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ABSTRACT 

 

Over the ongoing years, innovatively propelled nations have kept on joining the quest for 

growing completely self-sufficient driven vehicles. This Autonomous vehicles intend to 

address issues of driver profitability and effectiveness. Dependable traffic light discovery 

is a vital segment for self-sufficient driving. Recognizing the traffic lights amidst everything 

is a standout amongst the most significant errand. The focus of this research is to develop 

and find the optimal parameters for an efficient Neural Network Architecture to aid a 

hardware engineer to implement on a hardware for the autonomous vehicle. This is done 

by designing an Artificial Neural Network (ANN) that would be capable of detecting and 

correctly classifying any traffic light within the city of Abuja, Nigeria. This study first 

attempts to develop a reliable traffic sign detector by constructing MLP, training using BP, 

and tuning various Convolutional Neural Networks (CNN). Images for training are 

obtained from Abuja city metropolis 

Keywords: Backpropagation (BP), neural networks, CNN, MLP, ANN 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Research Background 

Computer vision takes root in signal processing; wherein the effect of a system on a signal 

is studied, and frameworks for exploring this effect are examined. The black box is an 

excellent illustration of the basic premise of signal processing. In general, a signal is input 

into the black box, propagates through the unknown system therein, and another signal 

is output. The usual question we tend to ask is, “what is in the black box?” Typically, we 

may look at the input and output in terms of specific characteristics called metrics to infer 

some quality of the process undergone inside the black box. A research engineer may 

even explore different metrics that seem intuitive based on other information about the 

process and describe the unknown system in a novel way. The issue with the discovery 

attitude is that no measurement or set of measurements can show with sureness the 

substance of the black box in light of the fact that numerous interesting capacities exist 

with a similar arrangement. While overseeing multifaceted nature, utilizing presumptions 

and approximations may do the trick for some different fields of building. The information 

in Machine vision is excessively entangled and voluminous for this methodology. 

Conventional traffic light detection methods often suffer from false positives in an urban 

environment because of complex backgrounds. To overcome such limitation, Deep 

Neural Network is emphasized, which is fast, but weak to false positives (Lee & Park, 

2017). To realize autonomous vehicles, image recognition with high accuracy and high 

speed is necessary for the vehicle environment. ANNs are recently used in many machine 
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learning applications, from speech recognition and natural language processing to 

computer vision, and image recognition.  

Conventional traffic light serves as the input to the black box, which by design, using the 

neural network will produce the desired output. 

1.2 Artificial Neural Networks  

An ANN is based on a collection of connected units or nodes called artificial neurons, 

which loosely model the neurons in a biological brain. Each connection, like the synapses 

in a biological brain, can transmit a signal from one artificial neuron to another. An artificial 

neuron that receives a signal can process it and then signal additional artificial neurons 

connected to it, thus producing the desired output, which is very useful for decision 

making in autonomous vehicle systems. The neural network itself is not an algorithm, but 

rather a framework for many different machine learning algorithms to work together and 

process complex data inputs. These systems "learn" to perform tasks by considering 

examples, generally without being programmed with any task-specific rules (Marcel van 

Gerven et al., 2017). 

1.3 Neural Network Architectures 

There are many neural network architectures; their different layers of neurons regularly 

organize them. These layers comprise of input, hidden, and output layers. Two metrics 

are frequently used to measure the neural network size, the number of neurons and the 

number of parameters. It is essential to mention that the network size plays an integral 

part in designing a neural network. 
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1.4 Problem Statement 

Efficiency, accuracy, and quick decision making is a common challenge in the field of 

Autonomous Vehicles. Rapid processing of data helps in speeding up any operation to 

be performed on such data. Many frameworks for traffic light detection using machine 

learning have been proposed in the past but were rather time-in-efficient in either the 

reduction of the dimension or in terms of the efficiency of the machine learning algorithms 

used. The need for better approaches that can improve the computational problems 

associated with image processing or classification is in high demand and cannot be 

overemphasized. 

This thesis aims to explain the design of a Neural Network architecture that will be used 

for image classification and in this case, a traffic light detection in autonomous vehicles. 

It describes the theory behind the neural network and Autonomous Vehicles, and traffic 

light dataset as its only input that can be designed to test and evaluate the algorithm’s 

capabilities. The thesis will show that the Artificial Neural Network can, with an image 

resolution of 64 × 64 and a training set with 55 images, make decisions with a 0.54 

confidence level. 

