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ABSTRACT 

 

Recently, deep learning techniques have been used significantly for large scale image 

classification targeting wildlife prediction. This research adopted a deep convolutional 

neural network (CNN) and proposed a deep scalable CNN. Our research essentially 

modifies the network layers (scalability) dynamically in a multitasking system and 

enables real-time operations with minimum performance loss. It suggests a 

straightforward technique to access the performance gains of the network while 

enlarging the network layers. This is helpful as it reduces redundancy in network layers 

and boosts network efficiency. The architecture implementation was done in software 

using keras framework and tensorflow as the backend on the CPU and to corroborate 

the universality and robustness of our proposed approach; we train our model on a 

GPU with a newly created dataset named “Zedataset”, preprocessed for performance 

evaluation. Results obtained from our experimentations show that our proposed 

architecture design will perform better with more dataset at the set optimum 

parameters. 

 

Keywords: GPU, keras, deep CNN, CNN, Scalability, tensorflow, image 

classification, optimum parameters, backend. 
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Chapter One 

Background of the study 

1.0 Introduction 

 

The task of identifying and recognition of animals from photos has long been standing 

as there is no unique method that provides a robust and efficient solution to all 

situations. Several researchers used long-standing traditional approaches for its 

implementation with the problem still hanging in limbo as the task hugely involve 

collecting a large volume of images which predominantly is conducted manually with 

possibly images having an imperfect quality which sometimes affect the speed of 

classification, accuracy even for domain experts. More so, processing these image 

sets is time-consuming, effort demanding, and comes at a very high cost as it is an 

overwhelming amount of data that is collected. 

 

In recent years, much attention has focused on using deep neural network based 

techniques in the area of image processing, particularly animal recognition and 

identification. However, the increase in the performance characteristics of the network 

depends on how scalable the network is designed. In machine learning, scalability is 

often defined as the result that even the slightest change in the size of the network 

parameters such as the network layers, training sets has on the computational 

performance of an algorithm (accuracy, memory allocation, speed of processing). So 

the question is to find a balance or in order words getting a suitable solution quick off 

the mark and most effectively. This is of serious concern as in scathing circumstances 

where the existence of temporal or contiguous constraints like real-time applications 
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dealing with large datasets, unapproachable computational problems demanding 

learning or first prototyping needing quickly implemented the result. 

 

To deal with a large dataset, it is expedient to minimize the training time and allotted 

memory space while preserving accuracy; however, till date, most proposed deep 

learning algorithms do not proffer a proper trade-off among them. To contain these 

issues above, we aim to optimize floating points by changing them to fixing points to 

reduce memory complexity and yield faster processing in the network. In this research, 

the convolutional neural network framework will be used for animal identification and 

prediction, while stochastic gradient descent is used to optimize the parameters (i.e., 

weights, biases) of the network through error backpropagation with momentum and 

adaptive learning rate. Network layers and nodes in each hidden layer will be added 

in systematic experimentation and intuition with a robust test to harness. 

 

1.1 Concept of Deep learning 

 

Deep learning is an offshoot of machine learning, which is not new to the field of 

informatics and predictive analysis. However, recently, it has drawn much attention as 

neuroscientist, psychologist, engineers, economist, AI workers attempt to explore their 

learning potential. Deep learning approaches are a set of algorithms that strive to 

model data with extreme abstractions using a replica architecture with tortuous 

formation. It is one among the many segments of machine learning techniques based 

on the concept of learning representations of raw data which could be in a way such 

as the intensity per pixel value of a data or sections of a specific figure in a more 

abstract way.  
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There are several numbers of ways the area of deep learning has been represented 

as it is a subset of machine learning techniques that  

i. Uses multiple layers with nonlinear processing units cascaded for feature 

extraction 

ii. Are based on the (unsupervised) learning multiple data representations 

where hierarchical representation is formed when higher-level features are 

derived from lower level features. 

iii. Learned multiple levels of representations corresponds to different levels of 

abstraction. 

 

1.2 Definition of learning 

 

One challenging fact when setting up the objectives of deep learning is the definition 

of learning. Learning is rather conceptual and as to those who have made efforts to 

give it meaning (psychologists, philosophers, etc.) have only succeeded in uncovering 

one among the many faces of the complex procedure. 

However, there are some views of learning which has been acceding to mostly by 

those who have made continuous efforts to divulge the concept, and these on many 

occasion provides reasonable interpretation of the process. Some are the following: 

i. There exist a system manipulating information provided by its environment 

and is capable of improving its self. 

ii. The system has numerous ways of altering its current state and information 

provided can usually take many forms. 

iii. The system is capable of remembering and recalling things that it has 

experienced. 
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1.3 Concept of scalability in machine learning 

  

Scalability has increasingly been integrated over the years as part of deep learning. 

This is as a result of the likelihood of performance characteristics been affected as 

recently; most deep neural networks are hugely involved with the overwhelming size 

of the dataset. 

Scalability, as defined in machine learning, is the effect that a change in system 

parameters has on the performance characteristics of an algorithm. Its methods could 

be like increase in the number of nodes, network layers, and hidden layers by 

systematic experimentation and/or intuition. This is done to ensure faster processing 

with huge dataset while preserving some performance characteristics like (accuracy, 

memory allocation) and reduction in the network complexity. 

