

Design of a Neural Network Architecture for Traffic Light Detection in Autonomous

Vehicles

A Thesis presented to the

Department of

Computer Science and Engineering

African University of Science and Technology

Abuja, Nigeria.

In partial fulfillment of the Requirements for the Degree of

Masters of Science in Computer science

By

Akubo Raphael Ede

June 2019.

2

African University of Science and Technology [AUST]

Knowledge is Freedom

APPROVAL BY

The Head of Department

Surname: DAVID

First name: Amos

Signature:

3

COPYRIGHT

©2019

Akubo Raphael Ede

ALL RIGHTS RESERVED

4

CERTIFICATION

This is to certify that the thesis titled “Design of a Neural Network Architecture for Traffic

light detection in Autonomous Vehicles” submitted to the Department of Computer

Science and Engineering, African University of science and technology Abuja, Nigeria,

for the award of Master’s Degree, is a record of original research carried out by Akubo

Raphael Ede in the department of Computer Science and Engineering.

5

SIGNATURE PAGE

DESIGN OF A NEURAL NETWORK ARCHITECTURE FOR TRAFFIC LIGHT

DETECTION IN AUTONOMOUS VEHICLES

By

Akubo Raphael Ede

A THESIS APPROVED BY THE DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

RECOMMENDED:

 --

 Supervisor, Prof Ben Abdallah

 --

 Head of Department, Prof David Amos

APPROVED BY:

 Chief Academic Officer

 Date

6

ABSTRACT

Over the ongoing years, innovatively propelled nations have kept on joining the quest for

growing completely self-sufficient driven vehicles. This Autonomous vehicles intend to

address issues of driver profitability and effectiveness. Dependable traffic light discovery

is a vital segment for self-sufficient driving. Recognizing the traffic lights amidst everything

is a standout amongst the most significant errand. The focus of this research is to develop

and find the optimal parameters for an efficient Neural Network Architecture to aid a

hardware engineer to implement on a hardware for the autonomous vehicle. This is done

by designing an Artificial Neural Network (ANN) that would be capable of detecting and

correctly classifying any traffic light within the city of Abuja, Nigeria. This study first

attempts to develop a reliable traffic sign detector by constructing MLP, training using BP,

and tuning various Convolutional Neural Networks (CNN). Images for training are

obtained from Abuja city metropolis

Keywords: Backpropagation (BP), neural networks, CNN, MLP, ANN

7

DEDICATION

This research work is dedicated to the only one and Amazing God who saw me through

this phase of my life without so much stress.

8

ACKNOWLEDGMENTS

This thesis would not have been possible without the invaluable guidance and vision of

Professor Ben Abdallah. The guidance and mentorship he offered were second to none.

I would like to appreciate the support of my family and friends. Mr. and Mrs. Akubo, but

for you, I may not be at AUST, writing this thesis. Thank you for always being there for

me while growing up, and for teaching me. The end is now here. And equally so to my

siblings; Simon, Mercy, Ladi, Esther, Faith, for their continued support. Demi, for being

my biggest cheerleader. To Yerima, who have assisted in so many appreciable ways.

