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ABSTRACT 
A new method for analysing productivity index (PI) on vertical wells is the main objective of this 

study. Well performance is often measured in terms of the well’s productivity which is dependent 

on a number of factors such as the reservoir’s configuration, the type of completion, petrophysical 

and fluid properties, formation damage, etc. The effect of partial completion is the main focus of 

making the productivity index analysis since almost all vertical wells are partially completed due to 

the reasons of water coning or gas cap issue, etc. It is also very expensive to fully complete a well 

especially when the formation thickness is so large.  

Pressure behaviour solutions for both closed boundary and constant pressure boundary have been 

obtained, taking into consideration the effect of partial completion. 

Productivity of a well is usually evaluated on the long time performance behaviour, thus the 

pseudo-steady state (late time) approach has been employed for calculation of the productivity 

index.  

Several key factors have been tested on productivity index such as pseudo skin, shape factors, 

penetration ratio, reservoir drainage area and etc. The effects of these factors have been analysed 

on PI. Theoretical data were used in carrying out the analysis with results indicating that, 

productivity index increases with increasing completion interval and vice versa, whiles pressure 

drop due to skin as a result of restricted entry to fluid flow increases tremendously with decreasing 

completion interval.  

Shape factors of various well positions in bounded reservoirs were computed and compared with 

results obtained by Dietz, and Babu and Odeh.  
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CHAPTER ONE 

INTRODUCTION 
 

1.1 PROBLEM STATEMENT 

Well productivity is one of the major concerns in oil field development, and provides the means for 

oil field development strategy. Sometimes, well performance is measured in terms of productivity 

index. In order to arrive at the economic feasibility of drilling a well, petroleum engineers require 

proven and reliable methods to estimate the expected productivity of that well. Well productivity 

is often evaluated using the productivity index, defined as the production rate per unit pressure 

drawdown. Petroleum engineers often relate the well productivity evaluation to the long-time 

performance behaviour of a well, that is, the behaviour during pseudo-steady-state or/and steady-

state flow of a closed system or/and constant pressure system respectively. 

 

The long-term productivity of oil wells is influenced by many factors. Among these factors are 

petrophysical properties, fluid properties, degree of formation damage and/or stimulation, well 

geometry, well completions, number of fluid phases, and flow-velocity type (Darcy, non-Darcy) 

(Yildiz, 2003). 

Depending upon the type of wellbore completion configuration, it is possible to have radial, 

spherical or hemispherical flow near the wellbore. A well with a limited perforated interval (partial 

completion) could result in spherical flow in the vicinity of the perforations as depicted in fig. 2.1. A 

well which only partially penetrates the pay zone, could result in hemispherical flow. These 

conditions could arise where coning of bottom water or gas cap becomes a serious issue (Ahmed, 

2005). Figures 3.1 and 3.2 respectively depict the true picture of radial and spherical flow 

behaviour in a partially completed vertical well. 

 

Partial completion is the completion of or flow from less than the entire producing interval. This 

situation causes a near-well flow constriction that result in a positive skin effect in a well-test 

analysis. The net result of partial completion yields extra pressure drop in the near wellbore region 

and reduces the well productivity. 

The present analytical method of evaluating productivity index in vertical wells with partial 

completion does not account for the effect of pressure drop due to partial completion. 
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The purpose of this study is to develop analytical model for evaluating productivity index (P.I) of 

vertical wells with partial completion, where the effect of pressure drop due to partial completion 

is taken into account and compare results with conventional methods. 

The partial differential equations were solved for both no-flow boundary and constant pressure 

boundary systems in Laplace and Fourier Transform domains before inversion to real time domain. 

 

1.3 OBJECTIVES 

The main objectives of this work are to: 

 Develop analytical model for pressure behaviour in closed and constant pressure boundary 

systems 

 Develop an analytical model for evaluating productivity index of vertical wells with partial 

completion for both closed-boundary and constant pressure boundary systems taking into 

account the effect of pressure drop due to partial completion 

 Calculate shape factors and compare with the existing ones and 

 Investigate the factors and parameters that influence or control productivity index. 

 

1.4 METHODOLOGY 

The partial form of the diffusivity equation in dimensionless terms is solved for both closed system 

and constant pressure boundary case employing Laplace and Fourier transforms. Gringarten and 

Ramey’s source functions (1974) for closed and bottom water drive (mixed boundaries system) 

have been used in conjunction with Babu and Odeh’s approach (1989) for obtaining pressure 

drawdown in terms of average reservoir pressure. Finally new productivity index equations are 

generated for both closed system and bottom water drive of a vertical well with partial 

completion. 

 

1.5 WORK OUTLINE 

This work is made up of seven chapters; chapter one consists of the problem statement, objectives 

and methodology used to solve the problem. Chapter two covers the literature review. Chapter 

three is dedicated to the pressure behaviour for closed-boundary and constant pressure boundary 

systems, whiles chapter four presents the theoretical model of productivity index and shape factor 

for partially completed vertical wells and their applications. Chapter five presents the factors which 
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influence productivity index and their effects. Chapter six covers discussion of results and finally, 

chapter seven gives conclusions and recommendations for future research in this area.
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CHAPTER TWO 

 LITERATURE REVIEW 
 

2.1 PARTIAL COMPLETION/PENETRATION 

The problem of partial penetration was first studied by Muskat for steady-state conditions where 

he calculated pressure distributions and productive capacities for anisotropic formation (Muskat, 

1932). His conclusion was that, the productivity depended slightly on the directional permeability 

ratio 
kz

kr >0.1.                          (2.1) 

Studies were carried out on electrical analogue experiments on the effect of casing perforation 

completions on well productivity for ideal uniform reservoirs under steady-state homogeneous 

conditions. Results were presented graphically for the effect of perforations of different densities 

and various degrees of penetration into the formation surrounding the casing or cement sheath. It 

was found that the penetration of the perforations into the surrounding productive section may so 

increase the resultant productivity as to approach or even exceed that for open-hole completions. 

That is, if the perforations are long enough, the productivity of a perforated well might be even 

higher than that of an open-hole (McDowell and Muskat, 1950). 

 

Nisle (1958) employed the instantaneous point source solution to the diffusivity equation to solve 

the constant flux, isotropic and partial penetration problem. From his synthetic pressure build up 

curves for various penetration ratios constructed, he found that the theoretical build up curves 

consisted of two semi-log straight line portion: an early straight line having a slope inversely 

proportional to the flow capacity of the open interval khw, a later semi-log straight line which had a 

slope inversely proportional to the flow capacity of the entire thickness of the formation kh. 

 

Odeh (1968) employed a finite cosine transform to arrive at a solution for his steady-state flow 

problem; the open interval was located anywhere within the producing interval. 

 

Kazemi and Seth (1969) also concerning the issue of partial-penetration problem for an infinite 

conductivity inner boundary condition used numerical finite difference model to arrive at their 

solution. 
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The exact solution of the partial penetration problem presents great analytical problems because 

the boundary conditions that the solutions of the PDE's must satisfy are mixed, that is, on one of 

the boundaries; the pressure is specified on one portion and the flux on the other. This difficulty 

occurs at the well bore, for the flux over the non-productive section of the well is zero, and the 

potential over the perforated interval must be constant. In the case of constant rate production 

from the well, this uniform potential (pressure) is time dependent and unknown, and the 

additional condition that; 

 dz
dr

dp
 








= a constant,                   (2.2) 

(Limit from h1 to zero) where h1 is the thickness of perforated interval, must also be satisfied (Clegg 

and Mills, 1969). 

 

Gringarten and Ramey (1974) also worked on the infinite conductivity partial-penetration problem 

employing the finite Difference model. The numerical scheme chosen consisted of second-order-

correct central difference approximation of the space derivative and the Crank-Nicolson implicit 

procedure using a second-order-correct implicit procedure forward difference approximation of 

the time derivative. 

The basic radial flow equations are derived with assumption that the well is completed across the 

entire producing interval signifying fully radial flow. The flow cannot be any longer termed radial if 

the well partially penetrates the formation. The flow description of the restricted region is more 

spherical, thus it becomes clear that the behaviour of flow is influenced by permeability both in 

radial and vertical direction (Kr and Kz respectively). 

 

2.2 PRODUCTIVITY LOSS (I) 

Brons and Martings (1961) came up with two important parameters which are paramount in the 

study of loss in productivity (I) in all the three cases under fig. 2.1 thus, penetration ratio, b and 

ratio
r
h

w

s . 

Where: 

hs is the height of a symmetry element within the total zone thickness,  

rw is the well bore radius 

The productivity loss is given by; 
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I=

S+
r

S

rw

e 0.75ln 













                   (2.3) 

The fractional loss in productivity, I is related to the skin factor Sb Based on this relation, I is a 

function of Sb, for re=660 ft, and rw=3 in. according to a graph put up by Brons and Martings 

(1961). 

In their conclusion, considering the figure 2.1 (A, B, C) it can be seen that all cases have their 

penetration ratios to be 0.2, however, 
r
h

w

s is 600, 300, and 60 respectively. It follows from their 

graph that for re=660 ft and rew=3 in., the loss in productivity is 68, 65 and 11 per cent respectively. 

From these results, it is clear to conclude that better productivity is obtained from an interval open 

in the middle of a production zone than from the same open interval located at either the top or 

bottom of the zone. 

Additionally, they added that, the larger the number of intervals for a given total penetration ratio, 

the higher the productivity will be. 

 

Figure 2.1 Partial Completions and Partial Penetration from Brons and Martings (1961) 

h= formation thickness 

hp= perforated thickness 

Penetration ratio, b=
h

h p
 

hs=thickness of a symmetry element 
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Dimensionless thickness=  
r
h

w

s                  (2.4)

k
k

h
z

r

D
 *

r
h

w

s                          (2.5) 

It is realized that, the distortion of the flow streamlines from the fully radial case will be great in 

case A which has the highest hs, and least in case C. 

Pseudo skin Sb accounting for partial completion can be determined from the values of b, and 
r
h

w

s
 

using a graphical approach employed by Brons and Martings whose analyses were based on 

isotropic permeability distribution where kr=kz. This is always not the case, as most times kz< kr 

thus, this method underestimates the pseudo skin due to partial completion in anisotropic 

formation. 

This problem of underestimation may be overcome in the case of constant rate production by 

making the assumption that the flux into the well is uniform over the entire perforated interval, so 

that on the well bore the flux is specified over the total formation thickness (Mills and Clegg, 

1969). The authors noticed that, the approximation naturally lead to an error in the solution since 

potential (pressure) will not be uniform over the perforated interval. From their results obtained, 

however, it will be seen that, this occurrence is not too significant. This uniformly distributed flux 

into the well is equivalent to the assumption used by Brons and Martings, and Muskat that, the 

well is a “line-source”. 

 

2.3 PSEUDO-SKIN FROM PARTIAL COMPLETIONS 

Brons and Martings (1961) came up with pseudo-skin either caused by a partially penetrated or 

limited- entry line source well whose results compared closely with that of Muskat’s. 

Brons and Martings (1961) have also shown that the deviation from radial flow due to restricted 

fluid flow entry leads to an additional pressure drop close to the well-bore which can be 

interpreted as an extra skin factor. This is because the deviation from radial flow occurs in a very 

limited region around the well and changes in rate, for instance, will lead to an instantaneous 

perturbation in the additional pressure drop without any associated transient effect (Heriot-Watts 

University, 1998). The pseudo skin can be determined as a function of two parameters; the 

penetration ratio, b, and the ratio
r
h

w

s .  
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𝑏 =
𝑕𝑝

𝑕
=

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑝𝑒𝑛 𝑡𝑜 𝑓𝑙𝑢𝑖𝑑 𝑒𝑛𝑡𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑧𝑜𝑛𝑒
                (2.6) 

  

Three possible completion types’ scenarios are portrayed here by Brons and Martings (1961) as 

depicted in Fig. 2.1. It considers a well in which part of the productive formation is blocked off 

completely either by incomplete penetration or by exclusion of parts of the productive zone by 

blank casing. 

Fig. 2.1(A) describes a well which only partially penetrates the formation. This is often done to 

combat the actual or imagined danger of bottom water coning. 

Fig. 2.1(B) shows a well producing from only the central portion of the productive interval. This 

type of completion is sometimes used where both water and gas coning are a problem. This case 

would be described later in this work. 

Fig. 2.1(C) shows several intervals open to production. 

In fig. 2.1(A), flow lines in the upper most portion of the formation will be essentially horizontal, 

while those in the lower portion will curve toward the well 

When the centre portion of the production zone is open to production, as depicted in the fig. 

2.1(B), the streamlines configuration of the upper half will be an exact mirror image of that in the 

lower half of the zone; therefore h, is defined as one-half the total of sand thickness. 

Fig. 2.1(C) follows that, h is one-half the distance between corresponding points in adjacent 

intervals. 

 

“Pseudo” skin factor; 

Sb=
1− b

b  ( ln(h

rw)-G(b))                   (2.2) 

Where, G(b) is a function of b obtained numerically. 

 

Saidikowski (1979) presented a method to aid in the interpretation of well tests which yields 

estimates for the components which contribute to the skin factor. The skin factor is composed of 

two components, one which is indicative of actual formation damage and the other, which results 

from an additional pressure drop due to partial completions. The skin factor measured in build-up 

tests does not reflect the simple sum of these two components; rather, the effect of the actual 

damage is accentuated by the partial-completion. It was realised that partial-penetration greatly 

magnifies the effect of formation damage. The skin effect determined from a well test in such a 

case must be carefully examined, particularly if the value of the skin factor will enter into the 
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decision for stimulation or work-over treatments. To measure true damage, Sd, the completion 

interval, hp, and total formation interval, ht, must be known.  

Frequently when wells are completed; the height that is open to the formation is smaller than the 

reservoir height (Economides, 1993). This is also known as partial penetration. Wells may be 

completed partially in order to: delay or avoid water/gas coning, reduce cost of completing entire 

productive interval, and meet surface storage capacity. Poor perforation work on the entire zone 

may often seem as partially completed.  

In modern reservoir testing practices, partial penetration may be created to form early-time 

spherical flow to allow calculation of vertical permeability. Late-time radial flow would have the 

distinguishing characteristics of partial completion *Economides, 1993+ 

The nature of flow lines (bending) result in a skin effect, thus, the smaller the perforations 

(interval), compared to the reservoir height, the larger the skin effects would be. 

Economides made an analogy that if completed interval is 75% of the reservoir height or more, this 

skin effect becomes negligible. While partial completion generates a positive skin by reducing the 

well exposure to reservoir, a deviated well results opposite. 

 

Yildiz (2003) presented methods to predict the total skin factor for perforated and damaged wells, 

and the non-linear interaction between individual skin components. He showed that the total skin 

factor models based on the simple addition of individual skin factors due to formation damage, 

perforation, inclination, partial penetration etc. do not work.  

 

2.4 PRESSURE TRANSIENT TESTING 

Tiab et al (2005) presented an approach of assessing reservoir performance by measuring flow 

rates and pressures under a range of flowing conditions and applying the data to a mathematical 

model. Input data during test include; reservoir height and fluid properties. The resulting outputs 

typically include an assessment of reservoir permeability, the flow capacity of the reservoir, and 

any damage that may be restricting productivity. 

Pressure-transient testing is usually synonymous to well testing. The most common practice to 

analyse pressure transient data is to assume a radial flow profile. However, in wells with partial 

penetration/completion, a hemispherical/spherical flow is more representative of the system. In 

reality, the formation itself is usually non-uniform or heterogeneous in properties such as porosity 

and permeability, both areally and vertically resulting from deposition, folding or faulting. The 
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vertical anisotropy is fundamental in describing pressure response around a well partially 

penetrating a formation unbounded laterally and confined at the top and bottom by impermeable 

layers. 

Tiab et al (2005) again presented a study to identify on the pressure and pressure derivative curves 

the unique characteristics for different flow regimes resulting from these types of completions and 

to determine various reservoir parameters, such as vertical permeability, horizontal permeability, 

and various skin factors. The interpretation is performed using Tiab Direct Synthesis (TDS) 

Technique, introduced by Tiab (1993), which uses analytical equations obtained from characteristic 

lines and points found on the log-log plot of pressure and pressure derivative to determine 

permeability, skin and wellbore storage without using type-curve matching. It was found that a 

spherical or hemispherical flow regime occurs prior to the radial flow regime whenever the 

penetration ratio of about 20%. A half-slope line on the pressure derivative is the unique 

characteristic identifying the presence of the spherical/hemispherical flow. The typical half-slope 

line of theses flow regimes is used to estimate spherical permeability and spherical skin values. 

These parameters are then used to estimate vertical permeability, anisotropy index and skin.  

 

2.5 FLOW GEOMETRIES 

Pressure-transient testing is a descriptive well testing. Estimation of the formation’s flow capacity, 

characterization of well-bore damage and evaluation of a 

 Work-over or stimulation treatments all require a transient test because a stabilised test is unable 

to provide unique values for mobility-thickness and skin. Transient tests are performed by 

introducing abrupt changes in surface production rates and recording the associated changes in 

bottom-hole pressure. Production changes, carried out during a transient well test, induce 

pressure disturbances in the well-bore and surrounding rock. These pressure disturbances travel 

into the formation and are affected in various ways by rock features. For example, a pressure 

disturbance will have difficulty entering a tight reservoir zone, but will pass unhindered through an 

area of high permeability. It may diminish or even vanish upon entering a gas cap. Therefore, a 

record of well-bore pressure response over time produces a curve whose shape is defined by the 

reservoir’s unique characteristics. Unlocking the information contained in pressure transient curves 

is the fundamental objective of well test interpretation (Schlumberger, 1998).  

