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Epigraph

�If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.�

John Louis von Neumann
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Preface

This project lies at the interface between Nonlinear Functional Anal-
ysis,
unconstrained Optimization and Critical point theory. It concerns
mainly the Ambrosetti-Rabinowitz's Mountain Pass Theorem which
is a min-max theorem at the heart of deep mathematics and plays
a crucial role in solving many variational problems. As application,
a model of Lane-Emden equation is considered.

Minmax theorems characterize a critical value c of a functonal f
de�ned on a Banach spaces as minmax over a suitable class A of
subsets of X, that is :

c = inf
A∈S

sup
x∈A

f(x) .

Variational methods refer to proofs established by showing that a
suitable auxilliary function attains a minimum or has a critical point
(see below). Minimum Variational principle can be viewed as a
mathematical form of the principle of least action in Physics and
justi�es why so many results in Mathematics are related to varia-
tional techniques since they have their origin in the physical sciences.

The application of the Mountain Pass Theorem and more gen-
erally those of Variational Techniques cover numerous theoretic as
well as applied areas of mathematical sciences such as Partial Dif-
ferential Equations, Optimization, Banach space geometry, Control
theory, Economics and Game theory.
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Introduction

Let us �rst introduce some keywords that will enable us to specify
our principal objective.
Given a nonempty set X and a funct ion f : X → R which is
bounded below, computing the number

inf
X
f := inf{f(x) : x ∈ X} (F1)

represents a minimization problem posed in X: namely that of �nd-
ing a minimizing sequence, i.e. (xk)k ⊂ X such that

lim
k→∞

f(xk) = inf
X
f .

The number infX f is often called the in�mal value of f or more
simply the in�mum of f over X. The function f is usually called
the objective function or also in�mand. By analogy we have the
concepts of supremal value (supremum) and supremand.

An optimal solution of (F1) is an element a ∈ X such that

f(a) ≤ f(x) , ∀x ∈ X ;

such an element a is usually called a minimizer, a minimum point

or simply a minimum of f on X. We shall also speak of global
minimum.
Let us emphasize that the notation

min{f(x) : x ∈ X}

holds at the same time for a number (when there exists a solution
to F1) and a problem to solve.
Likewise one can meetmaximization problems but they are all equiv-
alent to minimization problems since for any real valued function g
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de�ned on a set X, one has

sup{g(x) : x ∈ X} = − inf{−g(x) : x ∈ X} .

When X has a topological structure, another problem related
with (F1), is to know

(Q1) whether a giving minimizing sequence (xk) converges to an
optimal solution when k tends to +∞.

Two conditions are essential to guarantee a positive answer to (Q1).
A topological criterion on the structure of X (e.g., compactness)
and a topological criterion on the behavior of the function f (e.g.,
continuity).
When X is an open set of a real normed linear space (respectively
a manifold) and f is Fréchet di�erentiable or just Gâteaux di�er-
entiable (respectively di�erentiable in the geometric sense), a nec-
essary condition for a point a ∈ X to be a minimizer (according to
Euler) is to be a critical (or stationary) point of f ; this means that,
f ′(a) ≡ 0 on X (respectively df(a) ≡ 0 on TaX, the tangent space
of the manifold X at a). We say that a real number c is a critical

value of f if there exists a critical point a ∈ X such that f(a) = c.
In the case of a Hilbert space X endowed with a scalar product 〈· ˙〉,
and thanks to the Riesz representation theorem, the gradient ∇f of
a Gâteaux di�erentiable is de�ned by setting

〈h ,∇f(x)〉 = f ′(x)(h) .

And so in this case, a critical point of f is just a solution of the
equation

∇f(x) = 0 .

For instance the following simple surjectivity result illustrates well
the variational argument.

Proposition 0.1 The derivative of a di�erentiable function f :
R→ R
satisfying

lim
|x|→∞

f(x)/|x| = ∞ is surjective.

The proof follows immediately from the fact that for each ar-
bitrary r ∈ R �xed, the function ϕ : R → R de�ned by ϕ(x) =
f(x) − rx has a minimum point which is a critical point since this
function is lower semi-continuous (in fact continuous), coercive (in
the sense that its level sets {x ∈ R : ϕ(x) ≤ t} are compact) and
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furthermore di�erentiable.

The interested reader can also see another interesting and illus-
trative example by checking (with di�erential analysis and ordinary
di�erential equation tools) the following:

Proposition 0.2 Let X be the normed linear space consisting of

all continuously di�erentiable function u on [0, 1] satisfying the ho-
mogeneous Dirichlet boundary condition u(0) = u(1) = 0, that is,
X = {u ∈ C1[0, 1] ; u(0) = u(1) = 0} ,
and equipped with the norm de�ned by

‖u‖C1 = max
x∈[0,1]

|u(x)| + max
x∈[0,1]

|u′(x)| .

Consider the functionals E and G de�ned on X respectively by:

E(u) =

∫ 1

0

|u′(x)|2dx and G(u) =

∫ 1

0

|u(x)|2dx .

Then the minimization problem

min
{
E(u) ; G(u) = 1 , u ∈ X

}
is equivalent to the minimization problem

min

{
E(u)

G(u)
; u ∈ X \ {0}

}
and has an optimal solution ϕ : [0, 1] → R de�ned by ϕ(x) =
sin(πx). See Appendix for the proof.

Many boundary value problems are equivalent to

Au = 0 (E)

where A : U ⊂ X → Y is a mapping from a nonempty open
set U of a Banach space X into a Banach space Y . The problem
is said to be variational, if there exists a di�erentiable functional
ϕ : U ⊂ X → R such that

A = ϕ′ , (see Definition1.2 ).

In this case, the space Y correspond to the dual X ′ of X and
Equation (E) is equivalent to

ϕ′(u) = 0 , i.e.,

3



〈h, ϕ′(u)〉 = 0 , ∀h ∈ X (2)

where 〈 , 〉 holds for the duality pairing of X and X ′. Hence the
critical points of ϕ are the solutions u of (2) and their images ϕ(u)
are the critical values of ϕ. A critical point of ϕ is a solution u of
(2) and the value of ϕ at u is a critical value.

Now how to �nd critical values in general?
When ϕ : X → Y , de�ned between Banach spaces, is bounded from
below, its in�mum over X; infX ϕ is a natural candidate accord-
ing to Euler condition. In this case, Ekeland variational principle
(Theorem 3.4) implies the existence of a sequence (un)n such that

ϕ(un) −→ α := inf
X
ϕ and ϕ′(un) −→ 0 .

Such a sequence is called Palais-Smale sequence at level α.
Given c ∈ R, the functional ϕ is said to satisfy (PS)c condition, if any
Palais-Smale sequence at level c has a comvergent subsequence. If
ϕ is continuously di�erentiable, bounded below, and satis�es (PS)c
at level c := infX ϕ, then c is a critical value of φ.
There are many theorems regarding the existence of local extrema
(minima or maxima) but very few concerning saddle points (i.e.,
critical points which are neither local minima nor local maxima).

The aim of this disertation is mainly to study the Mountain Pass
Theorem which is an important tool from the Calculus of Vari-
ations that provides certain su�cient conditions on functionals to
have saddle points. From a geometric point of view, one could say
that the Mountain Pass lies along the path that passes at the Lowest
elevation through the mountains. The Mountain Pass Theorem is
extensively used to solve variational problems in Partial Di�erential
Equations (for short PDEs). Here we shall focus our attention on
the Lane-Emden equation −∆u = up in Ω

u > 0 in Ω
u = 0 on ∂Ω

where Ω is a nonempty bounded subset of RN and p > 1.

The organization of the project is as follows:

- In chapter 1 we review the notions of di�erentiable maps and crit-
ical points in Banach spaces.
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- In the 2nd Chapter, we introduce the Nemytskii operators (de-
�ned between function spaces) and study some of their possible
properties such as continuity and di�erentiability.

- In Chapter 3, we consider some variational principles and we state
and prove the Mountain Pass Theorem.

- Finally we use the Mountain pass Theorem to show the existence
of positive solutions to the Lane-Emden equation (mentioned
above) in the case that the exponent p satis�es

1 < p <
N + 2

N − 2
, if N ≥ 3, otherwise 1 < p < ∞ when N = 1, 2.

5



CHAPTER 1

Di�erentiability in Banach Spaces

We will de�ne here two types of di�erentiability in Banach spaces
as generalizations of the concept of di�erentiability in R.

1.1 Gâteaux Derivative

Let us denote by B(X, Y ) the space of all bounded linear maps from
X to Y where X, Y are Banach spaces.
Recall that a bounded linear map means a continuous linear map.

De�nition1.1
Let f : U 7→ Y be a mapping and x ∈ U ; where U ⊂ X open. We
say that f is Gâteaux di�erentiable at xo if there exists A ∈ B(X, Y ),
such that

∀h ∈ X \ {0}, the map t 7→ f(x0+th)−f(x0)
t

has a limit as t → 0
equal to A(h); that is,

lim
t→0

f(x0 + th)− f(x0)

t
= A(h) (1.2)

or equivalently

f(x0 + th)− f(x0) = tA(h) + o(t) ∀ h ∈ X

where o(t) holds for the remainder r(t) = f(x0 + th)−f(x0)− tA(h)
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satisfying

lim
t→0

‖r(t)‖
t

= 0 .

For simplicity we will write Ah instead of A(h).

Ah is called the Gâteaux derivative of f at x0 in the direction of
h denoted ∂f

∂h
(x0).

The bounded linear operator A, depending on x0, is denoted by
DGf(xo) or f

′
G(xo) and called the Gâteaux di�erential.

Remarks.

- In De�nition 1.1, one can simply require that t→ 0+.

- Whenever h 6= 0 and the ratio f(x0+th)−f(x0)
t

has a limit in Y as
t→ 0, we say that f is di�erentiable in the direction of h at xo,

and we call lim
t→0

f(x0 + th)− f(x0)

t
the directional dérivative of

f at xo in the direction h.

Example 1.1:
The function f : R2 7→ R de�ned by

f(x, y) = x2 + y2

is Gateaux di�erentiable at every point (x0, y0) ∈ R2.
Indeed: Let u0 = (x0, y0) and h = (h1, h2). Then

f(u0 + th) − f(u0) = 2t(x0h1 + y0h2) + t2(h2
1 + h2

2), ∀t ∈ R.

It follows that

lim
t→0

f(u0 + th) − f(u0)

t
= 2(x0h1 + y0h2) = 2〈u0, h〉

et since the map h 7→ 2〈u0, h〉 is linear and continuous from R2

to R, we conclude that f is Gâteaux di�erentiable and

DGf(u0)(h) = 2〈u0, h〉 ∀hR2.

