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ABSTRACT   

Research into artificial neural networks (ANNs) is inspired by how information is 

dynamically and massively processed by biological neurons. Conventional ANNs 

research has received a wide range of applications including automation, but there are 

still problems of timing, power consumption, and massive parallelism. Spiking neural 

networks (SNNs), being the third-generation of neural networks, has drawn attention 

from a greater number of researchers due to the timing concept, which defines its 

closeness to biological Spiking Neural Network (bio-SNN tested) functions. Spike 

timing plays an important role in every spiking neuron and proves computationally more 

plausible than other conventional ANNs. The real biological and distinct neuron timing 

and spike firing can be modelled artificially using neurodynamics and spike neuron 

models. The spike timing dependent plasticity (STDP) learning rule also incorporates 

timing concepts and is suitable for training SNNs which describes general plasticity 

rules that depend on the actual timing of pre- and postsynaptic spikes. This work 

presents a software implementation of an SNN based on the Leaky Integrate-and-Fire 

(LIF) neuron model and STDP learning algorithm. Also, we present a novel hardware 

design and architecture of a lightweight neuro-processing core (NPC) to be 

implemented in a packet-switched based neuro-inspired system, named NASH. The 

NASH architecture uses the LIF neuron model and reduced flit format size that solves 

the problems of timing and high-power consumption. Software evaluation shows that 

our network tested 94% accuracy with MNIST datasets of handwritten digits. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Neuro-Inspired Systems and Spiking Neurons 

Artificial Neural Network is an attractive, competitive and colossal research area in artificial 

intelligence which is inspired by the incredible and powerful performance of the 

interconnected biological brain. According to one of the first inventors of neurocomputing, 

Robert Hecht-Nielsen, Neural Networks is defined as ‘a computing system made up of some 

simple, highly interconnected processing elements, which process information by their 

dynamic state response to external inputs’. The whole idea of biological neural networks of 

the brain gave birth to Artificial Neural Networks (ANNs), with scientists digging deep on how 

and the best way to mimic the brain functionalities using silicon chips. 

It is based on the fact that the biological brain connection architecture can be mimicked with 

silicon and wires in place of living neurons and dendrites. The human brain is a structure 

made of 100 billion cells named neurons which connect thousands of cells by axons (von 

Bartheld, Bahney & Herculano-Houzel, 2016). Inputs from sensory organs and the external 

environment are accepted by dendrites which create electric impulses that rapidly travel 

within the neural networks. Messages are sent across from neurons to other neurons.  

However, Deep Learning as an exciting research area in machine learning is concerned with 

developing different algorithms inspired by the structure and function of the brain. Artificial 

Neural Networks have been developed to solve various computational problems, but earlier 

research never considered timing issues which are the hallmark of Spiking Neural Networks 

(SNNs). Currently, most ANN models are built on extremely simplified brain dynamics 

(Ghosh-Dastidar & Adeli, 2009). They have been used as popular computational tools to 

solve complex classification, function estimation and pattern recognition problems.  
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Spiking Neural Networks integrate Spike-timing-dependent Plasticity (STDP), which serves 

as a technique of adjusting the strength of connection (synapse) between neurons in the 

brain based on the relative timing of a particular neuron's output and input action potentials. 

In the past decade, SNNs were developed that comprising spiking neurons. Information 

transmission in these neurons mimics the information transmission in natural neurons due to 

their inherent dynamic representation. The massive parallelism of the brain has focused 

researchers’ minds on many competitive areas of neuro-inspired systems, and many 

algorithms have been developed to enable machines and systems, even IoT devices, to 

leverage brain performance. Neurocomputing has various and robust applications in science 

and technology. The applications of neuro-inspired systems have actually been found 

inspiring in the field of Biomedicine and Neuroscience because the collaboration between 

biological and electronic circuits has led to ultra-low-power and noise-robust chips that could 

serve the deaf, blind, and paralysed and that could also lead to advanced ear-inspired radio 

receivers (Sarpeshkar, 2012). 

1.2 Research Background and Motivation 

The background of this research centres on Spiking Neural Networks (SNNs) modelled with 

the Leaky Integrate-and-Fire (LIF) spiking neuron model that integrates the STDP learning 

algorithm. We are motivated by the efficient and parallel processing of the biological neuron. 

The biological brain implements massively parallel computations using a complex 

architecture that is different from the current Von Neumann machine. Our brain is a low-

power, fault-tolerant, and high-performance machine. It consumes only about 20 W and 

brain circuits continue to operate as the organism needs even when the circuit is perturbed. 

The interconnection of the brain neurons drives our motivation to future on-chip systems. 
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1.3 Statement of Problem  

Timing is a significant issue in implementing the neuro-inspired system and is not considered 

in conventional neural networks. Conventional neural networks encode information with 

static input coding (encoding pattern as 0011 and 0010, binary bits). 

While in SNN, besides the pattern coding, the time-related parameters can be used to 

present the information which increases the information processing capacity of ANN. 

Implementing SNN with spiking neuron models solves this timing problem, hence the need 

for this research. 

1.4 Research Aim and Objectives 

This research is aimed at exploring the theoretical framework behind spiking neuron models 

and investigating the architecture of OASIS Network on Chip (OASIS-NoC). In addition to 

our research studies aim, we ought to be guided by the following objectives: 

 To implement a software-based SNN using the Leaky Integrate-and-Fire neuron 

model; 

 To train our network with STDP learning algorithm; 

 To test our SNN for digit recognition with MNIST datasets of handwritten digits; 

 To propose a novel scalable high-level Neuro-Inspired Architectures in Hardware 

(NASH) for future OASIS Network on Chip (OASIS-NoC). 

1.5 Research Methodology 

The methodology of this research is based on studying related literatures to get the general 

concepts. In our studies, we proposed a design for a novel high-level architecture, NASH for 

future on-chip systems. NASH main components were described.  
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We implemented a software-based Spiking Neural Network (SNN) using a Leaky Integrate-

and-Fire (LIF) neuron. The SNN is trained with an STDP learning algorithm for digit 

recognition using MNIST datasets of handwritten digits.  

The rest of the research work is organized in chapters as follows: Chapter 2 is the literature 

review on some related works, discussing SNNs, learning mechanisms, neuron spiking 

models and software simulators; Chapter 3 covers methodology and implementation, 

discussing STDP, STDP algorithm, and methods; Chapter 4 is on the design of scalable 

SNN based on NoC Architecture, discussing NoC, OASIS-NoC and proposing a novel NASH 

as the main contribution of this research; Chapter 5 contains results, analysis, and 

evaluation; and finally Chapter 6 discusses the research conclusion, challenges, and future 

work. 

1.6 Research Contributions 

Interconnection of many cores on a single chip has remained a bottleneck in system design 

since high power consumption, scalability and high throughput must be considered 

appropriately. Network on Chip is a promising solution for efficient interconnection of many 

cores on a single chip (Ahmed & Abdallah, 2012). This research leverages NoC architecture 

to propose a novel high-level and scalable Neuro-Inspired Architectures in Hardware for 

complex cognition applications. Hence, we made the following sub-contributions. 

1. Study and implementation of a software-based Spiking Neural Network (SNN) using a 

Leaky Integrate-and-Fire (LIF) neuron model with a spike timing dependent plasticity (STDP) 

learning rule.  

2. We proposed a design for a novel architecture and circuit development towards the 

implementation of a spiking neuro-inspired architecture. We performed hardware design and 

evaluation of a LIF Core for Neuro-inspired Spiking architecture.   
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Spiking Neural Networks (SNNs) 

Artificial neural networks (ANNs) research is motivated by how information is processed by 

the human brain using biological neurons (Wang, Belatreche, Maguire & McGinnity, 2010). 

The application of ANNs has cut across various areas of life due to extensive researches 

carried out by researchers. The study of various works from researchers on artificial neural 

networks with implementations on hardware and software including hybrid implementation 

show how the natural neuron of the brain can be mimicked using circuits and wires. Hence, 

this area of research in Artificial Intelligence is quite interesting though it demands 

knowledge of Machine Learning and Neuroscience. Davies (2012) describes artificial neural 

networks as circuits made by the interconnection of artificial neurons, which mimic the 

behaviour of biological neurons. This type of neural network needs to be simulated through a 

custom component designed for the purpose. Simulators comprise both hardware and 

software components that compute mathematical models of biological neurons and 

synapses given the necessary parameters. Artificial neural networks are classified into three 

major generations based on computational unit (Basegmez, 2014; Davies, 2012; Long, 

2008; Maass, 1997).  

In their work, Artificial Neural Networks (ANNs) are broadly classified into three generations. 

The first generation is known as the perceptron model (Maass, 1997). This is composed of 

binary inputs with threshold function; it uses flip-flop technology and is equally deterministic 

while communicating with feed-forward neural networks (FFNNs). The good example of 

activation function used in the first generation is a step function depicted in Figure 2.1 below. 

The main characteristic of perceptron models is that they can only produce digital output, 

applied only in digital computations. Every Boolean can be computed by some multilayer 

perceptron of the single hidden layer.  
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The second generation is good for analog computations (Maass, 1997; Nessler, Maass & 

Pfeiffer, 2009). The second ANNs activation functions are based on computational unit with 

a continuous set of likely output values to a weighted sum of inputs. Hence, the commonly 

used activation functions in the second generation include sigmoid activation function, linear 

activation function, and hyperbolic tangent activation function (see Figure 2.1 (d) below). 

Spike Neural Networks (SNNs) are referred to as third generation Neural Networks 

(Basegmez, 2014; Christophe, Mikkonen, Andalibi, Koskimies & Laukkarinen, 2015; Davies, 

2012; Krunglevicius, 2016; Maass, 1997; Shrestha, Ahmed, Wang & Qiu, 2017). In Spiking 

Neural Networks, activation functions used are always modelled as differential equations. 