9

TABLE OF CONTENTS

Contents
CERTIFICATION .. 4

SIGNATURE PAGE .. 5

ABSTRACT .. 6

DEDICATION .. 7

ACKNOWLEDGMENTS ... 8

LIST OF TABLES .. 11

LIST OF FIGURES .. 12

CHAPTER ONE ... 14

INTRODUCTION ... 14

1.1 Research Background .. 14

1.2 Artificial Neural Networks ... 15

1.3 Neural Network Architectures .. 15

1.4 Problem Statement ... 16

1.5 Research Aim and Objectives: .. 16

1.6 Limitation of the Study.. 17

Chapter Two .. 18

Literature Review .. 18

2.1 Artificial Neural Network .. 18

2.1.1 Perceptron .. 20

2.1.2 The Neuron Model (Single-Input Neuron) .. 20

2.1.3 Activation function .. 22

2.1.4 Cost function ... 22

2.1.5 Forward propagation .. 23

2.2.6 Backward propagation .. 24

2.2 Generalization and overfitting .. 24

2.3 Autonomous Vehicles ... 25

2.4 Artificial Neural Network in Autonomous Vehicles .. 25

Chapter Three ... 26

Research Methodology ... 26

10

3.0 Introduction .. 26

3.1 Data Creation and Development .. 26

3.2 Abuja Traffic Light Data set ... 28

3.3 Training and Test Set Construction ... 28

3.3 CNN Introduction .. 30

3.3.1 Convolution Layer .. 32

3.3.2 Pooling Layer .. 33

3.3.3 Rectified Linear Unit Layer ... 34

3.3.4 Fully Connected Layer (FC) ... 35

3.4 Back Propagation .. 36

3.5 Proposed System Architecture ... 38

3.5 CNN Construction and Implementation ... 39

Chapter Four ... 41

Evaluation and Result ... 41

4.1 Evaluation ... 41

4.1.1 Execution time evaluation with RELU AF ... 41

4.1.2 Execution time evaluation with Sigmoid AF .. 41

4.1.3 Accuracy evaluation with RELU AF ... 41

4.1.4 Accuracy evaluation with Sigmoid AF .. 42

4.2 EVALUATION SUMMARY/ RESULT .. 43

Chapter Five .. 44

Conclusion ... 44

REFERENCE .. 46

APPENDIX .. 48

11

LIST OF TABLES

Table 3. 1: Training, Validation, Testing Set Counts .. 29

Table 4. 1: Execution time evaluation with ReLU AF ... 41

Table 4. 2: Execution time evaluation with Sigmoid AF ... 41

12

LIST OF FIGURES

Figure 2. 1: The Artificial Neural Network Architecture .. 19

Figure 2. 2: Artificial Neural Network ... 19

Figure 2. 3: the Perceptron ... 20

Figure 2. 4: Single input Neuron .. 21

Figure 2. 5: The sigmoid function 1/1 + E (−x) ... 22

Figure 3. 1: Image taken at Abuja,Nigeria .. 28

Figure 3. 2: Block Diagram of the Image set .. 30

Figure 3. 3: Showing the sequence of steps employed by a typical CNN 31

Figure 3. 4: Pictorial representation of a convolution process (Hijazi et al., 2010) 33

Figure 3. 5: Example of Max-Pooling technique .. 34

Figure 3. 6: Showing the steps necessary throughout the learning process 37

Figure 3. 7: Architecture of the proposed CNN ... 38

Figure 3. 8: Architecture of the proposed CNN ... 39

Figure 4. 1: Accuracy graph for different Hidden layers using RELU AF .. 42

Figure 4. 2: Accuracy graph for different Hidden layers using Sigmoid AF 42

Figure 4. 3: Summary that determines the optimum parameters ... 43

13

LIST OF ABBREVIATIONS

ReLU Rectified Linear Unit

ANN Artificial Neural Network

MLP Multi-Layer Perceptron

Pred. Prediction

CNN Convolutional Neural Networks (CNN)

ML Machine Learning

DL Deep Learning

AI Artificial Intelligence

CV Computer Vision

DNN Deep Neural Network

14

CHAPTER ONE

INTRODUCTION

1.1 Research Background

Computer vision takes root in signal processing; wherein the effect of a system on a signal

is studied, and frameworks for exploring this effect are examined. The black box is an

excellent illustration of the basic premise of signal processing. In general, a signal is input

into the black box, propagates through the unknown system therein, and another signal

is output. The usual question we tend to ask is, “what is in the black box?” Typically, we

may look at the input and output in terms of specific characteristics called metrics to infer

some quality of the process undergone inside the black box. A research engineer may

even explore different metrics that seem intuitive based on other information about the

process and describe the unknown system in a novel way. The issue with the discovery

attitude is that no measurement or set of measurements can show with sureness the

substance of the black box in light of the fact that numerous interesting capacities exist

with a similar arrangement. While overseeing multifaceted nature, utilizing presumptions

and approximations may do the trick for some different fields of building. The information

in Machine vision is excessively entangled and voluminous for this methodology.

Conventional traffic light detection methods often suffer from false positives in an urban

environment because of complex backgrounds. To overcome such limitation, Deep

Neural Network is emphasized, which is fast, but weak to false positives (Lee & Park,

2017). To realize autonomous vehicles, image recognition with high accuracy and high

speed is necessary for the vehicle environment. ANNs are recently used in many machine

15

learning applications, from speech recognition and natural language processing to

computer vision, and image recognition.

Conventional traffic light serves as the input to the black box, which by design, using the

neural network will produce the desired output.

1.2 Artificial Neural Networks

An ANN is based on a collection of connected units or nodes called artificial neurons,

which loosely model the neurons in a biological brain. Each connection, like the synapses

in a biological brain, can transmit a signal from one artificial neuron to another. An artificial

neuron that receives a signal can process it and then signal additional artificial neurons

connected to it, thus producing the desired output, which is very useful for decision

making in autonomous vehicle systems. The neural network itself is not an algorithm, but

rather a framework for many different machine learning algorithms to work together and

process complex data inputs. These systems "learn" to perform tasks by considering

examples, generally without being programmed with any task-specific rules (Marcel van

Gerven et al., 2017).

1.3 Neural Network Architectures

There are many neural network architectures; their different layers of neurons regularly

organize them. These layers comprise of input, hidden, and output layers. Two metrics

are frequently used to measure the neural network size, the number of neurons and the

number of parameters. It is essential to mention that the network size plays an integral

part in designing a neural network.

16

1.4 Problem Statement

Efficiency, accuracy, and quick decision making is a common challenge in the field of

Autonomous Vehicles. Rapid processing of data helps in speeding up any operation to

be performed on such data. Many frameworks for traffic light detection using machine

learning have been proposed in the past but were rather time-in-efficient in either the

reduction of the dimension or in terms of the efficiency of the machine learning algorithms

used. The need for better approaches that can improve the computational problems

associated with image processing or classification is in high demand and cannot be

overemphasized.

This thesis aims to explain the design of a Neural Network architecture that will be used

for image classification and in this case, a traffic light detection in autonomous vehicles.

It describes the theory behind the neural network and Autonomous Vehicles, and traffic

light dataset as its only input that can be designed to test and evaluate the algorithm’s

capabilities. The thesis will show that the Artificial Neural Network can, with an image

resolution of 64 × 64 and a training set with 55 images, make decisions with a 0.54

confidence level.

1.5 Research Aim and Objectives:

Reliable traffic light detection is a crucial component for autonomous driving. One of the

main tasks that such a vehicle must perform well is the task of following the rules of the

road. Identifying the traffic lights amid everything is one of the most critical tasks.