Moreover by regarding R2 as a euclidean space, we can derive the
gradient of f at uo as

∇f(uo) = 2uo .

which is actually linear and bounded with respect to h as the inner
product( since RN is an inner product space).
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Theorem 1.1: (Euler necessary condition for extrema)
Let X and Y be real Banach spaces, f : U 7→ Y be a mapping and
x ∈ U where U ⊂ X is open. If f is Gâteaux di�erentiable at an ex-
tremum point x0 (maximum or minimum point), then DGf(x0) = 0

Proof : Under the hypothesis of this theorem, suppose without loss
of generality that x0 is a minimum point (otherwise consider the
function −f instead of f).
Since xo ∈ U and U is open, there exists a positive real num-
ber r such that the open ball Br(xo) is contained in U . Now let
h ∈ X \ {0}. Then for every t such that |t| < r/||h||, we have,
f(xo + th) ≥ f(xo) and so by the Gâteaux di�erentiability of f at
xo, we have

DGf(xo)(h) = lim
t→0+

f(u0 + th) − f(u0)

t
≥ 0

It also follows that DGf(xo)(−h) ≥ 0, i.e. DGf(xo)(h) ≤ 0 by lin-
earity of DGf(xo). Therefore DGf(xo)(h) = 0 for all h ∈ X indeed.
Thus DGf(xo) = 0. �

Theorem 1.2: (Mean Value Theorem in Banach Spaces)
Let X and Y be Banach spaces, U ⊂ X be open and let f : U → Y
be Gâteaux di�erentiable. Then for all x1 x2 ∈ X, we have

‖f(x1) − f(x2)‖ ≤ sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ · ‖x1 − x2‖

provided that the sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ is �nite.

Proof. Suppose that the assumptions of Theorem 1.2 hold. Let
g∗ ∈ Y ∗ (the dual of Y ) such that ||g∗|| ≤ 1. Then the real-valued
function ϕ : [0, 1] −→ R de�ned by

ϕ(t) = g∗ ◦ f(x1 + th) where h = x2 − x1

is di�erentiable on [0, 1 in the usual sense. Moreover we see that

ϕ′(t) = g∗
(
DGf(x1 + th)(h)

)
, ∀ t ∈ (0, 1) .

It follows from the classical mean valued theorem that

|ϕ(1) − ϕ(0)| ≤ sup
0<t<1

|ϕ′(t)| ,

that is
‖g∗ ◦ f(x1) − g∗ ◦ f(x2)‖ ≤ sup

0<t<1
|ϕ′(t)| .

8



Moreover for all t ∈ (0, 1), we have

|ϕ′(t)| =
∣∣g∗(DGf(x1 + th)(h)

)∣∣
≤ ||g∗|| ‖DGf(x1 + th)‖ ‖h‖

≤ ‖DGf(x1 + th)‖ ‖h‖.

And so

‖g∗
(
f(x1)− f(x2)

)
‖ = ‖g∗of(x1)− g∗◦f(x2)‖| ≤

(
sup

0<t<1
‖DGf(x1 + th)‖

)
‖h‖ .

But it is well known as a consequence of the Hahn-Banach theorem
that

‖y‖ = sup{u∗(y) , u∗ ∈ Y ∗, ‖u∗‖ ≤ 1 }.
Therefore we �nally have

‖f(x1) − f(x2)‖ ≤ sup
t∈[0,1]

‖DGf(x1 + t(x2 − x1)‖ · ‖x1 − x2‖ . �

Remark. If f satis�es the assumptions of Theorem 1.2 and has a
continuous Gâteaux di�erential, then one can prove the conclusion
of Theorem 1.2 by using the notion of Riemann integration in Ba-
nach spaces following the next lemma.

Lemma. (Cf. ) Let X be a Banach space and ϕ : [a, b] → X
be continuous, where −∞ < a < b < +∞. Then the sequence of
partial sums

b− a
n

n−1∑
k=0

ϕ

(
a+ k

b− a
n

)
converges as n→∞ ,

and its limit is called the Riemann integral of f over [a, b] and is
denoted by ∫ b

a

ϕ(t) dt .

That is ∫ b

a

ϕ(t)dt = lim
n→∞

b− a
n

n−1∑
k=0

ϕ

(
a+ k

b− a
n

)
.

It is easily seen that∥∥∥∥∫ b

a

ϕ(t) dt

∥∥∥∥ ≤ ∫ b

a

‖ϕ(t)‖ dt.
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Furthermore if ϕ is continuously (Gâteaux) di�érentiable on [a, b] ,
then

ϕ(b) = ϕ(a) +

∫ b

a

ϕ′(t) dt .

Whenener the convergence in (1.2) is uniform for h, there arises
an interesting stronger type of di�erentiability called the Fréchet
di�erentiability.

1.2 Fréchet Di�erentiability

It is a re�ned notion di�erentiabilty of which concept is implicitly
closer to that of the standard notion of di�erentiability known in R

Recall: A function f : R −→ R is said to be di�erentiable at
x0 ∈ R if and only if the mapping de�ned on R \ {0} as

h 7→ f(x0 + h) − f(x0)

h

has a limit a ∈ R as h→ 0; that is,

lim
h→0

f(x0 + h) − f(x0)

h
= a ∈ R .

Obeserve that this condition is equivalent to �the existence of a real
number a ∈ R such that

f(x0 + h) = f(x0) + ah + o(h) .

Now, how can we extend this notion to operators de�ned between
Banach spaces? The answer is in the following de�nition.

De�nition 1.2:
A function f : U −→ Y ; where Xand Y are Banach spaces and U
open in X, is said to be Fréchet di�erentiable at a point x0 ∈ U , if
there exists a bounded linear map A : X → Y such that:

lim
‖h‖→0

‖f(x0 + h)− f(x0)− Ah‖
‖h‖

= 0 , (1.1)

or equivalently

f(x0 + h)− f(x0) = Ah+ o(‖h‖) ; (1.2)
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where
r(h) := f(x0 + h)− f(x0)− Ah = o(h)

in the sense that

lim
‖h‖→0

‖r(h)‖
‖h‖

= 0 .

Such an operator A is unique and called the Fréchet di�erential
of f at x0 and is denoted by Df(x0) or f ′(x0) (somtimes it is also
denoted by df(xo)).

The function f is said to be Fréchet di�erentiable (or simply dif-

ferentiable) on U , if it is Fréchet di�erentiable at every point of U.
When there is no ambiguity about the domain of f , we just say that
f is di�erentiable.

De�nition 1.3:
Let X and Y be Banach spaces, U open in X and let f : U → Y
be Fréchet di�erentiable on U . The Fréchet di�erential of f on U is
the mapping

Df : U → B(X, Y )
x 7→ Df(x) .

We say that f is continuously di�erentiable on U or a mapping of
class C1 (or simply a C1-mapping) if Df is continuous as a mapping
from U into B(X, Y ).

Examples (Fréchet di�erentiable functions).
Let H be a real Hilbert space. Then the function F : H −→ R
de�ned by

F (x) =
1

2
‖x‖2

is Fréchet di�erentiable on H and its Fréchet di�erential is de�ned
by:

DF (x)(h) = 〈x, h〉 = 〈h, x〉.
Thanks to the Riesz representation we can write

∇F (x) = x .

11



Indeed let us �x xo ∈ H arbitrarily. Then for every h ∈ H, we have

F (xo + h) − F (xo) = 1
2
(‖xo + h‖2 − ‖xo‖2)

= 1
2

(〈xo + h, xo + h〉 − 〈xo, xo〉)

= 1
2

(〈xo, xo〉 + 2〈xo, h〉 + 〈h, h〉 − 〈xo, xo〉)

= 〈xo, h〉 + 〈h,h〉
2

= 〈h, xo〉 + ||h||2
2
.

Now de�ne the operator A : H → H by A(h) = 〈h, xo〉. Then
A is linear (since the real inner product is bilinear) and bounded
(according to Cauchy-Schwarz inequality). Moreover it is clear that

lim
‖h‖→0

‖F (x0 + h)− F (x0)− A(h)‖
‖h‖

= lim
‖h‖→0

‖h‖/2 = 0 .

Next we present some properties of the Fréchet di�erential.

Proposition 1.1: Let X and Y be Banach spaces and U ⊂ X
open.

1. If F : U → Y is Fréchet di�erentiable at some point x0 ∈ U ,
then F is continuous at x0.

2. If F : U → Y is Fréchet di�erentiable according to a norm in
X,
then it is also Fréchet di�erentiable according to any norm
equivalent to the �rst norm.

3. (linéarity)
If F,G : U → Y are Fréchet di�erentiable at some point xo ∈
U ,
then for any a, b ∈ R, aF + bG is Fréchet di�erentiable at xo
and

D(aF + bG)(xo) = aDF (xo) + bDG(xo) .

4. (Chain rule).
Let also V be an open set of a Banach space Z and consider
two mappings F : U −→ Y and G : V −→ Z such that
F (U) ⊂ V . If F is Frechet di�erentiable at some point xo ∈ U
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and G : V −→ Z is Frechet di�erentiable at yo = F (xo) ∈ V ,
then G ◦ F is Fréchet di�erentiable at xo and

D(G ◦ F )(xo) = DG(yo) ◦DF (xo) .

Proof:

1. Suppose that f is Fréchet di�erentiable at x0 ∈ U . Then there
exists a bounded linear map A : X → Y such that:

f(x0 + h)− f(x0) = Ah+ o(‖h‖) .

It follows from the continuity of A and the de�nition of o(h)
that

lim
||h||→0

||f(x0 + h)− f(x0)|| = 0 ,

that is
lim
h→0

(
f(x0 + h)− f(x0)

)
= 0 in Y

or simply lim
h→0

f(x0 + h) = f(x0).

2. Let ‖.‖1 and ‖.‖2 be two equivalent norm in X. Then there
exist constant α > 0 and β > 0 such that

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1 , ∀x ∈ X .

There a mapping g is de�ned from an open neighbourhood of
0 in (X, ‖.‖1) into Y if and only if is de�ned from an open
neighbourhood of 0 in (X, ‖.‖2) into Y . Moreover for any h 6= 0
in the domain of g, we have

‖g(h)‖
β‖h‖1

≤ ‖g(h)‖
‖h‖2

≤ ‖g(h)‖
α‖h‖1

≤ β‖g(h)‖
α‖h‖2

which implies that

lim
‖h‖1→0

‖g(h)‖
‖h‖1

= 0 ⇐⇒ lim
‖h‖2→0

‖g(h)‖
‖h‖2

= 0 .

