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Epigraph

� Discoveries, small or great, are never born of spontaneous generation. They
always suppose a soil seeded preliminary knowledge and well prepared by labor,

both conscious and subconscious.�

- Henri Poincaré -
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Preface

This project is at the interface between Nonlinear Functional Analysis, Con-
vex Analysis and Di�erential Equations. It concerns one of the most powerful
methods often used to solve optimization problems with constraints; namely the
Variational Method involving Isoperimetric conditions. As applications the exis-
tence of in�netely many periodic solutions of some 2nd order dynamical systems
will be proven in the line of M.S. Berger[1].

Variational methods refer to proofs established by showing that a suitable
auxilliary function attains a minimum or has a critical point (cf. De�nition ...).
In the former case, this can be viewed as a mathematical form of the princi-
ple of least action in Physics and justi�es why so many results in Mathematics
are somehow related to variational techniques as they have their origin in the
physical sciences. Their applications cover numerous theoretic as well as applied
areas including optimization, Banach space geometry, nonsmooth analysis, eco-
nomics, control theory and Game theory. But we shall focus on a branch linking
minimization and periodic di�erential equations.

My interest in this subject has been steadily fascinated by the successive
lectures delivered at the African University of Sciences and Technology by Prof.
C. Chidume (Functional Analysis)[2], Dr. N. Djitte (Sobolev spaces and lin-
ear elliptic partial di�erential equations)[3], Dr G. Degla (Topics in Di�erential
Analysis)[4] and Prof. Thibault (Convex Analysis)[5].
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0 Introduction and Motivations

The exploitation of nature's propensity o�ers us ample opportunities to achieve
or deal with an optimal objective concerning constrained shape, volume, time,
velocity, energy or gain. This vivi�es the need to study Optimization Theory
and related topics.

In order to make the concepts clear, let us recall some keywords. Given a
nonempty set X and a function f : X → R which is bounded below, comput-
ing the number

inf
X
f := inf{f(x) : x ∈ X} (F1)

represents a minimization problem posed in X: namely that of �nding a mini-
mizing sequence, i.e. (xk)k ⊂ X such that

lim
k→∞

f(xk) = inf
X
f .

The number inf
X
f is often called the in�mal value of f or more simply the

in�mum of f over X. The function f is usually called the objective function or
also in�mand. By analogy we have the concepts of supremal value (supremum)
and supremand.
An optimal solution of (F1) is an element a ∈ X such that

f(a) ≤ f(x) , ∀x ∈ X ;

such an element a is usually called a minimizer, a minimum point or simply a
minimum of f on X. We shall also speak of global minimum.
Let us emphasize that the notation

min{f(x) : x ∈ X}

8
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holds at the same time for a number (when there exists a solution to F1) and a
problem to solve.
Likewise one can meet maximization problems but they are all equivalent to
minimization problems since for any real valued function g de�ned on a set X,
one has

sup{g(x) : x ∈ X} = − inf{−g(x) : x ∈ X} .

When X has a topological structure, another problem related with (F1), is to
know whether a giving minimizing sequence (xk) converges to an optimal solu-
tion when k tends to +∞. Two conditions are essential to guarantee a positive
answer to the above problem. A topological criterion on the structure of X (e.g.,
compactness) and a topological criterion on the behavior of the function f (e.g.,
continuity).

When X is an open set of a real normed linear space (respectively a mani-
fold) and f is Fréchet di�erentiable or just Gâteaux di�erentiable (respectively
di�erentiable in the geometric sense), a necessary condition for a point a ∈ X
to be a minimizer (according to Euler) is to be a critical (or stationary) point
of f ; this means that, f ′(a) ≡ 0 on X (respectively df(a) ≡ 0 on TaX, the
tangent space of the manifold X at a). We say that a real number c is a critical
value of f if there exists a critical point a ∈ X such that f(a) = c. In the case
of a Hilbert space X = H endowed with a scalar product 〈· , · 〉, and thanks to
the Riesz representation theorem, the gradient ∇f of a Gâteaux di�erentiable is
de�ned by setting

〈h ,∇f(x)〉 = f ′(x)(h) .

And so in this case, a critical point of f is just a solution of the equation

∇f(x) = 0 .

The following surjectivity result illustrates well variational arguments.

Proposition 0.1 Every continuous function f : R → R with a superlinear
anti-derivative at in�nities (i.e., lim

|x|→∞

∫ x
0
f(t)dt/|x| = ∞), is surjective.

The proof follows immediately from the fact that for each arbitrary r ∈ R
�xed, the function ϕ : R→ R de�ned by ϕ(x) =

∫ x
0
f(t)dt− rx has a minimum

point which is a critical point since this function is lower semi-continuous (in
fact continuous), coercive (in the sense that its level sets {x ∈ R : ϕ(x) ≤ t}
are relatively compact) and furthermore di�erentiable. �
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An interesting example which also illustrates well variational arguments (with
di�erential analysis and ordinary di�erential equation tools) is the following:

Proposition 0.2 Let X be the Banach space consisting of all continuously
di�erentiable function u on [0, 1] satisfying the homogeneous Dirichlet boundary
condition u(0) = u(1) = 0, that is, X = {u ∈ C1[0, 1] ; u(0) = u(1) = 0} ,
and equipped with the norm de�ned by

‖u‖C1 = max
x∈[0,1]

|u(x)| + max
x∈[0,1]

|u′(x)| .

Consider the functionals E and G de�ned on X respectively by:

E(u) =

∫ 1

0

|u′(x)|2dx and G(u) =

∫ 1

0

|u(x)|2dx .

Then the constrained minimization problem

min
{
E(u) ; G(u) = 1 , u ∈ X

}
is equivalent to the unconstrained minimization problem

min

{
E(u)

G(u)
; u ∈ X \ {0}

}
and has an optimal solution ϕ : [0, 1]→ R de�ned by ϕ(x) = sin(πx).

Note that in this Proposition 0.2, any critical point v of the functional J
de�ned by J(u) = E(u)/G(u) for u 6≡ 0, is a solution to the eigenvalue problem

E ′(v) = λG′(v)

where λ is a Lagrange multiplier which in this case is explicitly λ = J(v) since

J ′(v) =
1

G(v)

(
E ′(v) − J(v)G′(v)

)
= 0 .

Furthermore, a regularity argument from Distribution theory shows that the
above eigenvalue problem is equivalent to

v′′ = λv , v ∈ X \ {0} .

Furthermore, based on elementary notions from di�erential analysis, distri-
bution theory, and convex analysis (or simply, calculus of variations), it is not

10



11

Introduction

and Motivations

hard to get the following inspiring

Proposition 0.3 Any critical point of the functional

J : H1
(
(0, π), R

)
−→ R

de�ned by

J(u) =

∫ π

0

|u̇(s)|2 ds

subject to the constraints∫ π

0

|u(s)|2 ds = 1 and

∫ π

0

u(s) ds = 0 ,

extends to a nonzero even periodic solution on [−π, π] of the ordinary di�er-
ential equation (ODE)

ü + u = 0 .

Abstractly, many boundary value problems are equivalent to

Au = 0 (E)

where A : U ⊂ X → Y is a mapping from a nonempty open set U of a Banach
space X into a Banach space Y . The problem is said to be variational, if there
exists a di�erentiable functional ϕ : U ⊂ X → R such that

A = ϕ′ , (see Definition... ).

In this case, the space Y correspond to the dual X ′ of X and Equation (E)
is equivalent to

ϕ′(u) = 0 , i.e.,

〈h, ϕ′(u)〉 = 0 , ∀h ∈ X (2)

where 〈 , 〉 holds for the duality pairing of X and X ′. This means that the
critical points of ϕ are the solutions u of (2) and their images ϕ(u) are the
critical values of ϕ.

Besides given a C1 functional g de�ned from a Banach space X into a Banach
space Y , if a point a is a minimizer of a C1 functional f : X → R constrained
to the condition g(x) = 0

Y
, then a solves the problem

f ′(a) = λ∗ ◦ g′(a) ,

11
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where λ∗ ∈ Y ∗ is called a Lagrange parameter. (Cf. ...)

The aim of this dissertation is to stress the importance of the direct method
of the Theory of Calculus of Variations -which deals with the existence and
regularity of minimizers of functionals- through the study of the minimization
of ∫ π

0

|ẋ(s)|2ds

subject to the constraints :∫ π

0

U(x(s))ds = R , and

∫ π

0

gradU(x(s)) ds = 0 ;

which yields nonzero even periodic solutions of the dynamical system

ẍ(t) + gradU(x(t)) = 0 (0.0.1)

where x = x(t) = (x1(t), · · · , xN(t)) ∈ RN , t ∈ [0, π], ẍ(t) = d2x
dt2

(t) and U
is a C2(RN) real-valued function such that
(i) 0 ≤ U(x) for x ∈ RN and U(0) = 0,
(ii) U is convex and U(x)→∞ as |x| → ∞.
(iii) U ∈ C2(RN) and the quadratic form ΣUij(x)ζiζj is positive de�nite for
every x ∈ RN .

We divide this work into three chapters:

- In the �rst chapter, we present some preliminaries from Functionnal Anal-
ysis and the basic Optimization Theory.
- In the second chapter, we review minimization and variational principles and
then consider some auxilliary constrained minimizations in the aim to solve our
di�erential system .
- The third chapter is an application of the abstract.
We conclude this work by some important remarks, showing how the calculus of
variations is related to equilibrium con�guration of physical systems.
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CHAPTER 1

Preliminaries:

Notations, Elementary notions and Important facts.

1.1 Banach Spaces

De�nition 1.1.1 Let X be a real linear space, and ‖.‖
X
a norm on X and d

X

the corresponding metric de�ned by d
X

(x, y) = ‖x− y‖
X
∀x, y ∈ X.

The normed linear space (X, ‖.‖
X

) is a real Banach space if the metric space
(X, d

X
) is complete, i.e., if any Cauchy sequence of elements of space (X, ‖.‖

X
)

converges in (X, ‖.‖
X

). That is, every sequence satisfying the following Cauchy
criterion:

∀ε > 0,∃n0 ∈ N : p, q ≥ n0 ⇒ d
X

(xp, xq) ≤ ε

converges in X.

De�nition 1.1.2 Given any vector space V over a �eld F ( where F = R or C),
the topological dual space (or simply) dual space of V is the linear space of
all bounded linear functionals. We shall denote it by V ∗.

V ∗ := {ϕ : ϕ : V −→ F, ϕ linear and bounded }

Remark 1.1.1

1)The topological dual space of V is sometimes denoted V ′.

1



2 Banach Spaces

2)The dual space V ∗ has a canonical norm de�ned by

‖f‖
V ∗ = sup

x∈V,‖x‖6=0

|f(x)|
‖x‖

, ∀f ∈ V ∗.

3)The dual of every real normed linear space, endowed with its canonical norm
is a Banach space.

In order to de�ne other useful topologies on dual spaces, we recall the following

De�nition 1.1.3 (Initial topology)
Let X be a nonempty set, {Yi}i∈I a family of topological spaces (where I is an
arbitrary index set) and φi : X −→ Y ; i ∈ I, a family of maps.
The smallest toplogy on X such that the maps φi, i ∈ I are continous is called
the initial topology.