The main objectives of the research are:

i. Design a neural network for image classification.

17

ii. Develop and find the optimal parameters for an efficient Neural Network

Architecture to aid a hardware engineer to implement on hardware for the

autonomous vehicle to improve driver productivity, enhance transportation

efficiency, and increase safety.

1.6 Limitation of the Study

This research study is limited to the design of neural networks and classification of traffic

light images for autonomous vehicles only. The study highlights the significance of neural

networks in autonomous vehicle decision making.

18

Chapter Two

Literature Review

2.1 Artificial Neural Network

An ANN is a basic model of an animal brain. In a brain, a neuron is a cell that processes

chemical or electrical signals. The neuron is connected to other neurons and creates a

network, which is a human brain contains tens of billions of connected cells (Bruce &

Otter, 2016)

The neuron in a brain has input routes called dendrites, a cell body and output routs called

axons. When the electrochemical signal is transmitted through the dendrites, the neuron

is activated. The cell body then determines the weight of the signal and if a threshold is

passed, the neuron “fires” through the axon (Bell, 2014)

Artificial neural networks are motivated by Biological neural frameworks. Signal

transmission in biological neurons through synapses is an unpredictable chemical

process in which explicit transmitter substances are discharged from the sending side of

the neural connection. The impact is to raise or lower the electrical potential inside the

body of the getting cell. On the off chance that this potential achieves an edge, the neuron

fires. It is this characteristic of the biological neurons that the artificial neuron model

proposed by McCulloch Pitts endeavors to duplicate. The following neuron model shown

in figure (2.1) is widely used in artificial neural networks with some variations.

19

Figure 2. 1: The Artificial Neural Network Architecture

The network consists of multiple layers of feature-detecting neurons. Where each layer

has many neurons that respond to different combinations of input signal from the previous

layers. As shown in Figure (2.2), the layers are developed with the goal that the primary

layer distinguishes a lot of crude patterns in the information, the second layer recognizes

pattern of patterns, and the third layer identifies patterns of those patterns, etc.

Figure 2. 2: Artificial Neural Network

20

2.1.1 Perceptron

In an ANN, the neurons are named perceptron and the axon and dendrites are called

links. Looking at the figure below, the link from perceptron j to perceptron i transmits the

output of j to i. This output has the notation aj. The link also has a corresponding numeric

weight, Wj, i, which determines the strength and sign of the connection. (Bruce & Otter,

2016). The perceptron function is two-folded. Firstly, it computes the weighted sums of

its inputs:

Zi = ∑ 𝑊𝑗,𝑖𝑎𝑗
𝑛
𝑗=0

Secondly, it applies an activation function, g, to compute the output from the perceptron

(Russel and Norvig, 1995). The output is a numeric value in the range from zero to one.

Figure 2. 3: the Perceptron

2.1.2 The Neuron Model (Single-Input Neuron)

A single-input neuron is shown in Figure 2.4. The scalar input ‘’p’’ is multiplied by the

scalar weight ‘’w’’ to form ‘’wp’’, one of the terms that are sent to the summer. The other

21

input, ‘’1’’, is multiplied by ‘’a’’ bias ‘’b’’ and then passed to the summer. The summer

output ‘’n’’, often referred to as the net input, goes into an activation function, which

produces the scalar neuron output a.

Figure 2. 4: Single input Neuron

The neuron output is calculated as

a =f(wp +b).

If, for instance, w = 2, p = 4 and b = -1.5, then

A = f(2(4) – 1.5) = f(6.5)

The actual output depends on the particular transfer function that is chosen.

We will discuss transfer functions in the next section.

The bias is much like weight, except that it has a constant input of 1. W and b are both

adjustable scalar parameters of the neuron. However, if you do not want to have a bias

in a particular neuron, it can be omitted

22

2.1.3 Activation function

Figure 2. 5: The sigmoid function 1/1 + E (−x)

All together for the ANN to be effective, the actuation function is critical. It is designed so

that when the perceptron is fed with the correct input the perceptron becomes active, i.e.

the function computes to a value near +1. Vice versa, the perceptron should become

inactive, i.e. the function computes to a value near 0, when it is fed with the incorrect input

(Awad and Khanna, 2015).

It is the most fundamental pieces of a neuron. The nonlinearity of the activation function

makes it possible to approximate any function. It squashes numbers to the range [0, 1].

2.1.4 Cost function

As the prominent saying goes, "we gain from our slip-ups". Which is valid, in actuality, as

an awful choice frequently is trailed by an undesirable occasion. Whenever an individual

is looked with a comparable decision, they are more averse to settle on that equivalent

wrong choice once more.

This is also true for ANNs, where the decision is a prediction which is associated with a

cost. This cost is calculated with a cost function based on the error of the prediction. There

23

are a few cost functions utilized for machine learning, yet for this project, the logistic

regression cost function (equation below) is used. It is based on the maximum likely-hood

estimation in probability theory (Raschka, 2015).

J(W) = -1/M(∑ 𝑦𝑚 log 𝑔(𝑥𝑚)𝑀
𝑚=1 + (1 − 𝑦𝑚) log (1 − 𝑔(𝑥𝑚)))

Since the desired outputs from the training examples ym {0, 1}, one of the two terms is

always zeroed out. This can then be seen as two cost functions corresponding to the

possible values of ym, where each assigns a very high cost to a prediction opposite to

what the target output is. This cost function was, and is often, chosen for ANNs because

of its feature of being a convex function, making it easier to minimize than a non-convex

cost function.