3. Let ε > 0. Then by the Fréchet di�erentiability of the two
functions F and G at xo ∈ U , we get (indeed) the existence of
δ > 0 such that for every h ∈ X satisfying ||h|| < δ, we have

‖F (xo + h) − F (xo) − DF (xo)(h)‖ ≤ ε

2(|a|+ 1)
‖h‖
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and

‖G(xo + h) − G(xo) − DG(xo)(h)‖ ≤ ε

2(|b|+ 1)
‖h‖ .

Thus we have

‖(aF+bG)(xo+h)−(aF+bG)(xo)− aDF (x)(h)− bDG(x)(h)‖ ≤ ε||h|| .

4. We know that

F (xo + h)− F (xo) = DF (xo)(h) + o(h) (i)

and
G(yo + h)−G(yo) = DG(yo)(h) + o(h) (ii).

Therefore

G ◦ F )(xo + h) − (G ◦ F )(xo) = G(F (xo + h))−G(F (xo))
= G

(
F (xo) +DF (xo)(h) + o(‖h‖)

)
− G(F (xo))

= G(F (xo)) + DG(yo)((DF (xo)(h) + o(h) − G(F (xo))
= DG(yo)DF (xo)(h) + DG(yo)(o(h))
= DG(yo)DF (xo)(h) + õ(h)

which gives the result since DG(yo)DF (xo) is a bounded linear
map and

||õ(h)|| ≤ ||DG(yo)|| · ||o(h)||.

Theorem 1.3:
Every Fréchet di�erentiable function is Gâteaux di�erentiable and
the di�erentials coincide..

Proof : Let f : U −→ Y ; where Xand Y are Banach spaces and U
open in X, be Fréchet di�erentiable at a point x0 ∈ U . We show
that f is Gâteaux di�erentiable at xo. Fix any v ∈ X \ {0}. Then
we have f ′(xo) ∈ B(X, Y ) and

lim
t→0+

(
f(xo+tv)− f(xo)

t
− f ′(xo)(v)

)
= lim

t→0+
||v||f(xo+tv)− f(xo)− f ′(xo)(tv)

||tv||

= lim
‖h‖→0

||v||f(xo+h)− f(xo)− f ′(xo)(h)
||h||

= 0 .

Therefore f is Gâteaux di�erentiable at xo and moreover DGf(xo) =
f ′(xo). �
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Remark: The converse of Theorem 1.2 is false as it can be seen
by the example below.

Example 1.2 :
The function g : R2 −→ R de�ned by

g(x, y) =


(

x2y
x4+y2

)4

if y 6= 0 ,

0 if y = 0

is Gâteaux di�erentiable at (0, 0) but not Fréchet di�erentiable at
this point.
Indeed, let h = (h1, h2) ∈ R2. Then for t > 0, we have

g(th)− g(0, 0)

t
=


t4h4

1h
2
2

(t2h4
1+h2

2)4
if h2 6= 0 ,

0 if h2 = 0 ,

and so

lim
t→0+

g(th)− g(0, 0)

t
= 0 ,

yielding the Gâteaux di�erentiability of g at (0, 0) with g′(0, 0) ≡ 0.
But it is seen that g is not Fréchet di�erentiable at (0, 0), according
to Theorem 1.3, by considering the perturbations H = (h1, h

2
1) as

follows :

lim
h1−→0+

g(h1, h
2
1)− g(0, 0)

‖(h1, h2
1)‖

=
1

16
6= 0 .

The next theorem gives a useful su�cient condition under which
Gâteaux di�erentiability implies Fréchet di�errentiability.

Theorem 1.4:
Let X and Y be Banach spaces, U open and nonempty in X and
let f : U → Y . If f has a continuous Gâteaux di�erential, then f
is Fréchet di�erentiable and f ∈ C1(U,R).

Proof :
Let x ∈ U and choose ε > 0 such that B(x, ε) ⊂ U . Let h ∈ X such
that ||h|| < ε. Consider the function ϕ : [0, 1] −→ R de�ned by :

ϕ(t) = f(x+ th)− f(x)− tDGf(x)(h)

Since f is Gâteaux di�erentiable, it follows that ϕ is di�erentiable
and

ϕ′(t) = DGf(x+ th)(h)−DGf(x)(h) .

15



By applying the Mean Value Theorem to ϕ we have :

|ϕ(1) − ϕ(0)| ≤ sup
0<t<1

|ϕ′(t)| ,

that is,

‖f(x+ h)− f(x)−DGf(x)(h)‖ ≤ sup
t∈(0,1)

‖DGf(x+ th)(h)−DGF (x)(h)‖

≤ sup
t∈(0,1)

‖DGf(x+ th)−DGF (x)‖ ‖h‖.

By continuity of the mapping Df : U → B(X, Y ), we have

lim
h→0

(
sup
t∈(0,1)

‖DGf(x+ th)−DGf(x)‖

)
= 0 ,

and so
f(x+ h) − f(x) − DGf(x)(h) = o(h)

with Df(x) ∈ B(X, Y ). �

De�nition 1.2:
Let H be a Hilbert space equipped with inner product 〈., .〉 and
f : X −→ R be Fréchet di�erentiable. Then the mapping

∇f : H −→ H

x 7→ ∇f(x) ,

(where ∇f(x) is the gradient of f at x) is called a potential operator
with a potential f : H −→ R.

1.3 Second order derivative

Let X and Y be real Banach spaces, U open and nonempty in X,
and let f : U → Y be di�erentiable. If

f ′ : U −→ B(X, Y )

is di�erentiable, then for every x ∈ U ,

(f ′)′(x) ∈ L(X,B(X, Y ))

and is simply denoted by f ′′(x) or D2f(x). In this case we say that
f is twice di�erentiable at x and f ′′(x) is called the second order

16



di�erential of f at x.
Observe that in fact

f ′′(x) : X ×X −→ Y

is bilinear and bounded (i.e., continuous) .

We recall that a mapping Φ : X × X −→ Y is a bounded bilin-
ear map if:

1. ∀ (x1, x2) ∈ X ×X, ∀ y ∈ X and ∀α , β ∈ R,

Φ(αx1 + βx2, y) = αΦ(x1, y) + βΦ(x2, y)

Φ(y, αx1 + βx2) = αΦ(y, x1) + βΦ(y, x2)

2. ∃K ∈ (0, ∞) such that

‖Φ(x1. x2)‖Y ≤ K‖x1‖X‖x2‖X .

The norm of such a bounded bilinear map is given by:

‖Φ‖ = sup {‖Φ(x1, x2)‖Y , ‖x1‖X ≤ 1 and ‖x2‖ ≤ 1}

Note that, more generally, if E1, E2 and E3 are given three normed
linear spaces, we can de�ne a bounded linear map from E1×E2 into
E3.

The space of bounded bilinear maps from X×X into Y is isometric
to B(X, B(X, Y )). Indeed the map

j : B(X2, Y )) −→ B(X, B(X, Y ))
A 7→ j(A)

where j(A) is such that for all x ∈ X and for all y ∈ Y ,(
j(A)(x)

)
(y) = A(x, y) .

Moreover ||j(A)|| = ||A||.

Going back to the setting of the de�nition of the second order
di�erential, if f : U → Y is twice di�erentiable, then f ′ : U →
B(X2, Y )). And if f ′′ is continuous, we say that f is of class C2

and we write f ∈ C2(U, Y ).

17



Furthermore we have the following Taylor formula for x ∈ U and h
su�ciently small :

f(x+ h) = f(x) + f ′(x)(h) +
1

2
f ′′(x)(h, h) + o

(
‖h‖2

X

)
(1.5)

that can be established by using a notion of Riemann integration in
Y such as

f(x+ h) = f(x) + f ′(x)(h) +

∫ 1

0

(1− t)f ′′(x+ th)(h, h) dt .

These Taylor expansions give the simplest su�cient conditions

on a critical a C2 functional to be a local extrema.

Proposition 1.4
Let X and Y be Banach spaces, U open in X and let f : U → Y
be twice continuously di�erentiable. Suppose that xo is a critical
point of f .

1. If there exists a positive real number λ such that

D2f(xo)(h, h) ≥ λ||h||2 , ∀h ∈ X ,

Then xo is a local minimum point of f .

2. If for every x in a neighbourhood of xo, D
2f(x) is positive

semide�nite (in the sense that

D2f(x)(h, h) ≥ 0 , ∀h ∈ X ),

then xo is a local minimum point of f over U .

3. If U is convex and for every x ∈ U , D2f(x) is positive semidef-
inite (in the sense that

D2f(x)(h, h) ≥ 0 , ∀h ∈ X ),

then xo is a minimum point of f over U . Observe in this case
that f is convex on U .

For instance if H is a real Hilbert space and b ∈ H is given then,
the critical point xo of the the functional ϕ de�ned on H by

ϕ(x) =
||x||2

2
+ 〈b, x〉 ,

is the minimum point (i.e., xo = −b) .

18



Note.
Let H be a Hilbert space and f : H → R be twice continu-
ously di�erentiable. Then for every x ∈ H, there exists (according
to the Riesz Representation Theorem) a bounded linear operator
A : H → H which is symmetric and satis�es

D2f(x)(h1, h2) = 〈Ah1, h2〉 .

I
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CHAPTER 2

Nemytskii Operators

They take their name from the mathematician Viktor Vladimirovich
Nemytskii.
Let n and m be positive integers and Ω be a nonempty subset of
Rn.

2.1 De�nition of a Nemytskii Operator

Given a function f de�ned from Ω×Rm into R, denote by F(Ω,Rm) =

(Rm)Ω the set of m-vector valued functions de�ned on Ω.
Then the Nemytskii Operator, associated to f , is the operator,

N
f

: F(Ω,Rm) −→ F(Ω,R)

u 7→ N
f
u

where N
f
u is the function de�ned for x ∈ Ω by:

(N
f
u)(x) := f(x, u(x))

. For simplicity we shall write N
f
u (x)

Example 2.1:
The Nemitskii operators associated to the maps

f : R× R −→ R and g : R× R −→ R

(x, s) 7→ |s| (x, s) 7→ xes ,
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are respectively de�ned, for any function u : R→ R, by N
f
u and

Ngu with the following expressions:

(N
f
u)(x) = |u(x)| and (Ngu)(x) = xeu(x) , .

