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Abstract

There have been several improvement in object detection and semantic segmentation results in recent

years. Baseline systems that drives these advances are Fast/Faster R-CNN, Fully Convolutional Network

and recently Mask R-CNN and its variant that has a weight transfer function. Mask R-CNN is the

state-of-art. This research extends the application of the state-of-art in object detection and semantic

segmentation in drone based datasets. Existing drone datasets was used to learn semantic segmentation

on drone images using Mask R-CNN.

This work is the result of my own activity. I have neither given nor received unauthorized assistance on

this work.

Key words and phrases: instance segmentation, object detection, CNN, Mask R-CNN, drone program-

ming, computer vision
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1. Chapter

Introduction

1.1 Introduction

Images and videos are collected everyday by different sources. Recognizing objects, segmenting local-

izing and classifying them has been a major area of interest in computer vision. Significant progress has

been made commencing from use of low-level image features, such as scale invariant feature transform
SIFT [Lowe, 2004] and histogram of oriented gradients HOG [Dalal and Triggs, 2005] , in sophist-

icated machine learning frameworks to the use of multi-layer convolutional networks to compute highly

discriminative, and invariant features [Girshick et al., 2015]. SIFT and HOG are feature descriptor and

semi-local orientation histograms that counts occurrences of gradient orientation in localized portions of

an image. Just as Convolutional Neural Network (CNN) is traced to the Fukushima’s “neocognitron”
[Krizhevsky et al., 2012], a hierarchical and shift-invariant model for pattern recognition, the use of CNN

for region-based identification (R-CNN)[Girshick et al., 2015] can also be traced back to the same. After

CNN was considered inelegant in the 1990s due to the rise of support vector machine (SVM), in 2012 it

was revitalize by [Krizhevsky et al., 2012] by demonstrating a valuable improvement in image classifica-

tion accuracy on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Deng et al., 2012]

and included new mechanisms to CNN like rectified linear unit (ReLU) and, dropout regularization. To

perform object detection with CNN and in attempt to bridge the gap between image segmentation and

object detection two issues were fixed by [Girshick et al., 2015]. First was the localization of objects with

a Deep Network and training a high-capacity model with only a small quantity of annotated detection

data. Use of a sliding-window detector was proposed for the localization of object but was not preferred

because it can only work for one object detection and all object in an image has to have a common aspect

ratio for its use in multiple object detection. Instead the localization problem was solved by operating

within the “recognition using regions” paradigm.

Fast R-CNN was introduced in 2015 by Girshick [Ross, 2015]. A single-stage training algorithm

that jointly learns to classify object proposals and refine their spatial locations was demonstrated. This

tackled the problem of complexity that arises in other deep ConvNets [Krizhevsky et al., 2012][Girshick

et al., 2013][Zhu et al., 2015], caused by the multi-stage pipelines that are slow. The slow nature is

due to the fact that detection requires accurate localization of objects that creates the challenge of that

many proposals (candidate object locations) must be processed and these proposals provides only rough

localization that must be refined to achieve precise localization. Fast R-CNN is 9 X faster than R-CNN
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1. CHAPTER: INTRODUCTION

[C] and 3 X faster than SPPnet [He et al., 2014]. R-CNN was speed up by Spatial pyramid pooling
networks (SPPnets)[He et al., 2014] by sharing computation. A convolutional feature map for the entire

input image was computed by SPPnet method. After which it then classifies each object proposal using a

feature vector extracted from the shared feature map. SPPnet also has obvious pitfalls. It is a multi-stage

pipeline similarly to R-CNN that involves extracting features, refining a network with log loss, training

SVMs, and lastly fitting bounding-box regressors. Features are also written to disk. But unlike R-

CNN, the refining algorithm demonstrated in SPPnet cannot update the convolutional layers that precede

the spatial pyramid pooling. This constraint limits the accuracy of very deep networks. Additional

efforts were made to reduce the running time of deep ConvNets for object detection and segmentation.

Regional proposal computation is the root of this expensive running time in detection networks. A fully

convolutional network that simultaneously predicts object bounds and objectness scores at each position

called Region Proposal Network (RPN) was developed by Ren et al [Ren et al., 2015]. RPN shares

full-image convolutional features with the detection network, thus permitting virtually cost-free region

proposals and it is trained end-to-end to generate high-quality region proposals. Integrating RPN and

Fast R-CNN into a unit network by sharing their convolutional features results to Faster R-CNN. Anchor

boxes that acts as reference at multiple scales and aspect ratios were introduced in Faster R-CNN instead

of the pyramids of filters used in earlier methods. RPNs are developed to coherently speculate region

proposals with an extensive range of scales and aspect ratios. Changing the architecture of the pyramids

of filter to a top-down architecture with lateral connections improved the efficiency of this pyramids

[Lin et al., 2016]. This is applied in building high-level semantic feature maps at all scales. This new

architecture is called Feature Pyramid Network (FPN) [Lin et al., 2016] . In various applications

and uses it displayed a notable improvement as a generic feature extractor. When used in a Faster R-

CNN it achieved results that supersedes that of Faster R-CNN alone. In order to generate a high-quality

segmentation mask for object instances in an image, Mask R-CNN was developed [He et al., 2017].

Mask R-CNN add another branch to the Faster R-CNN. In addition to the bounding box recognition

system a branch for predicting an object mask in parallel was added. It affixes only a bijou overhead to

Faster R-CNN, running at 5 fps.

The accessibility and use of drone technology is at the increase currently. It is tackling challenges in

various spheres and areas like defence, shipping of consumer goods, disease controls, events coverage

and so on. One of the most important application of drone is for collection of images and videos. These

data collected can be used for different purposes. This work will extend the state-of-the-art Mask R-CNN

for segmentation of objects in image instances collected by a drone. It detects about 22 classes including

tree, grass, other vegetation, dirt, grave, rocks, water, paved area, pool, person, dog, car, bicycle, roof,

wall, fence, fence-pole, window, door, and obstacle. For the training of the model high resolution images

at 1Hz with pixel-accurate annotation was used.

In Chapter 2 of this work will discuss theory of CNN and Mask RCNN deeply. The first part will dis-

cuss the backbone of Mask RCNN, followed by Regional Proposal Network, ROI Classifier and Bound-

ing Box Regressor and lastly Segmentation Mask. Chapter 3 will discuss fully segmentation on drone

dataset. Chapter 4 will explore the the technlogies used and in chapter 5 the implementation of the work

8
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will be explained fully with the aid of [Presek and Landa, 2018].
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2. Chapter

Theoretical aspects of Image classification

2.1 Computer Vision Tasks

With the advance of computer vision, task in computer vision has moved from simple tasks of image

classification to complex task like semantic and instance segmentation.

2.1.1 Image Classification

Image classification involves the assigning of land cover classes to pixels. Image classification refers

to the task of extracting information classes from a multi-band raster image. The raster produced from

image classification can be used to create thematic maps. The purpose of the classification process is

to categorize all pixels in a digital image into one of several land cover classes, or "themes".Depending

on the interaction between the analyst and the computer during classification process, there are two

types of classification, they are: supervised and unsupervised. In order to improve the classification

accuracy, scientists have laid path in developing the advanced classification techniques. The aim of

image classification is to identify and portray, as a unique gray level (or color), the features occurring in

an image in terms of the object or type of land cover these features actually represent on the ground.

Image classification analyzes the numerical properties of various image features and organizes data

into categories. Classification algorithms usually use two phases of processing: training and testing. In

the initial training phase, characteristic properties of typical image features are isolated and, based on

these, a unique description of each classification category, i.e. training class, is created. In the successive

testing phase, these feature-space segregation are used to classify image features. The description of

training classes is an critical part of the classification process. In supervised classification, statistical

processes (i.e. based on an a prior knowledge of probability distribution functions) or distribution-free

processes can be utilized to extract class descriptors. Unsupervised classification depends on clustering

algorithms to automatically group the training data into prototype classes. In either case, the motivating

benchmark for constructing training classes are that they are:

1. Independent, e.a change in the description of one training class should not change the value of

another,

2. Discriminatory, e.different image features should have significantly different descriptions, and
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2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

3. Reliable, all image features within a training group should share the common definitive descrip-

tions of that group.

This representation allows us to consider each image feature as occupying a point, and each training

class as occupying a sub-space (i.e. a representative point surrounded by some spread, or deviation),

within the n-dimensional classification space. Viewed as such, the classification problem is that of de-

termining to which sub-space class each feature vector belongs.