1.5 Research Aim and Objectives: 

Reliable traffic light detection is a crucial component for autonomous driving. One of the 

main tasks that such a vehicle must perform well is the task of following the rules of the 

road. Identifying the traffic lights amid everything is one of the most critical tasks. 

The main objectives of the research are: 

i. Design a neural network for image classification. 
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ii. Develop and find the optimal parameters for an efficient Neural Network 

Architecture to aid a hardware engineer to implement on hardware for the 

autonomous vehicle to improve driver productivity, enhance transportation 

efficiency, and increase safety. 

1.6 Limitation of the Study 

This research study is limited to the design of neural networks and classification of traffic 

light images for autonomous vehicles only. The study highlights the significance of neural 

networks in autonomous vehicle decision making. 
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Chapter Two 

Literature Review 

 

2.1 Artificial Neural Network  

An ANN is a basic model of an animal brain. In a brain, a neuron is a cell that processes 

chemical or electrical signals. The neuron is connected to other neurons and creates a 

network, which is a human brain contains tens of billions of connected cells (Bruce & 

Otter, 2016) 

The neuron in a brain has input routes called dendrites, a cell body and output routs called 

axons. When the electrochemical signal is transmitted through the dendrites, the neuron 

is activated. The cell body then determines the weight of the signal and if a threshold is 

passed, the neuron “fires” through the axon (Bell, 2014)  

Artificial neural networks are motivated by Biological neural frameworks. Signal 

transmission in biological neurons through synapses is an unpredictable chemical 

process in which explicit transmitter substances are discharged from the sending side of 

the neural connection. The impact is to raise or lower the electrical potential inside the 

body of the getting cell. On the off chance that this potential achieves an edge, the neuron 

fires. It is this characteristic of the biological neurons that the artificial neuron model 

proposed by McCulloch Pitts endeavors to duplicate. The following neuron model shown 

in figure (2.1) is widely used in artificial neural networks with some variations. 
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Figure 2. 1: The Artificial Neural Network Architecture 

The network consists of multiple layers of feature-detecting neurons. Where each layer 

has many neurons that respond to different combinations of input signal from the previous 

layers. As shown in Figure (2.2), the layers are developed with the goal that the primary 

layer distinguishes a lot of crude patterns in the information, the second layer recognizes 

pattern of patterns, and the third layer identifies patterns of those patterns, etc. 

 

Figure 2. 2: Artificial Neural Network 
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2.1.1 Perceptron 

In an ANN, the neurons are named perceptron and the axon and dendrites are called 

links. Looking at the figure below, the link from perceptron j to perceptron i transmits the 

output of j to i. This output has the notation aj. The link also has a corresponding numeric 

weight, Wj, i, which determines the strength and sign of the connection. (Bruce & Otter, 

2016). The perceptron function is two-folded. Firstly, it computes the weighted sums of 

its inputs: 

Zi = ∑ 𝑊𝑗,𝑖𝑎𝑗
𝑛
𝑗=0  

Secondly, it applies an activation function, g, to compute the output from the perceptron 

(Russel and Norvig, 1995). The output is a numeric value in the range from zero to one.  

 

Figure 2. 3: the Perceptron 

 

2.1.2 The Neuron Model (Single-Input Neuron) 

 

A single-input neuron is shown in Figure 2.4. The scalar input ‘’p’’ is multiplied by the 

scalar weight ‘’w’’ to form ‘’wp’’, one of the terms that are sent to the summer. The other 
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input, ‘’1’’, is multiplied by ‘’a’’ bias ‘’b’’ and then passed to the summer. The summer 

output ‘’n’’, often referred to as the net input, goes into an activation function, which 

produces the scalar neuron output a. 

 

Figure 2. 4: Single input Neuron 

The neuron output is calculated as 

a =f(wp +b). 

If, for instance, w = 2, p = 4 and b = -1.5, then 

A = f(2(4) – 1.5) = f(6.5) 

The actual output depends on the particular transfer function that is chosen. 

We will discuss transfer functions in the next section. 

The bias is much like weight, except that it has a constant input of 1. W and b are both 

adjustable scalar parameters of the neuron. However, if you do not want to have a bias 

in a particular neuron, it can be omitted 
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2.1.3 Activation function 

 

Figure 2. 5: The sigmoid function 1/1 + E (−x) 

All together for the ANN to be effective, the actuation function is critical. It is designed so 

that when the perceptron is fed with the correct input the perceptron becomes active, i.e. 

the function computes to a value near +1. Vice versa, the perceptron should become 

inactive, i.e. the function computes to a value near 0, when it is fed with the incorrect input 

(Awad and Khanna, 2015). 