Observe, by continuity of f and g, that both N
f
and Ng map the

set of real-valued continuous functions on Ω; C(Ω), into itself. More-
over they map the set of real-valued measurable functions into itself.

Example 2.2.
Let Ω ⊂ RN be a measurable set. Then the Nemitskii operator
which assigns to each extended real-valued function on Ω its square,
induces an operator

L2(Ω) −→ L1(Ω)

u 7→ u2

also called Nemitskii operator.

More generally, given any real number p ∈ (1, +∞) and setting
q := p

p−1
; (the conjugate of p), the following map

Lp(Ω) −→ Lq(Ω)

u 7→ |u|p−1

is a Nemitskii operator.

Because of the obvious usefulness of measurable functions, we in-
troduce a notion called the caratheodory condition .

2.2 Carathéodory condition

De�nition 2.2 (Caratheodory Condition):

A function f : Ω× Rm −→ R is said to satisfy the Carathéodory
conditions if

(i) f(x, ·) is a continuous function for almost all x ∈ Ω;

(ii) f(· , u) is a measurable function for all u ∈ Rm.

21



Theorem 2.1
Suppose that Ω is measurable. Let f : Ω×R −→ R be a Carathéodory
function and u : Ω −→ Rm be measurable.
Then the function

N
f
u : x 7→ f(x, u(x))

is measurable.

Proof :
It is well-known that every measurable function is the limit of a
sequence of simple functions; i.e., functions having the form:

p∑
i=1

ai 1Ai

where the coe�cients ai are constant real numbers and the subsets
Ai are measurable.
By assumption, u measurable, and so

u = lim
k
uk

where every uk is a simple function. And since f satis�es the
Carathéodory condition, f is continous with respect to its second
argument for almost every �rst argument �xed. Therefore,

lim
k
f(x, uk(x)) = f(x, u(x)) , for a. e. x .

For each k, set f
k
(x) = f(x, uk(x)) for a.e. x. By the �rst Carathéodory

property of f , each fk is measurable as a sum of products of mea-
surable simple functions. In fact by writing uk on its canonical form
we have

uk(x) =

nk∑
ik=1

aik1Aik
(x) , for a. e. x,

and so

fk(x) =
n∑

ik=1

f(x, aik)1Ai
(x) , for a. e. x.

It follows that the function x 7→ f(x, u(x) is measurable as a pin-
twise limit of the sequence of measurable functions (fk)k. �
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2.3 Continuity and Di�erentiability of Nemytskii

Operator

The following theorem gives us su�cient conditions under which a
measurable Nemytskii operator is continous

Theorem 2.2
Let f : Ω×R −→ R be a Caratheodory function. If Ω is a bounded
domain and f satis�es the growth condition

|f(x, s)| ≤ a|s|p−1 + b(x) , for a.e. x and for all s,

with p > 1, a > 0 and b(·) ∈ Lq(Ω) nonnegative a.e.; where 1/p +
1/q = 1, then the Nemytskii operator Nf : Lp(Ω) −→ Lq(Ω) is
continuous.

Proof :
• We show that N

f
maps Lp(Ω) into Lq(Ω) .

|N
f
u|q = |f(x, u(x)|q ≤ |a|u(x)|p−1 + b(x)|q

≤ 2q(aq|u(x)|q(p−1) + |b(x)|q)

= 2q(aq|u(x)|p + |b(x)|q)

But we know that b ∈ Lq and that u ∈ Lp Hence :∫
Ω

|N
f
u|q ≤ (2)qmes(Ω)(aq‖u‖pLp + ‖b‖qLq) <∞

since Ω is a bounded domain. ThereforeN
f
maps Lp(Ω) into Lq(Ω)

• We show that N
f
is continuous.

Suppose on the contrary that N
f
is not continuous at some u0. then

there would exist ε0 > 0 and a sequence (un)n≥1 ⊂ Lp such that

un
Lp

−→ u0 (1)

and
‖N

f
un −Nf

u0‖Lq > ε0 . (2)

But (1) implies that there exists a subsequence unk
of un, and a

function g ∈ Lp(Ω) such that

unk

pointwise−−−−−→ u0 a.e. (3)
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and
|unk
| ≤ g ∀ k . (4)

It would follow from (3) and the continuity of f(x, ·) for a.e. x, that

N
f
unk

pointwise a.e.−−−−−−−→ N
f
u0 . (5)

Moreover, (4) implies

|f(x, u(nk
(x))| ≤ a|unk

|p−1 + b(x) ≤ a|g(x)|p−1 + b(x) (6)

with a|g|p−1 + b ∈ Lq since g ∈ Lp(Ω) and b ∈ Lq(Ω).
Thus, (5), (6) and the Dominated Convergence Theorem would
imply that

f(x, unk
(x))

Lq

−→ f(x, u0(x))

that is,
‖N

f
unk
− N

f
u0‖Lq −→ 0

contradicting (2).

Example 2.3
If p ∈ (1, +∞) and q := p

p−1
; (the conjugate of p), then the Nemit-

skii operator
Lp(Ω) −→ Lq(Ω)

u 7→ |u|p−1

is continuous. The proof follow readily from Theorem 3.2 by putting
a ≡ 1 and b ≡ 0.

Theorem 2.3
Let Ω a bounded domain and f : Ω × R −→ R a Carathéodory
function satisfying the growth condition

|f(x, s)| ≤ a|s|p−1 + b(x) , for a.e. x and for all s,

with p > 1, a > 0 and b(·) ∈ Lq(Ω); where 1/p+ 1/q = 1.
De�ne

F (x, s) =

∫ s

0

f(x, t) dt for a.e. x ∈ Ω and all s ∈ R .

Then F : Ω × R −→ R is a Carathéodory function and the
associated Nemitskii operator

NF : Lp(Ω) −→ L1(Ω)

u 7→ NF u = F (·, u(·))
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is continuous.
Moreover the functional F : Lp(Ω)→ R de�ned by

F(u) =

∫
Ω

F (x, u(x))dx

is continuously Frechet di�erentiable and F ′(u) = Nf .

Proof :
Step 1. Show that F is carathéodory.

The function f(x, .) is continuous for almost all x ∈ Ω , Hence
F (x, .) is continuous for almost all x ∈ Ω since it is the antideriva-
tive of a continuous function over a bounded interval .
For every s and for almost every x ∈ Ω, F (x, s) is a Riemann
integral. Without loss of generality, by supposing s > 0, we have

F (x, s) =

∫ s

0

f(x, t)dt = lim
n→∞

Fn(x, s)

where

Fn(x, s) =
s

n

n−1∑
k=0

f

(
x,
ks

n

)
.

Clearly Fn(· , s) is measurable as a result of the Carathéodory prop-
erties de f , and it follows that F (· , s) is measurable as the point-
wise limit of a sequence of measurable functions.

step 2. Continuity of NF .

For all u, v ∈ Lp(Ω) and for a.e. x ∈ Ω

|NFu(x) − NFv(x)| = |F (x, u(x)) − F (x, v(x)|

≤
(
2p−1a(|u(x)|p−1 + |v(x)|p−1) + b(x)

)
|u(x) − v(x)| .

Thus

∫
Ω

|F (x, u(x))−F (x, v(x))| ≤
∫

Ω

a2p−1|u|p−1|u−v|+
∫

Ω

a2p−1|v|p−1|u−v|+
∫

Ω

b|u−v|

Using Hölder's Inequality we have :∫
Ω
|F (x, u(x)) −F (x, v(x))| ≤ a2p/q‖u‖p/qLp ‖u−v‖Lp + a2p/q‖v‖p/qLp ‖u−
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v‖Lp +

‖b‖Lp‖u− v‖Lp = (a2p/q(‖u‖p/qLp + ‖v‖p/qLp ) + ‖b‖Lq)‖u− v‖Lp

Since the the term a2p/q(‖u‖p/qLp + ‖v‖p/qLp ) + ‖b‖Lq is bounded by
the fact

that u, v ∈ Lp and b ∈ Lq we have that our function NF is lo-
cally Lipschitz and so continuous.

step 3. Di�erentiability of F .

We prove that F is Fréchet di�erentiable by showing that it is
Gâteaux di�erentiable on Lp(Ω) and has a continuous Gâteaux dif-
ferential.
Let us �x arbitrarily u, h ∈ Lp(Ω) and de�ne

ϕ(t) := F(u+ th) =

∫
Ω

F (x, u(x) + th(x)) dx .

Set
G(x, t) = F (x, u(x) + th(x)) .

Then
(i) The function G(· , 0) is integrable on Ω.
(ii) For a.e. x ∈ Ω, G(x, ·) is di�erentiable according to the
de�nition of F and we have:

∂G
∂t

(x, t) = ∂
∂t

(
F (x, u(x) + th(x))

)
= ∂F

∂s
(x, u(x) + th(x)) d

dt
(u(x) + th(x))

= f(x, u(x) + th(x))h(x) .

Moreover, it follows from the assumptions on f that∣∣∣∣∂G∂t (x, t)

∣∣∣∣ ≤ g(x) for a.e. x ∈ Ω and all t ∈ (−1, 1)

where

g =
(
2p−1a(|u|p−1 + |h|p−1) + b

)
|h| ∈ L1(Ω) .

Consequently ϕ is di�erentiable on (−1, 1) and in particular at 0
and

ϕ′(0) =

∫
Ω

∂G

∂t
(x, 0) dx =

∫
Ω

f(x, u(x))h(x) dx .
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Therefore F is di�erentiable at u in every direction h 6= 0, with
directional derivative

F ′(u;h) =

∫
Ω

f(x, u(x))h(x) dx =

∫
Ω

N
f
uh .

And since N
f
u ∈ Lq(Ω) by Theorem 3.2, it is clear that F ′(u; ·)

is a bounded linear map from Lp(Ω) into R . Thus F is Gâteaux
di�erentiable at u,

DGF(u) ∈ (Lp(Ω))′ ≡ Lq(Ω)

and
DGF(u) = N

f
u .

It follows that
DGF = Nf .

Moreover N
f

is continuous (by Theorem2.2) which means that
DGF is continuous.

The Gâteaux derivative of F being continous, we conclude by
Theorem 3.2 that F is Frechet di�erentiable with Frechet derivative

F ′ = Nf .

Example 2.4
Let Ω be a non empty bounded measurable subset of RN . Then the
functional

T : L2(Ω) −→ R

u 7→
∫

Ω
u2(x) dx

is Frechet di�erentiable and

T ′(u) = 2u ∀u ∈ L2(Ω) ;

in the sense that

T ′(u)(h) = 2

∫
Ω

u(x)h(x) dx ∀h ∈ L2(Ω) .