Next, we de�ne the weak topology of a normed vector space X and the weak
star topology of its dual space X∗ which are special initial topologies.

De�nition 1.1.4 (weak topology)
Let X be a real normed linear space, and let us associate to each f ∈ X∗ the
map

φ
f

: X −→ R
given by

φ
f
(x) = f(x) ∀x ∈ X.

The weak topology on X is the smallest topology on X for which all the φf are
continous.
We write ω − topology for the weak topology.

De�nition 1.1.5 (weak star topology)
Let X be a real normed linear space and X∗ its dual. Let us associate to each
x ∈ X the map

φx : X∗ −→ R
given by

φx(f) = f(x) ∀f ∈ X∗.
The weak star topology on X∗ is the smallest topology on X∗ for which all the
φx are continous.
We write ω∗ − topology for the weak star topology.

2



3 Banach Spaces

Proposition 1.1.6 Let X be a real normed linear space and X∗ its dual space.
Then, there exists on X∗ three standard topologies, the strong topology given by
the canonical norm ‖.‖

X∗ on X
∗, the weak topology (ω− topology) and the weak

star topology ω∗ − topology such that :

(X∗, ω∗) ↪→ (X∗, ω) ↪→ (X∗, ‖.‖
X∗ ) .

The following part of this section is devoted to re�exive spaces.
For any normed real linear space X, the space X∗ of all bounded linear function-
als onX is a real Banach space and as a linear space, it has its own corresponding
dual space which we denote by (X∗)∗ or simply by X∗∗ and often refer to as the
the second conjugate of X or double dual or the bidual of X.
There exists a natural mapping J : X −→ X∗∗ de�ned , for each x ∈ X by

J(x) = φx

where
φx : X∗ −→ R

is given by
φx(f) = f(x)

for each f ∈ X∗.
Thus

〈J(x), f〉 ≡ f(x) for each f ∈ X∗.

J is linear and ‖Jx‖ = ‖x‖ for all x ∈ X, (i.e.) J is an isometry embedding .
In general, the map J needs not to be onto. Since an isometry is injective,we
always identify X to a subspace of X∗∗.
The mapping J is called canonical embedding. This leads to the following
de�nition.

De�nition 1.1.7 Let X be a real Banach space and let J be the canonical em-
bedding of X into X∗∗. If J is onto, then X is said to be re�exive. Thus, a
re�exive real Banach space is one for which the canonical embedding is onto.

We now state the following important theorem.

Theorem 1.1.8 (Eberlein-Smul'yan theorem)
A real Banach space X is re�exive if and only if every ( norm ) bounded sequence
in X has a subsequence which converges weakly to an element of X.

3



4 Hilbert spaces

1.2 Hilbert Spaces

De�nition 1.2.1

A map φ : E × E −→ C is sesquilinear if:

1) φ(x+ y, z + w) = φ(x, z) + φ(x,w) + φ(y, z) + φ(y, w)

2) φ(ax, by) = ābφ(x, y) where the �bar� indicates the complex conjugation

for all x, y, z, w ∈ E and all a, b ∈ C.

A Hermitian form is a sesquilinear form φ : E × E −→ C such that
3) φ(x, y) = φ(y, x) ;

A positive Hermitian form is a Hermitian form such that
4) φ(x, x) ≥ 0 for all x ∈ E ;

A de�nite Hermitian form is a Hermitian form such that
5) φ(x, x) = 0 =⇒ x = 0 .

An inner product on E is a positive de�nite Hermitian form and will be
denoted 〈. , .〉 := φ(. , .). The pair (E, 〈. , .〉) is called an inner product space.

We shall simply write E for the inner product space (E, 〈. , . 〉) when the inner
product 〈. , . 〉 is known.
In the case where we are using more than one inner product spaces, speci�ca-
tion will be made by writting 〈. , .〉

E
when talking about the inner product space

(E, 〈. , .〉).

De�nition 1.2.2 Two vectors x and y in an inner product space E are said to
be orthogonal and we write x ⊥ y if 〈x, y〉 = 0. For a subset F of E, then we
write x ⊥ F if x ⊥ y for every y ∈ F.

Proposition 1.2.3 Let E be an inner product space and x, y ∈ E.
Then

|〈x, y〉|2 ≤ 〈x, x〉.〈y, y〉 .

4



5 Hilbert spaces

For an inner product space (E, 〈. , .〉), the function ‖.‖
E

: E −→ R de�ned
by

‖x‖
E

=
√
〈x, x〉

E

is a norm on E.
Thus, (E, ‖.‖

E
) is a normed vector space, hence a metric space endowed with

the distance d
E

: E × E −→ R de�ned by d
E

(x, y) = ‖x− y‖
E
.

De�nition 1.2.4 (Hilbert Space)
An inner product space (E, 〈. , .〉) is called a Hilbert space if the metric space
(E, d

E
) is complete.

Remark 1.2.1

1)Hilbert spaces are thus a special class of Banach spaces.
2)Every �nite dimension inner product space is complete and simply called
Euclidian Space.

Proposition 1.2.5

Let H be a Hilbert space. Then, for all u ∈ H, Tu(v) := 〈u, v〉 de�nes a
bounded linear functional, i.e. Tu ∈ H∗. Furthermore ‖u‖

H
= ‖Tu‖H∗ .

Theorem 1.2.6 (Riesz Representation theorem)
Let H be a Hilbert space and let f be a bounded linear functional on H. Then,
(i) There exists a unique vector y0 ∈ H such that

f(x) = 〈x, y0〉 for each x ∈ H,

(ii) Moreover, ‖f‖ = ‖y0‖.

Remark 1.2.2 The map T : H −→ H∗ de�ned by T (u) = Tu is linear,(anti-
linear in the complex case) and isometric. Therefore the canonical embedding is
an isometry showing that �any Hilbert space is re�exive�.

At the end of this part, we state this important proposition which is just a
corollary of Eberlein-Smul'yan theorem.

Proposition 1.2.7 Let H be a Hilbert space, then any bounded sequence in H
has a subsequence which converges weakly to an element of H.

5
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1.3 Di�erential Calculus in Banach spaces

In this section, we de�ne the derivative of a map de�ned between real Banach
spaces.

De�nition 1.3.1 ( Directional Di�erentiability)
Let f be a function de�ned from a real linear space X into a real normed linear
space Y and let x0 ∈ X and v ∈ X\{0}.
The function f is said to be di�erentiable at x0 in the direction v if the function
t 7−→ f(x0 + tv) is di�erentiable at t = 0. i.e.

t 7−→ f(x0 + tv)− f(x)

t
; t 6= 0,

has a limit in Y when t tends to 0. This limit, when it exists is denoted f ′(x0, v)
or ∂f

∂v
(x0).

De�nition 1.3.2 ( Gâteaux Di�erentiability)
A function f de�ned from a real linear space X into a real normed linear space
Y is Gâteaux Di�erentiable at a point x0 ∈ X if :
1) f is di�erentiable at x0 in every direction v ∈ X\{0} and
2) there exists a bounded linear map A : X −→ Y such that f ′(x0, v) = A(v); in
other words, the map

v 7−→ f ′(x0, v)

is a bounded linear map from X into Y.
In this case the map f ′(x0, .) is called the Gâteaux di�erential of f at x0 and is
denoted by DGf(x0, .) or f ′G(x0).

De�nition 1.3.3 (Fréchet Di�erentiability)
A map f : U ⊂ X −→ Y whose domain U is an open set of a real Banach
space X and whose range is a real Banach space Y is ( Fréchet ) di�erentiable
at x ∈ U if there is a bounded linear map A : X −→ Y such that

lim
‖u‖−→0

‖f(x+ u)− f(x)− Au‖
‖u‖

= 0,

or equivalently
f(x+ u)− f(x)− Au = o(‖u‖) .

Proposition 1.3.4 If f : U ⊂ X −→ Y is Fréchet Di�erentiable, then f is
Gâteaux Di�erentiable.

6
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Proof. Indeed by taking u = tv, in the de�nition of Fréchet Di�erentiability we
have

f(x+ tv)− f(x)

t
=

(
A(v) +

o(‖tv‖)
‖tv‖

)
by the Fréchet Di�erentiability. And since as t −→ 0, u −→ 0, so

lim
t−→0

f(x+ tv)− f(x)

t
= A(v)

and we are done.

Proposition 1.3.5 Let X be a real Banach space and Y be a real normed linear
space.Then
1) The set of Gâteaux di�erentiable mappings from X into Y is a linear subspace
of the linear space of all the mappings de�ned from X into Y space is contained
in B(X, Y ),
2) The set of Fréchet Di�erentiable mappings from X into Y is also a subspace
of B(X, Y ).

Theorem 1.3.6 (Mean Value Theorem in Banach Spaces) Let X and Y be Ba-
nach spaces, U ⊂ X be open and let f : U → Y be Gâteaux di�erentiable. Then
for all x1 , x2 ∈ X, we have

‖f(x1) − f(x2)‖ ≤ sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ · ‖x1 − x2‖

provided that sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ is �nite.

Proof. Suppose that the assumptions of Theorem 1.3.6 hold. Let g∗ ∈ Y ∗ (the
dual of Y ) such that ||g∗|| ≤ 1. Then the real-valued function ϕ : [0, 1] −→ R
de�ned by

ϕ(t) = g∗ ◦ f(x1 + th) where h = x2 − x1

is di�erentiable on [0, 1] in the usual sense. Moreover we see that

ϕ′(t) = g∗
(
DGf(x1 + th)(h)

)
, ∀ t ∈ (0, 1) .

It follows from the classical mean valued theorem that

|ϕ(1) − ϕ(0)| ≤ sup
0<t<1

|ϕ′(t)| ,

7



8

Di�erential Calculus

in Banach spaces

that is
‖g∗ ◦ f(x1) − g∗ ◦ f(x2)‖ ≤ sup

0<t<1
|ϕ′(t)| .

Moreover for all t ∈ (0, 1), we have

|ϕ′(t)| =
∣∣g∗(DGf(x1 + th)(h)

)∣∣
≤ ||g∗|| ‖DGf(x1 + th)‖ ‖h‖

≤ ‖DGf(x1 + th)‖ ‖h‖

And so

‖g∗
(
f(x1)− f(x2)

)
‖ = ‖g∗of(x1)− g∗◦f(x2)‖ ≤

(
sup

0<t<1
‖DGf(x1 + th)‖

)
‖h‖ .

But it is well known as a consequence of the Hahn-Banach theorem that

‖y‖ = sup{u∗(y) , u∗ ∈ Y ∗, ‖u∗‖ ≤ 1 }.

Therefore we �nally have

‖f(x1) − f(x2)‖ ≤ sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ · ‖x1 − x2‖ . �

Remark 1.3.1 : The intereted reader is refered to [8] for another approach of
the proof.