2.1.5 Forward propagation

The manner in which the ANN makes a prediction is by taking the given information

parameters and enhancing or debilitating the initiation of neurons in the system in different

ways, yielding some output parameters that are probabilities for each yield case. The

weights of the connections decide how much each perceptron's activation is to be

changed before being fed to the following layer of the ANN. This process is called forward

propagation (Russel and Norvig, 1995).

The activation for a neuron of the first layer is simply the input parameter for that neuron.

24

2.2.6 Backward propagation

To limit the prediction cost, we have to investigate the factors contributing to calculating

the cost. There are three: input signal, the weights, and the activation function. Changing

the input to get the right output is impossible since the objective here is to get the system

to utilize a genuine image to give a satisfactory answer. The activation function is out of

our control when the learning is in progress, hence it is the weights that need to be

changed to minimize the cost (Bruce & Otter, 2016)

To change the weights of the system in a manner that limits the prediction cost, we need

to grasp how the weights influence the output. The BP ANNs represents a kind of ANN,

whose learning’s algorithm is based on the Deepest-Descent technique. If provided with

an appropriate number of Hidden units, they will also be able to minimize the error of

nonlinear functions of high complexity (Buscema, 1998).

2.2 Generalization and overfitting

In machine learning, there is a common problem which is over-fitting of the algorithm. The

reason for utilizing an ANN is, to generalize from the training examples to all possible

inputs, rather than coordinating the training inputs superbly and be unfit to make great

expectations on new data sources. Imagine a 5th order polynomial matching 4 data points

perfectly. The impact of this in an ANN is that it figures out how to predict training image

set effectively and correctly, in the long run learning the possible noise of the inputs

themselves. To handle this issue, the dataset is part into three subsets. One for training,

one for validation and one for testing. While training the network on the training set, the

25

cost of the errors on the validation set are plotted for each iteration. This will produce a

curve of a decreasing cost for the first iterations until the ANN has been over-fitted, where

the cost on the validation set will start to increase again. With this data, one can set the

optimal number of epochs (iterations) for the learning algorithm for it to generalize

satisfyingly. The test set is then used to calculate how many percent of the examples in

the test set the ANN predicts correctly (Bruce & Otter, 2016).

2.3 Autonomous Vehicles

An Autonomous Vehicle (AV) is an innovation that plans to increase independent vehicle

driving altogether or partially for self-sufficient and safety purposes. The technology itself

consists of four underlying technologies: environment perception and modeling,

localization and map building, path planning and decision-making, and motion control

(Cheng, 2011). An AV uses machine vision, such as 3D cameras, and other sensors

(such as Laser-Imaging Detection and Ranging – LIDAR -and GPS). Input signals from

the machine vision and sensor are integrated with stored data by artificial-intelligence

software to decide how the vehicle should operate based on traffic rules (Manyika et al.,

2013).

2.4 Artificial Neural Network in Autonomous Vehicles

In most AVs, traffic recognition and vehicle driving are two separate modules. The early

AV systems, however, used road images as input for driving commands. One example

is the Autonomous Land Vehicle in a Neural Net (ALVINN). This is the Carnegie Mellon

University’s AV that uses a single hidden layer back-propagation network, with the input

consisting of a 30×32 two-dimensional video-frame (Cheng, 2011).

26

Chapter Three

Research Methodology

3.0 Introduction

This chapter aims to explain in details the research methods and the methodology

implemented for this project. This chapter will explain the choice of the research

approach, the research design, as well as the advantages and disadvantages of the

research tools chosen. This will be followed by a discussion on their ability to produce

valid results, meeting the aims and objectives set by this dissertation. The chapter tells

more about the data analysis methods which have been used. It concludes with a brief

discussion on the ethical considerations and limitations posed by the research

methodology, as well as problems encountered during the research.

3.1 Data Creation and Development

3.1.1 Convolution Neural Network (CNN) Training and Testing Data

Convolution Neural Networks require a large amount of training and validation images to

be tuned to a best local maximum in terms of measured performance against the

validation set and test set. The actual global maximum will most likely never be found and

is computationally impractical to attempt to make sure it is discovered every time. It is

often also not in our interest to find the global maximum, as such a solution is likely to fall

victim to being an overfit model that performs very well on the validation set, and perhaps

on your test set, but on a broader class of images, it cannot perform as well (Kornhauser,

2016).

