then countable family of generalized k−strictly
pseudocontractive multivalued mappings in Hilbert spaces.

The extension of the main theorem of the last chapter to a finite family is quite
straight forward. It makes use of the following identity valid in Hilbert spaces.

Lemma 5.0.5 ([36]) Let H be a real Hilbert space and let {xi, i = 1, 2, ...,m} ⊆
H. For αi ∈ (0, 1), i = 1, 2, ...,m such that

m∑
i=1

αi = 1, the following identity

holds: ∥∥∥ m∑
i=1

αixi

∥∥∥2

=
m∑
i=1

αi‖xi‖2 −
∑

1≤i<j≤m

αiαj‖xi − xj‖2,

5.1 Theorems for a Finite Family of Multi-valued
Strictly Pseudocontractive Maps

Given a finite family {Ti, i = 1, ...,m} of generalized ki−strictly pseudocon-
tractive multi-valued mappings and arbitrary sequence {xn} ⊆ K, let

Sin :=
{
yin ∈ Tixn : D2({xn}, Tixn) ≤ ‖xn − yin‖2 +

1

n2

}
.

Certainly, Sin is not empty for each n ≥ 1 by Lemma 4.1.3. We now state and
prove our main theorem of this section.
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Theorem 5.1.1 Let K be a nonempty, closed and convex subset of a real
Hilbert space H. For i = 1, 2, ...,m, let Ti : K → CB(K) be a family of gen-
eralized ki−strictly pseudocontractive multi-valued mappings with ki ∈ (0, 1).
Suppose that ∩mi=1F (Ti) 6= ∅ and assume that for p ∈ ∩mi=1F (Ti), Tip = {p}.
Define a sequence {xn} by x0 ∈ K arbitrary and,

xn+1 = (λ0)xn +
m∑
i=1

λiy
i
n, (5.1.1)

where yin ∈ Sin, λ0 ∈ (k, 1),
m∑
i=0

λi = 1, and k := max{ki, i = 1, 2, ...,m}.

Then, for each i = 1, 2, ...,m, lim
n→∞

d(xn, Tixn) = 0.

Proof. 5.1.1 Let p ∈ ∩mi=1F (Ti). Then, using Lemma 5.0.5 together with
Lemma 4.1.1, (d) and (e), we have

‖xn+1 − p‖2 = ‖λ0(xn − p) +
m∑
i=1

λi(y
i
n − p)‖2,

= λ0‖xn − p‖2 +
m∑
i=1

λi‖yin − p‖2 −
m∑
i=1

λ0λi‖xn − yin‖2 −
∑

1≤i≤j≤m

λiλj‖yin − yjn‖2,

≤ λ0‖xn − p‖2 +
m∑
i=1

λiD
2(Tixn, Tip)−

m∑
i=1

λ0λi‖xn − yin‖2,

≤ λ0‖xn − p‖2 +
m∑
i=1

λi(‖xn − p‖2 + kiD
2(xn − Tixn, {0}))−

m∑
i=1

λ0λi‖xn − yin‖2,

=
m∑
i=0

λi‖xn − p‖2 +
m∑
i=1

λikiD
2({xn}, Tixn)−

m∑
i=1

λ0λi‖xn − yin‖2,

≤
m∑
i=0

λi‖xn − p‖2 +
m∑
i=1

λik(‖xn − yin‖2 +
1

n2
)−

m∑
i=1

λ0λi‖xn − yin‖2, since yin ∈ Sin,

≤ ‖xn − p‖2 +
k

n2
−

m∑
i=1

λi(λ0 − k)‖xn − yin‖2.

Therefore,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
k

n2
−

m∑
i=1

λi(λ0 − k)‖xn − yin‖2, (5.1.2)
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and then,

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
k

n2
. (5.1.3)

Inequality (5.1.3) and Lemma 2.1.2 then give that the sequence
{
‖xn − p‖

}
has a limit and therefore, {xn} is bounded. Moreover, we have from inequality
(5.1.3) that

m∑
i=1

λi(λ0 − k)‖xn − yin‖2 ≤ k

n2
+ ‖xn − p‖2 − ‖xn+1 − p‖2,

and so,

λi(λ0 − k)‖xn − yin‖2 ≤ k

n2
+ ‖xn − p‖2 − ‖xn+1 − p‖2 → 0 , (as n→∞),

for each i = 1, 2, ...,m. Thus, for each i = 1, 2, ...,m, lim
n→∞

‖xn − yin‖ = 0 and

using the fact d(xn, Tixn) ≤ ‖xn − yin‖, it follows that lim
n→∞

d(xn, Tixn) = 0.

Thus the thorem is proved.

We also obtain the following corollary, namely:

Corollary 5.1.1 Let K be nonempty, closed and convex subset of a real Hilbert
space H. For i = 1, 2, ...,m, let Ti : K → CB(K) be a family of generalized
ki−strictly pseudocontractive multi-valued mapping with ∩mi=1F (Ti) 6= ∅. As-
sume that for p ∈ ∩mi=1F (Ti), Tip = {p} and that Ti0 is hemicompact for some
i0. Then, the sequence {xn} defined in Theorem 4.1.1 converges strongly to a
common fixed point of {Ti, i = 1, 2, ...,m} .

Proof. 5.1.2 By Theorem (4.1.1), lim
n→∞

d(xn, Tixn) = 0 for each i and in par-
ticular lim

n→∞
d(xn, Ti0xn) = 0. Since Ti0 is hemicompact, let {xnj

} be a subse-
quence of {xn} such that xnj

→ q as j → ∞. For each i = 1, 2, ...,m, choose
yinj
∈ Tixnj

such that ‖xnj
− yinj

‖ ≤ d(xnj
, Tixnj

) + 1
j
. Then,

d(q, Tiq) ≤ ‖q − xnj
‖+ ‖xnj

− yinj
‖+ d(yinj

, Tiq)

≤ ‖q − xnj
‖+ d(xnj

, Tixnj
) +

1

j
+D(Tixnj

, Tiq)

≤ ‖q − xnj
‖+ d(xnj

, Tixnj
) +

1

j
+

1 +
√
k

1−
√
k

∥∥∥xnj
− q
∥∥∥.

Thus, taking limits on the right hand side as j → ∞, we have d(q, Tiq) = 0.
Since Tiq is closed, q ∈ Tiq for each i and therefore q ∈ ∩mi=1Tiq. Moreover,
xnj
→ q as j → ∞ gives ‖xnj

− q‖ → 0 as j → ∞. Thus, using inequal-
ity (5.1.3) and Lemma (2.1.2), lim

n→∞
‖xn − q‖ = 0. Therefore {xn} converges

strongly to a common fixed point q of the maps Ti, as claimed.
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Remark 5.1.1 Collorary 5.1.1 is a significant improvement and generaliza-
tion of Theorem 2.4 of [36] in the following sense:

(i) The theorem is proved for the much larger class of generalized k−strictly
psuedo-contractive multi-valued mappings.

(ii) No continuity assuption is imposed on our maps.

(iii) Only one arbitrary map is required to be hemicompact.

(iv) The condition λi ∈ (k, 1), for all i is replaced by the the weaker condition
λ0 ∈ (k, 1).

(v) In the case where we have only one map, m = 1, we recover the main
theorem of the last chapter.

Furthermore, that condition yin ∈ Sin is more readily applicable than requiring
that Tx is proximinal and weakly closed for each x, and then, finding yn ∈ Txn
such that ‖yn − xn‖ = d(xn, Txn) at each iterative step, as it is in [88] and in
many others results.