They are regarded as neuron’s state with incoming spikes pushing the value higher, which 

either decays or fires over time. As cited in Wang et al. (2010), SNNs have received 

significant attention from researchers due to the timing of individual spike neurons that have 

been proved computationally more powerful and biologically plausible than traditional ANNs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Activation functions (equations and curve) 
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2.2 Related Works  

The application of Spiking Neural Networks in various extensive research projects and 

systems of neuron-inspired chips which implement efficient and low power consumption, 

attempting high computational accuracy by mimicking biological neuron performance, is a 

significant advancement and inspiration for this research. The inspiration and motivation 

from the related works and technologies made this research possible and interesting to carry 

out. 

2.2.1 The IBM TrueNorth  

 A TrueNorth is a processor system designed by IBM solely for Spiking Neural Networks. It is 

a multicore neuromorphic chip developed by IBM with 4096 cores, and each core has 256 

programmable neurons (Cassidy et al., 2013).  

Hence, the neuron has 256 synapses which contribute to millions of synapses in a full 

TrueNorth chip. TrueNorth is an event-driven and highly energy efficient chip that is devoid 

of Von-Neumann architecture. Unlike conventional microprocessors, TrueNorth consumes a 

tiny fraction of the power, 45 mW of power for a million synapses, and at the same time uses 

an interconnected network of neurosynaptic cores. TrueNorth implements ‘gray matter’ on a 

spike-based messaging network with an intra-core crossbar memory and ‘white matter’ using 

long-range connections. The core has 256 axons and neurons, each approximating a 

complete 256 × 256 crossbar. In its implementation, synapses contain information which 

results in spiking of a neuron. The neurons are the resulting improvement on integrate and 

fire neurons with many more parameters. In the research work of Cassidy et al. (2013), it is 

noted that a TrueNorth neuron can replicate 20 biological neuron functions and behaviours. 

The general architecture of the neuron core, the construction and synthesis details of 

TrueNorth were discussed by Akopyan et al. (2015).  
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2.2.2 The ROLLS neuromorphic processor 

Reconfigurable On-Line Learning Spiking neuromorphic processor (ROLLS neuromorphic 

processor) is a complete custom mixed-signal implementation (Qiao et al., 2015) because it 

is an open challenge to implementing compact, low-power artificial neural processing 

systems with real-time online learning capabilities. It is a full-custom mixed-signal VLSI 

device with neuromorphic learning circuits which mimic the biophysics of real spiking 

neurons and dynamic synapses for exploring the features of computational neuroscience 

models and for building brain-inspired computing devices. ROLLS neuromorphic processor 

is a useful learning circuit which mimics the functions of biological spiking neurons and 

synapses for exploring neuroscience models and building brain-inspired computing systems. 

The ROLLS neuromorphic processor device is made of 128K analog synapses and 256 

neurons with online learning capabilities. The existing design is robust and capable enough 

to run a wide range of activities like recurrent and deep networks, with short-term and long-

term plasticity. A prototype fabricated using a 180 nm processor consumes approximately 4 

mW and takes an area of 51.4 mm2, and produces results that showcase its potential. By 

supporting a wide range of cortical-like computational modules composed of plasticity 

mechanisms, this device enables the realization of intelligent autonomous systems with 

online learning capabilities. 

2.2.3 The NeuroGrid 

 NeuroGrid is a computer hardware that is designed for the purpose of biological brain 

simulation. It uses analog and digital computation to mimic ion channel activity and to 

software structured connectivity patterns respectively. According to Benjamin et al. (2014) 

NeuroGrid is a good neuromorphic system with a goal of simulating massive models in real 

time. It can simulate up to a million neurons through billions of synaptic connections via 16 

neuron cores embedded on a board that consumes 3 W. NeuroGrid processor also uses 

shared circuits as axons, synapses and dendrites to reduce transistor count, though 

designers of NeuroGrid systems face three major design choices: 1) a choice to emulate the 
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four neural elements − axonal arbor, synapse, dendritic tree, and soma − with dedicated or 

shared electronic circuits; 2) a choice to implement these electronic circuits in an analog or 

digital manner; and 3) a choice to interconnect arrays of these silicon neurons with a mesh 

or a tree network. The choices are to maximize the number of synaptic connections, 

maximize energy efficiency, and to maximize throughput respectively. In its operation, going 

outside from a fully digital implementation, they realized all electronic circuits. They also 

have custom-made routing interconnections and software that is capable of providing user 

access and reconfigurability. 

2.2.4 The SpiNNaker 

 The research work of Painkras et al. (2013) defines Spiking Neural Network Architecture 

(SpiNNaker) as a computing engine with a million cores, meant to simulate the behaviour of 

up to a billion neurons in real time. The modelling of large systems of spiking neurons is 

computationally expensive regarding processing power and communication. 

SpiNNaker is a massively parallel computer system developed to provide a cost-effective 

and flexible simulator for neuroscience simulation. It can model up to a billion neurons and a 

trillion synapses in biological real time. The initial objective was to simulate brain-scale sized 

neural networks for biological brain research. SpiNNaker deploys a cluster of ARM9 cores, 

using packet communication via a custom massively interconnected fabric. With up to 

1,036,800 ARM9 core, SpiNNaker uses 64K bytes of data tightly coupled memory (DTCM) 

and 32K bytes of instruction tightly coupled memory (ITCM) for each of its cores. The 

packets are of size 40 bits or 72 bits each, which are transmitted using a custom concurrent 

routing framework. In SpiNNaker operation, the computing engine consumes up to 90 kW of 

electrical power. The machine is built to mimic the brain's biological structure and behaviour, 

which exhibit massive parallelism and resilience to failure of individual components.  
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Given over one million cores, and one thousand simulated neurons per core, the SpiNNaker 

machine will be capable of simulating one billion neurons. This is equivalent to over 1% of 

the human brain's 85 billion neurons. 

2.2.5 The 3D OASIS NoC  

The 3D OASIS NoC serves as an excellent extension to 2D OASIS NoC architecture; the 

former overcomes the limitation of high communication cost, low throughput, and high power 

consumption unlike 2D OASIS-NoC architecture (Ahmed, Abdallah & Kuroda, 2010). Figure 

2.2 below describes 3D Oasis-NoC, with 2×2×4 mesh topology. It has x_addr, y_addr and 

z_addr which define properties of 3D routing with X, Y and Z as their respective coordinates. 

It performs better than previous OASIS NoC with proven low power consumption.  

 

 

Figure 2.2: 3D OASIS NoC architecture (Ahmed, Abdallah & Kuroda, 2010) 
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2.3 Learning Mechanism 

Artificial Neural network models involve various learning rules and algorithms. Learning 

defines a mechanism whereby a network adapts to an environment in which it is meant to 

act. According to Heskes and Kappen (1993), the outcome of adaptation processes of both 

artificial and biological neural networks defines the network general representation of its own 

environment. It is observed that different networks learn for the purpose of performing a 

particular function, which could be recognition, classification, or so on; this implies that 

various networks perform different functions based on training. However, despite the 

differences in the network functionalities, most learning algorithms share properties like 

training set, environment and learning parameters in common. It merely means that the 

learning environment and learning parameters are the paramount factors of any given neural 

network.  

 

Machine Learning is needed more especially when human experience and direct computer 

programme performance are not enough to proffer a solution to a problem due to its 

complexity. It is quite certain that complexity and adaptivity usually demand machine 

learning (Ben-David & Shalev-Shwartz, 2014). It is pertinent to be careful when modelling 

neural networks in simulation to determine a precise form for the learning rule, because 

multiple learning algorithms have been developed, making it necessary to choose between 

several trade-offs amongst computational complexity, biological realism, and analytical 

tractability (Davies, 2012). Learning depends on a rule which determines the action of the 

network being trained based on that rule, learning algorithm. Learning algorithms of a 

Spiking Neural Network could involve offline or online learning.  

2.3.1 Offline Learning Algorithms  

The offline learning algorithms of any neural network have their network learning parameters 

updated in batches. The training dataset is obtained and processed in batches.  
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The batch updates denote the fact that the cost function is minimized based on the complete 

whole training data set. This type of learning rule does not support new data samples when 

the learning is in progress. The network must be retrained if it requires adding a new data 

sample to the existing training dataset. In the case of gradient descent, the total error on all 

training samples in the training dataset must be accumulated before applying gradient 

descent weight. This learning algorithm is never efficient when applied to a large network or 

a network with large datasets. 

The first supervised learning algorithm, SpikeProp, serves as an adaptation of the classical 

backpropagation algorithm initially developed for SNNs which deployed fast temporal 

encoding using the spike response model. Performance analysis on several benchmark 

datasets demonstrated that SNNs with fast temporal coding could have similar results to 

rate-coded networks (Bohte, Kok & La Poutré, 2002). 

However, issues like convergence speed for large datasets, problem of non-firing neurons, 

and the first spike priority, ignoring later spike and time-to-first spike coding, are optimized to 

improve SpikeProp’s learning algorithm. According to the work of Moore et al., as cited in 

Schrauwen & Campenhout (2004), repeated Bohte's research on the XOR problem was 

carried out, successfully training with a similar number of iterations on both large training 

rates and small training rates upon meeting the necessary conditions that all neurons must 

fire before the first weight update. It was shown in Bohte’s work that only a small learning 

rate can be used because of approximation that exists in the threshold function.  

Research also unveiled other learning algorithms to incorporate other learning parameters, 

besides the weights that could result in smaller network topologies and faster learning rule 

convergence (Schrauwen & Campenhout, 2004). Based on Analog Spiking Neuron, a new 

learning rule was presented that solves the neuron problem. This technique was greatly 

inspired by a continuous function, the recurrent analog network that could approximate the 
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spiking neuron’s threshold function. Hitherto, the learning algorithm did not train the exact 

SNNs but rather the approximated SNNs, which is justified based on a model close to the 

exact and expected SNNs. The network can efficiently converge and, based on the 

Levenberg Marquardt method, the standard corrections and improvements of SpikeProp 

training algorithm have a fast convergence rate (Silva, Ruano & Ieee, 2006). In conclusion, 

according to McKennoch, Liu and Bushnell (2006), extended Resilient Propagation is used 

to improve the training speed from ANNs to SNNs. The performance measure of the typical 

XOR and IRIS datasets was rated about 80% faster while employing the SpikeProp 

technique.  