1.4 Problem statement  

 

There has been a rise in cases of human-animal attacks and human-vehicle collision 

with the latter been prevalent in Nigeria.  There are about 500-1000 vehicle collisions 

with large animals each year that result in more than 1 billion Naira in damages. 

Source (Federal road safety annual report, 2017). 

To cope with this problem, machine learning based techniques could be employed, 

which may be on CCTV cameras connected to the relevant response team for 

surveillance of animals in both remote and urban places to save lives.  

1.5 Aim of the research 

The aim of this thesis is to provide a scalable, suitable, more generic and optimized 

network capable of processing huge amount of dataset even with images having an 

imperfect quality or varied deformations in real time while preserving better test 

accuracy. 
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1.6 Objectives of the research  

 

Having at hand the different views of people as regards to what learning seems to be 

and how to attain it. One can perceive how challenging it is to interpret deep learning 

and even to set out some clear objectives. Although the concept of learning has 

cleared the air despite that the approach to deep learning by different people differs. 

The aim of this research is as follows: 

i. Develop an artificial learning system capable of being adaptive and self-

improving 

ii. Develop a neural network with optimized parameters whose computational 

performance is unaffected by scalability. 

iii. Develop a neural network system architecture with reduced complexity for 

large scale image classification or prediction. 

 

1.7 Structure of the research  

 

Chapter 1 presents a brief introduction of the research concept primarily deep learning, 

objectives of the project, and the aims. 

Chapter 2 presents supporting theories of the research concept following brief 

introduction of deep learning concept and learning, forming a link with a classification 

problem, then give a brief account of the different classification approaches ranging 

from statistical methods to genetic algorithms. Two best learning approaches will be 

examined and finally, a brief account of similar works done will follow. 

Chapter 3 will presents the theoretical analysis of the adopted algorithm with the 

proposed layers. The following information is provided:  
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i. A detailed description of the algorithm focusing on its peculiarities 

ii. The design of the algorithm with a detailed explanation of its layers. 

Chapter 4 will describes the experiments and presents the results which will be 

statistically analyzed to check for relative performance and the validation of the 

theoretical estimates presented in the previous chapter. 

Chapter 5 summarises the results presented in the thesis and concludes their 

importance in the context of recognition and identification. 
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Chapter Two 

Literature review 

2.0 Introduction 

  

In this section, we present supporting theories of the research concept following brief 

introduction of deep learning concept and learning, forming a link with a classification 

problem, then give a brief account of the differing digital image classification 

approaches ranging from per pixel classification to object-oriented classification. Two 

best classification approaches will be examined, and finally, a brief account of similar 

works done will follow. 

2.1 Basic Concept and Terminology 

 

Machine learning is a branch of computer science that evolved from the study of 

pattern recognition and computational learning theory in artificial intelligence. Machine 

learning explores the construction and study of algorithms that can learn from and 

make predictions on data. Such algorithms operate by building a model from example 

inputs to make data-driven predictions or decisions rather than following procedural 

program instructions. Machine learning is most at times, often overlaps with 

computational statistics; a discipline that also specializes in prediction-making. It has 

strong ties to mathematical optimization, which deliver methods, theory, and 

application domains to the field. Machine learning is employed in a range of computing 

tasks where designing and programming explicit algorithms are infeasible. Example 

applications include spam filtering, optical character recognition (OCR), search 

engines, and computer vision. Machine learning is sometimes conflated with data 

mining, although that focuses more on exploratory data analysis. Machine learning 
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and pattern recognition “can be viewed as two facets of the same field.” (Machine 

Learning Wikipedia full guide, 2017) 

 

2.2 Digital image classification 

 

Image classification can be said to be a process of assigning all pixels in the image to 

particular classes or themes based on spectral information represented by the digital 

numbers (DNs). The classified image comprises a mosaic of pixels, each of which 

belongs to a particular theme and is a thematic map of the original image (Anupam 

Anand, 2018). The main steps of image classification as shown in figure 2.2 may 

include image pre-processing, feature extraction, training samples selection, selection 

of suitable classification approaches, post-classification processing, and assessment 

accuracy (黄正华, 2014). However, Classification will be executed on the base of 

spectral or spectrally defined features, such as density, texture, etc., in the feature 

space. It can be said that classification divides the feature space into several classes 

based on a decision rule (黄正华, 2014). There are basically two approaches to image 

classification, namely; per pixel image classification and object-oriented classification. 

Per pixel is the most commonly adopted method as the algorithm categorizes each 

input pixel into a spectral feature class based solely on its multispectral vector.  No 

context or neighborhood evaluation is involved (Shrivastav & Singh, 2019) while in 

object-oriented classification, the input pixels are grouped into spectral features 

(objects features) using image segmentation. These objects are characterized in both 

the raster and vector domains. The objects are classified using both spectral and 

spatial cues (Shrivastav & Singh, 2019).  
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Figure 2. 1: Classification procedure 

 

Two most common methods of per pixel approach are namely; 

i. Supervised learning 

 

ii. Unsupervised learning 

 

2.2.1 Supervised learning 

 

Supervised learning is a machine learning task of inferring a function from labeled 

training data. In order words for example, given a set of example pairs (x, y), x ∈ X, y 