Figure 2.1: Image classification, object detection, and semantic Segmentation. Source:
towardsdatascience.com

2.1.2 Object Detection

The objective of object detection is to identify all cases of objects from a referred to class, for example,

individuals, vehicles or faces in a picture. Normally just a few occurrences of the item are available in

the picture, yet there is an enormous number of potential locations and scales at which they can occur

and that need to by one way or another be investigated.

Every location is accounted for with some type of pose information. This could be as straightforward

as the area of the item, an area, and scale, or the degree of the object defined in terms of a bounding box.

In different circumstances, the pose information information is more all-inclusive and has the parameters

of a linear or non-linear transformation. For instance, a face identifier may process the locations of the

eyes, nose, and mouth, in addition to the bounding box of the face. A case of a vehicle and individual

detection that specifies the locations of certain parts is shown in Figure 2.2. The pose could likewise be

characterized by a three-dimensional dimensional transformation specifying the location of the object

relative to the camera.

Object detection systems construct a model for an object class from a set of training examples. In

the case of a fixed rigid object only one example may be needed, but more generally multiple training

examples are necessary to capture certain aspects of class variability.
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2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

Figure 2.2: Object detection with bounding boxes. Source: steemit.com

Object detection strategies fall into two noteworthy classes, generative and discriminative. The first

comprises of a probability model for the pose variability of the objects together with an appearance

model: a probability model for the image appearance conditional on a given pose, together with a model

for background, i.e. non-object images. The model parameters can be estimated from training data and

the decisions are based on ratios of posterior probabilities. The second typically builds a classifier that

can discriminate between images (or sub-images) containing the object and those not containing the

object. The parameters of the classifier are carefully picked to reduce errors on the training data, often

with a regularization bias to avoid overfitting. Other differences among detection algorithms have to do

with the computational mechanism used to search the entire image or scan over possible poses, the type

of image representation with which the models are constructed, and what type and how much training

data is required to build a model.

2.1.3 Semantic Segmentation

Segmentation is fundamental for image analysis tasks. Semantic segmentation portrays the process of

associating each pixel of an image with a class label, (for example, bloom, individual, street, sky, sea, or

vehicle).

Semantic image segmentation can be connected successfully to any task that involves the segment-

ation of of visual data. Examples include road segmentation for autonomous vehicles, medical image

segmentation, scene segmentation for robot perception, and in image editing tools. While at present,

accessible frameworks give precise object recognition, they are unfit to depict the limits between objects

with the same accuracy.

Oxford scientists have built up a novel neural network component for a semantic segmentation that

improves the capacity to perceive and depict objects. This development can be applied to improve any

12



2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

circumstance requiring the segmentation of visual information.

Semantic image segmentation assumes a vital job in image understanding, enabling a computer to

perceive objects in images. Recognition and depiction of objects are accomplished through the classific-

ation of every pixel in a image. Such procedures have a wide scope of utilization in computer vision, in

diverse and developing fields, for example, vehicle autonomy and medical imaging.

The previous state-of-the-art image segmentation frameworks utilized Fully Convolutional Neural

Network (FCNN) components, which offer magnificent exactness in detecting objects. While this ad-

vancement displayed a huge improvement in the semantic segmentation, these systems don’t perform

well in depicting object boundaries. Conditional Random Fields (CRFs) can be utilized in a post-

processing step to improve object boundary depiction, be that as it may, this isn’t an ideal solution

inferable from an absence of integration with the deep network. Figure 2.3 clearly shows the semantic

segmentation of an image with classes like window, door, car, road, pavement, etc.

Figure 2.3: Image with semantic segmentation. Source:[Liu et al., 2018]

Oxford researchers have built up a neural network component for semantic segmentation that bridles

the outstanding object recognition of FCNNs and the incredible boundary delineation of CRFs. CRFs

are fully integrated as recurrent neural networks, bringing about a framework that enhanced performance

compared to the previous state-of-the-art. The novel system can be utilized to any task that includes

the segmentation of visual data. Examples include road segmentation for autonomous vehicles, medical

image segmentation, scene segmentation for robot perception, and in image editing tools. Oxford Uni-

versity Innovation is looking for modern industrial accomplices that desire to investigate the utilization

of this framework for business applications.

13
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2.1.4 Instance Segmentation

Instance segmentation is one step ahead of semantic segmentation wherein alongside pixel level classi-

fication, we anticipate that the computer should characterize each occurrence of a class independently.

The semantic segmentation does not separate between the examples of a specific class but instance seg-

mentation does. Instance segmentation differentiate between the instances of a particular class. Figure

2.4 below show instances of persons. Each person was identified distinctly and recognized as a separate

entity.

Figure 2.4: Image with instance segmentation.Source:[He et al., 2017]

2.2 CNN for Object Detection and Segmentation

2.2.1 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) are neural networks. CNNs have weights, biases, and outputs

through a nonlinear activation. Other normal or regular neural networks receives inputs and the neurons

fully connected to the next layers. Neurons within the same layer don’t share any connections. If regular

neural networks are utilized for images, they will be enormous in size because of the large number

of neurons, resulting in overfitting.This cannot be utilized for images, as images are enormous in size.

Images will increase the model size as it requires a huge number of neurons. An image can be considered

a volume with dimensions of height, width, and depth [Shanmuggamani, 2018]. Depth is the channel of

an image, which is red, blue, and green. The neurons of a CNN are arranged in a volumetric fashion to

maximize the volume. Each of the layers transforms the input volume to an output volume as shown in

the following image:
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2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

Figure 2.5: Structure of Convolutional Neural Networks (CNN).Source:[Shanmuggamani, 2018]

Convolution neural network filters encode by transformation [Shanmuggamani, 2018]. The learned

filters detects and find features or patterns in images. The deeper the layer, the more abstract the pattern

is. Some analyses have shown that these layers have the ability to detect edges, corners, and patterns.

The learnable parameters in CNN layers are less than the dense layer.

Kernel

Kernel is the parameter convolution layer used to convolve the image. It is the core part of the CNN. The

convolution operation is shown in the following figure:

Figure 2.6: The kernel of a Convolutional Neural Networks (CNN). Source:[Shanmuggamani, 2018]

The kernel has two parameters, called stride and size. The size can be any dimension of a rectangle.

Stride is the number of pixels moved every time. A stride of length 1 produces an image of almost the

same size, and a stride of length 2 produces half the size. Padding the image will help in achieving the

same size of the input[Shanmuggamani, 2018].

Max pooling

Pooling layers are placed between convolution layers. Pooling layers reduce the size of the image across

layers by sampling. The sampling is done by selecting the maximum value in a window. Average
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2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

pooling averages over the window. Pooling also acts as a regularization technique to avoid overfit-

ting. Pooling is carried out on all the channels of features. Pooling can also be performed with various

strides[Shanmuggamani, 2018]. The size of the window is a measure of the receptive field of CNN. The

following figure shows an example of max pooling:

Figure 2.7: The Max Pooling of a Convolutional Neural Networks (CNN). Source:[Shanmuggamani,
2018]

CNN is the single most crucial component of any deep learning model for computer vision. It is

widely applied today in images and video.Perhaps, it won’t be an exaggeration to state that it will be

impossible for any computer to have vision without a CNN.

2.2.2 Mask R-CNN

Mask RCNN is a profound neural system meant to take care of occurrence division issue in machine

learning or computer vision. As it were, it can isolate various items in a picture or a video. You give it a

picture, it gives you the object bounding boxes, classes and masks.

There are two phases of Mask RCNN. Initially, it produces proposals about the areas where there

may be an object, dependent on the input picture. Second, it predicts the class of the object, refines

the bounding box and produces a masks in pixel dimension of the object dependent on the first stage

proposition. We will describe Mask R-CNN fully below. We have four components of Mask R-CNN viz;

The backbone, Regional Proposal Network,ROI Classifier and Bounding Box Regressor,Segmentation

mask. These components will be discussed in detail in the sections below.