Typical pressure responses might be observed with different formation characteristics such as 

homogeneous reservoir, double porosity reservoir or impermeable boundary. A plot consists of 
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two curves presented as log-log graphs. The top curve usually represents the pressure changes 

associated with an abrupt production rate perturbation, and a bottom curve (termed the 

derivative curve) indicates the rate of pressure change with respect to time. Its sensitivity to 

transient features resulting from well and reservoir geometries (which are virtually too subtle to 

recognize in the pressure change response) makes the derivative curve the single most effective 

interpretation tool. However, it is always viewed together with the pressure change curve to 

quantify skin effects that are not recognised in the derivative response alone. 

  

Pressure transient curve analysis probably provides more information about reservoir 

characteristics than any other technique. Horizontal and vertical permeability, well damage, 

fracture length, storativity ratio and inter-porosity flow coefficient are just a few of the 

characteristics that can be determined. In addition pressure transient curves can indicate the 

reservoir’s extent and boundary details. The shape of the curve, however, is also affected by the 

reservoir’s production history. Each change in production rate generates a new pressure transient 

that passes into the reservoir and merges with previous pressure effects. The observed pressures 

at the well-bore will be a result of the superposition of all these pressure changes. 

Different types of well tests can be achieved by altering production rates. Whereas a build-up test 

is performed by closing a valve (shut-in) on a producing well, a draw-down test is performed by 

putting a well into production. Other well tests, such as multi-rate, isochronal and injection well 

fall-off are also possible (Schlumberger, 1998). 

In a similar study, the author presents analytical models to predict the productivity of selectively 

perforated vertical wells. The models consider arbitrary phasing angle, non-uniform perforation 

size and length, and formation damage around perforations. The accuracy of the models was 

verified against the results from the experimental studies, the semi-analytical correlation, and the 

numerical models (Yildiz, 2002). 

 

Lu (2003) presented partially penetrating wells pressure drawdown formulae in a circular cylinder 

drainage volume with constant pressure at edge boundary. It also provides the formulae to 

calculate pseudo-skin factor due to partial penetration. If the producing well length is equal to the 

pay zone thickness, the equations of fully penetrating wells are obtained. The primary goal of this 

study is to present new pressure drawdown formulae of partially penetrating wells. Analytical 

solutions are derived by making the assumption of uniform fluid withdrawal along the portion of 

the wellbore open to flow. Taking the producing portion of a partially penetrating well as a uniform 
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line sink, according to the point convergence pressure and the Principle of Superposition of 

Potential, the new well test formulae of partially penetrating wells is obtained. If both upper and 

lower boundaries are impermeable, when time is sufficiently long, (long after the time when 

pressure wave reaches the upper and lower impermeable boundaries) and let Sp denote pseudo-

skin factor due to partial penetration and Sm denote mechanical skin factor due to formation 

damage or stimulation, the equations of dimensionless average pressure of a partially penetrating 

well are below:  

𝑃𝑤𝐷 = (
2𝐿𝑝𝐷

𝐻𝐷
) ,𝐸𝑖 *− (

𝑅𝑒𝐷
2 − 𝑅0𝐷

2

4𝑡𝐷
)+ − 𝐸𝑖 (−

𝑅𝑤𝐷
2

4𝑡𝐷
)

− (
1

𝑅𝑜𝐷
2 ) (2𝑅𝑜𝐷

2 − 𝑅𝑒𝐷
2 ) *𝑒𝑥𝑝(

𝑅𝑜𝐷
2 − 𝑅𝑒𝐷

2

4𝑡𝐷
) − 𝑒𝑥𝑝(−

𝑅𝑒𝐷
2

4𝑡𝐷
)+- + 𝑆𝑝

+ 𝑆𝑚                                                                                                                                       (2.7) 

 

Tiab et al (2005) have shown that vertical wells can exhibit different flow regimes during their 

transient behaviour. Spherical flow can occur when a well is producing from a limited section of a 

thick reservoir or producing from a thick reservoir under a variety of conditions such as the 

presence of shale barriers. In the case of partial completion in thick reservoirs, spherical flow can 

be visualized as flow along the radius of a sphere; the concept of perfect radial flow towards a 

common point in a sphere: its centre. Hemispherical flow is identical to spherical flow with the 

obvious exception that the flow is contained within a hemisphere. 

In practice, the flow is not purely spherical or hemi-spherical because the completion interval is 

not a true point sink. However, the flow is spherical in a practical sense if the completion interval is 

very short relative to the net pay. In the case of a thick reservoir between two impermeable 

confining layers and a short partial completion interval, the spherical flow regime will occur 

between two periods of cylindrical-radial flow. In both cases, three flow periods can be identified -

additional to wellbore storage- as follows:  

A period 1 corresponding to an initial radial flow over the completion interval, during this period 

the reservoir behaves as if the formation thickness were equal to the length of the open zone.  

A Period 2 corresponds to a transition period during which spherical/hemispherical flow may be 

identified.  

And the third period corresponds to a second radial flow but this time over the total formation 

thickness. 

In another study, a methodology and an associated computer program were developed that allows 



13 

 

the computation of the pseudo skin factor for partially penetrated vertical producer wells. Five 

methods were selected for implementation. A sensitivity analysis and model comparison was 

performed. The pseudo skin factor is most sensitive to the total formation thickness, and the 

perforated interval length. With the same input data, the Streltsova formula results in the largest 

pseudo skin factor values and the Odeh formula has the smallest pseudo skin factor values. (Gui et 

al., 2008). 

Streltsova Formula: 

The pseudoskin assuming uniform flux model is given by: 

𝑆𝑝 =
2

𝜋𝑏
∑

1

2
*sin,𝑛𝜋(𝑏 + 𝑕1𝐷)- − sin(𝑛𝜋𝑕1𝐷)+ cos(𝑛𝜋𝑍𝐷)

∞

𝑛<1

𝐾0 (
𝑛𝜋

𝑕𝐷
)                                         (2.8) 

𝑍𝐷 =
𝑍

𝑕𝑡
                                                                                                                                                         (2.9) 

Odeh Formula 

The Odeh correlation for pseudo-skin is given by: 

𝑆𝑝 = 1.35 ,(
1 − 𝑏

𝑏
)

0.825

,𝑙𝑛(𝑟𝑤𝑕𝐷 + 7) − ,0.49 + 0.1𝑙𝑛(𝑟𝑤𝑕𝐷)-𝑙𝑛(𝑟𝑤𝐶) − 1.95--                 (2.10) 

𝑟𝑤𝐶 Represents the corrected wellbore radius with respect to the position of the perforated 

interval and it is calculated by the following equation: 

𝑟𝑤𝐶 = 𝑟𝑤𝑒𝑥𝑝,0.2126(𝑍𝑚𝐷 + 2.753)-                                                                                                   (2.11) 

𝑍𝑚𝐷 = 𝑕1𝐷 +
𝑏

2
                                                                                                                                          (2.12) 

 

2.6 FLOW/DRAWDOWN TEST 

A flow or pressure-drawdown test is conducted by producing a well at a known rate or rates while 

measuring changes in flowing bottom-hole pressure (BHP) as a function of time.  

Drawdown tests are designed primarily to quantify the reservoir-flow characteristics, including 

permeability and skin factor. In addition, when the pressure- transient is affected by outer 

boundaries, draw-down tests can be used to establish the outer or limits of a reservoir (reservoir 

limit tests) and to estimate the hydrocarbon volume in the well's drainage area. 

When economic considerations require a minimum loss of production time, pressure-drawdown 

tests also can be used to estimate the deliverability of a well and, if conducted and analyzed 

properly, they are viable alternatives to deliverability tests. 

The basis of flow-test analysis techniques is the line-source (Ei-function) solution to the radial flow 
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diffusivity equation. 

The relationship between flowing bottom-hole pressure, (BHP), Pwf, and the formation and well 

characteristics for a well producing at a constant rate is: 

 𝑃𝑤𝑓 =

𝑃𝑖 +
70.6𝑞𝐵𝜇

𝑘𝑕
0𝑙𝑛 .

1688∅𝜇𝐶𝑡𝑟𝑤
2

𝑘𝑡
/ − 2𝑆1                                                                                                         (2.13) 

(Lee et al, 2003) 

 

2.7 PRESSURE BUILD-UP TESTS 

Pressure-build-up tests on the other hand are conducted by first stabilizing a producing well at 

some fixed rate, placing a BHP measuring device in the well, and shutting in the well. Following 

shut-in, the BHP builds up as a function of time, and the rate of pressure build-up is used to 

estimate well and formation properties, such as average drainage area pressure, permeability in 

the drainage area of the well, and skin factor in the region immediately adjacent to the well-bore.  

The dimensionless shut-in pressure is given by: 

 𝑃𝐷𝑠 =
2𝜋∗10−6𝑘𝑕

𝑞𝐵𝜇
(𝑃𝑖 − 𝑃𝑤𝑠) 

       = 𝑃𝐷(𝑡 + ∆𝑡)𝐷𝐴

− 𝑃𝐷(∆𝑡𝐷𝐴)                                                                                                                     (2.14) 

∆𝑡𝐷𝐴=Dimensionless shut-in time and 

𝑃𝑤𝑠=Shut-in well pressure 

The Horner method is a widely used technique to analyse pressure build-up. It involves plotting the 

shut-in pressure (Pws) versus the logarithm of the time ratio.
𝑡:∆𝑡

∆𝑡
/. On dimensionless coordinates, 

PDs is graphed as a function oflog .
𝑡:∆𝑡

∆𝑡
/.  

For fully penetration, build-up data form a straight line with slope of 1.151 per log cycle on the 

dimensionless Horner graph at early shut-in time. 

For partially penetrating wells with closed upper and lower boundaries, two straight lines appear 

on the dimensionless Horner graph; the slope of the first one is proportional to the flow capacity 

of the open interval, khw and the slope of the second line is proportional to the flow capacity of the 

entire formation, kh (Buhidma and Raghavan, 1980). 
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2.8 Basic Concepts of Pressure Transient Analysis 

There are a number of concepts that are basic to the formulation and practical application of the 

classical well test model. These include the following: 

· Infinite-acting reservoir 

· A Finite reservoir with closed boundaries 

· A Finite reservoir with constant pressure boundaries 

· Effective drainage radius 

· Radius of investigation 

· Time to stabilization 

· Wellbore storage 

 

2.8.1 Infinite-Acting Reservoirs 

The concept of an infinite-acting or infinitely large reservoir is used in implementing the outer 

boundary condition for the classical well test model. It describes the condition where measurable 

pressure transients have not travelled far enough to reach the closest reservoir boundary. In radial-

cylindrical flow geometry, the infinite-acting reservoir concept allows us to impose the outer 

boundary condition that in an infinitely large system, there is no pressure change at the external 

boundary: 

As re approaches infinity, P= 𝑃𝑖 for 𝑡 ≥ 0 

This boundary condition simplifies the analytical solution. Moreover, it requires us to use the 

solution of the classical well test model (the exponential integral solution) only during the initial 

stages of testing, before the measurable pressure disturbance has reached the reservoir 

boundaries. 

In reality, no reservoir is infinitely large. This concept does not imply, however, that the classical 

well test model is unrealistic. No matter how small a reservoir is, there will always be an infinite-

acting period during which no measurable pressure change is observed at a closest point on the 

boundary. 
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2.8.2 Finite Reservoir with Closed Boundaries 

The idea of a finite reservoir with closed boundaries applies to a volumetric reservoir: a closed 

system in which there is no fluid flow across the outer boundaries. In other words, pressure 

gradients across the system’s outer boundaries are zero.  

Closed boundaries may result from physical permeability barriers such as sealing faults or 

permeability pinchouts. A no-flow boundary may also form because of a large number of well 

patterns drilled in a homogeneous reservoir segment. In such a case, the hypothetical no-flow 

boundary corresponds to the drainage area of a given well. For example, wells may be much more 

closely spaced along a particular direction, (y-direction) because the formation permeability in that 

direction is significantly less than the permeability in the other direction (x-direction).It also shows 

the pressure transient signifying that a measurable pressure drop has reached the outer boundary, 

the gradients of the pressure profiles become smaller as the reservoir is depleted.  

 

2.8.3 A Finite Reservoir with Constant Pressure Boundaries 

Constant pressure boundaries are characteristic of reservoirs connected to aquifers (i.e., bottom 

water drive or edge water drive), or those with associated gas caps. In these types of reservoirs, 

pressure remains constant at an aquifer and/or gas cap interface(s).  

Hypothetical constant pressure boundaries can be formed if a production well is surrounded by 

injection wells, as usually depicted in a water-flooding pattern. When a pressure transient reaches 

the outer boundary of a constant pressure boundary reservoir, the flow across the boundary must 

be equal to the flow through the well. Thus, the pressure distribution does not change over time, 

and the reservoir attains true steady-state conditions. Under these conditions, the well-bore 

experiences no further pressure decline, and the pressure at the external boundary remains at the 

initial pressure. Note that the tested well experiences infinite-acting flow behaviour until these 

steady-state conditions develop. 
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CHAPTER THREE 

PRESSURE BEHAVIOUR IN PARTIAL COMPLETION WELLS FOR CLOSED AND CONSTANT PRESSURE 
BOUNDARY SYSTEMS 

3.1 INTRODUCTION 

This chapter presents the reservoir systems used in this work, namely: reservoir with no-flow 

boundary and constant pressure boundary. The  basis  of  modern  reservoir  engineering  lies  in  

the  quantitative  description  of unsteady-state,  multiphase  fluid  flow in heterogeneous porous 

media under the influence of  pressure,  gravitational  and  capillary  forces. In the general case the 

flow pattern is spatially three-dimensional and three separate phases namely oil, water and gas 

may be flowing simultaneously in the reservoir.   

The solution of such formidable flow problems can only be obtained numerically using 

sophisticated simulation techniques.  The only redeeming feature of reservoir flow is that it is 

essentially laminar in nature resulting in a linear relation between local superficial fluid velocity 

and potential gradient. 

However, in certain circumstances the reservoir flow is much simpler in character and can be 

modelled on a reduced basis involving only one space dimension, one mobile phase and one 

prevailing force (Heriot Watts University, 1998). 

 

The radial flow is the flow pattern which best describes what actually takes place in around a well 

open to flow in an oil zone. Before any water break-through and if the pressure everywhere in the 

reservoir is above the bubble point, the only flowing phase is the oil phase. The issue of connate 

water is withheld by the capillary force. The radial flow is best described as horizontal flow and 

one-dimensional assumption is a good approximation in a situation where there is no water/gas 

coning. This flow system has an influence also the well’s productivity index, which a measures of 

the ratio of the oil rate to some pressure drawdown. 

 

3.2 GENERAL OVERVIEW OF RESERVOIR FLOW SYSTEMS 

Obviously, reservoirs are not really in extent, thus the infinite acting radial flow period cannot last 

indefinitely. Eventually the effects of the reservoir boundaries will be felt at the well being tested. 

The time at which the boundary effect is noticed is dependent on several factors, including the 

distance to the boundary, the properties of the permeable formation, and the fluid that fills it. The 

two types of reservoir boundaries that are commonly considered are:  
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 Impermeable (No flow) and  

 Constant Pressure 

An impermeable boundary, also known as a closed boundary, occurs where the reservoir is sealed 

and no flow occurs. No flow boundaries also arise due to the interference between wells (Horne, 

1990). 

 

3.2.1 Classification of Reservoir Flow Systems 

Reservoir flow systems are usually grouped according to: 

 The type of fluid 

 The geometry of the reservoir or portion thereof and  

 The relative rate at which the flow approaches a steady state condition following a 

disturbance 

For most engineering purposes, the reservoir may be classified either as: 

1. Incompressible 

2. Slightly compressible or 

3. Compressible 

The flow systems in reservoir rocks are classified according to their time dependence, as steady 

state, transient, late transient, or pseudo steady state. 

During the life of a well or reservoir, the type of system can change several times, which suggests 

that it is critical to know as much about the flow system as possible in order to use the appropriate 

model to describe the relationship between the pressure and the flow rate (Craft and Hawkins, 

1991). 

 

3.2.2 Reservoir Flow Geometry System (Radial Flow) 

The flow geometry of a homogeneous reservoir system is presented by radial flow. The flow of 

reservoir fluids into and away from the wellbore will take a radial pattern due to the absence of 

any serious heterogeneity.  In a radial flow, fluid move towards the well from all directions and 

congregate at the wellbore as shown in figure 3.1.  
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Figure 3.1 Radial Flow as a result of Partial Completion 

 

3.2.3 The Spherical Flow Regime of well with partial completion 

For well with partial completion, the well is in contact with the producing interval on a fraction 

only of the pay thickness, thus the well's surface contact being reduced.  

For such a well, after an initial radial flow regime in front of the perforated interval, the flow lines 

are established in both the horizontal and vertical directions until the top and bottom boundaries 

are reached. A spherical flow regime can therefore be observed before the flow becomes radial in 

the complete formation thickness. The spherical flow is described in figure 3.2. 

 

Figure 3.2 Spherical Flow as a result of Partial Completion 

 

3.3 CLOSED SYSTEM 

A  closed  system  behaviour  is a characteristic  of  limited  reservoirs  but  it  can  also  be 

encountered  in developed  fields,  when  several  wells  are producing  and  each  well  drains only 

a certain volume of the reservoir (Matthews  and Russell,  1967). 

When a reservoir (or a well’s own “drainage region”) is closed on all sides, the pressure transient 

will be transmitted outward until it reaches all sides, after which the reservoir depletion will enter 

the state known as the pseudo steady state. In this state, the pressure in the reservoir will decline 
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at the same rate everywhere in the reservoir (or drainage region). 