∈ Y and the aim is to find a function f: X → Y in the allowed class of functions that 

matches the examples. In supervised learning, each example is a pair consisting of 

an input object (typically a vector) and the desired output value (also called the 

supervisory signal). A supervised learning algorithm analyses the training data and 

produces an inferred function, which can be used for mapping new examples. An 

optimal scenario will allow for the algorithm to correctly determine the class labels for 

unseen instances. This requires the learning algorithm to generalize from the training 

data to unseen situations in a “reasonable” way (Machine Learning Wikipedia full 
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guide, 2017). Some of the examples of supervised classification techniques are Back 

Propagation Network (BPN), Learning Vector Quantization (LVQ), Support Vector 

Machine (SVM), etc. Solving the problem of supervised learning requires the following 

steps as shown in figure 2.2.1; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.2. 1: Steps to solving supervised learning 

 

Define the type of training samples   

Collect the training set 

Define the input feature of 

representation of the learned 

function   

Define the structure of the learned 

function and corresponding learning 

algorithm   

Complete the design 

The accuracy of the learned function 

should be evaluated 
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2.2.2 Unsupervised learning  

 

This form of classification is done without interpretive guidance from an analyst. The 

algorithm automatically organizes similar pixel values into groups that become the 

basis for different classes. This is entirely based on the statistics of the image data 

distribution and is often called clustering. The process is automatically optimized 

according to cluster statistics without the use of any knowledge-based control (i.e., 

ground referenced data). The method is, therefore, objective and entirely data-driven. 

It is particularly suited to images of targets or areas where there is no ground 

knowledge. Even for a well-mapped area, the unsupervised classification may reveal 

some spectral features which were not apparent beforehand. Figure 2.2.2 shows the 

necessary steps to solving unsupervised learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. 2: Steps to solving supervised learning 

Clustering of data by algorithm 

Search for inherent classes 

Spectral class map 

Clusters classified on pixel based  

Analyze labels clusters 

Informal 

class map 



12 
 

2.3 Neural networks 

 

A neural network is a system of interconnected artificial “neurons” that exchange 

messages between each other. The connections have numeric weights that are tuned 

during the training process so that a properly trained network will respond correctly 

when presented with an image or pattern to recognize. The network consists of 

multiple layers of feature-detecting “neurons.” Each layer has many neurons that 

respond to different combinations of inputs from the previous layers. As shown in 

Figure 2.3a, the layers are built up so that the first layer detects a set of primitive 

patterns in the input, the second layer detects patterns of patterns, and the third layer 

detects patterns of those patterns.  

 

Figure 2.3 1: Feedforward neural network 

 

The networks are inspired by biological neural systems whose basic computational 

unit is a neuron, and they are connected with synapses. Figure 2.3b compares a 

biological neuron with a basic mathematical model. They can also be applied to 

problems of prediction, classification or control in a broad spectrum of fields such as 

finance, cognitive psychology/neuroscience, medicine, engineering, and physics. 
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Neural networks are used when the exact nature of the relationship between inputs 

and output is not known. A key feature of neural networks is that they learn the 

relationship between inputs and output through training.  

 

  X₀  w₀ synapse 

Axon from neuron activation function 

                                          Dendrites f {∑ₜ w₁x₁ + b} 

 W₂x₂ output axon 

  

Cell body 

     w₁x₁ 

 

Figure 2.3 2: Mathematical model of a biological neuron 

 

Some common examples of neural network training techniques are convolutional 

neural network (CNN), residual neural network (RESNET), etc. Some unsupervised 

network architectures are multilayer perceptron’s, Kohonen networks and Hopfield 

networks, etc. 

 

2.3.1 Convolutional Neural Network (CNN) 

 

CNN is composed of one or more convolutional layers with fully connected layers 

(matching those in typical artificial neural networks) on top. It also uses tied weights 

and pooling layers. This architecture takes advantage of the 2D structure of input data. 

In comparison with other neural network architectures, convolutional neural networks 

have shown superior results in both image and speech, and pattern recognition 

applications. They can also be trained with a standard backpropagation learning 

algorithm. CNNs are easier to train than other regular deep Feed-forward neural 

∑ₜ w₁x₁ + b    
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networks and have many fewer parameters to estimate, making them a highly 

attractive architecture to use. 

 

 

Figure 2.3. 1: Typical CNN 

 

By stacking multiple and different layers in a CNN, complex architectures can be built 

for classification problems. Four types of layers are most common: convolution layers, 

pooling/subsampling layers, non-linear layers, and fully connected layers. 

  

2.3.2 Multilayer perceptron (MLP) 

 

The Multilayer Perceptron (MLP) consists of an input and an output layer with one or 

more hidden layers of nonlinearly-activating nodes or sigmoid nodes. It involves 

several compined perceptrons. The result is a network with several hidden layers 

between the input and the output ones, which can approximate nonlinear functions. In 

parallel to the introduction of more than one layer, the calculation of the feedforward 

values at each layer, and the weight adjustment method has been improved. Back 

Propagation algorithm is used to adjust the weights (Paliouras, 1993) similar to the 

one used in a simple perceptron, but incorporates more parameters. The aim is still to 

reduce the sum of least square errors for the training set, but the errors are now 

propagated more than one layers back to adjust all the weights and the thresholds in 

the network (Paliouras, 1993). 
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Figure 2.3. 2: Multilayer perceptron network 

   

2.4 Review of similar works 

 

(Koprinkova & Petrova, 1999) Presented a paper on data-scaling problems in 

feedforward neural-network training. In this paper, they pointed out that these 

problems appear when the experimental data to be learned to vary across a wide 

interval and has been scaled. One approach to solve this problem is to propose a 

parametric output function of the neurons as it will allow the introduction of new 

parameters into the network so that during the process of feedforward Propagation, 

parameters like the relative square error is minimized while the loss of information is 

almost avoided. However, this approach has some demerits as an increase in the 

network parameter exposes the network to overfitting which is undesirable in image 

classification as the network is designed to provide no room for appropriate scaling of 

its parameters. 