Su�cient conditions for the Fréchet Di�erentiability is given by the following

Theorem 1.3.7 Suppose that f : U ⊂ X −→ Y is a Gâteaux Di�erentiable
function de�ned from an open subset of a real Banach space X into a real Banach
space Y. If the Gâteaux derivative f ′G : U ⊂ X −→ B(X, Y ) is continous at
x ∈ U, then f is Fréchet Di�erentiable at x and f ′(x) = f ′G(x).

Proof. Let x ∈ U. Since U is open, there exixts δ > 0 such that B(x, δ) ⊂ U.
Now for h ∈ B(x, δ), we de�ne

r(h) = f(x+ h)− f(x)− f ′G(x)h. (1.3.1)

8
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The Gâteaux Di�erentiability of f at x implies that r is also Gâteaux Di�eren-
tiable, and

r′G(h) = f ′G(x+ h)− f ′G(x).

Applying theorem 1.3.6 on the segment line connecting 0 and h, we have that

‖r(h)‖ ≤M(h)‖h‖,

where
M(h) = sup

0≤t≤1
‖r′G(th)‖.

The continuity of the Gâteaux Di�erential of f at x implies that M(h) → 0 as
h→ 0, so r(h) = o(h). Relation 1.3.1 assures that f is Fréchet Di�erentiable at
x, and so f ′(x) = f ′G(x).

1.4 Sobolev spaces and Embedding Theorems

We recall the following notations and basic results from Distridutions Theory.
Let Ω ⊂ RN be an open subset of RN .
A multi-index α is a vector (α1 , · · · , αN

) ∈ NN . The length of α is
|α| = α1 + · · ·+ α

N
.

Let u ∈ L
1

loc(Ω), where L
1

loc(Ω) is the set of functions which are integrable on
every compact subset of Ω. If α is a multi-index, we set

Dα :=
D|α|

∂x
α1
1 · · · ∂x

α
N

N

We also recall that we denote by D(Ω) the set of C∞− functions de�ned on
Ω with compact support in Ω.

De�nition 1.4.1

We say that the function v is the α-th weak partial derivative of u if :

1) v ∈ L1

loc(Ω),

2) v = Dαu in the sens of distribution , i.e.∫
Ω

u(x)Dαψ(x)dx = (−1)|α|
∫

Ω

v(x)ψ(x)dx, ∀ ψ ∈ D(Ω).

9
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De�nition 1.4.2 Let f, g ∈ L1

loc(RN).We de�ne the convolution product f∗g
of f and g by

(f ∗ g)(x) =

∫
RN

f(x− y)g(y)dy

Theorem 1.4.3 Let (ρn)n be a sequence of functions such that :

ρn ∈ D(RN), supp ρn = B(0,
1

n
),

∫
RN

ρn(x)dx = 1, ρn ≥ 0 on RN .

(Such a sequence of smooth functions is called Friedrich molli�er ).

If f ∈ L1

loc(RN) then the convolution product

f ∗ ρn(x) =

∫
RN

f(x− y)ρn(y)dy

exists for each x ∈ RN .
Moreover
1. f ∗ ρn ∈ C∞(RN),
2. If K is a compact set of points of continuity of f, then f ∗ρn −→ f uniformly
on K as n −→∞.

Proof. Since supp ρn = B(0, 1
n
), ( which is compact ), and using f ∈ L1

loc(RN)
we get

|fn(x)| = |(f∗ρn)(x)| =

∣∣∣∣∣
∫
B(0, 1

n
)

f(x− y)ρn(y)dy

∣∣∣∣∣ =

∫
B(0, 1

n
)

|f(x−y)|ρn(y)dy <∞.

Further, since

supp

(
∂ρn
∂xi

)
⊂ B(0,

1

n
) and

∂

∂xi
[f(y)ρn(x− y)] =

∂ρn(x− y)

∂xi
f(y),

we get ∣∣∣∣∂ρn(x− y)

∂xi
f(y)

∣∣∣∣ ≤Mn|f(y)|χ
B(0, 1

n )

and using a corollary of Lebesgue dominated convergence theorem, we have :

∂

∂xi

∫
RN

f(y)ρn(x−y)dy =

∫
RN

∂ρn(x− y)

∂xi
f(y)dy =

∫
RN

∂ρn(y)

∂xi
f(x−y)dy = f∗∂ρn

∂xi
.

10
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Let us prove now that fn → f as n → ∞, uniformly on compact subsets of
RN .
Let K be a compact set of points of continuity of fn. So, for any η > 0, there
exists δ > 0, such that for x, z ∈ K

‖x− z‖ < δ =⇒ ‖f(x)− f(z)‖ < η.

Now,

fn(x)− f(x) =

∫
B(0, 1

n
)

(f(x− y)− f(x))ρn(y)dy,

because

f(x) = f(x).1 = f(x)

∫
RN

ρn(y)dy =

∫
RN

f(x)ρn(y)dy and

∫
RN

ρn(y)dy = 1,

Hence, for n ≥ n0 with n0 =
[

1
δ

]
+ 1,

|fn(x)− f(x)| ≤
∫
B(0, 1

n
)

|f(x− y)− f(x)|ρn(y)dy

≤ η

∫
RN

ρn(y)dy = η for each x ∈ K.

Indeed

n ≥ n0 =⇒ n ≥ 1

δ
=⇒ 1

n
≤ δ

so that

‖(x− y)− x‖ = ‖y‖ ≤ 1

n
≤ δ

and the result follows from the uniform continuity of fn.
We then conclude that f ∗ ρn −→ f uniformly on each compact.

De�nition 1.4.4 Let 1 ≤ q ≤ +∞, m ∈ N. The Sobolev space Wm,p(Ω) is
de�ned by

Wm,p(Ω) = {u ∈ Lp(Ω), |Dαu ∈ Lp(Ω) for all |α| ≤ m}.

Clearly, Wm,p(Ω) is a real vector space .
The case p = 2 will play a special role. The Sobolev spacesWm,2(Ω) are denoted
by Hm(Ω), i.e.

Hm(Ω) := Wm,2(Ω).

11
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The spaces Hm(Ω) have a natural inner-product de�ned by

〈u, v〉
Hm = Σ

|α|≤m

∫
Ω

Dαu(x)Dαv(x)dx, ∀u, v ∈ Hm(Ω)

and are Hilbert spaces with the inner-product de�ned above. We will be more
interested in our work by H1(Ω).

Concerning Sobolev spaces, we will give here two important results, Rellich-
Kondrachov compact embedding theorem (which is crucial in regularity
analysis) and the Poincaré Inequality .

Theorem 1.4.5 (Rellich-Kondrachov)
Let Ω be a C1−bounded open subset of RN , 1 ≤ p <∞ and p∗ := Np

N−p .
The followings embeddings are compact:

a. If 1 ≤ p < N then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [1, p∗[,

b. If p = N then W 1,p(Ω) ⊂ Lq(Ω),∀q ∈ [1,∞[,

c. If p > N then W 1,p(Ω) ⊂ C(Ω̄).

We have D(Ω) ⊂ Wm,p(Ω) ∀m ∈ N,∀p ≥ 1, and we de�ne Wm,p
0 (Ω) := D(Ω).

Proposition 1.4.6 (Poincaré Inequality)
Let 1 ≤ p <∞ and Ω a bounded open subset of RN . Then there exists a constant
C = C(p,Ω) such that

‖u‖
L

p
(Ω)
≤ C‖Ou‖

L
p

(Ω)
, ∀u ∈ W 1,p

0 (Ω)

If Ω is connected and satis�es a C1 boundary condition, then there exists a con-
stant C = C(p,Ω) such that

‖u− ū‖
L

p
(Ω)
≤ C‖Ou‖

L
p

(Ω)
, ∀u ∈ W 1,p(Ω)

where

ū =
1

|Ω|

∫
Ω

u(x)dx.

12
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1.5 Basic notions of Convex analysis

De�nition 1.5.1 Let X be a real normed vector space, x0 ∈ X and
f : X −→ R = R ∪ {−∞,+∞} an extended real-valued function. One says
that f is lower semicontinuous (lsc) at x0 when for any real number r such
that r < f(x0), there exists some neighborhood V of x0 such that for all x ∈ V,
r < f(x).

We next connect the lower semicontinuity to some geometric concept. For an
extended real-valued function f : X −→ R, we de�ne its epigraph epi f by

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

We also introduce the concept of lower level set for r ∈ R by {f(.) ≤ r}
where for r ∈ R,

{f(.) ≤ r} := {x ∈ X : f(x) ≤ r}.

We therefore give the following characterisation ;

Theorem 1.5.2 Let X be a real normed vector space and f : X −→ R an
extended real-valued function. The following assertions are equivalent
a) f is lower semicontinous (lsc) ;
b) The epigraph epi f of f is closed in X × R ;
c)For any r ∈ R, the lower level set {f(.) ≤ r} is closed in X.

De�nition 1.5.3 Let C be a nonempty subset of a real normed vector space X.
One says that the set C is convex provided that for x, y ∈ C, and λ ∈ [0, 1], one
has λx+ (1− λ)y ∈ C.

Through the epigraph of an extended real-valued function over a real vector
space, one can de�ne the concept of convex function as follow:

De�nition 1.5.4 Let f : X −→ R an extended real valued function. Ones says
that the function f is convex provided that its epigraph is a convex set in X×R.

13
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We also give the following important results.

Proposition 1.5.5 Let X be a real normed vector space. If f : X −→ R is lsc
at x̄ ∈ X and {xn} is a sequence in X which converges (strongly) to x̄ then ,

lim inf
n→∞

f(xn) ≥ f(x̄).

Proposition 1.5.6

Let f : X −→ R be any map.
Then , f is convex and lsc ⇐⇒ f is convex and weakly lsc.

And we obtain the following corollary

Corollary 1.5.7 Let f : X −→ R be a convex and weakly lsc mapping. Suppose
{xn} is a sequence in X which converges weakly to x̄. Then,

lim inf
n→∞

f(xn) ≥ f(x̄).

De�nition 1.5.8 Let X be a real normed vector space and C a nonempty convex
subset of X. A function f : C −→ R ∪ {+∞} is said to be convex relative to C,
provided for all λ ∈]0, 1[, x, y ∈ C

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

and f is said to be strictly convex relative to C if for x, y ∈ C with x 6= y and
f(x), f(y) �nite, we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

Lemma 1.5.9 (Slope inequality for convex functions)
Let I be an unterval of R and h : I −→ R ∪ {+∞} be a proper convex function.
Let r1, r2, r3 ∈ I such that r1 < r2 < r3 and h(r1) and h(r2) are �nite. Then

h(r2)− h(r1)

r2 − r1

≤ h(r3)− h(r1)

r3 − r1

≤ h(r3)− h(r2)

r3 − r2

.

Furthermore, these inequalities for all such r1, r2, r3 ∈ I characterizes the con-
vexity of f relative to I.
If we have

h(r2)− h(r1)

r2 − r1

<
h(r3)− h(r1)

r3 − r1

<
h(r3)− h(r2)

r3 − r2

for all r1, r2, r3 ∈ I such that r1 < r2 < r3 and h(r1), h(r2) and h(r3) are �nite,
we obtain a characterisation of the strict convexity of f relative to C.
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Through the above lemma, we can characterize the convexity of di�erentiable
functions of one real variable as follows.