It is the most fundamental pieces of a neuron. The nonlinearity of the activation function 

makes it possible to approximate any function. It squashes numbers to the range [0, 1]. 

2.1.4 Cost function  

As the prominent saying goes, "we gain from our slip-ups". Which is valid, in actuality, as 

an awful choice frequently is trailed by an undesirable occasion. Whenever an individual 

is looked with a comparable decision, they are more averse to settle on that equivalent 

wrong choice once more. 

This is also true for ANNs, where the decision is a prediction which is associated with a 

cost. This cost is calculated with a cost function based on the error of the prediction. There 
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are a few cost functions utilized for machine learning, yet for this project, the logistic 

regression cost function (equation below) is used. It is based on the maximum likely-hood 

estimation in probability theory (Raschka, 2015). 

J(W) = -1/M(∑ 𝑦𝑚 log 𝑔(𝑥𝑚)𝑀
𝑚=1 + (1 − 𝑦𝑚) log (1 − 𝑔(𝑥𝑚))) 

 

Since the desired outputs from the training examples ym {0, 1}, one of the two terms is 

always zeroed out. This can then be seen as two cost functions corresponding to the 

possible values of ym, where each assigns a very high cost to a prediction opposite to 

what the target output is. This cost function was, and is often, chosen for ANNs because 

of its feature of being a convex function, making it easier to minimize than a non-convex 

cost function. 

2.1.5 Forward propagation 

The manner in which the ANN makes a prediction is by taking the given information 

parameters and enhancing or debilitating the initiation of neurons in the system in different 

ways, yielding some output parameters that are probabilities for each yield case. The 

weights of the connections decide how much each perceptron's activation is to be 

changed before being fed to the following layer of the ANN. This process is called forward 

propagation (Russel and Norvig, 1995). 

The activation for a neuron of the first layer is simply the input parameter for that neuron.  
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2.2.6 Backward propagation 

To limit the prediction cost, we have to investigate the factors contributing to calculating 

the cost. There are three: input signal, the weights, and the activation function. Changing 

the input to get the right output is impossible since the objective here is to get the system 

to utilize a genuine image to give a satisfactory answer. The activation function is out of 

our control when the learning is in progress, hence it is the weights that need to be 

changed to minimize the cost (Bruce & Otter, 2016) 

To change the weights of the system in a manner that limits the prediction cost, we need 

to grasp how the weights influence the output. The BP ANNs represents a kind of ANN, 

whose learning’s algorithm is based on the Deepest-Descent technique. If provided with 

an appropriate number of Hidden units, they will also be able to minimize the error of 

nonlinear functions of high complexity (Buscema, 1998). 

 

2.2 Generalization and overfitting 

In machine learning, there is a common problem which is over-fitting of the algorithm. The 

reason for utilizing an ANN is, to generalize from the training examples to all possible 

inputs, rather than coordinating the training inputs superbly and be unfit to make great 

expectations on new data sources. Imagine a 5th order polynomial matching 4 data points 

perfectly. The impact of this in an ANN is that it figures out how to predict training image 

set effectively and correctly, in the long run learning the possible noise of the inputs 

themselves. To handle this issue, the dataset is part into three subsets. One for training, 

one for validation and one for testing. While training the network on the training set, the 
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cost of the errors on the validation set are plotted for each iteration. This will produce a 

curve of a decreasing cost for the first iterations until the ANN has been over-fitted, where 

the cost on the validation set will start to increase again. With this data, one can set the 

optimal number of epochs (iterations) for the learning algorithm for it to generalize 

satisfyingly. The test set is then used to calculate how many percent of the examples in 

the test set the ANN predicts correctly (Bruce & Otter, 2016). 

 

2.3 Autonomous Vehicles 

An Autonomous Vehicle (AV) is an innovation that plans to increase independent vehicle 

driving altogether or partially for self-sufficient and safety purposes. The technology itself 

consists of four underlying technologies: environment perception and modeling, 

localization and map building, path planning and decision-making, and motion control 

(Cheng, 2011). An AV uses machine vision, such as 3D cameras, and other sensors 

(such as Laser-Imaging Detection and Ranging – LIDAR -and GPS). Input signals from 

the machine vision and sensor are integrated with stored data by artificial-intelligence 

software to decide how the vehicle should operate based on traffic rules (Manyika et al., 

2013).  