1 

2 

Wₘ 
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(Zheng et al 2018) proposed a scalable deep CNN called S-Net in which the network 

scale can be adjusted dynamically in multitasking for real-time operations with minimal 

or negligible loss in performance. This approach offers a direct technique to assess 

performance gains with the network depth increased. However, the computational cost 

and long training procedures of the network is challenging and increasingly becoming 

unaffordable. More so, the chances of scaling some parameters in the network are 

slim as it’s already designed for complex systems. 

(Trnovszky et al. 2017) designed an Animal Recognition System Based on 

Convolutional Neural Network.  The model was trained using a created animal dataset 

of five different classes with all animal images aligned and normalized based on the 

positions of the animal’s eyes.  Experimental results from the training and testing were 

used to evaluate the performance of the network, and then comparison was made with 

other image processing algorithms to access the effectiveness of the proposed 

algorithm. However, the network is composed of large weights, and that can be a sign 

of an unstable network where small changes in the input can lead to significant 

changes at the output, and that can be a sign of more complex network that has 

overfitted the training data. 

(Alex Krizhevsky et al. 2007) trained a large deep neural network to classify 1.2 million 

images in the Image Net LSVRC-2010 contest into the 1000 different classes. The 

training of the Model was done on a single GTX 580 GPU having only 3GB of memory 

which limits the maximum size of the networks that can be trained. The CNN proposed 

in the research achieves a top-5 error rate of 18.2% averaging the predictions of five 

similar CNNs as measures to curb overfitting was employed with optimization on the 
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forefront. However, there is no established test set from the dataset as this may affect 

the accuracy of the network inappreciably. 

(Guignard & Weinberger, 2016) Authored Animal identification from remote camera 

images using Snapshot Serengeti dataset, which consists of 3.2 million images of over 

50 Species taken more than 5 decades in the Serengeti ecosystem in sub-Saharan 

Africa. However, images with pictures of human beings in the dataset make prediction 

very poor and thus affects validation accuracy. 

 (Jacobs et al 2017) authored a paper titled “Towards Scalable Parallel Training of 

Deep Neural Networks” where they propose a new framework for parallelizing deep 

neural network training that maximizes the amount of data that is ingested by the 

training algorithm. The proposed framework, called Livermore Tournament Fast Batch 

Learning (LTFB) targets large-scale data problems. The LTFB approach creates a set 

of Deep Neural Network (DNN) models and trains each instance of these models 

independently and in parallel.  This new approach maximizes computation and 

minimizes the amount of synchronization required in training deep neural network, a 

significant bottleneck in existing synchronous deep learning algorithms. 

However, in this research, we aim to find suitable parameter values for the model, 

which will give the best optimum performance characteristics through scalability. We 

propose to adjust the network parameters by intuition and systematic experimentation. 

More so, we will optimize floating point’s values from the results obtained by changing 

them to fixing points to reduce memory complexity and yield faster processing in the 

network while targeting animal prediction using a convolutional neural network. 
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Chapter three 

Design and Methodology 

3.0 Introduction 

 

This chapter introduces the methodology used with the algorithm adopted and the 

proposed framework made to achieve the objectives. The chosen algorithm has been 

selected out of a large list of available ones for several important reasons. The main 

one is the fact that it has been used by many machine learning researchers and has 

contributed immensely to the field of computer vision. As a result, they become popular 

among machine learning researchers. Another reason is that recognition using the 

algorithm is rugged to distortions, such as a change in shape due to the camera lens 

and different lighting conditions.  

3.1 Concept of Classification Technique 

  

A classification technique is a systematic approach to building classification models 

from an input dataset. Examples include decision trees classifiers, neural networks, 

support vector machines, and naïve Bayes classifier. Each technique employs a 

learning algorithm to identify a model that best fits the relationship between the 

attributes set and class label of input data. The model generated by a learning 

algorithm should both fit the input data well and correctly predicts the class label of 

records it has never seen before (Pang-Ning Tan et al.). The general approach for 

solving a classification problem requires firstly a training set consisting of records 

whose class labels are known to be provided. Secondly, a test set to whose records 

of class labels are not known to be applied to the classification model generated by 

the training set. 



19 
 

3.2 Design and requirement phase  

 

There are two ways of solving AI (Artificial intelligence) relate problems namely; 

hardware and software methods but preference is always giving to software design 

aspect as it is relatively cheap and does not involve a lot of complexity with regards to 

its architecture and requirements. Training and learning operations take place in the 

software design stage. The hardware, like general purpose processors and FPGA 

serve as an implementation platform for even more complex architectures. The 

proposed model was implemented using python programming language, particularly 

in spyder with keras and tensorflow as backend. Tensorflow is an open source deep 

learning framework created by Google that gives developers coarse control over each 

neuron so that weights can be adjusted to achieve optimal performance. As the task 

is relatively not intensive because of the small number of images in the dataset, a GPU 

was skipped and a CPU core i5 with 2.60GHz processing speed and a dedicated 

graphics card at the high end was used that can train an average of 94 samples per 

second. 