For the closed system model, the reservoir is described as closed in all areas. It is important to 

note that the responses are different for a drawdown and a build-up. During  drawdown periods,  

when  all boundaries  have been  reached  after the  infinite acting  behaviour,  the  reservoir  starts  

to  deplete.  The response follows the pseudo steady state flow regime, and the well flowing 

pressure becomes proportional to time. During build-ups, the shape of the well response is 

different.  After  shut-in,  the pressure  starts  to  build-up  during  the  initial  infinite  regime  but,  

later,  it  stabilizes  and tends towards the  average reservoir pressure  𝑃̅𝑅.  

Thus a pseudo steady state is not at all steady, and corresponds to the kind of pressure response 

that would be seen in a closed tank from which fluid was slowly being removed (Horne, 1990). 

 

3.3.1 Pseudo steady state Flow  

The pseudo steady state flow is also known commonly as the semi steady state flow in a reservoir. 

When  the  pressure  at  different  locations  in  the  reservoir  is  declining linearly as a function of 

time, i.e., at a constant declining rate, the flowing condition is characterized as the pseudo steady-

state flow. Mathematically, this definition states that the rate of change of pressure with respect to 

time at every position is constant, or 
𝜕𝑃

𝜕𝑡
= 𝑐 (Ahmed, 2005). Thus, the difference between the 

average reservoir pressure and the pressure in the wellbore approaches a constant with respect to 

time. 

 

3.3.2 General Characteristic flow regimes 

When the lower and upper boundaries are impermeable, three characteristic regimes can be 

observed after the wellbore storage early time effect as depicted in figure 3.3.  

1. Radial flow occurs over the perforated interval hp with ∆P proportional to log (∆t) and a first 

derivative plateau. Analysis of the initial radial flow regime yields the permeability-

thickness product for the open interval kh hp and the infinitesimal skin of the well, Sm. 

2. Spherical flow with ∆P proportional to ∆𝑡;0.5and a negative half slope straight line on the 

derivative log-log curve. The spherical flow regime lasts until the lower and   upper 

boundaries are reached. Analysis yields the permeability anisotropy, .
𝑘𝑧

𝑘𝑟
/. 

3. Radial flow over the entire reservoir thickness with ∆P proportional to 𝑙𝑜𝑔∆𝑡 and a second 

derivative stabilization. The reservoir permeability-thickness product khh and the total skin 
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can be estimated from the second radial flow regime. (Dominique, 2002). 

3.3.3 Closed System Reservoir and Well Models 

Considering a vertical well partially completed in the middle with no flow boundary at the top and 

bottom as shown in figure 3.3 below.  

 

Fig. 3.3 Schematic showing a partially completed well at its centre 

The completion interval is between  zD1 andzD2, zD is the dimensionless length in the vertical 

direction.  

For partial completion model, the diffusivity equation can be written as: 

𝜕2𝑃𝐷

𝜕𝑟2
𝐷

+
1

𝑟𝐷
∙
𝜕𝑃𝐷

𝜕𝑟𝐷
 + 𝛼

𝜕2𝑃𝐷

𝜕𝑧2
𝐷

=
𝜕𝑃𝐷

𝜕𝑡𝐷
                                                                                                            (3.1) 

 

The following assumptions are made in the derivation of the equation 

 At time t=0, the pressure is uniformly distributed in the reservoir, equal to the initial 

pressure Pi. The reservoir is with finite uniform thickness, h, while the productive interval 

is𝑕𝑝 which spans across the completed interval. 

 The well is taken as a uniform line source, the drilled well length is h, the producing well 

length is 𝑕𝑝 which spans across the completed interval and the wellbore radius is𝑟𝑤. 

 There is a single phase fluid, of small and constant compressibility, constant viscosity µ, and 

formation volume factor, which flows from the reservoir to the well. Fluid properties are 

not dependent on pressure and gravity and capillary forces are negligible. 

 There is no water encroachment or water/gas coning and multiphase flow effects are 

ignored. 

If the reservoir is with top and bottom impermeable boundaries, i.e., the boundaries at hD1=0  and 



22 

 

hD1=1 are  both  impermeable,  e.g. the reservoir does not have gas cap drive or bottom water 

drive,  then: 

(
𝜕𝑃𝐷

𝜕𝑧𝐷
)

𝑍𝐷<0 𝑎𝑛𝑑 1

= 0                                                                                                                                      (3.2) 

Inner boundary condition 

𝐶𝐷

𝜕𝑃𝑤𝐷

𝑑𝑡𝐷
− (𝑟𝐷

𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1             𝑍𝐷1≤𝑍𝐷≤𝑍𝐷2               

= 1                                                                                   (3.3) 

𝑃𝑤𝐷 = 𝑃𝐷−𝑆 (𝑟𝐷
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                                          (3.4) 

Outer Boundary Condition 

(
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟<𝑟𝑒𝐷

= 0                                                                                                                                            (3.5)  

With the application of these boundary conditions for a closed system and the use of Laplace and 

Fourier Transforms, a dimensionless pressure equation is obtained as: 

𝑃̅𝑤𝐷 =
𝑥

𝐶𝐷𝑢2𝑦
+

1

𝑕𝑓𝐷
∑

1

𝑛𝜋𝑢
(
,sin 𝑛𝜋𝑧𝐷2 − sin 𝑛𝜋𝑧𝐷1-𝑎

𝐶𝐷𝑢𝑏
)

∞

𝑛<1

𝑐𝑜𝑠(𝑛𝜋𝑧𝐷)                                           (3.6) 

 

Where; 

𝑥 = [𝐾1(𝑟𝑒𝐷√𝑢)𝐼0√𝑢 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑢) − 𝑆𝐾1(√𝑢)(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) + 𝑆√𝑓𝐾1(√𝑢)𝐼1(𝑟𝑒𝐷√𝑢)] 

𝑦 = [𝐾1(𝑟𝑒𝐷√𝑢)𝐼0√𝑢 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑢) − 𝑆𝐾1(√𝑢)(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) + 𝑆√𝑓𝐾1(√𝑢)𝐼1(𝑟𝑒𝐷√𝑢)]

− √𝑢𝐾1(𝑟𝑒𝐷√𝑢)𝐼1√𝑢 + √𝑢𝐼1(𝑟𝑒𝐷√𝑢)𝐾1√𝑢 

𝑎 = [𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)] 

𝑏 = [𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]

− √𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1√𝑓 + √𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1√𝑓 

 

When the issue of Skin and wellbore storage is eliminated, the dimensionless pressure becomes: 

𝑃̅𝑤𝐷

=
−1

𝑢
3
2

*
𝐾1(𝑟𝑒𝐷√𝑢)𝐼0(√𝑢) + 𝐾0(√𝑢)𝐼1(𝑟𝑒𝐷√𝑢)

𝐾1(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) − 𝐼1(𝑟𝑒𝐷√𝑢)𝐾1(√𝑢)
+

+
1

𝑕𝑓𝐷
∑

−1

𝑛𝜋𝑢
*
(sin 𝑛𝜋𝑧𝐷2 − sin 𝑛𝜋𝑧𝐷1)𝐾1(𝑟𝑒𝐷√𝑓)𝐼0(√𝑓) + 𝐾0(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)

√𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) − √𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)
+

∞

𝑛<1

× cos(𝑛𝜋𝑧𝐷)                                                                                                                                                        (3.7) 

Where; 
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u is the Laplace space variable, K0 and K1 are the modified Bessel K, second kind of order zero and 

one respectively 

I0 and I1 are modified Bessel I first kind of order zero and one respectively. 

hfD is the dimensionless thickness of the ratio 
𝑕𝑝

𝑕
, where hp is the productive or the perforated 

interval of the wellbore and h being the entire formation thickness. √𝑓 = √𝑛2𝜋2𝛼 + 𝑢, 

𝑕𝑓𝐷 = 𝑧𝐷2 − 𝑧𝐷1 

The procedure for the derivation of the equation for the dimensionless pressure is given under 

appendix A1 with detailed explanation as well as the meaning of the parameters given under the 

nomenclature. 

The application of Gaver-Stehfest algorithm (1970) was used to invert the dimensionless pressure 

drop in Laplace space in MATlab program. The figure 3.4 shows various plots of pressure drop and 

derivative versus time for a well partially completed at the middle at different skin (S) and wellbore 

storage values. The reservoir is a no-flow boundary system. 

 

 

Figure 3.4 Pressure and Pressure Derivative curves for a closed boundary partial completion well 
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3.4 CONSTANT PRESSURE BOUNDARY SYSTEM 

Many reservoirs are bounded on a portion or all of their sides by water-bearing rocks called 

aquifers. When the reservoir pressure is supported by fluid encroachment (either due to natural 

influx from an aquifer or a gas cap, or by fluid injection) then a constant pressure boundary may be 

present. Such a boundary may completely enclose the well (for example, a producing well 

surrounded by injectors) or may be an open boundary to one side of the well (Horne, 1990). 

When the upper or lower limit of the reservoir is not sealing but at a constant pressure, such as in 

the case of a gas cap or a strong lower water drive, the effect of boundary is a function of the 

vertical permeability kz, not the radial permeability kr. When the well intercepts a gas cap or an 

aquifer, limited-entry completion or horizontal well techniques are used to prevent gas or water 

production. The well is opened in the oil interval away from the supporting gas or water zone and, 

as long as coning is not established, the high mobility of the adjacent zone maintains a fairly 

constant pressure at the interface with the oil-bearing interval. 

 A constant pressure boundary is used to describe the influence of a linear change of fluid 

properties, such as the presence of a gas or a water contact some distance away from an oil well. 

(Bourdet, 2002). 

 

In this study, the constant pressure boundary is described for two cases namely: bottom water and 

peripheral water. The effect of any constant pressure boundary will ultimately cause the well 

pressure responds to achieve steady state at which the well pressure will be the same constant 

pressure as the boundary. 

Thus in the description of its model characteristic after the first radial flow, if the bottom boundary  

or the sides (edge)is a constant pressure interface (as in the case of bottom water or peripheral 

water), the pressure stabilizes and the derivative drops after the spherical flow regime. 

 

3.4.1 Steady State Flow Regime 

Steady-state flow represents the condition that exists when the pressure throughout the reservoir 

does not change with time, 
𝜕𝑃

𝜕𝑡
= 0. The applications of the steady-state flow to describe  the  flow 

behaviour  of  several  types  of  fluid  in  different  reservoir  geometries are presented below 

(Ahmed, 2005). These include: 

 Linear flow of incompressible fluids 

 Linear flow of slightly compressible fluids 
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 Linear flow of compressible fluids 

 Radial flow of incompressible fluids 

 Radial flow of slightly compressible fluids 

 Radial flow of compressible fluids 

 Multiphase flow 

Incompressible fluids somehow do not exist, but their properties are assumed for certain types of 

fluids such as heavy oil, etc., in some cases in order to derive their flow equations. Oil especially 

fits into the category of slightly compressible fluids due to the fact that, it exhibits small changes in 

its volume, or density, with changes in pressure. 

 

3.4.2 Water and Gas Coning 

The major reason for an intentional completion of well with limited entry is to minimize coning of 

water or gas when an oil-water or gas-oil contact is present in the well or in the area of the well. 

This is to prevent entry of unwanted fluid. The downward movement of pressure which occurs as a 

result of production from the well causes the water interface to rise towards the producing 

interval. 

For formation of water cone, it is presumed that the bottom water is present (original oil-water 

contact) and the interface deforms under the influence of the pressure distribution as a result of 

flow (Heriot Watt University, 1998). 

If an oil reservoir has both gas cap and bottom water, then the vertical well is normally perforated 

either near the centre of the oil zone thickness or below the centre toward the water zone. This is 

because coning tendencies are inversely proportional to the density difference and are directly 

proportional to the viscosity. Thus, density and viscosity differences between water and gas tend 

to balance each other. Therefore, to minimize gas as well as water coning, a preferred perforated 

interval is at the centre of the oil pay zone. 

It is clear from the preceding discussion that coning can be reduced by minimizing pressure 

drawdown. However, this poses a practical difficulty. Oil production rates are proportional to the 

drawdown and by minimizing drawdown, one may avoid coning; but this would also result in 

reducing the oil production rate (Igbokoyi, 2011). 
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3.4.3 Reservoir and Well Model for a Constant Pressure Boundary System 

If the reservoir has constant pressure boundaries (edge water, gas cap, bottom water), the 

pressure is equal to the initial value at such boundaries during production. With reference to figure 

3.1, and assuming the partially completed well has a constant pressure boundary either at the 

bottom or the peripheral of the reservoir, the diffusivity equation is solved with the following 

boundary conditions. 

The following assumptions are made in the derivation of the equation for the constant pressure 

boundary case. 

 1. At time t=0, the pressure is uniformly distributed in the reservoir, equal to the initial pressure Pi. 

The reservoir is with finite uniform thickness   h while the productive interval is 𝑕𝑝 which spans 

across the completed interval. 

2.  The well is taken as a uniform line source, the drilled well length is h, the producing well length 

is 𝑕𝑝 which spans across the completed interval and the wellbore radius is; 𝑟𝑤. 

3. There is a single phase fluid, of small and constant compressibility, constant viscosity µ, and 

formation volume factor, which flows from the reservoir to the well. Fluid properties are not 

dependent on pressure and gravity and capillary forces are negligible. 

4. There is no water encroachment or water/gas coning and multiphase flow effects are ignored. 

5. If the reservoir is with top and bottom constant pressure boundaries, i.e., the boundaries at z=0 

and z=h are both constant pressure boundaries, e.g. if the reservoir has both gas cap drive and 

bottom water drive, then: 

(𝑃)𝑧<0 = 𝑃𝑖 , and (𝑃)𝑧<𝑕 = 𝑃𝑖 

 

The radial form of the diffusivity equation used to derive the solution is presented below with its 

appropriate boundary conditions to suit a constant pressure boundary case. 

Recall equations (3.1), (3.3) and (3.4) from closed boundary case; 

𝜕2𝑃𝐷

𝜕𝑟2
𝐷

+
1

𝑟𝐷
∙
𝜕𝑃𝐷

𝜕𝑟𝐷
 + 𝛼

𝜕2𝑃𝐷

𝜕𝑧2
𝐷

=
𝜕𝑃𝐷

𝜕𝑡𝐷
                                                                                                            (3.1) 

Inner boundary condition 

𝐶𝐷

𝜕𝑃𝑤𝐷

𝑑𝑡𝐷
− (𝑟𝐷

𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1             𝑍𝐷1≤𝑍𝐷≤𝑍𝐷2               

= 1                                                                                   (3.3) 

𝑃𝑤𝐷 = 𝑃𝐷−𝑆 (𝑟𝐷
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                                          (3.4) 

Outer B.C 
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𝑃𝐷(𝑟𝑒𝐷, 𝑡𝐷) = 0                          𝑟𝑒𝐷 =
𝑟𝑒
𝑟𝑤

                                                                                                   (3.8) 

For this constant pressure boundary case, the solution to the partial differential equation is 

obtained by employing Laplace and Fourier Transformations with the appropriate boundary 

conditions. The dimensionless wellbore pressure obtained is as follows with skin and wellbore 

storage effects. 

𝑃̅𝑤𝐷

=
𝜑

𝐶𝐷𝑢2𝜔
+

1

𝑕𝑓𝐷
∑

1

𝑛𝜋𝑢
(
,sin𝑛𝜋𝑧𝐷2 − sin 𝑛𝜋𝑧𝐷1-𝜗

𝐶𝐷𝑢𝛽
)

∞

𝑛<1

𝑐𝑜𝑠(𝑛𝜋𝑧𝐷)                                            (3.9) 

Where; 

𝜑 = 𝐾0(𝑟𝑒𝐷√𝑢)𝐼0(√𝑢) − 𝐾0(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢) − 𝑆√𝑢𝐾0(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) − 𝑆√𝑢𝐾1(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢) 

𝜔 = .𝐾0(𝑟𝑒𝐷√𝑢)𝐼0(√𝑢) − 𝐾0(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢) − 𝑆√𝑢𝐾0(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) − 𝑆√𝑢𝐾1(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢)/

− √𝑢𝐾0(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) − √𝑢𝐼0(𝑟𝑒𝐷√𝑢)𝐾1(√𝑢) 

𝜗 = 𝐾0(𝑟𝑒𝐷√𝑓)𝐼0(√𝑓) − 𝐾0(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓) − 𝑆√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) − 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓) 

𝛽 = .𝐾0(𝑟𝑒𝐷√𝑓)𝐼0(√𝑓) − 𝐾0(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓) − 𝑆√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓)

− 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)/ − √𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) − √𝑢𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓) 

  

 

𝐶𝐷 → 0 𝑎𝑛𝑑 𝑆 → 0, and leaves the above dimensionless pressure equation at the well without skin 

and wellbore storage effects as shown below: 

𝑃̅𝑤𝐷

=
−1

𝑢
3
2

*
𝐾0(𝑟𝑒𝐷√𝑢)𝐼0(√𝑢) − 𝐾0(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢)

𝐾0(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) + 𝐼0(𝑟𝑒𝐷√𝑢)𝐾1(√𝑢)
+

+
1

𝑕𝑓𝐷
∑

−1

𝑛𝜋𝑢
*
(sin 𝑛𝜋𝑧𝐷2 − sin 𝑛𝜋𝑧𝐷1)𝐾0(𝑟𝑒𝐷√𝑓)𝐼0(√𝑓) − 𝐾0(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)

√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + √𝑓𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)
+

∞

𝑛<1

× cos(𝑛𝜋𝑧𝐷)                                                                                                                                                        (3.10) 

The parameters have the same meaning as in the case of the closed system. 

The procedure for the derivation of the dimensionless well pressure is given under appendix A2. 

The equation (3.9) can be programmed in MATlab with the application of Gaver-Stehfest algorithm 

(1970) for Laplace inversion; dimensionless pressure values with dimensionless time are generated 

which are used to obtain a pressure graph. 