Backbone

Residual Networks (RESNET) ResNet is an essential neural network that serves as a backbone to

Mask R-CNN and numerous computer vision tasks. It makes the training of extremely deep neural net-

works possible which was very difficult before then due to the challenge of vanishing gradients, that

hampers convergence in the network. According to [He et al., 2015] before RESNET, the problem of
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vanishing gradient has been mainly addressed by normalized initialization [LeCun et al., 1998],[Glorot

and Bengio, 2010], [Saxe et al., 2013], [He et al., 2015] and intermediate normalization layers [Ioffe and

Szegedy, 2015], which enable networks with tens of layers to start converging for stochastic gradient

descent (SGD) with backpropagation [LeCun et al., 1989]. Looking at the sample scenario of the vanish-

ing gradients or degradation. A worst-case scenario of vanishing gradient is the case was the early layers

of a deeper model can be replaced with a shallow network and the other layers can act as an identity

function. The shallow network and its deeper counterpart give the same accuracy. So deeper models do

not perform well due to degradation. When a deeper network is used it approximates the mapping than

its shallower variant and decreases the error by a notable margin. Also, the deeper network had issues of

degradation. To solve this problem ResNet introduced the concept of skip connection.

Figure 2.8: Skip connection of ResNet.Source:[He et al., 2015]

Without a skip connection, deep convolution networks are stacked together one after the other. With

a skip connection deep convolution networks are tacked together but this time the original input is added

to the output of the convolution block. Mathematically representing this, we can consider a mapping

or space G(x) to be fitted by some stacked layers of an entire network. X denotes the inputs in the

first layer of the net. This layer will approximate a residual function Z(x) = G(x)-x by hypothesizing.

Therefore the original function or mapping G(x) becomes Z(x) + x. The input and output dimensions are

expected to be of the same dimension for this work properly. It is worth noting that ResNet, contained

152 layers, won ILSVRC 2015 with an error rate of 3.6 percent beating even humans with their error

rate of circa 5 – 10 percent, and replacing VGG-16 layers in Faster R-CNN with ResNet-101 produced

relative improvements of 28 percent. It also trained networks with 100 layers and 1000 layers[He et al.,

2015] .
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Figure 2.9: Training on ImageNet. Thin curves denote training error, and bold curves denote validation
error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers.
In this plot, the residual networks have no extra parameter compared to their plain counterparts, see [He
et al., 2015].

Feature Pyramid Network Feature Pyramid Network (FPN) is a generic feature extractor used in

various application for recognizing objects at different scales, developed by [Lin et al., 2016]. For the

recognition system for detecting objects at various scales, feature pyramid is a primary constituent of

such a system. Pyramid representation has the problem of computing and memory intensiveness and has

been avoided in the deep learning object detectors. Feature Pyramid Network (FPN) solves this problem

by restructuring the architecture of the pyramid to a top-down architecture with lateral connections. The

multi-scale, pyramidal hierarchy of deep ConvNet was leveraged to develop Feature Pyramid Network

(FPN). Pyramids of FPN are scale-invariant. This means that when an object scale changes it is offset by

shifting its level in the pyramid. Before the introduction of FPN, some ways were used in the extraction

of features from images. Initially, hand-engineered features [Lowe, 2004] were used and it makes use of

featurized image pyramids. ConvNet is more robust to variance in scale, capable of representing higher-

level semantics, and so features from it have quickly replaced engineered features. According to [He

et al., 2017] this ConvNets gives multi-scale feature representation in which all levels are semantically

strong, including the high-resolution levels. Featuring each level of an image pyramid comes with the

profound limitation of increase in inference time which makes it impractical for real applications. FPN

explored the pyramidal shape of a ConvNet’s feature hierarchy to build a feature pyramid that has strong

features with high-resolution at all scales. This gives a feature pyramid that has profound semantics at

all phases and is constructed quickly from a unit input image scale
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Figure 2.10: Top: a top-down architecture with skip connections, where predictions are made on the
finest level (e.g., [Pinheiro et al., 2016]). Bottom: FPN model that has a similar structure but leverages it
as a feature pyramid, with predictions made independently at all levels [Lin et al., 2016].

FPN was applied in Regional Proposal Network (RPN) and Fast R-CNN. With the new adaptations,

RPN could be naturally trained and tested with FPN, Using FPN in a basic Faster R-CNN system, the

result surpasses all existing single-model entries including those from the COCO 2016 challenge win-

ners.

Regional Proposal Network

Regional Proposal Network (RPN) is a useful network effectively used in R-CNN that scans the image

in a sliding window pattern over the anchors. It proposes multiple objects that are recognizable in a

particular image. The last convolutional layer that is produced by the Faster R-CNN is called the feature

map. A proposal is generated for the region where the object lies by sliding over a feature map a network,

which is the RPN. RPN suggest where an object lies in an image.
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Figure 2.11: The architecture of Faster R-CNN. RPN generate the proposal for the objects. [Ren et al.,
2015].

Figure 2.12: RPN Architecture [Ren et al., 2015].

Analyzing the architecture of RPN, the intermediate layer divides into a classifier and regressor

layers, and the concept of the anchor was introduced. Anchor are boxes of different sizes and aspect

ratio that are generated over an image that determines the ideal location, shape, and size of objects in

the image. They overlap to fill up as much of the image as possible. Thousands of anchor boxes are

generated for this. For each anchor box, the object’s bounding box that has the highest overlap is divided

by non-overlap. This is termed Intersection Over Union (IOU). If the highest IOU is greater than 50

percent, the anchor box determines the object that gave the highest IOU. But if it is greater than 40

percent the true detection is ambiguous, and if it is less than 40 percent it predicts no object. Classifier
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gives the probability of a proposal containing the target object. Regression regresses the coordinates of

the proposals. RPN is also used in Mask RCNN.

Figure 2.13: Anchor boxes (dotted) and the shift/scale applied to them to fit the object precisely (solid).
Several anchors can map to the same object. Source: Author

The RPN produces two results for each anchor; Anchor Class i.e. either the foreground or the back-

ground, and Bounding Box Refinement, an estimation to rectify the anchor box that fits the object well.

This is a change in x,y, width, height.

ROI Classifier and Bounding Box Regressor

Region of Interest (ROI) classifier is proposed by the Region Proposal Network (RPN) and similarly,

like the RPN, it produces two results for each ROI. First, the class, it produces the classes of the object

in the ROI, but it is deeper and can classify regions to specific classes (car, person, nucleus, etc). And

secondly the Bounding Box Refinement, which further refines the location and size of the bounding box

to envelope the object.

ROI Pooling Input sizes of a classifier vary. Classifiers require fixed, stable input size and can’t manage

varying input sizes. Bounding box refinement in RPN produces ROI boxes of various sizes. ROI Pooling

tackles this challenge.

Cropping a part of a feature map and resizing it to a fixed size is termed ROI pooling. It is very much

alike to the concept of resizing a cropped image.

21



2. CHAPTER: THEORETICAL ASPECTS OF IMAGE CLASSIFICATION

Figure 2.14: ROI Pooling. Source: Author

Segmentation Mask

Mask RCNN further added an extra branch to what Faster RCNN has. This is the mask branch. The

Mask branch is a convolutional network that receives the positive regions selected by the ROI classifier

and builds low resolution masks for them. The resolution is about 28x 28 pixels. They are soft masks,

constituted by float numbers, so they contain more ingredients than binary masks. The size of the mask

enables the mask branch to be light. When training the model, the ground-truth masks is scaled down to

28x28 to compute the loss, and when inferencing the predicted masks is scaled up to the size of the ROI

bounding box and that produces the final masks, one per object[Presek and Landa, 2018].

Figure 2.15: Segmentation Mask of a drone-based imageset . Source: Author

Figure 2.16: Different Mask R-CNN head architectures schema, . Source:[He et al., 2017]
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2.3 Drone-Based Dataset

Drones (or UAVs) furnished with high resolution cameras have been utilized in a wide range of ap-

plications, including agricultural, aerial photography, fast delivery, surveillance, etc. This has made,

automatic comprehension of visual data collected from drones become highly demanding, which brings

computer vision to drones more and more closely. Outstanding advancements have been made in general

computer vision algorithms, such as detection and tracking, yet these algorithms are not usually flawless

for dealing with sequences or images captured by drones, due to various difficulties such as view point

changes and scales. Consequently, developing and appraising new vision algorithms for drone generated

visual data is a key problem in drone-based applications. The major challenge of segmentation in drone

generated visual data is the lack of proper datasets for these. A VisDrone Dataset was produced in [Zhu

et al., 2018]. The images and video sequences in the benchmark were captured over various urban/sub-

urban areas of 14 different cities across China from north to south. Specifically, VisDrone2018 consists

of 263 video clips and 10; 209 images (no overlap with video clips) with rich annotations, including

object bounding boxes, object categories, occlusion, truncation ratios, etc. With intensive amount of

effort, our benchmark has more than 2:5 million annotated instances in 179; 264 images/video frames

[Zhu et al., 2018]. Also Semantic Drone Dataset that focuses on semantic understanding of urban scenes

for increasing the safety of autonomous drone flight and landing procedures. The imagery depicts more

than 20 houses from nadir (bird’s eye) view acquired at an altitude of 5 to 30 meters above ground. A

high resolution camera was used to acquire images at a size of 6000x4000px (24Mpx). The training set

contains 400 publicly available images and the test set is made up of 200 private images.1.