3.3 Deep learning network for recognition and identification 

 

Deep convolutional neural networks (CNNs) are a specialized kind of ANNs that use 

convolution in place of general matrix multiplication in at least one of their layers. In 

contrast to simple neural networks that have one or several hidden layers, deep CNNs 

consist of many layers, as shown in figure 3.3. Such a feature allows them to represent 

highly nonlinear and varying functions compactly. CNNs involve many connections, 

and the architecture is typically comprised of different types of layers including 

convolution, pooling, fully connected layers, and a realize form of regularisation. To 

learn complicated features and functions that can represent high-level abstractions 
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(e.g., in vision, language, and other AI-level tasks), CNNs would need deep 

architectures. Deep architectures and CNNs consist of a large number of neurons and 

multiple levels of latent calculations of non-linearity. Each level of architecture of CNN 

represents features at a different level of abstraction defined as a composition of lower 

level features (Namatēvs, 2018). 

 

Figure 3. 1: Deep CNN Architecture 

 

3.4 Proposed neural network model 

 

After identifying some shortcomings (network complexity, number of parameters, 

computational cost) in quite a handful number of related works reviewed, we decided 

to propose and implement a network capable of overshadowing the drawbacks 

mentioned above. The proposed network is an adopted CNN based architecture with 

lightweight edge parameters for animal identification and recognition, as shown in 

figure 3.4. The choice of the number of layers for the network is for the benefit of more 

nonlinearity which will be added to the network technically it implies that the network 

gets more and more powerful to learn complex data when given samples. The network 

designed is scalable such that the performance does not deteriorate even though the 

system gets large. 



21 
 

 

 

 

Figure 3. 2: Proposed network design 

 

3.5 Building blocks of Deep CNN 

 

The deep CNN architecture includes several building blocks such as convolution 

layers, pooling layers, and fully connected layers. A typical architecture consists of 

repetitions of a stack of several convolution layers, a pooling layer and followed by a 

fully connected layer (Yamashita et al. 2018). 

 

3.5.1 Convolution layer 

 

A convolution layer is a fundamental component of the CNN architecture that performs 

feature extraction, which typically consists of a combination of linear and nonlinear 

operations, i.e., convolution operation and activation function (Yamashita et al., 2018). 

Convolution is a specialized type of linear operation used for feature extraction where 

a small array of numbers called a kernel is applied across the input which is an array 

of numbers called a tensor. An element-wise product between each element of the 

kernel as shown in figure 3.5.1 and the input tensor is calculated at each location of 
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the tensor and summed to obtain the output value in the corresponding position of the 

output tensor, called a feature map (Yamashita et al., 2018). This  

Procedure is repeated applying multiple kernels to form an arbitrary number of feature 

maps which represent different characteristics of the input tensors. 

 

 
 

Figure 3.5. 1: Convolution layer operation 

 

3.5.2 Pooling layer  

 

A pooling layer provides a typical downsampling operation which reduces the in-plane 

dimensionality of the feature maps to introduce a translation invariance to small shifts 

and distortions and decrease the number of subsequent learnable parameters 

(Yamashita et al., 2018). Max pooling is the most popular form of pooling operation, 

which extracts patches from the input feature maps, outputs the maximum value in 

each patch, and discards all the other values as shown in figure 3.5.2.  A max pooling 

with a filter of size 2 × 2, with a stride of 2 is commonly used in practice (Yamashita et 

al., 2018). 
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Figure 3.5. 2: Max pooling operations with 2 by 2 filter stride 

 

3.5.3 Fully connected layer 

 

This is where the actual classification is done. The output feature maps of the final 

convolution or pooling layer is typically flattened as shown in figure 3.5.3  i.e., 

transformed into a one-dimensional (1D) array of numbers (or vector) and connected 

to one or more fully connected layers also known as dense layers in which every input 

is connected to every output by a learnable weight (Yamashita et al., 2018). The final 

fully connected layer typically has the same number of output nodes as the number of 

classes (Yamashita et al., 2018). 

 

Figure 3.5. 3: Fully connected layer 1D dimensional array 
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3.5.4 Activation functions 

 

Activation functions in the hidden layer help in mapping the non-linearity relationship 

between input and output. There are several activation functions as shown in figure 

3.5.4 however, commonly used activation functions in hidden layers are sigmoid 

and Relu. There is no rule for applying specific activation functions. Different activation 

functions need to be evaluated for specific datasets. In this research, we use the 

rectified linear (also referred to as ‘Relu’) activation function because it facilitates 

(Singaravel et al 2018) model training using gradient-based optimization methods.  