The proof follows from Theorem2.3 by considering

f(x, s) = s , x ∈ Ω, s ∈ R ,

p = 2, a = 1 , b = 0
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CHAPTER 3

Variational Principles and Minimization

3.1 Lower Semicontinuous Functions

De�nition 3.1 Let X be a Banach space and f : X → R a func-
tional bounded from below. A sequence (an)n of elements of X, is
said to be a minimizing sequence if

lim
n
f(an) = inf

x∈X
f(x) .

The functional f : X → R is said to be semi-continuous (respectively
weakly lower semi− continuous) if whenever lim

n
xn = x strongly

(respectively weakly), it follows that

lim inf
n

f(xn) ≥ f(x) .

Or equivalently , f is lower semi-continuous if its epigraf is
closed. Where

epigraf(f) = epi(f) = {(x, y) |x ∈ X, y ∈ R and y ≥ f(x)}
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Some Properties of Lower Semicontinuous functions

Proposition 3.1

1. The sum of two l.s.c (w.l.s.c.) functionals is a l.s.c (w.l.s.c.)
functional.

2. The product of a positive constant and of a l.s.c (w.l.s.c.) func-
tional is a l.s.c ( w.l.s.c.) functional.

3. If (fj)j is a family of l.s.c (w.l.s.c.) functionals, then the func-
tion sup

j
fj is a l.s.c (w.l.s.c.) functional.

Proof.
Let (xn)n be a sequence of elements of X such that xn → x strongly
in X.

1. Let f and g be two l.s.c functionals de�ned on a Banach X.

lim infn(f + g)(xn) = lim infn(f(xn) + g(xn))
≥ lim infn f(xn) + lim infn g(xn) (by subadditivity of lim inf),
≥ f(x) + g(x) (by l.s.c. of f and g).

2. Let f be l.s.c and c > 0. Then by the property of lim inf we
have

lim inf
n

(c f)(xn) = c
(

lim inf
n

f(xn)
)
≥ c f(x)

and so c f is l.s.c.

3. Let {fj}j∈J be a family of l.s.c functions. Then

sup
j∈J

fj(xn) ≥ fi(xn) for all i ∈ J and all n.

Thus, for each i ∈ J , we have

lim inf
n

(
sup
j
fj(xn)

)
≥ lim inf

n
fi(xn)

≥ lim inf
n

fi(x) (by l.s.c. of fi).

And so
lim inf

n

(
sup
j
fj(xn)

)
≥ sup

i∈J
fi(x) .
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Theorem 3.1:
Let f : X → R be a functional on a Banach X. If f is convex
and strongly lower semi-continuous, then f is weakly lower semi-
continuous.

Theorem 3.2:
Let f : X → R be a weakly lower semi-continuous functional on
a re�exive Banach space X with a bounded minimizing sequence.
Then f has a minimum on X.

Proof :
Suppose that f is lower semi-continuous and has a bounded mini-
mizing sequence (xn)n. Then by the re�exivity of X and according
to Eberlein-Smulyan Theorem, (xn)n has a weakly convergent sub-
sequence (xnk

)k which converges weakly to some a ∈ X. And by the
lower semi-continuity of f , we have that

lim inf
k→∞

f(xnk
) ≥ f(a). ()

Moreover, since (xn)n is a minimizing sequence of f , we have

lim inf
n

f(xn) = inf
x∈X

f(x) ≤ f(a) .

It follows that
f(a) = inf

x∈X
f(x) .

�

Theorem 3.3:
Let f : X → R be a weakly lower semi-continuous functional
bounded from below on on the re�exive Banach space X. If f is
coercive, then f has a minimum on X.

Proof :
According to Theorem 3.2, it su�ces now to prove that f is bounded
below and has a bounded minimizing sequence.
Since f is coercive, we have

lim
‖x‖→∞

f(x) = ∞ .

Besides inf
x∈X

f(x) ∈ R since f is a real-valued functional which is

bounded below. Moreover by property of the in�mum, there exists
a sequence (xn)n of elements of X such that ( f(xn) )n converges
to inf f(x) as n → +∞, which means that (xn)n is a minimizing
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sequence.
We show that this minimizing sequence is bounded.
Suppose on the contrary that (xn)n is not (norm) bounded. Then

∀ k ∈ N , ∃nk such that ‖xnk
‖ > k .

It would follow that

lim
k
‖xnk
‖ = +∞

and so
lim
k
f(xnk

) = +∞ (by coercivity of f)

in contrast to the fact that

lim
n
f(xn) = inf

x∈X
f(x) ∈ R �

3.2 Ekeland Theorem in Complete metric space

Let M be a complete metric space and Φ : M 7→ R a lower semi-
continuous functional, bounded below. If (uj)j is a minimizing se-
quence, then

∀ε > 0 , ∃ j0 : ∀ j > j0 , Φ(uj) < inf
x∈Φ

Φ(x) + ε .

This fact motivates the de�nition of an ε-minimum point u of Φ,
as a point satisfying :

Φ(u) < inf
x∈Φ

Φ(x) + ε .

Theorem 3.4: ( Ekeland Principle, strong form, 1979).
Let M be a complete metric space and Φ : M 7→ R be a lower
semi-continuous functional which is bounded from below. Let k >
1, ε > 0 and u ∈ M be an ε-minimum point of Φ. Then there
exists v ∈ M such that:

Φ(v) ≤ Φ(u) (1.7)

d(u, v) ≤ 1
k

(1.8)

Φ(v) < Φ(w) + εkd(w, v) ∀w 6= v. (1.9)
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Proof :
Denote for simplicity dk(u, v) := kd(u, v) and de�ne a partial order-
ing in M by :

u ≺ v ⇔ φ(u) ≤ φ(v) − εdk(u, v) .

Therefore we have

u ≺ u , ∀u ∈M (reflexivity)(
u ≺ v and v ≺ u

)
⇒ u = v (anti− symmetry)(

u ≺ v and v ≺ w
)
⇒ u ≺ w (transitivity).

We prove only transitivity:
(i) =⇒ φ(u) < φ(v) − ε dk(u, v)
(i′) =⇒ φ(v) < φ(w) − ε dk(v, w)

Substituting (i') in (i) we get

φ(u) ≤ φ(v) − ε dk(u, v)
≤ φ(w) − ε (dk(v, w) − dk(v, u))
≤ φ(w) − ε dk(u,w) by triangular inequality.

Now de�ne a sequence of subsets (Sn)n s.t.:

Let u1 = u and

S1 := {w ∈M : w ≺ u1} .

Construct inductively a sequence (un)n as follows :

u2 ∈ S1, φ(u2) ≤ inf
S1

φ +
ε

22

S2 = {w ∈M : w ≺ u2} ,

un+1 ∈ Sn, φ(un+1) ≤ inf
Sn

φ+
ε

2n+1
.

Sn = {w ∈M : w ≺ un} .
Then we have :

S1 ⊃ S2 ⊃ ... ⊃ Sn ⊃ ...
u1 � u2 � ... � un � ...

(?1)Each Sn is closed: Indeed
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let vj ∈ Sn and limj vj = v ∈M which means
φ(vj) ≤ φ(un)− εdk(vj, un) .
Letting j → ∞, by the lower semicontinuity of φ and continuity of
the distance dk, we get
φ(v) ≤ φ(un) − εdk(v, un) , which means that v ∈ Sn
.
(?2) lim

n→∞
diamSn = 0.

Indeed, let w ∈ Sn then φ(w) ≤ φ(un)− εdk(un, w)
Also w ∈ Sn ⊂ Sn−1 so

φ(un) ≤ inf
Sn−1

φ +
ε

2n
≤ φ(w) +

ε

2n
and

φ(un) − ε

2n
≤ φ(w) ≤ φ(un) − εdk(un, w)

which implies that dk(un, w) ≤ 1
2n∀w ∈ Sn

For w1 and w2 ∈ Sn and triangular inequality we have :

dk(w1, w2) ≤ dk(w1, un) + dk(w2, un) ≤ 1
2n−1 → 0asn→∞

From (?1)and(?2) and the Nested Interval Property,∃ a unique
v ∈M s.t.

∞⋂
n=1

Sn = {v}

We prove that v satis�es (1.7)-(1.9).
Since v ∈ S1 and v ≺ u1 = u it follows that
φ(v) ≤ φ(u)− εdk(u, v) ≤ φ(u) which is) (1.7).

Let w 6= v. If w ≺ v it follows w ∈
∞⋂
n=1

Sn and then w = v.

Therefore w ⊀ v that is
φ(w) > φ(v)− εdk(w, v) , which is (1.9).
Finally, by limn un = v and

dk(un, u) ≤
n−1∑
j=1

dk(uj, uj+1) ≤
n−1∑
j=1

1

2j
≤ 1

which implies that dk(u, v) ≤ 1 �
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Corollary 3.1: (Ekeland principle, weak form).
Let (M,d) be a complete metric space and Φ : M 7→ R be a lower
semi-continuous functional bounded from below. Then ∀ε > 0 there
exists an ε˘minimum point of Φ, v ∈M such that:

Φ(v) < Φ(w) + εd(w, v), ∀w ∈M, w 6= v.

Proof :

We show that there exists an ε˘-minimum point v.
Let ε > 0 and set

εo = min

{
1

2
, ε2

}
so that 0 < εo < 1 and εo ≤ ε. Then by the property of the
in�mum

∃ uo ∈ X suchthat f(uo) < inf
X

Φ + ε2
o .

And so uo is an ε
2
o-minimum point of Φ. Let

κo :=
1

εo
> 1 ,

swe can apply Theorem 3.4 (1.9) to get the existence of some v ∈ X
such that

Φ(v) < Φ(w) + ε2
oκod(w, v) , ∀w 6= v . (1)

=⇒ Φ(v) < Φ(w) + εod(w, v) , ∀w 6= v, since κo :=
1

εo

=⇒ Φ(v) < Φ(w) + εd(w, v) , ∀w 6= v, since ε0 < ε

Also from Theorem3.4 we have that

Φ(v) ≤ Φ(u0) < inf
x

Φ(x) + (ε0)2 < inf
x

Φ(x) + ε

which implies that v is an epsilon minimum point of Φ �

Corollary 3.2: Let (M,d) be a complete metric space, Φ : M 7→ R
be lower semi-continuous functional bounded from below. Let ε > 0
and u ∈ M be an ε˘minimum point of Φ. Then there exists v ∈ M
such that:
Φ(v) ≤ Φ(u)
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d(v, u) ≤
√
ε

Φ(v) < Φ(w) +
√
εd(v, w),∀w 6= v

Proof :
It follows from theorem 3.4 by taking κ = 1√

ε
for ε < 1

3.3 Palais�Smale Conditions and Minimization

Minimizing sequences for di�erentiable functionals are convergent
under cer- tain compactness conditions. We shall use later the so
called PalaisâSmale ( (PS) for short) conditions.
Let X be a Banach space, f : X 7→ R be a di�erentiable functional.