The graph depicts the pressure and pressure derivative versus time for a constant pressure 
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boundary case with partial completion at the centre of the vertical well with different well bore 

storage (CDe2S) and skin (Sm=0.5Log (e2S)) values.  

 

Figure 3.5 Pressure and Pressure Derivative curves depicting a constant pressure boundary 
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CHAPTER FOUR 

PRODUCTIVITY INDEX AND SHAPE FACTOR FOR VERTICAL WELLS WITH PARTIAL COMPLETION 
 

4.1 Productivity Index 

Productivity index, PI is defined as the production rate per unit pressure drawdown.  The transient 

productivity index is calculated before the flow reaches the pseudo-steady state or steady state 

regime. During the transient flow period, the efficiency with which a well is produced is defined in 

terms of its productivity index, PI, defined as: 

𝑃𝐼 =
𝑜𝑖𝑙 𝑟𝑎𝑡𝑒 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛
=

𝑞0

𝑃𝑖 − 𝑃𝑤𝑓
                                                                                                  (4.1) 

Where:  

𝑞𝑜 is the oil flow rate  

𝑃𝑖  is the initial reservoir pressure and  

𝑃𝑤𝑓  is the flowing bottom-hole pressure. 

The larger the PI, the greater the  oil rate  for  a given pressure  drawdown and the smaller  the  

number  of  wells  required  to  develop the  accumulation. 

When a reservoir is bounded with a constant pressure boundary (such as a  gas  cap  or  an  

aquifer),  flow  reaches  the  steady  state  regime after the pressure  transient  reaches  the  

constant  pressure  boundary.  Rate  and pressure  become  constant  with  time  at  all  points  in  

the  reservoir  and wellbore once steady state flow is established. Therefore, the productivity index 

during steady state flow is a constant, (Cheng, 2003).The expression for the productivity index is: 

𝑃𝐼 =
𝑜𝑖𝑙 𝑟𝑎𝑡𝑒 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛
=

𝑞0

𝑃𝑒 − 𝑃𝑤𝑓
                                                                                                 (4.2) 

Where: 

𝑃𝑒  is the outer boundary pressure. 

For a closed system reservoir with no-flow boundaries, flow enters the pseudo-steady state regime 

when the pressure effect reaches all boundaries after pressure drop for a long time. During this 

period, the rate at which  pressure  declines  is  almost  the same  at  all  points  in  the  reservoir  

and at the wellbore.   Thus, average reservoir pressure is used instead of initial pressure when 

defining pseudo steady state productivity index. The difference between the average reservoir 

pressure and the well bore flowing pressure approaches a constant with respect to time. The 

pseudo steady state productivity index is normally constant. 
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The pseudo steady state productivity index is defined as: 

𝑃𝐼 =
𝑜𝑖𝑙 𝑟𝑎𝑡𝑒 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛
=

𝑞0

𝑝̅𝑅 − 𝑃𝑤𝑓
                                                                                               (4.3) 

Where: 

 𝑝̅𝑅  is the average reservoir pressure. 

 

4.2 Shape Factors 

Shape factors are correction factors which are designed to account for the deviation of the 

drainage area of a well from the ideal circular form. 

The effect of the shape of the drainage area surrounding a well and the location of the well within 

the specified drainage area is reflected in terms of the shape factor CA. The value of CA is high for 

shapes of large values of the ratio of the area to the perimeter, and for centrally located well. 

While the value of shape factor is low for offset well locations and for drainage shapes of small 

area to perimeter ratios (Noaman, 1982). 

Shape factor can be seen to be dependent not only on the drainage shape but also upon the 

position of the well with respect to the boundary. Dietz (1965) came up with shape factor values 

which depict a particular well position in regular reservoir configurations (shapes). For irregular 

shapes, interpolation between these geometrical configurations presented by Dietz may be 

necessary.  

Naturally it is never possible to obtain the exact shape of the drainage volume but a reasonable 

estimate can usually be made which, when interpreted in terms of a shape factor and used, can 

considerably improve the accuracy of calculations made using pressure drop equation and 

consequently, the productivity index. 

The magnitude of shape factor depends on the shape of the area being drained and also upon the 

position of the well with respect to the boundary. 

 

4.3 ESTIMATION OF AVERAGE RESERVOIR PRESSURE 

Average reservoir pressure𝑃̅𝑅, can be determined from a pressure buildup test. Also, 𝑃̅𝑅   is 

referred to as static drainage area pressure in the formation surrounding a tested well. Average 

reservoir pressure is used: 

1.  To compute rock and fluid characteristics. 

2.  To estimate oil in-place. 
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3.  To predict future reservoir behaviour in primary/secondary recovery and pressure maintenance 

projects.  

Note  that  initial  or  original  reservoir  pressure  is different  from  average reservoir  pressure.  

Average reservoir pressure is determined for reservoirs that have experienced some pressure 

depletion.  Several methods are available to estimate average reservoir pressure. 

In order to assess the productivity of a reservoir, the late time state of the reservoir is used, that is, 

the pseudo-steady state. Equations for calculation of the productivity index in this study have been 

generated for various reservoir cases namely; the closed system, bottom water and peripheral 

water. The procedures for obtaining such equations are outlined under the different reservoir type 

cases. 

 

4.4 General Solution to Productivity Index Equations 

In all the three cases, the following were employed: 

The source functions are obtained from Gringarten and Ramey (1973) which depict the particular 

reservoir type in question.  

Employing Babu and Odeh’s approach used for horizontal well, the source functions are integrated 

twice along the vertical direction of the well and also time, 𝜏, Carslaw and Jaeger (1959) have 

shown that 𝜏  is time in order to obtain a line sink solution as seen in the following expression; 

∆𝑃 = 𝑃𝑖 − 𝑃(𝑥, 𝑦, 𝑧, 𝑡) = [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿𝛼
]∫ ∫ (𝑆1. 𝑆2. 𝑆3)

𝑧2

𝑧1

𝑡

0

𝑑𝑧𝑜𝑑𝜏                                                         (4.4) 

With 

𝛼 = 157.952∅𝜇𝐶𝑡  𝑑𝑎𝑦𝑠                                                                                                                              (4.5) 

𝐿 = (𝑧2 − 𝑧1)  → 𝑙𝑒𝑛𝑔𝑕𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑒𝑙𝑙, 𝑓𝑡                                      (4.6) 

Parameters: a, b and h are distances in the x, y and z directions respectively, and for an anisotropy 

case, a, b and h are not equal and also, 𝑘𝑥 ≠ 𝑘𝑦; 𝑥𝑜, 𝑦𝑜 ,  𝑎𝑛𝑑 𝑧𝑜 are respectively the well positions 

in the x, y and z directions. 

The reservoir is considered to be of a rectangular shape with the well at its centre.  
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Figure 4.1 Schematic illustrating the reservoir and well model. 

 

4.5 WORK PROCEDURE 

The productivity index equations were obtained by integrating the appropriate point source 

functions obtained from Gringarten and Ramey along the correct parameters to obtain a line sink 

solution.  

The equations are thus programmed in MATlab and using the values of the parameters given in 

table 4.1, pressure drop and productivity index are obtained. 

For a comparative analysis, the equations are programmed such that, the productive/completed 

interval are varied and their corresponding productivity indices and pressure drops are obtained. 

 

4.5.1 Productivity Index Equation for Closed Boundary System 

The following point source functions depicting a no-flow boundary case from Gringarten and 

Ramey are used. 

𝑆1 = 𝑆1(𝑥, 𝑥𝑜, 𝜏) = 1 + 2 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1

cos
𝑛𝜋𝑥𝑜

𝑎
𝑒𝑥𝑝 *−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
+                                                   (4.7) 

𝑆2 = 𝑆2(𝑦, 𝑦𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑚𝜋𝑦

𝑏

∞

𝑚<1

cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝 *−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
+                                              (4.8) 

𝑆3 = 𝑆3(𝑧, 𝑧𝑜 , 𝜏) = 1 + 2∑cos
𝑙𝜋𝑧

𝑕

∞

𝑙<1

cos
𝑙𝜋𝑧𝑜

𝑕
𝑒𝑥𝑝 *−

𝑙2𝜋2𝑘𝑧𝜏

𝛼𝑕2
+                                                        (4.9) 
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Figure 4.2 Schematic for Closed system 

The entire procedure in the derivation of the productivity index is given in appendix B1. For a 

closed system reservoir the productivity index equation for a partial completion case can be 

deduced from the pressure drop equation as: 

∆𝑃̅̅̅̅ = *
141.15𝐵𝜇𝑞

𝑕√𝑘𝑥𝑘𝑦

+ [𝑃𝑥 + 𝑃𝑦 + 𝑃𝑧 + 𝑃𝑥𝑦 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧]                                                (4.10) 

𝐽 =
𝑞𝑜

∆𝑃̅̅̅̅ =
𝑕√𝑘𝑥𝑘𝑦

141.15𝐵𝜇(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)
                                                                                                 (4.11) 

Equation (4.11) is the productivity index for full completion case. 

Where Px, Py, Pz, Pxy, Pxz, Pyz, Pxyz are given in appendix B1 

The pressure drop for a 3-D partial completion in vertical well in closed system can be further 

expressed as: 

∆𝑃̅̅ ̅̅ =
141.2𝑞𝜇𝐵

𝑕√𝑘𝑥𝑘𝑦

[𝑙𝑛(
𝑟𝑤√𝐴 𝑒𝑥𝑝(0.75 + 𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒

𝑟𝑤√𝐴 𝑒𝑥𝑝(0.75)
) + 𝑆𝑅 + 𝑆𝑚]                             (4.12) 

∆𝑃̅̅ ̅̅ =
141.2𝑞𝜇𝐵

𝑕√𝑘𝑥𝑘𝑦

*𝑙𝑛(
√𝐴

𝑟𝑤
𝐶𝐴) − 0.75 + 𝑆𝑅 + 𝑆𝑚+                                                                                (4.13) 

Where, CA is a shape factor. 

SR is the skin factor due to partial completion and Sm is the damaged skin factor. 

The productivity index equation with skin and shape factor can be rearranged as: 

𝑃𝐼 =
𝑕√𝑘𝑥𝑘𝑦

141.2𝑞𝜇𝐵 *𝑙𝑛 (
√𝐴
𝑟𝑤

𝐶𝐴) − 0.75 + 𝑆𝑅 + 𝑆𝑚+

                                                                              (4.14) 

For a full completion case: 
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𝑃𝐼 =
𝑕√𝑘𝑥𝑘𝑦

141.2𝑞𝜇𝐵 *𝑙𝑛 (
√𝐴
𝑟𝑤

𝐶𝐴) − 0.75 + 𝑆𝑚+

                                                                                       (4.15) 

 

4.5.1.1 Application of Closed System PI Model 

The reservoir fluid and well properties used for the generation of the productivity index are given 

below 

Table 4.1: Reservoir, Well and Fluid Property values 

Parameter Value 

Pay zone thickness (h) 100 ft. 

Completion Length (𝐿𝑝) 10 – 100 ft. 

Permeability in x direction (𝐾𝑥) 100mD 

Permeability in y direction (𝐾𝑦) 400mD 

Permeability in z direction (𝐾𝑧) 25mD 

Flow rate (q) 4746 STB/D 

Formation volume factor (𝐵𝑜) 1.38rb/stb 

Oil viscosity (𝜇𝑜) 0.422 cp 

Distance of well in x direction (a) 4000 ft. 

Distance of well in y direction (b) 2000 ft. 

Well bore position in x direction (𝑥𝑜) 2000 ft. 

Well bore position in y direction (𝑦𝑜) 1000 ft. 

Well bore position in z direction (𝑧𝑜 =
𝑧1:𝑧2

2
)  

 

The table below gives the results obtained for closed system PI model. 

Table 4.2: Closed system Productivity Index and ∆P Results 

Penetration 

ratio 

∆P(Partial 

completion) 

∆P(full 

completion) J(partial) J(full) 

0.1 509.0735 129.7292 9.3228 36.5839 

0.2 337.1978 129.7292 14.0748 36.5839 

0.3 262.1894 129.7292 18.1014 36.5839 

0.4 219.4096 129.7292 21.6308 36.5839 

0.5 191.5374 129.7292 24.7784 36.5839 
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0.6 171.8648 129.7292 27.6147 36.5839 

0.7 157.227 129.7292 30.1857 36.5839 

0.8 145.9245 129.7292 32.5237 36.5839 

0.9 136.9644 129.7292 34.6513 36.5839 

1 129.7292 129.7292 36.5839 36.5839 

 

The plots of the productivity index (J) and pressure drop (∆P) versus completion interval (Lp) are as 

shown below: 

 

Figure 4.3 Productivity index versus completion length 

 

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

J,
st

b
/d

/p
si

a 

Lp, ft 

J(partial completion) vrs Lp 



36 

 

 

Figure 4.4 Pressure Drop versus Completion Length 

 

 

 

4.5.2. Productivity Index Equation for Constant Pressure Boundary System 

Case 1: Bottom water system 

The flowing source functions from Gringarten and Ramey are used: 

Recall equations (4.7) and (4.8) from the closed system case; 

𝑆1 = 𝑆1(𝑥, 𝑥𝑜, 𝜏) = 1 + 2 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1

cos
𝑛𝜋𝑥𝑜

𝑎
𝑒𝑥𝑝 *−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
+                                                   (4.7) 

𝑆2 = 𝑆2(𝑦, 𝑦𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑚𝜋𝑦

𝑏

∞

𝑚<1

cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝 *−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
+                                              (4.8) 

𝑆3 = ∑ cos(2𝑙 + 1)
𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙 + 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+                                                (4.16) 

 

The entire procedure in the derivation of the productivity index is given in appendix B2. For 

bottom water system, the productivity index can be calculated from the pressure drop equation as: 
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∆𝑃̅̅̅̅ = (𝑃̅𝑅 − 𝑃) = [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿
] [𝑃𝑧 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧]                                                              (4.17) 

Where Pz, Pxz, Pyz, Pxyz are given under appendix B2.  

 

4.5.2.1 Application of Case 1 PI Model  

With the application of the data given in table 4.1 a normalized productivity index has been 

obtained. Pressure drops recorded were very small leading to high productivity values. 

The normalised productivity index involves the productivity ratio of the partial completion to that 

of full completion. Figure 4.4 depicts the trend for the normalized productivity ratio plotted with 

penetration ratios of the well. 

 

Figure 4.5 Normalised PI versus penetration ratio 

 

Case 2: Peripheral System (bottom and edge water) 

From Gringarten and Ramey the following point source functions are used in the derivation of the 

productivity equation. Recall S3 from equation (4.16); 

𝑆1 = ∑ cos(2𝑛 + 1)
𝜋𝑥0

𝑎

∞

𝑛<1

cos(2𝑛 + 1)
𝜋𝑥

𝑎
𝑒𝑥𝑝 *−

(2𝑛 + 1)2𝜋2𝑘𝑥𝜏

4𝛼𝑎2
+                                           (4.18) 

𝑆2 = ∑ cos(2𝑚 + 1)
𝜋𝑦0

𝑏

∞

𝑚<1

cos(2𝑚 + 1)
𝜋𝑦

𝑏
𝑒𝑥𝑝 *−

(2𝑚 + 1)2𝜋2𝑦𝜏

4𝛼𝑏2
+                                          (4.19) 
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𝑆3 = ∑ cos(2𝑙 + 1)
𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙 + 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+                                                (4.16) 

 

The entire procedure in the derivation of the productivity index is also given under appendix B3. 

The productivity index can be calculated from the pressure drop equation as: 

∆𝑃̅̅̅̅ =

0
886.9𝐵𝜇𝑞

𝑎𝑏𝑕(𝑧2;𝑧1)
1

4𝑕

𝜋3
∑

cos(2𝑛:1)
𝜋𝑥

𝑎
cos(2𝑛:1)

𝜋𝑥0
𝑎

cos(2𝑛:1)
𝜋𝑦

𝑏
cos(2𝑛:1)

𝜋𝑥𝑦0
𝑏

𝑐𝑜𝑠(2𝑙:1)
𝜋𝑧

ℎ
0sin

(2𝑙+1)𝜋𝑧2
ℎ

;sin
(2𝑙+1)𝜋𝑧1

ℎ
1

(2𝑙:1)[
(2𝑛+1)2𝑘𝑥

𝑎2 :
(2𝑚+1)2𝑘𝑦

𝑏2 :
(2𝑙+1)2𝑘𝑧

ℎ2 ]

∞
𝑛,𝑚,𝑙   

                                                                                                                                                        (4.20) 

Where, MATlab program is used to evaluate this. 

 

4.6 SHAPE FACTOR CA AND PSEUDO-SKIN 

For anisotropic cases, Babu and Odeh (1989) obtained certain equations for their horizontal well. 

They came up equations for pseudo skin and shape factor as in the following respectively.  

𝑆𝑅 = (𝑃𝑦 + 𝑃𝑥𝑦 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧)𝑊𝐵
                                                                                                             (4.21) 

𝑙𝑛𝐶𝐻 + 𝑙𝑛 .
√𝑎𝑏

𝑟𝑤
/ − 0.75 = (𝑃𝑥 + 𝑃𝑧 + 𝑃𝑥𝑧)𝑊𝐵                                                                                     (4.22)  

 

From equation (4.9), in terms of the shape factor, the terms *Px+Py+Pxy+ represent the 2D effects of 

a full penetration case. The other terms *Pz+Pxz+Pyz+Pxyz) are identified with skin due to partial 

completion. 