5.2 Fixed point iteration for a countable family
of multi-valued strictly pseudocontractive-
type mappings

The extension of the theorem to a countably infinite family is not as straight
forward as the finite family case. First, there is no known analogue of Lemma
(5.0.5) for a countable family. Again, given a countably infite family {Ti} of
generalized ki-strictly pseudocontractive multi-valued mappings, it may hap-
pent that sup

i≥1
ki = 1 and the techniques we have applied thus far may not be

applicable anymore. Therefore in this section, we will assume that this is not
the case. Precisely, we assume that sup

i≥1
ki ∈ (0, 1). We present an example of

such a countable family below. For that, we need the following lemma.

Lemma 5.2.1 Let a, b, c be real numbers such that 0 ≤ a ≤ bc, c > 0. Then

(a− b)2 ≤ b2 +
(c− 2

c

)
a2. (5.2.1)
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Proof. 5.2.1 The proof is trivially established as follows:

0 ≤ a ≤ bc, c > 0

⇒ a2 ≤ abc

⇒ a2

c
≤ ab

⇒ − 2ab ≤ −2a2

c

⇒ a2 − 2ab+ b2 ≤ a2 − 2a2

c
+ b2

⇒ (a− b)2 ≤ b2 +
(c− 2

c

)
a2

Remark 5.2.1 If we take c = 4 in this lemma, we recover Lemma 4.1.4.

Example 5.2.1 Define a multi-valued mapping Ti : l2(R)→ CB(l2(R)) by

Tix :=

{
{y ∈ l2 : ‖x+ y‖ ≤ αi‖x‖}, x 6= 0

{0}, x = 0,
(5.2.2)

where αi = 7i
3i−1

, i = 1, 2, ..., . We obtain that

x− Tix :=

{
{y ∈ l2 : ‖y − 2x‖ ≤ αi‖x‖}, x 6= 0

{0}, x = 0

Then, for arbitrary x, y ∈ l2(R), we compute as follows:

D(Tix, Tiy) = ‖x− y‖+ αi

∣∣∣‖x‖ − ‖y‖∣∣∣,
and

D(x− Tix, y − Tiy) = 2‖x− y‖+ αi

∣∣∣‖x‖ − ‖y‖∣∣∣.
Now, set

a := D(x− Tix, y − Tiy); b := ‖x− y‖.
Then, a− b = D(Tix, Tiy) and

a =2‖x− y‖+ αi

∣∣∣‖x‖ − ‖y‖∣∣∣
≤(2 + αi)‖x− y‖.

Now, for each i, set 2 + αi = ci = c in Lemma (5.2.1) above. We obtain the
identity ci−2

ci
= αi

2+αi
, and by the same lemma, we have

D2(Tix, Tiy) ≤ ‖x− y‖2 +
αi

2 + αi
D(x− Tix, y − Tiy).

Thus, each Ti, i = 1, 2, ..., is a generalized κi-strictly pseudocontractive multi-
valued mapping with κi = αi

2+αi
∈ (0, 1) and each κi ≤ κ := 7

13
. Moreover, we

have p ∈ Tip if and only if p = 0. Thus, for p ∈ ∩∞i=1F (Tip), Tip = {p}.
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We present an analogue of Lemma 5.0.5 as follows:

Lemma 5.2.2 Let H be a real Hilbert space and let {xi}i∈N be a bounded

sequence in H. For δi ∈ (0, 1), such that
∞∑
i=1

δi = 1, the following identity

holds: ∥∥∥ ∞∑
i=1

δixi

∥∥∥2

=
∞∑
i=1

δi‖xi‖2 −
∑

1≤i<j<∞

δiδj‖xi − xj‖2. (5.2.3)

Proof. 5.2.2 Define δi(n) := (1 −
∑∞

n+1 δi)
−1δi for each n. It is easy to see

that
∑n

i=1 δi(n) = 1 and that δi(n) → δi as n → ∞. Moreover, by Lemma
5.0.5, we obtain that

∥∥∥ n∑
i=1

δi((n)xi

∥∥∥2

=
n∑
i=1

δi(n)‖xi‖2 −
∑

1≤i<j<≤n

δi(n)δj(n)‖xi − xj‖2.

Since the inequality is true for all natural numbers n, we pass to the limit on
both sides and obtain the identity (5.2.3) as proposed.

Next, given a countably infinite family {Ti}i≥1 of generalized κi−strictly pseu-
docontractive multi-valued mappings and an arbitrary sequence {xn} of K,
denote by Γin the set of inexact distal points of xn with respect to the set Tixn,
i.e

Γin :=
{
ζ in ∈ Tixn : D2({xn}, Tixn) ≤ ‖xn − ζ in‖2 +

1

n2

}
.

Obviously, Γin is closed, convex and nonempty for each n ≥ 1 due to Lemma
4.1.1(d).

In particular, if Tix is assumed to be proximinal and bounded for each x ∈ K,
then Tixn has a vector, say ηin, of maximum norm, i.e.

‖xn − ηin‖ = sup
ζin∈Tixn

‖xn − ζ in‖ =: D({xn}, Tixn).

In that case, it is certain that ηin ∈ Γin.

Based upon these analyses, we now prove our main theorem. We will assume
henceforth that K is a nonempty, closed and convex subset of a real Hilbert
space H. We now state a theorem for a countable family of the mapping.
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Theorem 5.2.1 Let Ti : K → CB(K) be a countably infinite family of
generalized κi−strictly pseudocontractive multi-valued mappings such that for
some κ ∈ (0, 1), κi ∈ (0, κ]. Assume that ∩∞i=1F (Ti) 6= ∅ and for p ∈
∩∞i=1F (Ti), Tip = {p}. Define the sequence {xn} recursively by

x0 ∈ K, arbitrary,
ζ in ∈ Γin,

xn+1 = δ0xn +
∞∑
i=1

δiζ
i
n,

δ0 ∈ (κ, 1),
∑∞

i=0 δi = 1.

(5.2.4)

Then, for each i, lim
n→∞

d(xn, Tixn) = 0.

Proof. 5.2.3 We will first of all establish that the recursion formula xn+1 :=

δ0xn +
∞∑
i=1

δiζ
i
n in the algorithm (5.2.4) is well defined. Take p ∈ ∩∞i=1F (Ti)

arbitrary. We have

‖xn − ζ in‖ ≤ D(xn, Tixn),

= D(xn + p, p+ Tixn).

Therefore, we obtain by Lemma 4.1.1(c) that

‖xn − ζ in‖ ≤ ‖xn − p‖+D(Tp, Tixn),

≤ ‖xn − p‖+
1 +
√
κ

1−
√
κ
‖xn − p‖.

As a matter of fact, we may apply the triangle inequality and take limits to
obtain

‖ζ in‖ ≤ Kn := ‖xn‖+
2

1−
√
κ

inf
p∈F (T )

‖xn − p‖.