The learning rule was based on irregular spiking that resembles natural neurons and 

gradient was not computed directly by this algorithm, rather estimated based on the 

correlation between the fluctuations in biological activities and the global reward signal. It is 

expected that neurons fire spike trains during the learning process. 

 In the work of Booij & Tat Nguyen (2005) a supervised learning algorithm for SNNs was 

presented and aimed at extending SpikeProp to handle multiple spikes framework, which 

involves making changes in parameters. However, due to changes in network learning 

parameters, the spiking time of a neuron will shift with the total number of spikes, though 

assuming that the spiking number was kept constant and backpropagating error values for 

each spike. The proposed rule was effectively utilized for classification based on a Poisson 

spike train. These gradient constructed algorithms are computationally powerful but are often 

viewed as non-biologically plausible because the learning rules usually require non-local 

spread of error signals across synapses of the system. A supervised learning algorithm has 

to do with a situation where the network is aware of the expected result, while the actual 

result is based error value. With offline learning, the weight changes depending on the 

complete data set of learning to define a global cost function. The training of a network using 

the offline learning rule repeats until a minimum of its cost function is reached. 



14 
 

2.3.2 Online Learning Algorithms 

Online learning algorithms are the most commonly used machine learning approach for the 

neural networks. They involve updating learning parameters each time a new training 

sample is presented; the error being minimized for each sample. Online learning uses a 

stochastic process approach because the training example for each update is chosen 

randomly, which is required for learning and adapting in a continuously changing 

environment. In research work a simple online procedure to perform learning for a four-layer 

hierarchical neural network of two-dimensional integrate-and-fire neuronal maps was 

presented. The training was done through synaptic plasticity and adaptive network 

framework using an event-driven approach to optimize computation speed (Wysoski, 

Benuskova & Kasabov, 2008), and to simulate networks of large number of neurons. The 

training procedure was applied to a publicly available face recognition dataset, and the 

obtained performance was comparable to the optimized batch learning approach.  

A research study by Soltic, Wysoski and Kasabov (2008) equally presented a simple artificial 

gustatory model of Spiking Neural Networks used for taste recognition, with its learning 

algorithm being developed using a simple integrate-and-fire neuron having rank order coded 

inputs. How the information encoding in a population of neurons influenced the performance 

of the networks was also analysed and the approach to two real-world datasets was tested. 

According to Alnajjar (in Alnajjar, Bin Mohd Zin & Murase, 2008), a self-adaptation system 

was developed to train a real mobile robot for optimal navigation in dynamic environments. It 

involves training some SNNs with the STDP learning property. The spike response model 

(SRM) was used, and the trained SNNs were stored in a tree-type memory structure that 

was used as experiences for the robot to enhance its navigation skill in new and previously 

trained environments. The memory was designed to have a simple searching mechanism.  

Forgetting and online dynamic clustering techniques were used in order to control the 

memory size. Experimental results showed that a robot provided with learning and 
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memorizing capabilities was able to survive in complex and dynamic environments. The 

system used the minimum network structure required for performing obstacle avoidance 

tasks and its synaptic weights were changed online. However, more experimental data 

needs to be collected in order to demonstrate the robot navigation ability in a dynamic office 

environment. Also, the system still needs to be challenged in more complex environments.  

In summary, there has been considerable research focus on developing offline approaches 

for SNNs, but very little has been achieved in developing online learning approach for SNNs. 

Developing efficient online learning approaches for SNNs is very important to increase their 

applicability to real-world problems and create intelligent systems that are capable of 

handling continuous streams of information, scaling up and adapting to continuously 

changing environments. Online Learning algorithm involves incremental learning.  

The network weight changes made at a particular stage depend correctly only on the current 

input signal into the network. This is the natural procedure for time-varying network learning 

rules. 

2.4 Neuron Spiking Models 

Spiking Neural Networks (SNNs), known as the third generation of a neural network which 

regards timing as a significant parameter, depicts an outstanding level of realism in a neural 

simulation as compared to biological neuron spiking (Maass, 1997). Artificial neural networks 

define forecasting approaches that are based on simple mathematical models of the brain, 

with the primary objective of mimicking brain dynamic functions and performance. The 

objective of all neuron spiking models lies in their ability to model complex nonlinear 

relationships between the response parameters and their corresponding predictors in a 

given system.  

In biophysics, action potentials are the consequence of currents that pass through ion 

channels found in the cell membrane (Gerstner & Kistler, 2002).  
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Hence, Hodgkin and Huxley tried to estimate these currents by describing their dynamics 

with mathematical models using differential equations by carrying out a series of 

experiments with a giant axon found in squid. The Hodgkin–Huxley equations remain the 

bases of neuron models. They invariably account for the numerous ion channels, the 

varieties of the synapse, and the specific spatial geometry of a particular neuron. In principle, 

spiking neuron model accounts for utilizing action potentials – spikes, and at the same time 

how this state relates to the spikes the neuron fires (Ahmed, Yusob & Hamed, 2014). As 

reviewed and cited by Ponulak and Kasinski (2011) the primary assumption behind the 

implementation of most of spiking neuron models is that it is the timing of spikes rather than 

the specific shape of spikes that carries neural information processing. There exist different 

models of spiking neuron models, but in this research, we are interested in just a few that 

are considered most significant and straightforward in describing and working with Spiking 

Neuron Networks (SNNs).  

They include Hodgkin and Huxley, FitzHugh–Nagumo, Integrate-and-Fire, and Leaky 

Integrate-and-Fire neuron models. 

2.4.1 Hodgkin and Huxley Neuron Model 

This model is the basis and foundation of every other spiking neuron model. In 1952, 

Hodgkin and Huxley, as described and cited in the research work of Gerstner and Kistler 

(2002), carried out experiments on the giant axon of the squid and discovered three different 

types of ion current that includes, sodium, potassium, and a leak current mostly of Cl-ions, 

see Figure 2.3(b) below. Definite voltage-dependent ion channels, one for sodium and the 

other for potassium, control the flow of those ions through the cell membrane while the leak 

current takes care of other channel forms. The Figure 2.3(a) below shows a semi-permeable 

cell membrane that separates the interior of the cell from the extracellular liquid and acts as 

a capacitor. If an input current I(t) is injected into the cell.     
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Figure 2.3: Hodgkin and Huxley Neuron Model 

 

As seen in Figure 2.3(b) it may add a further charge on the capacitor, or leak through the 

channels in the cell membrane. Hence, from the experiment, it was observed from the cell 

membrane that the ion concentration inside the cell is different from that in the extracellular 

liquid while the battery shows the Nernst potential generated by the difference in ion 

concentration. In putting the whole concept in mathematical models and equations, we have 

that preserving electric charge on a piece of membrane means intuitively dividing input 

current 𝐼(𝑡) into capacitive current 𝐼𝐶that charges the capacitor C with current from other 

components, say 𝐼𝑘 as depicted below: 

1. 𝐼(𝑡) = 𝐼𝐶(𝑡) + ∑ (𝐼𝑘(𝑡))𝑘  

Where the ∑ runs overall ion channels (various ions) as stated in the standard Hodgkin–

Huxley model. By definition capacitance is well-defined as C = Q/u having Q as a charge 

and u the voltage across the capacitor; then, charging current becomes: 

     2. 𝐼𝐶 = 𝐶
𝑑𝑢

𝑑𝑡
 

Then from equation 1 and 2 above, we could have:  

     3. 𝐶
𝑑𝑢

𝑑𝑡
= −∑ 𝐼𝑘(𝑡) + 𝐼(𝑡)𝑘  
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The channels are characterized by their resistance or conductance. The leakage channel is 

defined by a voltage-independent conductance 𝑔𝐿 =
1

𝑅
 ; the conductance of the other ion 

channels is considered as voltage and time dependent. If all channels remain open, they 

transmit currents with a maximum conductance 𝑔𝑁𝑎 or 𝑔𝐾 respectively; however, some of 

the channels are blocked. Hence, the probability that a channel is open can be expressed as 

additional parameters m, n, and h. The combined action of m and h controls the Na+ 

channels. The K+ gates are controlled by n (Gerstner & Kistler, 2002). Therefore, Hodgkin 

and Huxley in their experiment formulated the necessary three current components as: 

4.  ∑ 𝐼𝑘= 𝑔𝑁𝑎𝑚
3ℎ(𝑢 − 𝐸𝑁𝑎) + 𝑔𝐾𝑛

4(𝑢 − 𝐸k) + 𝑔𝐿(𝑢 − 𝐸L)𝑘  

 

The parameters 𝐸𝑁𝑎, 𝐸K, and 𝐸Lare the reversal potentials which in addition with 

conductance serve as the empirical parameters. In conclusion, it has been shown that the 

Hodgkin–Huxley neuron models properties of the membrane potential, with regard to the 

actions noticeable from the biological neuron with a rapid increase at firing time, followed by 

absolute refractoriness (a short period when the neuron is unable to spike again), and the 

relative refractory period (a further time period when the membrane is depolarized and 

renewed firing here is much more difficult.  

The Hodgkin-Huxley model is realistic and biologically plausible but very much more 

complex to analyse and expensive in terms of NNs simulation (Ahmed, Yusob & Hamed, 

2014).  

2.4.2 FitHugh-Nagumo Neuron Model 

This model is a two-dimensional model derived from the four-dimensional Hodgkin–Huxley 

neuron model for simplicity. According to Zillmer (2007) the two-dimensional FitzHugh-

Nagumo Neuron Model can be modelled as membrane potential and current variable. In 

1961 and 1962 two great scientists, suggested the system and modelled the equivalent 
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circuit respectively (Izhikevich & FitzHugh, 2006). Hence the equations of FitzHugh–Nagumo 

Neuron Model are given as: 

                             𝑉 = 𝑉 −
𝑉3

3
−𝑊 + 𝐼 

5.  