De�nition 3.2: (3. Palais)
A C1-functional f : X −→ R satis�es the PalaisSmale (PS) con-
dition if every sequence (xj)j in X such that

f(xj)j is} bounded and lim
j

f ′(xj) = 0 in X

has a convergent subsequence.

From (PS) condition, it follows that the set of critical points for
bounded functional is compact. A variant of (PS) condition, noted
as (PS)c , was introduced by Brezis, Coron and Nirenberg [BCN].

De�nition 3.3: (Brezis, Coron, Nirenberg, 1980).
Let c ∈ R. A C1-functional and f : X −→ R satis�es the (PS)c
condition if every sequence (xj)j in X such that lim

j
f(xj) = c and lim

j
f ′(xj) =

0 in X has a convergent subsequence.

Note: PS condition implies (PS)c condition since in R every con-
vergent sequence is bounded.

Theorem 3.5: Let f : X −→ R be a C1 functional bounded be-
low. Then for each ε > 0 and x ∈ X such that f(x) ≤ inf

X
f + ε

∃ y ∈ X such that
(1) f(y) ≤ f(x)
(2) ‖x− y‖ ≤

√
ε

(3) ‖f ′(y)‖ ≤
√
ε

Proof :
Apply Corollary 3.2 with M = X and f = Φ. Then we get the
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existence of y such that

f(z) > f(y)−
√
ε‖y − z‖,∀ z 6= y

let z = y + th and h ∈ X with ‖h‖ = 1, t > 0.Then we have
f(y + th)− f(y) ≥ −

√
εt.

Letting t→ 0 we get f ′(y)(h) ≥ −
√
ε.

Applying the above inequality to −h, we have f ′(y)(h) ≤
√
ε.

Combining this with the other inequality, we have |f ′(y)(h)| ≤
√
ε.

Thus

‖f ′(y)‖ = sup{|f ′(y)(h)| , ||y|| ≤ 1} ≤
√
ε. �

Corollary 3.3: Let f : X 7→ R be a C1 functional bounded from
below and (xj)j be a minimizing sequence. Then there exists an-
other minimizing sequence (yj)j such that
f(yj) ≤ f(xj),
lim
j
‖xj − yj‖ = 0,

lim
j
‖f ′(yj)‖ = 0.

Proof :
f bounded below implies that inf f = c ∈ R. limj f(xj) = c implies
by property of in�mum and de�nition of limits that , ∃ j0 such that. j >
j0 =⇒ f(uj) < inf f + 1

j2

So by Theorem 3.4 ∃ vj s.t.
f(vj) ≤ f(uj)
‖uj − vj‖ ≤ 1

j
(1)

‖f ′(vj)‖ ≤ 1
j

(2)

Taking limit as j tends to in�nity on both sides of (1) and (2) we
get the result.

Theorem 3.6:
Let f : X → R be C1 bounded below , X a Banach space, and let
c = inf f .Assume that f satis�es (PS)c then c is achieved at some
x0 ∈ X and f ′(x0) = 0

Proof:
f bounded below implies that c = inf f ∈ R and by de�nition of
in�mum ∃ a minimizing sequence.
By corollary 3.3 ∃ another minimizing sequence (yn)n s.t.
(1) f(yn) < f(xn)
(2) lim

n
‖xn − yn‖ = 0
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(3) lim
n
‖f ′(yn)‖ = 0

Thus lim
n
f(yn) = c ...(∗) and lim ‖f ′(yn)‖ = 0

So by (PS)c condition we have that (yn)n has a convergent subse-
quence ynk

which converges to say x0 ∈ X
Now by (3) and continuity of f ′ and of ‖.‖ we have that
‖f ′(x0)‖ = 0⇐⇒ f ′(x0) = 0 by properties of norm.
By (∗) and the continuity of f we have that f(x0) = c �

3.4 Deformation Theorem and Palais-Smale Con-

diton

Let f ∈ C1(X,R) be a functional de�ned on the open subset X in
the Banach space E. We introduce the following notations

K = {x ∈ E : f ′(x) = 0}, Kc = {x ∈ K(f) : f(x) = c},

f c = {x ∈ E : f(x) ≤ c}, fc = {x ∈ E : f(x) ≥ c},

f ba = {x ∈ E : a ≤ f(x) ≤ b} = fa ∩ f b,

Bρ = {x ∈ E : ‖x‖ ≤ ρ}, Sρ = {x ∈ E : ‖x‖ = ρ}.and

d(x, F ) = inf{‖x − y‖, y ∈ F}, Fδ = {x ∈ E : d(x, F ) < δ} , where
F is a closed set in E.

De�nition 3.4
A continuous mapping η(t, x) : [0, 1] × X −→ X is said to be a
homotopy of homeomorphisms if for all t ∈ [0, 1]
(1) η(t, ·) : X 7→ X is a homeomorphism,
(2) η(0, x) = x,∀x ∈ X

The homotopy η is f -decreasing (respectively f -increasing) if when-
ever 0 ≤ t1 ≤ t2 ≤ 1 then

f(η(t1, x)) ≥ f(η(t2, x)), (f(η(t1, x)) ≤ f(η(t2, x))) ∀x ∈ X.

Theorem 3.7
Let f ∈ C1(X,R) and F and G be closed disjoint subsets of X.
Let c ∈ R, ε and δ > 0 be numbers such that F2δ ∩G = ∅ and
x ∈ f−1[c− ε, c+ ε] ∩ F2δ =⇒ ‖f(x)‖ ≥ 4 ε

δ
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Then there exists a f -decreasing homotopy of homeomorphisms
η : [0, 1]×X → X such that :
(1) η(t, x) = x if either x ∈ G or |f(x)− c| ≥ 2ε,
(2) η(1, f c+ε ∩ F ) ⊂ f c−ε ∩ F2δ

(3) ‖η(t, x)− x‖ ≤ 2δt.

Proof : Consider the sets :

A := {x : |f(x)− c| ≥ 2ε} ∪ {x : f(x) ≤ 2ε
δ
} ∪G,

B := f−1[c− ε, c+ ε] ∩ F2δ,

De�ne the function

χ(x) =
d(x,A)

d(x,A) + d(x,B)
.

Claim. There exists a locally Lipschitz mapping (called a pseudo-
gradient vector �eld of f) V : X \K 7→ E with the property:
(i) ‖V (x)‖ ≤ 2‖f ′(x)‖,

(ii) ‖f ′(x)‖2 ≤ 〈f ′(x), V (x)〉

. Proof of the claim.
Given x ∈ X \K, there exists, by de�nition of the canonical norm
in E , wx ∈ E such that ‖wx‖ = 1 and

〈f ′(x), wx〉 >
2

3
‖f ′(x)‖ .

Let Vx = 3
2
‖f ′(x)‖ωx Then:

‖Vx‖ < β ‖f ′(x)‖,

〈f ′(x), Vx〉 > ‖f ′(x)‖2 .

Since f ′ is continuous there exists an open neighborhood Ux of x
such that for every y ∈ Ux,

‖Vx‖ ≤ 2 ‖f ′(y)‖ (1)

〈f ′(y), Vx〉 ≥ ‖f ′(x)‖2 (2)
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The family {Ux : x ∈ X \K} is an open covering of X \K and let
{Wi}i be a locally �nite re�nement of {Ux}x and pi(x) = d(x,X \
Wi). For each i, let xi be such that Wi ⊂ Uxi

and put Vi = Vxi
.

The function pi(x) is Lipschitz continuous and pi(x) = 0 if x ∈ Wi .
The sum

∑
i pi(x) is locally �nite and

∑
i pi(x) > 0 for all x ∈ X\K.

De�ne for x ∈ X \K

V (x) =
1∑
i pi

∑
j

pjVj

The mapping V : X \K 7→ E is a locally Lipschitz continuous and
since V (x) is a convex combination of vectors satisfying (1) and (2)
we have

‖V (x)‖ ≤ 1∑
i pi

∑
i

pi‖Vi‖ ≤ β‖f ′(x)‖

〈f ′(x), V (x)〉 =
1∑
i pi

∑
j

pj〈f ′(x), Vj〉 ≥ α‖f ′(x)‖2

Now we are ready to prove Theorem 3.7.
Let g(x) = χ(x)V (x) and consider the Cauchy problem:

σ′(t) = g(σ(t)), σ(0) = x (3.7.1)

for every x ∈ X. We have g(x) = 0 if x ∈ A. If x /∈ A and
x ∈ X \K, then

‖g(x)‖ ≤ ‖V (x)‖ ≤ 2

‖f ′(x)‖
≤ δ

ε
. (3.7.2)

By the fundamental existence-uniqueness theorem for ordinary dif-
ferential equations in Banach spaces the problem (3.7.1) has a unique
solution σ(., x) : R+ × X 7→ E and σ(t, .) : X 7→ X is a homeo-
morphism.

The homotopy σ(·, ·) is f-decreasing because:

d
dt
f(σ(t, x)) =< f ′(σ(t, x)), σ′(t, x) >

= −χ(σ(t, x)) < f ′(σ(t, x)), V (σ(t, x)) >
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≤ −χ(σ(t, x)) ≤ 0.
Let

η(t, x) = σ(2εt, x) .

If x ∈ A, we have χ(x) = 0 and so we have g(x) = 0. Thus
the Cauchy problem has solution σ(t, x) ≡ x and it follows that
η(t, x) = x if x ∈ G or |f(x)− c| ≥ 2ε. Hence (1) is proved.
We get (3) by (3.7.2)

‖η(t, x)− x‖ = ‖σ(2εt, x)− σ(0, x)‖

≤
∫ 2εt

0
‖σ′(s)‖ds =

∫ 2εt

0
‖g(σ(s))‖ds

≤ δ
ε
2εt = 2δt

Next we prove (2).
From(3) it follows that η(t, F ) ⊂ F2δ for all t ∈ [0, 1]. Let x ∈
f c+ε ∩ F . If there exists t0 ∈ [0, 1] such that f(σ(2εt0, x)) ≤ c − ε,
then

f(σ(2ε, x)) ≤ f(σ(2εt0, x)) ≤ c− ε
since σ is f -decreasing, and the assertion follows.