The crucial idea to take away is that ignoring computational limitation, more information

(more images) is in every case better, assuming those images are well curated to

27

accurately and proportionally resemble the diverse set of scenarios the detector is

expected to perform under. For instance, in the event that one is distinguishing traffic

lights, and every one of the pictures are of a red light 1 meter before the vehicle, where

the traffic light takes up an enormous bit of the picture and is brilliantly lit on a radiant day,

and being seen from a precisely opposite point to the face of the light, at that point

preparing an exact finder to identify such a sign is an a lot simpler assignment. It is a

simpler errand, yet then your indicator is likewise just getting down to business well under

that precise, simple situation. In the event that the red light is seen at an edge, on the off

chance that it is in part impeded, on the off chance that it is under the shadow of a tree,

in the event that it is 10 meters away, and so on, any of those practical situations in reality

or blend of them will battle to be distinguished by the identifier. What's more, such a poor

detector can't be utilized by itself as a centerpiece in autonomous vehicle expected to

protect riders. Training a CNN involves creating a network architecture by tuning

hyperparameters (number of layers, types of layers, order of layers, dimensions of

kernels, number of kernels, pooling sizes, pooling padding size, dimensions of input and

output to a layer, et cetera) and then letting the optimizer run across thousands of images

in the training set, thousands of times, to estimate optimal values for the thousands of

parameters in the layers via backpropagation and stochastic gradient descent. The

measure of parameters being assessed is colossal, and the result is in large part

dependent on a well-curated choice of images for the training set. It is additionally critical

to take note of that "thousands" can without much of a stretch be supplanted by "several

thousands," "many thousands," or "millions" and onwards. Everything relies upon

numerous factors, such as the difficulty of the detection problem, the measure of

28

preparing information accessible, the simplicity of development of new information, and

the computational "capability" (Hardware) accessible to the researcher.

3.2 Abuja Traffic Light Data set

Traffic Light images were gotten from the streets of Abuja metropolis. The Abuja Traffic

light Data set, is a dataset containing three traffic light colors, with light sizes ranging from

6x6 to 64x64 pixels. Images were collected using several different cameras and vary in

size from 640x480 to 1024x522 pixels. Each annotation of a sign includes many useful

facts such as light type, light position and size, and a few more statistics about what

camera took the image. Some examples of such Images:

Figure 3. 1: Image taken at Abuja, Nigeria

3.3 Training and Test Set Construction

29

It is essential to recollect these sets of images need to precisely represent the

environment in which the self-governing vehicle will be utilized. The objective is to have

the system classify these pictures with high precision and speed. The dimension of the

images is actually not much of a problem since based on other research papers, this is

well inside the scope of measurements of preparing images used to develop similar

CNN's. The main essentialness of bringing this up is that the design of the CNN needs to

match the dimensions of the image it is being utilized on. So it should be trained and

tested on real-world images..

Looking through my Abuja Dataset, some images largely fall into one of two groups: 704

x 480 or 640 x 480. Without distorting the image to stretching, those two images can have

their dimensions scaled down to 64 x 64. It is much preferred, however, due to the vast

majority of traffic light falling into the first category, there was no choice but to go with

using the 704 x 480 category. Due to the non-availability of time, images having a higher

cover of traffic light were selected to allow for quick processing and result delivery.

Python scripts were developed and implemented via Spyder software, to automatically

go through the 55 images, and sort them into two groups. I am grouping them into training

and test sets.

DATA SET NO OF IMAGES

Training Set 55

Test Set 14

Table 3. 1: Training, Validation, Testing Set Counts

30

In the diagram below, the Imageset was classified into;

 Training Set: Collection of input-output patterns that are used to train the

network.

 Test Set: Collection of input-output patterns that are used to assess network

performance.

Figure 3. 2: Block Diagram of the Image set

3.3 CNN Introduction

The reason why I used CNN is not trivial. Many alternatives can be explored, such as

spiking neural networks, deep neural networks, recurrent neural networks, and etcetera.

However, Convolution Neural Networks happens to be a common choice for computer

vision challenges such as image recognition and pattern recognition. CNNs are

extensively employed in pattern and image-recognition challenges as they have a number

of advantages compared to other techniques.

Convolutional Neural Networks are a type of artificial neural network. Artificial neural

networks (ANNs) are models that are biologically inspired variants of real neural networks

within a biological brain. Essentially, an ANN is a network of neurons where each neuron

is only connected to certain other neurons, and all neurons connections are assigned

weights based on how paramount those connections are. It is all these weights that are

31

being optimized/learned via training the CNN on the training set. A neural network is a

system of interconnected artificial “neurons” that exchange messages between each

other (Kornhauser, 2016).

Figure 3. 3: Showing the sequence of steps employed by a typical CNN

The connections have numeric weights that are tuned during the training process so that

a properly trained network will respond correctly when presented with an image or pattern

to recognize. The network consists of multiple layers of feature-detecting “neurons.” Each

layer has many neurons that respond to different combinations of inputs from the previous

layers. As shown in Figure 1, the layers are built up so that the first layer detects a set of

primitive patterns in the input, the second layer detects patterns of patterns, the third layer

detects patterns of those patterns, and so on (Hijazi et al., 2010).

The composition of a CNN will be broken further. A Convolution Neural Network is an

ANN composed of several types of layers. These layers include:

 Convolution Layer

32

 Pooling Layer

 Rectified Linear Unit Layer

 Fully Connected layer

3.3.1 Convolution Layer

The convolution layer serves to extract different features of the input. The first convolution

layer extracts low-level features like edges, lines, and corners. Higher-level layers extract

higher-level features. Figure 6 illustrates the process. The input is of size N x N x D and

is convolved with H kernels, each of size k x k x D separately. Convolution of input with

one kernel produces one output feature, and with H kernels independently produces H

features. Starting from the top-left corner of the input, each kernel is moved from left to

right, one element at a time. Once the top-right corner is reached, the kernel is moved

one element in a downward direction, and again the kernel is moved from left to right, one

element at a time. This process is repeated until the kernel reaches the bottom-right

corner. Convolutional Layers (CONV). The CONV layer is where CNN gets its name from,

as stated earlier, it is essentially a process where the input into the layer is “convolved”

with a set of filters, and the outputs of those convolutions are passed as input into the

next layer. A filter can be thought of as a sliding window with weights (a matrix of numbers)

that is sliding across the entire image (a bigger matrix of numbers), and at each position

it takes a dot product with the portion of the image it covers, which will be part of the

output (Kornhauser, 2016). The weights on these filters are what is being learned during

training. The filter object in a CONV layer is four dimensional: (1) number of filters, (2)

number of channels (number of input matrices), (3) filter height, and (4) filter width.