It follows then that

‖xn+1‖ ≤ δ0‖xn‖+
∞∑
i=1

δi‖ζ in‖,

and therefore

‖xn+1‖ ≤ δ0‖xn‖+
∞∑
i=1

δiKn ≤ Kn.
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which shows that xn+1 is well defined. We show the convergence of {xn} as
follows:

‖xn+1 − p‖2 = ‖δ0(xn − p) +
∞∑
i=1

δi(ζ
i
n − p)‖2

= δ0‖xn − p‖2 +
∞∑
i=1

δi‖ζ in − p‖2 −
∞∑
i=1

δ0δi‖xn − ζ in‖2 −
∑

1≤i≤j≤∞

δiδj‖ζ in − ζjn‖2

≤ δ0‖xn − p‖2 +
∞∑
i=1

δiD
2(Tixn, Tp)−

∞∑
i=1

δ0δi‖xn − ζ in‖2

≤ δ0‖xn − p‖2 +
∞∑
i=1

δi(‖xn − p‖2 + κiD
2({0}, xn − Tixn))−

∞∑
i=1

δ0δi‖xn − ζ in‖2

=
∞∑
i=0

δi‖xn − p‖2 +
∞∑
i=1

δiκiD
2({xn}, Tixn)−

∞∑
i=1

δ0δi‖xn − ζ in‖2

Since ζ in ∈ Γin, we obtain that

‖xn+1 − p‖ ≤
∞∑
i=0

δi‖xn − p‖2 +
∞∑
i=1

δiκ(‖xn − ζ in‖2 +
1

n2
)−

∞∑
i=1

δ0δi‖xn − ζ in‖2

≤ ‖xn − p‖2 +
κ

n2
−
∞∑
i=1

δi(δ0 − k)(‖xn − ζ in‖2).

This is summarised as:

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
κ

n2
−
∞∑
i=1

δi(δ0 − κ)‖xn − ζ in‖2, (5.2.5)

and therefore

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
κ

n2
. (5.2.6)

In accordance with Lemma 2.1.2, ‖xn−p‖ has a limit and thus {xn} is bounded.
Also, from inequality (5.2.5), there holds:

∞∑
i=1

δi(δ0 − κ)‖xn − ζ in‖2 ≤ ‖xn − p‖2 +
κ

n2
− ‖xn+1 − p‖2

and so for each i ≥ 1,

δi(δ0 − κ)‖xn − ζ in‖2 ≤ ‖xn − p‖2 +
κ

n2
− ‖xn+1 − p‖2, → 0(as n→∞),
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Taking limits on both sides as n → ∞, we conclude that lim
n→∞

‖xn − ζ in‖ = 0.

Using the fact that d(xn, Tixn) ≤ ‖xn − ζ in‖, we get lim
n→∞

d(xn, Tixn) = 0.

Corollary 5.2.1 Let Ti : K → CB(K) be a countably infinite family of gener-
alized κi−strictly pseudocontractive multi-valued mappings such that for some
κ ∈ (0, 1), κi ∈ (0, κ]. Assume that ∩∞i=1F (Ti) 6= ∅ and suppose that for
p ∈ ∩∞i=1F (Ti), Tip = {p}. Assume Ti0 is hemicompact for some i0 ∈ N. Then,
the sequence {xn} defined by algorithm (5.2.4) converges strongly to a fixed
point of T .

Proof. 5.2.4 We already have that lim
n→∞

d(xn, Tixn) = 0 due to Theorem (5.2.1).
The mapping Ti0 being hemicompact guarantees the existence of some subse-
quence, say {xnk

}, of {xn} such that xnk
→ q as k → ∞. Let ζ ink

∈ Tixnk
be

such that ‖xnk
− ζ ink

‖ ≤ d(xnk
, Tixnk

) + 1
k
. We estimate that

d(q, Tiq) ≤ ‖q − xnk
‖+ ‖xnk

− ζ ink
‖+ d(ζ ink

, Tiq)

≤ ‖q − xnk
‖+ d(xnk

, Tixnk
) +

1

k
+D(Tixnk

, Tiq)

≤ ‖q − xnk
‖+ d(xnk

, Tixnk
) +

1

k
+

1 +
√
κ

1−
√
κ

∥∥∥xnk
− q
∥∥∥.

If we take limits on both sides when k →∞, we have d(q, Tiq) = 0. Using the
fact that each Tiq is closed, we obtain that q ∈ Tiq for each i, and therefore
conclude that q ∈ ∩∞i=1Tiq. Moreover, xnk

→ q as n→∞ gives ‖xnk
− q‖ → 0

as n→∞. Thus, by Lemma (2.1.2) and inequality (5.2.6) ,we get lim
n→∞

‖xn −
q‖ = 0. Thus {xn} converges strongly to a fixed point q of T as claimed.

Corollary 5.2.2 Let Ti : K → CB(K) be a countably infinite family of gener-
alized κi−strictly pseudocontractive multi-valued mapping, with ∩∞i=1F (Ti) 6= ∅
and assume that for p ∈ ∩∞i=1F (Ti), Tip = {p}. Then, the sequence {xn}
defined above converges strongly to a fixed point of T .

Proof. 5.2.5 Since K is compact, the mappings Ti : K → CB(K) is hemi-
compact. Thus, by Corollary 5.2.1, we have that {xn} converges strongly to
some p ∈ F (T ).

Remark 5.2.2 In comparism with Theorem 2.4 of [36], Corollary 5.2.1 has
these merits.

(i) We proved the theorem for a countably infinite family of a much larger
class of mapping which is the generalized k−strictly psuedo-contractive
multi-valued mappings.
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(ii) We only needed just one of the maps to be hemicompact and not all of
them.

(iii) We replaced the ‘strong condition’ δi ∈ (k, 1) by a weaker condition δ0 ∈
(k, 1).

(iv) The condition ζ in ∈ Γin is more readily applicable than requiring that
Tx is proximinal and weakly closed for each x, and then, computing
ζn = PTxnxn at each iterative step.

Remark 5.2.3 Our theorem and corollaries improve the convergence theorems
for multi-valued nonexpansive mappings in [1], [35], [36], [40], [63], [85], [88],
[98], [100], in the following sense:

(i) The class of mappings considered in this section contains the class of
multi-valued k− strictly pseudocontractive mappings as a special case,
which itself properly contain the class of multi-valued nonexpansive maps.

(ii) The algorithm here is of Krasnoselkii type, which is known to have a
geometric order of convergence.

(iii) The condition that Tx be weakly closed for each x ∈ K as can be found,
for example, in [35] and [36] is dispensed with here.

Remark 5.2.4 The main theorems of this chapter are also contents of the
following journal articles:

1. C. E. Chidume, M. E. Okpala, A. U. Bello,and P. Ndambomve, Con-
vergence theorems for finite family of a general class of Multi-valued
Strictly Pseudocontractive Mappings, Fixed Point Theory and Ap-
plications) (2015) 2015:119 DOI 10.1186/s13663-015-0365-7.

2. M.E. Okpala, Fixed Point Iteration for a Countable Family of Multi-
valued Strictly Pseudocontractive-type Mappings (Submitted: (2015)
SpringerPlus)

65



CHAPTER 6

Contribution on Iterative Method for Multivalued
Tempered Lipschitz Pseudocontractive mappings

6.1 Introduction
In this section, we will improve on the algorithm of Chidume and Okpala
[39] and develop an iterative algorithm for a much larger class of a lipschitz
pseudocontractive mapping. We will show that our iterative sequence is an ap-
proximating fixed point sequence for the mapping. Furthermore, under some
mild assumption like hemicompact (or, in particular, compact), we will prove
strong convergence of the sequence.

We will demonstrate with examples that our theorems have some edge over
other results like those of Chidume et al. [35], Chidume and Ezeora [36], Pa-
nyanak [88], Song and Wang [100], among others. It also complement several
known results in the literature.