If otherwise f(σ(2εt, x)) > c − ε for every t ∈ [0, 1], then by
using the fact that c+ ε ≥ f(x) = f(σ(0, x)) ≥ f(σ(2ε, x)) > c− ε,
we get σ(2ε, x) ∈ f−1[c− ε, c+ ε] ∩ F2δ = B. Then

f(σ(2ε, x))− f(x) =
∫ 2ε

0
d
ds
f(σ(s, x))ds

=
∫ 2ε

0
< f ′(σ(s, x)), σ′(s, x) > ds

= −
∫ 2ε

0
< f ′(σ(s, x)), V (σ(s, x)) > ds ≤ −2ε

and so c− ε < f(σ(2ε, x)) ≤ f(x)− 2ε ≤ c+ ε− 2ε = c− ε, which
is a contradiction.�

Corollary 3.4:
Let f satis�es (P S)c condition and Kc = ∅ Then there exist ε > 0
and
an f -decreasing homotopy of homeomorphisms η : [0, 1]×X → X
such that:
(1) η(t, x) = x if |f(x)− c| ≥ 2ε,
(2) η(1, f c+ε) ⊂ f c−ε.
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Proof :
By (PS)c condition there exist ε0, β > 0 such that |f(x) − c| ≤
ε0 =⇒ ‖f ′(x)‖ ≥ β. Otherwise, there exists a sequence (xj)j such
that

|f(xj)− c| ≤
1

j
and ‖f ′(xj)‖ ≤

1

j
.

By (PS)c condition it will follow that c is a critical value, which
contradicts to Kc = ∅.
Let δ > 0 and ε ∈ (0,min(ε0,

βδ
4

)).

So ,|f(x)− c| ≤ ε =⇒ ‖f ′(x)‖ ≥ β > 4ε
δ
.

The assertion follows from Theorem 4.6 taking G = ∅ and F =
X.

3.5 Mountain-Pass Theorem

In critical point theory, minimax theorems characterize a critical
value c of a functional f : X 7→ R as a minimax over a suitable class
of sets A

c = inf
A∈A

max
x∈A

f(x)

Theorem 3.8: (Ambrosetti and Rabinowitz, 1973).
Let X be a real Banach space and f ∈ C1(X,R). Suppose that f
satis�es (PS) condition, f(0) = 0 and
(i) there exist constants ρ > 0 and α > 0 such that f(x) ≥ α if
‖x‖ = ρ,
(ii) there is e ∈ X, ‖e‖ > ρ, such that f(e) ≤ 0.
Then f has a critical value c ≥ α which can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)) (3.8.1)

Where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e} (3.8.2)
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Geometrically, when X = R2 the assumptions (i) and (ii) mean
that the origin lies in a valley surrounded by a âmountainâ

Γf = {(x, f(x)) ∈ R3 : x ∈ R2}
.
So, there must exist a mountain pass joining (0, 0) and (e, f(e))
that contains a critical value.
Note that (PS) condition is essential in Theorem 3.8 as the following
example shows.

Example 4.1 The function h(x, y) = x2 + (x + 1)3y2 satis�es as-
sumptions (i) and (ii) of Theorem 3.8 but does not satisfy (PS)
condition and its unique critical point is (0,0) .
Proof.
The point (0,0) is a strict local minima and the unique critical point.
If (PS) condition is satis�ed then (PS)c , with c > 0 de�ned by
(3.8.1), is also satis�ed. Let (xj, yj)j be a sequence such that:

lim
j
x2
j + (xj + 1)3y2

j = c > 0 (1.40)

lim
j

2xj + 3(xj + 1)2y2
j = 0

lim
j

2(xj + 1)3yj = 0.

Suppose that limj(xj, yj) = (x0, y0) = (0, 0) . Passing to the limit
in (1) we obtain:

x2
0 + (x0 + 1)3y2

0 = c > 0,
2x0 + 3(x0 + 1)2y2

0 = 0,
2(x0 + 1)3y0 = 0,

which is a contradiction.

Proof of Theorem 3.8
Suppose by contradiction that Kc = . Take ε such that 0 < ε < α

2
.

From (i) and (ii) we have c ≥ α > 2ε and let γ ∈ Γ be such that

max
t∈[0,1]

f(γ(t)) < c+ ε (2)

By (PS) , the condition (PS)c with c de�ned by (3.8.1), holds.
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Let η : [0, 1] × X 7→ X be a f -decreasing homotopy according
to Corollary 4.4 and γ1 = η(1, γ).
Then 0 and e belong to {x : |f(x)− c| ≥ 2ε} because f(0) = 0,
f(e) ≤ 0 and c > 2ε.
By Corollary 4.4 (1) it follows that
γ1(0) = η(1, γ(0)) = η(1, 0) = 0,
γ1(1) = η(1, γ(1)) = η(1, e) = e,
which means that γ1 ∈ Γ. By Corollary 4.4 (2) and (2) we obtain

max
t∈[0,1]

f(γ1(t)) ≤ c− ε < c

which is a contradiction to the de�nition of c. �

43



CHAPTER 4

Application: The lane Emden Equation

Let N be a positive integer. We shall focus our attention on the
exponents 1 < p < (N+2)

(N−2)
, if N ≥ 3, and 1 < p < ∞ provided that

N = 1, 2.

Consider the nonlinear elliptic boundary value problem

−∆u = up in Ω
u > 0 in Ω (P )
u = 0 on ∂Ω ,

where Ω is a nonempty subset of RN .

This equation is called the Lane-Emden equation.It is basic model
of nonlinear elliptic boundary problem .First formulated by Lane,
an astrophysicist, in the mid 19th. century, the role of this equation
and related elliptic PDEs is very broad outside and inside math-
ematics.The most interesting thing about solving this equation is
that the existence and structure of the solution set of this problem
is surprisingly complex, depending not only on the di�erent values
taken by p
but also on the geometry of Ω. For instance the following facts hold:

Proposition 4.1 The problem (P) has no solution if p ≥ (N +
2)/(N−2) and if Ω is a star-shaped domain with respect to a certain
point, e.g. the open unit ball.
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(the proof of this nonexistence result follows the Pohozaev iden-
tity, which is obtained after multiplication of the �rst equation of
(P) with x5 u and integration by parts). �

But in the case of an annulus Ω (a non star-shaped domain)
Kazdan-Warner [7] proved the result below that also follows from a
work by Degla

Proposition 4.2 The problem (P) has a solution for any p > 1.

Proposition 4.3 If p = (N + 2)/(N − 2) then the energy func-
tional associated to problem (P ) does not have the Palais-Smale
property.

If we let p take the value 1, then we would have a linear problem,
and the existence of a solution depends on the geometry of the do-
main: clearly if 1 is not an eigenvalue of the opposite of the Laplacian
operator; ∆, in H1

0 (Ω), then there is no solution to our problem (P ).

Proposition 4.4 If 0 < p < 1, then there would exist a unique
solution (since the mapping u 7→ f(u)/u = up−1 is decreasing) and,
moreover, this solution would be stable. The arguments could be
done in this case by using the method of sub- and super-solutions.

For the proofs or details of these propositions, the reader is ref-

ered to Willem Michel...

We use the Mountain Pass theorem to prove the existence of a
solution (in the case p > 1 is appropriately chosen as speci�ed at
the beginning of the introduction).
consider the functional

F (u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

(u+)p+1 , u ∈ H1
0 (Ω) (3.165)

Firstly we show that F (u) is a functional on H1
0 (Ω).
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Given that 1 ≤ 2 < N and that p + 1 < 2N/N − 2 (since p <
(N + 1)/N − 2)),
using theRellich Kondradov Theorem, we have that H1(Ω) ⊂⊂→
Lp+1 i.e. H1(Ω) is Compactly Embedded in Lp+1.
Hence u ∈ H1

0 ⇒ u ∈ Lp+1

Thus

|F (u)| ≤ 1

2
‖∇u‖2

L2 +
1

p+ 1
‖u‖p+1

Lp+1 <∞

1. We show that F ∈ C1 (H1
0 (Ω), R) and F ′(u) = 0 if and only

if u is a solution of (P)

1: We show that F is Gâteaux di�erentiable.
Recall that H1

0 is a Hilbert space endowed with the norm de-
�ned by

‖u‖H1
0

= ‖∇u‖2
L2 + ‖u‖2

L2

a) It is not hard to check that the map ψ : s 7→ (s+)p+1 is
di�erentiable at every point of R and its derivative is de�ned
by ψ(s) = (p+ 1)(s+)p. Indeed we have

s+ = max{s, 0} =

 s if s > 0

0 if s ≤ 0,

which shows clearly that ψ is di�erentiable on R \ {0} and

ψ′(s) =

 (p+ 1)sp if s > 0

0 if s < 0.

Furthermore, on the one hand we have

lim
s→0−

ψ(s)− ψ(0)

s
= 0

and on the other hand

lim
s→0+

ψ(s)− ψ(0)

s
= lim

s→0+
sp = 0 since p > 0 .

Thus ψ is also di�erentiable at 0 and ψ′(0) = 0. It follows that

ψ′(s) = (p+ 1)(s+)p , ∀ s ∈ R .
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b) Given u, h ∈ H1
0 (Ω), let us consider the map ϕ de�ned from

R into H1
0 (Ω) by ϕ(t) = F (u+ th); that is,

ϕ(t) = 1
2

∫
Ω
|∇(u(x) + th(x))|2 dx − 1

p+1

∫
Ω

((u(x) + th(x))+)
p+1

dx

= 1
2

∫
Ω
|∇u(x) + t∇h(x)|2 dx − 1

p+1

∫
Ω

((u(x) + th(x))+)
p+1

dx .

We show that ϕ is di�erentiable at 0. To this end, let us set

G(x, t) = 1
2
|∇u(x) + t∇h(x)|2 − 1

p+1
((u(x) + th(x))+)

p+1

= 1
2
|∇u(x) + t∇h(x)|2 − 1

p+1
ψ(u(x) + th(x))

= 1
2

(
∇u(x) + t∇h(x)

)2 − 1
p+1

ψ(u(x) + th(x)) ;

where the power 2 denotes an inner square in Rn. Then we see
that G(·, 0) ∈ L1(Ω) and that G is di�erentiable with respect
to t with

∂G
∂t

(x, t) = 〈∇u(x) + t∇h(x), ∇h(x)〉 + 1
p+1

ψ′(u(x) + th(x))h(x)

= 〈∇u(x) + t∇h(x), ∇h(x)〉 +
(
(u(x) + th(x))+

)p
h(x) ,

and ∣∣∣∣∂G∂t (x, t)

∣∣∣∣ ≤ g(x) , ∀|t| ≤ 1 .and for a.e. x ∈ Ω

where

g(x) = |∇u(x)| |∇h(x)|+ |∇h(x)|2 + 2p|h(x)|(|u(x)|p+|h(x)|p) .