Figure 2.17: Drone-based imageset 1

1. http://dronedataset.icg.tugraz.at
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Figure 2.18: Drone-based imageset 2
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3. Chapter

Used Technologies

Various technologies, frameworks and libraries were used in this project. Every implementation was

carried out in Python, and frameworks like TensorFlow and Keras were used. Below are the list of the

technologies used and a brief description.

3.1 Python

Figure 3.1: Python logo, source: https://www.python.org/community/logos/

Python1 is a high level programming language designed by Guido van Rossum in 1991. Its design

philosophy emphasizes code readability and has a remarkable use of significant white-space. The file-

name extensions include .py, .pyc, .pyw, .pyz. It support web development with frameworks like Django

and Pyramid. It is applied in scientific studies and machine learning. Several libraries and frameworks

have been developed by the Python community for this such as SciPy2, Scikit-learn3, Pandas4, Numpy5,

Theano6, PyTorch 7, etc. It is also one of the most popular languages in the field of Convolutional neural

network. Neural Networks like ResNet, VGGNet, Faster R-CNN, AlexNet in Keras or Pytorch, etc.

1. https://www.python.org/community/logos/
2. www.scipy.org
3. scikit-learn.org/stable/
4. pandas.pydata.org
5. www.numpy.org/
6. deeplearning.net/software/theano/
7. pytorch.org/
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3.2 TensorFlow

Figure 3.2: TensorFlow logo, source: www.tensorflow.org

TensorFlow is an Apache Licensed library. It is free and open-sourced and developed by Google Brain

Team. It is written in Python, C++ and CUDA. It is a symbolic math library applied for machine learning

application such as deep neural network, convolutional neural network. TensorFlow was used in the

implementation of the deep learning network for this project. TensorFlow has a comprehensive, flexible

ecosystem of tools, libraries that makes it user-friendly. For a wider documentation, please see the official

website8

8. www.tensorflow.org
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3.3 Keras

Figure 3.3: Keras logo, source:www.scikit-image.org

Keras is an MIT licensed neural-network library written in Python. It was design by Francois Chollet

and released first in March 2015. It is open-sourced. Keras is capable of running on top of Microsoft

Cognitive Toolkit, TensorFlow, PlaidML or Theano for fast experimentation of deep neural networks. It

enables implementation of deep learning and allows easy and fast prototyping, supports both convolu-

tional networks and recurrent networks and the combination of both. For a wider documentation, please

see the official website9

3.4 Scikit-Image

Figure 3.4: Scikit-Image logo, source: www.scikit-image.org

Scikit-Image is a BSD licensed image processing library. It is a collection of algorithms for segmentation,

geometric transformations, analysis, filtering, colour space manipulation, morphology, feature detection,

and so on. It was first released in 2009, written by Stefan van der Walt.

9. www.keras.io

27



4. Chapter

Result and Analysis-Implementation

4.1 Dataset

Drones, or general UAVs, equipped with cameras have been fast applied to a wide range of applications,

including agricultural, aerial photography, fast delivery, and surveillance. Consequently, automatic un-

derstanding of visual data collected from these platforms become highly demanding, which brings com-

puter vision to drones more and more closely. Various computer vision task has been carried out by the

Vision meets Drone (VisDrone) Challenges1 organized by the AISKEYE team at Lab of Machine Learn-

ing and Data Mining , Tianjin University, China in the year 2018. Various computer vision task carried

out in the challenge include object detection in images. The task aims to detect objects of predefined

categories (e.g., cars and pedestrians) from individual images taken from drones. Also, object detection

in videos challenge. The task is similar to the first, except that objects are required to be detected from

videos. Then single-object tracking challenge. The task aims to estimate the state of a target, indicated

in the first frame, in the subsequent video frames. And finally, multi-object tracking challenge. The task

aims to recover the trajectories of objects in each video frame. Originally, I wanted to use the dataset

provided by VisDrone Challenge for the training and validation of my Mask R-CNN Network, but due

to lack of the segmentation mask data for the training set, I couldn’t use it. Rather I made use of the Se-

mantic Drone Dataset from Institute of Computer Graphics and Vision, Graz University of Technology,

Austria 2.

The dataset contains images, bounding boxes as python pickle file, bounding boxes as xml, bounding

boxes as mask images. The Semantic Drone Dataset focuses on semantic understanding of urban scenes

for increasing the safety of autonomous drone flight and landing procedures. The imagery depicts more

than 20 houses from nadir (bird’s eye) view acquired at an altitude of 5 to 30 meters above ground. A

high resolution camera was used to acquire images at a size of 6000x4000px (24Mpx). The training set

contains 400 publicly available images and the test set is made up of 200 private images. [?] For the task

of person detection the dataset contains bounding box annotations of the training and test set. And for

semantic segmentation, pixel-accurate annotation for the same training and test set was prepared. The

complexity of the dataset is limited to 20 classes as listed below.

1. www.aiskyeye.com
2. dronedataset.icg.tugraz.at
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– tree

– grass

– other vegetation

– dirt

– gravel

– rocks

– water

– paved area

– pool

– person

– dog

– car

– bicycle

– roof

– wall

– fence

– fence-pole

– window

– door

– obstacle

.

The Drone Dataset is made freely available to academic and non-academic entities for non-commercial

purposes such as academic research, teaching, scientific publications, or personal experimentation.

For the implementation of the instance segmentation, Python was used for obvious reasons. It enabled

me to use deep learning framework like Tensorflow and Keras. The implementation of the model was

carried out in the file drone.py and uses the Mask R-CNN library developed in python with TensorFlow

and Keras by Matterport Inc. It was written by Waleed Abdulla from Matterport Inc. Matterport, Inc.

published their implementation under the MIT License3. The MIT License is a license granting the per-

mission to use the code, copy it, modify it, publish and even to sell it free of charge. There’s absolutely

no restriction on commercial use in MIT license. The only requirement is that you must include the MIT

copyright notice with any copies of the software. Scripts, files and noteboks in the library are also under

the MIT License and moreover, Waleed Abdulla himself agreed with the usage and modifications of his

code for purposes of the research work.The Matterport, Inc. Mask R-CNN implementation can be found

in their GitHub repository. Moreover, the Matterport implementation of Mask R-CNN was selected be-

cause of several reasons. Besides its license compatibility, it is quite robust and ready for modifications

and adaptation for training in drone dataset leading to another implementation, so it saved thousands of

lines of code. One of the major motivation behind its usage is that there is a plenty of people interested in

this project, proposing their ideas and testing it. And these people are experienced in fields of computer

vision and deep learning. Abdulla himself is responsive and active in answering people’s questions and

issues. He is open-minded when discussing other people improvement proposals. I found it very useful.

The next section will discuss the Mask R-CNN library, the workflow and necessary module of the library.

The structure, architecture and components of the Mask R-CNN have been discussed in Chapter 2, so

explanation of the programs only will be given in the next section. The library will be also discussed

altogether with notes on my modifications connected with this thesis to distinguish them from Abdulla’s

code.

4.2 Mask R-CNN library

The library which is hosted in Github has been forked 5445 times. It contains five important modules.

Each module play an important role in the training and testing of model. Let’s go through this modules

on after the other below:

Config.py This is the configuration module of the system. It includes hyper-parameters for tuning of the

model and necessary setting. It will described in section 4.2.1

3. https://opensource.org/licenses/MIT
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Model.py This is fundamental core of the model. It develops and builds up the model. It will described

in section 4.2.2

Parallel_Model.py This module subclasses the standard Keras Model and adds multi-GPU support. It

works by creating a copy of the model on each GPU and creates a parallelized computation. This file

was not modify further and so will not explained in this thesis.

Utils.py This modules contains the utility classes and functions of the model. It will described in section

4.2.3

Visualize.py This contains function for display and visualization.

The python files for the modules have good inner documentation, of which some of them and other

functionalities will be discussed next.

4.2.1 Config.py

Config.py is the configuration settings for the model in the implementation by Matterport Inc.. It contains

the hyper-parameters of the model. It has a classed called ModelConfig that houses these parameters.