    𝑊 = ɸ(𝑉 + 𝑎 − 𝑏𝑊) 

This represents a two-dimensional simplified version of the Hodgkin–Huxley model during 

spike generation in squid giant axons. Having V as the membrane potential, W is a recovery 

variable and I is the magnitude of the stimulus current, where ɸ, a and b are positive 

constants with 0.08, 0.8 and 0.7 as original values respectively. It is possible to take the 

derivative of the above equation to have: 

      6.   
𝑑𝑣

𝑑𝑡
= 𝑉 −

𝑉3

3
−𝑊 + 𝐼𝑒𝑥 

 

Finally, the FitzHugh–Nagumo model is a simplified version of the Hodgkin–Huxley model 

which models in a detailed manner activation and deactivation dynamics of a spiking neuron. 

As spiking model, it provides and allows effective phase plane analysis, excitability and 

refractory period.  

Unfortunately, the FitzHugh–Nagumo model does not support bursting, has no self-

sustained chaotic dynamics, and is difficult to adapt to neurons with specific properties 

(Zillmer, 2007). 

2.4.3 Integrate-and-fire (IF) and Leaky IF (LIF) neuron models 

The comprehensive high-dimensional Hodgkin−Huxley spiking neuron model is biologically 

plausible, but it is very complex to analyse and difficult to implement due to its complexity. 

This led to the call for simplified neuron models with the primary objective of reducing the 
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four-dimensional Hodgkin−Huxley model to a two-dimensional model. According to Gerstner 

and Kistler, 2002, the key clue of the four-dimensional reduction is to eliminate two of the 

four variables in the Hodgkin−Huxley model based on two qualitative observations (Gerstner 

& Kistler, 2002). The first observation is that in the Hodgkin−Huxley model, the timescale of 

the dynamics of the activation gate m seems to be much faster than that of the other 

variables n, h, and V. Hence, m can be taken as an instantaneous variable, replaced by its 

steady-state value m0; this is also referred as a quasi-steady-state approximation.  

The second observation lies on the Hodgkin-Huxley model n and h variables. Both n and h 

can be replaced by a single effective variable because their timescales are approximately 

the same. These assumptions have led to several two-dimensional models being proposed, 

such as the Morris-Lecar model and the FitzHugh-Nagumo model. These two-dimensional 

models are conductance-based models, in which the variables and parameters have distinct 

biological meanings, and can be measured experimentally. Unfortunately, the conductance-

based models are also complex to analyse and simulate. However, the simplified models, on 

the other hand, are not biologically plausible though of course, they do address most critical 

features of neurons and are approximately less computationally intensive regarding their 

implementation. 

 The three key properties of a simplified neuron-like that of the Integrate-and-fire 

model that could be addressed during modelling include: 

 The ability to generate spikes if the membrane potential crosses a threshold; 

 A reset value to initialize the membrane potential after firing; 

 A given refractory period to decrease the neuron from generating another spike 

immediately. 

The simplified models which possess the above features are very easy to implement and 

analyse, and are more popular in computational neuroscience.  



21 
 

They include the Integrate-and-fire (IF) model and the Leaky Integrate-and-fire (LIF) model 

as cited in Jin, 2010. These are probably the best-known spiking neuronal models. Figure 

2.4 below shows a schematic diagram of the LIF model. LIF is an integrate-and-fire model 

with a ‘leak’ term added to the membrane potential to solve the memory problem in the 

system. The basic circuit of the LIF neuron model architecture is composed of a capacitor C 

in parallel with a resistor R driven by an input current I. 

 

Figure 2.4: Leaky IF (LIF) neuron model (Jin, 2010) 

 

Based on the circuit description, we could have:  

7. 𝐼 =
𝑉

𝑅
+ 𝐶

𝑑𝑉

𝑑𝑡
 

Then by introducing a time constant 𝜏𝑚 = 𝑅𝐶 of the ‘leaky integrator’, we could have the 

standard form of the LIF model as: 

8. 𝜏𝑚
𝑑𝑉

𝑑𝑡
= −𝑉 + 𝑅𝐼 

Where V is the membrane potential and 𝜏𝑚 is the membrane time constant. In this model, if 

the membrane potential V reaches the threshold value Vthresh, the neuron fires then V is reset 

to a certain value Vreset. In the general version, the LIF model also incorporates an absolute 
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refractory period tabs. If the neuron fired at time t, we stop the neuron dynamics for a period 

of tabs and start the dynamics again at time t + tabs with V = Vreset.  

The LIF model is simple enough to implement and easy to analyse. However, it has a severe 

drawback − it is too simple to reproduce the versatile firing patterns of real neurons. 

2.5 Software Simulators and Examples  

Simulators could be hardware or software based depending on their architecture and 

operational environments. They are considered hardware simulators if they are integrated to 

run on hardware chips. Hence, simulators are software simulators if they are implemented to 

run on a standard computational unit like a standalone PC (Personal Computer) or a 

computer cluster.  

Mathematical models and equations are used as a framework to implement neuron models 

in software simulators. The neuron models are developed by some lines of code which 

implement the mathematical model in the form of ordinary differential equations (ODEs) of a 

biological neuron. Such simulators simulate multiple neuron models even at the same run of 

a simulation since the neuron model here is implemented in software.  

According to Brette et al. (2007) and Rast (2010), software simulators can be synchronous 

simulators (clock driven) or asynchronous simulators (event-driven), meaning they can 

usually run in discrete time or in abstract time respectively. The speed of software simulators 

regarding time is inversely proportional to the number of neurons being simulated per 

simulation.  

Generally, the larger the number of neurons simulated, the slower the simulation, since the 

simulator substrate has a finite computational power shared between all the neurons. 

Therefore, the greater the number of neurons simulated, the greater the computational 

resources demanded from the simulator, and the greater the time required to perform a time 
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step in the simulation. Finally, for medium scale neural networks, the time relation goes 

below the real-time boundary, making it slower than the real-time. 

2.5.1 Brian Simulator 

Brian Simulator is a software for a Spiking Neural Network simulator written in Python (Brette 

& Goodman, 2008). It is an open source Python package for implementing simulations of 

networks of spiking neurons with the primary goal aim of maximizing users' development 

time and having execution speed as a secondary goal. It is possible to use Brian Simulator 

to implement multiple neuron models, but much slower than real-time (hardware) 

implementation, mostly when simulating large and complex neural networks. Brian Simulator 

is a clock-driven simulator (synchronous simulator), where all events occur on a fixed time 

grid with learning features. The primary focus of Brian Simulator is to make the writing of 

simulation code fast and flexible for the developer. It allows developers to spend more time 

on the details of their models, and less on their implementation. Neuron models are defined 

by writing differential equations in standard mathematical form, facilitating scientific 

communication and research. Brian Simulator is written in the Python and uses vector-based 

computation technique for efficient simulations (Brette & Goodman, 2011). The spike neural 

network researchers and developers are not restricted to using neuron and synapse models 

already built into the simulator. 

2.5.2 NEURON Simulator 

 In 2007, Brette et al. described NEURON as a software environment simulator for creating 

and using models of biological neurons and neural circuits, as cited in Davies (2012). 

This software simulator provides tools for suitably creating, managing, and using models in a 

way that is mathematically sound and computationally efficient. It is supported by a complete 

development environment to describe characteristics of neurons and neural circuits and is 

suitable for problems with complex anatomical and biophysical properties.  
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To advance simulations in time, users have a choice between built-in clock-driven methods 

(a backward Euler and a Crank-Nicholson variant both using fixed time step) and event-

driven methods (fixed or variable time step which may be system-wide or local to each 

neuron, with second-order threshold detection).  

NEURON simulator provides users with a choice of programming languages as most 

programming with the simulator can be done with hoc. Hoc is an interpreted language similar 

to C-syntax that has been extended to include functions specific to the domain of simulated 

neurons, with a graphical interface and object-oriented programming features. Recently, 

Python was adopted as an alternative interpreter for NEURON simulator. Its graphical user 

interface can be used to create and exercise models that have a wide range of complexity. 

With the GUI, it is possible to generate publication-quality results without having to write any 

program code at all. However, combining both approaches helps to exploit the strength of 

the simulator. Finally, NEURON as a software simulator allows multiple neuron models in the 

same simulation and equally implements learning features. It uses both a discrete clock-

driven and event-driven time paradigm in its operation; also NEURON simulator runs slower 

than real-time. 

2.5.3 GENESIS Simulator 

GENESIS by Wilson et al. (1989) refers to GEneral NEural SImulation System. It is a 

software simulator that aims to reproduce the biological behavior of neural systems with 

details ranging from biochemical reactions to large-scale neural networks. GENESIS was the 

first simulator to adapt to a large-scale neural network. GENESIS uses a high-level 

simulation language to construct neurons and their networks.  

Commands may be issued either interactively to a command prompt, by use of simulation 

scripts, or through the graphical interface.  
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A particular simulation is set up by writing a sequence of commands in the scripting 

language that creates the model itself and the graphical interface for a particular simulation.  

The scripting language and the modules are powerful enough that only a few lines of script 

are needed to specify a sophisticated simulation. Finally, in principle GENESIS is a software 

simulator that allows multiple neuron models in the same simulation and implements 

learning features. 
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CHAPTER THREE  

METHODOLOGY AND IMPLEMENTATION 

3.1 Introduction to STDP 

Artificial neural networks have involved spiking dynamics to attain greater computational 

efficiency, and such powerful and attractive features are being leveraged with on-chip 

implementation using dedicated neuromorphic hardware. Efficient and effective learning 

algorithms were difficult to implement before the arrival of spike-timing-dependent plasticity 

(STDP) which is considered the best Spiking Neural Network learning framework (Markram, 

Gerstner & Sjöström, 2012). They observed that the STDP learning rule adjusts its strength 

of connection concerning the time change between the pre- and post-synaptic spikes. 

According to Sjostrom and Gerstner (2010), STDP could be seen as an asymmetric type of 

Hebbian learning triggered by the tight temporal correlation between the spikes generated by 

the pre- and postsynaptic neuron.  

The STDP learning rule which inspires learning together with information storage of the brain 

as described by Bi & Poo (2001) in their article titled ‘Synaptic Modification by Correlated 

Activity’ encourages repeated presynaptic spikes arrival few milliseconds before the 

postsynaptic action potential, indicating long-term potentiation (LTP) of that synapse. 

