
PULSED LASERS IN LIDAR APPLICATION: MODELS
FOR OPTIMIZING WIND TURBINE PERFORMANCE

A Thesis Presented to the Department of Theoretical and Applied Physics
African University of Science and Technology, Abuja

In partial fulfilment of the requirements for the award of

MASTER OF SCIENCE DEGREE

By

IROH MICHAEL CHIJIOKE

Supervised by

Dr. habil. Anatole Kenfack

African University of Science and Technology
www.aust.edu.ng

P.M.B 681, Garki, Abuja F.C.T
Nigeria.

June, 2019

http://www.aust.edu.ng


PULSED LASERS IN LIDAR APPLICATION: MODELS FOR

OPTIMIZING WIND TURBINE PERFORMANCE

By
IROH MICHAEL CHIJIOKE

A THESIS APPROVED BY THE DEPARTMENT OF THEORETICAL AND
APPLIED PHYSICS

RECOMMENDED:

..................................................
Supervisor: Dr. habil. Anatole Kenfack

..................................................
Head, Department of Theoretical Physics

APPROVED:

............................................................
Chief Academic Officer (Prof. C. E. Chidume)

..................................................
Date



ABSTRACT

Since the appearance of the first wind turbines at the end of the nineteenth cen-
tury, wind energy has been considered to be a renewable energy source for not just
developed countries but also developing countries as well. Thus, since 2004, there
has been a steady rise in wind energy production worldwide, with substantial ac-
tively installed capacity in Africa. However, due to the fact that wind turbines are
highly dynamic systems that are excited by stochastic loads from the wind, varia-
tions in this disturbance usually medium-term (-changes during the space of a few
hours or minutes cause variations in power output which must be accepted by the
system to which the turbine is connected -) and short-term (typically wind gusts which
will introduce cyclic loadings which must be absorbed by the wind turbine with high
susceptibility to fatigue damage) negatively impacts heavily on Levelized Cost Of
Energy (LCOE) of wind energy (i.e., the average cost per unit of energy over the
lifetime of the turbine, including capital costs, operations and maintenance costs,
and all other relevant expenses) [1].

As a result, there has been slow progress in the growth and development of more
powerful turbines which have some significant advantages such as less visual impact
to local people, and projects with more profitability. While traditional wind turbine
control design utilize feedback control algorithms such as Artificial Neural Network
(AAN) algorithms to address this challenge, this has often proved ineffective because
they are only able to react to impacts of wind changes on the turbine dynamics after
these impacts have already occurred [2].

Consequently, as a promising alternative, Light Detection and Ranging (Lidar)
allows preview information about the approaching wind to be used to improve wind
turbine control including blade pitch, generator torque, and yaw direction, thereby
optimizing operational performance of the wind turbine through increase in energy
yield, while keeping structural loads low [3]. Therefore, it is our goal in this thesis
to carry out a thorough exposition of modeling associated with this trend. We will
first focus on lidar system modeling with particular emphasis on the laser device
which is the primary component of the lidar systems. Then we will explore wind
and wind turbine modeling through aero-elastic simulations, and then wind field
reconstructions with correlations between Lidar systems and Wind turbines [4]. We
will end with an insight into what is to be expected with regards to the lidar scanning
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pattern and consequently the entire lidar-wind turbine models and simulations when
pulsed Lasers operating in the pico and/or femtosecond regime are used in the laser
system as against the traditional nanoseconds pulsed lasers.

ii



ACKNOWLEDGMENTS

“Now to Him who is able to do more than we can ask or imagine according to
His power operative in the church be all glory now and forever” (Eph. 3:20–21).
I sincerely thank God who grants us enablement to achieve whatever feat in life.
Indeed, ‘it is in him that we live and move and have our being’ (Acts 17:28).

I sincerely thank God and acknowledge with great gratitude the immediate spon-
sors of the M.Sc. program I did in AUST, the African Development Bank (ADB)
and Pan African Material Institute (PAMI) as well as all the funding collaborators of
AUST who continue to provide scholarship to Africans to study in this great centre
of excellence. May God bless you richly.

To the entire management of the African University of Science and Technology,
I am immensely grateful. Special thanks to the Acting President, Prof. Charles
Chidume, and the academic team of the university. I am sincerely grateful to the
HOD of Theoretical and Applied Physics Department, Prof. habil. Anatole Kenfack,
who also doubled as my project supervisor. Thanks prof. for your guidance and
inspiration.

My gratitude goes to the immediate research team that worked assiduously to
come up with these results. Special mention of Emmanuel Onwukwe, David Clement
and Yerima Williams. To you Irewole Iyomo, you are simply indescribable. Thanks
for the pains of always going back and forth with ideas and great commitment you
manifested in this research. May God bless you abundantly.

I want to equally thank the entire 2019 M.Sc. group and in particular the smaller
group of M.Sc. Physics 2019. Your encounter and friendship contributed in no small
measure. Thanks so much.

I acknowledge and thank Rev. Sr. Chinyerem Onyekanne,IHM who by the way
introduced me to AUST. You really became a mentor in every sense of the word.
Thanks so much. Special thanks too to: Amaka, Paulina, Nsima, Daalu, Yvet,
Cynthia, Obi, and Cyril. Thanks for your various levels of help in the course of the
M.Sc. program.

I am immensely thankful to all the faculties and visiting professors who inspired
us to work hard. You have made an indelible mark in me that further motivates me
in terms of academic work. May God bless and reward you all.

I acknowledge and thank my Provincial Superior, Very Rev. Fr. Cyril N.

iii



Mbata,CM for giving me the permission to undertake this studies. I acknowledge
special encouragements from Frs. Damian Nwankwo,CM; Michael Ngoka,CM; Six-
tus Njoku,CM; Evarestus Igwe,CM and indeed the confreres who are members of
Abuja local community, past and present.

To several others I could not put down your names, be sure that you are highly
acknowledged and appreciated. Wole also did the type setting; thanks for that extra
labour too.

iv



DEDICATION

This research work is dedicated to my beloved father, Late chief Vincent Iroh Elum,
the man who taught me the beauty of resilience. I dedicate this work too to all
Nigerians who are committed to the course of providing constant electricity to the
200 million citizens of this nation!

v



CONTENTS

Abstract i

Acknowledgments iii

Dedication v

Table of Contents vii

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Limitation of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 8

2.1 Wind Turbines and Wind Modeling . . . . . . . . . . . . . . . . . . . 8
2.1.1 The Physics of Wind Energy . . . . . . . . . . . . . . . . . . . 8
2.1.2 What is a Wind Turbine? . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Wind Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 LIDAR and Lidar Modeling . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Lidar Operating Principle . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Lidar Components . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Lidar Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Correlation between Wind Systems and LiDAR Systems . . . . . . . 24

3 Models and Methodology 26

3.1 Classical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.1.1 Structural Mechanics . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Modal shape functions and Principle of Virtual Work . . . . . 26
3.1.3 Cyclic Loading . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Fluid Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Rotational Effects . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Forces in the Rotating Frame of Reference . . . . . . . . . . . 36
3.2.3 Boundary Layer Assumptions . . . . . . . . . . . . . . . . . . 36
3.2.4 Attached Flow on a Rotating Blade . . . . . . . . . . . . . . . 37

3.3 Quantum Mechanical Model . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Quantum Scattering . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Lidar Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Elastic-Backscattered Lidar . . . . . . . . . . . . . . . . . . . 46

3.4 Correlation models and algorithm for field reconstruction . . . . . . . 48
3.5 Wind Fields and Wind Evolution Models . . . . . . . . . . . . . . . . 50

3.5.1 The Great Plains-Low Level Jet Wind Field . . . . . . . . . . 51
3.5.2 Exponential Wind Evolution Model . . . . . . . . . . . . . . . 53
3.5.3 LES Stable Boundary Layer Wind Field . . . . . . . . . . . . 54

4 Results and Discussions 57

4.1 Lidar Measurement Coherence . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Components of Measurement Coherence . . . . . . . . . . . . . . . . 60
4.3 Lidar Measurements of Evolving Wind Fields . . . . . . . . . . . . . 61
4.4 Measurements Using the Exponential Wind Evolution Model . . . . . 63

5 Conclusions 67

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Perspectives (Future Outlook) . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

vii



LIST OF TABLES

3.1 Typical values of roughness length z0 and roughness exponent α for
different types of surface [28, 29]. . . . . . . . . . . . . . . . . . . . . 32

3.2 Parameters and order of magnitude . . . . . . . . . . . . . . . . . . . 38
3.3 A summary of the Unstable Great Plains-Low Level Jet Wind Field

Used for Wind Speed Measurement Analysis with the 5-Megawatt
(MW) Wind Turbine Model . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 A summary of the Stable Large Eddy Simulation Wind Field Provided
by the National Center for Atmospheric Research, with a Monin-
Obukhov Stability Parameter of zi/L = 2 . . . . . . . . . . . . . . . . 54

viii



LIST OF FIGURES

1.1 A cut-away section of a horizontal axis three-blade wind turbine . . . 2

2.1 Flow conditions due to the extraction of mechanical energy from a
free-stream air flow, according to the elementary momentum theory. . 10

2.2 The power coefficient as a function of the velocity ratio for an ideal
wind turbine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Wind turbine components. . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Snapshot of the time variant vector field as a general description of

wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Orientation of the wind coordinate system (subscript W) in the in-

ertial coordinate system (subscript I). Rotation order is defined as
azimuth → elevation (αh → αv). . . . . . . . . . . . . . . . . . . . . . 18

2.6 Generic Doppler lidar concept where V is the mean velocity of the
target, and Vlos is projected radial wind speed. . . . . . . . . . . . . . 20

2.7 A conceptual drawing of the major parts of a lidar system. . . . . . . 21
2.8 Orientation of the lidar coordinate system (subscript L) in the inertial

coordinate (subscript I): Origin of the L-system within the I-system
is [uL,I vL,I wL,I ]

T and the rotation order from L to I is defined
as yaw → pitch → roll (ΨL → ΘL → ΦL). . . . . . . . . . . . . . . . 22

2.9 Normalized range weighting functions for a pulsed lidar system (black)
and a continuous-wave lidar system (gray) at a focus range of 100m. . 24

3.1 The loading caused by the Earth’s gravitational field . . . . . . . . . 29
3.2 Inertial loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Sketch of turbulent inflow seen by wind turbine rotor . . . . . . . . . 31
3.4 The blade in the rotating frame of reference. . . . . . . . . . . . . . . 35
3.5 Illustration of the lidar geometry [15]. . . . . . . . . . . . . . . . . . . 41
3.6 Influence of the overlap function on the signal dynamics. . . . . . . . 42
3.7 Sketch of the DBS scan . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Power spectral densities of wind speed components at heights of 40m,

90m, and 140m for the Great Plains-Low Level Jet wind condition
(described in Table 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix



3.9 Coherence summary for the Great Plains-Low Level Jet wind condi-
tion. (a) Transverse coherence functions for the u component at a
height of z = 90m for transverse separations of 2, 4, 8, 16, and 32m.
(b) Coherence between the u and w components of wind at z = 27m,
90m, and 153m, which correspond to the bottom of the rotor, the hub
height, and the top of the rotor, and coherence between the u and v
components at z = 90m. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Power spectral densities of wind speed components at heights of 50m,
100m, and 150m for the stable large eddy simulation wind field de-
scribed in Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Transverse coherence curves for the stable LES wind field measured
in the y direction at a height of 100m, and average coherence curves
in the z direction based on measurements at heights between 50 and
100m and 150m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 Longitudinal coherence curves for the stable LES wind field based on
measurements at a height of 100m . . . . . . . . . . . . . . . . . . . . 56

4.1 Coordinate system and measurement variables used. The lidar is
assumed to mounted in the wind hub at (xh, yh, zh) = (0, 0, 0). . . . . 57

4.2 A comparison of the components of measurement of coherence for
a scanning LIDAR scenario, with scan radius r = 47.25m using the
Great Plains-Low Level Jet wind field and exponential coherence with
a = 0.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 A comparison of the components of measurement of coherence for a
scanning LIDAR scenario, with r = 47.25m using the stable Large
Eddy Simulation (LES) wind field and evolution model . . . . . . . . 62

4.4 This figure shows the γ2 = 0.5 coherence bandwidth versus preview
distance for the Great Plains-Low Level Jet wind field for scan radii
of r = 15.75, 31.5m, 47.25m and 63m. The wind evolution is based
on an exponential coherence model with various decay parameters. . . 64

4.5 Integral of measurement coherence from 0Hz to 0.5Hz versus preview
distance for the Great Plains-Low Level Jet wind field for scan radii
of r = 15.75m, 31.5m,47.25m and 63m. Wind evolution is based on
an exponential coherence model with various decay parameters. . . . 65

x



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

“The fuel in the earth will be exhausted in a thousand or more years, and its mineral
wealth, but man will find substitutes for these in the winds, the waves, the sun’s heat,
and so forth.” True to those words of John Burroughs uttered over a century ago,
man is really finding viable renewable energy alternatives in the wind. In fact, since
the appearance of the first wind turbines at the end of the nineteenth century, wind
energy has been considered to be a renewable energy source for not just developed
countries but also developing countries as well. Thus, there has been a steady rise
in wind energy production worldwide since 2004, with substantial actively installed
capacity in Africa. In fact, in [5], it was noted that wind energy is the “fastest
growing installed alternative-energy production”, with at least 20% of United States
energy expected to be supplied by offshore and onshore wind farms by 2030.

Renewable energies constitute excellent solutions to both the increase of energy
consumption and environment problems. Among these energies, wind energy is very
interesting. Wind energy is the subject of advanced research. In the development
of wind turbine, the design of its different structures is very important. It will
ensure: the robustness of the system, the energy efficiency, the optimal cost and
the high reliability. The use of advanced control technology and new technology
products allows bringing the wind energy conversion system in its optimal operating
mode. Different strategies of control can be applied on generators, systems relating
to blades, etc. in order to extract maximal power from the wind [6].