These parameter include;

– GPU Count

– Images per GPU

– Steps per Epoch

– Validation steps

– The choice of the backbone

– Backbone strides (The strides of each layer of the Feature Pyramid Network (FPN) pyramid)

– Learning Rate

– RPN Train Anchors Per_ Image (How many anchors per image to use for RPN training)

– Mask Shape

– And so on.

I inherited ModelConfig class and then adapted the attributes to suit my hardware and the drone-based

dataset in the drone.py module. The config.py also a contains a display function that displays the model’s

attribute.
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4.2.2 Model.py

This is the main Mask R-CNN implementation. It is made use of some modules for its implementation

which include, os, random, datetime, re, logging, collections, multiprocessing ,numpy,tensorflow, keras,

keras.backend ,keras.layers ,keras.engine ,keras.models. distutils.version. For the module to work it

needs TensorFlow 1.3+ and Keras 2.0.8+ . Since this module builds the Mask R-CNN it has several

classes and function performing various tasks. This classes and task the perform can be summed up thus;

– Initialization functions

– Building the ResNet backbone.

– Building the RPN.

– Building RoIAlign layers.

– Building head architectures.

– Building the complete Mask R-CNN model and putting everything together.

– Building detection layers.

– Defining loss functions.

– Data formatting

– Miscellaneous functions and utilities connected to the model, like batch normalization data format-

ting and generating (building up targets, loading ground truth masks) or bounding boxes normal-

ization.

Some important functions in the modules include train, load_weight, build, etc. There was no modifica-

tion made in this module for the training of model, apart from few modification to fix error that could be

raised during the loading of masks. An explanation is given to the program written by Waleed Abdulla.

RESNET

The backbone of the Mask R-CNN is the Residual Network (RESNET). For the building of the RES-

NET, the principal function that does this is the resnet_graph . The resnet_graph builds the ResNet graph

and the architecture can be ResNet50 or ResNet101.The batch norm layers of the network can be freeze

or trained by setting the train_bn to True or False, but the default is True. The workflow is outlined in

pseudocode 1.
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Algorithm 1: Building the ResNet backbone architecture

1 layers = intended layers

2 layers .add( zero padding 3x3)

3 layers .add( convolution 7x7)

4 layers .add( batch normalization )

5 layers .add( ReLu )

6 layers .add( maximum pooling )

7 layers .add( convolutional block 64 x64x256 )

8 layers .add (2 identity blocks 64 x64x256 )

9 layers .add( convolutional block 128 x128x512 )

10 layers .add (3 identity blocks 128 x128x512 )

11 layers .add( convolutional block 256 x256x1024 )

12 if architecture == ’resnet50 ’ then
13 layers .add (5 identity blocks 256 x256x1024 )

14 else if architecture == ’resnet101 ’ then
15 layers .add (22 identity blocks 256 x256x1024 )

16 return layers
.

The real function does not return total layers, however, it returns them in stages C1, C2, C3, C4, C5

as can be seen in pseudocode 8, where this function is called build_resnet_backbone. Every one of these

stages represents the state of art before each convolutional block addition, which is the last layer before

changing components of input or yields. It is significant for the FPN as was referenced in Chapter 2 and,

outlined in the model structure in pseudocode 8. Functions identity block and convolutional block are

fundamentally the same and both builds the bottleneck block. The main contrast is that the convolutional

block function actualizes a 1x1 convolution in the shortcut connection as it is important to change the

shape of the input to the one utilized in the block. The rest of their implementation is pretty much the

equivalent and is represented in pseudocode 2 (the convolution ought to be applied in the output connec-

tion step). It uses filters given to each call of the function in the ResNet pseudocode.
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Algorithm 2: identity_block

1 original_input = original_input_tensor

2 block = intended block of layers

3 block .add ( convolution 1x1)

4 block .add ( batch normalization )

5 block .add ( ReLu )

6 block .add ( convolution 3x3)

7 block .add ( batch normalization )

8 block .add ( ReLu )

9 block .add ( convolution 1x1)

10 block .add ( batch normalization )

11 block . connect_outputs (block , original_input )

12 block .add ( ReLu )

13 return block
.

RPN

The RPN is worked by two functions, build_rpn_model and rpn_graph. Notwithstanding, these func-

tions assemble just the model, for example, the sliding window and its behaviour, anchors are created

in utils.py as depicted in section 5.1.3. Indeed, even in this split approach, it pursues the thought from

section 3.4.3. Inputs for the rpn_graph capacity are an feature map, number of anchors per location and

anchor stride and returns anchor class logits, probabilities and bounding boxes refinements. The work

process of rpn_graph is represented in pseudocode 3. build_rpn_model makes a model which initially

feed the rpn_graph function and at that point restores the previously mentioned values.

Algorithm 3: rpn_graph

1 feature_map = input_feature_map

2 logits_number_of_filters = 2 * number of anchors per location

3 bbox_number_of_filters = 4 * number of anchors per location

4 shared_layer = convolution 3x3 on feature_map

5 rpn_class_logits = convolution 1x1 on shared_layer with logits_number_of_filters

6 rpn_probabilities = softmax on rpn_class_logits

7 rpn_bbox_refinements = convolution 1x1 on shared_layer with bbox_number_of_filters

8 return rpn_class_logits , rpn_probabilities , rpn_bbox_refinements
.
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A significant class for the RPN is the ProposalLayer class. It takes anchor probabilities, bounding box

refinements and anchors themselves as inputs trim them to littler clumps while considering top anchors

and applies refinements to the anchor boxes.

Algorithm 4: ProposalLayer

1 probs = anchor probabilities

2 deltas = anchor refinements

3 anchors = anchors

4 threshold = threshold for probabilities

5 top_anchors = names_of_anchors_with_top_probs (probs , how_many =min(6000 , len( probs

)))

6 probs_batch = batch_slice (probs , top_anchors )

7 deltas_batch = batch_slice (deltas , top_anchors )

8 anchors_batch = batch_slice ( anchors , top_anchors )

9 boxes = apply_refinements ( anchors_batch , deltas_batch )

10 proposals = [boxes , probs_batch ]

11 proposals . apply_threshold ( threshold )

12 return proposals
.
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ROIAlign

As was described already in chapter 2, RoIAlign is more or less the RoIPooling algorithm without round-

ing. The implementation is briefly sketched below 5

Algorithm 5: RoIAlign

1 pool_shape = shape of regions

2 image_shape = shape of the image

3 boxes = list of RoIs

4 feature_maps = list of feature maps

5 h, w = compute_heights_and_widths_boxes ( boxes )

6 image_area = image_shape [0] * image_shape [1]

7 roi_level = minimum (5, 4 + log2 ( sqrt (h * w) / (224 / sqrt (image_area ))))

8 pooled = list ()

9 for level in range (2, 6) do
10 roi_level_i = 1 where roi_level == level , 0 elsewhere

11 level_boxes = gather (boxes , indices = roi_level_i )

12 pooled . append ( crop_and_resize ( original_image = feature_maps [level-2] , what_process

= level_boxes , shape = pool_shape , method =’ bilinear ’))

13 end
14 pooled . rearrange_to_match_the_order ( boxes )

15 return pooled
.

It executes the RoIAlign algorithm on different dimensions of the feature pyramid furthermore, in its

specifications of the condition, it pursues the thoughts behind identifications in [Lin et al., 2016] and

furthermore applies the five-levels approach. The base picking at line 7 and the loop at line 9 the then

pursues utilizing just layers two to five from section 21.