Proposition 1.5.10 Let I be an open interval of R and h : I −→ R be a real-
valued di�erentiable function on I. The following assertions are equivalent :
(a) h is convex on I;
(b) the derivative function h′ is nondecreasing on I;
(c) h′(r)(s− r) ≤ h(s)− h(r) for all r, s ∈ I.
Similarly, the following are equivalent
(a') his strictly convex on I;
(b') the derivative function h′ is increasing on I;
(c') h′(r)(s− r) < h(s)− h(r) for all r, s ∈ I with r 6= s.

Proof. (a)⇒ (b) Let r < t in I. According to the above lemma, we have

h′(r) = lim
s↓r

h(s)− h(r)

s− r
≤ h(t)− h(r)

t− r
≤ lim

s↑t

h(t)− h(s)

t− s
= lim

s↑t

h(s)− h(t)

s− t
= h′(t),

which ensures the nondecreasing property of the derivative h′ on I.

(b)⇒ (c) Fix r ∈ I and set ϕ(s) := h(s)− h(r)− h′(r)(s− r) for all s ∈ I.
The function ϕ is di�erentiable on I and ϕ′(s) = h′(s)−h′(r). By the assumption
(b), taking s ∈ I, we have that ϕ′(s) ≥ 0 if s ≥ r and ϕ′(s) ≤ 0 if s ≤ r. We
then deduce that ϕ(s) ≥ ϕ(r) = 0 for all s ∈ I and we are done.

(c)⇒ (a) For s �xed in (c), we

h(s) ≤ sup
r∈I

[h′(r)(s− r) + h(r)] ≤ h(s)

that is
h(s) = sup

r∈I
[h′(r)(s− r) + h(r)]

Further, setting H(s) = [h′(r)(s− r) + h(r)] , for s1, s2 ∈ I and α ∈ [0, 1], we
have that

H(αs1 + (1− α)s2) = h′(r)(αs1 + (1− α)s2 − r) + h(r)

= h′(r)(αs1 + (1− α)s2 − αr + (1− α)r) + αh(r) + (1− α)h(r)

= α [h′(r)(s1 − r) + h(r)] + (1− α) [h′(r)(s2 − r) + h(r)]

= αH(s1) + (1− α)H(s2)
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that is, H is convex and hence, h is convex on I as the pointwise supremum of
a family of convex functions on I.
The case of the strict convexity of h follows the same arguments.

Proposition 1.5.11 Let I be an open interval of R and h : I −→ R be a real-
valued di�erentiable function on I.
If the function h is twice di�erentiable on I, then h is convex on I if and only if
h′′(r) ≥ 0 for all r ∈ I.
Similarly if h is twice di�erentiable on I and h′′(r) > 0 for all r ∈ I, then h is
strictly convex on I. The converse does not hold, that is, the strict convexity of
a twice di�erentiable function h on I does not entail the positivity of h′′ on I.

Proof. Since h is twice derivable, we have

h′′(r) ≥ 0 ∀r ∈ I ⇐⇒ h′ is nondecreasing ⇐⇒ h is convex

and we are done.
The case of the strict convexity of h follows the same arguments.

We will consider now the more genaral case of di�erentiable functions on an
open convex set of a normed vector space .

Theorem 1.5.12 Let U be an open set of a real normed space (X, ‖.‖) and
f : U −→ R be a function which is (Fréchet) di�erentiable on U. Then the fol-
lowing assertions are equivalent:
(a) f is convex torelative U ;
(b) 〈f ′(y)− f ′(x), y − x〉 ≥ 0 for all x, y ∈ U ;
(c) 〈f ′(x), y − x〉 ≤ f(y)− f(x) for all x, y ∈ U.
Similarly, the following are equivalent :
(a') f is strictly convex relative to U ;
(b') 〈f ′(y)− f ′(x), y − x〉 > 0 for all x, y ∈ U with x 6= y;
(c') 〈f ′(x), y − x〉 < f(y)− f(x) for all x, y ∈ U with x 6= y.

Proof. For �xed x, y ∈ U with x 6= y, consider the open interval

I := {s ∈ R : x+ s(y − x) ∈ U}

and set h(s) := f(x + s(y − x) for all s ∈ I. Observing that 0 ∈ I and 1 ∈ I
with h(0) = f(x) and h(1) = f(y). we have
f is convex relative to U if and only if the function h is convex relative to I.
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Indeed, since 0 ∈ I and 1 ∈ I and I is an interval, then [0, 1] ⊂ U,
so for all α ∈ [0, 1] ⊂ U

f(αy + (1− α)x) = f(x+ α(y − x))

= h(α)

= h(α.1 + (1− α).0)

≤ αh(1) + (1− α)h(0)

= αf(y) + (1− α)f(x)

We then apply proposition 1.5.10.

Theorem 1.5.13 Let U be an open set of a real normed space (X, ‖.‖) and
f : U −→ R be a function which is (Fréchet) di�erentiable on U.
If f is twice di�erentiable on U, f is convex relative to U if and only if for each
x ∈ U the bilinear form associated with f ′′(x) is positive semide�nite, i.e.,
〈f ′′(x).v, v〉 ≥ 0 for all v ∈ X.
Similarly assuming the twice di�erentiabilty of f on U, a su�cient (but not nec-
essary) condition for the strict convexity of f on U is for each x ∈ U the positive
de�niteness of f ′′(x), i.e., 〈f ′′(x).v, v〉 > 0 for all v ∈ X with v 6= 0X

Proof. It follows the same arguments as in the proof of the above theorem, but
in this case, we apply proposition 1.5.11
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CHAPTER 2

Minimization and Variational methods

Here, we give some minimization and variational principles.
In fact, we prove the existence of minimum points ( hence critical points) for
a functional subject to some contraints and to this end, we will use the direct
method of the calculus of variations.

Before we move further, let us recall the following:
The calculus of variations deals with functionals J : V −→ R, where V is some
function space. The main interest of the subject is to �nd minimizers for such
functionals, that is, functions v ∈ V such that

J (v) ≤ J (u) for every u ∈ V.

But seeking a minimizer among the functions satisfying these may lead to false
conclusions if the existence of a minimizer is not established beforehand.
The functional J must be bounded from below to have a minimizer. This means

inf{J (u) : u ∈ V } > −∞.

It is not enough to know that a minimizer exists, but it shows the existence
of a minimizing sequence, that is, a sequence (un) in V such that

J (un) −→ inf{J (u) : u ∈ V }.
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The direct method may be broken into the following steps :
1. Take a minimizing sequence (un)n for J ,

2. Show that (un)n admits some subsequence (unk
)

k
that converges to an el-

ement u∗ ∈ V with respect to a topology τ on ,

3. Show that J is sequentially lower semi-continuous with respect to the topol-
ogy τ .

To see that this shows the existence of a minimizer, consider the following de�-
nition of sequentially lower-semicontinuous functions.
The function J is sequentially lower-semicontinuous if

lim inf
n→∞

J (un) ≥ J (u∗) for any convergent sequence un
τ−→ u∗ in V.

The conclusion follows from ,

inf{J (u) : u ∈ V } = lim
n→∞
J (un) = lim

k→∞
J (unk

) ≥ J (u∗) ≥ inf{J (u) : u ∈ V }

in other words

J (u∗) = inf{J (u) : u ∈ V }.

We �rst give the following very important existence theorem.

Theorem 2.0.14 Let K be a nonempty closed and convex subset of a re�exive
real Banach space X. Let F be a convex and lower semicontinuous function on
K.
If K is bounded or F is coercive (i.e. lim

‖x‖→+∞
F (x) = +∞),

then there exists a minimum of F over K.
Moreover, if F is strictly convex on K, then the minimum is unique.

Corollary 2.0.15 (The projection Theorem)
Let H be a Hilbert space and M a closed subspace of H. For arbitrary vector
x ∈ H, there exists a vector m∗ ∈ M such that ‖x − m∗‖ ≤ ‖x − m‖ for all
m ∈M. Furthermore, m∗ ∈M is unique if and only if (x−m∗) ⊥M.
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We also recall the following concepts.

De�nition 2.0.16 Let Ω be an open set of a real Banach space and F be a
real-valued function de�ned on Ω and di�erentiable on Ω.
x̄ ∈ Ω is a critical point of the function F without constraints if

F ′(x̄) = 0.

De�nition 2.0.17 Let X, Y be two real Banach spaces and f : X −→ Y a
di�erentiable map. Let M ⊂ X be a manifold. One says that x̄ ∈ M is a
critical point of the function f constrained to M if

Tx̄M ⊂ ker [Df(x̄)]

where Tx̄M is the tangent plane of M at x̄.

Remark 2.0.1 We know that when the manifold M is described by g(z) = 0, i.e.
M = {z ∈ X : g(z) = 0

Y
} where g : X −→ Y is a submersion, then

TzM = ker [Dg(z)].

So that x̄ is a critical point of the function f constrained to M if

ker [Dg(x̄)] ⊂ ker [Df(x̄)].

This inclusion between � kernels� implies ( from Algebra ) that there exists a
linear form λ : Y −→ R ( called Lagrange multiplier) such that

Df(x̄) = λ ◦Dg(x̄).

In the case now where Y = Rm, the manifold (or constraints set ) M takes the
form M = {g

i
(z) = 0, 1 ≤ i ≤ m} and the linear form λ can be represented as a

row-vector λ := (λ1, · · · , λm) so that

Df(x̄) = (λ1, · · · , λm).(Dg1(x̄), · · · , Dgm(x̄))t =
m∑
i=1

λiDgi(x̄).

The reals λi, 1 ≤ i ≤ m are by extension called the �Lagrange multipliers � .
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This yields then to the following proposition

Proposition 2.0.18 Let Ω be an open set of a real Banach space and F be a
real-valued function de�ned on Ω and di�erentiable on Ω.
Let gi : Ω −→ Rmi , i = 1, · · · , n be di�erentiable functions on Ω.
The point x̄ ∈ Ω is a critical point of the function F subject to the con-
straints ( gmi

(x) = 0, i = 1, · · · , n ) if there exists a nonzero vector
(λ0, λm1 , · · · , λmn) ∈ R× Rm1 × · · · × Rmn , such that

λ0∇F (x̄) +
n∑
i=1

λmi
.∇gmi

(x̄) = 0

and
gmi

(x̄) = 0, for i = 1, · · · , n .

Since we will be interested in minimization problem subject to constraints, we
will add in the above proposition that λ0 ≥ 0.

It will be convenient for the rest of our work to prove the following useful
results.

Consider now the space H1(]0, π[,RN) that we shall write simply H1. We know
that H1 is also the set of absolutely continuous N -vector-valued functions x
de�ned on [0, π] such that ẋ ∈ L2 := L2(]0, π[,RN) and is a Hilbert space with
the norm induced by the inner product.

〈x, y〉
H1 =

∫ π

0

(ẋ(s).ẏ(s) + x(s).y(s))ds .