Meanwhile, the same repeated spike arriving after postsynaptic spikes indicates long-term 

depreciation (LTD) of the same synapse as depicted in Figure 5(a) below. Hence, the 

repeated occurrence of LTP and LTD is referred to as STDP that leads to continues change 

of synapse. This change of synapse is plotted to be a function of relative timing between pre- 

and postsynaptic action potential and such plot is called STDP curve or leaning window, see 

Figure 3.5(b) below. 
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3.2 STDP Model and Algorithm  

The STDP learning mechanism or model defines a function of time; it is a relation of synaptic 

weight and the time of the spike occurrence between neurons. Unlike other learning 

algorithms like backpropagation, which considers error as a significant factor in learning and 

updating of weight parameter across different layers of a network, STDP updates the 

synaptic connection of the network weight (i.e. weight strengthening or weakening) based on 

the change in time between the pre- and postsynaptic neuron. Studies show that potentiation 

(increase in connection strength) occurs if a presynaptic neuron fires before a postsynaptic 

neuron, otherwise there will be depreciation (decrease in connection strength). The concept 

is motivated by timing, hence a Spiking Neural Network (SNN) differs from another 

conventional neural network due to timing concept. Timing is the major headache of SNN 

but the STDP learning solves this problem. The equation below defines the STDP learning 

function (model). 

     9.  STDP = (Δ𝑡)= (Δ𝑤) =

{
 
 
 
 

 
 
 
 𝐴− exp∗ ( 

 
Δ𝑡

τ−) ,                            𝑖𝑓   Δ𝑡 ≤ −2

 

0,                                              𝑖𝑓 − 2 < Δ𝑡 < 2

 

𝐴+ exp∗ ( 
 
Δ𝑡

τ+) ,                               𝑖𝑓  Δ𝑡 ≥ 2

      

       

 

Where A- and A+ are constants for –v and +v values of 𝛥𝑡 between presynaptic and 

postsynaptic spikes; τ- and τ+ are constants denoting excitation and inhibition values showing 

the steepness of the function. The model above can be represented graphically as an STDP 

curve as in Figure 3.5(b) below.  
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 Figure 3.5: (a) LTD and LTP occurrence via pre- and postsynaptic behaviour; (b) STDP curve 

 

The STDP curve shows a fitted correlation between the horizontal and vertical axes. The 

vertical axis represents the synaptic weight modification while the horizontal axis represents 

the time between pre- and postsynaptic spikes (Δ𝑡 = tpre - tpost). The weight change, 𝛥𝑤 in the 

approximated equation 9 above is the function of time change, 𝛥𝑡. Hence, timing is important 

in studying and modelling SNN because a neuron embedded in a network could be flooded 

with thousands of inputs every second. The question becomes which ones are to be 

prioritized, which information the neuron should listen to and process. Timestamp helps to 

solve such problems during neural network development and learning. Therefore, to 

correctly choose and fine-tune the inputs from one's neighbours without any other 

information than that which is received from these neighbours themselves invokes the time 

factor. STDP learning rule is a good suite of spike neural networks. In modelling any neural 

network, it is necessary to determine a precise form of the learning rule. Series of trade-offs 

like computational complexity, biological realism, and analytical tractability, according to 

Song and Abbott (2001), make STDP the best learning algorithm. In their research, Spike 

Timing Dependent Plasticity rule considers every possible combination of pre- and post-

synaptic spikes, modifying correspondingly the synaptic weight of the synaptic connection. 

The STDP algorithm is defined by the pseudocode below as adapted from Davies (2012). 
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FOREACH pre-synaptic spike Do 

 Foreach post-synaptic spike Do 

  ∆t = Timepre – Timepost; 

  ∆w = computeChangeWeight(∆t); 

  new_weight = updateSynapticWeight (current weight, ∆w);  

 End 

END 

 

 Algorithm 1: STDP Algorithm  

The above routine describes the standard STDP rule, which modifies the synaptic weights 

pairing the time of all the pre-synaptic spikes with the time of all the post-synaptic spikes. 

The function of the pseudocode includes, Timepre: Time of the pre-synaptic spike; Timepost: 

Time of the post-synaptic spike; compute weight modification (): computes the weight 

modification with respect to the STDP curve; update synaptic weight (): updates the synaptic 

weight according to the current weight and the weight modification previously computed, 

applying also hard limits on the synaptic weight value, where appropriate. 

3.3 Methods 

In our research we adopted the software simulation approach. Python programming 

language and BRIAN 2 were used in our simulation; more and complete details of BRIAN 2 

Simulator can be found in Goodman and Brette (2009) and Goodman, Stimberg, Yger and 

Brette (2014). This section discusses the dynamics of single neuron and synapse, our 

network architecture and its mechanism. It equally describes the MNIST dataset of LeCun, 

Cortes and Burges (1998) used to test our simulation. MNIST datasets comprise 60,000 

training examples and 10,000 testing examples.  
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Training the algorithm with the dataset and its classification procedures provides us with 

reasonable benchmark adopted for this work (Diehl & Cook, 2015). Therefore, the simple 

training method proposed in this research work is in accordance with the knowledge of 

training only the output layer; the STDP training rule is meant to act alone for strengthening 

the positive pathways of the network. The SNN network studied here is a feed-forward 

network topology. 

3.3.1 Computational Model  

In our research study, the major criteria of selecting our computational model were based on 

its ability to mimic closely the function of the biological neural networks of the brain, its 

feasibility in terms of implementation, test and computational cost. Hence, the computational 

model adopted for this research comprised primary elements of our network (neurons and 

synapses). In our SNNs, neurons are modelled based on the Leaky Integrate-and-Fire 

neuron model which is considered to be a realistic and simplified model (Eugene, 2007; 

Gerstner & Kistler, 2002). The synapses adapted the Spike Timing Dependent Plasticity 

(STDP) model which is our major research focus; the connection between two neurons 

grows positive (LTP) if the post-synaptic neuron fires soon after the pre-synaptic neuron 

while decreasing (LTD) if the post-synaptic neuron fires before the pre-synaptic neuron, both 

leading to synaptic plasticity. Therefore, the computational model used is presented in more 

details in forthcoming sections which gives the composition of the entire Spiking Neural 

Network. 

3.3.2 Spiking Neuron and Synapse Model 

The Spiking Neuron Model adopted and used in this research is the Leaky Integrate-and-

Fire (LIF) neuron model (Gerstner & Kistler, 2002). In the course of our research study, this 

particular neuron model is found to replicate the dynamic behaviour of neurons while being 

computationally simple, unlike the Hodgkin−Huxley model.  
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The Leaky Integrate-and-Fire neuron model’s dynamic behaviour can be expressed in the 

form of an ordinary differential equation (ODE) as described in the work of Christophe, 

Mikkonen, Andalibi, Koskimies and Laukkarinen (2015) as:  

            10. τm 
𝑑𝑉

𝑑𝑡
= −𝑉 + 𝑅𝐼(𝑡) 

Equation 10 describes a simple resistor-capacitor (RC) circuit model as shown in the circuit 

diagram below where the leakage term is due to the resistor and the integration of I(t). The 

equation models dynamically the parameters like Spiking threshold, Reset potential and 

Absolute refractory period. 

 

 

 

 

The above code defines LIF neuron is modelled using Brian 2 simulator.  

 

 

Figure 3.6: A block diagram of LIF spiking neuron circuit 

 

In the LIF neuron model, the input current I(t) of the integrate-and-fire model is usually 

generated by the activity of presynaptic neurons. According to Gerstner and Kistler (2002) 

the total input current to neuron i is the sum over all current pulses as depicted in equation 

11 below.  
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The simulation approach of the LIF neuron used is stimulation by the synaptic current. Unlike 

other approaches (e.g. stimulation by constant input current and stimulation by time-varying 

input current), this approach does not support both direct injections of constant and time-

varying currents of any kind. Rather the neuron is stimulated by pre-synaptic spike arrival to 

postsynaptic (target) neuron which shows a realistic situation compared to natural neuron 

behaviour and functions, as defined in a synapse, when using our STDP learning rule. It 

shows that when a neuron is stimulated by pre-synaptic spike arrival. Thus; to obtain post-

synaptic current we apply this equation: 

 

11. 𝐼𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝑗 ∑ ∝𝑓 (𝑡 − 𝑡𝑗
(𝑓)
) 

 

Where 𝑡𝑗
(𝑓)

 represents the time of the n-th spike of the j-th pre-synaptic neuron; wij is the 

strength (weight) of synaptic efficacy between neuron i and neuron j respectively. 

In addition, playing over with equation 10, ODE above we have:  

12.  
𝑑𝑉

𝑑𝑡
=

1

𝜏𝑚
(−𝑉 + 𝐼𝑅𝑚) 

 

By introducing refractory period in equation 12, we obtain: 

 

13. 
𝑑𝑉

𝑑𝑥
= {

1

𝜏𝑚
(−𝑉 + 𝐼𝑅𝑚)𝑡 > 𝑡𝑟𝑒𝑠𝑡

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               

Therefore, in our research work and implementation, having adopted LIF neuron model as a 

framework of our Spiking Neural Network, the voltage membrane parameter V used is 

expressed in the form of an ordinary differential equation, ODE (Diehl & Cook, 2015) as: 
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14. 𝜏
𝑑𝑣

𝑑𝑡
= (𝐸𝑟𝑒𝑠−𝑉) + 𝑔𝑒(𝐸𝑒𝑥𝑐 − 𝑉) + 𝑔𝑖(𝐸𝑖𝑛ℎ − 𝑉) 

        

With parameters being defined Erest (the membrane resting potential), Eexc (the equilibrium 

potential of an excitatory synapse), Einh (the equilibrium potential of an inhibitory synapse), 

and ge (the conductance of an excitatory synapse) and gi (the conductance of an inhibitory 

synapse). As recorded in biology, we use a time constant τ, which is longer for excitatory 

neurons than for inhibitory neurons. However, if the neuron’s membrane potential crosses its 

membrane threshold vthres, the neuron fires and its membrane potential is reset back 

immediately to vreset. Within the next few milliseconds after the reset, the neuron is in its 

refractory period and can no longer spike. 