Using the Cauchy Schwarz Inequality ,the inequality (a+b)p ≤
2p(|a|p + |b|p), and the Triangle Inequality.

Also, using Hölder's inequality and the fact that H1 ⊂⊂→ Lp+1

we have :∫
Ω

|g(x)|dx ≤ ‖∇u‖L2 ‖∇h‖L2 + ‖∇h‖2
L2 + 2p‖h‖Lp+1‖u‖Lp+1 + 2p‖h‖p+1

Lp+1 <∞
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Hence g ∈ L1, and by using the Theorem of di�erentiation
under the integral symbol, we have

ϕ′(0) =
∫

Ω
∂G
∂t

(x, 0) dx

=
∫

Ω

(
∇u · ∇h+ (u+)ph

)
.

For u �xed in H1
0 (Ω), the mapping

H : H1
0 → H1

0 , h 7→
∫

Ω

(
∇u · ∇h+ (u+)ph

)
is linear and continuous from H1

0 (Ω) into itself.
Indeed: Linearity follows from the fact that integration and
laplacian are linear.
To prove continuity, we prove that the function H is bounded
in H1

0 :

|H(h)| ≤ ‖∇u‖L2 ‖∇h‖L2 + ‖h‖Lp+1‖u‖pLp+1

≤ ‖∇u‖L2 ‖h‖H1 + C1‖u‖pLp+1‖h‖H1

≤ C‖h‖H1

according to the compact embedding H1(Ω) ⊂⊂→ Lp+1(Ω)
and the continuous inclusion Lp+1(Ω) ⊂→ L2(Ω). Using now
the fact that Ω is bounded, we have that di�erentiable at u and
∀h ∈ H1

0 (Ω), we have

DGF (u)(h) =

∫
Ω

(
∇u · ∇h+ (u+)ph

)
.

We prove that F is Fréchet di�erentiable.

Let h ∈ H1
0 and un a sequence which converges to u in H1

0 .
We have that:
∇un converges to ∇u in H1

0 (Ω) ⊂ L2 (by de�nition of conver-
gence in H1(Ω)) and un converges to u in Lp+1 by compact
embedding of H1

0 into Lp+1.
Hence DGF (un) converges to DGF (u), that is DGF is contin-
uous at u ,therefore F is Frechet di�erentiable and is therefore
C1 We have that

F ′(u)(h) =

∫
Ω

(−∆u− (u+)p)h
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Since D(Ω) is dense in H1
0 (Ω), F ′(u) is completely de�ned by

knowing just its action on D(Ω). But for every φ ∈ D(Ω), we
have ∫

Ω

∇u · ∇φ = −
∫

Ω

u∆φ (by Green formula)

and so

F ′(u)(φ) = −
∫

Ω
u∆φ −

∫
Ω

(u+)pφ

= −〈∆u, φ〉 − 〈(u+)p, φ〉 (in the distributional sense)

= −〈∆u + (u+)p, φ〉 .

That is

F ′(u) = −∆u− (u+)p (in the distributional sense).

So F ′(u) = 0 if and only if u is a weak solution of the
−∆u = (u+)p.

Moreover u ∈ H1
0 also implies that u = 0 on the boundary of Ω.

Suppose that u ≤ 0 in Ω then u+ = 0 so that the equation
is reduced to : {

−∆u = 0 in Ω
u = 0 on ∂Ω .

which has as only solution the zero solution. Hence u > 0 on
Ω.
Therefore we have{

−∆u = up in Ω
u = 0 on ∂Ω .

(which comes from the fact that u ∈ H1
0 )

2. F (0) = 0 follows directly from the de�nition of F .
Let us show that there exists ρ > 0 and R such that

F (u) > ρ for ‖u‖H1
0

= R .
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∫
Ω

(u+)p+1 ≤
∫

Ω

|u|p+1 = ‖u‖p+1
Lp+1 ≤ C‖u‖p+1

H1
0

Using Poincare inequality :

‖u‖L2 ≤ C‖∇u‖L2

We get that

F (u) ≥ 1
2
‖u‖2

H1
0
− C

p+1
‖u‖p+1

H1
0

≥ 1
2
‖u‖2

H1
0

(
1− 2C

p+1
‖u‖p−1

H1
0

)
= ‖u‖2

H1
0

(
1
2
− 2C

p+1
‖u‖p−1

H1
0

)
= R2

(
1
2
− 2CRp−1

p+1

)
with

lim
R→0+

(
1

2
− 2CRp−1

p+ 1

)
=

1

2
> 0 .

So for R > 0 su�ciently small, we have(
1

2
− 2CRp−1

p+ 1

)
>

1

4

which gives

F (u) >
R2

4
.

Therefore taking

ρ =
R2

4
> 0

we get for ‖u‖H1
0

= R, F (u) > ρ provided ‖u‖H1
0

= R is
small enough.

3. Now we prove that there exists v0 ∈ H1
0 (Ω) such that

‖v0‖H1
0
> R and F (v0) ≤ 0 .

To this end, choose w0 ∈ H1
0 (Ω) \ {0} such that w0 ≥ 0.

Thus

F (tw0) = t2

2

∫
Ω
|∇w0|2 − tp+1

p+1

∫
Ω
wp+1

0

= tp+1
(

1
tp−1

∫
Ω
|∇w0|2 − 1

p+1

∫
Ω
wp+1

0

)
,

50



with

lim
t→+∞

(
1

tp−1

∫
Ω

|∇w0|2 −
1

p+ 1

∫
Ω

wp+1
0

)
= −

‖w0‖p+1
p+1

p+ 1
< 0 .

Hence for t > 0 su�ciently large,

F (tw0) < −t
p+1

2

‖w0‖p+1
p+1

p+ 1
<< 0 .

So it su�ces to consider such a t > 0 large enough and to take
vo = tw0 in order to have

F (vo) ≤ 0 with ‖vo‖H1
0
> R .

4. F satis�es the (PS) condition.

Let (un)n be a sequence of elements of H1
0 (Ω) such that(

F (un)
)
n

is bounded and F ′(un)→ 0.
We show that (un)n has a convergent subsequence.

The idea is to make use of the computation of F ′(un)(un).

F ′(un)(un) = −
∫

Ω
(∇un · ∇un − (u+

n )pun)

=
∫

Ω
|∇un|2 −

∫
Ω
un(u+

n )p

=
∫

Ω
|∇un|2 −

∫
Ω

(u+
n )p+1

So
1
p+1

F ′(un)(un) = 1
p+1

∫
Ω
|∇un|2 − 1

p+1

∫
Ω

(u+
n )p+1

= 1
p+1

∫
Ω
|∇un|2 + F (un) − 1

2

∫
Ω
|∇un|2

= F (un) − p−1
p+1

∫
Ω
|∇un|2 .

Thus,

‖∇un‖2
L2 =

2(p+ 1)

p− 1
F (un)− 2

p− 1
F ′(un)un

which implies that

‖∇un‖2
L2 ≤ |

2(p+ 1)

p− 1
||F (un)|| +

2

p− 1
‖F ′(un)‖‖un‖L2
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and using Poincaré inequality we have,

‖∇un‖2
L2 ≤

2(p+ 1)

p− 1
||F (un)| +

2C

p− 1
‖F ′(un)‖ ‖∇un‖L2 .

But from the hypothesis, F (un) is bounded and F ′(un) → 0.
Then it follows from the above inequality that (‖∇un‖L2)n is
bounded, and so (un)n is bounded in H1

0 (Ω) by Poincaré in-
equality. To see this, suppose on the contrary that it is not
bounded. Therefore there would exist a subsequence

(
‖∇unj

‖L2

)
j

that tends to +∞. We would then get a contrast with the fol-
lowing inequality

‖∇unj
‖L2 ≤ | 2(p+ 1)

(p− 1)‖∇unj
‖L2

||F (unj
)||+ 2

p− 1)
‖F ′(unj

)‖

while letting j tend to +∞. Since H1
0 (Ω) is a Hilbert space

which is compactly embedded in Lp+1(Ω) according to Rellich
compactness theorem, it follows from the boundedness of (un)n
in H1

0 (Ω) that there exists a subsequence (unk
)k of (un)n

and an element u ∈ H1
0 (Ω) such that

(i) (unk
)k converges weakly to u in H1

0 (Ω).

(ii) (unk
)k converges strongly to u in Lp+1(Ω).

(iii) (unk
)k converges almost everywhere to u on Ω and there

exists some nonnegative g ∈ Lp+1(Ω) such that |unk
| ≤ g.

From the convergences F ′(unk
) → 0 (by assumption)∫

u+
nk
unk

=

∫
(u+

nk
)2 −→

∫
(u+)2 by (iii)

and the continuous embedding of Lp+1(Ω) into L2(Ω). Thus it
follows from the convergence F ′(unk

) → 0 and the bounded-
ness of (unk

) that F ′(unk
)(unk

) → .0 Thus∫
(∇unk

)2 = F ′(unk
)(unk

) +

∫
(u+)2 →

∫
(∇u+)2 (C1)

and ∫
(u+

nk
)p+1 −→

∫
(u+)p+1 , as well. (C2)

52



Besides since unk
u in H1

0 we have∫
Ω

∇unk
∇u = 〈unk

, u〉 −
∫
unk

u −→ 〈u, u〉 −
∫
u2 ,

that is, ∫
Ω

∇unk
∇u −→

∫
|∇u|2 .

It follows that

∇unk
−→ ∇u ∈ L2(Ω)

because

|∇unk
− ∇u|2 = |∇unk

|2 − 2〈∇unk
, ∇u〉 + |∇u|2 .

Consequently, unk
→ u in H1

0 and so F satis�es the PS
condition.

Concusion:
From the steps 1, 2, 3, and 4 , we have that our function sat-
is�es the hypothesis of the Mountain Pass Theorem due to
Ambrosseti and Ravinowitz, Hence F has a critical value c > ρ
characterised by

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t))

Where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = v0}

But F having a critical value c implies that it has a critical
point say u such that F (u) = c and F ′(u) = 0, which is the
solution of our equation as shown above.
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