Lemma 2.0.19 Let x ∈ H1 such that
∫ π

0
x(s) ds = 0, then there is a constant

K independent of x such that

max

{
‖x‖

L2
, sup
s∈[0,π]

|x(s)|

}
≤ K‖ẋ‖

L2
(2.0.1)

Furthermore

if xn −→ x weakly in H1, then xn −→ x uniformly on [0, π]. (2.0.2)
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Proof. We recall that for an absolutely continuous function, the fundamental
theorem of analysis is true.
Therefore, for x ∈ H1, and for any l �xed in [0, π] we can write

x(s)− x(l) =

∫ s

l

ẋ(v)dv ∀s ∈ [0, π]

and this implies that

|x(s)− x(l)| = |
∫ s

l

ẋ(v)dv|

≤
∫ π

0

|ẋ(v)|dv, i.e.

≤ π1/2

{∫ π

0

|ẋ(v)|2dv
}1/2

for all s in [0, π] .

So

|x(s)− x(l)| ≤ π1/2

{∫ π

0

|ẋ(v)|2dv
}1/2

for all s in [0, π]. (2.0.3)

But we know ( by the theorem of the mean ) that there exists s0 ∈ [0, π] such
that

x(s0) =
1

π

∫ π

0

x(v)dv = 0 ,

so for l = s0 the inequality 2.0.3 becomes

|x(s)| ≤ π1/2

{∫ π

0

|ẋ(v)|2 dv
}1/2

∀s ∈ [0, π] (2.0.4)

Now, we square the members of the inequality 2.0.4 and integrate them over
[0, π] to obtain {∫ π

0

|x(s)|2ds
}1/2

≤ K1

{∫ π

0

|ẋ(s)|2ds
}1/2

. (2.0.5)

Using 2.0.4 again, by taking the supremum over [0, π] of both sides ,we obtain

sup
[0,π]

|x(s)| ≤ K2

{∫ π

0

|ẋ(s)|2ds
}1/2

. (2.0.6)
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Combining 2.0.5 and 2.0.6 and taking K = max{K1, K2} we get the desired
inequality 3.0.1

To prove the point 2.0.2, we will proceed by the way of contracdiction.
So, assume that we don't have the uniform convergence of (xn)n to x, that is,
there exists ε0 > 0 and a subsequence (xnk

)
k
of (xn)n such that

‖xnk
− x‖∞ > ε0 (2.0.7)

Since (xn)n ⊂ W 1,2 = H1, using the Rellich-Kondrachov compact embedding,
there exists a subsequence (xnkj

)
j
of (xnk

)
k
that converges uniformly (and there-

fore converges weakly) to some x∗ ∈ H1. The uniqueness of the weak limit assures
us that x = x∗. The inclusion (xnkj

)
j
⊂ (xnk

)
k
implies that (xnkj

)
j
satis�es 2.0.7

So we have ‖xnkj
− x‖∞ > ε0 and xnkj

−→ x uniformly . Contradiction.

Lemma 2.0.20 Let x0 be a given element of H1. Let U ∈ C1(RN) a real-valued
and strictly convex function.
Then there exists a unique constant vector a0 ∈ RN sucht that∫ π

0

U(x0(s) + a0)ds = min
a∈RN

∫ π

0

U(x0(s) + a)ds.

Furthermore a0 is characterised by∫ π

0

grad U(x0(s) + a0)ds = 0.

Proof. We want to �nd a minimum for the function Q : RN −→ R, de�ned by

Q(a) =

∫ π

0

U(x0(s) + a)ds.

Since U is C1 and strictly convex on RN , then Q is C1 and strictly convex on
RN , hence strictly convex and lower semicontinuous on RN .
Moreover, the coercivity of U implies the coercivity of Q. So by theorem 2.0.14
the function Q has a unique minimum a0 .
The Euler condition gives us that ∇Q(a0) = 0, i.e.∫ π

0

grad U(x0(s) + a0)ds = 0.
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Lemma 2.0.21 Let U be a C1(RN) real-valued and convex function such that :
1) 0 = U(0) ≤ U(x) ∀x ∈ RN ,
2) U(x) −→∞ as |x| −→ ∞.
The set

SR =

{
x : x ∈ H1,

∫ π

0

U(x(s))ds = R,

∫ π

0

grad U(x(s))ds = 0

}
is nonempty for any R > 0, and is weakly closed in H1.

Proof. Let {xn} be a sequence of elements of SR such that xn ⇀ x in H1. We
want to show that x ∈ SR.
Since xn ⇀ x in H1, then xn −→ x uniformly in H1 by 2.0.2 . The sequence
(xn)n is a sequence of bounded functions that converges uniformly, so (xn)n is
uniformly bounded , i.e. there exits a constant M independent of n such that
|xn(s)| ≤M for any n ∈ N and s ∈ [0, π].
Let K be the closed ball B′(0,M), K is compact and since U and ∇U are
continous, there exists M1 and M2 two constants independent of n such that

|U(xn(s))| ≤M1 and |∇U(xn(s))| ≤M2 for all n ∈ N and s ∈ [0, π]

Hence, by Lebesgue's dominated convergence theorem∫ π

0

U(xn(s))ds −→
n→∞

∫ π

0

U(x(s))ds,

and ∫ π

0

∇U(xn(s))ds −→
n→∞

∫ π

0

∇U(x(s))ds.

Thus, x ∈ SR and SR is weakly closed.
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To show that SR is nonempty for any R > 0, we consider the function
x(s) = (sin 2s, 0, · · · , 0) which obviously belongs to H1.
For all t > 0, tx(s) ∈ H1 and by the lemma 2.0.20, for each t, there exists a

constant N−vector ct such that xt(s) = tx(s) + ct and
∫ 0

π
grad U(xt(s))ds = 0.

Further, the fucntion

A : [0,+∞) −→ RN de�ned by A(t) = tx(s) + ct

is continous on [0,+∞) so that the function

B : [0,+∞) −→ R, de�ned by B(t) =

∫ π

0

U(xt(s))ds =

∫ π

0

U(A(t))ds

is continuous and satis�es

B(0) = 0 , lim
t−→+∞

∫ π

0

U(xt(s))ds = +∞

So by the intermadiate value theorem, for any R > 0, there exists t0 ≥ 0 such
that ∫ π

0

U(xt0(s))ds = R .

This completes the proof �.

We now state the following theorem that gives us the exitence of a minimum
point for a constrained functional.

Theorem 2.0.22 Let U be a C1(RN) real-valued function such that
(i) 0 = U(0) ≤ U(x) for x ∈ RN ,
(ii) U is convex, and U(x)→∞ as |x| → ∞.
(*) U ∈ C2(RN) and the quadratic form ΣUij(x)ζiζj is positive de�nite, where

Uij(x) = ∂2U
∂xi∂xj

(x).

Then for every number R > 0,

β = inf
x∈SR

∫ π

0

|ẋ(s)|2ds > 0

and is attained on SR.

Proof. We begin by showing that

β = inf
x∈SR

∫ π

0

|ẋ(s)|2ds is attained .
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Set

T (x) =

∫ π

0

|ẋ(s)|2ds.

Since SR 6= ∅ then there exists a sequence {xn} of elements of SR with

T (xn) =

∫ π

0

|ẋn(s)|2ds −→ β and T (xn) ≤ β + 1.

Note that xn can be written xn(s) = x0,n(s) + xm,n where x0,n has mean value
zero on [0, π] and xm,n is the mean value of xn over [0, π].
We want to show that

‖xn‖2

H1
is uniformly bounded.

Observe �rst that

x0,n(s) = (x1
0,n

(s), · · · , xN
0,n

(s)) ∈ RN , and xm,n(s) = (x1
m,n
, · · · , xN

m,n
) ∈ RN

so that

‖xn‖2

H1
= ‖x0,n‖2

H1
+ π|xm,n|2 + 2

[∫ π

0

(ẋ0,n(s).ẋm,n + x0,n(s)xm,n)ds

]
= ‖x0,n‖2

H1
+ π|xm,n|2 ,

because x0,n has mean value 0 and xm,n is a constant vector.

By the relation 2.0.1 of lemma 2.0.19, we have that

‖x0,n‖2

H1
=

∫ π

0

(|ẋ0,n|2 + |x0,n|2)ds ≤ (1 +K)

∫ π

0

(|ẋ0,n|2ds ≤ (1 +K)(β + 1),

that is {‖x0,n‖2

H1
} is uniformly bounded.

We next show that |xm,n| is uniformly bounded. Suppose by the way of contra-
diction that xm,n −→∞.
Since

{
‖x0,n‖2

H1

}
is uniformly bounded; the relation 2.0.1 of lemma 2.0.19 im-

plies that

{
sup
s∈[0,π]

|x0,n(s)|

}
is uniformly bounded; so that if |xm,n| −→ ∞, then
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‖xn‖ −→ ∞ and ∫ π

0

U(x0,n + xm,n)ds −→∞,

which is a contradiction because∫ π

0

U(x0,n + xm,n)ds = R ( since xn ∈ SR) .

Hence ‖xm,n‖H1 is uniformly bounded so, by Eberlein-Smul'yan Theorem ,

has a weakly convergent subsequence {xnk
} with weak limit x̄ ∈ H1. As the set

SR is weakly closed by lemma 2.0.21,we conclude that x̄ ∈ SR.

We then show that T (x̄) = β.
First observe that since T is convex and C1, T is convex and lsc, and hence
convex and weakly lower semi-continuous in H1.
Therefore we have

lim inf
k→∞

T (xnk
) ≥ T (x̄).

On the other hand,

β = lim
n→∞

T (xn) = lim
k→∞

T (xnk
) ≥ lim inf

k→∞
T (xnk

) ≥ T (x̄) ≥ inf
x∈SR

T (x) = β,

i.e.
T (x̄) = β.

Hence, x̄ is the desired minimal point .

Finally, we show that β > 0.
Since for all x ∈ H1 T (x) ≥ 0, β = inf

x∈SR

T (x) ≥ 0.

We write x̄ = x̄0 + x̄m where x̄0 has mean value zero over [0, π] and x̄m is the
mean value of x̄ over [0, π].
If

β =

∫ π

0

| ˙̄x(s)|2ds = 0

then,
∫ π

0
| ˙̄x0(s)|2ds = 0, so x̄0 = 0 and by lemma 2.0.20, x̄m = 0 implying x̄ = 0,

which is a contradiction to the fact that∫ π

0

U(x̄(s))ds = R > 0

This completes the proof �
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CHAPTER 3

Existence Results of Periodic Solutions of some Dynamical

Systems.

We now state the problem we want to solve, give its variational formulation,
treat the obtained variational problem and show that its critical points are the
desired solutions of the Dynamical System .

The Problem : to prove the following theorem,

Theorem 3.0.23 Let U be a C1(RN), real-valued function such that:
(i) 0 ≤ U(x) for x ∈ RN and U(0) = 0,
(ii) U is convex, and U(x)→∞ as |x| → ∞.
Then there exists a family of distinct periodic solutions for the system.

ẍ(t) + grad U(x(t)) = 0 (3.0.1)

where x(t) = (x1(t), · · · , xN(t)) ∈ RN , t ∈ [0, π], ẍ(t) = d2x(t)
dt2

.