To achieve this ambitious goal, the cost of wind energy must be able to compete
favorably with the cost of traditional fossil fuels. This implies that the Levelized
Cost Of Energy (LCOE) of wind energy defined as the average cost per unit of
energy over the lifetime of the wind turbine, including capital costs, operations and
maintenance costs, and all other relevant expenses [3], usually expressed in $/kWh,
must be significantly reduced. A typical conventional approach to this will be to
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increase wind energy production, and so the trend within the last three decades has
been the development and deployment of larger and more powerful wind turbines.
As at 2017, according to [7], Vestas V-164 rated at 9.5 MW is the most powerful
wind turbine. The rationale behind this, no doubt is primarily to harness more
wind resources and increase profitability, though some secondary reasons such as
aesthetics, less visual impact to local people and environmental issues cannot be
neglected. This approach in itself has not been without daunting challenges. To
understand these challenges, consider briefly the design and operation of a wind
turbine.

A cutaway-section of the dominant horizontal axis three-blade wind turbine is
shown in figure 1.1 below:

Figure 1.1: A cut-away section of a horizontal axis three-blade wind turbine

From the diagram above, the turbine consists of three main parts namely the
blades, the nacelle and the tower. The blades which are fastened to the nacelle by
means of the rotor are subjected to rotational motion by the wind. This rotational
motion is amplified by the gearbox, high speed and low speed shafts in the nacelle
which then rotates the generator (which is also in the nacelle), and the generator
in turn produces Direct Current. The whole structure is supported by the tower.
This simple but powerful picture underscores the fact that wind turbines are highly
dynamic systems that are excited by stochastic loads from the wind. These winds
are generally not predictable or dependable as variations in this disturbance often
occur. These variations can be medium-term that is changed during the space of a
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few hours or minutes cause variations in power output which must be accepted by
the system to which the turbine is connected, or short-term – typically wind gusts
which will introduce cyclic loadings which must be absorbed by the wind turbine
with high susceptibility to fatigue damage. As shown above, these variations are
managed by control systems on the nacelle such as the pitch system for the blades
and the brake for generator control, as well as the yaw motor fitted in the tower.
Sadly, these controls rely on traditional feedback mechanism based on algorithms
such as Artificial Neural Network (AAN) algorithms, which are only able to react to
impacts of wind changes on the turbine dynamics after these impacts have already
occurred, thereby impacting negatively on LCOE. The situation is best illustrated
with an individual riding a bicycle with a blind fold, who only reacts when he/she
must have crashed into something or had an impact.

Given this scenario, a natural question follows: What if the individual could
ride the bicycle with his eyes open, thereby seeing the obstacle before hand and
consequently avoiding the impact or crash? Hence, as a promising alternative, Light
Detection and Ranging (Lidar) allows preview information about the approaching
wind to be used to improve wind turbine control including blade pitch, generator
torque, and yaw direction, thereby optimizing operational performance of the wind
turbine through increase in energy yield, while keeping structural loads low [1].

1.2 The Problem

As stated clearly in the abstract as well as in the analysis of a typical wind turbine
parts in the introduction above, the problem that light detecting and ranging devices
hope to address, at least theoretically in the models and in systems that has begun
to implement same is the erratic behavior of the approaching wind in front of the
turbine and the feedback method of collecting data for optimization by the tradi-
tional models. As Eric Simley, Holger Fürst, Florian Haizmann and David Schlipf,
in the article “Optimizing Lidars for Wind Turbine Control Applications–Results
from the IEA Wind Task 32 Workshop” Remote Sens. 2018, 10, 863 noted clearly,
these approach has proved to be ineffective in addressing the problem of control and
design in the wind energy development. In their very words, due to the fact that
wind turbines are highly dynamic systems that are excited by stochastic loads from
the wind, variations in this disturbance usually medium-term (-changes during the
space of a few hours or minutes cause variations in power output which must be
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accepted by the system to which the turbine is connected -) and short-term (typically
wind gusts which will introduce cyclic loadings which must be absorbed by the wind
turbine with high susceptibility to fatigue damage) negatively impacts heavily on
Levelized Cost Of Energy (LCOE) of wind energy (i.e., the average cost per unit of
energy over the lifetime of the turbine, including capital costs, operations and main-
tenance costs, and all other relevant expenses) [1]. As a result, there has been slow
progress in the growth and development of more powerful turbines which have some
significant advantages such as less visual impact to local people, and projects with
more profitability. While traditional wind turbine control design utilize feedback
control algorithms such as Artificial Neural Network (AAN) algorithms to address
this challenge, this has often proved ineffective because they are only able to react
to impacts of wind changes on the turbine dynamics after these impacts have al-
ready occurred [2]. Consequently, as a promising alternative, Light Detection and
Ranging (Lidar) allows preview information about the approaching wind to be used
to improve wind turbine control including blade pitch, generator torque, and yaw
direction, thereby optimizing operational performance of the wind turbine through
increase in energy yield, while keeping structural loads low [1].

1.3 The Aim

The general purpose or the overall goal of this research is to carry out an exhaus-
tive exposition of modeling associated with the Lidar systems as it applies to wind
turbines particularly with the pulsed laser systems as its main components. As seen
from the literature review in chapter two, this is not a novel area for environments
where wind turbine technology is already a household term. It is one of those tech-
nological applications aimed at improving the performance of the wind turbine over
time.

1.4 Objectives

To achieve the set goal/aim of this research work, we shall employ the methodology
outlined in the third chapter of the project. Consequently, we shall therefore ap-
proach the discussions on Lidar systems as it applies to wind turbine technology by
laying the physical foundations upon which the technology rests. We will tradition-
ally start as expected, the classical mechanics approach by seeing the turbine as a
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rigid body in motion. This will entail an analysis of the structural mechanics and
the cyclic loading of wind turbines.

Another physical approach to the analysis of the wind turbine is the fluid me-
chanical approach. In this regard, we shall go back to the model established by
Navier-stokes equation for compressible Newtonian flow and the aero-elastic simula-
tion. In the main, the approaching wind before a turbine is essentially a compressible
fluid hence the application of the relevant Navier-stokes equations. As is typical of
the foundational mechanics of any physical systems, the discussions of the wind en-
ergy will obviously be incomplete without a quantum mechanical approach. The
physics of the laser technology which is an essential part of the Lidar system is only
clarified by the basic principles of quantum mechanics. The dynamic equation we
shall employ here is the time dependent Schrodinger wave equation. The TDSE will
enable us to elucidate the principles, the major components of the pulsed lasers op-
erating at the nanoseconds regime for lidar systems. This will help to establish the
correlation models and algorithms for the field reconstruction in view of formulating
new insights into the laser scan patterns in the picoseconds and the femtoseconds
regime.

Thus, we will explore wind and wind turbine modeling through aero-elastic simu-
lations, and then wind field reconstructions with correlations between Lidar systems
and Wind turbines [4]. We will end with an insight into what is to be expected with
regards to the lidar scanning pattern and consequently the entire lidar-wind turbine
models and simulations when pulsed Lasers operating in the pico and/or femtosec-
ond regime are used in the laser system as against the traditional nanoseconds pulsed
lasers.

1.5 Significance

This thesis is expected to significantly contribute to the theoretical understanding of
the correlation between wind turbines and lidar systems by providing invaluable in-
sights into overcoming the barriers preventing the widespread use of Lidars for wind
turbine control strategies for overcoming those barriers, and ideas for maximizing
the effectiveness of Lidars for control applications. The significance of this research
follows the main purpose of the International Energy Agency (IEA) wind task work-
shop 32 that was held in Boston, MA, USA in July 2016 [8]. Thus, the significance
of this research follows the analysis of Eric Simley et al [1] who argued that: The
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workshop, ‘optimising Lidar designs for wind energy applications’ was held to iden-
tify Lidar system properties that are desirable for wind turbine control applications
and help foster the widespread application of Lidar-assisted control (LAC).

Through multidisciplinary approach which is the modern trend of LAC, re-
searches of this type will join the myriads of standard literatures in Journals to
further overcome the barriers to the use of Lidar for wind turbine control such as
optimization of lidar scan patterns by minimizing the error between the measurement
and rotor effective wind speed. In addition, frequency domain methods for directly
calculating measurement error using a stochastic wind field model. This process is
applied to the optimization of several continuous waves and pulsed Doppler Lidar
scan patterns. Also, the research intends to contribute to the design process for a
Lidar-assisted pitch controller for rotor speed regulation. Again, using measurements
from an optimized scan pattern shows that the rotor speed regulation obtained after
optimizing the LAC scenario through time domain simulations matches the perfor-
mance predicted by the theoretical frequency domain model [9].

1.6 Scope of Work

We will first focus on lidar system modeling with particular emphasis on the laser
device which is the primary component of the lidar systems. Then we will explore
wind and wind turbine modeling through aero-elastic simulations, and then wind
field reconstructions with correlations between Lidar systems and Wind turbines [4].

Many of the literature in the Lidar applications to wind turbine technology as we
shall see in chapter three focus on the results of the scan pattern of the pulsed lasers
in the nanoseconds regime. Consequently, in the spirit of experimental extrapolation,
we shall attempt theoretically and in the python codes to simulate lidar systems for
Pico and Femto seconds pulsed lasers. We will end with an insight into what is to
be expected with regards to the lidar scanning pattern and consequently the entire
lidar-wind turbine models and simulations when pulsed Lasers operating in the pico
and/or femtosecond regime are used in the laser system as against the traditional
nanoseconds pulsed lasers.
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1.7 Limitation of Work

This work will focus on three-bladed horizontal axis wind turbines operating in
average wind speed areas. We will not attempt to consider other types of wind
turbines neither will we attempt to consider wind turbines operating in low wind
speed areas.

The available time and space are the necessary conditions that compel this lim-
itation to the research work. To achieve results that are essentially measurable and
susceptible to scientific tests using modern data analysis means, it is necessary to
focus only on a particular aspect of the wind technology while leaving a huge corpus
to further research and development. This is the trend we hope to approach the
research work as it will be evident in the subsequent chapters of the work.
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CHAPTER 2

LITERATURE REVIEW

The essence of this chapter is to illustrate the growth in literature theories on the
optimization of wind turbine performance using pulsed lasers in LIDAR applica-
tions. In this regard therefore, this chapter has been broken down into conceptual
framework, theoretical and empirical literatures that are relevant to the topic un-
der study. The main concepts reviewed here are; wind turbines and wind modeling
(where we discuss the physics, technology and aero-elastic simulations of wind tur-
bines and modeling); LIDAR and LIDAR modeling; and the correlation between
wind systems and LIDAR systems.

2.1 Wind Turbines and Wind Modeling

Over the past few years, there have been an increase in the production of energy by
wind turbines, because its production is environmentally safe and friendly; there-
fore, the technology developed for the production of energy through wind turbines
is accompanied by great challenges in the investigation [10]. The wind does not only
serve as an energy source for wind turbines but also as the most important stochas-
tic disturbance to the wind turbine control system. Thus, information about the
wind inflow is valuable to optimize the energy production and reduce the structural
loads [11].

2.1.1 The Physics of Wind Energy

What is Wind?

Wind is the flow of gases on a very large scale. Winds are generally caused by uneven
heating of the atmosphere by the sun, the irregularities of the earth’s surface, and
the rotation of the earth. However, wind flow patterns are modified by the earth’s
terrain features, bodies of water, and surrounding vegetation. The sun does not
heat up the earth’s atmosphere evenly, as most of the solar energy is absorbed at
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the equator. When the air becomes heated it expands creating an area of higher
pressure. Diffusion causes this area of higher pressure to move to an area of lower
pressure. On a very large scale this would cause massive amounts of air to travel from
one area to another, creating vast amounts of kinetic energy that can be harnessed
by humans through the use of wind turbine.

The Physics of a Wind Turbine

A wind turbine is used to harness the kinetic energy of vast amounts of wind, and
transform it into electricity. This can be shown with a very simple calculation. First
we need to remember that wind is an air mass moving from an area of high pressure
to an area of low pressure. This movement of air is kinetic energy which for an air
mass m moving at a velocity v can be expressed as:

Ek =
1

2
mv2 (2.1)

Considering a certain cross-sectional area A, through which the air passes at velocity
v, the volume V̇ flowing through during a certain time unit, the so-called volume
flow, is:

V̇ = vA (2.2)

And the mass flow with air density ρ is:

ṁ = ρvA (2.3)

This mass flow can now be substituted into the formula for kinetic energy of the
moving air to give the amount of energy passing through cross-section A per unit
time. This energy is physically identical to the power P :

P =
1

2
ρv3A (2.4)

Therefore the amount of energy in the wind is controlled by the density, surface
area and velocity of the moving air. This equation shows that selecting an area of
high wind velocity is the most crucial part of picking out an area to place a wind
turbine.

In reality, the equation for kinetic energy of wind does not represent the amount
of energy that a wind turbine is able to harness. Wind turbines are not 100%

efficient, and are unable to convert all of the kinetic energy into wind. If a wind
turbine was 100% efficient then wind speeds would drop to 0 km/h after passing
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through the turbine. Albert Betz published a book in 1926 that showed it is only
possible to extract 16/27 or 59% of the energy from a wind turbine. This is called
Betz’s law [12]. Therefore the theoretical energy model for a wind turbine is:

P =
16

27
· 1

2
ρv3A (2.5)

To prove Betz’s law, we start by asking how much mechanical energy can be
extracted from the free-stream airflow by an energy converter. As mechanical energy
can only be extracted at the cost of the kinetic energy contained in the wind stream,
this means that, with an unchanged mass flow, the flow velocity behind the wind
energy converter decrease. Reduced velocity, however, means at the same time a
widening of the cross-section, as the same mass flow must pass through it. It is thus
necessary to consider the conditions in front of and behind the converter (see figure
2.1).

Figure 2.1: Flow conditions due to the extraction of mechanical energy from a free-stream

air flow, according to the elementary momentum theory.

From the lettering in the diagram, v1 is the un-delayed free-stream velocity,
before it reaches the converter, whereas v2 is the flow velocity behind the converter.
The mechanical energy which the dis-shaped converter extracts from the airflow
corresponds to the power difference of the air stream before and after the converter:

P =
1

2
ρv31A1 −

1

2
ρv32A2 =

1

2
ρ(v31A1 − v32A2) (2.6)

The conservation of mass (continuity equation) requires that:

ρv1A1 = ρv2A2 (2.7)

Thus,
P =

1

2
ρv1A1(v

2
1 − v22) (2.8)
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Or
P =

1

2
ṁ(v21 − v22) (2.9)

From this equation it follows that, in purely formal terms, power would have
to be at its maximum when v2 is zero, namely when air is brought to a complete
standstill by the converter. However, this result does not make sense physically. If
the outflow velocity v2 behind the converter is zero, then the inflow velocity before
the converter must also become zero (from the continuity equation), implying that
there would be no more flow through the converter at all. As could be expected, a
physically meaningful result consists in a certain numerical ratio of v2/v1 where the
extractable power reaches its maximum.