Head architectures

As can be found in figure 2.16, the head architecture is separated into two areas. The head architecture for

bounding boxes and class probabilities are handled by the fpn_classifier_graph function, and the mask

architecture by the build_fpn_mask_graph. fpn_classifier_graph takes as input RoIs, feature maps, pool

size and a number of classes and returns classifier logits, probabilities and bounding boxes refinements.

build_fpn_mask_graph takes a similar input yet returns just a list of masks.
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Algorithm 6: fpn_classifier_graph

1 rois = given regions of interest in normalized coordinates

2 feature_maps = list of feature maps from layers P2 , P3 , P4 , P5

3 pool_size = height of feature maps to be generated from ROIpooling

4 num_classes = number of classes

5 layers = list of keras layers

6 layers .add( ROIAlign ( pool_size , input =[ rois , feature_maps ]))

7 layers .add( convolution pool_size X pool_size )

8 layers .add( batch_normalization )

9 layers .add( ReLU )

10 layers .add( convolution 1x1)

11 layers .add( batch_normalizataion )

12 layers .add( ReLU )

13 shared = squeeze_to_one_tensor ( output of layers )

14 class_logits = fully_connected_layer ( input =shared ,number_of_filters = num_classes )

15 probabilities = softmax ( class_logits )

16 bboxes = fully_connected_layer ( input =shared , number_of_filters =4 * num_classes )

17 return class_logits , probabilities , bboxes
.
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Algorithm 7: build_fpn_mask_graph

1 rois = given regions of interest in normalized coordinates

2 feature_maps = list of feature maps from layers P2 , P3 , P4 , P5

3 pool_size = height of feature maps to be generated from ROIpooling

4 num_classes = number of classes

5 layers = list of keras layers

6 layers .add( ROIAlign ( pool_size , input =[ rois , feature_maps ]))

7 layers .add( convolution 3x3)

8 layers .add( batch_normalization )

9 layers .add( ReLU )

10 layers .add( convolution 3x3)

11 layers .add( batch_normalization )

12 layers .add( ReLU )

13 layers .add( convolution 3x3)

14 layers .add( batch_normalization )

15 layers .add( ReLU )

16 layers .add( convolution 3x3)

17 layers .add( batch_normalization )

18 layers .add( ReLU )

19 layers .add( deconvolution 2x2 with strides 2)

20 layers .add( convolution 1x1 with sigmoid as an activation function )

21 return layers
.

In the pseudocodes above 7, a ROIAlign object is added as the first one into layers. This object was

sketched in pseudocode 5.

Mask R-CNN model

The focal point of the model.py file is the MaskRCNN class which contains techniques to build the whole

Mask R-CNN model by cobbling together various kinds of layers and, to utilize it for training or test-

ing. The work process of the method build is represented in pseudocode 8 and pursues the architecture

portrayed in chapter 2. In the pseudocode, we can see that the head architecture contrasts a bit in the

training and in the detection. It is expected to the way that we need loss values to be processed during the

training, so we figure them from detected values and target values (values dependent on known targets

from the training dataset).
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Algorithm 8: Mask R-CNN.build

1 C2 , C3 , C4 , C5 = build_resnet_backbone ()

2 P5 , P4 , P3 , P2 = build_top_down_fpn_layers (C2 , C3 , C4 , C5)

3 anchors = generate_anchors ()

4 rpn = build_rpn ()

5 rois = ProposalLayer (rpn , anchors )

6 if mode == ’training ’ then
7 ground_truth_values = values from the training dataset

8 bbox , classes = fpn_classifier ( rois )

9 target_detection = DetectionTargetLayer ( ground_truth_values )

10 mask = fpn_mask ( rois from target_detection )

11 loss = loss_functions ( target_detection , bbox , classes , mask )

12 model = [bbox , classes , mask , loss ]

13 else
14 bbox , classes = fpn_classifier ( rois )

15 target_detection = DetectionLayer (bbox , classes )

16 mask = fpn_mask ( rois )

17 model = [bbox , classes , mask ]

18 end
19 return model

.

In the pseudocode, we can see a few classes and functions. Despite the fact that their motivations are very

clear, some of them can be seen in other various pseudocodes. Function build_resnet_backbone was at

that point depicted in pseudocode 1, ensuing function build_top_down_fpn_layers is a fairly straightfor-

ward process connecting layers, generate_anchors will be portrayed in pseudocode 12, build_rpn can be

seen in pseudocode 3, ProposalLayer in pseudocode 4, fpn_classifier speaks to the fpn_classifier_graph

from pseudocode 6 and fpn_mask is function build_fpn_mask_graph from pseudocode 7.

4.2.3 Utils.py

The most significant piece of the utils.py record is the Dataset class. It is likewise the main portion of the

utils.py code that was modified for the necessities of Drone-based dataset utilization (the other changes

are simply minor refactoring). The utils.py additionally contains a great deal of functions. Just a couple

of them will be referenced as every one of them have adequate documentation in the code’s file.
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Dataset

The Dataset class is the base class for dataset classes and images. It contains data about them includ-

ing their names, identifiers and for the images, paths to them. One of the written methods is the one

called load_drone, which feeds the Drone-Dataset object with classes and images. The work process is

represented in pseudocode 9. Inputs for the method are:

– List of classes names proposed to be learned

– List of directories containing training images and masks

– Name of model

The add_class method in pseudocode 9 import a class into the Dataset object dictionary altogether

with an exceptional identifier; a significant and necessary part containing the background as the first class

with identifier 0 (in the pseudocode represented simply by the saved_class dictionary ). The add_images

line is a loop over all images predefined extension contained in a given directory importing them alto-

gether with their identifier and path into the Dataset object list.

Algorithm 9: import_contents

1 classes = list of classes names intended to be learned

2 directories = list of directories containing training images and masks

3 saved_classes = ’BG ’: 0

4 for i in classes do
5 add_class

6 end
7 for directory in directories do
8 add_images

9 end
.

Another important method written for the needs of the Drone-based dataset modules is the one called

load_mask. The workflow of the method is illustrated in pseudocode 10. It returns an array containing

boolean masks (True for the mask, False elsewhere) for each instance in the image, an array of class

identifiers corresponding each instance in the masks array.
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Algorithm 10: get_mask

1 masks_list = list of mask files within the directory

2 first_mask = masks_list [0]

3 masks_array = array containing first_mask transformed to bool

4 classes_list = list containing class of the first mask

5 for new_mask in masks_list [1:] do
6 concat_mask = new_mask transformed to bool

7 concatenate masks_array with concat_mask

8 append class of new_mask into classes_list

9 if any problem happened then
10 return None , None

11 end
12 return masks_array , classes_list

.

From the rest of Dataset class methods, one more will be explained. prepare must be called before

the use of the Dataset object as it sets it up for use. The readiness is done through setting object paramet-

ers like number of classes, classes names and identifiers or number of pictures. This setting depends on

data gotten during the import_contents call.

Bounding boxes tools

Since bounding boxes are not required to be given altogether with masks in the training dataset, the

function extract_boxes is utilized to process bounding boxes from masks. The function scans for the

first and last horizontal and vertical positions containing mask along all channels and returns them as an

array. It implies that every pixel of the mask is contained in the returned horizontal-vertical bounding

box and it is as tight as could reasonably be expected. A function used to compute the IOU is called

just compute_iou. Its workflow is delineated in pseudocode 11. The handling of no interception is also

executed in the function, yet for better understanding, it is excluded in the pseudocode.
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Algorithm 11: compute_iou

1 predicted_box_area = area of predicted box

2 groundtruth_box_area = area of given mask

3 y1 = the bigger one from the upper coordinates of the predicted and ground truth bboxes

4 y2 = the smaller one from the lower coordinates of the predicted and ground truth bboxes

5 x1 = the bigger one from the left coordinates of the predicted and ground truth bboxes

6 x2 = the smaller one from the right coordinates of the predicted and ground truth bboxes

7 intersection = (x2 - x1) * (y2 - y1)

8 union = predicted_box_area + groundtruth_box_area - intersection

9 iou = intersection / union

10 return iou
.

With the correlation of ground truth boxes and the predicted ones is connected in the function box_refinement.

It computes contrasts between ground truth furthermore, predicted coordinates of bounding boxes and

returned them as the data of bounding box inaccuracy.

Pyramid anchor tools

The hypothesis of scales and pyramids was portrayed in chapter 2. Two functions are associated with

the formation of the anchors at various dimensions of a feature pyramid. The called one is gener-

ate_pyramid_anchors which loops over scales. In the loop, the generate_anchors function is called

to produce anchors of ratios for a given arrangement of scales. The workflow of the generate_anchors

function is represented in pseudocode 12. It takes scales and proportions of anchors, feature map shape

and anchors and feature map strides as a series of inputs. It utilizes these inputs to figure heights and

widths of various anchor and to compute grid of anchors centers. This grid together with their heights

and widths defines the returned value,anchors.
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Algorithm 12: generate_anchors

1 scales = array of scales

2 ratios = array of ratios

3 feature_map_shape = [height , width ]

4 anchor_stride = stride of anchors on the feature map

5 feature_stride = stride of the feature map

6 heights = scales divided by a square root of ratios ( each by each )

7 widths = scales multiplied by square root of ratios ( each by each )

8 shifts_y = grid from 0 to shape [0] with stride anchor_stride

9 shifts_y = shifts_y * feature_stride

10 shifts_x = grid from 0 to shape [1] with stride anchor_stride

11 shifts_x = shifts_x * feature_stride

12 anchors_centers = stack of [ shifts_y , shifts_x ] in each combination

13 anchors_sizes = [ heights , widths ]

14 anchors = [ anchors_centers - 0.5 * anchors_sizes , anchors_centers + 0.5 * anchors_sizes ]

15 return anchors
.