The Method : We minimize a measure of the kinetic energy of the N-vector-
valued function x subject to appropriate constraints.
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Solutions of some Dynamical Systems.

We begin by demonstrating that periodic solutions of 3.0.1 can be found as
critical points of a certain isoperimetric problem.
To this end, we introduce the period λ of periodic solutions of 3.0.1 by making
the change of variables t = λs in 3.0.1 and considering 2π−period solutions of
the resulting system

ÿ + λ2grad U(y) = 0. (3.0.2)

Because, if the function x is a solution of 3.0.1, then the function y de�ned by
y(s) = x(λs) is a solution of 3.0.2 and inversely, if y is a solution of 3.0.2, then
x de�ned by x(t) = y( t

λ
) is a solution of 3.0.1.

Furthermore, for y given , 2π − periodic solution of 3.0.2, x(t) = y( t
λ
) is a

2πλ−periodic solution of 3.0.1 and for x given, 2πλ−periodic solution of 3.0.1,
y(s) = x(λs) is a 2π − periodic solution of 3.0.2.
Indeed

x(t+ 2πλ) = x

(
λ

(
t

λ

)
+ 2π

)
= y

(
t

λ
+ 2π

)
= y

(
t

λ

)
= x(t)

and

y(s+ 2π) = y

(
1

λ
(λs+ 2πλ)

)
= x(λs+ 2πλ) = x(λt) = y(s) .

Lemma 3.0.24 Even 2π−periodic solutions of 3.0.2 may be obtained from the
solutions of 3.0.2 together with the boundary conditions

(2i) ẏ(0) = ẏ(π) = 0 .

Proof. Given a solution y of 3.0.2 with the condition (2i), we de�ne an even
extension of y to [−π, π] by

Y (s) =

{
y(s) if s ∈ [0, π] ,

y(−s) if s ∈ [−π, 0].

The extension Y satis�es 3.0.2 on [−π, 0]. Indeed, for s ∈ [−π, 0]

d2Y

ds2
(s) =

d2

ds2
Y (s) =

d2

ds2
y(−s) =

d

ds

(
(−1).

dy

ds
(−s)

)
=
d2y

ds2
(−s).

And since ẏ(0) = 0 the solution y is smooth across s = 0. Similarly, since
ẏ(π) = 0, we may extend Y to a 2π−periodic solution on (−∞,∞) by setting
Y (s+ 2kπ) = Y (s), k ∈ Z.
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We now state the variational problem for periodic solutions of 3.0.1.

Theorem 3.0.25 Let U be a C2(RN), real-valued function such that:
(i) 0 ≤ U(x) for x ∈ RN and U(0) = 0,
(ii) U is convex, and U(x)→∞ as |x| → ∞, and
(*) the quadratic form ΣUij(x)ζiζj is positive de�nite, where

Uij(x) = ∂2U
∂xi∂xj

(x).

Then, any critical point of the functionnal

T : H1 −→ R, x 7−→ T (x) =

∫ π

0

|ẋ(s)|2ds

subject to the constraints :

F (x) =

∫ π

0

U(x(s))ds = R (a positive constant ), and

∫ π

0

grad U(x(s))ds = 0

is a nonzero even periodic solution of 3.0.1.

Proof. Consider the following optimization problem

(P) :

{
Minimize T (x) =

∫ π
0
|ẋ(s)|2ds ,

Subject to the constraints : F (x) =
∫ π

0
U(x(s))ds = R, G(x) =

∫ π
0
OU(x(s))ds = 0 .

The functions T, F and G are C1 in H1.
So we can write for a critical point x, that there exists a nonzero vector
(λ0,λ1 , β) ∈ R+ × R× RN such that

λ0T
′(x) + λ1f

′(x) + β.G′(x) = 0 .

The computation of the Gateaûx derivatives of T, F, and G gives us :

T ′(x)(h) = ∇T (x).h = 2

∫ π

0

ẋ(s).ḣ(s) ds for all h ∈ H1

F ′(x)(h) = ∇F (x).h =

∫ π

0

∇U(x(s)).h(s) ds for all h ∈ H1

βG′(x)(h) = β∇G(x).h =

∫ π

0

∇(β.∇U(x(s))).h(s) ds for all h ∈ H1.
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Indeed,
1) For the function T, we have :

lim
t→0

T (x+ th)− T (x)

t
= lim

t→0

∫ π

0

|ẋ(s) + tḣ(s)|2 − |ẋ(s)|2

t
ds

= lim
t→0

[∫ π

0

2ẋ(s)ḣ(s) ds+ t

∫ π

0

|ḣ(s)|2ds
]

= 2

∫ π

0

ẋ(s).ḣ(s)ds

because

∫ π

0

|ḣ(s)|2ds is �nite ( since h ∈ H1 ),

T ′(x) is clearly linear and continuous. (since |T ′(x)(h)| ≤ 2‖x‖
H1 .‖h‖H1 for all

h ∈ H1).
T is therefore Gateaûx di�erentiable.
Further, the map

DG : H1 −→ (H1)∗ de�ned by x 7−→ T ′(x).

is continous.
Indeed, for x, y ∈ H1, h ∈ H1, we have

|(T ′(x)− T ′(y))(h)| ≤
∣∣∣∣2∫ π

0

(ẋ− ẏ)(s).ḣ(s)ds

∣∣∣∣
≤ 2‖ẋ− ẏ‖

L2
. ‖h‖

L2

≤ 2‖ẋ− ẏ‖
H1 . ‖h‖

H1 for any h ∈ H1

i.e.
‖(T ′(x)− T ′(y))‖

(H1)∗
≤ ‖ẋ− ẏ‖

H1 .
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2) For the function F, we have :

lim
t→0

F (x+ th)− F (x)

t
= lim

t→0

∫ π

0

U(x+ th)− U(x)

t
ds .

Firstly, we observe that, since U is di�erentiable

lim
t→0

U(x+ th)− U(x)

t
= U ′(x)(h) .

Secondly, by the Mean value theorem, we can write

U(x+ th)− U(x) = U ′(c)(th) = tU ′(c)(h)

for a vector c = αx+ (1− α)(x+ th), α ∈ (0, 1) so that

U(x+ th)− U(x)

t
= U ′(x)(h)

which is bounded on [0, π] because h is continous and U is C1.
The Dominated convergence theorem gives us that

lim
t→0

F (x+ th)− F (x)

t
=

∫ π

0

lim
t→0

U(x+ th)− U(x)

t
ds

and like for the case of T, we have

‖(F ′(x)− F ′(y))‖
(H1)∗

≤ ‖∇U(x)−∇U(y)‖
H1 .

The continuity of ∇U gives us the desired result .

3) For the function G, ,since it is a vectorial function we de�ne �rst :

Gi(x) =

∫ π

0

∂U

∂xi
(x(s)) ds

and for each Gi corresponds a βi ∈ R.
So using the same reasonning as in the case of F and since U is C2, we get that

G′i(x)(h) =

∫ π

0

grad

(
∂U

∂xi
(x(s))

)
.h(s) ds .
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Therefore

β.G′(x)h =
N∑
i=1

βiG
′
i(x).h

=
N∑
i=1

βi

∫ π

0

grad

(
∂U

∂xi
(x)

)
.h ds

=

∫ π

0

N∑
i=1

βi grad

(
∂U

∂xi
(x)

)
.h ds

=

∫ π

0

grad

N∑
i=1

(
βi

∂U

∂xi
(x)

)
.h ds

=

∫ π

0

grad (β.grad U(x)) .h ds .

We apply at each Gi the same reasonning as in the case of F to get that Gi is
C1 for each i so that G is C1.
So, for a critical point x, we have

2λ0

∫ π

0

ẋ(s)ḣ(s) ds+λ1

∫ π

0

∇U(x)h ds+

∫ π

0

grad (β.grad U(x))h ds = 0, for all h ∈ H1.

(3.0.3)
In particular, 3.0.3 is true for all h ∈ D(Ω) ⊂ H1, i.e.

2λ0

∫ π

0

ẋ(s)ḣ(s) ds+λ1

∫ π

0

∇U(x)h ds+

∫ π

0

grad (β.grad U(x))h ds = 0, for all h ∈ D(Ω).

(3.0.4)
But for h ∈ D(Ω), ∫ π

0

ẋ.ḣ ds = −
∫ π

0

ẍ.h ds = −〈ẍ, h〉,

in the sense of distribution.
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So that, 3.0.4 can be written as :

〈−2λ0ẍ+ λ1∇U(x) + grad (β.grad U(x)) , h〉 = 0, for all h ∈ D(Ω), (3.0.5)

and this implies that

− 2λ0ẍ+ λ1∇U(x) + grad (β.grad U(x)) = 0. (3.0.6)

in the sense of distribution.

At this step, we will prove that λ0 6= 0.
If we assume by the way of contadiction that λ0 = 0, the relation 3.0.6 becomes,

λ1∇U(x) + grad (β.grad U(x)) = 0. (>)

Integrating (>) over [0, π] and using
∫ π

0
OU(x(s))ds = 0, we obtain∫ π

0

grad (β.grad U(x(s))) ds = 0,

i.e.
N∑
i=1

βi

∫ π

0

Uij(x(s))ds = 0 (j = 1, · · · , N).

since ∫ π

0

grad (β.grad U(x(s))) ds =

∫ π

0

grad(
N∑
i=1

βi
∂U

∂xi
(x)) ds

=

∫ π

0

N∑
i=1

βi

(
grad(

∂U

∂xi
(x))

)
ds

=
N∑
i=1

βi

∫ π

0

∂U

∂xj

(
∂U

∂xi
(x)

)
ds.

Since U satis�es (*), the quadratic form

Σ

{∫ π

0

Uij(x(s))ds

}
ζiζj is positive de�nite

thus, det|
∫ π

0
Uij(x(s))ds| 6= 0, implying that β = 0.

Hence (>) is reduced to λ1∇U(x) = 0.
We observe that λ1 6= 0, for otherwise (λ0, λ1, β) = 0 which is a contradiction.
Now, since λ1 6= 0, we have that ∇U(x) = 0, i.e. U is constant, which is again
a contradiction because U is coercive.
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Conclusion: λ0 6= 0.

The fact that λ0 6= 0 and the relation 3.0.6 imply that

ẍ =
λ1∇U(x) + grad (β.grad U(x))

2λ0

,

and the critical point x is a C2−function because U is C2.

Therefore the di�erential of the function T takes the following form

T ′(x)(h) = 2

∫ π

0

ẋ(s).ḣ(s) ds = −2

∫ π

0

ẍ.h ds+ 2 [ẋ(π)h(π)− ẋ(0)h(0)]

(using an integration by parts) and the relation 3.0.3 becomes

λ0

[
−2

∫ π

0

ẍh ds+ 2 [ẋ(π)h(π)− ẋ(0)h(0)]

]
+

∫ π

0

λ1∇U(x)hds

+

∫ π

0

grad (β.grad U(x))hds = 0, for all h ∈ H1,

i.e.∫ π

0

[−2λ0ẍ+ λ1∇U(x) + grad (β.grad U(x))] .hds+2λ0 [ẋ(π)h(π)− ẋ(0)h(0)] = 0 for all h ∈ H1.