This requires another equation expressing the mechanical power of the converter.
Using the law of conservation of momentum, the force which the air exerts on the
converter can be expressed as:

F = ṁ(v1 − v2) (2.10)

According to Newton’s third law, this force, the thrust, must be counteracted
by an equal force exerted by the converter on the airflow. The thrust, so to speak,
pushes the air mass at air velocity v′, present in the plane of flow of the converter.
The power required for this is:

P = Fv′ = ṁ(v1 − v2)v′ (2.11)

Thus, the mechanical power extracted from the air flow can be derived from
the energy or power difference before and after the converter, on the one hand,
and, on the other hand, from the thrust and the flow velocity. Equating these two
expressions yields the relationship for the flow velocity v′:

1

2
ṁ(v21 − v22) = ṁ(v1 − v2)v′ (2.12)

Thus the flow velocity through the converter is equal to the arithmetic mean of v1
and v2:

v′ =
v1 + v2

2
(2.13)

The mass flow thus becomes:

ṁ = ρAv′ =
1

2
ρA(v1 + v2) (2.14)

And the mechanical power output of the converter can then be expressed as:

P =
1

4
ρA(v21 − v22)(v1 + v2) (2.15)
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Comparing this power output with P0 = 1/2ρv31A where P0 provides a reference
for P and is the power of the free-air stream which flows through the same cross-
sectional area A, without mechanical power being extracted from it.

Now we define the “power coefficient” cp as the ratio of the mechanical power
extracted by the converter and that of the undisturbed air stream:

cp =
P

P0

=
1
4
ρA(v21 − v22)(v1 + v2)

1
2
ρv31A

(2.16)

After some re-arrangement, the power coefficient can be specified directly as a func-
tion of the velocity ratio v2/v1:

cp =
P

P0

=
1

2

∣∣∣∣∣1−
(
v2
v1

)2
∣∣∣∣∣
∣∣∣∣1 +

v2
v1

∣∣∣∣ (2.17)

The power coefficient now only depends on the ratio of air velocities before
and after the converter. If this interrelationship is plotted graphically as shown in
figure 2.2, or solved analytically, it can be seen that the power coefficient reaches a
maximum at a velocity ratio of about 1/3.

With v2/v1 = 1/3, the maximum “ideal power coefficient” cp becomes

cp =
16

27
= 0.59 (2.18)

This theoretical maximum for an ideal wind turbine is known as the Betz limit.

Figure 2.2: The power coefficient as a function of the velocity ratio for an ideal wind

turbine.

Knowing that the maximum, ideal power coefficient is reached at v2/v1 = 1/3,
the required velocity v2 behind the converter can be calculated as:

v2 =
1

2
v1 (2.19)
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and the flow velocity v′ is:
v′ =

2

3
v1 (2.20)

The essential findings derived from Betz’s law can be summarized in words as
follows:

• The mechanical power which can be extracted from a free-stream airflow by
an energy converter increases with the third power of the wind velocity.

• The power increases linearly with the cross-sectional area of the converter
traversed; it thus increases with the square of its diameter.

• Even with an ideal airflow and lossless conversion, the ratio of extractable
mechanical work to the power contained in the wind is limited to a value of
0.593. Hence, only about 59% of the wind energy of a certain cross-section
can be converted into mechanical power.

• When the ideal power coefficient achieves its maximum value cp = 0.593, the
wind velocity in the plane of flow of the converter amounts to two thirds of the
undisturbed wind velocity and is reduced to one third behind the converter.

2.1.2 What is a Wind Turbine?

The concept of harnessing wind energy to generate mechanical power goes back
for millennia. As early as 5000 B.C., Egyptians used wind energy to propel boats
along the Nile River. American colonists relied on windmills to grind grain, pump
water and cut wood at sawmills. Today’s wind turbines are the windmill’s modern
equivalent – converting the kinetic energy in wind into clean, renewable electricity.

How Does A Wind Turbine Work?

The operation is based on the scientific theory of fluid mechanics and some elements
of aerodynamics. Modern wind turbines catch the wind by turning into or away
from air flows. Wind moves the propeller mounted on a rotor and the movement
turns a high-speed shaft coupled to an electric or induction generator.

The majority of wind turbines consist of three blades mounted to a tower made
from tubular steel. There are less common varieties with two blades, or with concrete
or steel lattice towers. At 100 feet or more above the ground, the tower allows the
turbine to take advantage of faster speeds found at higher altitudes.
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Turbines catch the wind’s energy with their propeller-like blades, which act much
like an airplane wing. When the wind blows, a pocket of low-pressure air forms on
one side of the blade. The low-pressure air pocket the pulls the blade toward it,
causing the rotor to turn. This is called lift. The force of the lift is much stronger
than the wind’s force against the front side of the blade, which is called drag. The
combination of lift and drag causes the rotor to spin like propeller.

A series of gears increase the rotation of the rotor from about 18 revolutions per
minute to about 1800 revolutions per minute – a speed that allows the turbine’s
generator to produce AC electricity. The major components of a wind turbine
include a low-speed rotor consisting of two or three light-weight blades with optimum
airfoil shapes operating at 30 to 60 rpm, a high-speed shaft mechanically coupled
to low-speed via a gear box assembly and operating between 100 and 200 rpm, a
pitch motor drive assembly, a yaw motor drive assembly, a nacelle, a wind vane
indicator, an AC induction generator operating at a high speed, a speed controller
unit, a tower structure, an anemometer, and other accessories necessary to provide
mechanical integrity under heavy wind gusts. A step-up transformer at the base of
the tower allows transfer of the wind-generated electricity to the utility power grid.
All elements except the step-up transformer are located at the top of the tower as
shown in the figure 2.3. The enclosure depicted in the figure rotates to enable the
rotor blades to face into or away from the wind. This is essentially the working
principle of a wind turbine. The wind moves the propeller that turns the low-speed
and high-speed shafts. The high-speed shaft is connected to a generator capable of
producing electrical energy.

The anemometer is a critical element of a wind turbine. It gauges wind speed and
direction and sends the information to the controller that in turn provides necessary
data to critical elements of the system. The controller essentially directs the yaw
motor to turn the rotor to face toward or away from the wind, depending on the
wind direction. The gear box, the heaviest element of the system, converts the slow
rotation (revolutions per minute or rpm) of the low-speed rotor shaft to higher rpm of
the high-speed shaft which is mechanically coupled to a generator that produces the
electricity. In brief, the high-speed shaft drives a generator that converts mechanical
energy into electrical energy.
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Figure 2.3: Wind turbine components.
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Types of Wind Turbine

Wind turbines are classified into two major categories: horizontal axis wind turbines
(HAWTs) and vertical axis wind turbines (VAWTs). Vertical axis turbines have a
vertical shaft that is driven by blades that move horizontally like a roundabout.
Horizontal axis describes the more conventional windmill which has to face itself
into the wind and whose blades revolve in a vertical plane. The vertical axis wind
turbine is popular even though it is thousands of years old and has long ago been
superseded by technically by the horizontal axis blade rotor.

The HAWT category are widely used for commercial applications. A horizontal
axis wind turbine may be of rotor-upwind design to face the wind or rotor-downward
design to enable the wind pass the tower and nacelle before it hits the rotor. The
tower height for HAWTs is extremely important because wind speed increases with
the height above the ground. Rotor diameter is equally important because it deter-
mines the area needed to meet specific power output level.

The power output performance of a HAWT can be optimized by selecting a
ratio between the rotor diameter (D) and the hub height (H) very close to unity.
The rated power output of a wind turbine is the maximum power allowed for the
installed electrical generator. The control system must ensure that this power is
not exceeded in high-wind environments to avoid structural damage to the system.
HAWT systems typically deploy two or three rotor blades. A turbine with two
rotor blades is cheaper, but it rotates faster, thereby producing a visual flickering
effect; also the aerodynamic efficiency of a two-blade rotor is lower than that of a
three-blade rotor.

Attractive feature of the VAWT include the ability to take wind from any direc-
tion, and the ability to drive a generator at ground level. It has the advantage that
the generator and the gear box be installed at the base of the tower, thereby mak-
ing these components easy to service and repair. But in spite of a huge amount of
research, vertical axis wind turbines have failed to become widely successful. They
can be hard to start, hard to stop, and they have inherently lower efficiency than
horizontal axis turbines. (They convert less of the energy that is in the wind). Both
the Savonius and Darrieus turbines fall into this category and are available commer-
cially. However, these turbines have small output capacities and hence are used for
low-power applications such as battery charging in areas where power grids are not
available.
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2.1.3 Wind Modeling

Wind can be mathematically described by a set of three-dimensional wind speed
vectors at each point in time and space. For aero-elastic simulations, the wind speed
vectors are usually only generated at the rotor plane to calculate the aerodynamic
forces and moments. In this thesis, a wind field over the full space in front of the
turbine is necessary to simulate lidar systems, see figure 2.4.

In this section, we introduce the coordinate systems used in this thesis and
describe the wind models for the lidar simulations and a reduced model for wind
filed reconstruction.

Figure 2.4: Snapshot of the time variant vector field as a general description of wind.

Wind and Inertial Coordinate System

The wind coordinate system is denoted in this work by the subscript W . It is used
to describe the wind flow and is aligned with the mean wind direction regarding the
inertial coordinate system, which is denoted here by the subscript I. The direction
is defined by the horizontal inflow angle αh (azimuth or rotation around the zI-axis)
and the vertical inflow angle αv (elevation or rotation around the rotated yI-axis),
see figure 2.5. Although all six DOFs could be used in principle, a rotation of around
the xI is not considered in this work but might be useful for very complex terrain.
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Figure 2.5: Orientation of the wind coordinate system (subscript W) in the inertial

coordinate system (subscript I). Rotation order is defined as azimuth → elevation (αh →
αv).

The origin of the W-system can be set according to the application. For lidar-
assisted control, the origin of the I and the W-system are usually located at the
hub of the wind turbine. For ground based lidar systems, a translation to the
measurement height can be useful.

If the origins of the I and the W-system coincide, the transformation of the
three wind speed components [ui,W vi,W wi,W ]T in a point i from the wind to the
inertial coordinate system is then calculated with the rotation matrix TIW by

ui,I

vi,I

wi,I

 =


cos(αh) − sin(αh) 0

sin(αh) cos(αh) 0

0 0 1


︸ ︷︷ ︸

Tazimuth


cos(αv) 0 sin(αh)

0 1 0

− sin(αv) 0 cos(αv)


︸ ︷︷ ︸

Televation︸ ︷︷ ︸
TIW


ui,W

vi,W

wi,W

 (2.21)

The transformation from the inertial to the wind coordinate system is done by
ui,W

vi,W

wi,W

 = TWI


ui,I

vi,I

wi,I

 with TWI = T−1IW = T−1elevationT
−1
azimuth (2.22)

In most of this work, the wind turbine is assumed to be perfectly aligned with
the mean wind direction. This implies that both inflow angles are zero and the wind
coordinate system coincides with the inertial coordinate system.
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2.2 LIDAR and Lidar Modeling

Lidar (LIght Detection And Ranging) is a remote sensing technology similar to radar
(Radio Detection And Ranging) or sonar (SOund Navigation And Ranging). In the
case of lidar, a light pulse is emitted into the atmosphere. Light from the beam
is scattered in all directions from molecules and particulates in the atmosphere.
A portion of the light is scattered back towards the lidar system. This light is
collected by a telescope and focused upon a photodetector that measures the amount
of backscattered light as a function of distance. The lidar system uses light in the
form of a pulsed laser for powerful data collection that provides 3-D information
for an area of interest. Among many things, it is useful for such tasks as surface
mapping, vegetation mapping, transportation corridor mapping, transmission route
mapping, and 3-D building mapping.

Over the last decades, lidar has largely contributed to our knowledge of our
atmosphere. The interactions of the emitted light with the molecules and aerosols
allow the observation of atmospheric parameters such as temperature, pressure,
wind, humidity, and concentration of gases (ozone, methane, nitrous oxide, etc.) [14].

Lidar originated in the early 1960’s, shortly after the invention of the laser. Its
first applications came in meteorology where it was used to measure clouds [15].
Since then, lidar has been used not only in meteorology, but also in a wide range of
other applications, such as laser range finders, altimeters, and satellite trackers [16].

The essential concept of lidar was originated by E. H Synge in 1930, who envis-
aged the use of powerful searchlights to probe the atmosphere [17, 18]. Indeed, lidar
has since been used extensively for atmospheric research and meteorology. Lidar in-
struments fitted to aircraft and satellites carry out surveying and mapping – a recent
example being the U.S. Geological Survey Experimental Advance Airbone Research
Lidar [19]. NASA has identified lidar as a key technology for enabling autonomous
precision safe landing of future robotic and crewed lunar-landing vehicles [20].

2.2.1 Lidar Operating Principle

The operating principle here is based on the assumption that wind speed has the
same value as the small particles in the air, called aerosols. Pollen, droplets, smoke,
and particles of dust form these particles. Lidar technology relies on detecting
backscattered light from moving aerosols in the atmosphere, when illuminated by
laser radiation with coherent detection (best for measuring Doppler shifts, or changes
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in phase of the reflected light). Coherent systems generally use optical heterodyne
detection [21]. This is more sensitive than direct detection and allows them to oper-
ate at much lower power, but requires more complex transceivers. By measuring the
Doppler frequency shift of the backscattered light, the wind speed can be determined
remotely. The basic concept can be illustrated as in figure 2.6.

Figure 2.6: Generic Doppler lidar concept where V is the mean velocity of the target,

and Vlos is projected radial wind speed.

The radial speed component of the target, Vlos (velocity measured along the line-
of-sight) can be determined from the Doppler shift of the backscattered light using
the expression

Vlos =
cfD
2fL

=
λLfD

2
(2.23)

Where fD is the Doppler shift c is the speed of light and λL the laser wavelength,
which is typically in the order of 1.55 µm. Thus single lidar systems are only able
to provide one-dimensional wind speed measurements.