Few iterative algorithms have been developed for single valued Lipschitz
pseudocntractive-type mappings in real Hilbert spaces. However, till now,
there is no known algorithm that have been developed for the Multivalued
analogue. It is natural, therefore, for us to try to develop a theory for the
multi-valued analogues of these mappings. This is the purpose of this Chap-
ter. More precisely, we propose a theory for the class of tempered Lipschitz
pseudocontractive mappings as a multi-valued analogue for the class of Lips-
chitchz pseudocontractive mappings.
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Recall that a single-valued mapping T : H → H is said to be

• pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(x− y)− (Tx− Ty)‖2

for all x, y ∈ H and

• Lipschitzian if there exists L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖. (6.1.1)

We may employ the idea of Hausdorff metric to define the multivalued
analogues of these mappings as follows:

Definition 6.1.1 A multivalued mapping T : H → CB(H) is called

• pseudocontractive if

D2(Tx, Ty) ≤ ‖x− y‖2 +D2(Ax,Ay), A := I − T. (6.1.2)

• Lipschitz(Nadler [80]) if and only if there exists a fixed real number L ≥ 0
such that

D(Tx, Ty) ≤ L‖x− y‖, ∀x, y ∈ H, (6.1.3)

Other possible way of defining a multi-valued pseudonctractive mapping which
will also be a generalization of the single valued case abound. An example is

D2(Tx, Ty) ≤ ‖x− y‖2 + ‖x− y − (u− v)‖2, ∀u ∈ Tx, v ∈ Ty, (6.1.4)

which is equivalent to

D2(Tx, Ty) ≤ ‖x− y‖2 + inf
(u,v)∈Tx×Ty

‖x− y − (u− v)‖2. (6.1.5)

However, we have demonstrated in the previous chapters that method of def-
inition is narrow and quite restrictive. But the definition by the inequality
(6.1.2) is very natural and also allows us to accomodate a large class of map-
pings.

It was remarked in Nadler [80] that requiring a multi-valued mapping to be
Lipschitz is a restriction on the mapping. In other words, Lipschitz condition
for multi-valued mappings as given by inequality (6.1.3) is not convenient for
use in application. There has been a search for some easily applicable Lipschitz
conditions for multi-valued mappings, see for example, Elderstein [54].
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6.2 Main Results
We propose a new type of Lipschitz condition which is also a natural gen-
eralization of the single valued Lipschitz as given by the inequality (6.1.1).

Definition 6.2.1 A multi-valued mapping T : H → CB(H) is called tempered
Lipschitz if there exists L ≥ 0 such that

diam(Tx ∪ Ty) ≤ L‖x− y‖, ∀x, y ∈ X. (6.2.1)
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A Tempered Lipschitz Mapping

Definition 6.2.2 A multivalued mapping T : H → CB(H) is called a multi-
valued hemicontractive mapping if F (T ) 6= ∅ and

D2(Tx, Tp) ≤ ‖x− p‖2 +D2(x, Tx), ∀x ∈ H, p ∈ F (T ). (6.2.2)

Remark 6.2.1 The class of hemicontractive mapping, properly contains the
class of psuedocontractive mappings with nonempty fixed point set.

Lemma 6.2.1 Let K be a nonempty closed and convex subset of a real Hilbert
space H. Let T : K → CB(K) be a multivalued mapping. Then the iterative
algorithm given below,

x1 ∈ K
xn+1 = (1− λ)xn + λzn,

zn ∈ Γn := {un ∈ Tyn : D(xn, T yn) ≤ ‖xn − un‖2 + θn}
yn = (1− λ)xn + λwn,

wn ∈ Πn := {vn ∈ Txn : D(xn, Txn) ≤ ‖xn − vn‖2 + θn}

θn ≥ 0,
∞∑
n=1

θn <∞

(6.2.3)

is well defined.
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This is established from Lemma 4.1.1(d) by the fact that D2(xn, T yn) =
sup

un∈Tyn
‖xn − un‖2. Thus for any θn positive, we can always find a un such

that D2(xn, T yn) ≤ ‖xn− un‖2 + θn.The same is true for Πn. Thus Γn and Πn

are nonempty and the algorithm is well defined.

We now prove the following theorems.

Theorem 6.2.1 Let H be a real Hilbert space, K ⊆ H be a nonempty, closed
and convex. Let T : K → CB(K) be a tempered Lipschitz hemicontractive
mapping. Let {xn} be a sequence defined by the algorithm (6.2.3). Suppose
that λ ∈ (0, L−2[

√
1 + L2 − 1]). Then, for each p ∈ F (T ), lim

n→∞
‖xn − p‖ exists

and lim
n→∞

D(xn, Txn) = 0.

Proof. 6.2.1 Let p ∈ F (T ). We have the following inequality

‖xn+1 − p‖2 = ‖(1− λ)(xn − p) + λ(zn − p)‖2,

= (1− λ)‖xn − p‖2 + λ‖zn − p‖2 − λ(1− λ)‖xn − zn‖2,

≤ (1− λ)‖xn − p‖2 + λD2(Tyn, Tp)− λ(1− λ)‖xn − zn‖2.

Using the hemicontractive property of T , we obtain the following:

D2(Tyn, Tp) ≤ ‖yn − p‖2 +D2(yn, T yn),

≤ ‖yn − p‖2 + ‖yn − zn‖2 + θn,

≤ (1− λ)‖xn − p‖2 + λ‖wn − p‖2 − λ(1− λ)‖wn − xn‖2

+ ‖y − zn‖2 + θn

Moreover, since T is tempered Lipschitz, for any wn ∈ Txn and zn ∈ Tyn, we
have

‖wn − zn‖ ≤ diam(Txn ∪ Tyn) ≤ L‖xn − yn‖.

We therefore obtain the following chain of inequalities:

‖yn − zn‖2 = ‖(1− λ)(xn − zn) + λ(wn − zn)‖2,

= (1− λ)‖xn − zn‖2 + λ‖wn − zn‖2 − λ(1− λ)‖xn − wn‖2,

≤ (1− λ)‖xn − zn‖2 + λL2‖xn − yn‖2 − λ(1− λ)‖xn − wn‖2,

and

‖wn − p‖2 ≤ D2(Tp, Txn) ≤ ‖xn − p‖2 +D2(xn, Txn).
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Substituting these inequalities into the first inequality yields the following:

‖xn+1 − p‖2 ≤ (1− λ)‖xn − p‖2 + λD2(Tp, Tyn)− λ(1− λ)‖xn − zn‖2

≤ (1− λ)‖xn − p‖2 + λ
[
(1− λ)‖xn − p‖2 + λ‖wn − p‖2

+ ‖yn − zn‖2 + θn − λ(1− λ)‖wn − xn‖2
]
− λ(1− λ)‖xn − zn‖2

≤ (1− λ)‖xn − p‖2 + λ
[
(1− λ)‖xn − p‖2 + λ

[
‖xn − p‖2 +D2(xn, Txn)

]
+
[
(1− λ)‖xn − zn‖2 + λL2‖xn − yn‖2 − λ(1− λ)‖xn − wn‖2

]
+ θn

− λ(1− λ)‖xn − wn‖2
]
− λ(1− λ)‖xn − zn‖2

= ‖xn − p‖2 + λ2D2(xn, Txn) + λ(1− λ)‖xn − zn‖2 + λ4L2‖xn − wn‖2

− 2λ(1− λ)‖xn − wn‖2 + λθn − λ(1− λ)‖xn − zn‖2,
(
yn − xn = −λ(xn − wn)

)
.

≤ ‖xn − p‖2 + λ2D2(xn, Txn) + λ4L2D2(xn, Txn)

− 2λ2(1− λ)‖xn − wn‖2 + λθn

Since wn ∈ Πn, we have that ‖xn − wn‖2 ≤ D2(xn, Txn) ≤ ‖xn − wn‖2 + θn
and therefore

−2λ(1− λ)‖xn − wn‖2 ≤ −2λ(1− λ)D2(xn, Txn) + 2λ(1− λ)θ.