And by 3.0.6, the above relation is reduced to

λ0 [ẋ(π)h(π)− ẋ(0)h(0)] = 0, for all h ∈ H1.

By choosen h in H1 to be respectively h(x) = x and h(x) = x− π we obtain ,

λ0ẋ(π) = λ0ẋ(0) = 0.

Hence, we �nd for a critical point x,

− 2λ0ẍ+ λ1∇U(x) + grad (β.grad U(x)) = 0, (3.0.7)

with the boundary conditions

λ0ẋ(π) = λ0ẋ(0) = 0 . (3.0.8)
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We now show that the constants βi (i = 1, · · · , N) are in fact zero.
To this end, we integrate 3.0.7 over [0, π]. Using the boundary conditions and
the fact that

∫ π
0
OU(x(s))ds = 0, we �nd

N∑
i=1

βi

∫ π

0

Uij(x(s))ds = 0 (j = 1, · · · , N) ,

since ∫ π

0

grad (β.grad U(x)) =

∫ π

0

grad(
N∑
i=1

βi
∂U

∂xi
(x)) ds

=

∫ π

0

N∑
i=1

βi

(
grad(

∂U

∂xi
(x))

)
ds

=
N∑
i=1

βi

∫ π

0

∂U

∂xj

(
∂U

∂xi
(x)

)
ds.

Hence β = 0 provided that we guarantee

det|
∫ π

0

Uij(x(s))ds| 6= 0.

Since U satis�es (*), the quadratic form

Σ

{∫ π

0

Uij(x(s))ds

}
ζiζj is positive de�nite .

Thus, det|
∫ π

0
Uij(x(s))ds| 6= 0 as required and β = 0.

Next we demonstrate that the constants −λ0 and λ1 are both nonzero and of
the same sign. Indeed, since β = 0, the relation 3.0.7 can be written

− 2λ0ẍ+ λ1∇U(x) = 0. (3.0.9)

Multiplying 3.0.9 by x, integrating over [0, π] and using the conditions 3.0.8, we
�nd

− λ0

∫ π

0

|ẋ(s)|2ds = λ1

∫ π

0

∇U(x(s)).x(s)ds. (3.0.10)
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The strict convexity of U allows us to write that
U(0) > U(x) + OU(x(s))(0− x) for all x(s) 6= 0 and integrating this inequality
over [0, π] we obtain

0 < R <

∫ π

0

∇U(x).x(s)ds.

Also, ∫ π

0

|ẋ(s)|2ds 6= 0,

for otherwise x(s) = c is a constant,
but

x(s) = c =⇒
∫ π

0

grad U(c) = 0 by

∫ π

0

grad U(x(s))ds = 0

=⇒ π.grad U(c) = 0,

i.e. c is a minimum for U . Since U is strictly convex and has a minimum at 0,we
conclude that c = 0, and this contradicts∫ π

0

U(x(s))ds = R > 0.

Thus 3.0.10 implies that −λ0 and λ1 are both of the same sign and both nonzero.
Hence,without lost of generality, we may write 3.0.7 and 3.0.8

ẍ+ λ2∇U(x) = 0 (λ2 6= 0) (3.0.11)

ẋ(π) = ẋ(0) = 0 . (3.0.12)

Now the lemma 3.0.24 implies that the critical points x(s) may be extended to an
even 2π−periodic solution of 3.0.2, and thus correspond to an even 2πλ−periodic
solution of 3.0.1 after reparametrisation .
This completes the proof.
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Corollary 3.0.26 Let U be a C2(RN), real-valued function such that:
(i) α = U(a) ≤ U(x) for x ∈ RN ,
(ii) U is convex, and U(x)→∞ as |x| → ∞, and
(*) the quadratic form ΣUij(x)ζiζj is positive de�nite, where

Uij = ∂2U
∂xi∂xj

.

Then, any critical point of the functionnal

T : H1 −→ R, z 7−→ T (z) =

∫ π

0

|ż(s)|2ds

subject to the constraints :

F (z) =

∫ π

0

U(z(s))ds = r = R+απ (where r > απ),

∫ π

0

grad U(z(s))ds = 0,

is a nonzero even periodic solution of 3.0.1.

Proof. Since the function U is convex, C1 and coercive,it has a minimizer, i.e.
there exists a ∈ RN and α ∈ R such that

α = U(a) ≤ U(x) for x ∈ RN .

We de�ne now the function V by V (x) = U(x + a)− α. Then, the function V
satis�es :
1) V is a C2(RN) real-valued function ,
2) 0 ≤ V (x) for x ∈ RN and V (0) = 0,
3) V is convex, and V (x)→∞ as |x| → ∞, and
(*) the quadratic form Σ ∂2V

∂xi∂xj
(x)ζiζj is positive de�nite.

We then apply theorem 3.0.25 with the function V.
So, if x

V
is a critical point obtained, we know that x

V
is a 2πλ−periodic solution

of 3.0.1, i.e. ẍ
V

+ grad V (x
V

) = 0.
Now, setting z

V
= x

V
+ a, it is obvious that z is a 2πλ−periodic and satis�es

z̈
V

+ grad U(z
V

) = 0,

i.e. z
V
is a solution of 3.0.1.
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In this part, we give the last step in the resolution or our problem.
We start by the following proposition.

Proposition 3.0.27 Let V be a C1(RN) real-valued and convex function such
that :

> lim
|x|→+∞

V (x) = +∞,

Then there exists a sequence {Vk} of functions such that :
1) Vk is a C2(RN) real-valued functions and the Hessian of Vk is positive de�-
nite for all x ∈ RN ,
2) Vk → V and grad Vk → grad V as k →∞, uniformly on any compact subset
of RN ,
3) lim

|x|→+∞
Vk(x) = +∞ uniformly in k.

Proof.

Let

Vk(x) = (V ∗ ρ
k
)(x) +

|x|2

k
.

By theorem 1.4.3 the function Vk is well de�ned, C∞, and V ∗ ρ
k
−→ V uni-

formly on each compact subset of RN . Moreover the Hessian of Vk is positive
de�nite.

Furthermore, for any compact K, there exists M > 0 such that
|x|2 ≤M ∀x ∈ K ,
so that

sup
K

|x|2

k
≤ M

k
, i.e.

|x|2

k
−→ 0 uniformly on K.

So, given ε > 0, there exists :

N1 : ∀k ≥ N1 ∀x ∈ K |V ∗ ρ
k
(x)− V (x)| ≤ ε

2

N2 : ∀k ≥ N2 ∀x ∈ K |x|2

k
≤ ε

2

Taking N = max{N1, N2}, we have that for k ≥ N∣∣∣∣V ∗ ρk
(x)− V (x) +

|x|2

k

∣∣∣∣ ≤ |V ∗ ρk
(x)− V (x)|+ |x|

2

k
≤ ε

2
+
ε

2
= ε,

i.e. Vk −→ V uniformly on K.
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The same reasonning applies for grad Vk.

We �nally show that lim
|x|→+∞

Vk(x) = +∞ uniformly in k.

V is coercive, so

∀B > 0, ∃C > 0 : ‖z‖ > C =⇒ |U(z)| > B.

But

(V ∗ ρ
k
)(x) =

∫
RN

V (x− y)ρ
k
(y)dy =

∫
B′(0,1)

V (x− y)ρ
k
(y)dy

since supp ρ
k

= B′(0, 1
k
) ⊂ B′(0, 1).

For ‖x‖ ≥ C + 1, we have ‖x− y‖ ≥ ‖x‖ − ‖y‖ ≥ C + 1− 1 = C
( because ‖y‖ ≤ 1 ), and we obtain

(V ∗ρ
k
)(x) =

∫
RN

V (x−y)ρ
k
(y)dy =

∫
B′(0,1)

V (x−y)ρ
k
(y)dy ≥ B

∫
B′(0,1)

ρ
k
(y) = B.

The proof is then complete.

Theorem 3.0.28 Let U be a C1(RN) real-valued function such that
(i) 0 = U(0) ≤ U(x) for x ∈ RN ,
(ii) U is convex, and U(x)→∞ as |x| → ∞.
For every number R > 0, there exists some

x̄ ∈ SR =

{
x ∈ H1,

∫ π

0

U(x(s)) = R,

∫ π

0

∇U(x(s)) = 0

}
which gives a solution to the di�erential system 3.0.1.

Proof. For the function U, by using the above proposition, we get a sequence
{Uk} of functions such that
>1) Uk ∈ C2(RN) and the Hessian of Uk is positive de�nite for all x ∈ RN ,
>2) Uk → U and grad Uk → grad U as k →∞, uniformly on compact subsets
of RN ,
>3) lim

|x|→+∞
Uk(x) = +∞ uniformly in k.

Applying theorem 2.0.22 and theorem 3.0.25, we �nd a sequence {xk} of even
2π − periodic elements of H1 and a sequence {λ

k
} of real numbers with∫ π

0

ẋ
k
(s).ḣ(s) ds = λ

2

k

∫ π

0

grad Uk(xk
(s) + a

k
).h(s) ds for all h ∈ H1 (3.0.13)
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and such that

T (x
k
) =

∫ π

0

|ẋ
k
(s)|2ds = inf

∫ π

0

|ẋ(s)|2ds

over the set

Sk =

{
x : x ∈ H1,

∫ π

0

Uk(x(s))ds = R + α
k
π,

∫ π

0

grad Uk(x(s))ds = 0

}
.

where
α

k
= Uk(ak

) = min
x∈RN

Uk(x)

We know that by setting Vk(x) = Uk(x+ a
k
)−α

k
, we obtain a sequence {z

k
} of

solutions of 3.0.1 satisfying∫ π

0

ż
k
(s).ḣ(s) ds = λ

2

k

∫ π

0

grad Uk(zk).h ds for all h ∈ H1

and such that

T (z
k
) =

∫ π

0

|ż
k
(s)|2ds = inf

∫ π

0

|ż
k
(s)|2ds

over the set

Sk,R =

{
x : x ∈ H1,

∫ π

0

Vk(x(s))ds = R,

∫ π

0

grad Vk(x(s))ds = 0

}
.

Claim:

Lemma 3.0.29 The sequence {∫ π

0

|ż
k
(s)|2ds

}
is uniformly bounded .

Proof. Let x(s) = (sin 2s, 0, · · · , 0).Then, using the result on the nonvacuity of
Sk,R for each Vk, ( cf the proof of Lemma 2.0.21 )there exists a number t

k
> 0

and a vector ck ∈ RN such that

y
k
(s) = t

k
x(s) + c

k
∈ Sk,R,

that is ∫ π

0

grad Vk(yk
(s))ds = 0,

∫ π

0

Vk(yk
(s))ds = R;
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The condition
lim
|x|→+∞

Uk(x) = +∞ uniformly in k

implies that
lim
|x|→+∞

Vk(x) = +∞ uniformly in k,

so that there exists C > 0 such that

|x| > C =⇒ Vk(x) ≥ 2R

π
for k = 1, 2, · · · .