2.4 Artificial Neural Network in Autonomous Vehicles 

In most AVs, traffic recognition and vehicle driving are two separate modules. The early 

AV systems, however, used road images as input for driving commands. One example 

is the Autonomous Land Vehicle in a Neural Net (ALVINN). This is the Carnegie Mellon 

University’s AV that uses a single hidden layer back-propagation network, with the input 

consisting of a 30×32 two-dimensional video-frame (Cheng, 2011). 
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Chapter Three 

Research Methodology 

3.0 Introduction 

This chapter aims to explain in details the research methods and the methodology 

implemented for this project. This chapter will explain the choice of the research 

approach, the research design, as well as the advantages and disadvantages of the 

research tools chosen. This will be followed by a discussion on their ability to produce 

valid results, meeting the aims and objectives set by this dissertation. The chapter tells 

more about the data analysis methods which have been used. It concludes with a brief 

discussion on the ethical considerations and limitations posed by the research 

methodology, as well as problems encountered during the research. 

3.1 Data Creation and Development 

3.1.1 Convolution Neural Network (CNN) Training and Testing Data 

Convolution Neural Networks require a large amount of training and validation images to 

be tuned to a best local maximum in terms of measured performance against the 

validation set and test set. The actual global maximum will most likely never be found and 

is computationally impractical to attempt to make sure it is discovered every time. It is 

often also not in our interest to find the global maximum, as such a solution is likely to fall 

victim to being an overfit model that performs very well on the validation set, and perhaps 

on your test set, but on a broader class of images, it cannot perform as well (Kornhauser, 

2016). 

The crucial idea to take away is that ignoring computational limitation, more information 

(more images) is in every case better, assuming those images are well curated to 
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accurately and proportionally resemble the diverse set of scenarios the detector is 

expected to perform under. For instance, in the event that one is distinguishing traffic 

lights, and every one of the pictures are of a red light 1 meter before the vehicle, where 

the traffic light takes up an enormous bit of the picture and is brilliantly lit on a radiant day, 

and being seen from a precisely opposite point to the face of the light, at that point 

preparing an exact finder to identify such a sign is an a lot simpler assignment. It is a 

simpler errand, yet then your indicator is likewise just getting down to business well under 

that precise, simple situation. In the event that the red light is seen at an edge, on the off 

chance that it is in part impeded, on the off chance that it is under the shadow of a tree, 

in the event that it is 10 meters away, and so on, any of those practical situations in reality 

or blend of them will battle to be distinguished by the identifier. What's more, such a poor 

detector can't be utilized by itself as a centerpiece in autonomous vehicle expected to 

protect riders. Training a CNN involves creating a network architecture by tuning 

hyperparameters (number of layers, types of layers, order of layers, dimensions of 

kernels, number of kernels, pooling sizes, pooling padding size, dimensions of input and 

output to a layer, et cetera) and then letting the optimizer run across thousands of images 

in the training set, thousands of times, to estimate optimal values for the thousands of 

parameters in the layers via backpropagation and stochastic gradient descent. The 

measure of parameters being assessed is colossal, and the result is in large part 

dependent on a well-curated choice of images for the training set. It is additionally critical 

to take note of that "thousands" can without much of a stretch be supplanted by "several 

thousands," "many thousands," or "millions" and onwards. Everything relies upon 

numerous factors, such as the difficulty of the detection problem, the measure of 
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preparing information accessible, the simplicity of development of new information, and 

the computational "capability" (Hardware) accessible to the researcher. 

3.2 Abuja Traffic Light Data set 

Traffic Light images were gotten from the streets of Abuja metropolis. The Abuja Traffic 

light Data set, is a dataset containing three traffic light colors, with light sizes ranging from 

6x6 to 64x64 pixels. Images were collected using several different cameras and vary in 

size from 640x480 to 1024x522 pixels. Each annotation of a sign includes many useful 

facts such as light type, light position and size, and a few more statistics about what 

camera took the image. Some examples of such Images: 

Figure 3. 1: Image taken at Abuja, Nigeria 

 

3.3 Training and Test Set Construction 
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It is essential to recollect these sets of images need to precisely represent the 

environment in which the self-governing vehicle will be utilized. The objective is to have 

the system classify these pictures with high precision and speed. The dimension of the 

images is actually not much of a problem since based on other research papers, this is 

well inside the scope of measurements of preparing images used to develop similar 

CNN's. The main essentialness of bringing this up is that the design of the CNN needs to 

match the dimensions of the image it is being utilized on. So it should be trained and 

tested on real-world images.. 