Synapse modelling involves creating synapse instances which specify their dynamics. The 

synapses are modelled by conductance changes, i.e., synapses increase their conductance 

instantaneously by the synaptic weight w when a presynaptic spike arrives at the synapse, 

otherwise the conductance decays exponentially. Then given the presynaptic neuron as 

excitatory, the dynamics of the conductance ge are defined as:  

15. 𝜏𝑔𝑒
𝑑𝑔𝑒

𝑑𝑡
= −𝑔𝑒    

Where τge is the time constant of an excitatory postsynaptic potential. Also, if the presynaptic 

neuron is inhibitory, a conductance gi is updated using the same equation but with the time 

constant of the inhibitory postsynaptic potential τgi. Using equations (14) and (15) above, the 

framework of our Spiking Neural Network is modelled using BRIAN 2 simulator. 

3.3.3 Architecture and Network Learning  

The SNN architecture is shown in Figure 3.7. It is composed of two layers, input and output. 

The first layer comprises 28 × 28 neurons, i.e., the first layer has neurons of 784 pixels each. 

Then the second layer (also called the processing layer) has various numbers of excitatory 
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and inhibitory neurons. Poisson spark-train which serves as network input is fed to the 

network via excitatory neuron.  

The rates of every network neuron are directly proportional to their respective image pixel 

intensity. In the second layer we have inhibitory neurons which are connected to the 

excitatory neuron in a one-to-one correspondence. It means that each excitatory neuron 

should generate a spike in its equivalent inhibitory neuron, showing that the connectivity 

provides a lateral inhibition which causes competition between excitatory neurons. Synaptic 

conductance between the inhibitory and excitatory neuron is balanced by fixing the 

maximum of the synapse to 10 nS. However, every synapse in the network, beginning with 

input neurons, down to excitatory neurons, is learned with the STDP rule. The simulation 

speed was also improved by computing weight dynamics using synaptic traces (Morrison, 

Aertsen, Diesmann & Morrison, 2007). Hence, each synapse keeps record with another 

value, like the presynaptic trace xpre, which models the current presynaptic spike occurrence. 

Each time a presynaptic spike arrives, the trace is incremented by 1, otherwise it decays 

exponentially. Therefore, if a postsynaptic spike arrives in the synapse, weight change 

𝛥𝑤will be calculated using: 

16. 𝛥𝑤 = ŋ(𝑋𝑝𝑟𝑒 − 𝑋𝑝𝑜𝑠𝑡)(𝑊𝑚𝑎𝑥 − 𝑤)µ      

Where ŋ is the learning rate, wmax is the maximum weight and µ determines the dependence 

of the update on last weight, xpost is the target value of the presynaptic trace at the moment 

of a postsynaptic spike. The target value is inversely proportional to the synaptic weight.  
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Figure 3.7: Network architecture (Diehl & Cook, 2015) 

 

The intensity values of the 28 × 28 pixels MNIST image are converted to Poisson-spike with 

firing rates proportional to the intensity of the corresponding pixel.  

 

Figure 3.8: Network Training Topology 

 

The network is of two layers showing 28 × 28 image fed through input layer. Prediction and 

classification occur at the hidden layer. 
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3.3.4 Data Encoding 

MNIST dataset by LeCun, Cortes and Burges (1998) is the prerequisite of our network input 

encoding.  

This dataset contains 60,000 training examples and 10,000 test examples of images with 

digits ranging from 0-9 each with 28 × 28-pixel dimension as depicted in Figure 3.8 above. 

The MNIST dataset is already preprocessed; we used the dataset to train our network. The 

input is presented to the network as Poisson distributed spike trains for 30ms having firing 

rates directly proportional to the intensity of the MNIST dataset images. The intensity of the 

pixel ranges from 0 to 255 and maximum intensity of 255 is divided by 4 indicating the input 

firing rates between 0 and 63.75 Hz.  

 

Figure 3.9: Image pixel (28 × 28) of network input 

 

3.3.5 Network Training and Classification  

In training the network with MNIST dataset, 60,000 training set examples; small portions 

were brought to the network and trained due to the low capacity of our PC resources.  
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The network made provision for the neurons to decay to their resting values by initially 

implementing 150 ms phase without any input to the network. After training was done, we 

set the learning rate to zero, fixed each neuron’s spiking threshold, and allocated a class to 

each neuron, based on its highest response to the ten classes of digits over one 

presentation of the training set. Labels were never used except at this stage, showing that in 

training of the synaptic weights we do not use labels, due to the unsupervised learning 

nature of the network. Finally, during the training, the response of the class-assigned 

neurons is then used to rate the classification accuracy of the network on portions of the 

MNIST test datasets of 10,000 examples. The predicted digit is determined by averaging the 

responses of each neuron per class and selecting the class that has the highest average 

firing rate. 

3.4 Chapter Summary  

In summary, this chapter implements a software-based SNN. It discusses the STDP 

algorithm used, the architecture and topology and data encoding of the network. It equally 

highlights the training and classification of our network. 
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CHAPTER FOUR  

ON THE DESIGN OF SCALABLE SNN BASED ON NOC 

ARCHITECTURE 

4.1 Introduction 

Research has shown that Network on Chip (NoC) is a promising solution for efficient 

interconnection of many cores on a single chip, unlike traditional shared-bus based systems 

(Ahmed & Abdallah, 2012). The peak performance of neuromorphic hardware systems and 

chips can be attained by leveraging the NoC architecture design. This is because spiking 

neuro systems mimic the biological Spiking Neural Networks (bio-SNNs) functions where 

massive parallelism, scalability and fault tolerance are the paramount factors and research 

focus; hence, the decline from conventional bus or System on Chip (SoC) architecture. 

Having described the implementation of our research in Chapter 3 on software-based; this 

chapter discusses the proposed hardware design of SNN based on scalable NoC 

architecture using OASIS-NoC developed at Adaptive Systems Laboratory. 

4.2 Network on Chip (NoC)  

This is a communication subsystem that exists on an integrated circuit, typically between 

intellectual property (IP) cores in SoC. NoC technology is merely an application of all 

networking techniques to on-chip communication to establish essential improvements over 

conventional bus and crossbar interconnections. Research studies have shown remarkable 

achievement on chip design through NoC architecture regarding scalability (Ahmed, 

Abdallah & Kuroda, 2010; Maekawa, 2010; Naeem, Chen, Lu & Jantsch, 2010; Zimmer & 

Mueller, 2012). A high level of parallelism is achieved because it is noted that every link in 

the NoC architecture can operate simultaneously on different data packets.  
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In the design of an NoC-enabled system, efficient routing algorithms are of high priority, this 

is because a good routing algorithm aims at minimizing the communication latency and 

power consumption while enhancing the system throughput (Ahmed & Abdallah, 2012).  

Network on Chip provides a way of realizing interconnections on silicon and primarily 

overcome the limitations of bus-based system solutions that include lack of scalability, clock 

skew, lack of support for simultaneous communication and power consumption (Mori, Esch, 

Abdallah & Kuroda, 2010). This is achieved by having processing elements connected 

through a packet switched communication network that supports efficient routing algorithm 

techniques aiming at optimum performance. 

 

Figure 4.1: Block Diagrams of Bus-based and NoC based systems Explanation: In the above 
figures, (a). Shows a bus-based system with Processing Elements connected on a shared 
single bus while (b) shows a Network on Chip system with Processing Elements connects 
via switches  

 

4.3 OASIS Network on Chip (OASIS-NoC) 

The OASIS-based NoC framework was initially designed and named OASIS-1 by Mori, 

Esch, Abdallah and Kuroda (2010). The system is an n x m mesh-topology that uses 

wormhole switching. Wormhole switching is described as a First-Come-First-Served (FCFS) 

scheduler, and a novel re-transmission flow control (RFC). The FCFS scheduling is a simple 

algorithm and was carefully designed to be suitable for implementation in hardware. The 

RFC scheme is implemented in the processing elements (PEs) themselves.  
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It allows the source nodes to send the checksum and the PEs of destination nodes confirm 

the correctness. Hence, when flits got corrupted or dropped during the process of 

transmission, they must be retransmitted, thereby allowing new flits to be resent from source 

PEs. Therefore, with the help of this method, OASIS can correctly transmit data even in 

noisy environments. The major drawback of OASIS-1 is in its FCFS scheduler technology 

(algorithm). The FCFS has unbalanced network utilization when looking at overall 

performance, since some transactions are served by the scheduler and others are being 

delayed. This method causes unbalanced network utilization and increases the latency. 

Latency is increased because retransmission technique must resend flits when errors occur 

during transactions.  

OASIS-1 was optimized as OASIS-2. The system optimization technique employs stall-go for 

avoiding buffer overflow and matrix arbiter for the scheduler. The OASIS-2 system 

framework also supports wormhole-like switching and virtual-cut-through forwarding method. 

The switching method which is chosen in a given instance depends on the level of packet 

fragmentation. Each router has input buffers which can store up to four flits. When a packet 

is divided into more than four flits, OASIS-2 chooses the wormhole switching technique. 

When packets are divided into less than four flits, the system chooses the virtual cut-through 

technique. In other words, when the buffer size is greater than or equal to the number of flits, 

virtual cut-through is used, but when the buffer size is less than or equal to the number of 

flits, wormhole switching is deployed. In summary, OASIS NoC is a complexity effective on-

chip interconnection network. It uses a 4 × 4 mesh network, as shown in Figure 4.2 below.  

 

 

 

 

 

 



41 
 

 

 

Figure 4.2: A 4 × 4 OASIS Mesh Topology 

 

4.3.1 Switching and Packet Format 

The on-chip cores of OASIS NoC architecture are arranged as a mesh of switches. Each 

switch has a maximum of five inputs, and five outputs ports that use single input/output pairs 

for communication with the resource while the remaining four pairs are connected 

neighbouring switches. The switch has 76 bits flit size, as shown in Figure 4.3 below. Flit 

structure has information of payload, destination address, and next port information. Flits are 

transmitted one by one using wormhole routing (one flit size is 76 bit which contains 

information payload, destination address, and next port information) and are buffered in input 

port FIFO. Each input port has FIFO which is 76 bits and depth is 4 with an increase in 

performance from buffer depth. Switches use XY coordinate routing technique. The 

architecture uses wormhole packet switching, sending messages via packets (many flits). 