By setting
Ek := {s : 0 ≤ s ≤ π, |y

k
(s)| > C} ,

we have that Ek ⊂ [0, π] and so∫
Ek

2R

π
ds ≤

∫
Ek

Vk(yk
(s))ds ≤

∫ π

0

Vk(yk
(s))ds

i.e.
2R

π
mes(Ek) ≤ R

so that
mes(Ec

k) = mes {s : 0 ≤ s ≤ π, |y
k
(s)| ≤ C} ≥ π

2
,

where Ec
k = [0, π] \ Ek.

Thus, there is an interval [a, b] ⊂ [0, π] on which |y
k
(s)| ≤ C, b − a ≥ π

4
and

θ = | sin 2b− sin 2a| > 0.
And since,

t
k
θ = t

k
| sin 2b− sin 2a| = |y

k
(b)− y

k
(a)| ≤ 2C,

it follows that

t
k
≤ 2C

θ
.

But

ẏ
k
(s) = t

k
ẋ(s) = t

k
(2 cos 2s, 0, · · · , 0) =⇒

∫ π

0

|ẏ
k
(s)|2ds = t

2

k

∫ π

0

|ẋ(s)|2ds,

and since ∫ π

0

|ẋ(s)|2ds = 4

∫ π

0

(cos 2s)2ds ≤ 4π,

it follows that ∫ π

0

|ẏ(s)|2ds ≤
(

2C

θ

)2

4π.
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Consequently, the sequence{∫ π

0

|ż
k
(s)|2ds

}
is also bounded by

(
2C

θ

)2

4π.

Consider now the sequence {z
k
} of even 2π− periodic elements generated by

the sequence {Vk} given above.
As in the proof of the theorem 2.0.22, we can write z

k
as the sum of its mean

value and a function having mean value 0, i.e

z
k

= z
0,k

+ z
m,k
.

Using the fact that ∫ π

0

Vk(zk
(s))ds = R

and the above lemma, the property >3) of {Uk} implies that the sequences{
sup
[0,π]

|z
0,k

(s)|

}
and {‖z

k
‖} are uniformly bounded.

In fact z
k

= x
k

+ a
k
where Uk(ak

) = α
k
.

We show that {a
k
} is bounded.

Assume by the way of contradiction that there exists a subsequence akj
−→∞.

Let C > min
RN

U and M =
{
x ∈ RN : U(x) ≤ C

}
.

M is compact, so Uk −→ U uniformly and min
M
Uk −→ min

M
U.

The uniform coercivity of the sequence {Uk} implies that

∀B, ∃k0 ∈ N, ∃A : |x| > A =⇒ Uk(x) > B ∀k ≥ k0 .

So that akj
−→∞ =⇒ ∃j0 : |akj

| > A ∀j ≥ j0 .

Hence, for j large enough, Ukj
(akj

) > B so that lim supUk ≥ B.

One the other hand lim sup min
RN

Uk ≤ lim sup min
M
Uk ≤ C.

So for B = C + 1, we have C + 1 ≤ lim supUk ≤ C, contradiction.

Therefore, the sequence {ak} is bounded.
Hence {x

k
} has a weakly convergent subsequence {x

kj
} such that xkj

⇀ x̄.
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Furthermore, since x
kj
−→ x̄ uniformly and each x

k
is C2 − function ( by

construction ), then x̄ is continuous .
We now show that∫ π

0

U(x̄(s))ds = R > 0, and

∫ π

0

∇U(x̄(s))ds = 0.

Observe �rst that the implication :
there exists q > 0 and k0 ∈ N such that

|x| > q =⇒ Uk(x) > C ∀k ≥ k0

gives us that αk ∈ B′(0, C) ∀k ≥ k0 and since B′(0, C) is compact, the uniform
convergence of Uk to U on B′(0, C) implies that αk −→ 0.
( Because the uniform convergence on a compact K implies that min

K
Uk −→

min
K

U on the compact K ).

Let K1 = {x̄(s) : s ∈ [0, π]} , K2 = ∪
j∈N

{
x

kj
(s) : s ∈ [0, π]

}
and K = K1∪K2.

Since x̄ is continous, then K1 is a compact of RN , and due to the uniform
convergence of {x

kj
}, K2 is also a compact of RN , so that K is compact. We

then have∣∣∣∣∫ π

0

[Ukj
(x

kj
(s))− U(x̄(s))]ds

∣∣∣∣ ≤ ∫ π

0

∣∣∣Ukj
(x

kj
(s))− U(x

kj
(s))

∣∣∣ ds
+

∫ π

0

∣∣∣U(x
kj

(s))− U(x̄(s))
∣∣∣ ds

≤
∫ π

0

sup
ζ∈K
|Ukj

(ζ)− U(ζ)| ds+

∫ π

0

∣∣U(xkj
(s))− U(x̄(s))

∣∣ ds.
The uniform convergence of Uk to U on each compact gives that:

sup
ζ∈K
|Ukj

(ζ)− U(ζ)| −→ 0.

Moreover the continuity of U and the Lebesgue dominated convergence theorem
imply that ∫ π

0

∣∣∣U(x
kj

(s))− U(x̄(s))
∣∣∣ ds −→ 0,

and this gives us the desired result,i.e.∫ π

0

U(x̄(s))ds = R.
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Similarly, we obtain ∫ π

0

grad U(x̄(s))ds = 0.

We show next, that x̄ is not constant.
Assume by the way of contradiction that x̄(s) = c, then by

∫ π
0
∇U(x̄(s))ds = 0

we have grad U(c) = 0.
Since U is convex, we can write U(0) ≥ U(c) +∇U(c)(−c), i.e. U(0) ≥ U(c) .
It follows that U(c) = 0 ( since U(0) ≤ U(c) ) which is a contradiction because∫ π

0
U(x̄(s))ds = R > 0. Thus x̄(s) 6= constant.

Furthermore, if we set h = x
kj

+ a
kj

in the equation 3.0.13 , we get∫ π

0

|ẋ
kj

(s)|2ds = λ
2

kj

∫ π

0

grad Ukj
(x

kj
(s) + a

kj
).(x

kj
(s) + a

kj
)ds

The condition
∫ π

0
Vk(zk

(s))ds = R > 0 ensures us that Vk(zk
(s)) > 0 and then

that the inner product 〈grad Ukj
(x

kj
(s) + a

kj
), x

kj
(s) + a

kj
〉 > 0 (cf proof of

Theorem 3.0.25) so that

λ
2

kj
=

∫ π
0
|ẋ

kj
(s)|2ds∫ π

0
grad Ukj

(x
kj

(s) + a
kj

).(x
kj

(s) + a
kj

)ds
.

The sequence {a
k
} being bounded,we have up to a convergent subsequence that

we relabel (a
kj

), that∫ π

0

〈grad Ukj
(x

kj
(s)+a

kj
), (x

kj
(s)+a

kj
)〉ds −→

∫ π

0

〈∇U(x̄(s)+ ā), (x̄(s)+ ā)〉ds,

where a
kj
−→ ā uniformly.

Since ∫ π

0

|ẋ
kj

(s)|2ds −→ T (x̄)

and∫ π

0

〈grad Ukj
(x

kj
(s)+a

kj
), (x

kj
(s)+a

kj
)〉ds −→

∫ π

0

〈∇U(x̄(s)+ ā).(x̄(s)+ ā)〉ds,

we obtain that the sequence {λ2

kj
} is convergent with limit λ2 > 0.

If we rewrite the equation 3.0.13 for the convergent sequence λ2
kj
, we obtain
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∫ π

0

ẋ
kj

(s).h(s) ds = λ
2

kj

∫ π

0

〈grad U(x
kj

(s) + a
kj

), h(s)〉 ds for all h ∈ H1.

In particular, for h ∈ D(0, π)∫ π

0

ẋ
kj

(s).ḣ(s) ds = −
∫ π

0

x
kj

(s).ḧ(s) ds

and

−
∫ π

0

x
kj

(s).ḧ(s) ds −→
k→∞

−
∫ π

0

x̄(s).ḧ(s) ds.

In addition, for h ∈ D(0, π),

−
∫ π

0

x
kj

(s).ḧ(s) ds = −〈¨̄x, h〉 in the sens of distribution .

and

λ
2

kj

∫ π

0

〈grad Ukj
(x

kj
(s)+a

kj
), h(s)〉ds −→

k→∞
λ2

∫ π

0

grad U(x̄(s)+ā).h(s)ds = λ2〈grad U(x̄+ā), h〉

so that
−〈¨̄x, h〉 = λ2〈grad U(x̄+ ā), h〉 for all h ∈ D(0, π).

Consequently, x̄ satis�es

¨̄x+ λ2grad U(x̄+ ā) = 0,

and z̄ = x̄+ ā is a solution for the problem.

Theorem 3.0.30 The system 3.0.1 possesses a one parameter family of distinct
solutions x̃

R
(t) where the parameter R varies over the positive real numbers.

Furthermore the average potential energy of x̃
R

(t),

1

T
R

∫ TR

0

U(x̃
R

(t))dt,

over a period TR is proportional to R.

Proof. By virtue of the threorem 3.0.28, we have the existence of critical points
x

R
(s) of the variational problem and they correspond to even 2πλ − periodic

solutions x̃
R

(t) = x
R

(
t
λ

)
of 3.0.1.

For two positive real numbers R1 and R2 such tha R1 6= R2, because of the
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equality condition in SR we obviously get that x
R1

(s) 6= x
R2

(s).
In ∫ π

0

U(x
R

(s))ds = R,

we make the change of variables t = λs to get

1

λ

∫ λπ

0

U(x̃
R

(t))dt = R =
1

2λ

∫ 2λπ

0

U(x̃
R

(t))dt

so that

2λR =

∫ 2λπ

0

U(x̃
R

(t))dt

It means that the mean value of U(x̃
R

(t)) over the period 2πλ is proportional
to the parameter R.
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Remark 3.0.2

1• A general model for the function U is given , for x = (x1, . . . , xN) ∈ RN ,
by

U(x) = ‖x‖2 =
N∑
i=1

x2
i .

(Cf. also Propostion 0.2).

2• We proved in lemma 3.0.24 that a solution of 3.0.2 can be extended to an
�even� function, which is still solution of 3.0.2. We now observe that for somme
additional conditions on the function U, for instance that U is even, we can also
obtain, for our solutions, �odd� extensions which are still solutions.

3• We can give a physical interpretation to the problem through the second law
of Newton.
If ẍ designes the body's acceleration, m the mass of the body, we have

mẍ = F

where F is the net force on the body.
When F derives from a potential U , it has the form F = grad U, or
F = −grad U.
So, for a given potential, we look for the possible orbits of the body.

4• The functional T involved in the variational formulation is just the kinectic
energy of the system and since the solution are parametrized by the average po-

tential energy 1
2πλ

∫ 2λπ

0
U(x̃R(t))dt, by setting

Ec(x) = T (x) = kinetic energy and Ep(x) =
∫ 2λπ

0
U(x̃

R
(t))dt = potential energy,

we can de�ne another optimization problem by :

inf
x∈K
F(x)

where

F(x) = Ec(x) + Ep(x) denotes the total energy of the system and

K a suitable constraints set .
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