2.2.2 Lidar Components

Lidar systems consist of several major components. See the figure 2.7 for a schematic
representation of the major components of a lidar system. A lidar system consists
of the following basic functional blocks: (1) a laser source of short, intense light
pulses, (2) a photoreceiver, which collects the backscattered light and converts it into
electrical signal, and (3) a computer/recording system, which digitizes the electrical
signal as a function of time (or, equivalently, as a function of the range from the
light source) as well as controlling the other basic functions of the system.
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Figure 2.7: A conceptual drawing of the major parts of a lidar system.

2.2.3 Lidar Modeling

In this section we present the lidar coordinate system and the lidar models for
idealized point measurements and more realistic volume measurements.

Lidar Coordinate System

The lidar measurements are modeled in the lidar coordinate system, which in this
work is denoted by the subscript L. This is necessary, because the lidar system
can be installed at different locations other than the origin of the inertial frame or
the system can change its position and inclination, for example on the nacelle of an
operating wind turbine or on a heavy bouy for offshore applications. All six DOFs
are considered as illustrated in the figure below. The position of the lidar system
within the inertial coordinate system is defined by

[
xL,I yL,I zL,I

]T
. The rotation

follows the convention used in aviation. The translated system is rotated around
the z-axis by the yaw angle ΨL, around the rotated y-axis by the pitch angle ΘL,
and finally around the rotated x-axis by the roll angle ΦL.
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Figure 2.8: Orientation of the lidar coordinate system (subscript L) in the inertial coor-

dinate (subscript I): Origin of the L-system within the I-system is [uL,I vL,I wL,I ]
T

and the rotation order from L to I is defined as yaw → pitch → roll (ΨL → ΘL → ΦL).

The transformation from the lidar to the inertial coordinate system is then cal-
culated with the rotation matrix TIL by

xi,I

yi,I

zi,I

 = TIL


xi,L

yi,L

zi,L

+


xL,I

yL,I

zL,I

 (2.24)

with

TIL =


cos(ΨL) − sin(ΨL) 0

sin(ΨL) cos(ΨL) 0

0 0 1


︸ ︷︷ ︸

Tyaw


cos(ΘL) 0 sin(ΘL)

0 1 0

− sin(ΘL) 0 cos(ΘL)


︸ ︷︷ ︸

Tpitch


1 0 0

0 cos(ΦL) − sin(ΦL)

0 sin(ΦL) cos(ΦL)


︸ ︷︷ ︸

Troll

(2.25)
and the transformation back to the lidar coordinate system by

xi,L

yi,L

zi,L

 = TLI


xi,I − xL,I
yi,I − yL,I
zi,I − zL,I

 with TLI = T−1IL (2.26)

Lidar Model for Point Measurement

A lidar system is only able to measure the component of the wind vector in the laser
beam direction. Per convention this value is positive, if the wind is directed towards
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the laser source. Therefore, the line-of-sight wind speed Vlos,i measured at point

i with coordinates
[
xi,I yi,I zi,I

]T
can be modeled by a projection of the wind

vector
[
ui,I vi,I wi,I

]T
at point i and the normalized vector of the backscattered

laser beam, which mathematically is equivalent to the scalar product of both vectors:

Vlos,i = xn,i,Iui,I + yn,i,Ivi,I + zn,i,Iwi,I (2.27)

where the normalized laser vector measuring at a distance rLi from the lidar system
is 

xn,i,I

yn,i,I

zn,i,I

 =
1

rLi


xL,I − xi,I
yL,I − yi,I
zL,I − zi,I

 with rLi =
√
x2i,L + y2i,L + z2i,L (2.28)

This model is independent of the used coordinate system. However, it is more
convenient to use the I-system. If the lidar system is not fixed in the inertial frame[
ẋL,I ẏL,I żL,I

]T
, Eq. (2.27) can be adjusted as follows:

Vlos,i = xn,i,I(ui,I − ẋL,I) + yn,i,I(vi,I − ẏL,I) + zn,i,I(wi,I − żL,I) (2.29)

Lidar Model for Volume Measurement

In the equation for Vlos,i, the measurement is assumed for one single point. However,
real lidar systems measure within a probe volume due to the length of the emitted
pulse of pulsed lidar systems [22] or due to the focusing of the laser beam of contin-
uous wave lidar systems [23]. Additionally, the FFT involved in the direction of the
frequency shift requires a certain fraction of the backscattered signal, contributing
to the averaging effect. Thus, lidar measurements are modeled more realistically
considering the overall averaging effect by:

Vlos,i =

∫ ∞
−∞

(xn,i,Iua,i,I + yn,i,Iva,i,I + zn,i,Iwa,i,I)fRW (a)da (2.30)

The range weighting function fRW (a) at the distance a to the measurement point
depends on the used lidar technology (pulsed or continuous wave). The wind vector[
ua,i,I va,i,I wa,i,I

]T
is an evaluation of the wind field at

xa,i,I

ya,i,I

za,i,I

 =


xi,I

yi,I

zi,I

+ a


xn,i,I

yn,i,I

zn,i,I

 (2.31)
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Again, Eq. (2.30) can be adjusted for moving lidar systems similar to Eq. (2.29):

Vlos,i =

∞∫
−∞

(xn,i,I(ua,i,I − ẋL,I) + yn,i,I(va,i,I − ẏL,I) + zn,i,I(wa,i,I − żL,I))fRW (a)da

(2.32)
For the pulsed lidar system considered in this research, a normalized Gaussian

shape weighting function is used (see figure below) following [22]. The function is
parameterized by a standard deviation σL depending on the Full Width at Half
Maximum (FWHM) of WL = 30m:

fRW (a) =
1

σL
√

2π
exp

(
− a2

2σ2
L

)
with σL =

WL

2
√

2 ln 2
(2.33)

Following the considerations of [23], a normalized Lorentzian shape weighting func-
tion is used to model the volume measurement of continuous-wave lidar systems.
This is given by

fRW (a) =
ΓL/π

a2 + Γ2
L

with ΓL =
λLr

2
Li

πA2
L

(2.34)

Here ΓL is the halfwidth of the weighting function at the −3dB point depending on
the beam radius at the output lens AL = 28mm, the laser wavelength λL, and the
focus range rLi. Figure shows the function for rLi = 100m.

Figure 2.9: Normalized range weighting functions for a pulsed lidar system (black) and

a continuous-wave lidar system (gray) at a focus range of 100m.

2.3 Correlation between Wind Systems and LiDAR

Systems

The applications of lidar to wind measurement were first explored in the 1980’s.
This earlier applications consist of lidar systems that were too large, complex and
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expensive to be widely used. Lidar technology has become more and more popular
for site assessment purpose since 2003, coinciding with the development of a new
generation of lidar devices based on components that have been originated from the
telecommunication industry.

In an attempt to make wind lidars more applicable for mass-production and broad
industrial use, collaboration between Windar Photonics A/S and DTU Fotonik in
2008 led to the first demonstration of a low-cost, compact wind lidar based on an all
semiconductor laser source [24]. The first successful field deployment of such system
was demonstrated by the same group in 2012 [25].

Lidar systems in wind energy applications are mainly used to measure wind
speeds. This can be done by simulated lidar measurements in which the lidar system
scans the wind field taking into account the movement of the lidar system on the
nacelle and the blockage effect of the rotating blades based on the system states of
the simulated turbine. The simulator calculates the line-of-sight wind speed and a
signal quality flag similar to a real lidar system. The lidar simulator then transfers
the raw lidar data to the lidar-assisted controller, where the data is finally processed
together with the wind turbine outputs to control the wind turbine.

Therefore, for lidar assisted control, it is crucial to know the correlation between
the wind speed preview provided by a nacelle- or spinner-based lidar system and
the wind speed affecting the turbine. If on the one side the assumed correlation is
overestimated, the uncorrelated frequencies of the preview will cause unnecessary
control action, inducing undesired loads. On the other side the benefits of the lidar-
assisted controller will not be fully exhausted, if correlated frequencies are filtered
out.

However, there are several interacting effects which determine how well the wind
speed is predicted. One of these is the Kaimal wind spectra [50] used to model the
correlation between lidar systems and wind turbines. The correlation is expressed
by the magnitude squared coherence γ2RL between the rotor effective wind speed
measured by the lidar and that sensed by the turbine’s rotor, defined as

γ2RL =
|SRL|2

SRRSLL
(2.35)

where SRL, SRR, and SLL are the cross-spectrum between both signals and the
auto-spectrum of the signal from the turbine and the lidar, respectively.
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CHAPTER 3

MODELS AND METHODOLOGY

3.1 Classical Model

3.1.1 Structural Mechanics

The main purpose of a structural model of a wind turbine is to be able to determine
the temporal variation of the material loads in the various components in order to
estimate the fatigue damage. Further, a dynamic system is used when analyzing
the stability of the wind turbine design, including perhaps the control system. To
calculate the deflections and velocities of the various components in the wind turbine
in the time domain, a structural model including the inertia terms is needed. Then
the dynamic structural response of the entire construction can be calculated subject
to the time dependent load found using an aerodynamic model. For offshore wind
turbines, wave loads and perhaps ice loads on the bottom of the tower must also
be estimated [26]. We proceed by presenting a detail approach of setting up the
structural model based on the principle of virtual work. The velocity of the vibrating
wind turbine construction must be subtracted when calculating the relative velocity
seen locally by the blade. The loads therefore depend on the deflections and velocities
of the structure, which again depend on the loads. The structural and aerodynamic
models are therefore highly coupled and must be solved together in what is known
as aeroelastic problem.

3.1.2 Modal shape functions and Principle of Virtual Work

The principle of virtual work is a method to set up the correct mass matrix, M,
stiffness matrix K, and damping matrix C, for a discretized mechanical system as:

Mẍ + Cẋ + Kx = Fg (3.1)

where Fg denotes the generalized force vector associated with the external loads,
p. Eq. (3.1) is of course nothing but Newton’s second law, assuming linear stiffness
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and damping, and the method of virtual work is nothing but a method that helps in
setting up the correct mass, stiffness and damping matrices for a multi-body system,
which is especially well suited for a chain system. Knowing the loads and appropriate
conditions for the velocities and the deformations, Eq. (3.1) can be solved for the
accelerations, from which the velocities and deformations can be estimated for the
next time step. The number of elements in x is called the number of degrees of
freedom, DOF, and the higher this number the more computational time is needed
in each time step to solve the matrix system. Use of modal shape functions is a tool
to reduce the number of degrees of freedom and thus reduce the size of the matrices
to make computations faster per time step. A deflection shape in this method is
described as a linear combination of a few but physically realistic basis functions,
which are often the deflection shapes corresponding to the eigenmodes with the
lowest eigenfrequencies. For a wind turbine such an approach is suited to describe
the deflection of the rotor blades and the assumption is that the combination of the
power spectral density of the loads and the damping of the system do not excite
eigenmodes associated with higher frequencies.

The values in the vector x describing the deformation of the construction, xi, are
known as the general coordinates. To each generalized coordinate is associated a
deflection shape, ui, that describes the deformation of the construction when only xi
is different from zero and typically has a unit value. The element i in the generalized
force corresponding to a small displacement in DOF number i, dxi, is calculated such
that the work done by the generalized force equals the work done on the construction
by the distributed external loads on the associated deflection shape:

Fg,i dxi =

∫
p · ui dS (3.2)

where S denotes the entire system. The generalized force can be a moment and
the displacement can be angular. All loads must be included, in other words also
gravity and inertial loads such as Coriolis, centrifugal and gyroscopic loads. The
non-linear centrifugal stiffening can be modelled as equivalent loads calculated from
the local centrifugal force and the actual deflection shape. The elements in the mass
matrix, mi,j, can be evaluated as the generalized force from the inertia loads from
a unit acceleration of DOF j for a unit displacement of DOF i. The elements in
the stiffness matrix, ki,j, correspond to the generalized force from an external force
field which keeps the system in equilibrium for a unit displacement in DOF j and
which then is displaced xi = 1. The elements in the damping matrix can be found
similarly. For a chain system the method of virtual work as described here normally
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gives a full mass matrix and diagonal matrices for the stiffness and damping.
If the structural system comprises a system of continuous mass distributions,

such as a system of beams, Eq. (3.1) is the result of discretizing the system, since
in reality such a system has an infinite number of DOFs. The elements in the
mass, stiffness and damping matrices depend on the system and, in the case of a
continuous system, also of the discretization. If the right hand side of Eq. (3.1) is
zero the system is said to perform its natural motion.

Provided that the deflections, x, and velocities ẋ, are known, Eq. (3.1) can be
alternatively written as:

Mẍ = Fg −Cẋ−Kx = f(ẋ,x, t) (3.3)

where the function f in general is non-linear. Non-linearity can come, for example,
from non-linear loads p or from aerodynamic damping. A non-linear system can
be treated as a linearized eigenvalue approach or as a full non-linear time domain
approach.

Knowing the right hand side of Eq. (3.3) at time tn = n∆t, the acceleration at
time tn is found solving the linear system of equations:

ẍ = M−1f(ẋn,xn, tn) (3.4)

Knowing the accelerations, ẍn, the velocities, ẋn, and positions, xn, at time tn,
an iterative scheme can be used to estimate the velocities, ẋn+1, and positions, xn+1,
at tn+1. New loads, pn+1(ẋn+1,xn+1, tn+1), can be calculated using, for example, an
unsteady BEM method and thus Eq. (3.4) can be updated and a new time step
can be performed. This can be continued until a sufficient time period has been
simulated.

3.1.3 Cyclic Loading

The three most important source of the loading of a wind turbine are [26]:

• Gravitational loading;

• Inertial loading; and

• Aerodynamic loading
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Figure 3.1: The loading caused by the Earth’s gravitational field

Gravitational Loading:

The Earth’s gravitational field causes a sinusoidal gravitational loading on each
blade, as indicated in figure 3.1

When the blade is in position 1 (down-rotating) the blade root at the trailing
edge side is exposed to tensile stress and the leading edge side of the blade root
is exposed to compressive stress. In position 2 (up-rotating) the trailing edge side
of the blade root is exposed to compressive stress and the leading edge side of the
blade root is exposed to tensile stress. Thus gravity is responsible for a sinusoidal
loading of the blades with a frequency corresponding to the rotation of the rotor
often denoted by 1P1. This loading is easily recognized in the time series of the
edgewise bending moment. Note that a wind turbine is designed to operate for
20 years, which means that a machine operating at 25 rpm will be exposed to
20× 365× 24× 60× 25 = 2.6× 108 stress cycles from gravity. Since a wind turbine
blade might weigh several tons and be more than 30 m long, the stresses from the
gravity loading are very important in the fatigue analysis.