Therefore equations for skin due to partial completion and shape factor for vertical well case are 

given respectively as: 

𝑆𝑅 = (𝑃𝑧 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧)𝑊𝐵
                                                                                                              (4.23) 

And 

𝑙𝑛𝐶𝐴 + 𝑙𝑛 (
2.2459𝐴

𝑟𝑤
) − 2(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)

𝑊𝐵
                                                                                      (4.24) 

For fully penetrating and completion SR is zero. Therefore, 

  

𝑙𝑛 0𝑒𝑥𝑝(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)
𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒

1 =
1

2
𝑙𝑛 (

4𝐴

𝑟𝑤2𝛾𝐶𝐴
)                                                                             (4.25) 

 

Expanding equation (4.25) and making CA subject of the formula will yields the general formulae 
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for the calculation of the shape factors as:  

𝑙𝑛𝐶𝐴 = 𝑙𝑛 (
2.2459𝐴

𝑟𝑤
) − 2(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)

𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒
                                                                              (4.26) 

 

Equation (4.26) is used to compute the three dimensional shape factors in a closed system 

equivalent to Dietz shape factor. 

Where,  

rw is the wellbore radius, 

A is the drainage area of the wellbore and 

𝛾 is the Euler’s exponential constant 

CA represents the shape factor of the vertical wellbore. 

Px, Py, Pz, Pxy, Pzy, Pxz and Pxyz are given under Appendix A1. 

4.6.1 New Shape Factor 

From equation (4.12), a new shape factor equation has been derived for vertical wells. 

𝐶𝐴 =
𝑟𝑤𝑒𝑥𝑝(0.75 + 𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒

√𝐴
                                                                                          (4.27) 

𝐶𝐴 = 2.117
𝑟𝑤𝑒𝑥𝑝(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦)𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒

√𝐴
                                                                                           (4.28) 

Equation (4.28) gives an expression similar to that of Babu and Odeh for horizontal wells in a 

rectangular system. Knowing the rectangular area ab – ft2 of the horizontal plane, well position, CA 

can be estimated.  

 

4.7 A COMPARATIVE ANALYSIS WITH DIETZ SHAPE FACTORS 

Equations (4.26) and (4.28) have been employed to calculate shape factors for bounded reservoirs 

using the same configurations employed by Dietz. The results are presented below: 

 

 

 

Table 4.3: Shape Factors (comparison with Dietz shape factors (1965)) 

Bounded reservoirs lnCA : Dietz 

Shape Factors 

(Expected) 

lnCA Obtained for 

equation (4.28)  

       

lnCA Obtained for 

equation (4.26) 
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3.43 

 

 

 

3.4465 

 

 

 

 

4.8385 
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4.1379 
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CHAPTER FIVE 

FACTORS AND PARAMETERS THAT INFLUENCE/CONTROL PI 

5.1 INTRODUCTION 

Several factors and parameters have been identified to greatly influence PI values. These 

parameters are vertical permeability, pseudo skin, well position, drainage area and etc. These have 

been analysed and their results show the extent of influence they have on productivity index 

values. 

 

5.2 EFFECTS OF PSEUDO-SKIN ON PRODUCTIVITY INDEX  

Compared to an open-hole or fully completed vertical well, the additional pressure loss/gain 

caused by the different perforations intervals may be considered as a pseudo skin factor. The well 

with Lp perforation interval produces at a constant flow rate. The formation is sealed at the top and 

bottom as well as the well peripheral. The well communicates with the reservoir only through the 

perforations.  

Equation (4.23) has been used to calculate the additional pressure drop due to partial completion 

and the associated productivity index. . In equation (4.23), SR is the skin factor due to partial 

completion and it is estimated with the expressions for Pz, Pxz, Pyz and Pxyz. The skin factor is 

determined from a pressure transient analysis.  

 

Table 5.1: Results for Pseudo skin and Productivity Index 

Penetration 

Ratio 

(Lp/h) 

∆P (Partial 

completion) 

J (partial 

completion) 

Pseudo-skin 

(SR) 

0.1 509.0735 9.3228 19.4475 

0.2 337.1978 14.0748 10.6361 

0.3 262.1894 18.1014 6.7907 

0.4 219.4096 21.6308 4.5976 

0.5 191.5374 24.7784 3.1687 

0.6 171.8648 27.6147 2.1601 

0.7 157.227 30.1857 1.4097 

0.8 145.9245 32.5237 0.8303 
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0.9 136.9644 34.6513 0.3709 

1 129.7292 36.5839 0 

 

Below is a plot showing pseudo skin versus perforation/completion interval. 

 

 Figure 5.1 Relationship between Pseudo skin and Completion Interval 

 

5.3 EFFECTS OF GEOMETRIC SHAPE FACTOR ON PRODUCTIVITY INDEX 

In chapter four, it was found that equation (4.28) gives results similar to that of Babu and Odeh for 

horizontal wells in a rectangular system. Knowing the rectangular area ab – ft2 of the horizontal 

plane, well position, CA can be estimated from Table 5.2.  

Shape factors are obtained for different well positions within the reservoir drainage area. Figure 

5.2 illustrates a grid rectangular drainage area of the reservoir and also shows different well 

positions whose shape factors have been calculated. 

This analysis has been carried out by employing equations (4.28) and (4.15) for the calculation of 

shape factors and the associated productivity index respectively. 
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Figure 5.2 Reservoir Drainage Area showing different Well Positions 

 

Table 5.2: Results for Wells within and around the centre of Reservoir Drainage Area 

Position (Xo to Yo) J 

Shape Factors 

CA 

 

lnCA 

 

2000/1000 20.9319 22.737 3.124  

2000/1750 19.3336 59.4154 
4.0845  

3750/1000 14.7636 2.92E+03 
7.9793  

2000/1500 20.3256 32.1552 
3.4706  

3000/1000 18.4392 109.3763 
4.6948  

3000/1500 17.9646 154.97 
5.0432  

3500/1000 16.0481 780.672 

6.6602  

1000/500 17.9646 154.97 
5.0432  

1000/1500 17.9646 154.97 
5.0432  
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5.4 EFFECT OF PERMEABILITY ON PRODUCTIVITY INDEX (PI) 

Analysis on the effect of vertical to horizontal permeability ratio on productivity index has been 

carried out, and the result shows a clear dependency of productivity on vertical permeability 

though a weak one. Equations (4.9) and (4.23) have been employed. 

  

Table 5.3: Results of Permeability ratio and Productivity Index 

𝑘𝑕=400mD 

    𝑘𝑧

𝑘ℎ
 (ratio) 𝑘𝑧 ∆P(Psia) J(STB/D/PSI) 𝑆𝑅  

0.1 40 93.8737 50.5573 3.4805 

0.2 80 90.8802 52.2226 3.1736 

0.3 120 89.0756 53.2806 2.9886 

0.4 160 87.7761 54.0694 2.8553 

0.5 200 86.7586 54.7035 2.751 

0.6 240 85.9218 55.2363 2.6652 

0.7 280 85.2107 55.6972 2.5923 

0.8 320 84.5924 56.1044 2.5289 

0.9 360 84.0452 56.4696 2.4728 

1 400 83.5544 56.8013 2.4225 

 

 

 

Figure 5.3 Relationship between PI and Permeability ratio 
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5.5 EFFECT OF RESERVOIR AREA EXTENT ON PRODUCTIVITY INDEX 

Various area extents (large and small) have been used to observe whether they have any influence 

on productivity index. This analysis was carried out considering a fully completed well case and 

also a partially completed well with penetration ratio of 0.5. From the results, it is observed that, 

large areas contribute less to pressure drop whiles relatively smaller areas give large pressure 

drops. 

 

Table 5.4: Results of Reservoir Drainage Area, Pressure Drop and Productivity Index 

Area (A)×104 

(𝑓𝑡2) 

∆P (Partial 

completion) 

∆P (full 

completion) J (Lp/h=0.5) J (full) 

16 233.623 158.5959 20.3148 29.9251 

50 210.5647 129.7292 22.5394 36.5839 

200 202.3052 129.7292 23.4596 36.5839 

800 191.5374 129.7292 24.7784 36.5839 

1500 183.5672 125.8708 25.8543 37.7053 

2400 178.3039 124.1206 26.6175 38.237 

3500 174.3067 123.139 27.2279 38.5418 

4800 171.0557 122.5164 27.7454 38.7377 
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CHAPTER SIX  

DISCUSSION OF RESULTS 
 

For both closed system case and Bottom water, from figures 4.3 and table 4.5, it is evident that 

productivity index increases with increasing penetration ratio. From figure 4.3, it is observed that 

as penetration ratio increases, there is a decrease in pressure drop and the opposite occurs when 

penetration ratio is decreasing. 

On the normalised productivity index for bottom water case as shown in figure 4.5, it is observed 

that the plot of productivity ratio versus penetration ratio depict a positive slope, which indicates 

that, J ratio increases proportionally with increasing penetration ratio. It further reveals that the 

higher the completion length, the higher the productivity index. 

 

A number of factors which directly or indirectly affect productivity index have been examined such 

as: penetration ratio (completion length), permeability ratio, reservoir area, well position (shape 

factors) and skin due to restricted entry to flow. It is realized that all these factors have their 

influence contributing to high or low productivity. 

 

Pseudo skin as a result of partial completion has been analysed by varying penetration ratio. 

Pseudo skin contributes to excess pressure drop leading to a decrease in productivity index. It is 

observed from figure 5.1 that as completion/perforation interval decreases there is a rise in 

pseudo skin values. It can be concluded that, any small restriction of flow caused by the 

perforation/completion interval has a positive skin associated with it but for an open-hole or a fully 

completed interval of perforation, there is no associated pseudo skin. 

 

The effect of permeability ratio on productivity index gives a positive slope curve in figure 5.3. It is 

established from the graph that productivity index is directly proportional to permeability ratio. 

Whereas a high permeability ratio enhances productivity, a low permeability ratio leads to low 

productivity index. 

Babu and Odeh (1989) carried out the same analysis for horizontal wells and came up with the 

view that, a decrease in vertical permeability by a factor of 4 decreases productivity index (J) by a 

factor of 1.8 for a fully penetrated well, and by a factor of 1.7 for a well with penetration ratio of 

0.5. 
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In a nut shell, one can conclusively remark that, vertical permeability varies proportionally with 

productivity index. Also the results (Table 5.3) show that vertical permeability has an effect on skin 

although a weak one. 

Additionally, it has been ascertained that, well positions affect productivity through the shape 

factors. The optimum position to place a well is at the centre of the drainage area since its effects 

on productivity loss is minimal. More so, the maximum effect of shape factor occurs when skin due 

to partial completion is zero (fully completed well) and pressure drop is minimum as presented in 

table 5.2. On the other hand, off-centred wells and wells placed at the borders of the drainage 

area have very high shape factors. They also contribute most to pressure drops and consequently 

leading to high productivity loss.  

 

From table 5.4, one can observe a larger area extent leading to high productivity and relatively, 

small area extent giving out relatively low values of productivity index. However, the issue of area 

extent on productivity is relative because it would largely depend on the number of wells drilled 

within such an area and also the well position but from this study and considering a single well 

reservoir, it can clearly be stated that large area extent contribute to high productivity index 

relative to small area extent. For off-centred well, pressure drop was equally high as compared to 

centrally positioned wells. 

 

Finally, new shape factors have been obtained for vertical wells from equation (4.28) which is 

similar to Babu and Odeh’s (1989) for horizontal wells. Equation (4.26) (equivalent to Dietz’s shape 

factors formulae) for different reservoir configurations as proposed by Dietz (1965) has also been 

used to calculate shape factors which gave close values for some of the reservoir shapes as 

compared to Dietz shape factors. The results, though not exact has been tabulated (table 4.3). The 

reason for the difference is the limitation to test the equations with real field data and also, the 

computation in the summations is not too stable. The essence of this analysis helps one to predict 

the shape factor of a particular well bore configuration and how much they contribute to 

productivity index gain or loss. 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 
 

7.1  CONCLUSIONS 

1. An analytical model of evaluating productivity index in vertical wells which accounts for the 

effect of pressure drop due to partial completion has been obtained. 

2. For a partially completed vertical well, PI is strongly controlled by the producing length, and 

weakly controlled by pay zone thickness, vertical permeability, well position and reservoir 

size. 

3. For fully penetrated/completed wells, PI is strongly influenced by the well position through 

the shape factors. 

 

7.2 RECOMMENDATIONS 

1. Field data should be used to test the models in order to ascertain their validity 

2. Different productivity equations should be used under different reservoir geometries as 

well as different boundary conditions. 

3. The new shape factor equation (4.28) should be used for wells in rectangular shape 

reservoirs. 

4. The analytical models can be further approximated for easy computation. 

 

 

 

 

 

 

 

 

  



49 

 

NOMENCLATURE 

Symbol     Description     Units 

qo     Oil rate      stb/d 

PI     Productivity Index    stb/d/psi 

Lp     Completion well length   ft 

SR     Skin due to Partial completion 

h     Formation thickness    ft 

Kx     Permeability in x direction   mD 

Ky     Permeability in y direction   mD 

Kz     Permeability in z direction   mD 

Kh     Horizontal Permeability   mD 

J     Productivity Index    stb/d/psi 

a     Length of reservoir    ft 

b     Width of reservoir    ft 

PR     Average reservoir Pressure   Psi 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

REFERENCES 
Ahmed, T.: “Advanced Reservoir Engineering”, 3rd Edition, 2005. Anadarko Petroleum Corporation. 

Babu, D. K. and Odeh, A. S.: “Productivity of a Horizontal Well”. SPE Reservoir Engineering, Vol.4, 

No.4, 417- 421, (Nov, 1989). 

Bilhartz, H.L. Jr. and Ramey, H. J. Jr:  "The Combined Effect of Storage, Skin and Partial Penetration 

on Well Test Analysis," paper SPE 6453 presented at the SPE 52nd Annual Technical Conference 

and Exhibition, Denver, Oct, 9-12, 1977. 

Brons, F. and Martings, V. E.: “The Effect of Restricted Fluid Entry on Well Productivity”. Journal of 

Petroleum Technology, 172-174, (February, 1961).  

Carslaw, H. S., and Jaegar, J. C.: “Conduction of Heat in Solids,” Oxford at the Clarendon Press, 1959, 

2nd Edition, pp. 185. 

Cheng, Y. M.: “Pressure Transient Testing and Productivity Analysis for Horizontal Wells”,   PhD   

Dissertation,   Department   of   Petroleum Engineering, Texas A& M University, 2003. 

Clegg, M. W. and Mills M.: “A study behavior of Partial Penetrated Wells”, July, 1969 

Craft, B. C. and Hawkins, M. F.: “Applied petroleum Reservoir Engineering”, 2nd Edition, 1991. 

Dake, L. P.:   "Fundamentals of reservoir" Elsevier, 1978 

Dietz, D. N.: “Determination of Average Reservoir Pressure from Build-Up Surveys”. J. Pet. Tech., 

August, 1965. 

Earlougher, R. C., Jr., Ramey, H. J., Jr., Miller, F. G., and Mueller, T. D.: “Pressure   Distributions   in   

Rectangular   Reservoir”.  Journal of Petroleum Technology, 199-208, (February, 1968).    

Economides, M.: Petroleum production systems, 1993 

Gringarten, A. C., and Ramey, H. J., Jr.: “The use of Source and Green’s functions in Solving 

Unsteady Flow Problems in Reservoirs,” Soc. Pet. Eng. J. (Oct. 1973) 285-296; Trans., AIME, Vol. 

255. 

GRINGARTEN, A. C. and RAMEY, JR., H.J.: “An Approximate Infinite Conductivity Solution for a 

Partially Penetrating Line-Source Well”. SPE Journal, Vol. 15, No.2, pp. 140-148, April 1975. 

Horne, R. N.: “Modern Well Test Analysis, A computer Aided Approach”, 1990 



51 

 

Igbokoyi, A. O.: “Horizontal Well Technology”, Lecture material delivered at the African University 

of Science and Technology, 2011. 

John, L., John, D. R., and John, P. S.: “Pressure Transient Testing,” SPE Textbook Series, vol. 9, pp. 

223-244, 2003 

Jones, L.G. and Watts, J.W.:  "Estimating skin effect in a partially completed damaged well" JPT 

(February 1971) 249-252 

Kazemi, H.: “Effect of anisotropy and stratification on pressure transient analysis of wells with 

restricted flow entry”. Journal of Canadian Petroleum Technology, May, 1969. 

Khalmanova, K.: “A Mathematical Model of The Productivity Index of A Well”. PhD Dissertation, 

Department of Mathematics, Texas A & M University, 2004.    

Lu, J.: “New productivity formulae of partially penetrating wells”. Journal of Canadian Petroleum 

Technology. 

McDowell, J.M. and Muskat, M.:  "The Effect on Well Productivity of Formation Penetration Beyond 

Perforated Casing," Trans. AlME (1950) 189, 309-312. 

Muskat, M.:  'The Effect of Casing Perforations on Well Productivity," Trans. AlME (1943) lSI, 175-

187. 

Muskat, M.: “The Flow of Homogeneous Fluids through Porous Media”. McGraw-Hill Book Co., Inc., 

New York City, USA, 1949.   

Nisle, R. G.: “The effect of Partial Penetration on Pressure Build-Up in oil wells”. Trans. AIME, Vol. 

213, 1958. 

Odeh, A.S.: “Steady-State Flow capacity of Wells with Limited Entry to Flow,” Soc. Pet. Eng. J. 

(March 1968); Trans., AIME, 243. 

Peacemean,   D.W.: “Recalculation   of   Dietz   Shape   Factor   for Rectangles”. Unsolicited Paper, 

SPE 21256, 1990. 

Reynolds, A.C., Chen, J. C., and Raghavan, R. : “Pseudo-skin factors caused by Partial Penetration,” 

paper SPE 12178 presented at the 1983 SPE Annual Technical Conference and Exhibition, San 

Francisco, Oct, 5-8. 