Looking through my Abuja Dataset, some images largely fall into one of two groups: 704 

x 480 or 640 x 480. Without distorting the image to stretching, those two images can have 

their dimensions scaled down to 64 x 64. It is much preferred, however, due to the vast 

majority of traffic light falling into the first category, there was no choice but to go with 

using the 704 x 480 category. Due to the non-availability of time, images having a higher 

cover of traffic light were selected to allow for quick processing and result delivery. 

Python scripts were developed and implemented via Spyder software, to automatically 

go through the 55 images, and sort them into two groups. I am grouping them into training 

and test sets. 

DATA SET NO OF IMAGES 

Training Set 55 

Test Set 14 

Table 3. 1: Training, Validation, Testing Set Counts 
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In the diagram below, the Imageset was classified into; 

 Training Set: Collection of input-output patterns that are used to train the 

network. 

 Test Set: Collection of input-output patterns that are used to assess network 

performance. 

 

Figure 3. 2: Block Diagram of the Image set 

 

3.3 CNN Introduction 

The reason why I used CNN is not trivial. Many alternatives can be explored, such as 

spiking neural networks, deep neural networks, recurrent neural networks, and etcetera. 

However, Convolution Neural Networks happens to be a common choice for computer 

vision challenges such as image recognition and pattern recognition. CNNs are 

extensively employed in pattern and image-recognition challenges as they have a number 

of advantages compared to other techniques. 

Convolutional Neural Networks are a type of artificial neural network. Artificial neural 

networks (ANNs) are models that are biologically inspired variants of real neural networks 

within a biological brain. Essentially, an ANN is a network of neurons where each neuron 

is only connected to certain other neurons, and all neurons connections are assigned 

weights based on how paramount those connections are. It is all these weights that are 
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being optimized/learned via training the CNN on the training set. A neural network is a 

system of interconnected artificial “neurons” that exchange messages between each 

other (Kornhauser, 2016).  

 

Figure 3. 3: Showing the sequence of steps employed by a typical CNN 

The connections have numeric weights that are tuned during the training process so that 

a properly trained network will respond correctly when presented with an image or pattern 

to recognize. The network consists of multiple layers of feature-detecting “neurons.” Each 

layer has many neurons that respond to different combinations of inputs from the previous 

layers. As shown in Figure 1, the layers are built up so that the first layer detects a set of 

primitive patterns in the input, the second layer detects patterns of patterns, the third layer 

detects patterns of those patterns, and so on (Hijazi et al., 2010).  

The composition of a CNN will be broken further. A Convolution Neural Network is an 

ANN composed of several types of layers. These layers include: 

 Convolution Layer 
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 Pooling Layer 

 Rectified Linear Unit Layer 

 Fully Connected layer 

3.3.1 Convolution Layer 

The convolution layer serves to extract different features of the input. The first convolution 

layer extracts low-level features like edges, lines, and corners. Higher-level layers extract 

higher-level features. Figure 6 illustrates the process. The input is of size N x N x D and 

is convolved with H kernels, each of size k x k x D separately. Convolution of input with 

one kernel produces one output feature, and with H kernels independently produces H 

features. Starting from the top-left corner of the input, each kernel is moved from left to 

right, one element at a time. Once the top-right corner is reached, the kernel is moved 

one element in a downward direction, and again the kernel is moved from left to right, one 

element at a time. This process is repeated until the kernel reaches the bottom-right 

corner. Convolutional Layers (CONV). The CONV layer is where CNN gets its name from, 

as stated earlier, it is essentially a process where the input into the layer is “convolved” 

with a set of filters, and the outputs of those convolutions are passed as input into the 

next layer. A filter can be thought of as a sliding window with weights (a matrix of numbers) 

that is sliding across the entire image (a bigger matrix of numbers), and at each position 

it takes a dot product with the portion of the image it covers, which will be part of the 

output (Kornhauser, 2016). The weights on these filters are what is being learned during 

training. The filter object in a CONV layer is four dimensional: (1) number of filters, (2) 

number of channels (number of input matrices), (3) filter height, and (4) filter width. 
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Usually, it is very hard for the human eye to get an idea of what these filters are doing 

and especially if the filters do not come from the first convolutional layer. 