Inertial Loading

Inertial loading occurs when, for example, the turbine is accelerated or decelerated.
An example is the braking of the rotor, where a braking torque T is applied at the
rotor shaft. A small section of the blade will feel a force dF in the direction of the
rotation as indicated in figure 3.2a.

The size of dF is found from:

dF = ω̇rmdr (3.5)
1A frequency of 1P (one-per-revolution) is equivalent to 0.202Hz
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(a) Loading caused by rotor braking (b) Effect of coning the rotor

Figure 3.2: Inertial loading

where m is the mass per length of the blade, r the blade radius from the rotational
axis to the section and dr the size of the small section; ω̇ = dω/dt can be found
from:

I
dω

dt
= T (3.6)

where I is the moment of inertia of the rotor.
Another inertial loading stems from the centrifugal force on the blades. In order

to reduce the flapwise bending moment, the rotor can be coned backwards with a
cone angle of θcone as shown in figure 3.2b.

The centrifugal force acting on the incremental part of the blade at a radius r
from the rotational axis as shown above is Fc = ω2rmdr, where M is the mass of
the incremental part and ω the angular velocity of the rotor. Due to the coning the
centrifugal force has a component in the spanwise direction of the blade, Fc cos θcone,
and a component normal to the blade, Fc sin θcone, as shown in the figure. The
normal component gives a flapwise bending moment in the opposite direction to the
bending moment caused by the thrust and thus reduces the total flapwise bending
moment.

Aerodynamic Loading

The aerodynamic loading is caused by the flow past the structure, in other words
the blade and the tower. The wind field seen by the rotor varies in space and time
due to atmospheric turbulence as sketched in figure 3.3.
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Figure 3.3: Sketch of turbulent inflow seen by wind turbine rotor

Mean wind speed is also a function of height. The ground, even in the absence
of obstacles, produces friction forces that delay the winds in the lower layers. This
phenomenon, called wind shear, is more appreciable as height decreases and has
important effects on wind turbine operation. Different mathematical models have
been proposed to describe wind shear. One of them is the Prandtl logarithmic
law [27].

Vm(z)

Vm(zref)
=

ln(z/z0)

ln(zref/z0)
(3.7)

where z is the height above the ground level, zref is the reference height (usually
10m) and z0 is the roughness length. Typical values of this parameter for different
types of terrain are listed in the table 3.1. Another empirical formula often used
to describe the effect of the terrain on the wind speed gradient is the following
exponential law [28]:

Vm(z) = Vm(zref)

(
z

zref

)α
(3.8)

Where the surface roughness exponent α is also a terrain-dependent parameter.
Values of α for different types of surface are presented in the last column of the
table 3.1.
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Type of surface z0(mm) α

sand 0.2 to 0.3 0.10

mown grass 1 to 10 0.13

high grass 40 to 100 0.19

suburb 1000 to 2000 0.32

Table 3.1: Typical values of roughness length z0 and roughness exponent α for different

types of surface [28, 29].

3.2 Fluid Mechanical Models

In a fluid with no individual solid particles it is common to consider a fixed volume
in space, denoted as a control volume (CV). Newton’s second law is:

F =
dP
dt

(3.9)

where F = (Fx, Fy, Fz) is the total force, P is the momentum and t is the time. The
time derivative of the momentum is found from integrating over the control volume
as:

dP
dt

=
∂

∂t

∫∫∫
CV

ρq dV +

∫∫
CS

qρq · dA (3.10)

where ρ is the density, q is the velocity, dV is an infinitesimal part of the total
control volume, CS denotes the surface of the control volume and dA is a normal
vector to an infinitesimal part of the control surface. The length of dA is the area of
this infinitesimal part. Newton’s second law for the control volume then becomes:

F =
∂

∂t

∫∫∫
CV

ρq dV +

∫∫
CS

qρq · dA (3.11)

where F is the total external force including the pressure and viscous forces acting
on the control surfaces. Further, body forces, for example gravity, and forces from
the flow past an object inside the control volume contribute to the total force.
Eq. 3.11 is normally used to determine an unknown force, provided that the velocity
is known at the control surfaces. When Stoke’s hypothesis for an incompressible
fluid, Eqs. (3.12) – (3.17), is used for the stresses on an infinitesimal control volume
with side lengths (dx, dy, dz), the three partial differential momentum Eqs. (3.19)
– (3.21) are derived. The first subscript on τ indicates the face where the stress is
located; the second subscript is the direction of the stress:

τxx = −p+ 2µ
∂u

∂x
(3.12)
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τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
(3.13)

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
(3.14)

τyy = −p+ 2µ
∂v

∂y
(3.15)

τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
(3.16)

τzz = −p+ 2µ
∂w

∂z
(3.17)

p(x, y, z, t) denotes the pressure, q(x, y, z, t) = (u, v, w) are the velocity components
x = (x, y, z) are the coordinates in a Cartesian frame of reference and µ is the
viscosity.

The three momentum Eqs. (3.19) – (3.21) plus the continuity equation Eq. (3.18)
comprise the Navier-Stokes equations for an incompressible fluid with constant vis-
cosity µ:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.18)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ fx (3.19)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ fy (3.20)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ fz (3.21)

Eq. (3.18) ensures that the net mass flow is zero in and out of an infinitesimal
box with side lengths dx, dy, dz. Eqs. (3.19) – (3.21) are Newton’s second law, in
the x, y and z direction respectively, for an infinitesimal box in the fluid, which is
fixed in space. The left hand side terms are the inertial forces and the right hand
side terms are the pressure forces, the viscous forces and the external body forces
f(x, y, z, t) = (fx, fy, fz) acting on the box respectively. Eq. (3.18) and Eqs. (3.19)
– (3.21) can also be written in vector notation as:

∇ · q = 0 (3.22)
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ρ

(
∂q
∂t

+ (q · ∇)q
)

= −∇p+ µ∇2q + f (3.23)

If no external forces are present and if the flow is stationary and the viscous
forces are zero, Eq. (3.23) reduces to:

− ∇p
ρ

= (q · ∇) q =
1

2
∇ (q · q)− q× (∇× q) (3.24)

The last equality in Eq. (3.24) above comes from a vector identity. If the flow
is irrotational, i.e. ∇ × q = 0, the Bernoulli equation (3.25) follows directly from
Eq. (3.24) and is valid between any two points in the flow domain:

p+
1

2
ρ
(
u2 + v2 + w2

)
= constant (3.25)

If the flow is not irrotational, it can be shown from Eq. (3.24) that the Bernoulli
Eq. (3.25) is still valid, but only along a streamline. To use the Bernoulli equation
it is necessary that the flow is stationary, that no external forces are present and
that the flow is incompressible and frictionless. The Bernoulli equation is generally
valid along a streamline, but if the flow is irrotational, the equation is valid between
any two points.

The Navier-Stokes equations are difficult to solve and often the integral formu-
lation Eq. (3.11) is used in engineering problems. If the flow is stationary and the
torque on the sides of an annular control volume is zero, the integral moment of
momentum becomes:

M =

∫∫
r× qρq · dA (3.26)

where M is an unknown torque acting on the fluid in the control volume and r is
the radius from the cylindrical axis. If the flow is uniform at the inlet and exit of
the control volume and the only non-zero component of M is in the flow direction
z, Euler’s turbine equation Eq. (3.27) can be derived from Eq. (3.26) [30]:

P = Mzω = ωṁ (r1V0,1 − r2V0,2) (3.27)

P is the power removed from the flow on a mechanical shaft, ω is the rotational speed
of the shaft, V0 is the tangential velocity component, ṁ is the mass flow through
the control volume, and subscripts 1 and 2 denote the inlet and exit of the control
volume respectively.

Another important equation is the integral conservation of energy or the first
law of thermodynamics for a control volume, which for steady flow is:

P +Q =

∫∫ (
ui +

p

ρ
+

1

2
(u2 + v2 + w2)

)
ρq · dA (3.28)

34



where P and Q are the mechanical power and the rate of heat transfer added to the
control volume and ui is the internal energy.

3.2.1 Rotational Effects

This sections deals with the effects of blade rotation on the aerodynamics.

Figure 3.4: The blade in the rotating frame of reference.

When it is assumed that the flow about a wind turbine blades is incompressible
and that the viscous stress is linearly proportional to the velocity gradients, which
are both generally accepted assumptions, the fundamental continuity equation and
the Navier-Stokes equation for the velocity q are already given above. To apply these
equations to the situation of a rotating wind turbine blade and owing to the geometry
of the lidar beams, we choose to work in cylindrical polar coordinates defined by
radial r, azimuthal θ and vertical z-directions. For the continuity equation this
yields:

∂qr
∂r

+
qr
r

+
1

r

∂qθ
∂θ

+
∂qz
∂z

= 0 (3.29)

and the atmospheric boundary-layer flow is governed by the incompressible Navier-
Stokes equations [31], given by (Figure 3.4):

∂qr
∂t

+qr
∂qr
∂r

+
qθ
r

∂qr
∂θ
− q

2
θ

r
+qz

∂qr
∂z

= fr−
1

ρ

∂p

∂r
+
µ

ρ

(
∂2qr
∂r2

+
1

r

∂qr
∂r

+
1

r2
∂2qr
∂θ2

+
∂2qr
∂z2

)
(3.30)

∂qθ
∂t

+qr
∂qθ
∂r

+
qθ
r

∂qθ
∂θ
−qrqθ

r
+qz

∂qθ
∂z

= fθ−
1

ρr

∂p

∂θ
+
µ

ρ

(
∂2qθ
∂r2

+
1

r

∂qθ
∂r

+
1

r2
∂2qθ
∂θ2

+
∂2qθ
∂z2

)
(3.31)

35



∂qz
∂t

+ qr
∂qz
∂r

+
qθ
r

∂qz
∂θ

+ qz
∂qz
∂z

= fz −
1

ρ

∂p

∂z
+
µ

ρ

(
∂2qz
∂r2

+
1

r

∂qz
∂r

+
1

r2
∂2qz
∂θ2

+
∂2qz
∂z2

)
(3.32)

3.2.2 Forces in the Rotating Frame of Reference

For an incompressible fluid with only one phase, the external forces in the inertial
(non-rotating) reference system are usually zero. In practice the only external force
is gravitational, but that force is balanced by the hydrostatic pressure gradient,
so that both are left out of the equations. In a rotating frame the centrifugal
and Coriolis forces appear. An observer on the blade notices radial and azimuthal
accelerations on passing air elements dλ. Therefore the centrifugal and Coriolis
forces are real forces in the rotating frame of reference. If the angular velocity of
the frame of reference is Ω then the centrifugal force equals ρdλΩ2r. When the
particle is moving in the rotating system with velocity vector v, then the Coriolis
force equals 2ρdλΩ×v. The vector Ω only has a z-component, and thus the Coriolis
accelerations are: 2vrΩθ̂− 2vθΩr̂, in which θ̂ and r̂ are the unit vectors in the θ and
r-direction respectively. They act on the mass element in addition to other inertial
forces, which, however can be left out, as explained above. So, the Coriolis force
acts in the θ-direction and r-direction, and thus the first term on the right hand
side of the azimuth equation of motion above can be replaced by 2vrΩ. As the
centrifugal force works in the r-direction, the first term on the right hand side of
the radial equation of motion can be replaced by a centrifugal contribution rΩ2 and
a Coriolis contribution −2vθΩ. In the above it is assumed that the wing rotates in
the r, θ-plane given by z = 0. But in practice the rotor blades have a small cone
angle and therefore the tip rotates at a slightly negative value of z. The centrifugal
and Coriolis force are thus assumed to work in the plane of the boundary layer. In
short, the relevant external force per unit of mass are:

Fθ = 2vrΩ, Fr = rΩ2 − 2vθΩ, Fz = 0 (3.33)

3.2.3 Boundary Layer Assumptions

In the flow about rotating wind turbine blades the rate of downstream convection (in
the θ-direction) is much larger than the rate of transverse viscous diffusion, which
means that viscosity only plays a significant role in a thin so-called boundary layer
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around the object. This insight will be used to estimate the order of magnitude of
terms in the continuity equation and the equations of motion. Terms of small order
will then be neglected.

The thickness of the boundary layer can be estimated as follows. At the wall
the velocity is 0 and at a certain distance, say δ, perpendicular to the wall the
flow velocity will be vθ. The velocity gradient perpendicular to the wall is therefore
approximately vθ/δ and the shear stress τ = −µvθ/δ. The derivative of this stress
∂τ/∂y equals the convective deceleration of the flow ρvθ/r(∂vθ/∂θ), where ∂vθ/∂θ =

vθ/(c/r) and c is the chord of the airfoil. Thus ∂τ/∂y = −µvθ/δ2 = ρv2θ/c, or
δ =

√
µc/ρvθ, which is very small since µair = 17.1 × 10−6 Pas. It follows that the

shear layer of thickness δ is small compared to the chord c = rθ. The z-direction is
perpendicular to the boundary layer where most velocity changes take place. The
velocity derivatives in the z-direction are therefore relatively large: ∂vθ/∂z is of
order vθ/δ. Outside the boundary layer the second derivative of vθ in the z-direction
is zero. Thus inside the boundary layer the second derivative equals the change of
the first derivative, which was of the order vθ/δ. Therefore the second derivative
∂2vθ/∂z

2 is of order vθ/δ2. These results will be used to find the significant terms
which yield the boundary layer equations.