This yields

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − λ2(1− 2λ− λ2L2)D2(xn, Txn) + (3λ− 2λ2)θn.

We may now conclude that the following inequalities hold:

‖xn+1 − p‖ ≤ ‖xn − p‖+ (3λ− 2λ2)θn, (6.2.4)

and

λ2(1− 2λ− λ2L2)D2(xn, Txn) ≤ ‖xn − p‖2 + (3λ− 2λ2)θn − ‖xn+1 − p‖2.
(6.2.5)

Applying Lemma 2.1.2 on (6.2.4) gives us that

lim
n→∞

‖xn − p‖

exists. Obviously, 1− 2λ− λ2L2 > 0 ⇔ |λ+ 1
L2 | < L−2

√
L2 + 1. Moreover,

since λ ∈ (0, L−2[
√

1 + L2 − 1]), the inequality 1− 2λ− λ2L2 > 0 is satisfied.
Taking limits on both sides of (6.2.5), we have

lim
n→∞

D(xn, Txn) = 0,

and the theorem is proved.
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We now prove the following corollaries

Corollary 6.2.1 Let H be a real Hilbert space, K ⊆ H be a nonempty, closed
and convex. Let T : K → CB(K) be a tempered Lipschitz hemicontractive
mapping. Assume that T is hemicompact. Let {xn} be a sequence defined by
the algorithm (6.2.3) where λ ∈ (0, L−2[

√
1 + L2 − 1]). Then, {xn} converges

strongly to a fixed point of T .

Proof. 6.2.2 We have obtained from Theorem 6.2.1, that lim
n→∞

D(xn, Txn) = 0

and therefore lim
n→∞

d(xn, Txn). Since T is hemicompact, we have a subsequence
say {xnk

} of {xn}, which converges strongly to some q ∈ K. Using the in-
equality (6.2.4) we obtain that xnk

→ q as k → ∞. Then for any wk ∈ Txnk
,

we have by Lemma 4.1.1 (c) that

D(q, T q) ≤ ‖q − xnk
‖+ ‖xnk

− wnk
‖+D(wnk

, T q)

≤ ‖q − xnk
‖+D(xnk

, Txnk
) + L‖xnk

− q‖ → 0, as k →∞.

Thus q ∈ F (T ). By lemma (2.1.2), we conclude that {xn} converges strongly
to q ∈ F (T ).

Definition 6.2.3 ( Beer and Concilio [15]) A metric space (X, d) is called
boundedly compact provided each closed and bounded subset of X is compact.

Elsewhere, boundedly compact spaces are calledm−compact spaces. Certainly
every finite dimensional metric spaces is boundedly compact. This notion of
compactness can be extended to sets.

Definition 6.2.4 A set K is boundedly compact if each bounded sequence in
K has a subsequence that converges to a point in K.

Every boundedly compact set K in a real Hilbert space has a vector x0 of
maximum norm. Indeed, let m denote the supremum of the norms of the vec-
tors in K. Choose a sequence (xn) in K such that limit of ‖xn‖ = m. Then
the limit of the subsequence of (xn) that converges to a point x0 ∈ K has the
property that ‖x0‖ = m. That is, x0 has maximal norm.

If we assume that the set K is boundedly compact, we may dispense with
the sets Γn, Πn and then θn and get the following theorem.

Corollary 6.2.2 Let H be a real Hilbert space, K ⊆ H be a nonempty, closed,
convex and boundedly compact. Let T : K → CB(K) be a tempered Lipschitz
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hemicontractive mapping. Suppose that λ ∈ (0, L−2[
√

1 + L2 − 1]). Define a
sequence {xn} iteratively by

x1 ∈ K
xn+1 = (1− λ)xn + λz∗n,

yn = (1− λ)xn + λw∗n,

(6.2.6)

where z∗n ∈ Tyn : ‖xn−z∗n‖ = D(xn, T yn) , w∗n ∈ Txn : ‖xn−w∗n‖ = D(xn, Txn)
and λ ∈ (0, L−2[

√
1 + L2 − 1]). Then the sequence {xn} converges strongly to

a fixed point of T .

Proof. 6.2.3 Since the setK is boundedly compact, we have by Lemma 4.1.1(d),
that z∗n and w∗n both exist and are well defined. Moreover for any θn ≥ 0,
z∗n ∈ Γn and w∗n ∈ Πn. Thus by Theorem 3.2.1, we obtain lim

n→∞
D(xn, Txn) = 0.

Moreover, T is hemi-compact. We have shown already in Corrolary 6.2.1 that
q ∈ F (T ) and the theorem is proved.

Remark 6.2.2 Our theorem and corollaries improve and generalize conver-
gence theorems for multi-valued nonexpansive mappings in [1], [35], [36], [39],
[63], [85], [88], [98], [100], in the following sense:

(i) The class of mappings(tempered Lipschitz pseudocontactive mappings)
considered in this section properly contains the class of multi-valued k−
strictly pseudocontractive mappings as a special case, and the later prop-
erly contain the class of multi-valued nonexpansive maps.It aslo contain
the class of single valued Lipschitz pseudocontractive mappings.

(ii) The algorithm presented here is of Krasnoselkii type, which is known to
have a geometric rate of convergence and also computationally inexpen-
sive.

(iii) The condition that Tx be weakly closed for each x ∈ K as can be found,
for example, in [35] and [36] and other similar assumptions is not necce-
sary as was shown here.

Remark 6.2.3 The main theorems of this chapter are contents of the follow-
ing article:

1. M.E.Okpala, An Iterative Method for Multivalued Tempered Lipschitz
Pseudocontractive Mappings(Submitted 2015)Afrika Matimatika
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CHAPTER 7

Iterative Method for Convex Optimization Problems in
Real Lebesgue Spaces

7.1 Introduction
Let X be a real Banach space,f : X → R be a convex functional, and
T : X → X be a nonexpansive self mapping on a Hilbert space H. Given
a (possibly nonlinear) monotone mapping A : T (H) → H, the variational
inequality problem VIP(A,F (T )) over F (T ) is stated as:

Find x∗ ∈ F (T ) such that 〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ F (T ). (7.1.1)

It is known that an element x∗, of a closed and convex setK, solves V IP (A,F ix(PK))
if and only if x∗ = PK(x∗ − λAx∗) for some positive number λ.

This result is very important because it gives a basis for constructing itera-
tive methods of approximating solutions of variational inequalities in Hilbert
spaces.
The method previously used in solving the variational inequality problem in
the late 1960’s and later was the gradient projection method

xn+1 := PK(xn − λn+1∇f(xn)), n ≥ 1, (7.1.2)

where λn is a suitably defined sequence of real numbers. This algorithm has
been employed widely in applications because it has a good rate of convergence.
Under suitable conditions, the sequence generated from this algorithm con-
verges to a solution of the smooth convex optimization problem posed in the
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Hilbert space H as:

(SCOP )

{
Minimize f : H → R, (G-differentiable convex functional)
subject to x ∈ K(⊆ H)(closed convex set).