 

Figure 3. 4: Pictorial representation of a convolution process  (Hijazi et al., 2010) 

 

3.3.2 Pooling Layer 

The POOL layers are largely responsible for thinning out the information (originally the 

image when it first enters) flowing through the CNN, which is good, as it can speed up 

computation and remove unnecessary details or noise. However, if too much pooling is 

used, it can thin out the data too quickly and impair object detection, thus finding the right 

balance is important. The intuition behind the idea of pooling is that after a filter has 
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identified a feature (and thus having a high dot product value), the exact location of the 

feature is not important, but rather what is important is only its relative location to other 

features. Thus one can divide the current input matrix into 2x2 or 3x3 tiles, and take the 

maximum, average, or L2-norm of those values, and have that one value replace those 

4 or 9 values in the output (I choose to use max pooling as that has been shown to work 

best in practice). For my CNNs they all use max pooling and the pool size is 2x2. See 

below illustration made to show the max pooling occurring in this CNN (Hijazi et al., 2010). 

 

Figure 3. 5: Example of Max-Pooling technique 

 

3.3.3 Rectified Linear Unit Layer 

Rectified Linear Unit Layers (ReLU). The ReLU layer is the layer responsible for adding 

further nonlinearity to the CNN, it is supposed to act as an activation function to allow 

CNN to train faster. There is a debate about which function to use in this layer. However, 

there are three major functions in use: 

1. ReLU Activation function 

2. Sigmoid Activation Function 

3. Tanh Activation Function 
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The main reason why we use the sigmoid function is that it exists between(0 to 1). 

Therefore, it is especially used for models where we have to predict the probability as an 

output. Since the probability of anything exists only between the range of 0 and 1, sigmoid 

is the right choice. However, ReLU is the most used activation function in the world right 

now. Since it is used in almost all the convolutional neural networks or deep learning. 

As such, I used Both the ReLU and Sigmoid AF to carry out my research with the result 

discussed in chapter 4 of this thesis. 

3.3.4 Fully Connected Layer (FC) 

Fully Connected (FC) Layer. This is typically the last layer in the CNN after some 

combination of any amount of layers before, where their types correspond to the previous 

three layers mentioned. The FC layer is unique in that it is the only section of the CNN 

where every node in the layer n has its own connections to all the nodes in layer n+1, so 

long as layers n and n+ 1 are part of the FC section. As one can imagine, so many weights 

make this computationally expensive, thus having combinations of CONV, POOL and 

ReLU layers before this step, and thus significantly reducing the size of the input into the 

FC layer is very important. If the FC layer has Hidden Layers (HLs) within it, which it 

usually does, then it can also be considered a Multilayer Perceptron (MLP). Learning in 

the MLP/FC layer takes place via a process known as Backpropagation which is 

essentially a method of using stochastic gradient descent to minimize the error of the 

predictions, which is the output from the final layer of the FC. Each layer in the FC layer 

has a weight matrix W and bias vector b; these are the values that are learned. The last 

layer of the CNN in this research is logistic regression (LR) layer; this is because it is a 

common technique shown to improve performance. The hidden layer (HL) essentially 
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transforms the input into a linearly separable space, and then the Logistic Regression 

(LR) layer classifies (makes predictions from) the output from HL.  

 

3.4 Back Propagation 

The learning algorithm’s goal is to minimize the error between the expected (or teacher) 

value and the actual output value that was determined in the Forward Computation while 

the weight and bias is updated. The following steps are performed: 

 Randomly choose the initial weights 

 In case the error is too large and for each training pattern, apply the inputs to the 

network 

 Calculate the output for every neuron from the input layer, through the hidden 

layer(s), to the output layer 

 Calculate the error at the outputs 

 Use the output error to compute error signals for pre-output layers 

 Use the error signals to compute weight adjustments 

 Apply the weight adjustments 

 Evaluate performance using the test set. 

(Murakami, Okuyama, & Abdallah, 2018) 
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The figure below shows the block diagram of the learning process 

Figure 3. 6: Showing the steps necessary throughout the learning process 

 

The final construction for the CNN in this study is as follows: 

 

INPUT IMAGE >>> [[CONV -> POOL -> RELU]]*3 >>> HL>>> RELU -> LR -> (OUTPUT) 

 

From the above, the “*3” notation means the 3 layers in the brackets are repeated 3 times. 

So basically the CNN can be thought of as having 12 layers in between input and output. 