3.2.4 Attached Flow on a Rotating Blade

For a wind turbine blade with attached flow, a typical value for the ratio of the
tip speed ΩR and the axial wind speed V , λ = ΩR/V , is approximately 7. That
means that the inflow speed is close to the speed of the blade element itself being
given by radial position times the angular speed. This is true for radial positions of
approximately 0.3R and larger. In this range the pressure distribution on the blade is
roughly proportional to ρv2θ/2, which is approximately ρΩ2r2/2. The radial pressure
gradient will therefore be approximately ρΩ2r and due to this pressure gradient an
element of air in the boundary will be accelerated in the radial direction with an
acceleration of approximately Ω2r. The given element will remain approximately
c/vθ = c/(Ωr) in the boundary layer and thus will develop a radial speed vr of
approximately Ω2rc/(Ωr) = Ωc. Thus the order of magnitude of vr is Ωc and, in
a similar way, ∂vr/∂z and ∂2vr/∂z

2 are found to be of the order Ωc/δ and Ωc/δ2

respectively.
By substitution of vθ and vr in the continuity equation and assuming r � c it

follows that vz is approximately Ωrδ/c, because it should balance the largest term
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which is ∂vθ/(r∂θ). Table 3.2 list all estimates.

Parameter Estimate Parameter Estimate Parameter Estimate

δ
√
µc/ρvθ p ρΩ2r2/2 ∂p/∂r ρΩ2r

vθ Ωr ∂vθ/∂z Ωr/δ ∂2vθ/∂z
2 Ωr/δ2

vr Ωc ∂vr/∂z Ωc/δ ∂2vr/∂z
2 Ωc/δ2

vz Ωrδ/c ∂vz/∂z Ωr/c ∆θ c/r

Table 3.2: Parameters and order of magnitude

Now the Navier-Stokes equations can be written in terms of estimates instead of
derivatives and unspecified forces. We will do so by giving the order of magnitude
under each term. The order of magnitude of the pressure terms follows from the
equations and is therefore set by the other terms. For the equation of continuity
and those of θ, r and z-motion respectively, it follows that:

3.3 Quantum Mechanical Model

The non-relativistic time-dependent Schrödinger equation of an N -electron atom
(ion) in the Schrödinger picture and in the position representation reads:

i~
∂

∂t
Ψ(xi, t) = H(t)Ψ(xi, t) (3.34)

where Ψ(xi, t) is the wavefunction written with space-spin coordinates ({xi} =

{ri, σi}, i = 1, . . . , N) (with ri ∈ R3 and σi = ↑ or ↓) and time t. H(t) is the
semi-classical Hamiltonian describing the atomic system in the presence of the radi-
ation field, which in the Coulomb gauge is given by:

H(t) = H0 +Hint(t) (3.35)

where the time-independent Hamiltonian H0 for a real material consisting of N
electrons and M nuclei in the absence of electromagnetic field is given by

H0 =
M∑
α=1

~2

2Mα

∇2
α −

N∑
i=1

~2

2me

∇2
i +

∑
i<j

e2

4πε0|ri − rj|
−
∑
i,α

Zαe
2

4πε0|ri −Rα|

+
∑
α<β

ZαZβe
2

4πε0|Rα −Rβ|
(3.36)

Here Rα, Zα, and Mα are the position, charge and mass of the α–th nucleus respec-
tively and ri is the position of the ith electron, with mass m and charge (magnitude)
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e. If we invoke the Born-Oppenheimer approximation [32], which is valid when elec-
trons reach equilibrium on a time scale that is short compared to the time scale on
which the nuclei move, we arrive at

H0 = −
N∑
i=1

~2

2me

∇2
i +

1

2

∑
i,j

e2

4πε0|ri − rj|
−
∑
i,α

Zαe
2

4πε0|ri −Rα|

=
1

2me

N∑
i=1

p2
i + V (3.37)

pi = i~∇i is the momentum operator in the position representation of the ith elec-
tron and V denotes the Coulomb interactions within the atomic system in the ab-
sence of the radiation field.

The interaction Hamiltonian Hint(t) is given by

Hint(t) =
e

me

N∑
i=1

A(ri, t) · pi +
e2

2me

N∑
i=1

A2(ri, t) (3.38)

3.3.1 Quantum Scattering

To gain information about the nature of the approaching wind, it is important to
study the scattering of the incident lidar by the wind particles.

Suppose the lidar is incident within an infinitesimal patch of cross-sectional area
dσ and scatters into a corresponding infinitesimal solid angle dΩ, then dσ is pro-
portional to dΩ and the proportionality factor dσ/dΩ is called the differential (scat-
tering) cross-section. The differential cross-section gives the number of particles
scattered into the element of solid angle dΩ around Ω, divided by dΩ and by the
number of incident particles per unit area

dσ

dΩ
=

1

Nin

dN(Ω)

dΩ
(3.39)

Here, Nin signifies the number of incident particles and dN(Ω) the number of parti-
cles scattered into the element of solid angle dΩ.

In the quantum theory of scattering2, the particle incident on a target that is
producing an outgoing spherical wave is usually represented by plane wave ψ(z) =

Aeikz, travelling in the z direction. So that the solution to the Schrödinger equation
are generally of the form

ψ(r, θ, φ) = A

{
eikz + f(θ, φ)

eikr

r

}
for large r (3.40)

2See, for example, Griffiths Introduction to Quantum Mechanics

39



where the wave number k is related to the energy of incident particles in the usual
way:

k =

√
2mE

~
(3.41)

and f(θ, φ) is the scattering amplitude.
The whole problem is to determine the scattering amplitude f(θ, φ); which tells

us the probability of scattering in a given direction, and hence is related to the
differential cross-section. Indeed, the probability that the incident particle, traveling
at speed v, passes through the infinitesimal area dσ, in time dt, is

dP = |ψin|2dV = |A|2(vdt)dσ (3.42)

But this is equal to the probability that the particle scatters into the corresponding
solid angle dΩ:

dP = |ψsca|2dV =
|A|2|f |2

r2
(vdt)r2dΩ (3.43)

From which it follows that dσ = |f |2dΩ and hence

dσ

dΩ
= |f(θ, φ)|2 (3.44)

Evidently, the differential cross-section (which is the quantity of interest) is equal
to the absolute square of the scattering amplitude. The total scattering cross section
σ is given by the integral of the last equation above over all angles:

σ =

∫
dΩ|f(θ, φ)|2 (3.45)

3.3.2 Lidar Equation

In the simplest form, the detected lidar signal can be written as [15]

P (r) = KG(r)β(r)T (r) (3.46)

where P is the power received from a distance r, K summarizes the performance of
the lidar system and is called the lidar system constant, G(r) describes the range-
dependent measurement geometry. The term β(r) is the backscatter coefficient at
distance r. It stands for the ability of the atmosphere to scatter light back into the
direction from which it comes. T (r) is the transmission term and describes how
much light gets lost on the way from the lidar to distance r and back. In more
details, we can write the system constant as

K = P0
cτ

2
Aη (3.47)
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Figure 3.5: Illustration of the lidar geometry [15].

where P0 and τ are the average power and the temporal pulse length of a single
laser pulse respectively. Hence E0 = P0τ is the pulse energy, and cτ is the length of
the volume illuminated by the laser pulse at a fixed time. The factor 1/2 appears
due to an apparent “folding” of the laser pulse through the backscatter process as
illustrated in the diagram. When the lidar signal is detected at an instant of time t
after the leading edge of the pulse comes from the distance r1 = ct/2. At the same
time, light produced by the trailing edge arrives from the distance r2 = c(t− τ)/2.
Thus ∆r = r1−r2 = cτ/2 is the length of the volume from which backscattered light
is received at an instant time and is called the “effective (spatial) pulse length.” A is
the area of the primary receiver optics responsible for the collection of backscattered
light, and η is the overall system efficiency. It includes the optical frequency of all
elements the transmitted and received light has to pass and the detection efficiency.
The telescope area A and the laser energy E0, or, rather, the average laser power
P̄ = E0frep, with the pulse repetition frequency frep, are primary design parameters
of a lidar system.

The geometric factor

G(r) =
O(r)

r2
(3.48)
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Figure 3.6: Influence of the overlap function on the signal dynamics.

includes the laser-beam receiver-field-of-view overlap function O(r) described before
and the term r−2. The inverse square relationship of the signal intensity with dis-
tance is due to the fact that the receiver telescope area makes up part of a sphere’s
surface with radius r that encloses the scattering volume (see figure 3.5). If we
imagine an isotropic scatterer at distance r, the telescope area A will collect the
fraction

Ic
Is

=
A

4πr2
(3.49)

of the overall intensity Is scattered into the solid angle 4π. In other words, the solid
angle A/r2 is the perception angle of the lidar for light scattered at distance r. It is
primarily the r−2 dependence that is responsible for the large dynamic range of the
lidar signal. If we start detecting a signal with O(r) = 1 at a distance of 10m, the
signal will be of 6 orders of magnitude lower at 10km distance just because of the
geometry effect. To what extent lidar is a range-resolving and remote measurement
technique depends on our ability to compensate for this effect. Geometrical signal
compression at short distances is one possibility as can be seen from the figure below
in which an arbitrary, but realistic overlap function is shown, multiplied with the
function r−2. The strong signal in the near field is suppressed by several orders of
magnitude. On a few occasions the atmosphere will help in compressing the signal
by an increase of the backscattering at larger distances. In most cases, however, the
atmosphere causes an additional decrease of the signal with range.

The backscatter coefficient β(r, λ) is the primary atmospheric parameter that
determines the strength of the lidar signal. It describes how much light is scat-
tered into the backward direction, i.e., towards the lidar receiver. The backscatter
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coefficient is the specific value of the scattering coefficient for the scattering angle
θ = 180°. Let Nj be the concentration of scattering particles of kind j in the volume
illuminated by the laser pulse, and dσj,sca(π, λ)/dΩ the particles’ differential scat-
tering cross section for the backward direction at wavelength λ. The backscatter
coefficient can then be written as

β(r, λ) =
∑
j

Nj(r)
dσj,sca

dΩ
(π, λ) (3.50)

with summing over all kinds of scatterers. Since the number concentration is given in
units of m−3 and the differential scattering cross section in m2 sr−1, the backscatter
coefficient has the unit m−1 sr−1.

In a simplified version of isotropic scattering we assume that there is only one type
of particle in the scattering volume, the relation between the backscatter coefficient
and the isotropic scattering cross section σsca is 4πβ = Nσsca. For a laser-beam
cross section AL, the intensity of the scattered light from the illuminated volume
V = AL∆r = ALcτ/2 is proportional to the area As = NσscaV , i.e., the scattering
cross section of all particles in the volume V . Thus, the relative intensity of the
scattered light is

Is
I0

=
As
AL

=
Nσscacτ

2
=

4πβcτ

2
(3.51)

with Eq. (3.49), we obtain the ratio of the collected to the emitted light intensity

Ic
I0

=
Aβcτ

2r2
(3.52)

The right side of this equation describes that part of the lidar equation that di-
rectly refers to the scattering geometry, i.e., it contains the size and the backscatter
properties of the scattering volume and the perception angle of the lidar.

In the atmosphere, the laser light is scattered by air molecules and particulate
matter, i.e., β(r, λ) can be written as

β(r, λ) = βmol(r, λ) + βaer(r, λ) (3.53)

Molecular scattering (index mol), mainly occurring from nitrogen and oxygen
molecules, primarily depends on air density and thus decreases with height. Partic-
ulate scattering (index aer for aerosol particles) is highly variable in the atmosphere
on all spatial and temporal scales.

As the final part of the lidar equation, we have to consider the fraction of light
that gets lost on the way from the lidar to the scattering volume and back. The
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transmission term T (r) can take values between 0 and 1 and is given by:

T (r, λ) = exp

[
−2

∫ r

0

α(r′, λ)dr′
]

(3.54)

This term results from the specific form of the Lambert-Beer-Bouguer law for
lidar [33, 34]. The integral considers the path from the lidar to distance r. The factor
2 stands for the two-way transmission path. The sum of all transmission losses is
called light extinction, and α(r, λ) is the extinction coefficient. It is defined in a
similar way as the backscatter coefficient as the product of number concentration
and extinction cross section σj,ext for each type of scatterer j,

α(r, λ) =
∑
j

Nj(r)σj,ext(λ) (3.55)

Extinction can occur because of scattering and absorption of light by molecules
and particles. The extinction coefficient therefore can be written as the sum of four
components,

α(r, λ) = αmol,sca(r, λ) + αmol,abs(r, λ) + αaer,sca(r, λ) + αaer,abs(r, λ) (3.56)

where the indices sca and abs stand for scattering and absorption respectively. Be-
cause scattering into all directions contributes to light extinction, the (integral)
scattering cross section σsca, together with the absorption cross section σabs, both in
m2, make up the extinction cross section,

σext(λ) = σsca(λ) + σabs(λ) (3.57)

Consequently, the extinction coefficient has the unit m−1.
As indicated in the equations above, both β and α depend on the wavelength of

the laser light. This wavelength dependence is determined by the size, the refractive
index, and the shape of the scattering particles. Summarizing the discussion of the
individual terms, we can now write the lidar equation in a more common form as

P (r, λ) = P0
cτ

2
Aη
O(r)

r2
β(r, λ) exp

[
−2

∫ r

0

α(r′, λ)dr′
]

(3.58)

A common and a simplified method of solution to the lidar equation above called
the slope method is based on the assumption that the atmosphere is homogeneous. In
many cases, the atmospheric horizontal homogeneity is a reasonable assumption. A
simple mathematical solution for Eq. (3.58) is achievable for the unknown extinction
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coefficient α if the examined atmosphere is considered to be homogeneous. For a
valid homogeneous atmosphere solution, the following two conditions must be met:

α(r) = constant (3.59)

and
β(r) = constant (3.60)

So the lidar equation for homogeneous atmosphere then reduces to

P (r) =
Kβ

r2
e−2αr (3.61)

The term 1/r2 in the lidar equation causes the measured signal P (r) to diminish
sharply with range because of the decreasing solid angle subtended by the receiving
telescope with range. To compensate for this effect, the lidar signal P (r) is commonly
transformed into a range-corrected signal before lidar signal inversion is begun. This
is accomplished by multiplying the original signal P (r) by the square of the range,
r2 and denoting it by S(r). So,

S(r) = r2P (r) = Kβe−2αr (3.62)

Taking the logarithm of the transformed signal and denoting it as Φ(r), we have

Φ(r) = ln
(
r2P (r)

)
= ln(K) + ln(β(r))− 2α(r)r (3.63)

The linear dependence of Φ(r) on range r is a key factor when seeking the simplest
solution to the lidar equation [35]. On differentiating Eq. (3.63) with respect to r
we obtain the nonlinear differential equation

dΦ(r)

dr
=

1

β(r)

dβ(r)

dr
− 2α(r) (3.64)

which for homogeneous media reduces to

α = −1

2

dΦ(r)

dr
(3.65)

A linear fit where Φ(r) is a straight line allows the determination of the attenuation
coefficient α in a least square sense.