33

Usually, it is very hard for the human eye to get an idea of what these filters are doing

and especially if the filters do not come from the first convolutional layer.

Figure 3. 4: Pictorial representation of a convolution process (Hijazi et al., 2010)

3.3.2 Pooling Layer

The POOL layers are largely responsible for thinning out the information (originally the

image when it first enters) flowing through the CNN, which is good, as it can speed up

computation and remove unnecessary details or noise. However, if too much pooling is

used, it can thin out the data too quickly and impair object detection, thus finding the right

balance is important. The intuition behind the idea of pooling is that after a filter has

34

identified a feature (and thus having a high dot product value), the exact location of the

feature is not important, but rather what is important is only its relative location to other

features. Thus one can divide the current input matrix into 2x2 or 3x3 tiles, and take the

maximum, average, or L2-norm of those values, and have that one value replace those

4 or 9 values in the output (I choose to use max pooling as that has been shown to work

best in practice). For my CNNs they all use max pooling and the pool size is 2x2. See

below illustration made to show the max pooling occurring in this CNN (Hijazi et al., 2010).

Figure 3. 5: Example of Max-Pooling technique

3.3.3 Rectified Linear Unit Layer

Rectified Linear Unit Layers (ReLU). The ReLU layer is the layer responsible for adding

further nonlinearity to the CNN, it is supposed to act as an activation function to allow

CNN to train faster. There is a debate about which function to use in this layer. However,

there are three major functions in use:

1. ReLU Activation function

2. Sigmoid Activation Function

3. Tanh Activation Function

35

The main reason why we use the sigmoid function is that it exists between(0 to 1).

Therefore, it is especially used for models where we have to predict the probability as an

output. Since the probability of anything exists only between the range of 0 and 1, sigmoid

is the right choice. However, ReLU is the most used activation function in the world right

now. Since it is used in almost all the convolutional neural networks or deep learning.

As such, I used Both the ReLU and Sigmoid AF to carry out my research with the result

discussed in chapter 4 of this thesis.

3.3.4 Fully Connected Layer (FC)

Fully Connected (FC) Layer. This is typically the last layer in the CNN after some

combination of any amount of layers before, where their types correspond to the previous

three layers mentioned. The FC layer is unique in that it is the only section of the CNN

where every node in the layer n has its own connections to all the nodes in layer n+1, so

long as layers n and n+ 1 are part of the FC section. As one can imagine, so many weights

make this computationally expensive, thus having combinations of CONV, POOL and

ReLU layers before this step, and thus significantly reducing the size of the input into the

FC layer is very important. If the FC layer has Hidden Layers (HLs) within it, which it

usually does, then it can also be considered a Multilayer Perceptron (MLP). Learning in

the MLP/FC layer takes place via a process known as Backpropagation which is

essentially a method of using stochastic gradient descent to minimize the error of the

predictions, which is the output from the final layer of the FC. Each layer in the FC layer

has a weight matrix W and bias vector b; these are the values that are learned. The last

layer of the CNN in this research is logistic regression (LR) layer; this is because it is a

common technique shown to improve performance. The hidden layer (HL) essentially

36

transforms the input into a linearly separable space, and then the Logistic Regression

(LR) layer classifies (makes predictions from) the output from HL.

3.4 Back Propagation

The learning algorithm’s goal is to minimize the error between the expected (or teacher)

value and the actual output value that was determined in the Forward Computation while

the weight and bias is updated. The following steps are performed:

 Randomly choose the initial weights

 In case the error is too large and for each training pattern, apply the inputs to the

network

 Calculate the output for every neuron from the input layer, through the hidden

layer(s), to the output layer

 Calculate the error at the outputs

 Use the output error to compute error signals for pre-output layers

 Use the error signals to compute weight adjustments

 Apply the weight adjustments

 Evaluate performance using the test set.

(Murakami, Okuyama, & Abdallah, 2018)

37

The figure below shows the block diagram of the learning process

Figure 3. 6: Showing the steps necessary throughout the learning process

The final construction for the CNN in this study is as follows:

INPUT IMAGE >>> [[CONV -> POOL -> RELU]]*3 >>> HL>>> RELU -> LR -> (OUTPUT)

From the above, the “*3” notation means the 3 layers in the brackets are repeated 3 times.

So basically the CNN can be thought of as having 12 layers in between input and output.

Various architectures were attempted and this one seemed to work best in my simulation

and instinctively appeared to be legitimate, to help for visualization. Below is an illustration

of a typical CNN architecture:

38

Figure 3. 7: Architecture of the proposed CNN

3.5 Proposed System Architecture

The figure below shows the proposed system architecture of the neural network for its

implementation in an autonomous vehicle. The project consists of two phases, that is,

the software implementation and the hardware implementation. Due to the limited

period, the software implementation was carried out with the hardware phase left for

future work. The hardware consists of an FPGA which is used for parallelism and speed

of computation as the autonomous vehicle would require fast processing to make

decisions, to avoid events of failure.