Various architectures were attempted and this one seemed to work best in my simulation 

and instinctively appeared to be legitimate, to help for visualization. Below is an illustration 

of a typical CNN architecture: 
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Figure 3. 7: Architecture of the proposed CNN 

 

3.5 Proposed System Architecture 

The figure below shows the proposed system architecture of the neural network for its 

implementation in an autonomous vehicle. The project consists of two phases, that is, 

the software implementation and the hardware implementation. Due to the limited 

period, the software implementation was carried out with the hardware phase left for 

future work. The hardware consists of an FPGA which is used for parallelism and speed 

of computation as the autonomous vehicle would require fast processing to make 

decisions, to avoid events of failure. 
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Figure 3. 8: Architecture of the proposed CNN 

 

3.5 CNN Construction and Implementation 

Choosing how to architect a CNN was difficult in enormous part in light of the fact that at 

the earliest reference point, one battles with how to settle on choices naturally. This is on 

the grounds that a novice with CNNs has zero or almost no instinct about such theoretical 

ideas. For instance, if the CNN isn’t performing well, what hyper-parameters should be 

changed?  

This design was implemented on a: 

 Hardware: 2.40 GHz Intel Core-i5 4770 and 8 GB of RAM 

 Software: Anaconda/Spyder, Python 3.7.6 Version 
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There are so many hyperparameters that were changed, such as the epoch, the number 

of filters, and the number of layers, amongst others. For this intuition, I had to spend a lot 

of time on training neural networks, making such changes, and observing the effect. The 

study mainly relied on the Deep Learning Tutorial on Datacamp. I finally settled on using 

the ReLU activation function for the three convolution layer, ten epochs, and two fully 

connected layers to achieve a result which is detailed in the next chapter. 
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Chapter Four 

Evaluation and Result 

 

4.1 Evaluation 

4.1.1 Execution time evaluation with RELU AF 

The table below shows that the execution time taken was 10s to train & 14s to predict, 

amounting to 24s in total. 

No of Epochs ET for training 

(seconds) 

ET for prediction 

(Seconds) 

Total time 

 

10 10 14 24 

Table 4. 1: Execution time evaluation with ReLU AF 

4.1.2 Execution time evaluation with Sigmoid AF 

The table below shows that the execution time taken was 11s to train & 14s to predict, 

amounting to 25s in total. 

No of Epochs ET for training 

(seconds) 

ET for prediction 

(Seconds) 

Total time 

 

10 11 14 25 

Table 4. 2: Execution time evaluation with Sigmoid AF 

 

4.1.3 Accuracy evaluation with RELU AF 

As can be seen from the figure below, the 3 layers produced a correct detection rate of 

57.14%, while there was accuracy of 35% and 26.41% for 2 layers and 4 layers 

respectively. 
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Figure 4. 1: Accuracy graph for different Hidden layers using ReLU AF 

4.1.4 Accuracy evaluation with Sigmoid AF 

As can be seen from the chart below, the 3 layers produced a correct detection rate of 

35.71%, while there was an accuracy of 29% and 31% for 2 layers and 4 layers 

respectively. 

 

Figure 4. 2: Accuracy graph for different Hidden layers using Sigmoid AF 
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4.2 EVALUATION SUMMARY/ RESULT 

The summary of the final result is displayed in the figure below; 

 Accuracy Difference of 21.43 

 Speed difference of 1s 

 RELU AF provided the optimum performance 

Figure 4. 3: Summary that determines the optimum parameters 
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Chapter Five 

Conclusion 

 

 

This thesis examined the design of a neural network architecture for autonomous 

vehicles, which was implemented using python programming language and keras library. 

With 55 training images and 14 test images, the neural network implementation produces 

a correct detection rate of 57.14%, which is due to the small number of images. Also, its 

speed of computation was faster using ReLU activation function. However, the speed and 

accuracy were affected by trying different parameters, which resulted in different outputs.  

To summarize: 

 Problem - Runtime and accuracy in autonomous vehicle classification poses a big 

drawback. 

 Merit - Actualization and hope it brings to autonomous vehicle safety on our 

streets. 

 Research Goal - Design a neural network architecture for traffic light detection in 

autonomous vehicles. 

 Achievements - Ability to use a real life data set (images from Abuja metropolis) 

to achieve a 57% correct detection rate. 

Future Research Work – The future work will hopefully focus on the use of more images, 

implementation on hardware, and further evaluation of the CNN model for Traffic-Light 

Recognition in Autonomous Vehicles. 