For inhomogeneous media, it is customary to assume a relation of between ex-
tinction and the backscatter term of the form [36]

β(r) = Cαu(r) (3.66)
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where both C and u are constants. Using Eq. (3.66) in Eq. (3.64), we have

u

α(r)

dα(r)

dr
− 2α(r) =

1

S(r)

dS(r)

dr
(3.67)

which is a nonlinear ODE of elementary structure known as the homogeneous Riccati
equation. The solution is

α(r) =
S(r)1/u

S(rf )1/u/α(rf ) +
2

u

∫ rf

r

S(r′)1/udr′
(3.68)

where rf is the range at which the boundary value α(rf ) is specified. The integral
term in the denominator of Eq. (3.68) is positive if rf > r but negative if rf < r.
Also the solution is independent of K if K is independent of r. The major problem
with this solution is that it is unstable in media of moderate to high density unless
the boundary value is given at the far end of the measurable lidar return [37] where,
however, it is less likely to be known. In addition, the solution (3.68) rests on the
validity of Eq. (3.66) which means that the size distribution and composition of
the scattering particles must change in a prescribed manner within the medium–the
inhomogeneities being solely caused by fluctuations in number density.

3.3.3 Elastic-Backscattered Lidar

In its simplest form, the lidar equation for return signals due to elastical backscatter
by air molecules and aerosol particles, can be written as [38]:

P (r) =
E0ηL
r2
O(r)β(r) exp

[
−2

∫ r

0

α(r′)dr′
]

(3.69)

P (r) is the signal owing to Rayleigh and particle scattering received from distance r,
E0 is the transmitted laser pulse energy, ηL contains lidar parameters describing the
efficiencies of the optical and detection units, O(r) describes the overlap between
the outgoing laser beam and the receiver field of view. Backscattering β(r) (in
km−1sr−1) and extinction α(r) (in km−1) are both caused by particles and molecules
with molecular absorption effects ignored:

β(r) = βmol(r) + βaer(r) (3.70)

α(r) = αmol(r) + αaer(r) (3.71)

The above equations can be summarized to

S(r) = E0ηL [βmol(r) + βaer(r)] exp

[
−2

∫ r

0

[αmol(r
′) + αaer(r

′)] dr′
]

(3.72)
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with the range-corrected lidar signal S(r) = r2P (r). The overlap is assumed to be
complete [O(r) ≡ 1], i.e., the minimum distance rmin at which measurements can be
made may be defined by O(r) ≤ 1 for r ≤ rmin. The molecular scattering properties,
βmol(r) and αmol(r), can be determined from the best available meteorological data of
temperature and pressure or approximated from appropriate standard atmospheres
so that only the aerosol scattering and absorption properties βaer(r) and αaer(r),
remain to be determined.

Next we introduce the particle extinction-to-backscatter ratio (lidar ratio)

Laer(r) =
αaer(r)

βaer(r)
(3.73)

in analogy to the molecular lidar ratio

Lmol(r) =
αmol(r)

βmol(r)
=

8π

3
sr (3.74)

In contrast to the molecular lidar ratio, the particle lidar ratio is range-dependent
because it depends on the size distribution, shape, and chemical composition of the
particles.

The primary information contained in the measured elastic lidar returns is the
backscatter coefficient under typical tropospheric conditions with particle vertical
optical depth of≤ 0.3 in the visible spectrum around 550 nm. Under these conditions
only the backscatter coefficient can be derived with good accuracy from the elastic
backscatter signal. So we introduce the term [39]

Y (r) = Laer(r)[βmol(r) + βaer(r)] (3.75)

After substituting αaer(r) and αmol(r) in Eq. (3.72) with the expressions (3.73) and
(3.74) and inserting Y (r) from Eq. (3.75), the resulting equation can be written as

S(r)Laer(r) exp

{
−2

∫ r

0

[Laer(r
′)− Lmol(r

′)]βmol(r
′)dr′

}
= E0ηLY (r) exp

[
−2

∫ r

0

Y (r′)dr′
]

(3.76)

Taking the logarithms of both sides of Eq. (3.76) and differentiating them with
respect to r gives

d

dr
ln

(
S(r)Laer(r) exp

{
−2

∫ r

0

[Laer(r
′)− Lmol(r

′)]βmol(r
′)dr′

})
=

1

Y (r)

dY (r)

dr
− 2Y (r) (3.77)
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Eq. (3.77) known as the Bernoulli equation is usually solved for the boundary con-
dition

Y (r0) = Laer(r0)[βaer(r0) + βmol(r0)] (3.78)

to obtain [38]:

βaer(r) + βmol(r) =

S(r)Laer(r) exp

{
−2

∫ r

r0

[Laer(r
′)− Lmol(r

′)]βmol(r
′)dr′

}
S(r0)

βaer(r0) + βmol(r0)
− 2

∫ r

r0

Laer(r
′)S(r′)T (r′, r0)dr

′
(3.79)

where
T (r, r0) = exp

{
−2

∫ r

r0

[Laer(r
′)− Lmol(r

′)]βmol(r
′)dr′

}
(3.80)

The profile of the particle extinction coefficient can be estimated from the solution
βaer(r) by

αaer(r) = Laer(r)βaer(r) (3.81)

Eq. (3.79) can, in principle, be integrated by starting from the reference range
r0, which may be either the near end (r > r0, forward integration) or the remote end
(r < r0, backward integration) of the measuring range. Numerical stability, which is
not to be mistaken for accuracy, is, however, given only in the backward integration
case [37].

3.4 Correlation models and algorithm for field re-

construction

Pulsed lidars provide radial wind components on different lines of sight at differ-
ent altitudes. In an ideal case, and to mimic local sensors such as cup or sonic
anemometers, beams intersect at the point of interest within a small volume. In an
operational situation, only one lidar is available. To reconstruct the 3D components
of the wind field, we make the following assumptions [40, 41]:

• Horizontal homogeneity: the three components of the wind are the same for
the different points of the disc at a given altitude. The numerous measure-
ment campaigns have proven that this assumption is valid on flat terrains and
offshore, but not perfect on complex terrains (hills, mountains, forest boarders)

• Temporal variations are slower than the inter-beam distance divided by the
horizontal wind speed. This time increases with altitude and matches the
conical geometry.
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The Doppler beam swinging (DBS) technique is used for the scanning configuration.
DBS is used in pulsed lidars to average more information on the LOS. It is used in
commercial, ground based lidar systems to retrieve wind speed and wind direction
out of the line-of-sight measurement for site assessment. The orthogonal frame of
the Windcube [60] is described in figure 3.7.

Figure 3.7: Sketch of the DBS scan

Suppose the lidar probes the atmosphere in the four geographic directions with a
half opening angle (the so-called cone-angle) of αL and assuming point measurement
(Eq. (2.27)), then the four line-of-sight wind speeds are:

Vlos,N = uN,I sinαL + wN,I cosαL (3.82a)

Vlos,W = vW,I sinαL + wW,I cosαL (3.82b)

Vlos,S = −uS,I sinαL + wS,I cosαL (3.82c)

Vlos,E = −vE,I sinαL + wE,I cosαL (3.82d)

where uN,I is the longitudinal wind component in the north (N) direction aligned
with the I-Coordinate System and accordingly for the other three directions west
(W), south (S), and east (E). This system of 4 equations has 8 unknowns and thus
it is under-determined and no unique solution exists.

The DBS technique uses the homogeneous flow model, i.e., the wind vector
[uI vI wI ]

T in the inertial I-coordinate system is the same for each measurement

49



point i. With this wind model, Eq. (3.82) is simplified to

Vlos,N = uI sinαL + wI cosαL (3.83a)

Vlos,W = vI sinαL + wI cosαL (3.83b)

Vlos,S = −uI sinαL + wI cosαL (3.83c)

Vlos,E = −vI sinαL + wI cosαL (3.83d)

Now, Eq. (3.83) consists of 4 equations for 3 unknowns and in general no solution
exists. However, in [60] the following approximation is proposed:

uDBS,I =
Vlos,N − Vlos,S

2 sinαL
(3.84a)

vDBS,I =
Vlos,W − Vlos,E

2 sinαL
(3.84b)

wDBS,I =
Vlos,N + Vlos,W + Vlos,S + Vlos,E

4 cosαL
(3.84c)

The approximation Eq. (3.84) minimizes the sum of the squares of the errors made
in every equation. This can be proven re-writing Eq. (3.83) in the following form:

Vlos,N

Vlos,W

Vlos,S

Vlos,E


︸ ︷︷ ︸

m

=


sinαL 0 cosαL

0 sinαL cosαL

− sinαL 0 cosαL

0 − sinαL cosαL


︸ ︷︷ ︸

A


uI

vI

wI


︸ ︷︷ ︸

s

(3.85)

The Moore-Penrose pseudoinverse A+ of matrix A is

A+ =


1

2 sinαL
0 −1

2 sinαL
0

0 1
2 sinαL

0 −1
2 sinαL

1
4 cosαL

1
4 cosαL

1
4 cosαL

1
4 cosαL

 (3.86)

Cone-angle αL is a trade-off between lidar velocity resolution and atmospheric
homogeneity. The smaller the cone-angle, the better the wind homogeneity but the
wind vector projection on every beam is worse. Best values of αL are demonstrated to
be between 15°and 30°. Even in complex terrains, in general wind non homogeneity
condition, no better estimation is obtained when reducing the cone-angle [42, 43]

3.5 Wind Fields and Wind Evolution Models

Analyses of lidar system measurement coherence are performed for two types of
wind fields. A wind field characteristics of the U.S Great plains region generated by
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TurbSim is used to demonstrate the addition of wind evolution to a frozen wind field.
A simple exponential form of longitudinal coherence is used to create wind evolution
in this wind field. By adjusting a decay parameter, the intensity of wind evolution
can be varied. The second wind field analyzed is a large eddy simulation (LES) of
a stable boundary layer. All statistics used to calculate measurement coherence for
this wind field are based on measurements from the LES wind field.

3.5.1 The Great Plains-Low Level Jet Wind Field

Wind conditions generated by TurbSim using the Great Plains-Low Level Jet (GP_LLJ)
spectral model [44] were used in previous studies [45, 46, 47] to evaluate lidar mea-
surements and controller performance. The wind fields are designed to be used with
the National Renewable Energy Laboratory’s (NREL’s) 5-megawatt (MW) turbine
model with a hub height of 90m and a rotor radius of 63m. One of these conditions
was chosen as a wind field to which wind evolution can be introduced. One of these
conditions was chosen as a wind fields to which wind evolution can be introduced.
Table 1 summarizes this unstable wind condition at three different heights, including
hub height and 50m below and above hub height.

Height (m) U (m/s) u∗ (m/s) TIU (%) TIV (%) TIW (%)

40 12.25 0.598 9.2 9.4 7.2

90 13 0.530 6.6 7.1 5.7

140 13.44 0.425 4.6 5.3 4.4

Table 3.3: A summary of the Unstable Great Plains-Low Level Jet Wind Field Used for

Wind Speed Measurement Analysis with the 5-Megawatt (MW) Wind Turbine Model

The spectra of the u, v, and w components of wind speed are shown in figure 3.8
for the heights summarized in Table 3.3. The spectra are included to illustrate some
of the trends that can be seen in the measurement coherence results.

For TurbSim’s Great Plains-Low Level Jet spectral model, the transverse coher-
ence at a frequency f between points i and j in the yz plane is defined as:

γ2i,j(f, l) = exp

−2al

√(
fri,j
ūi,j

)2

+ (blri,j)
2

 (3.87)
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Figure 3.8: Power spectral densities of wind speed components at heights of 40m, 90m,

and 140m for the Great Plains-Low Level Jet wind condition (described in Table 3.3).

where

ri,j = the distance between the points
ūi,j = the average of the wind speeds at the two points

al and bl are coherence parameters defined for the u, v, and w wind components
(l ∈ {u, v, w}) [44]

The coherence parameters al and bl are based on field measurements and are
au = 9.513, av = 6.291, and aw = 4.535 and bu = 0.384 × 10−3, bv = 0.108 × 10−2,
and bw = 0.209 × 10−2. The u component of the transverse coherence given by
Eq. (3.87) is shown in figure 3.9a for transverse separations in the y direction of 2,
4, 8, 16, and 32m at hub height (z = 90m). This range of distances is indicative
of the transverse separations used in calculations of measurement coherence and is
described in the next section.

Although the v and w components are correlated as well, the lidar measurement
scenarios that are investigated in this report include either u and v components or
u and w components, but not both simultaneously. Therefore, the vw correlations
are not used in any calculations. Figure 3.9b contains the uw coherence curves for
three heights, corresponding to the bottom of the rotor, hub height, and the top of
the rotor, as well as the uv coherence function at hub height.
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(a) (b)

Figure 3.9: Coherence summary for the Great Plains-Low Level Jet wind condition. (a)

Transverse coherence functions for the u component at a height of z = 90m for transverse

separations of 2, 4, 8, 16, and 32m. (b) Coherence between the u and w components

of wind at z = 27m, 90m, and 153m, which correspond to the bottom of the rotor, the

hub height, and the top of the rotor, and coherence between the u and v components at

z = 90m.

3.5.2 Exponential Wind Evolution Model

A model of wind evolution can be formed using a simple exponential model of coher-
ence that is a function of the non-dimensional product between the eddy wavenumber
and longitudinal separation, as suggested in Pielke and Panofsky [48]. This model
is given by:

γ2(kD) = e−akD (3.88)

where
k = the eddy wavenumber (k = f/U)
D = the longitudinal separation between points in the wind field
a = a dimensionless decay parameter.