Therefore, the switching has low latency, saves memory buffers and with proper routing 

algorithm deadlock can be avoided.  
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Figure 4.3: Packet of flit structure 

  

Each flit contains enough routing information as: DATA (64 bit) called payload, TAIL (1 bit) is 

the last flits of a packet NEXTPORT (5 bit) means direction of output, XDEST (3 bit) is x-

address destination, YDEST (3 bit) is y-address destination The NEXT PORT direction in 

next address is decided in input port just by comparing the destination address with the next 

address. 

4.3.2 Switch Architecture and Buffer 

In design, the OASIS switch hardware consists of crossbar circuit, 5 buffered input ports 

(where all the control flow and routing tasks are handled). The crossbar allows 5 different 

data from the 5 input ports to be routed to the next output port according to its destination 

and Next port. It has an arbiter or Switch allocator which uses a simple Round-Robin 

scheduling scheme, with high priority. The arbiter is used to grant data paths by evaluating 

how many available positions the FIFO has and the data size of all requesting FIFOs. It 

means using arbiter, the Next port information transmitted from input port to switch allocator 

is decoded to decide packet of the output direction. Hence, Switch buffer module is used for 

storing several flits. A buffer overflow occurs when the buffer cannot store all flits. Buffer 

(FIFO) is found in each of the five input ports, and each can hold a maximum of four (4) flits. 

The possibility of dropped flits increases since the buffer size is small when there is high 

traffic though large buffers consume extra power and area. 
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Figure 4.4: Buffer Design 

 

 

 

Figure 4.5: Shows One Switch Data Path 

 

The L, S, N, W and E indicate the direction of port, Local, South, North, West and East 

respectively. 

4.3.3 Flow Control and Routing Mechanism  

Flow control shows how packets traverse the network path as specified by the routing 

algorithm. It allocates network resources to ensure correct packet transmission and 

reception. Thus, in OASIS NoC this technique is optimized using a Stall-Go flow control 

scheme which allows a limited number of flits to be stored into FIFO. The input flits could 

overflow if FIFO is full; hence the need of queuing technique. The Stall-Go mechanism is 

implemented to avoid FIFO being full. Therefore, the output signal is controlled by the arbiter 

that determine the output flits, if next switch is nearly full or not nearly full (see Figure 4.6). 
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Figure 4.6: Stall-Go Flow Control Mechanism 

 

Then, OASIS NoC makes use of deterministic routing approach. Every packet path is 

completely determined by the source and the destination addresses of the packet. The next 

port direction in next address is decided in input port. To compare next address and 

destination address, next port is decided for either NORTH, SOUTH, WEST, EAST OR 

LOCAL using the algorithm below. 

ALGORITHM: Given Y_des, X_des: Y coordinates destination and X coordinate addresses 
respectively, Y_Next_Add, X_Next_Add: next nodes y and x – addresses respectively, 

 next_Add, des_Add: next address pair (X, Y) and destination address pair (X, Y) 
respectively. 

IF (Y_des > Y_Next_Add)  THEN  

Next_Port = NORTH  

 

ELSE IF (Y_des < Y_Next_Add)   THEN  

Next_Port = SOUTH  

 

ELSE IF (X_des > X_Next_Add)   THEN  

Next_Port = EAST   

 

ELSE IF (X_des < X_Next_Add)   THEN  

Next_Port = WEST  
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ELSE IF (next_Add = des_Add)   THEN  

Next_Port = LOCAL  

 

END 

 

Algorithm 2: X-Y Deterministic Routing Approach 

4.4 High-Level Neuro-Inspired Architectures in Hardware 

This section is the major contribution to our research. We implemented SNN using STDP 

learning algorithm in Chapter 3 by software simulation. We also studied the architecture of 

OASIS NoC in section 4.3. Now we propose High-Level Neuro-Inspired Architectures in 

Hardware. This contribution is meant to leverage the spiking neuro model, particularly the 

Leaky Integrate-and-Fire model reviewed in section 2.4 equally used to model our SNN in 

section 3.3.1, and NoC Architecture discussed in section 4.2, to improve the existing OASIS-

NoC for future hardware chip implementation called High-Level Neuro-Inspired Architectures 

in Hardware (NASH).  

Our primary contribution here is to propose the high-level NASH and describe its major 

component design for future on-chip hardware systems. The high-level NASH is shown in 

Figure 4.7 below. 
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Figure 4.7: Block Diagram of High-Level Neuro-Inspired Architectures in Hardware 

 

4.4.1  NASH Components Description  

As we know, the biological brain implements massively parallel computations using a 

complex architecture that is different from the current Von Neumann machine. Our brain is a 

low-power, fault-tolerant, and high-performance machine. Hence, to implement neuro-

inspired architectures in hardware (NASH), the component design is vital to ensure good 

performance. The NoC interconnection model is characterized by its topology, routing and, 

switching techniques, flow control, and arbiter. There are various trade-offs between 

hardware cost and performance, and design time and performance.  

So, designers need a careful and deep understanding of all design choices of the following 

components and processes. The new high-level NASH depicted in Figure 4.7 has the 

following major components, namely: 
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4.4.1.1 High level of NASH architecture  

This component describes the chip interconnection of our network which leverages the 

OASIS-NoC architecture discussed in section 4.3 (Ahmed & Abdallah, 2012). In Figure 4.8, 

we see a connection between a PC and scalable high-level 4 × 4 NoC (which could be 

FPGA or any other neuro hardware simulation device). This link is used for designing, 

downloading the RTL netlist, reconfiguration, and updating the weights and connections 

during network training. 

 

Figure 4.8: NASH High Level Chip Design 

 

4.4.1.2 Multicast fault-tolerant router architecture 

The flow control and routing mechanism of our high-level NASH adapted the approach of 

Stall-Go flow control and routing algorithm discussed in section 4.3.3 above. The OASIS 

router provides high-speed pipeline architecture (Mori, 2012). In Mori’s research work, it 

provides extremely high bandwidth by distributing the propagation delay across multiple 

switches, hence, pipelining the packet transmission. Our three-stage pipelined router 

architecture uses a speculative strategy based on a simple look-ahead routing, where each 

flit additionally carries one hot encoded next port identifier used by the downstream routers, 
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in providing routing adaptation. Each router compares the current address and destination 

address to select the output port direction. 

The OASIS router’s main functions are classified into routing calculation, arbitration and flow 

control, and data transmission. In the first stage, input flits are stored in the input buffer. 

When the buffers are almost full it sends a signal to the upstream neighbour router. In the 

second stage, routing calculation is done by using the stored flits’ information. The flits’ 

stored module sends a Request signal to the arbitration module, and then the arbiter selects 

the winner to access the output and sends a Grant signal to the stored input module, this 

system based on least recently served scheme. The flow control is employed to avoid 

dropping flits, and it uses a state machine to manage the signals coming from downstream 

neighbour router about its input module status and also the state router’s output data. 

Finally, the third stage which transmits flits that have included updated routing information 

and fixed payload to the adequate output direction. The router supports pipelined routing, so 

all calculations and comparisons can be executed in parallel. The multicast approach allows 

one-to-many communication (Furber, 2016; Galluppi, Rast, Davies & Furber, 2010). This is 

necessary because our chip is composed of many neuro-processing cores.  

4.4.1.3 Neuro Processing Core (NPC)  

This is also called a neuro-processing unit. It comprises neuron box, decoder, encoder and 

neuron controller. Then each neuron-box has eight different neurons, and each neuron is 

modelled with Leaking Integrate-and-Fire spiking neuron model discussed in section 3.3.1 of 

this work. Our neuro-processing core is an inspiration of TrueNorth, which implemented a 

new era of cognitive computing that brings forth the grand challenge of developing systems 

capable of processing massive amounts of noisy multisensory data (Akopyan et al., 2015).  
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4.4.1.4 Spiking Neuron Model 

The spiking neuron model adapted in our proposed high-level NASH is the LIF (Leaky 

Integrate-and-Fire) neuron model which we reviewed in section 2.4, also used to model our 

SNN in section 3.3.1. Regarding design, complexity is considered better than other models 

we reviewed in section 2.4. The LIF core is used to achieve addition and multiplication 

operations. In our architecture, several inputs are connected to a single neuron, so, the 

inputs-weights multiplication and addition of every single neuron is done by LIF core which 

replaces the usual traditional sigmoid or tanh activation functions used in conventional 

neural networks. See Figure 4.9 below. 

 

Figure 4.9: LIF Neuron Model Architecture 

 

The LIF neuron core has a threshold value, μ which determines if there is spike generation 

or not. With reset, the model is reset to zero immediately when the positive spike is 

generated. It also has a specified refractory period value to ensure that the neuron does not 

fire again immediately after reset. 



50 
 

4.4.1.5 Flit Format  

A packet is the unit of data that is routed between a source and destination of a network. 

The packet format of our high-level NASH comprises 18 bits. These include Type (2 bits), 

Timestamp (6 bits), Xsource (2 bits), Ysource (2 bits) and Neuro_Id (6 bits). Hence, timestamp is 

modelled with the LIF spiking neuron model to ensure and keep updates of the time of 

spikes of every neuron input spike generated and transmitted. 

 

2 bits 

 

6 bits 

 

2 bits 

 

2 bits 

 

6 bits 

 

Type 

 

Timestamp 

 

X_source 

 

Y_source 

 

Neuro_Id 

   

Figure 4.10: Packet Format 

 

This packet format has smaller size, 18 bits length compared to the 76 bits length flit format 

found in section 4.3.1. Therefore, there is low power consumption here noticed due to this 

advance in flit format length. 

4.5 Advantages of High-Level NASH Design over Traditional Bus-Systems 

In future we plan to implement above high-level NASH in hardware which has some 

advantages and capability to solving the following problem, unlike the conventional bus-

system-based architecture. First, NASH is designed to solve the large-scale implementation 

issues that arise from reconfigurability and programmability by adopting new efficient 

architecture based on a packet-switched network.  