52 

 

Saidikowski, R.M.:  "Numerical simulation of the combined effects of wellbore damage and partial 

penetration" paper SPE 8204 presented at the 1979 SPE Annual Technical Conference, Las Vegas; 

September 23-26 

Seth, M.S.: “Unsteady-State pressure distribution in a finite reservoir with partial wellbore 

opening”. Journal of Canadian Petroleum Technology, December, 1968. 

Stehfest, H.:   "Numerical Inversion of Laplace Transforms," Algorithm 368, Communications of the 

ACM, Vol. 13, No.1 (January 1970) 47-49. 

Streltsova-Adams, T.:  "Pressure Drawdown in a Well with Limited Entry," J.  Pel Tech.  (Nov.  1979)  

1469-1476. 

Tiab, D., Katherine, M. Freddy, H. E., Matilde, M., Abel, C., Renzon, Z., Sandra, L. N.: “Determination 

of vertical and horizontal permeabilities for vertical oil and gas wells with partial completion and 

partial penetration using pressure and pressure derivative plots without type-curve matching”,  

2005 

Yildiz, T.: “Assessment of total skin factor in perforated wells”. SPE 82249, Colorado School of 

Mines. (2003). 

 

 

 

 

 

 

 

 

 

 

 

  



53 

 

APPENDIX A 

APPENDIX A1: Closed System Pressure Derivation 
From the partial form of the diffusivity equation, 

𝜕2𝑃𝐷

𝜕𝑟2
𝐷

+
1

𝑟𝐷
∙
𝜕𝑃𝐷

𝜕𝑟𝐷
 + 𝛼

𝜕2𝑃𝐷

𝜕𝑧2
𝐷

=
𝜕𝑃𝐷

𝜕𝑡𝐷
                                                                                                         (𝐴1.1) 

Inner boundary condition 

𝐶𝐷

𝜕𝑃𝑤𝐷

𝑑𝑡𝐷
− (𝑟𝐷

𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1             𝑍𝐷1≤𝑍𝐷≤𝑍𝐷2               

= 1                                                                               (𝐴1.2) 

𝑃𝑤𝐷 = 𝑃𝐷−𝑆 (𝑟𝐷
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                                      (𝐴1.3) 

Outer Boundary condition 

(
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟<𝑟𝑒𝐷

= 0                                                                                                                                          (𝐴1.4)  

Taking Laplace Transform of equation (A1.1); *u=Laplace variable+ 

𝑑2𝑃̅𝐷

𝑑𝑟𝐷
2 +

1

𝑟𝐷
∙
𝑑𝑃̅𝐷

𝑑𝑟𝐷
+ 𝛼

𝑑2𝑃̅𝐷

𝑑𝑧𝐷
2 = 𝑢𝑃̅𝐷                                                                                                      (𝐴1.5) 

Inner Boundary conditions 

𝐶𝐷𝑢𝑃̅𝐷 − (
𝑟𝐷𝑑𝑃̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑢
                                                                                                                (𝐴1.6) 

𝑃̅𝑤𝐷 = 𝑃̅𝐷 − 𝑆 (𝑟𝐷
𝜕𝑃̅𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                             (𝐴1.7) 

Outer Boundary Condition 

(
𝜕𝑃̅𝐷

𝜕𝑟𝐷
)

𝑟<𝑟𝑒𝐷

= 0                                                                                                                                (𝐴1.8) 

Taking Fourier Transform of equation (A1.5) 

𝑑2𝑃𝐷
̅̅ ̅̂

𝑑𝑟𝐷
2 +

1

𝑟𝐷

𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
− (𝑛2𝜋2𝛼 + 𝑢)𝑃̂̅𝐷 = 0                                                                                           (𝐴1.9) 

Inner Boundary conditions 

𝐶𝐷𝑢𝑃̅𝑤𝐷 −  (
𝑟𝐷𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑢
∫ cos ( 𝑛𝜋𝑧𝐷)𝑑𝑧𝐷            

𝑧𝐷2

𝑧𝐷1

                                                (𝐴1.10) 

𝐶𝐷𝑢𝑃̂̅𝑤𝐷 − (
𝑟𝐷𝜕𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑛𝜋𝑢
,sin ( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-                                          (𝐴1.11) 
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𝑃̂̅𝑤𝐷 = 𝑃̂̅𝐷 − 𝑆 (𝑟𝐷
𝜕𝑃̅𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                      (𝐴1.12) 

Outer Boundary Condition 

(
𝜕𝑃̂̅𝐷

𝜕𝑟𝐷
)

𝑟<𝑟𝑒𝐷

= 0                                                                                                                            (𝐴1.13) 

Equation (A1.9) is in Bessel form; 

𝑃̂̅𝐷 = 𝐴𝐼0 .𝑟𝐷√(𝑛2𝜋2𝛼 + 𝑢)/ + 𝐵𝐾0 .𝑟𝐷√(𝑛2𝜋2𝛼 + 𝑢)/                                                 (𝐴1.14) 

From Outer B.C. Differentiating equation (A1.10) with respect to rD 

(
𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

= 𝐴√(𝑛2𝜋2𝛼 + 𝑢) 𝐼1 .𝑟𝐷√𝑛2𝜋2𝛼 + 𝑢/

− 𝐵√𝑛2𝜋2𝛼 + 𝑢 𝐾1 .𝑟𝐷√(𝑛2𝜋2𝛼 + 𝑢)/                                                     (𝐴1.15) 

Let 𝑛2𝜋2𝛼 + 𝑢 = 𝑓 𝑎𝑛𝑑 𝑟 = 𝑟𝑒𝐷 ,   .
𝜕𝑃̅𝐷

𝜕𝑟𝐷
/

𝑟<𝑟𝑒𝐷

 = 0 

𝐴√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝐵√𝑓𝐾1(𝑟𝑒𝐷√𝑓) = 0                                                                                   (𝐴1.16) 

𝐴 =
𝐵√𝑓𝐾1(𝑟𝑒𝐷√𝑓)

√𝑓𝐼1(𝑟𝑒𝐷√𝑓)
=

𝐵𝐾1(𝑟𝑒𝐷√𝑓)

𝐼1(𝑟𝑒𝐷√𝑓)
                                                                                      (𝐴1.17) 

Therefore, .
𝜕𝑃̂̅𝐷

𝜕𝑟𝐷
/

𝑟𝐷=1

= 𝐴√𝑓𝐼1(√𝑓) − 𝐵√𝑓𝐾1(√𝑓)                                                                (𝐴1.18)     

Substitute equation (A1.18) and (A1.9) into equation (A1.16) 

𝑃̂̅𝑤𝐷 = 𝐴𝐼0(√𝑓) + 𝐵𝐾0(√𝑓) − 𝑆⌈𝐴√𝑓𝐼1(√𝑓) − 𝐵√𝑓𝐾1(√𝑓)⌉                                       (𝐴1.19) 

Substitute for A in equation (A1.19) with equation (A1.17) 

𝑃̂̅𝑤𝐷 =
𝐵𝐾1(𝑟𝑒𝐷√𝑓)

𝐼1(𝑟𝑒𝐷√𝑓)
𝐼0(√𝑓) + 𝐵𝐾0√𝑓

− 𝑆 *
𝐵𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)

𝐼1(𝑟𝑒𝐷√𝑓)
∙ 𝐼1(√𝑓) − 𝐵√𝑓𝐾1(√𝑓)+                                    (𝐴1.20) 

Multiply through by 𝐼1(𝑟𝑒𝐷√𝑓) 

𝑃̂̅𝑤𝐷

=
𝐵𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐵𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐵𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆𝐵√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)

𝐼1(𝑟𝑒𝐷√𝑓)
  

(𝐴1.21) 

𝑃̂̅𝑤𝐷𝐼1(𝑟𝑒𝐷√𝑓) = 𝐵[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) +

𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]                                                                                                                     (𝐴1.22)  
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𝐵 =
𝑃̂̅𝑤𝐷𝐼1(𝑟𝑒𝐷√𝑓)

[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]
 

(𝐴1.23) 

𝐴 =
𝑃̂̅𝑤𝐷𝐾1(𝑟𝑒𝐷√𝑓)

[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]
 

(𝐴1.24) 

(
𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
𝑃̂̅𝑤𝐷√𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1√𝑓 − 𝑃̂̅𝑤𝐷√𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1√𝑓

[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]
 

(𝐴1.25) 

From the inner boundary condition of the wellbore storage (A1.11), substitute equation (A1.25); 

𝐶𝐷𝑢𝑃̂̅𝑤𝐷

−
𝑃̂̅𝑤𝐷√𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1√𝑓 − 𝑃̂̅𝑤𝐷√𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1√𝑓

[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]

=
1

𝑛𝜋𝑢
,sin ( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-                                                                                                   (𝐴1.26) 

Now let: 

𝜃 =
1

𝑛𝜋𝑢
,sin( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓)

− 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]                                   (𝐴1.27𝑎) 

∃= 0𝐶𝐷𝑢[𝐾1(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝑆𝐾1(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓)

+ 𝑆√𝑓𝐾1(√𝑓)𝐼1(𝑟𝑒𝐷√𝑓)]1 − √𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1√𝑓 + √𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1√𝑓 

(𝐴1.27𝑏) 

𝑃̂̅𝑤𝐷 =
𝜃

∃
                                                                                                                                               (𝐴1.27𝑐) 

  Invert from Fourier to Laplace space  

𝑃̂̅𝑤𝐷 =
1

𝑕𝑓𝐷

∑
𝜃

∃

∞

𝑛<0

(cos 𝑛𝜋𝑧𝐷)                                                                                                                                  (𝐴1.28) 

 

lim𝑎𝑠 𝑛 → 0 

lim
𝑛→0

𝜃

∃
(cos𝑛𝜋𝑧𝐷)                                                                                                                           (𝐴1.29) 
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Taking limits: 𝑛 → 0, sin(n)=n, cos(n)=1, tan(n)=0, note √𝑓 = √𝑛2𝜋2𝛼 + 𝑢 = √𝑢    𝑎𝑠 𝑛 → 0 

𝐺 = [𝐾1(𝑟𝑒𝐷√𝑢)𝐼0√𝑢 + 𝐾0√𝑓𝐼1(𝑟𝑒𝐷√𝑢) − 𝑆𝐾1(√𝑢)(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢)

+ 𝑆√𝑓𝐾1(√𝑢)𝐼1(𝑟𝑒𝐷√𝑢)]                                                                             (𝐴1.30𝑎) 

Now, from equation (A1.30a) and (A1.27b); 

𝑃̅𝑤𝐷 =
(𝑧𝐷2 − 𝑧𝐷1)𝐺

∃
                                                                                                                 (𝐴1.30𝑏)  

   

Now, 𝑕𝑓𝐷 = 𝑧𝐷2 − 𝑧𝐷1 

𝑃̅𝑤𝐷 =
1

𝑕𝑓𝐷

*
(𝑧𝐷2 − 𝑧𝐷1)𝐺

∃
+

+ [
1

𝑕𝑓𝐷

∑
1

𝑛𝜋𝑢
(
,sin( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-𝐺

∃
) (cos𝑛𝜋𝑧𝐷)

∞

𝑛=1

]                                 (𝐴1.31)  

  

𝑃̅𝑤𝐷 =
𝐺

∃
+ [

1

𝑕𝑓𝐷

∑
1

𝑛𝜋𝑢
(
,sin( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-𝐺

∃
) (cos𝑛𝜋𝑧𝐷)

∞

𝑛<1

]                                                   (𝐴1.32) 

 

 

Final Equations for Closed system after inversion from Laplace space 

𝑃𝑤𝐷 =
5.274 × 10;4𝑘𝑡

∅𝜇𝐶𝑡𝑟𝑒2
−

3

4
+ 𝑙𝑛 (

𝑟𝑒
𝑟𝑤

)

+
1

𝑕𝑓𝐷
∑

−1

𝑛2𝜋2√𝛼

∞

𝑛<1

,*
𝐾1(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐼0(𝑛𝜋√𝛼) + 𝐾0(𝑛𝜋√𝛼)𝐼1(𝑟𝑒𝐷𝑛𝜋√𝛼)

𝐾1(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐼1(𝑛𝜋√𝛼) − 𝐼1(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐾1(𝑛𝜋√𝛼)
+

∙ ,cos(𝑛𝜋𝑧𝐷)((sin(𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1))--                                                 (𝐴1.33) 

 

 CD is the dimensionless wellbore storage and S is the skin 

 u is the Laplace space variable, K0 and K1 are the modified Bessel K, second kind of order 

zero and one respectively 

 I0 and I1 are modified Bessel I, first kind of the order zero and one respectively. 

 hfD is the dimensionless thickness of the ratio 
𝑕𝑝

𝑕
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APPENDIX A2: Constant Pressure Boundary Pressure Derivation 

  
From the partial form of the diffusivity equation, 

 

𝜕2𝑃𝐷

𝜕𝑟2
𝐷

+
1

𝑟𝐷
∙
𝜕𝑃𝐷

𝜕𝑟𝐷
 + 𝛼

𝜕2𝑃𝐷

𝜕𝑧2
𝐷

=
𝜕𝑃𝐷

𝜕𝑡𝐷
                                                                                                        (𝐴2.1) 

Inner boundary conditions 

𝐶𝐷

𝜕𝑃𝑤𝐷

𝑑𝑡𝐷
− (𝑟𝐷

𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1             𝑍𝐷1≤𝑍𝐷≤𝑍𝐷2               

= 1                                                                               (𝐴2.2) 

𝑃𝑤𝐷 = 𝑃𝐷−𝑆 (𝑟𝐷
𝜕𝑃𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                                       (𝐴2.3) 

Outer Boundary condition; 

𝑃𝐷(𝑟𝑒𝐷, 𝑡𝐷) = 0                          𝑟𝑒𝐷 =
𝑟𝑒
𝑟𝑤

                                                                                                (𝐴2.4) 

Taking Laplace Transform; *u=Laplace variable+ 

𝑑2𝑃̅𝐷

𝑑𝑟𝐷
2 +

1

𝑟𝐷
∙
𝑑𝑃̅𝐷

𝑑𝑟𝐷
+ 𝛼

𝑑2𝑃̅𝐷

𝑑𝑧𝐷
2 = 𝑢𝑃̅𝐷                                                                                                      (𝐴2.5) 

Inner Boundary conditions 

𝐶𝐷𝑢𝑃̅𝐷 − (
𝑟𝐷𝑑𝑃̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑢
                                                                                                               (𝐴2.6) 

𝑃̅𝑤𝐷 = 𝑃̅𝐷 − 𝑆 (𝑟𝐷
𝜕𝑃̅𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                             (𝐴2.7) 

 

Taking Fourier Transform 

𝑑2𝑃𝐷
̅̅ ̅̂

𝑑𝑟𝐷
2 +

1

𝑟𝐷

𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
− (𝑛2𝜋2𝛼 + 𝑢)𝑃̂̅𝐷 = 0                                                                                             (𝐴2.8) 

 

 

Inner Boundary Conditions 

𝐶𝐷𝑢𝑃̅𝑤𝐷 −  (
𝑟𝐷𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑢
∫ cos ( 𝑛𝜋𝑧𝐷)𝑑𝑧𝐷            

𝑍𝐷2

𝑍𝐷1

                                                     (𝐴2.9) 
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𝐶𝐷𝑢𝑃̂̅𝑤𝐷 − (
𝑟𝐷𝜕𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
1

𝑛𝜋𝑢
,sin ( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-                                               (𝐴2.10) 

𝑃̂̅𝑤𝐷 = 𝑃̂̅𝐷 − 𝑆 (𝑟𝐷
𝜕𝑃̅𝐷

𝜕𝑟𝐷
)

𝑟𝐷=1

                                                                                                      (𝐴2.11) 

Outer B.C 

𝑃̂̅𝐷(𝑟𝑒𝐷, 𝑢) = 0           𝑟𝑒𝐷 =
𝑟𝑒
𝑟𝑤

                                                                                                 (𝐴2.12) 

Now, from equation (A2.8), Solution is in Bessel function form as 

𝑃̂̅𝐷 = 𝐴𝐼0 .𝑟𝐷√(𝑛2𝜋2𝛼 + 𝑢)/ + 𝐵𝐾0 .𝑟𝐷√(𝑛2𝜋2𝛼 + 𝑢)/                                                 (𝐴2.13) 

Differentiating with respect to rD 

(
𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

= 𝐴√(𝑛2𝜋2𝛼 + 𝑢) 𝐼1 .𝑟𝐷√𝑛2𝜋2𝛼 + 𝑢/

− 𝐵√𝑛2𝜋2𝛼 + 𝑢 𝐾1√𝑛2𝜋2𝛼 + 𝑢                                                                 (𝐴2.14) 

Let 𝑛2𝜋2𝛼 + 𝑢 = 𝑓 𝑎𝑛𝑑 𝑟𝐷 = 𝑟𝑒𝐷, 

From outer Boundary Condition; 

𝑃𝐷(𝑟𝑒𝐷, 𝑢) = 0                                                                                                                                (𝐴2.15) 

Therefore 

𝐴𝐼0(𝑟𝐷√𝑓) + 𝐵𝐾0(𝑟𝐷√𝑓) = 0                                                                                                  (𝐴2.16) 

𝐴 = −
𝐵𝐾0(𝑟𝑒𝐷√𝑓)

𝐼0(𝑟𝑒𝐷√𝑓)
                                                                                                                     (𝐴2.17) 

Therefore; 

(
𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

= 𝐴√𝑓𝐼1(𝑟𝑒𝐷√𝑓) − 𝐵√𝑓𝐾1(𝑟𝑒𝐷√𝑓) = 0                                                        (𝐴2.18) 

Substitute equation (A2.13) and (A2.14) into equation (A2.11) 