 

Figure 3.5. 4: Several activation functions graph 

 

3.5.5 Last layer activation function 

 

The activation function applied to the last fully connected layer is usually different from 

the others. An appropriate activation function is selected according to each task. An 

activation function applied to the multiclass classification task is a softmax function as 

used in this research which normalizes output real values from the last fully connected 

https://www.sciencedirect.com/topics/computer-science/training-model
https://www.sciencedirect.com/topics/engineering/optimization-method
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layer to target class probabilities, where each value ranges between 0 and 1 and all 

values sum to 1 (Yamashita et  

al., 2018). Typical choices of the last layer activation function for various types of tasks 

are summarized in Table 3.5.5 

 

Table 3.5. 5: A list of commonly applied last layer activation functions for various 
tasks 

 

Task Last layer activation function 

Multiclass single-class classification Softmax 

Multiclass classification Sigmoid 

Regression to continuous values Identity 

 

3.6 Training deep CNN 

 

Training deep architectures is a challenging task, and traditional methods that have 

proved useful when applied to uncomplicated neural network architectures are not as 

effective when applied to deep architecture. The training function means to use an 

overall algorithm that is used to train a neural network to recognize a specific input 

and map it to a specific output (Namatēvs, 2018). The most costly part of deep neural 

networks training is knowing the features and accessibility to labeled data. 

 

Figure 3. 6: Training process of a neural network 
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Learning process in deep neural networks involves calculating the gradients of 

complex functions and decides how they will be manipulated. CNNs are usually trained 

by back propagation algorithm (BP) and Stochastic Gradient Descent (SGD) to find 

weights and biases that minimize specific loss function as shown in figure 3.6 to map 

the random inputs to the targeted outputs as closely as possible.  

 

3.6.1 Loss function 

 

A loss function also referred to as a cost function, or error function measures the 

difference between output predictions of the network through forwarding propagation 

and given the expected result. Most commonly used loss function for multiclass 

classification is cross entropy, whereas mean squared error is typically applied to 

regression related problems.  

 

3.6.2 Gradient descent 

 

Gradient descent is commonly used as an optimization algorithm that iteratively 

updates the learnable parameters, i.e., kernels and weights of the network so as to 

minimize the loss. The gradient of the loss function provides direction in which the 

function has the steepest rate of increase and each learnable parameter is updated in 

the negative direction of the gradient with an arbitrary step size determined based on 

a hyperparameter called learning rate. The gradient is mathematically a partial 

derivative of the loss with respect to each learnable parameter and a single update of 

a parameter is formulated as follows: 
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Where w stands for each learnable parameter, α stands for a learning rate, 

and L stands for a loss function (Yamashita et al., 2018). 

 

3.7 Dataset description 

 

Dataset was created using 6 images of different classes with each class having a 

number of images of more than 200 amounting to 2000 sets of images in total even 

though images in the dataset set have large variations in scale, pose and lighting. 

These images are in RGB and have undergone pre-processing to ensure a uniform 

input of 64 ×64 is fed into the neural network. For this research, only 760 images were 

used as a result of lack of good GPU with the required memory and processor speed 

to train the model with all the collected dataset. The new dataset created is to train the 

model to be more generic and have some good degree of universality even with other 

already made and extracted images from dataset. 

 

3.8 System architecture of deep CNN for wildlife recognition 

 

Deep learning has outperformed other machine learning algorithms in the area of 

image classification (Singaravel et al., 2018).  The architecture involves mainly three 

layers, namely; input layer, hidden layer, and the output layer with the number of 

hidden layers defining the depth of the architecture. As shown in figure 3.8, the data 

pre-processing serves as the input layer; the hidden layers are the processes taking 

place in the deep learning and training block. However, optimization may be involved 

in the results from the hidden layers for correct prediction at the output layer. 
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Figure 3. 8: Deep CNN architecture for wild life animal recognition 

 

3.9 Implementation details 

 

We took 2150 images for six classes both from camera snapshot in some few wildlife 

parks within Abuja, Nigeria and complimented it with some gotten using Google search 

engine for different classes as required. Many photos were of animals far in the 

distance obstructed by objects, or only partly in the frame, we manually screened 

these out from our training set even though it proved to be time-consuming so that 

images will not be misclassified. Instead of the six animal types in the complete 

dataset, we chose to first train on three classes: Wild pig, Rhino and Bear then took 

344 images of rhino, 214 images of wild pig and 212 of bear from the dataset. Finally, 

images were cropped and resized to the same dimensions. 
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3.9.1 Parameters of the network 

 

We implemented the network using machine learning package tensorflow and keras, 

which is built on top of theanos. The input layer to the network was the raw image from 

camera Snapshots, which is in RGB form with 20% dropout been applied to the layer. 

The network hidden layers for the first model designed consisted of two fully connected 

layers, and the second model three fully connected layers with a 50% drop out after 

each layer and Relu activation function to model non-linearities. The number of nodes 

in each fully connected layer was set to roughly three times the number of pixels in the 

image. The output layer consisted of three nodes, one for each classification and 

applied the softmax function to simulate a probability for each class. The error was 

measured using cross entropy loss and stochastic gradient descent, a learning rate of 

0.01, and the momentum of 0.9 was used for optimization. The network was run for 

ten epochs on input image sizes 64 x 64 pixels although memory constraints limited 

the input image sizes to a maximum of 150 x 150 pixels for training. The network was 

run on an Intel i5 2.60 GHz processor with 8GB of memory. 
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Chapter four 

Results and discussions 

4.0 Introduction 

 

This chapter presents the results of our proposed design and implementation. Firstly, 

we examine the overall model accuracy, made comparisons between different 

architectural design and between different types of images. Secondly, we present the 

loss and accuracy graph generated together with a summary of the network designed 

the number of parameters, including the computational time during the training 

process. Finally, we make a conclusion based on the outcome of our different design 

models. 