4.2.4 Drone.py

The responsibility of parents in teaching and training their children. The responsibility of drone.py is to

train the model to detect or predict object. Drone.py teaches the model to recognize the object attributes,

colour, curves, edges and other attributes of object. This file was written as part of the practical section

of the thesis and defines an important function- train. The train function in drone.py calls the parent

train function present in the Mask R-CNN model defined above. Before the training can take place the

dataset needs to be loaded and likewise the mask. So the call to the load_drone function loads the drone-

bades dataset and their corresponding mask. After the load_drone function the next is the call to the

prepare function. The prepare function sets up the model for training. The flowchart contains referenced

functions and classes, explicitly the ModelConfig class and its display method, the MaskRCNN class and

the Dataset class and its methods import_contents and prepare. The last stage in this flowchart, a method

model.train(), has really two different forms depending on the usage of initial weights. The first form

is applied for a training from a scratch and trains all layers. The second one comprises of three littler

sections; firstly training layers 5 and higher, then fine-tuning layers 4 and higher and the last and biggest

segment is refining the whole architecture. It appeared in the flowchart in 4.2.4 and the thought behind

this behavior is that it is unrealistic to train the first layers including low-level features, while changes

have a tremendous effect on deeper levels and those features should be more or less the same for any

object.
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Figure 4.1: Flowchart of the drone.py
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Figure 4.2: Flowchart of the train method inside the drone.py module .
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4.2.5 Drone-detect.py

In the event that we have a trained model, either prepared by us or given by another person, we can utilize

it to distinguish highlights or items in maps. In fact, the trained model is used to detect features and maps

in drone datasets collected from drones developed by the Robotic Team of African University of Science

and Technology. The yield from the module comprises of a set of vector maps for each class. Despite

the fact that the model is somewhat scale-invariant, it is prescribed to give object detection and masks

incomparable goals to the one utilized in training pictures. The module is contained in the document

drone_detect.py. This record can be viewed as the second piece of the down to earth segment of the

theory. Its work process is with certain improvements. As in the drone.py module, the flowchart contains

few already mentioned functions and classes, explicitly the ModelConfig class and the MaskRCNN class.

Be that as it may, more unmentioned function can be found in the detection module.
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5. Chapter

Conclusion
Summary: This chapter draws a summary for the thesis.

The aim of this project was to explore the possibility to automatically detect and segment objects in

a drone-based dataset. The proposed tool was the deep-learning-based Mask R-CNN that was trained

on a drone data-set. With the advance of the applicability of drone to daily-life activities, industries and

farms. Counting objects with drones is a new application of drone. This work aim to provide a system

for object detection in drone-based dataset that can be practically applied in facilitating work performed

by industries like agricultural, oil and gas industries and so on.

As a future work the model will be deployed in the drone developed by the Robotic Team of African

University of Science and Technology (AUST) for detection and control of pipeline vandalism in oil and

gas industries.

The first part of the thesis was dedicated to a theoretical background behind CNNs. It also discussed

by the general overview of various computer vision tasks. The second part is dedicated to the introduction

of tools used in the work and the implementation of Mask R-CNN modules using the technologies on

drone-based datasets. More importantly explanation to most important parts of the code.

Developed modules are available in a GitHub repository.
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Principal program codes

We see the program in the drone.py module, we see it is well written and documented.
1 # -*- coding: utf-8 -*-

import os
import sys
import datetime

6 import numpy as np
import skimage.draw
import pandas as pd
import tensorflow as tf

11 # Root directory of the project
ROOT_DIR = os.path.abspath("C:\\Users\\HP USER\\Desktop\\francis\\Mask_RCNN")
#ROOT_DIR = "Mask_RCNN/"

# Import Mask RCNN
16 sys.path.append(ROOT_DIR) # To find local version of the library

from mrcnn.config import Config
from mrcnn import model as modellib, utils

# Getting neccessary directories
21 dir_name= os.fspath(’Dataset-Cut/train’)

image_dir=os.path.join(dir_name,’train_images’)
mask_dir=os.path.join(dir_name,’mask’)
class_rgb=os.path.join(dir_name,’class_dict.csv’)

26 # Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(dir_name, "mask_rcnn_coco.h5")

# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs

31 DEFAULT_LOGS_DIR = os.path.join(dir_name)

#Reading the files
class_rgb = pd.read_csv(class_rgb,delimiter=’,’) #The class and RGB values for the masks in

the final output
36

"""CONFIGURATION"""

class DroneConfig(Config):
"""Configuration for training on the drone dataset.

41 Derives from the base Config class and overrides some values.
"""

NAME = "drone"

46 IMAGES_PER_GPU = 2

# Number of classes (including background)
NUM_CLASSES = 1 + 22 # Background + others

51 # Number of training steps per epoch
STEPS_PER_EPOCH = 100

# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9

56
class DroneInferenceConfig(DroneConfig):

GPU_COUNT = 1
IMAGES_PER_GPU = 1
RPN_NMS_THRESHOLD = 0.7

61
# Tryig to create the imageids from the xml files, not adviced. (SKIP)
def read_xml():

parser = ET.XMLParser(encoding="iso-8859-5") # Parser for XML
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#The XML file handling
66 tree = ET.parse(tree)

root = tree.getroot()
child_tag=[]
image_ids=[]
for child in root:

71 child_tag.append((child.tag, child.attrib))
elem_tag=[elem.tag for elem in root.iter()]
xml_string=ET.tostring(root, encoding=’utf8’).decode(’utf8’)
#print(xml_string)
#SI_attrib=[sourceImage.attrib for sourceImage in root.iter("sourceImage")]

76 #SI_text=[sourceImage.text for sourceImage in root.iter("sourceImage")]
#Fname_text=[filename.text for filename in root.iter("filename")]
for item in ["%03d" % i for i in range(1,599)]: # Creating 3-digits figures to suit the

xml file naming
try:

tree= os.path.join(annotations,str(item)+’.xml’)
81 tree = ET.parse(tree)

root = tree.getroot()
file_name_text=[filename.text for filename in root.iter("filename")]
file_name_text=", ".join(map(str, file_name_text)) #Removing the bracket before

appending to image_ids
image_ids.append(file_name_text)

86 except (FileNotFoundError,ParseError):
pass

"""DATASET"""

91 class DroneDataset(utils.Dataset):
def load_drone(self, dataset_dir, subset):

class_name=class_rgb[’name’].tolist()
for i,classes in enumerate(class_name[1:23],1):

self.add_class("drone", i, "drone")
96 #Which subset?

#assert subset in ["train", "val"]
#train="/train/train_images"
#val="/test/test_images"
#subset_dir = train if subset in ["train"] else val

101 # Get image ids from directory names
#dataset_dir = os.path.join(dataset_dir, subset_dir)

#image_ids = next(os.walk(dataset_dir))[1]
#image_ids= list(set(image_ids))

106
image_ids=[’013.jpg’, ’028.jpg’, ’008.jpg’, ’022.jpg’, ’019.jpg’, ’003.jpg’,

’026.jpg’, ’040.jpg’, ’041.jpg’, ’001.jpg’, ’005.jpg’, ’016.jpg’,
’004.jpg’, ’014.jpg’, ’021.jpg’, ’023.jpg’, ’011.jpg’, ’006.jpg’,
’015.jpg’, ’018.jpg’, ’038.jpg’, ’035.jpg’, ’002.jpg’, ’031.jpg’]

111
# Add images
for image_id in image_ids:

self.add_image(
"drone",

116 image_id=image_id,
path=os.path.join(dataset_dir, "train", "train_images/{}".format(image_id)))

#try:
#except StopIteration as e:
# pass

121
def load_mask(self, image_id):

info = self.image_info[image_id]
# Get mask directory from image path
mask_dir = os.path.join(os.path.dirname(os.path.dirname(info[’path’])), "masks")

126 # Create a cache directory
# Masks are in multiple png files, which is slow to load. So cache
# them in a .npy file after the first load
cache_dir = os.path.join(dir_name, "/cache")
if not os.path.exists(cache_dir):

131 os.makedirs(cache_dir)
# Is there a cached .npy file?
cache_path = os.path.join(cache_dir, "{}.npy".format(info["id"]))
if os.path.exists(cache_path):

mask = np.load(cache_path)
136 else:

# Read mask files from .png image
mask = []
for f in next(os.walk(mask_dir))[2]:

if f.endswith(".png"):
141 m = skimage.io.imread(os.path.join(mask_dir, f)).astype(np.bool)

mask.append(m)
mask = np.stack(mask, axis=-1)
# Cache the mask in a Numpy file
np.save(cache_path, mask)

146 # Return mask, and array of class IDs of each instance.
a= list(range(1,22))
return mask,np.array(a,dtype=np.int32)
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def train(model, dataset_dir, subset):
151 """Train the model."""