(7.1.3)

It is well know that x∗ in K solves problem (SCOP ) if and only if it satisfies
〈y − x∗,∇f(x∗)〉 ≥ 0,∀y ∈ K. The gradient projection method relies on the
fact that for any closed convex subset K of a Hilbert space, Fix(PK) = K and
PK : H → K ⊂ H is a nonexpansive mapping with a nonempty fixed point
set. However, the computation of the projection mapping PK is difficult(except
when the convex set K has simple structures) in application.
Based on the fact above, replacing the projection mapping PK by an arbi-
trary nonexpansive mapping T , Yamada [110] introduced the steepest descent
method given by

xn+1 := Txn − λn+1A(Txn), n ≥ 1 (A := ∇f). (7.1.4)

This choice is because yn := Txn is generated by yn+1 := T (yn − λn+1∇f(yn))
(the gradient projection method) and for x∗ ∈ F (T ), if x∗ = lim xn, then
x∗ = lim yn. Thus the method can solve the problem (SCOP ) over K = F (T )
where T is a nonexpansive self map of H and {λn}∞n=1 is suitably defined as
stated below.

Theorem 7.1.1 ( Hybrid steepest descent method for VIP(A,F(T) )
Let T : H → H be a nonexpansive mapping with F (T ) 6= ∅. Suppose that a
mapping A : H → H is L−Lipschitzian and η− strongly monotone over T (H).
Then for any x0 ∈ H, and µ ∈ (0, 2η

L2 ), and any sequence satisfying

(A1) limλn = 0, (A2)
∞∑
n=1

λn =∞, and (A3) lim(λn − λn+1)λ−2
n+1 = 0,

the sequence {xn}∞n=1 generated by (7.1.4) converges strongly to the uniquely
existing solution of the problem (7.1.1).

If K = ∩rn=1Fix(Ti) 6= ∅, where {Ti}ri=1 is a finite family of nonexpansive
mappings, Yamada [110] studied the following algorithm

xn+1 = T[n]xn − λnµA(T[n]xn), n ≥ 1, (7.1.5)

where T[k] = Tkmod r, for k ≥ 1 and the sequence {λn} satisfies condition
(A1), (A2), and (A4) :

∑
|λn − λn+N | < ∞, and proved the strong conver-

gence of {xn} to the unique solution of problem (7.1.1).
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In the case where A := ∇f , we obtain that xn → x∗ ∈ arg inf
x∈F (T )

f(x), where

∇f : H → H∗(= H) is the gradient of the convex functional f . However, most
problems of practical significance are not posed in Hilbert spaces. But, for
an arbitary real Banach space X∗ 6= X. Besides, the exact expression of the
duality mapping Jq : X → 2X

∗ defined by Jq(x) = {x∗ ∈ X∗ : ‖x‖q = ‖x∗‖q =
〈x, x∗〉} is known only in Lp spaces, 1 < p < ∞. Therefore, it makes sense if
we limit our study to Lp spaces, 1 < p <∞ where it is practically possible to
compute the duality mapping.
Based on these assertions, an ideal extension of the problem to a Banach spaces
and which would solve the problem (SCOP) in Banach spaces ought to be:

V IP ∗(A,F (T ))


Given a nonexpansive mapping T : X → X and a strongly
monotone L−Lipschitzian mapping A : X → X∗,

find x∗ ∈ F (T ) : 〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ F (T ).

Considerable research efforts have been devoted to this problem in Hilbert
spaces. For example, Xu and Kim [108] replaced the condition (A3) by the
less restrictive condition lim

n→∞
λn−λn+1

λn+1
= 0 and the condition (A4) replaced

by lim
n→∞

λn−λn+r

λn+r
= 0. The theorems of Xu and Kim [108] are improvements

of the results of Yamada because the canonical choice sequence λn = 1
n+1

is
applicable there but it is not applicable in the result of Yamada [110] with
condition (C3). Other significant extensions of the theorems in Hilbert spaces
can be found in Wang [104], Zeng and Yao [113], and Yamada et al. [111].
Some of the extensions of the theorem to the more general Banach spaces in-
clude Chidume et al. [43, 44], Sahu et al. [97].

Most of the extensions of the theorem of Yamada [110] to more general Banach
spaces have focused on the problem

V IP (A,F (T ))


Given a nonexpansive mapping T : X → X and a strongly
accretive L−Lipschitzian mapping A : X → X,

find x∗ ∈ F (T ) : 〈y − x∗, jq(Ax∗)〉 ≥ 0,∀y ∈ F (T ).

This problem certainly has a lot of applications in evolution equation and
other area of interest , but it does not neccesarily solve the optimization prob-
lem (SCOP). The problem (SCOP) arise in diverse disciplines as differential
equations, convex optimization problems, time-optimal control, mathematical
programming, demand problems, transport and network problems and so on.
Details about these problems can be found, for example, in Kindelehrer and
Stampacchia [66], Nagurney [81], and Noor [84].
Though there has been significant progress in solving problem VIP(A, F(T)),
the successes achieved so far in using many geometric properties of spaces,
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developed in the last two centuries or so, in approximating zeros of accretive-
type operators in Banach spaces have not been acchieved in approximating
zeros of monotone mappings. The major difficulty in any attempt in this
direction is that A goes from E to E∗ and most iterative algorithm involving
xn and Axn are not suitably defined.
In some case, attempts are made to construct the algorithm by introducing the
duality mapping. However the exact values of the duality mapping is unknown
outside Lp spaces, for 1 < p < ∞. Thus, the sequence obtained thereby are
usually not possible to implement for practical uses.

Motivated by Chidume et al. [45], we propose an algorithm for the problem
VIP∗(A,F (T )) in Lp, spaces for 1 < p < ∞. Our theorems complements the
results of Chidume et al. [43, 44], extends to Lp spaces the result of Yamada
[110], and generalize the results of Chidume et al. [45].

Lemma 7.1.1 (Alber and Ryanzantseva [5], p.48) . Let X = Lp, p ≥
2. Then, the inverse of the normalized duality mapping j−1 : X∗ → X is
Holder continuous on balls. i.e. ∀u, v ∈ X∗ such that ‖u‖ ≤ R, ‖v‖ ≤ R,
then

‖j−1(u)− j−1(v)‖ ≤ mp‖u− v‖
1

p−1 ,

where mp := (2p+1Lpc
p
2)

1
p−1 > 0 for some c2 > 0.

Definition 7.1.1 Let E be a smooth real Banach space. The Lyapunov’s func-
tion is a distance function φ : E × E → R given by

φ(x, y) := ‖x‖2 − 2〈x, j(y)〉+ ‖y‖2.

In recent times, this type of functional has been studied extensively by many
authors including Alber [2], Alber and Guerre-Delabriere [4], Kamimura and
Takahashi [65], Reich [93]. It has proved to be a very useful tool for the study
of nonlinear mappings in the general Banach spaces.
It is known that on a Hilbert space H, there holds φ(x, y) = ‖x− y‖2. More-
over, by the fact that the normalized duality mapping is the subdifferential of
the functional defined by f(x) = 1

2
‖x‖2, we have that φ(x, y) ≥ 0 for all x, y

in E.

We define a parallel function V : E × E∗ → R by

V (x, x∗) = φ(x, j−1(x∗)), ∀x ∈ X, x∗ ∈ X∗.

The functional is characterized by the following

Lemma 7.1.2 (Alber [2]) Let X be a reflexive strictly convex and smooth
Banach space with X∗ as its dual. Then,

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈j−1x∗ − x, y∗〉, ∀ x ∈ X, x∗, y∗ ∈ X∗. (7.1.6)
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Following the terminology of Alber and Guerre-Delabriere [4], as can be found
also in Chidume et al.,[37], we present the following definitions.