𝑃̂̅𝑤𝐷 = 𝐴𝐼0(√𝑓) + 𝐵𝐾0(√𝑓) − 𝑆⌈𝐴√𝑓𝐼1(√𝑓) − 𝐵√𝑓𝐾1(√𝑓)⌉                                       (𝐴2.19) 

Substituting equation (A2.17) into equation (A2.19), we obtain: 

𝑃̂̅𝑤𝐷 =
−𝐵𝐾0(𝑟𝑒𝐷√𝑓)

𝐼0(𝑟𝑒𝐷√𝑓)
∙ 𝐼0(√𝑓) + 𝐵𝐾0√𝑓

− 𝑆 *
𝐵𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)

𝐼0(𝑟𝑒𝐷√𝑓)
∙ 𝐼1(√𝑓) − 𝐵√𝑓𝐾1(√𝑓)+                                    (𝐴2.20) 

Multiplying through by 𝐼0(𝑟𝑒𝐷√𝑓); 
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𝑃̂̅𝑤𝐷

=
−𝐵𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐵𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐵(√𝑓)𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆𝐵√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)

𝐼0(𝑟𝑒𝐷√𝑓)
   

(𝐴2.21) 

𝐵

=
𝑃̂̅𝑤𝐷𝐼0(𝑟𝑒𝐷√𝑓)

[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆(√𝑓)𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]
     

(𝐴2.22) 

 

Substitute (A2.22) into equation (A2.16) 

𝐴

=
𝑃̂̅𝑤𝐷𝐾0(𝑟𝑒𝐷√𝑓)

[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]
     

(𝐴2.23) 

Substitute (A2.22) and (A2.23) into equation (A2.18) 

(
𝑑𝑃̂̅𝐷

𝑑𝑟𝐷
)

𝑟𝐷=1

=
𝑃̂̅𝑤𝐷√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) − 𝑃̂̅𝑤𝐷√𝑓𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)

[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]
 

(𝐴2.24) 

From well bore storage equation, (A2.10), substitute equation (A2.24) into that inner boundary 

condition 

𝐶𝐷𝑢𝑃̂̅𝑤𝐷

−
−𝑃̂̅𝑤𝐷√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑃̂̅𝑤𝐷√𝑓𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)

[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]

=
1

𝑛𝜋𝑢
,sin ( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-                                                                                          (𝐴2.25) 

Multiply through by the denominator and make 𝑃̂̅𝑤𝐷 the subject 

Let the denominator be represented by the letter X 

𝐶𝐷𝑢𝑃̂̅𝑤𝐷. 𝑋 − .−𝑃̂̅𝑤𝐷√𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑃̂̅𝑤𝐷√𝑓𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)/

=
𝑋

𝑛𝜋𝑢
,sin ( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-                                                              (𝐴2.26) 

Let D and E represent the following; 
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𝐷 = ,sin( 𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)-[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓)

+ 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]                                                   

And 

𝐸 =

.𝐶𝐷𝑢[−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) +

𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)] + √𝑓𝐾0(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) −

√𝑓𝐼0(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)/                                                

Therefore, we can write the dimensionless pressure at the wellbore as: 

𝑃̂̅𝑤𝐷 =
1

𝑛𝜋𝑢

𝐷

𝐸
                                                                                                                                       (𝐴2.27) 

 

Inversion from Fourier to Laplace space 

𝑃̅𝑤𝐷 =
1

𝑕𝑓𝐷
∑

1

𝑛𝜋𝑢

𝐷

𝐸

∞

𝑛<1

                                                                                                                       (𝐴2.28) 

  

lim𝑎𝑠 𝑛 → 0 

lim
𝑛→0

1

𝑛𝜋𝑢

𝐷
𝐸

                                                                                                                                           (𝐴2.29) 

Taking limits: 𝑛 → 0, sin(n)=n, cos(n)=1, tan(n)=0, note √𝑓 = √𝑛2𝜋2𝛼 + 𝑢 = √𝑢    𝑎𝑠 𝑛 → 0 

Let  

𝐹 = [−𝐾0(𝑟𝑒𝐷√𝑓)𝐼0√𝑓 + 𝐾0√𝑓𝐼0(𝑟𝑒𝐷√𝑓) + 𝑆𝐾0(√𝑓)(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + 𝑆√𝑓𝐾1(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)]                      

𝑃̅𝑤𝐷 =
(𝑧𝐷2 − 𝑧𝐷1) ∗ 𝐹

𝐸
                                                                                                                                          (𝐴2.30) 

   

Now, 𝑕𝑓𝐷 = 𝑧𝐷2 − 𝑧𝐷1 

𝑃̅𝑤𝐷 =
1

𝑕𝑓𝐷

(𝑧𝐷2 −𝑧𝐷1) ∗ 𝐹
𝐸

+
1

𝑕𝑓𝐷

∑
1

𝑛𝜋𝑢

𝐷 cos(𝑛𝜋𝑧𝐷)

𝐸

∞

𝑛<1

                                                                                (𝐴2.31) 

 

𝑃̅𝑤𝐷 =
𝐹
𝐸

+
1

𝑕𝑓𝐷

∑
1

𝑛𝜋𝑢

𝐷 cos(𝑛𝜋𝑧𝐷)

𝐸

∞

𝑛<1

                                                                                                                        (𝐴2.32) 

  

𝐶𝐷 → 0 𝑎𝑛𝑑 𝑆 → 0, and leaves the above dimensionless pressure equation at the well without skin 

and wellbore storage effects as shown in the equation below: 
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𝑃̅𝑤𝐷

=
−1

𝑢
3
2

*
𝐾0(𝑟𝑒𝐷√𝑢)𝐼0(√𝑢) − 𝐾0(√𝑢)𝐼0(𝑟𝑒𝐷√𝑢)

𝐾0(𝑟𝑒𝐷√𝑢)𝐼1(√𝑢) + 𝐼0(𝑟𝑒𝐷√𝑢)𝐾1(√𝑢)
+

+
1

𝑕𝑓𝐷
∑

−1

𝑛𝜋𝑢
*
(sin 𝑛𝜋𝑧𝐷2 − sin 𝑛𝜋𝑧𝐷1)𝐾0(𝑟𝑒𝐷√𝑓)𝐼0(√𝑓) − 𝐾0(√𝑓)𝐼0(𝑟𝑒𝐷√𝑓)

√𝑓𝐾1(𝑟𝑒𝐷√𝑓)𝐼1(√𝑓) + √𝑓𝐼1(𝑟𝑒𝐷√𝑓)𝐾1(√𝑓)
+

∞

𝑛<1

× cos(𝑛𝜋𝑧𝐷)                                                                                                                                      (𝐴2.33) 

This is the equation after inverting from Laplace space 

𝑃𝑤𝐷 = 𝑙𝑛(𝑟𝑒𝐷)

+
1

𝑕𝑓𝐷
∑

−1

𝑛2𝜋2√𝛼

∞

𝑛<1

,*
𝐾0(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐼0(𝑛𝜋√𝛼) − 𝐾0(𝑛𝜋√𝛼)𝐼1(𝑟𝑒𝐷𝑛𝜋√𝛼)

𝐾0(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐼1(𝑛𝜋√𝛼) + 𝐼0(𝑟𝑒𝐷𝑛𝜋√𝛼)𝐾1(𝑛𝜋√𝛼)
+

∗ cos(cos𝑛𝜋𝑧𝐷) ,sin(𝑛𝜋𝑧𝐷2) − sin(𝑛𝜋𝑧𝐷1)--                                                  (𝐴2.34) 

 

 CD and S are the dimensionless wellbore storage and skin respectively 

 u, K0, K1, I0, I1, 𝑕𝑓𝐷 have the same meaning as defined in Appendix A1. 
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APPENDIX B 

PREAMBLE TO THE GENERAL SOLUTION TO APPENDIX B1, B2 and B3 
The general expression for ∆P at an arbitrary point (x,y,z) was obtained by integrating the 

appropriate point sink functions. The vertical well (line sink) is parallel to the z-axis and located 

along x=xo, y=yo, and z1 ≤ z ≤ z2. 

These point sink functions were integrated twice along the vertical direction (z) of the well and 

time 𝜏, in order to obtain a line source solution as seen in the following expressions: 

∆𝑃 = 𝑃𝑖 − 𝑃(𝑥, 𝑦, 𝑧, 𝑡) = [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿𝛼
]∫ ∫ (𝑆1. 𝑆2. 𝑆3)

𝑧2

𝑧1

𝑡

0

𝑑𝑧𝑜𝑑𝜏                                            (𝐵. 1) 

With: 

𝛼 = 157.952∅𝜇𝐶𝑡  𝑑𝑎𝑦𝑠                                                                                                                 (𝐵. 2) 

𝐿 = (𝑧2 − 𝑧1)  → 𝑙𝑒𝑛𝑔𝑕𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑒𝑙𝑙, 𝑓𝑡                                                                         (𝐵. 3) 

S1, S2, S3 denote the point sink functions. Carslaw and Jaegar have shown that Ƭ is time. 

And a, b and h are distances in the x, y and z directions, and for an anisotropy case, a, b and h are 

not equal and also𝑘𝑥 ≠ 𝑘𝑦; 𝑥𝑜 ≠ 𝑦𝑜; and √
𝑘𝑦

𝑘𝑥
≠ 1. 𝑥𝑜 , 𝑦𝑜 ,  𝑎𝑛𝑑 𝑧𝑜 = 𝑧 are respectively the well 

positions in the x direction, y direction and the z direction. 

The reservoir is considered to be of a rectangular shape with the well at its centre.  

 

APPENDIX B1: Closed System 
The following point source functions depicting a no-flow boundary case from Gringarten and 

Ramey are used. Here, S1 , S2, and S3 are the instantaneous point sink functions (Green’s Functions) 

located at (xo, yo, zo) and satisfying the zero flux boundary conditions at x = 0, a; y= 0, and z = 0.  

𝑆1 = 𝑆1(𝑥, 𝑥𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1

cos
𝑛𝜋𝑥𝑜

𝑎
𝑒𝑥𝑝 *−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
+                                         (B1.1) 

𝑆2 = 𝑆2(𝑦, 𝑦𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑚𝜋𝑦

𝑏

∞

𝑚<1

cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝 *−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
+                                   (B1.2) 

𝑆3 = 𝑆3(𝑧, 𝑧𝑜 , 𝜏) = 1 + 2∑cos
𝑙𝜋𝑧

𝑕

∞

𝑙<1

cos
𝑙𝜋𝑧𝑜

𝑕
𝑒𝑥𝑝 *−

𝑙2𝜋2𝑘𝑧𝜏

𝛼𝑕2
+                                           (B1.3) 

These Green’s functions can be expressed as: 
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∫ ∫ (𝑆1. 𝑆2. 𝑆3)
𝑧2

𝑧1

𝑡

0

𝑑𝑧𝑜𝑑𝜏

= [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝛼
] [𝑡 +

2𝛼𝑎2

𝜋2𝑘𝑥
∑

cos𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
𝑛2

(1 − 𝑒𝑥𝑝(
−𝑛2𝜋2𝑘𝑥𝑡

𝛼𝑎2
))

∞

𝑛<1

+
2𝛼𝑎2

𝜋2𝑘𝑦
∑

cos𝑚𝜋𝑦
𝑎

cos𝑚𝜋𝑦𝑜

𝑎
𝑚2

(1 − 𝑒𝑥𝑝(
−𝑚2𝜋2𝑘𝑦𝑡

𝛼𝑏2
))

∞

𝑚<1

+
4𝛼

𝜋2
∑

cos𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
cos𝑚𝜋𝑦

𝑏
cos𝑚𝜋𝑦𝑜

𝑏

[
𝑛2𝑘𝑥

𝑎2 +
𝑚2𝑘𝑦

𝑏2 ]

(1 − 𝑒𝑥𝑝(
−𝑛2𝜋2𝑘𝑥𝑡

𝛼𝑎2
 
−𝑚2𝜋2𝑘𝑦𝑡

𝛼𝑏2
))

∞

𝑛,𝑚

+
2𝛼𝑕3

𝜋3𝑘𝑧(𝑧2 − 𝑧1)
∑

cos 𝑙𝜋𝑧
𝑕

0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙3
(1 − 𝑒𝑥𝑝(

−𝑙2𝜋2𝑘𝑧𝑡

𝛼𝑕2
))

𝑙

+
4𝛼𝑕

𝜋3(𝑧2 − 𝑧1)
∑

cos 𝑛𝜋𝑥
𝑎

cos 𝑛𝜋𝑥𝑜

𝑎
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑛2𝑘𝑥

𝑎2 +
𝑙2𝑘𝑧

𝑕2 ]
(1

𝑙,𝑛

− 𝑒𝑥𝑝 (
−𝑙2𝜋2𝑘𝑧𝑡

𝛼𝑕2
 
−𝑛2𝜋2𝑘𝑋𝑡

𝛼𝑎2
))𝑎

+
4𝛼𝑕

𝜋3(𝑧2 − 𝑧1)
∑

cos𝑚𝜋𝑦
𝑏

cos𝑚𝜋𝑦𝑜

𝑏
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑚2𝑘𝑦

𝑏2 +
𝑙2𝑘𝑧

𝑕2 ]

(1

𝑙,𝑚

− 𝑒𝑥𝑝 (
−𝑙2𝜋2𝑘𝑧𝑡

𝛼𝑕2
 
−𝑚2𝜋2𝑘𝑦𝑡

𝛼𝑏2
))

+
4𝛼𝑕

𝜋2(𝑧2 − 𝑧1)
∑

cos 𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
cos𝑚𝜋𝑦

𝑏
cos𝑚𝜋𝑦𝑜

𝑏
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕
−

sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑛2𝑘𝑥

𝑎2 +
𝑚2𝑘𝑦

𝑏2 +
𝑙2𝑘𝑧

𝑕2 ]

(1

∞

𝑛,𝑙,𝑚

− 𝑒𝑥𝑝 (
−𝑙2𝜋2𝑘𝑧𝑡

𝛼𝑕2
 
−𝑛2𝜋2𝑘𝑥𝑡

𝛼𝑎2

−𝑚2𝜋2𝑦𝑡

𝛼𝑏
 ))]                                                                       (𝐵1.4) 

For pseudo steady state (large time) behaviour of ∆P in the equation above, let 𝑡 → ∞, and the all 

terms in the exponential factors are dropped: 

𝑃𝑖 − 𝑃(𝑥, 𝑦, 𝑧; 𝑡 → ∞) =

0
886.9𝐵𝜇𝑞

𝛼𝑎𝑏𝑕
1 [𝑡

𝑎𝑏

2𝜋√𝑘𝑥𝑘𝑦
(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑧 + 𝑃𝑥𝑦 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧)]                                                (𝐵1.5) 
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Where: 

𝑃𝑥 =
4𝑎

𝜋𝑏
√

𝑘𝑦

𝑘𝑥
∑

cos𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
𝑛2

𝑛<1

                                                                                                     (B1.6) 

𝑃𝑦 =
4𝑏

𝜋𝑎
√

𝑘𝑥

𝑘𝑦
∑

cos𝑚𝜋𝑦
𝑏

cos𝑚𝜋𝑦𝑜

𝑏
𝑚2

𝑚<1

                                                                                                   (B1.7) 

𝑃𝑧 = *
4𝑕3√𝑘𝑥𝑘𝑦

𝜋2𝐿𝑎𝑏𝑘𝑧

+∑

cos 𝑙𝜋𝑧
𝑕

0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙3
𝑙<1

                                                                         (B1.8) 

𝑃𝑥𝑦 = *
8√𝑘𝑥𝑘𝑦

𝜋𝑎𝑏
+ ∑

cos 𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
𝑐𝑜𝑠𝑚𝜋𝑦

𝑏
𝑐𝑜𝑠𝑚𝜋𝑦𝑜

𝑏

[
𝑛2𝑘𝑥

𝑎2 +
𝑚2𝑘𝑦

𝑏2 ]𝑛,𝑚<1

                                                         (B1.9) 

𝑃𝑥𝑧 = *
8𝑕√𝑘𝑥𝑘𝑦

𝜋2𝐿𝑎𝑏
+ ∑

cos𝑛𝜋𝑥
𝑎

cos 𝑛𝜋𝑥𝑜

𝑎
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑛2𝑘𝑥

𝑎2 +
𝑙2𝑘𝑧

𝑕2 ]𝑛,𝑙<1

                                  (B1.10) 

𝑃𝑦𝑧 = *
8𝑕√𝑘𝑥𝑘𝑦

𝜋2𝐿𝑎𝑏
+ ∑

cos 𝑛𝜋𝑥
𝑏

cos 𝑛𝜋𝑥𝑜

𝑏
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑚2𝑘𝑦

𝑏2 +
𝑙2𝑘𝑧

𝑕2 ]𝑛,𝑙<1

                                     (B1.11) 

𝑃𝑥𝑦𝑧

= *
16𝑕√𝑘𝑥𝑘𝑦

𝜋2𝐿𝑎𝑏
+ ∑

cos𝑛𝜋𝑥
𝑎

cos𝑛𝜋𝑥𝑜

𝑎
cos𝑚𝜋𝑦

𝑏
cos𝑚𝜋𝑦𝑜

𝑏
cos 𝑙𝜋𝑧

𝑕
0
sin 𝑙𝜋𝑧2

𝑕 −
sin 𝑙𝜋𝑧1

𝑕
1

𝑙 [
𝑛2𝑘𝑥

𝑎2 +
𝑚2𝑘𝑦

𝑏2 +
𝑙2𝑘𝑧

𝑕2 ]𝑛,𝑙,𝑚<1

      (B1.12) 

 

By averaging equation three over the entire reservoir region 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑕, we 

obtain *(𝑃𝑥 + 𝑃𝑦 + 𝑃𝑧 + 𝑃𝑥𝑦 + 𝑃𝑧𝑥 + 𝑃𝑧𝑦 + 𝑃𝑥𝑦𝑧)average to zero identically+ 

Therefore equation (B1.5) becomes: 

𝑃𝑖 − 𝑃̅𝑅 = [
886.9𝐵𝜇𝑞

𝛼𝑎2𝑕
] 𝑡                                                                                                                    (𝐵1.13) 

Now subtracting equation (B1.13) from equation (B1.15), yields the general formula for the pseudo 

steady state pressure drop at an arbitrary point (x,y,z) in the reservoir. 