# Training dataset.
dataset_train = DroneDataset()
dataset_train.load_drone(dataset_dir, subset)
dataset_train.prepare()

156
# Validation dataset
dataset_val = DroneDataset()
dataset_val.load_drone(dataset_dir, "val")
dataset_val.prepare()

161
#Training the head layer i.e. the early layers of the network
print("Train network heads")
model.train(dataset_train, dataset_val,

learning_rate=config.LEARNING_RATE,
166 epochs=2,

layers=’heads’)

# Training all the network
print("Train all layers")

171 model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=2,
layers=’all’)

176 """ENCODING"""

"""
Since our mask are images in png file format we need to encode them so that we can be able to

use them.
We will do using the Run Length Encoding (RLE).Run-length encoding (RLE) is a simple form of

data compression,
181 where runs (consecutive data elements) are replaced by just one data value and count.

"""
def rle_encode(mask):

"""Encodes a mask in Run Length Encoding (RLE).
Returns a string of space-separated values.

186 """
assert mask.ndim == 2, "Mask must be of shape [Height, Width]"
# Flatten it column wise
m = mask.T.flatten()
# Compute gradient. Equals 1 or -1 at transition points

191 g = np.diff(np.concatenate([[0], m, [0]]), n=1)
# 1-based indicies of transition points (where gradient != 0)
rle = np.where(g != 0)[0].reshape([-1, 2]) + 1
# Convert second index in each pair to lenth
rle[:, 1] = rle[:, 1] - rle[:, 0]

196 return " ".join(map(str, rle.flatten()))

def rle_decode(rle, shape):
"""Decodes an RLE encoded list of space separated

201 numbers and returns a binary mask."""
rle = list(map(int, rle.split()))
rle = np.array(rle, dtype=np.int32).reshape([-1, 2])
rle[:, 1] += rle[:, 0]
rle -= 1

206 mask = np.zeros([shape[0] * shape[1]], np.bool)
for s, e in rle:

assert 0 <= s < mask.shape[0]
assert 1 <= e <= mask.shape[0], "shape: {} s {} e {}".format(shape, s, e)
mask[s:e] = 1

211 # Reshape and transpose
mask = mask.reshape([shape[1], shape[0]]).T
return mask

216 def mask_to_rle(image_id, mask, scores):
"Encodes instance masks to submission format."
assert mask.ndim == 3, "Mask must be [H, W, count]"
# If mask is empty, return line with image ID only
if mask.shape[-1] == 0:

221 return "{},".format(image_id)
# Remove mask overlaps
# Multiply each instance mask by its score order
# then take the maximum across the last dimension
order = np.argsort(scores)[::-1] + 1 # 1-based descending

226 mask = np.max(mask * np.reshape(order, [1, 1, -1]), -1)
# Loop over instance masks
lines = []
for o in order:

m = np.where(mask == o, 1, 0)
231 # Skip if empty

if m.sum() == 0.0:
continue

rle = rle_encode(m)
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lines.append("{}, {}".format(image_id, rle))
236 return "\n".join(lines)

"""DETECTION"""

def detect(model, dataset_dir, subset):
241 """Run detection on images in the given directory."""

print("Running on {}".format(dataset_dir))

# Create directory
if not os.path.exists(RESULTS_DIR):

246 os.makedirs(RESULTS_DIR)
submit_dir = "submit_{:%Y%m%dT%H%M%S}".format(datetime.datetime.now())
submit_dir = os.path.join(RESULTS_DIR, submit_dir)
os.makedirs(submit_dir)

251 # Read dataset
dataset = DroneDataset()
dataset.load_drone(dataset_dir, subset) #ATTENTION
dataset.prepare()
# Load over images

256 submission = []
for image_id in dataset.image_ids:

# Load image and run detection
image = dataset.load_image(image_id)
# Detect objects

261 r = model.detect([image], verbose=0)[0]
# Encode image to RLE. Returns a string of multiple lines
source_id = dataset.image_info[image_id]["id"]
rle = mask_to_rle(source_id, r["masks"], r["scores"])
submission.append(rle)

266 # Save image with masks
visualize.display_instances(

image, r[’rois’], r[’masks’], r[’class_ids’],
dataset.class_names, r[’scores’],
show_bbox=False, show_mask=False,

271 title="Predictions")
plt.savefig("{}/{}.png".format(submit_dir, dataset.image_info[image_id]["id"]))

# Save to csv file
submission = "ImageId,EncodedPixels\n" + "\n".join(submission)

276 file_path = os.path.join(submit_dir, "submit.csv")
with open(file_path, "w") as f:

f.write(submission)
print("Saved to ", submit_dir)

281 """COMMAND LINE"""

if __name__ == ’__main__’:
import argparse

286 # Parse command line arguments
parser = argparse.ArgumentParser(

description=’Mask R-CNN for drone counting and segmentation’)
parser.add_argument("command",

metavar="<command>",
291 help="’train’ or ’detect’")

parser.add_argument(’--dataset’, required=False,
metavar="image_dir",
help=’Root directory of the dataset’)

parser.add_argument(’--weights’, required=False,
296 default=os.path.join(dir_name,’/mask_rcnn_coco.h5’),

metavar="COCO_WEIGHTS_PATH",
help="Path to weights .h5 file or ’coco’")

parser.add_argument(’--logs’, required=False,
default=DEFAULT_LOGS_DIR,

301 metavar=os.path.join(dir_name,’/logs’),
help=’Logs and checkpoints directory (default=logs/)’)

parser.add_argument(’--subset’, required=False,
metavar="Dataset sub-directory", #ATTENTION
help="Subset of dataset to run prediction on")

306 args = parser.parse_args()

# Validate arguments
if args.command == "train":

assert args.dataset, "Argument --dataset is required for training"
311 elif args.command == "detect":

assert args.subset, "Provide --subset to run prediction on"

print("Weights: ", args.weights)
print("Dataset: ", args.dataset)

316 if args.subset:
print("Subset: ", args.subset)

print("Logs: ", args.logs)

# Configurations
321 if args.command == "train":
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config = DroneConfig()
else:

config = DroneInferenceConfig()
config.display()

326
# Create model
if args.command == "train":

model = modellib.MaskRCNN(mode="training", config=config,
model_dir=args.logs)

331 else:
model = modellib.MaskRCNN(mode="inference", config=config,

model_dir=args.logs)

# Select weights file to load
336 if args.weights.lower() == "coco":

weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):

utils.download_trained_weights(weights_path)
341 elif args.weights.lower() == "last":

# Find last trained weights
weights_path = model.find_last()

elif args.weights.lower() == "imagenet":
# Start from ImageNet trained weights

346 weights_path = model.get_imagenet_weights()
else:

weights_path = args.weights

# Load weights
351 print("Loading weights ", weights_path)

if args.weights.lower() == "coco":
# Exclude the last layers because they require a matching
# number of classes
model.load_weights(weights_path, by_name=True, exclude=[

356 "mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])

else:
model.load_weights(weights_path, by_name=True)

361 # Train or evaluate
if args.command == "train":

train(model, args.dataset, args.subset)
elif args.command == "detect":

detect(model, args.dataset, args.subset)
366 else:

print("’{}’ is not recognized. "
"Use ’train’ or ’detect’".format(args.command))

"""FOR TRAINING IN PYTHON NOTEBOOK only"""
371 def notebook_train():

DEVICE = "/gpu:0" # /cpu:0 or /gpu:0
MODEL_DIR = os.path.join(dir_name, "logs")

config = DroneConfig()
376

with tf.device(DEVICE):
model = modellib.MaskRCNN(mode="training", model_dir=MODEL_DIR,

config=config)
weights_path = "Dataset-Cut/train/mask_rcnn_coco.h5"

381
print("Loading weights ", weights_path)
model.load_weights(weights_path, exclude=[

"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])

386 path=’Dataset-Cut’
train(model, path, ’train’)
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