39

Figure 3. 8: Architecture of the proposed CNN

3.5 CNN Construction and Implementation

Choosing how to architect a CNN was difficult in enormous part in light of the fact that at

the earliest reference point, one battles with how to settle on choices naturally. This is on

the grounds that a novice with CNNs has zero or almost no instinct about such theoretical

ideas. For instance, if the CNN isn’t performing well, what hyper-parameters should be

changed?

This design was implemented on a:

 Hardware: 2.40 GHz Intel Core-i5 4770 and 8 GB of RAM

 Software: Anaconda/Spyder, Python 3.7.6 Version

40

There are so many hyperparameters that were changed, such as the epoch, the number

of filters, and the number of layers, amongst others. For this intuition, I had to spend a lot

of time on training neural networks, making such changes, and observing the effect. The

study mainly relied on the Deep Learning Tutorial on Datacamp. I finally settled on using

the ReLU activation function for the three convolution layer, ten epochs, and two fully

connected layers to achieve a result which is detailed in the next chapter.

41

Chapter Four

Evaluation and Result

4.1 Evaluation

4.1.1 Execution time evaluation with RELU AF

The table below shows that the execution time taken was 10s to train & 14s to predict,

amounting to 24s in total.

No of Epochs ET for training

(seconds)

ET for prediction

(Seconds)

Total time

10 10 14 24

Table 4. 1: Execution time evaluation with ReLU AF

4.1.2 Execution time evaluation with Sigmoid AF

The table below shows that the execution time taken was 11s to train & 14s to predict,

amounting to 25s in total.

No of Epochs ET for training

(seconds)

ET for prediction

(Seconds)

Total time

10 11 14 25

Table 4. 2: Execution time evaluation with Sigmoid AF

4.1.3 Accuracy evaluation with RELU AF

As can be seen from the figure below, the 3 layers produced a correct detection rate of

57.14%, while there was accuracy of 35% and 26.41% for 2 layers and 4 layers

respectively.

42

Figure 4. 1: Accuracy graph for different Hidden layers using ReLU AF

4.1.4 Accuracy evaluation with Sigmoid AF

As can be seen from the chart below, the 3 layers produced a correct detection rate of

35.71%, while there was an accuracy of 29% and 31% for 2 layers and 4 layers

respectively.

Figure 4. 2: Accuracy graph for different Hidden layers using Sigmoid AF

43

4.2 EVALUATION SUMMARY/ RESULT

The summary of the final result is displayed in the figure below;

 Accuracy Difference of 21.43

 Speed difference of 1s

 RELU AF provided the optimum performance

Figure 4. 3: Summary that determines the optimum parameters

44

Chapter Five

Conclusion

This thesis examined the design of a neural network architecture for autonomous

vehicles, which was implemented using python programming language and keras library.

With 55 training images and 14 test images, the neural network implementation produces

a correct detection rate of 57.14%, which is due to the small number of images. Also, its

speed of computation was faster using ReLU activation function. However, the speed and

accuracy were affected by trying different parameters, which resulted in different outputs.

To summarize:

 Problem - Runtime and accuracy in autonomous vehicle classification poses a big

drawback.

 Merit - Actualization and hope it brings to autonomous vehicle safety on our

streets.

 Research Goal - Design a neural network architecture for traffic light detection in

autonomous vehicles.

 Achievements - Ability to use a real life data set (images from Abuja metropolis)

to achieve a 57% correct detection rate.

Future Research Work – The future work will hopefully focus on the use of more images,

implementation on hardware, and further evaluation of the CNN model for Traffic-Light

Recognition in Autonomous Vehicles.

Final Thoughts

Working on designing a neural network architecture for traffic light detection in

autonomous vehicles was a great pleasure. Based on all the work that has been done so

45

far, training and testing on CNN seem to be a very tractable and effective method. There

are so many new techniques one can try with relative ease. This will hopefully be

implemented in my future works! Nigeria, being a developing nation with limited research

on autonomous vehicle technology, is required to explore this emerging technology

further to ensure a high level of safety and trust. We can make a difference.

46

REFERENCE

Autonomous Intelligent Ve- hicles. (n.d.).

Bell, J. (n.d.). Jason Bell-Machine Learning_ Hands-On for Developers and Technical

Professionals-Wiley (2014).

Bruce, W., & Otter, E. V. O. N. (2016). Artificial Neural Network Autonomous Vehicle

Artificial Neural Network controlled vehicle.

Civín, L. (1998). Back propagation neural metworks user manual. 33(2), 1–28.

Hijazi, B. S., Kumar, R., Rowen, C., & Group, I. P. (2010). What is a CNN? 5–16.

https://doi.org/10.1142/9789812798589_0002

Kornhauser, A. A. L. (2016). CONVOLUTIONAL NEURAL NETWORKS APPLIED TO

TRAFFIC SIGN DETECTION IN GRAND THEFT AUTO V. (June).

Lee, G. G., & Park, B. K. (2017). Traffic light recognition using deep neural networks.