Definition 7.1.2 Let K be a nonempty subset of a Banach space E. A map
T : K → E is called:

• strongly suppresive on K if there exist 0 < q < 1 such that

φ(Tx, Ty) ≤ qφ(x, y) ∀ x, y ∈ K, and (7.1.7)

• nonextensive if

φ(Tx, Ty) ≤ φ(x, y) ∀ x, y ∈ K. (7.1.8)

It follow from inequalities (7.1.7) and (7.1.8) above that in Hilbert spaces,
nonextensive mappings are precisely the nonexpansive mapping and the strongly
suppresive mappings are the strict contractions.

7.2 Convergence Theorems in Real Lebesgue(Lp)
Spaces

7.2.1 Lp spaces 1 < p ≤ 2.

Theorem 7.2.1 Let E = Lp, 1 < p ≤ 2, and E∗ = Lq,
1
p

+ 1
q

= 1. For k =
1, 2, ..., N, let Tk : E → E be a finite family of nonextensive mappings and A :
E → E∗ be an η−strongly monotone mapping which is also L−Lipschitzian.
Assume that S := A−1(0) ∩ ∩Nk=1Fix(Tk) 6= ∅. Then for arbitrary x1 ∈ E, the
sequence {xn} defined by

xn+1 = j−1
(
j(T[n]xn)− λA(T[n]xn)

)
, n ≥ 1 (7.2.1)

converges to the common solution of the problem VIP∗(A,F ix(T[n])), where
T[n] := TnmodN , and λ ∈ (0, η

2L2
1L2

), L1, L2 the Lipschitz constants for the
mappings A and j−1, respectively.

Proof. 7.2.1 Let x∗ ∈ S. Then the sequence {xn} satisfies

φ(x∗,xn+1) = V (x∗, j(T[n]xn)− λA(T[n]xn))

≤ V (x∗, j(T[n]xn))− 2λ
〈
j−1
(
j(T[n]xn)− λA(T[n]xn)

)
− x∗, AT[n]xn − Ax∗

〉
= φ(x∗, T[n]xn)− 2λ

〈
T[n]xn − x∗, A(T[n]xn)− Ax∗

〉
+ 2λ

〈
T[n]xn − x∗, A(T[n]xn)− Ax∗

〉
− 2λ

〈
j−1((j(T[n]xn)− λA(T[n]xn))− x∗, A(T[n]xn)− Ax∗

〉
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= φ(x∗, T[n]xn)− 2λ
〈
Txn − x∗, AT[n]xn − Ax∗

〉
− 2λ

〈
j−1((j(T[n]xn)− λA(T[n]xn))− j−1(j(T[n]xn)), AT[n]xn − Ax∗

〉
.

≤ φ(x∗, T[n]xn)− 2λη‖T[n]xn − x∗‖2

+ 2λ‖j−1
(

(j(T[n]xn)− λA(T[n]xn)
)
− j−1

(
j(T[n]xn)

)
‖‖AT[n]xn − Ax∗‖

By the η−strong monotonicity of A, we obtain that

〈T[n]xn − x∗, AT[n]xn − Ax∗〉 ≥ η‖T[n]xn − x∗‖2.

On the other hand, using the fact that each of the mappings Tk are nonexten-
sive, we have that

φ(x∗, T[n]xn) = (T[n]x
∗, T[n]xn) ≤ φ(x∗, xn)

Therefore, substituting these relations into the chain of inequalities above, and
using the fact that λ ∈ (0, η

2L2
1L2

), we obtain:

φ(x∗, xn+1) ≤ φ(x∗, T[n]xn)− 2λη‖T[n]xn − x∗‖2

+ 2λ2L2
1L2‖T[n]xn − x∗‖2

≤ φ(x∗, T[n]xn)− λη‖T[n]xn − x∗‖2

≤ φ(x∗, xn)− λη‖T[n]xn − x∗‖2.

Thus φ(x∗, xn) is a monotone non-increasing sequence of real numbers that is
bounded below, and therefore converges. On the otherhand the same inequality
yields

λη‖T[n]xn − x∗‖2 ≤ φ(x∗, xn)− φ(x∗, xn+1). (7.2.2)

Taking limits on both sides of the inequality (7.2.2), we have that lim
n→∞

T[n]xn =

x∗. But we have that

‖xn+1 − T[n]xn‖ = ‖j−1(j(T[n]xn)− λA(T[n]xn))− j−1(j(T[n]xn)‖
≤ λL2‖A(T[n]xn − A(x∗)‖
≤ λL2L

2
1‖T[n]xn − x∗‖ → 0, as n→∞.

Therefore, we obtain

‖xn+1 − x∗‖ ≤ ‖xn+1 − T[n]xn‖+ ‖T[n]xn − x∗‖
≤ (1 + λL2L

2
1)‖T[n]xn − x∗‖

and thus lim
n→∞

xn = x∗. The uniqueness of x∗ follows from the strong mono-
tonicity of the mapping A.
Iin the special case when Tk = I the identity mapping for each k, we have the
following result of Chidume et al. [45]:
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Corollary 7.2.1 Let E = Lp, 1 < p ≤ 2, and E∗ = Lq,
1
p

+ 1
q

= 1, and A :
E → E∗ be an η−strongly monotone mapping which is also L−Lipschitzian.
Assume that A−1(0) 6= ∅. Then for arbitrary x1 ∈ E, the sequence {xn} defined
by

xn+1 = j−1
(
j(xn)− λA(xn)

)
, n ≥ 1 (7.2.3)

converges to the uniquely existing x∗ ∈ A−1(0), where λ ∈ (0, η
2L2

1L2
), L1, L2

the Lipschitz constants for the mappings A and j−1, respectively.

7.2.2 Lp spaces, 2 ≤ p <∞.
Theorem 7.2.2 Let E = Lp, 2 ≤ p <∞ and A : Lp → Lq,

1
p

+ 1
q

= 1, be an
η-strongly monotone mapping which is also Lipschitzian. For k = 1, 2, ..., N ,
let Tk : Lp → Lp be a finite family of nonextensive mappings. Assume that
S := A−1(0)∩∩Nk=1Fix(Tk) 6= ∅. Then for arbitrary x1 ∈ E, the sequence {xn}
defined by

xn+1 = j−1
(
j(T[n]xn)− λnA(T[n]xn)

)
, n ≥ 1 (7.2.4)

converges strongly to the unique common solution of the problem VIP∗(A,F ix(Tk)),

where T[n] := TnmodN , and λn ∈
(

0, η

2L1L
p

p−1
2

)
satisfies

∞∑
n=1

λn =∞,
∞∑
n=1

λ
p

p−1
n <

∞ , L1, L2 are the Lipschitz constants for the mappings A and j−1, respectively.

Proof. 7.2.2 Let x∗ ∈ S. Then the sequence {xn}∞n=1 generated satisfies

φ(x∗, xn+1) = V (x∗, j(T[n]xn)− λnA(T[n]xn))

≤ V (x∗, j(T[n]xn))− 2λn

〈
j−1
(
j(T[n]xn)− λnA(T[n]xn)

)
− x∗, Axn − Ax∗

〉
= φ(x∗, T[n]xn)− 2λn

〈
T[n]xn − x∗, A(T[n]xn)− Ax∗

〉
+ 2λn

〈
T[n]xn − x∗, A(T[n]xn)− Ax∗

〉
− 2λn

〈
j−1
(

(j(T[n]xn)− λnA(T[n]xn)
)
− x∗, A(T[n]xn)− Ax∗

〉
= φ(x∗, T[n]xn)− 2λn

〈
T[n]xn − x∗, A(T[n]xn)− Ax∗

〉
+ 2λn

〈
j−1(jT[n]xn)− j−1

(
(j(T[n]xn)− λnA(T[n]xn)

)
, A(T[n]xn)− Ax∗

〉
≤ φ(x∗, T[n]xn)− 2λn

〈
T[n]xn − x∗, AT[n]xn − Ax∗

〉
+ 2λn‖j−1

(
(j(T[n]xn)− λnA(T[n]xn)

)
− j−1

(
j(T[n]xn)

)
‖‖AT[n]xn − Ax∗‖
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By the strong monotonicity of A, and the Holder continuity of j−1, we have

φ(x∗, xn+1) ≤ φ(x∗, T[n]xn)− 2λnη‖T[n]xn − x∗‖

+ 2λ
p

p−1
n mp‖AT[n]xn − Ax∗‖

p
p−1 ,

≤ φ(x∗, T[n]xn)− 2λnη‖T[n]xn − x∗‖

+ 2λ
p

p−1
n mpL

p
p−1

1 ‖T[n]xn − x∗‖
p

p−1 .