∆𝑃 = (𝑃̅𝑅 − 𝑃) = *
141.15𝐵𝜇𝑞

𝑕√𝑘𝑥𝑘𝑦

+ [𝑃𝑥 + 𝑃𝑦 + 𝑃𝑧 + 𝑃𝑥𝑦 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧]            (𝐵1.14)    

The above equation is for partial penetration 

For full completion: 

∆𝑃 = (𝑃̅𝑅 − 𝑃) = *
141.15𝐵𝜇𝑞

𝑕√𝑘𝑥𝑘𝑦

+ [𝑃𝑥 + 𝑃𝑦 + 𝑃𝑥𝑦]                                                         (𝐵1.16)      
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APPENDIX B2: Bottom Water 
The flowing point source functions from Gringarten and Ramey are used. 

Recall S1 and S2 from Appendix B1; 

𝑆1 = 𝑆1(𝑥, 𝑥𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1

cos
𝑛𝜋𝑥𝑜

𝑎
𝑒𝑥𝑝 *−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
+                                    (B1.1) 

𝑆2 = 𝑆2(𝑦, 𝑦𝑜 , 𝜏) = 1 + 2 ∑ cos
𝑚𝜋𝑦

𝑏

∞

𝑚<1

cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝 *−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
+                                 (B1.2) 

 

𝑆3 = ∑cos(2𝑙 + 1)
𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙 + 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+                                    (B2.1) 

These Green’s functions can be expressed as: 

 

𝑆1𝑆2𝑆3 = [1 + 2 ∑ cos
𝑛𝜋𝑥

𝑎
cos

𝑛𝜋𝑥𝑜

𝑎
𝑒𝑥𝑝(−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
)

∞

𝑛<1

+ 2 ∑ cos
𝑚𝜋𝑦

𝑏

∞

𝑚<1

cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝(−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
)

+ 4 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1
𝑚<1

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝(−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2

−
𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
)]∑cos(2𝑙 + 1)

𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙

+ 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+             (𝐵2.2𝑎) 
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𝑆1𝑆2𝑆3 = ∑cos(2𝑙 + 1)
𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙 + 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+

+ 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎

∞

𝑛<1
𝑙<1

𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧

𝑕
𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧𝑜

𝑕
 𝑒𝑥𝑝(−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2

−
(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)

+ 2 ∑ cos
𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏

∞

𝑚<1
𝑙<1

𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧

𝑕
𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧𝑜

𝑕
𝑒𝑥𝑝(−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2

−
(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)

+ cos
𝑚𝜋𝑦𝑜

𝑏
𝑒𝑥𝑝(−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
)

+ 4 ∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<1
𝑚<1
𝑙<1

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧

𝑕
𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧𝑜

𝑕
𝑒𝑥𝑝 (−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)                  (𝐵2.2𝑏) 
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∫ 𝑆1 𝑆2 𝑆3𝑑𝑧𝑜

𝑧2

𝑧1

=
𝑕

𝜋(2𝑙 + 1)
∑𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧

𝑕

∞

𝑙

*sin
(2𝑙 + 1)𝜋𝑧2

𝑕

− sin
(2𝑙 + 1)𝜋𝑧1

𝑕
+ 𝑒𝑥𝑝 (−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)

+
2𝑕

𝜋(2𝑙 + 1)
∑ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎

∞

𝑛<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ 𝑒𝑥𝑝(−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)

+
2𝑕

𝜋(2𝑙 + 1)
∑ cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏

∞

𝑚<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ 𝑒𝑥𝑝 (−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2
−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)

+
4𝑕

𝜋(2𝑙 + 1)
∑ cos

𝑛𝜋𝑥

𝑎

∞

𝑛<1
𝑚<1
𝑙<1

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ 𝑒𝑥𝑝 (−

𝑛2𝜋2𝑘𝑥𝜏

𝛼𝑎2
−

𝑚2𝜋2𝑘𝑦𝜏

𝛼𝑏2

−
(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
)                                                                                             (𝐵2.3𝑎) 
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∫ ∫ (𝑆1. 𝑆2. 𝑆3)
𝑧2

𝑧1

𝑡

0

𝑑𝑧𝑜𝑑𝜏

=
4𝛼𝑕3

𝜋3(2𝑙 + 1)3𝑘𝑧
∑ 𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧

𝑕

∞

𝑙

*sin
(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+.1

− 𝑒𝑥𝑝 (−
𝜋2𝑡

4𝛼
(
(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )
∑ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎

∞

𝑛<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1 − 𝑒𝑥𝑝(−

𝜋2𝑡

4𝛼
(
4𝑛2𝑘𝑥

𝑎2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏

∞

𝑚<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1 − 𝑒𝑥𝑝(−

𝜋2𝑡

4𝛼
(
4𝑚2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
16𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<𝑚<𝑙

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1

− 𝑒𝑥𝑝 (−
𝜋2𝑡

4𝛼
(
4𝑛2𝑘𝑥

𝑎2
+

4𝑚2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/                                      (𝐵2.3𝑏) 
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∆𝑃 = (𝑃𝑖 − 𝑃)

= [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿𝛼
] [

4𝛼𝑕3

𝜋3(2𝑙 + 1)3𝑘𝑧
∑ 𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧

𝑕

∞

𝑙

*sin
(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+.1

− 𝑒𝑥𝑝 (−
𝜋2𝑡

4𝛼
(
(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )
∑ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎

∞

𝑛<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1 − 𝑒𝑥𝑝(−

𝜋2𝑡

4𝛼
(
4𝑛2𝑘𝑥

𝑎2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏

∞

𝑚<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1 − 𝑒𝑥𝑝(−

𝜋2𝑡

4𝛼
(
4𝑚2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/

+
16𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<𝑚<𝑙

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ .1

− 𝑒𝑥𝑝 (−
𝜋2𝑡

4𝛼
(
4𝑛2𝑘𝑥

𝑎2
+

4𝑚2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))/ ]                                              (𝐵2.4) 

 

This is the pressure drop at any point (x,y,z) inside the reservoir at time t. 

For pseudo steady state (large time) behaviour of delta P in the above, let time t go to infinity and 

drop all factors in the exponential terms. 
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𝑃𝑖 − 𝑃(𝑥, 𝑦, 𝑧; 𝑡 → ∞)

= [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿𝛼
] [

4𝛼𝑕3

𝜋3(2𝑙 + 1)3𝑘𝑧
∑ 𝑐𝑜𝑠(2𝑙 + 1)

𝜋𝑧

𝑕

∞

𝑙

*sin
(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )
∑ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎

∞

𝑛<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+

+
8𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏

∞

𝑚<1
𝑙<1

𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+

+
16𝛼𝑕

𝜋3(2𝑙 + 1) (
4𝑛2𝑘𝑥

𝑎2 +
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∑ cos
𝑛𝜋𝑥

𝑎

∞

𝑛<𝑚<𝑙

cos
𝑛𝜋𝑥𝑜

𝑎
cos

𝑚𝜋𝑦

𝑏
cos

𝑚𝜋𝑦𝑜

𝑏
𝑐𝑜𝑠(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ ]         (𝐵2.5) 

 

By averaging equation (B2.5), over the entire reservoir region  0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑕, 

we obtain average to zero identically 

𝑃𝑖 − 𝑃̅𝑅 = 0                 (𝐵2.6)  

Now, subtracting (B2.6) from (B2.5), we have: 

∆𝑃 = (𝑃̅𝑅 − 𝑃) = [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿
] [𝑃𝑧 + 𝑃𝑥𝑧 + 𝑃𝑦𝑧 + 𝑃𝑥𝑦𝑧]                                                        (B2.7) 

Where: 

𝑃𝑧 =
4𝑕3

𝜋3𝑘𝑧
∑

𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧
𝑕

[sin
(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
]

(2𝑙 + 1)3

∞

𝑙<1

                                         (B2.8) 

𝑃𝑥𝑧 =
8𝑕

𝜋3
∑

𝑐𝑜𝑠
𝑛𝜋𝑥
𝑎 𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎 𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧
𝑕 [sin

(2𝑙 + 1)𝜋𝑧2

𝑕 − sin
(2𝑙 + 1)𝜋𝑧1

𝑕 ]

(2𝑙 + 1)(
4𝑛2𝑘𝑥

𝑎2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )
        

∞

𝑛,𝑙<1

(B2.9) 



71 

 

𝑃𝑦𝑧 =
8𝑕

𝜋3
∑

cos
𝑚𝜋𝑦

𝑏 cos
𝑚𝜋𝑦𝑜

𝑏 𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧
𝑕 [sin

(2𝑙 + 1)𝜋𝑧2

𝑕 − sin
(2𝑙 + 1)𝜋𝑧1

𝑕 ]

(2𝑙 + 1) (
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 )

∞

𝑚<1
𝑙<1

    (B2.10) 

𝑃𝑥𝑦𝑧

=
16𝑕

𝜋3
∑

cos
𝑛𝜋𝑥
𝑎 𝑐𝑜𝑠

𝑛𝜋𝑥𝑜

𝑎 cos
𝑚𝜋𝑦

𝑏 cos
𝑚𝜋𝑦𝑜

𝑏 𝑐𝑜𝑠(2𝑙 + 1)
𝜋𝑧
𝑕 [sin

(2𝑙 + 1)𝜋𝑧2

𝑕 − sin
(2𝑙 + 1)𝜋𝑧1

𝑕 ] 

(2𝑙 + 1) [
4𝑛2𝑘𝑥

𝑎2 +
4𝑚2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 ]

∞

𝑛,𝑚,𝑙

  

(B2.11) 
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APPENDIX B3: Peripheral Water 
The flowing point source functions from Gringarten and Ramey are used. 

Recall S3 from Appendix B2; 

 

𝑆1 = ∑ cos(2𝑛 + 1)
𝜋𝑥0

𝑎

∞

𝑛<1

cos(2𝑛 + 1)
𝜋𝑥

𝑎
𝑒𝑥𝑝 *−

(2𝑛 + 1)2𝜋2𝑘𝑥𝜏

4𝛼𝑎2
+                               (B3.1) 

𝑆2 = ∑ cos(2𝑚 + 1)
𝜋𝑦0

𝑏

∞

𝑚<1

cos(2𝑚 + 1)
𝜋𝑦

𝑏
𝑒𝑥𝑝 *−

(2𝑚 + 1)2𝜋2𝑦𝜏

4𝛼𝑏2
+                             (B3.2) 

𝑆3 = ∑cos(2𝑙 + 1)
𝜋𝑧0

𝑕

∞

𝑙<1

cos(2𝑙 + 1)
𝜋𝑧

𝑕
𝑒𝑥𝑝 *−

(2𝑙 + 1)2𝜋2𝑘𝑧𝜏

4𝛼𝑕2
+                                    (B2.1) 

𝑆1. 𝑆2. 𝑆3 = ∑ cos(2𝑛 + 1)
𝜋𝑥0

𝑎

∞

𝑛;𝑚;𝑙<1

cos(2𝑛 + 1)
𝜋𝑥

𝑎
cos(2𝑛 + 1)

𝜋𝑦

𝑏
cos(2𝑛 + 1)

𝜋𝑥𝑦0

𝑏
cos(2𝑙

+ 1)
𝜋𝑧0

𝑕
cos(2𝑙 + 1)

𝜋𝑧

𝑕
𝐸𝑥𝑝 *−

𝜋2𝑡

4𝛼
(
(2𝑛 + 1)2𝑘𝑥

𝑎2
+

(2𝑚 + 1)2𝑘𝑦

𝑏2

+
(2𝑙 + 1)2𝑘𝑧

𝑕2
)+ (B3.3a) 

∫ 𝑆1 𝑆2 𝑆3𝑑𝑧𝑜

𝑧2

𝑧1

=
𝑕

𝜋(2𝑙 + 1)
∑ cos(2𝑛 + 1)

𝜋𝑥0

𝑎
𝑐𝑜𝑠(2𝑛

𝑛,𝑚,𝑙

+ 1)
𝜋𝑥

𝑎
cos(2𝑛 + 1)

𝜋𝑦

𝑏
cos(2𝑛 + 1)

𝜋𝑥𝑦0

𝑏
cos(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ 𝑒𝑥𝑝 *−

𝜋2𝑡

4𝛼
(
(2𝑛 + 1)2𝑘𝑥

𝑎2

+
(2𝑚 + 1)2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
)+                                                                  (𝐵3.3𝑏) 
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∫ ∫ (𝑆1. 𝑆2. 𝑆3)
𝑧2

𝑧1

𝑡

0

𝑑𝑧𝑜𝑑𝜏

=
4𝛼𝑕

𝜋3(2𝑙 + 1) [
(2𝑛 + 1)2𝑘𝑥

𝑎2 +
(2𝑚 + 1)2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 ]

∑ cos(2𝑛

𝑛;𝑚;𝑙<1

+ 1)
𝜋𝑥0

𝑎
cos(2𝑛 + 1)

𝜋𝑥

𝑎
cos(2𝑛 + 1)

𝜋𝑦

𝑏
cos(2𝑛 + 1)

𝜋𝑥𝑦0

𝑏
cos(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ [1

− 𝑒𝑥𝑝 (−
𝜋2𝑡

4𝛼
(
(2𝑛 + 1)2𝑘𝑥

𝑎2
+

(2𝑚 + 1)2𝑘𝑦

𝑏2

+
(2𝑙 + 1)2𝑘𝑧

𝑕2
))]                                                                                             (𝐵3.3𝑐) 

 

∆𝑃 = (𝑃𝑖 − 𝑃)

= [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕𝐿𝛼
]

[
 
 
 
 

4𝛼𝑕

𝜋3(2𝑙 + 1) [
(2𝑛 + 1)2𝑘𝑥

𝑎2 +
(2𝑚 + 1)2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 ]

∑ cos(2𝑛

𝑛;𝑙<1

+ 1)
𝜋𝑥

𝑎
cos(2𝑛 + 1)

𝜋𝑥0

𝑎
cos(2𝑛 + 1)

𝜋𝑦

𝑏
cos(2𝑛 + 1)

𝜋𝑥𝑦0

𝑏
cos(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+ [1

− 𝑒𝑥𝑝(−
𝜋2𝑡

4𝛼
(
(2𝑛 + 1)2𝑘𝑥

𝑎2
+

(2𝑚 + 1)2𝑘𝑦

𝑏2
+

(2𝑙 + 1)2𝑘𝑧

𝑕2
))]

]
 
 
 
 

                     (𝐵3.4) 

Equation (B3.4) is the pressure drop at any point (x,y,z) inside the reservoir at time t, 

For pseudo steady state (large time) behaviour of ∆𝑃 in the above equation, we let 𝑡 → ∞ and 

drop all terms with exponential factors; 

𝑃𝑖 − 𝑃(𝑥, 𝑦, 𝑧; 𝑡 → ∞)

= [
886.9𝐵𝜇𝑞

𝑎𝑏𝑕(𝑍2 − 𝑍1)𝛼
]

4𝛼𝑕

𝜋3(2𝑙 + 1) [
(2𝑛 + 1)2𝑘𝑥

𝑎2 +
(2𝑚 + 1)2𝑘𝑦

𝑏2 +
(2𝑙 + 1)2𝑘𝑧

𝑕2 ]

∑ 𝑐𝑜𝑠(2𝑛

𝑛;𝑙<1

+ 1)
𝜋𝑥0

𝑎
cos(2𝑛 + 1)

𝜋𝑥

𝑎
cos(2𝑛 + 1)

𝜋𝑦

𝑏
cos(2𝑛 + 1)

𝜋𝑥𝑦0

𝑏
cos(2𝑙

+ 1)
𝜋𝑧

𝑕
*sin

(2𝑙 + 1)𝜋𝑧2

𝑕
− sin

(2𝑙 + 1)𝜋𝑧1

𝑕
+                                                                          (𝐵3.5) 
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By averaging the equation above over the entire reservoir region 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤

𝑕, we obtain all the terms in the summation average to zero identically; 

Therefore the equation becomes: 

𝑃𝑖 − 𝑃̅𝑅 = 0                                                                                                                                       (𝐵3.6) 

      

Now subtracting equation (B3.6) from equation (B3.5), yields the general formula for the pseudo 

steady state pressure drop at an arbitrary point (x,y,z) in the reservoir; 

 

(𝑃̅𝑅 − 𝑃) =

0
886.9𝐵𝜇𝑞

𝑎𝑏𝑕(𝑧2;𝑧1)
1

4𝑕

𝜋3
∑

cos(2𝑛:1)
𝜋𝑥

𝑎
cos(2𝑛:1)

𝜋𝑥0
𝑎

cos(2𝑛:1)
𝜋𝑦

𝑏
cos(2𝑛:1)

𝜋𝑥𝑦0
𝑏

𝑐𝑜𝑠(2𝑙:1)
𝜋𝑧

ℎ
0sin

(2𝑙+1)𝜋𝑧2
ℎ

;sin
(2𝑙+1)𝜋𝑧1

ℎ
1

(2𝑙:1)[
(2𝑛+1)2𝑘𝑥

𝑎2 :
(2𝑚+1)2𝑘𝑦

𝑏2 :
(2𝑙+1)2𝑘𝑧

ℎ2 ]

∞
𝑛,𝑚,𝑙   

(B3.7) 

 

 

  

 

                                                                                               

 

 

 

 

 

 

 

 

 

 