2017 IEEE International Conference on Consumer Electronics, ICCE 2017, 277–

278. https://doi.org/10.1109/ICCE.2017.7889317

Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive

technologies: Advances that will transform life, business, and the global economy.

McKinsey Global Institute, (May), 1–164. Retrieved from

http://www.mckinsey.com/insights/business_technology/disruptive_technologies%5

Cnhttp://www.chrysalixevc.com/pdfs/mckinsey_may2013.pdf

Murakami, Y., Okuyama, Y., & Abdallah, A. Ben. (2018). SRAM Based Neural Network

System for Traffic-Light Recognition in Autonomous Vehicles Paper Contribution

System Architecture Preliminary Evaluation Conclusion and Future work. 1–27.

Murakami, R., Okuyama, Y., & Abdallah, A. Ben. (2018). ”Animal Recognition and

47

Identification with Deep Convolutional Neural Networks for Farm Monitoring”,

Information Processing Society Tohoku Branch Conference, Koriyama, Japan.

The H. Vu, Okuyama, Y., & Abdallah, A. Ben. (2019), ‘’Analytical performance

assessment and high-throughput low-latency spike routing algorithm for spiking

neural network systems,’’ The Journal of Supercomputing.

DOI: https://doi.org/10.1007/s11227-019-02792-y

The H. Vu, Abdallah, A. Ben. (2019), ''A Low-latency K-means based Multicast Routing

Algorithm and Architecture for Three Dimensional Spiking Neuromorphic Chips'',

IEEE International Conference on Big Data and Smart Computing (BigComp

2019), Kyoto, Japan, Feb 28 - Mar 2, 2019 [best paper award]

The H. Vu, Murakami, R., Okuyama, Y., & Abdallah, A. Ben. (2018). ”Efficient

Optimization and Hardware Acceleration of CNNs towards the Design of a

Scalable Neuro-inspired Architecture in Hardware”, IEEE International Conference

on Big Data and Smart Computing (BigComp 2018), Shanghai, China, January

15-18, 2018.

https://doi.org/10.1007/s11227-019-02792-y

48

APPENDIX

CODE

#Image Preprocessing and CNN Training

import numpy
import matplotlib.pyplot as plt
from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from keras.optimizers import SGD
from keras.layers import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
import load_data
from keras.models import Sequential
from keras.layers import Dense
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.callbacks import TensorBoard
import time
from tensorflow import keras
import tensorflow as tf

K.set_image_dim_ordering('tf')
fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)

def pre_process(X):

 # normalize inputs from 0-255 to 0.0-1.0
 X=X.astype('float32')
 X = X / 255.0
 return X

def one_hot_encode(y):

 # one hot encode outputs
 y = np_utils.to_categorical(y)
 num_classes = y.shape[1]
 return y,num_classes

def define_model(num_classes,epochs):
 # Create the model

49

 model = Sequential()
 model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), padding='same',
activation='relu', kernel_constraint=maxnorm(3)))
 model.add(Conv2D(32, (3, 3), activation='sigmoid'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.2))
 model.add(Conv2D(64, (3, 3), activation='sigmoid', padding='same',
kernel_constraint=maxnorm(3)))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.2))
 model.add(Flatten())
 model.add(Dense(128, activation='sigmoid', kernel_constraint=maxnorm(3)))
 model.add(Dense(128, activation='sigmoid'))
 model.add(Dropout(0.5))
 model.add(Dense(num_classes, activation='softmax'))
 # Compile model
 lrate = 0.01
 decay = lrate/epochs
 sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
 model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
 print(model.summary())
 return model

load data
X,y=load_data.load_datasets()

pre process
X=pre_process(X)

#one hot encode
y,num_classes=one_hot_encode(y)

#split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=7)

epochs = 10
#define model
model=define_model(num_classes,epochs)

Fit the model
history=model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs,
batch_size=32)

50

list all data in history
print(history.history.keys())
summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))

serialize model to JSONx
model_json = model.to_json()
with open("model_face.json", "w") as json_file:
 json_file.write(model_json)
serialize weights to HDF5
model.save_weights("model_face.h5")
print("Saved model to disk")

#CNN TESTING

import numpy as np
import os
from scipy import misc
from keras.models import model_from_json
import pickle

Loading int2word dict
classifier_f = open("int_to_word_out.pickle", "rb")
int_to_word_out = pickle.load(classifier_f)
classifier_f.close()

51

def load_model():
 # load json and create model
 json_file = open('model_face.json', 'r')
 loaded_model_json = json_file.read()
 json_file.close()
 loaded_model = model_from_json(loaded_model_json)
 # load weights into new model
 loaded_model.load_weights("model_face.h5")
 #print("Loaded model from disk")
 return loaded_model

def pre_process(image):
 image = image.astype('float32')
 image = image / 255.0
 return image

def load_image():
 index=0
 for index in range(len(os.listdir("images"))):
 img=os.listdir("images")[index]
 image=np.array(misc.imread("images/"+img))
 image = misc.imresize(image, (64, 64))
 image=np.array([image])
 image=pre_process(image)
 model=load_model()
 prediction=model.predict(image)
 print(index+1,":",int_to_word_out[np.argmax(prediction)],"=",np.max(prediction))

 return image

load_image()#run it
'''image=load_image()
model=load_model()
prediction=model.predict(image)

#print the predictions
print(int_to_word_out[np.argmax(prediction)],np.max(prediction))
'''