Now, for p ≥ 2, if ‖T[n]xn − x∗‖ ≥ 1, then, ‖T[n]xn − x∗‖
p

p−1 ≤ ‖T[n]xn − x∗‖2.

So 2λ
p

p−1
n mpL

p
p−1

1 ‖T[n]xn − x∗‖
p

p−1 ≤ λη‖T[n]xn − x∗‖2 Therefore, we have for
this case

φ(x∗, xn+1) ≤ φ(x∗, xn)− λnη‖T[n]xn − x∗‖2.

Otherwise ‖T[n]xn−x∗‖ < 1 and thus 2λ
p

p−1
n mpL

p
p−1

1 ‖T[n]xn−x∗‖
p

p−1 ≤ 2λ
p

p−1
n mpL

p
p−1

1 .
Thus, in any case,

φ(x∗, xn+1) ≤ φ(x∗, T[n]xn)− λnη‖T[n]xn − x∗‖2

+ 2λ
p

p−1
n mpL

p
p−1

1 .

≤ φ(x∗, T[n]xn)− λnηφ(T[n]xn, x
∗)

+ 2λ
p

p−1
n mpL

p
p−1

1 .

Using the fact that the mapping Tk are nonextensive we conclude that

φ(x∗, xn+1) ≤ (1− λnη)φ(x∗, T[n]xn) + 2λ
p

p−1
n mpL

p
p−1

1

≤ (1− λnη)φ(x∗, xn) + 2λ
p

p−1
n mpL

p
p−1

1

.

Therefore we may conclude by Lemma (2.1.3) that xn → x∗.

Remark 7.2.1 The canonical choice for the sequence λn is λn := 1
n
.
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[99] F. Schȯpfer ,T. Schuster and A.K. Louis “An iterative regularization
method for the solution of the split feasibility problem in Banach spaces"
Inverse Problems 24 (2008).

[100] Y. Song and H. Wang, “Erratum to; Mann and Ishikawa iterative pro-
cesses for multi-valued mappings in Banach Spaces”[Comput. Math. Appl.

88



54 (2007), 872-877]Computers & Mathematics With Applications , vol.
55(2008), pp. 2999-3002.

[101] Y. Song and Y. J. Cho, “Some notes on Ishikawa iteration for multi-
valued mappings”, Bulletin of the Korean Mathematical Society, vol. 48
no. 3(2011), pp. 575-584.

[102] K. K. Tan and H. K. Xu, “Approximating Fixed Points of Nonexpansive
mappings by the Ishikawa Iteration Process”, J. Math. Anal. Appl. 178
no. 2(1993), 301-308.

[103] G.C. Ugwunnadi, B. Ali, I. Idris, and M. S Minjibir, “Strong convergence
theorem for quasi-Bregman strictly pseudocontractive mappings and equi-
librium problems in Banach spaces" Fixed Point Theory and Applications
2014, 2014:231

[104] L. Wang, “An iteration method for nonexpansive mappings in Hilbert
spaces", Fixed Point Theory Appl.", (2007), Art 28619, 8.

[105] H. K. Xu, Iterative methods for the split feasibility problem in infinite-
dimensional Hilbert spaces, Inverse Problems 26 (2010) 105018.

[106] H. K. Xu, “Iterative algorithms for nonlinear operators",Journal of Lon-
don Mathematical Society 66 (2002), 240-256.

[107] H. K. Xu, “Inequalities in Banach spaces with applications", Nonlinear
Anal. 16 (1991), no. 12, 1127-1138

[108] H.K. Xu and T.H. Kim, “Convergence of hybrid steepests-descent meth-
ods for variational inequalities",J. Optimization Theory & Appl. 119
(2003), 185-201.

[109] Z.B Xu, and G.F. Roach, “Charateristic inequalities of uniformly convex
and uniformly smooth Banach spaces". Journal of Mathematical Analysis
and Applications, 157, 189-210(1991).

[110] I. Yamada, “The Hybrid Steepest-Descent Method for Variational In-
equality Problems over the Intersection of the Fixed-Point Sets of Non-
expansive Mappings", Inherently Parallel Algorithms in Feasibility and
Optimization and Their Applications, Edited by D. Butnariu, Y. Censor,
and S. Reich, North-Holland, Amsterdam, Holland, pp. 473-504, 2001.

[111] I. Yamada, N. Ogura and N. Shirakawa: “A numerically robust hybrid
steepest descent method for the convexly constrained generalized inverse
problems", in Inverse Problems, Image Analysis, and Medical Imaging,
Contemporary Mathematics, 313,Amer. Math. Soc., (2002).

89



[112] H. Zegeye, N. Shahzad, “Strong convergence theorems for monotone map-
pings and relatively weak nonexpansive mappings", Nonlinear Analysis,
70 (2009) 2707-2716.

[113] L.C. Zeng and J.C Yao, “Implicit iteration scheme with perturbed map-
ping for common fixed points of finite family of nonexpansive mappings",
Nonlinear Anal. 64 (2006), 2507-2515.

90


	Dedication
	General Introduction
	Theoretical Framework
	Notions and Definitions
	Some Well known Definitions
	The Notion of Subdifferential
	Duality Mappings and Characterization of Some Banach Spaces
	Metric Projections in Banach Spaces
	Generalised Projections in Banach Spaces
	Inequalities in Banach spaces
	Recurrent inequalities

	Iterative Algorithm for Single Valued Mappings
	The Contraction Mapping Principle
	 Nonexpansive Mappings
	Pseudocontractive Mappings

	Some Important Results on Iterative Methods for Multivalued Mappings
	Iterative Methods for Multivalued Nonexpansive-type Mappings
	Iterative Methods for Multivalued Strictly Pseudocontractive Mappings


	Contributions on Iterative Algorithms for Some Single-valued Pseudocontractive-type Mappings
	On the Split Equality Fixed Point Problem
	Main Results

	Contributions on Iterative Algorithms for a General Class of Multivalued Strictly Pseudocontractive mappings
	Main Results

	Contribution on Countable Family of Multi-valued Strictly Pseudocontractive Mappings
	Theorems for a Finite Family of Multi-valued Strictly Pseudocontractive Maps
	Fixed point iteration for a countable family of multi-valued strictly pseudocontractive-type mappings

	Contribution on Iterative Method for Multivalued Tempered Lipschitz Pseudocontractive mappings
	Introduction
	Main Results

	Iterative Method for Convex Optimization Problems in Real Lebesgue Spaces
	Introduction
	Convergence Theorems in Real Lebesgue(Lp) Spaces
	Lp spaces 1<p2.
	Lp spaces, 2p<.