4.1 Results for 4 convolutions with two output layers 

 

 

Figure 4.1 1: Loss graph 
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Figure 4.1 2: Accuracy graph 

 

4.2 Results for 3 convolution with 3 output layers 

 

 

Figure 4.2 1: Accuracy graph 
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Figure 4.2 2: Loss graph 

 

4.3 Results summary 

 

Table 4. 3: Results summary 

 

Number 

of layers 

Validation 

Accuracy 

(%) 

Validation 

Loss (%) 

Training 

Loss  

Execution 

time  

(s) 

Training 

Accuracy 

(%) 

  

Number of 

parameters 

  

4convet, 

2FC(128) 

68.97 0.6161 0.6525 18 61.78 1,688,098 

3Convet, 

3FC(512) 

63.50 0.9060 0.9077 29 59.40 7,744,643 
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4.4 Results discussion 

 

In this work, we measure the performance (accuracy, loss, and computation time) of 

different modeled networks. We used three classes of images from the datasets and 

also hand-picked randomly 24 images from the dataset for testing after training the 

network. We report the accuracy and loss obtained by plotting their graph against the 

number of times the network is trained with the computation time in all cases. A 

detailed summary of the results is given in table 4.3. It can be seen that the two 

different architecture designed and implemented achieved relatively a good accuracy. 

But, the architecture with four convolution layers and two output layers shown in Figure 

4.1 3, achieves better performance with regards to accuracy of 68% as compared to 

64% in figure 4.2.1 after ten epochs and has the number of parameters in the network 

very much less as compared to the second network architecture. 

The losses in the two different network architecture is dropping steadily. However, the 

first network architecture has a better loss percentage of 0.62 as shown in figure 4.1.1 

which implies that the network design has less overfitting (memorizing) and is nowhere 

going to overfit if same parameters and datasets is maintained as compared to the 

second network architecture with 0.93 percentage loss after 10 epochs.  
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Chapter five 

Conclusion and future works 

5.0 Introduction 

 

This chapter summarises the results presented in the thesis and concludes their 

importance in the context of recognition and identification. 

5.1 Conclusions 

 

In this research, we proposed a neural network software architecture and performed 

its evaluation. We employed the use of deep learning techniques to identify wildlife 

animals while ensuring that a robust system that can generalize our images (from the 

datasets) is realized. A manually created dataset from raw images fetched from the 

camera(s), preprocessed using some python libraries was used as inputs to the 

designed network. Many network architecture design with scalability was performed, 

but the two most important ones that showed good results was picked for evaluation. 

 During the evaluation, the proposed architecture with 4 convets and 2 output layer 

achieved good results while predicting or recognizing wildlife animals. Our approach 

could be used in both remote and urban areas to help prevent or reduce the number 

of the animal-vehicle collision, animal-humans attack, and animal crop destruction by 

detecting the presence of animal so that warning may be issued with a view of safety 

purpose. This research though, could consolidate other findings made in the 

recognition of wildlife animals and thus will help show the adaptability of deep CNN to 

even small datasets in their raw form captured from the camera(s).  It will, in turn, lead 

to the formations of standard design philosophies that will make image recognition 

algorithms more practicable to solving real-life problems. 
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5.2 Future work 

 

There are several areas this research has not been able to cover due to lack of time 

chief among other drawbacks and resources (e.g., lack of large datasets, High GPU 

Processor). However, the following issues are more specifically of interest. 

1. The memory complexity optimization which could be done by changing the 

floating point values from the results obtained to fixing points. The goal is to 

reduce memory complexity and yield faster processing in the network while 

targeting animal prediction using a convolutional neural network. 

2. Optimizing Execution time (a function of the number of MAC operations) by 

reducing the number of operations taking place in the MAC (multiply and 

accumulate) convolution layer. More so this will also reduce the computation 

complexity of the network and hence even the power consumption. 

 

3. Accuracy of the network is a function of the amount of dataset fed, and this can 

be improved and maintained by collecting a large number of datasets which are 

preprocessed properly or discretized as this will enhance the accuracy of both 

training and validation. 

 

4. Further making the network more scalable will make it achieve a good balance 

between latency, precision (exactness towards prediction) and hardware 

complexity as these are factors that define how efficient a neural network 

architecture can perform in hardware(s) 
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APPENDIX 1 

CODES FOR 3 CONVETS, 3 FULLY CONNECTED LAYER 

 

import numpy 
import matplotlib.pyplot as plt 
from keras.layers import Dropout 
from keras.layers import Flatten 
from keras.constraints import maxnorm 
from keras.optimizers import SGD 
from keras.layers import Conv2D 
from keras.layers.convolutional import MaxPooling2D 
from keras.utils import np_utils 
from keras import backend as K 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.model_selection import train_test_split 
from keras.callbacks import TensorBoard 
 
 
NAME = ' wild life animals classification-cnn-64x2-{}'.format(int(time.time())) 
tensorboard = TensorBoard(log_dir="logs/{}".format(NAME)) 
 
K.set_image_dim_ordering('tf') 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
def pre_process(X): 
 
    # normalize inputs from 0-255 to 0.0-1.0 
    X=X.astype('float32') 
    X = X / 255.0 
    return X 
 
def one_hot_encode(y): 
 