Final Thoughts 

Working on designing a neural network architecture for traffic light detection in 

autonomous vehicles was a great pleasure. Based on all the work that has been done so 
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far, training and testing on CNN seem to be a very tractable and effective method. There 

are so many new techniques one can try with relative ease. This will hopefully be 

implemented in my future works! Nigeria, being a developing nation with limited research 

on autonomous vehicle technology, is required to explore this emerging technology 

further to ensure a high level of safety and trust. We can make a difference. 
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APPENDIX 

 

CODE 

#Image Preprocessing and CNN Training 

import numpy  
import matplotlib.pyplot as plt 
from keras.layers import Dropout 
from keras.layers import Flatten 
from keras.constraints import maxnorm 
from keras.optimizers import SGD 
from keras.layers import Conv2D 
from keras.layers.convolutional import MaxPooling2D 
from keras.utils import np_utils 
from keras import backend as K 
import load_data 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.model_selection import train_test_split 
from tensorflow.python.keras.callbacks import TensorBoard 
import time 
from tensorflow import keras 
import tensorflow as tf 
 
K.set_image_dim_ordering('tf') 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
def pre_process(X): 
 
    # normalize inputs from 0-255 to 0.0-1.0 
    X=X.astype('float32') 
    X = X / 255.0 
    return X 
 
def one_hot_encode(y): 
 
    # one hot encode outputs 
    y = np_utils.to_categorical(y) 
    num_classes = y.shape[1] 
    return y,num_classes 
 
def define_model(num_classes,epochs): 
    # Create the model 
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    model = Sequential() 
    model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), padding='same', 
activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Conv2D(32, (3, 3), activation='sigmoid')) 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
    model.add(Dropout(0.2)) 
    model.add(Conv2D(64, (3, 3), activation='sigmoid', padding='same', 
kernel_constraint=maxnorm(3))) 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
    model.add(Dropout(0.2)) 
    model.add(Flatten()) 
    model.add(Dense(128, activation='sigmoid', kernel_constraint=maxnorm(3))) 
    model.add(Dense(128, activation='sigmoid')) 
    model.add(Dropout(0.5)) 
    model.add(Dense(num_classes, activation='softmax')) 
    # Compile model 
    lrate = 0.01 
    decay = lrate/epochs 
    sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) 
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) 
    print(model.summary()) 
    return model 
 
 
# load data 
X,y=load_data.load_datasets() 
 
# pre process 
X=pre_process(X) 
 
#one hot encode 
y,num_classes=one_hot_encode(y) 
 
 
#split dataset 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=7) 
 
epochs = 10 
#define model 
model=define_model(num_classes,epochs) 
 
 
# Fit the model 
history=model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, 
batch_size=32) 
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# list all data in history 
print(history.history.keys()) 
# summarize history for accuracy 
plt.plot(history.history['acc']) 
plt.plot(history.history['val_acc']) 
plt.title('model accuracy') 
plt.ylabel('accuracy') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
# summarize history for loss 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('model loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
 
 
# Final evaluation of the model 
scores = model.evaluate(X_test, y_test, verbose=0) 
print("Accuracy: %.2f%%" % (scores[1]*100)) 
 
# serialize model to JSONx 
model_json = model.to_json() 
with open("model_face.json", "w") as json_file: 
    json_file.write(model_json) 
# serialize weights to HDF5 
model.save_weights("model_face.h5") 
print("Saved model to disk") 
 
 
#CNN TESTING 
 
import numpy as np 
import os 
from scipy import  misc 
from keras.models import model_from_json 
import pickle 
 
# Loading int2word dict 
classifier_f = open("int_to_word_out.pickle", "rb") 
int_to_word_out = pickle.load(classifier_f) 
classifier_f.close() 
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def load_model():  
    # load json and create model 
    json_file = open('model_face.json', 'r') 
    loaded_model_json = json_file.read() 
    json_file.close() 
    loaded_model = model_from_json(loaded_model_json) 
    # load weights into new model 
    loaded_model.load_weights("model_face.h5") 
    #print("Loaded model from disk") 
    return loaded_model 
 
def pre_process(image): 
    image = image.astype('float32') 
    image = image / 255.0 
    return image 
 
def load_image(): 
    index=0 
    for index in range( len(os.listdir("images")) ): 
        img=os.listdir("images")[index] 
        image=np.array(misc.imread("images/"+img)) 
        image = misc.imresize(image, (64, 64)) 
        image=np.array([image]) 
        image=pre_process(image) 
        model=load_model() 
        prediction=model.predict(image) 
        print(index+1,":",int_to_word_out[np.argmax(prediction)],"=",np.max(prediction) ) 
     
    return image 
 
load_image()#run it 
'''image=load_image() 
model=load_model() 
prediction=model.predict(image) 
 
 
#print the predictions 
print(int_to_word_out[np.argmax(prediction)],np.max(prediction) ) 
''' 