Second, the system will be able to adapt to different applications. To deal with this 

challenge, the system applies an on-chip learning mechanism, in which filters/weights are 

calculated directly on the system during training. This concept is described as online learning 

mechanism. 
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Third, the system is adapted to solve the problem of reliability issues; this is achieved by 

integrating a multicast routing algorithm during the router design. This technology ensures 

fault-tolerance of our high-level NASH architecture. 

Fourth, the system consumes low power energy by implementing a Spiking Neural Network. 

This is because a Spiking Neural Network, being the third-generation artificial neural 

network, mimics closely the natural brain function that uses approximately 20 watts having 

over 100 billion neurons communicating at the same time. Also, it overcomes the problem of 

backpropagation of learning all the weights of every input to a neuron, high power 

consumption. 

Finally, massive parallelism: our proposed high-level NASH will achieve a high level of 

parallelism since it is assumed it would be able to closely mimic the natural brain function 

using the spiking neuro model. 

4.6 Applications of NASH on-chip system 

This proposed NASH research is suitable for various applications, including:  

 Image classification/recognition; 

 Handwritten digit recognition as we have applied in MNIST dataset;  

 Speech recognition;  

 Sound processing. 

4.7 Chapter Summary  

This chapter has discussed the needs of NoC over Bus architecture. It looked at the OASIS-

NoC architecture. Finally, we introduced our main contribution by proposing the design of a 

novel high-level NASH with its various component designs and discussion.  
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CHAPTER FIVE  

RESULT, ANALYSIS, AND EVALUATION 

5.1 Introduction 

This chapter is dedicated to discuss and evaluate the result of the software-based SNN 

implementation in Chapter 3 for digit recognition and the LIF neuron core power verification 

for our proposed NASH architecture in Chapter 4, using Quartus II. The chapter also 

highlights some challenges we encountered during the simulation and recommends 

solutions. Finally, it concludes our research work and suggests other future works expected 

to enhance our work. 

5.2 Result Analysis on Accuracy  

Our SNN was trained and tested with MNIST datasets comprising 60,000 and 10,000 

training and testing examples respectively. However, due to the limited capacity of our 

conventional personal computer (PC) used for the simulation, we encountered high space 

complexity issues on the system memory, we did not train many of the datasets. We trained 

two different sets of datasets of 800 and 1200 neurons and multiplied each by 2 (800 × 2 

and 1200 × 2) during the training phase to increase their intensity. Each training set was 

tested with five different sets of testing examples ranging from 2000 to 500, 200, 100 and 50. 

Hence, for each test carried out we performed evaluations and recorded their result based 

on classification or recognition accuracy and error values.  

Figures 5.1 and 5.2 show the virtualization of our results. Figure 5.1 is a graphical 

representation of accuracies against a number of test datasets while Figure 5.2 is the 

representation of error against a number of test datasets for both two different training sets 

we carried out. The result shows that accuracy is inversely proportional to error for both 

training datasets on the same ranges of testing datasets, see Figure 5.3. On that note, we 

noticed very high classification accuracies (86% for 1200 × 2 and 94% for 800 × 2) and very 
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high reduction in error value (7 with 0.59% for 1200 × 2 and 3 with 0.34% for 800 × 2) for 

both training datasets when tested with smaller datasets of 50. These deductions were 

visualized better in Table 5.1 and Figure 5.3. In summary, since the accuracy increased to 

94% with minimal error of 0.34% by testing with smaller test datasets of 50 on smaller 

training datasets of 800 x 2; it implies that high accuracy will still be obtained by increasing 

our testing datasets if (and only if) our training datasets are increased and that justified the 

expectation of our benchmark.  

 

Figure 5.1: Classification accuracy 

 

Both the training datasets increased in accuracy as the testing datasets are reduced. Hence, 

800 × 2 and 1200 × 2 have better accuracy of 94% and 86% respectively at the testing 

datasets of 50 as shown in Figure 5.1 above. 
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Figure 5.2: Error Estimation 

 

Both the training datasets have their error decreased as the testing datasets reduce. Hence, 

800 × 2 and 1200 × 2 have minimal error of 3 (0.34%) and 7(0.59%) respectively at the 

testing datasets of 50 as show in Figure 5.2 above. 

 Table 5.1: Accuracy vs Error evaluation  

 

 

 

 

Both the training datasets have their accuracy increased as the testing datasets reduce. 

Hence, 800 × 2 and 1200 × 2 have better accuracy of 94% and 86% respectively at the 

testing datasets of 50 as show in Table 5.1 above  
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Figure 5.3: Accuracy vs Error evaluation 

 

Both the training datasets have their accuracy increased as the testing datasets reduce and 

also have their error reduced exponentially as the testing datasets reduce. Hence, 800 × 2 

and 1200 × 2 have better accuracy or minimal error of 94% or 3 (0.34%) and 86% 7 (0.59%) 

respectively at the testing datasets of 50 as shown in Figure 5.3 above. Therefore, 94% is 

our best accuracy. 

5.3 Discussion  

The result presented is based on the system specification of the conventional personal 

computer used for the implementation. The desktop computer used has memory (16 GiB), 

CPU (Intel core i.5, 3.20 GHz). It does not support training larger data sets due to memory 

space complexity. The system memory gets exhausted every time we try to increase our 

training dataset. The MNIST database of handwritten digits is a public, standard and real-

world dataset that has a training set of 60,000 examples and a test set of 10,000 examples. 

Accuracy vs. Error Estimation  



56 
 

It is a subset of a larger set available from NIST. The digits have already been size-

normalized and centred in a fixed-size 28 × 28 image. It is also described as a good 

database for people who want to try learning techniques and pattern recognition methods on 

real-world data while spending less or no efforts on pre-processing and formatting of the 

dataset. The MNIST dataset has been used by various researchers to test their Spiking 

Neural Network performance accuracy. Table 5.2 below shows various performances 

recorded by different researchers. 

 Table 5.2: Performance evaluation 

 

Based on our results we conclude that our implementation performance is within the 

benchmark accuracy. Hence this justifies our test of accuracy and performance for our 

proposed novel High-Level Neuro-Inspired Architectures in Hardware (NASH) discussed in 

Chapter 4.  
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5.4 Result Analysis on Power Consumption  

In evaluating the power consumption for the proposed NASH, Quartus II was used to 

implement neurocomputing unit (NCU) LIF cores. One NCU LIF core and four NCU LIF 

cores were implemented and compiled on Quartus II; the power rating was recorded and 

compared the results as presented below. 

Table 5.3: Comparison of Logic Element and Power 

 LIF_Neuron_core (single) NCU_4 (4 LIF_neuron_core) 

Logic Elements(LE) 76 304 

Core Dynamic Thermal Power  0.00 mW 0.01 mW 

Core Static Thermal Power  98.52 mW 98.70 mW 

I/O Power Thermal Power  52.26 mW 108.93 mW 

Total Power Thermal Power  150.78 mW 207.64 mW 

 

Table 5.4: Evaluation of Area report 

 LIF_Neuron_core (single) NCU_4 (4 LIF_neuron_core) 

Combinational Area 151.354001 μm 562.856001 μm 

Non-combinational Area 40.697999 μm 213.864000 μm 

Total Cell Area 192.051999 μm 776.720001 μm 

 

Table 5.5: Evaluation of Power report 

 LIF_Neuron_core (single) NCU_4 (4 LIF_neuron_core) 

Cell Internal Power 5.2613 μW 20.5040 μW 

Net Switching Power  3.6885 μW 14.8272 μW 

Total Dynamic Power 8.9498 μW 35.3312 μW 

Cell Leakage Power 3.8433 μW 14.3147 μW 
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Figure 5.4: Schematic - NCU4 (4 LIF_neuron_core) 
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Figure 5.5: Schematic - NCU (LIF_neuron_core) 

 

Both single and 4 NUC LIF cores are implemented in Verilog HDL, and after synthesis and 

analysis in Quartus II, the schematic design netlists viewed above were generated. 

Table 5.6: I/O LIF neuron core 

 

 

LIF core Input Output  

Clock 1 bit Membrane potential 8 bit 

Reset 1 bit Output spike 1 bit 

Input spike 8 bit   

Synaptic weight 64 bit   

Leak value 8 bit   

Threshold value 8 bit   

4 LIF core Input Output 

Clock 1 bit Membrane potential 32 bit 

Reset 1 bit Output spike 4 bit 

Input spike 32 bit   

Synaptic weight 256 bit   

Leak value 32 bit   

Threshold value 32 bit   
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CHAPTER SIX  

CONCLUSION AND FUTURE WORK 

6.1 Introduction 

This chapter summarizes our research work. It describes our research and our contributions, 

highlights some technical challenges encountered during the research, recommends 

solutions for those challenges and finally suggests future work needed to advance our 

research. 

6.2 Conclusion 

This thesis presents a Spiking Neural Network architecture design and performance 

exploration towards the design of a scalable Neuro-inspired system for complex cognition 

applications. Hence, in our studies to achieve the aim of our research, we made the 

following sub-contributions which include: (1) We came up with an architecture and circuit 

development towards the design-scalable Neuro-inspired System called NASH. (2) We 

performed hardware design and evaluation of a LIF Core for Neuro-inspired Spiking NASH 

System. (3) We implemented a software-based Spiking Neural Network (SNN) using Leaky 

Integrate-and-fire (LIF) neuron model with spike timing dependent plasticity (STDP) learning 

rule. Our SNN was applied in a digit recognition tested with MNIST datasets of handwritten 

digits and recorded its classification accuracy. We also evaluated power consumption of the 

on the design NASH for future on-chip systems. 

6.3 Technical Challenges  

Technical issues experienced were mostly space and time complexities. During our 

simulations, we ran short of memory space and were unable to simulate much of our 

dataset. Also, we experienced very low-speed simulation time; the lack of a steady power 

supply caused simulations process shutdown only to start over the next time. 
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6.4 Future Work 

Research is a continuous process, hence, implementing SNN on hardware will improve our 

work, it will provide a better platform to analyse and compare all the necessities like power 

consumption. On the same note, another vast and good research future work is to 

implement our high-level NASH architecture on hardware, FPGA. 
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