    # one hot encode outputs 
    y = np_utils.to_categorical(y) 
    num_classes = y.shape[1] 
    return y,num_classes 
 
def define_model(num_classes,epochs): 
    # Create the model 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), padding='same', 
activation='relu', kernel_constraint=maxnorm(3))) 
    '''model.add(Conv2D(64, (3, 3), activation='relu'))''' 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
    model.add(Dropout(0.2)) 
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    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', 
kernel_constraint=maxnorm(3))) 
    model.add(Conv2D(64, (3, 3), activation='relu')) 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
    model.add(Dropout(0.2)) 
    model.add(Flatten()) 
    model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Dense(64, activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Dropout(0.5)) 
    model.add(Dense(num_classes, activation='softmax')) 
    # Compile model 
    lrate = 0.01 
    decay = lrate/epochs 
    sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) 
    model.compile(loss='categorical_crossentropy', optimizer=sgd, 
metrics=['accuracy']) 
    print(model.summary()) 
    return model 
 
 
# load data 
X,y=load_data.load_datasets() 
 
# pre process 
X=pre_process(X) 
 
#one hot encode 
y,num_classes=one_hot_encode(y) 
 
 
#split dataset 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 
random_state=7) 
 
epochs = 10 
#define model 
model=define_model(num_classes,epochs) 
 
 
# Fit the model 
history=model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, 
batch_size=32, callbacks=[tensorboard]) 
 
# list all data in history 
print(history.history.keys()) 
# summarize history for accuracy 
plt.plot(history.history['acc']) 
plt.plot(history.history['val_acc']) 
plt.title('model accuracy') 
plt.ylabel('accuracy') 
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plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
# summarize history for loss 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('model loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
 
 
# Final evaluation of the model 
scores = model.evaluate(X_test, y_test, verbose=0) 
print("Accuracy: %.2f%%" % (scores[1]*100)) 
 
# serialize model to JSONx 
model_json = model.to_json() 
with open("model_face.json", "w") as json_file: 
    json_file.write(model_json) 
# serialize weights to HDF5 
model.save_weights("model_face.h5") 
print("Saved model to disk") 
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APPENDIX 2 

CODES FOR 4 CONVETS, 2 FULLY CONNECTED LAYER 

 

import numpy 
import matplotlib.pyplot as plt 
from keras.layers import Dropout 
from keras.layers import Flatten 
from keras.constraints import maxnorm 
from keras.optimizers import SGD 
from keras.layers import Conv2D 
from keras.layers.convolutional import MaxPooling2D 
from keras.utils import np_utils 
from keras import backend as K 
import load_data 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.model_selection import train_test_split 
from keras.callbacks import TensorBoard 
 
 
NAME = ' wild life animals classification-cnn-64x2-{}'.format(int(time.time())) 
tensorboard = TensorBoard(log_dir="logs/{}".format(NAME)) 
 
K.set_image_dim_ordering('tf') 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
def pre_process(X): 
 
    # normalize inputs from 0-255 to 0.0-1.0 
    X=X.astype('float32') 
    X = X / 255.0 
    return X 
 
def one_hot_encode(y): 
 
    # one hot encode outputs 
    y = np_utils.to_categorical(y) 
    num_classes = y.shape[1] 
    return y,num_classes 
 
def define_model(num_classes,epochs): 
    # Create the model 
    model = Sequential() 
    model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), padding='same', 
activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Conv2D(32, (3, 3), activation='relu')) 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
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    model.add(Dropout(0.2)) 
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', 
kernel_constraint=maxnorm(3))) 
    model.add(Conv2D(64, (3, 3), activation='relu')) 
    model.add(MaxPooling2D(pool_size=(2, 2))) 
    model.add(Dropout(0.2)) 
    model.add(Flatten()) 
    model.add(Dense(128, activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Dense(128, activation='relu', kernel_constraint=maxnorm(3))) 
    model.add(Dropout(0.5)) 
    model.add(Dense(num_classes, activation='softmax')) 
    # Compile model 
    lrate = 0.01 
    decay = lrate/epochs 
    sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) 
    model.compile(loss='categorical_crossentropy', optimizer=sgd, 
metrics=['accuracy']) 
    print(model.summary()) 
    return model 
 
 
# load data 
X,y=load_data.load_datasets() 
 
# pre process 
X=pre_process(X) 
 
#one hot encode 
y,num_classes=one_hot_encode(y) 
 
 
#split dataset 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 
random_state=7) 
 
epochs = 10 
#define model 
model=define_model(num_classes,epochs) 
 
 
# Fit the model 
history=model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, 
batch_size=32, callbacks=[tensorboard]) 
 
# list all data in history 
print(history.history.keys()) 
# summarize history for accuracy 
plt.plot(history.history['acc']) 
plt.plot(history.history['val_acc']) 
plt.title('model accuracy') 
plt.ylabel('accuracy') 
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plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
# summarize history for loss 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('model loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['train', 'test'], loc='upper left') 
plt.show() 
 
 
# Final evaluation of the model 
scores = model.evaluate(X_test, y_test, verbose=0) 
print("Accuracy: %.2f%%" % (scores[1]*100)) 
 
# serialize model to JSONx 
model_json = model.to_json() 
with open("model_face.json", "w") as json_file: 
    json_file.write(model_json) 
# serialize weights to HDF5 
model.save_weights("model_face.h5") 
print("Saved model to disk") 
 
 