This simple exponential model allows for an easy method of varying the amount
of wind evolution by adjusting the decay parameter. Increasing a exaggerates the ef-
fects of wind evolution by causing the coherence curve to decay faster with frequency.
In section, lidar measurement coherence is calculated for the Great Plains-Low Level
Jet wind field using this exponential longitudinal coherence function to describe the
evolution of the u, v, and w components for a range of decay parameters between
0.3 and 0.6 in this unstable flow seem to produce roughly the same measurement
coherence as the weakly stable LES wind field.
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3.5.3 LES Stable Boundary Layer Wind Field

A large eddy simulation of a stable boundary layer [49], provided by the National
Center for Atmospheric Research (NCAR), is used to calculate longitudinal coher-
ence curves to model wind evolution. The data is sampled at a rate or roughly 1

hertz (Hz), so the bandwidth used for all the spectral results in this report is ap-
proximately 0.5 Hz. The 13-minute LES wind field spans 1000m in the x and y

directions, with data existing for heights between 50 and 150m. The spatial resolu-
tion is 2m in the x and y directions and 1m in the z direction. A summary of the
wind field at heights of 50m, 100m and 150m is provided in Table 3.4. The spectra
of the u, v, and w components of wind speed are shown in figure 3.10 for the heights
summarized in Table 3.4.

Height (m) U (m/s) TIU (%) TIV (%) TIW (%)

50 5.7 6.8 5.8 4.4

100 7.6 3.7 3.3 2.4

150 9.1 1.9 2.0 1.23

Table 3.4: A summary of the Stable Large Eddy Simulation Wind Field Provided by the

National Center for Atmospheric Research, with a Monin-Obukhov Stability Parameter of

zi/L = 2

Transverse coherence curves for separations in the y and z directions for the u
component derived from the LES wind field are shown in figure 3.11 for transverse
separations of 1, 2, 4, 8, and 16m. This range of separations is typical of transverse
distances used in the calculations in section 6. Coherence curves were measured
in the y direction at a height of 100m and in the z direction at all heights, the
coherence curves in the lower half of the wind field are used to calculate average
coherence curves for heights between 50m and 100m. Likewise, the coherences in
the upper half of the wind field are averaged to produce a single family of coherence
curves for heights between 100m and 150m. Coherence in the z direction is much
lower than in the y direction, likely due to stable stratification in the wind field.
Because the coherence curves for the u, v, and w components are similar, the u
component coherences are used to describe all three components in this report.

Because of wind shear, wind evolution as a function of the longitudinal separation
between points varies with height. In general, as the mean streamwise wind speed
increases, the coherence curves for a given longitudinal separation increase, because
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Figure 3.10: Power spectral densities of wind speed components at heights of 50m, 100m,

and 150m for the stable large eddy simulation wind field described in Table 3.4.

Figure 3.11: Transverse coherence curves for the stable LES wind field measured in the

y direction at a height of 100m, and average coherence curves in the z direction based on

measurements at heights between 50 and 100m and 150m.
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the time that elapses as wind travels the same distance decreases. Figure 3.12 con-
tains longitudinal coherence curves for the u component based on measurements at
a height of 100m for longitudinal separations of 10, 25, 50, 100, and 200m. The
measurement scenarios examined in section6 include preview distances up to 200m.
Because of wind shear, coherence curves for heights above 100m are generally higher
for a given frequency while curves for heights below 100m are lower. As a simplifi-
cation, the coherence curves for the u components are determined at the height of
100m and are used to describe wind evolution for all components at all heights.

Figure 3.12: Longitudinal coherence curves for the stable LES wind field based on mea-

surements at a height of 100m
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Lidar Measurement Coherence

The quality of a wind speed measurement as influenced by evolution can be judged
by the coherence between the estimate of the u component of the line-of-sight li-
dar system measurement and the true u component that reaches the rotor plane.
Referring to figure 4.1, the upwind point at which the lidar is focused is called point

Figure 4.1: Coordinate system and measurement variables used. The lidar is assumed to

mounted in the wind hub at (xh, yh, zh) = (0, 0, 0).

j, while the point where the evolved wind meets the rotor plane is called point i.
Points i and j have the same transverse coordinates in the yz plane but are sepa-
rated longitudinally by the preview distance D. The coherence between the estimate
of the u component at point j and the true component at point i is written as (cf
Eq. (2.35)):

γ2uiû′j(f) =
|Suiû′j(f)|2

Suiui(f)Sû′j û′j(f)
(4.1)

where û′j =the estimate of the u component based on the line-of-sight lidar mea-
surement.
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The following derivation of the measurement coherence yields a formula in terms
of power spectral densities of the wind and coherence functions for any pair of points
in the wind field, which are assumed as known quantities and are based on the wind
field description in §§ 3.5. This derivation is based on an analysis given by Schlipf,
for the simple case where there is neither range weighting nor wind evolution [50].
While measurement coherence can be estimated by simulating lidar measurements
in an evolving wind field, the formulas to calculate measurement coherence is that
direct calculations of coherence using spectral properties of the wind field are much
less computationally expensive than time-domain simulations of lidar measurements.
In addition, properties of the wind field can be easily varied without generating
additional four-dimensional wind fields.

If the unit vector is represented in the direction that the lidar is pointing as
l = [lx, ly, lz] then, based on the coordinate system in figure 4.1, the line-of-sight
wind speed measurement is

uj,los = lxuj − lyvj − lzwj (4.2)

Furthermore, the range weighted line-of-sight measurement is represented as;

u′j,los = lxu
′
j − lyv′j − lzw′j (4.3)

where the range weighted velocity vector is given by

u′j =

∫ ∞
0

u(Rl)W (F,R)dR (4.4)

with u = [u, v, w].
Based on Eqs. (4.2) and (4.3), the estimate of the u component of a line-of-sight

point measurement is given by

ûj =
uj,los

lx

= uj −
ly
lx
vj −

lz
lx
wj (4.5)

and the estimate of u for a line-of-sight range weighted measurement is given by

û′j =
u′j,los

lx

= u′j −
ly
lx
v′j −

lz
lx
w′j (4.6)

Using Eqs. (4.2) through (4.6), the terms Sû′j û′j(f) and Suiû′j(f) from Eq. (4.1)
can be written in terms of the transverse and longitudinal coherence functions in
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the wind field and the power spectral density functions of the wind speeds. Letting
Û(f) = F{û(t)} and {·}∗ represent the complex conjugate operation, the Sû′j û′j(f)

term can be expanded as:

Sû′j û′j(f) = Û ′j(f)Û ′∗j (f)

=

(∫ ∞
0

W (F, α)Û(αl, f)dα

)(∫ ∞
0

W (F, β)Û∗(βl, f)dβ

)
=

∫ ∞
0

∫ ∞
0

W (F, α)W (F, β) Û(αl, f)Û∗(βl, f) dαdβ

=

∫ ∞
0

∫ ∞
0

W (F, α)W (F, β) Sûαlûβl(f) dαdβ (4.7)

where Sûαlûβl(f) = the cross-power spectral density (CPSD) between the estimates
of the u components at points with distances α and β along the lidar beam. For
each α, β pair, Sûαlûβl(f) can be expanded as

Sûαlûβl(f) = Ûαl(f)Û∗βl(f)

=

(
Uαl(f)− ly

lx
Vαl(f)− lz

lx
Wαl(f)

)(
U∗βl(f)− ly

lx
V ∗βl(f)− lz

lx
W ∗
βl(f)

)
= Suαluβl(f) +

(
ly
lx

)2

Svαlvβl(f) +

(
lz
lx

)2

Swαlwβl(f)

− ly
lx

(
Suαlvβl(f) + Svαluβl(f)

)
− lz
lx

(
Suαlwβl(f) + Swαluβl(f)

)
+
lylz
l2x

(
Svαlwβl(f) + Swαlvβl(f)

)
(4.8)

The measurement scenarios discussed in this report include azimuth angles of
ψ = 0°, ψ = 90°, ψ = 180°, and ψ = −90°. As a result, the unit vector in the lidar
direction either contains ly = 0 or lz = 0. In this case, Eq. (4.8) simplifies to

Sûαlûβl(f) = Suαluβl(f) +

(
ly
lx

)2

Svαlvβl(f) +

(
lz
lx

)2

Swαlwβl(f)

− ly
lx

(
Suαlvβl(f) + Svαluβl(f)

)
− lz
lx

(
Suαlwβl(f) + Swαluβl(f)

)
(4.9)

The complex-valued CPSD in Eq. (4.9) can be written in terms of its magnitude
and phase as

Sûαlûβl(f) =
∣∣Sûαlûβl(f)

∣∣ eı̇ϕαlβl(f) (4.10)

Each term in Eq. (4.9) has the same phase, which is given by:

ϕαlβl(f) =
Dαlβl(f)

Ū
(4.11)
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where Dαlβl is the longitudinal separation between points at distances α and β along
the lidar beam.

The calculation of the Suiû′j(f) term from Eq. (4.1) is performed in a similar
fashion as the Sû′j û′j(f) term.

4.2 Components of Measurement Coherence

There are several factors that may cause a decrease in measurement coherence as
defined by Eq. (4.1). In addition to wind evolution, error sources that are charac-
teristics of lidar measurements in non-evolving wind fields, such as range weighting
and directional bias, will cause a loss of coherence. Figure 4.2 and 4.3 compare the
components of coherence for three different measurement geometries by showing the
measurement coherence that was calculated using Eqs. (4.1) through (4.11) with
various combination of the error sources included. Figure 4.2 uses the spectral prop-
erties of the TurbSim wind field with exponential wind evolution, while figure 4.3
uses characteristics of the large eddy simulation (LES) wind field. The decay pa-
rameter used with the exponential model is a = 0.45. Coherence plots for both
wind fields are provided to compare and contrast the simple wind evolution model
and the model that is derived from the LES results. In both figures, each scenario
involves a lidar that is located at the hub, measuring wind at a radial distance of
r = 47.25m at an azimuth angle of ψ = 90°, but with different preview distances
(D = 24, 58, and 130m). The curves in figure 4.2 and 4.3 do not include the effects
of uv or uw correlation in order to highlight the other sources of coherence loss.
Although the exact measurement curves differ for the two wind field models, the
following trends apply to both scenarios. When D = 24m, the measurement angle
is large, longitudinal coherence (dashed) is relatively high, and the effects of range
weighting are insignificant due to the short focal distance. Here, directional bias
dominates the overall coherence, with wind evolution causing some degradation at
higher frequencies. When D = 130m, the measurement angle is low, longitudinal
coherence is low, due to wind evolution, and range weighting is significant due to
the long focal distance. Wind evolution, is the dominant component of measure-
ment coherence, with range weighting adding a further loss of coherence. For the
D = 58m scenario, all three sources of coherence loss are significant. Directional bias
and wind evolution, both have very strong impacts, with range weighting causing
an additional loss of coherence.
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Figure 4.2: A comparison of the components of measurement of coherence for a scanning

LIDAR scenario, with scan radius r = 47.25m using the Great Plains-Low Level Jet wind

field and exponential coherence with a = 0.45

Figure 4.2 and 4.3 reveal that the (green) coherence curves from directional bias
alone are relatively constant over all frequencies and increase as the measurement
angle decreases. Although not shown in figure 4.2 or 4.3, when the effects of uv and
uw coherence (present in the Great Plains-Low Level Jet wind field) are included,
measurement coherence, due to directional bias, changes because of the non-zero
correlation between the u and v as well as u and w components. By comparing the
green and magenta curves, it can be seen that range weighting adds a significant
coherence loss when wind evolution is not included, especially for larger preview
distances. However, by comparing the blue and black curves, it is clear that with
wind evolution included, range weighting never dominates the overall coherence loss.

4.3 Lidar Measurements of Evolving Wind Fields

Two metrics are used to reveal the measurement quality for different scan geometries.
The first metric is the “coherence bandwidth,” defined here as the bandwidth where
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Figure 4.3: A comparison of the components of measurement of coherence for a scanning

LIDAR scenario, with r = 47.25m using the stable Large Eddy Simulation (LES) wind

field and evolution model

the measurement coherence remains above 0.5. A higher coherence bandwidth yields
a better measurement, because more of the measured turbulence spectrum can be
used in a wind preview-based controller. The second metric is the integral of mea-
surement coherence, or the area under the coherence curve. The integration is only
performed for a bandwidth of about 0.5 hertz (HZ), based on the Nyquist frequency
of the LES wind field. A larger area under the coherence curve will yield a better
measurement. Results based on the two metrics are similar, but both are provided
here for comparison.

The following results compare measurement quality for different scan geometries
and reveal the optimal preview distances in terms of maximising the coherence
bandwidth or coherence integration. For the exponential wind evolution model,
the decay parameter a is varied to show the impact that wind evolution intensity
has on optimal preview distance. For the LES-based model, the results reveal what
typical preview distances might be in a stable wind field with physics-based wind
evolution, but a wind field that is less productive from a wind energy perspective.
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Separate results are provided for four different lidar azimuth angles (ψ = 0°, 90°,
180°, −90°) because the wind spectra and transverse coherences vary with height
and direction. In addition, for the TurbSim generated wind field, the uv and uw

correlations will have different impacts on measurement coherence (depending on
azimuth angle).

The chosen scan geometries are based on the National Renewable Energy Lab-
oratory (NREL) 5-megawatt (MW) turbine model. Scan radii of 15.75m, 31.5m,
47.25m, and 63m are investigated, which corresponds to 25%, 50%, 75%, and 100%

blade span. For the Great Plains-Low Level Jet scenario, the lidar is located at a
height of 90m, but for the LES wind field, the lidar is located at a height of 100m,
which is the center of that wind field.

4.4 Measurements Using the Exponential Wind Evo-

lution Model

For the TurbSim wind field with the exponential wind evolution model, results are
provided for ψ = 90°and ψ = −90°, where the lidar is only measuring wind in the
xy plane, ψ = 0°, where the lidar is measuring wind in the xz plane above hub
height, and ψ = 180°, where wind is measured in the xz plane below hub height.
These four azimuth angles were chosen because the wind spectra and transverse
coherences are different in the y and z directions. In addition, ly will be positive
for ψ = 90°and negative for ψ = −90°. Similarly, lz will be positive for ψ = 0°and
negative for ψ = 180°. Furthermore, the spectra and transverse coherence curves
vary with height, so measurements above and below hub height are analysed.

Figure 4.4 compares the γ2 = 0.5 coherence bandwidths of measurement co-
herence as a function of preview distance for a range of decay parameters. Note
that the green curves represent a decay parameter a = 0, which is equivalent to
no wind evolution (Taylor’s frozen turbulence hypothesis). Coherence bandwidth
curves are provided for the four different azimuth angles. For shorter scan radii, the
preview distances that provide maximum coherence bandwidth are shorter, because
the degradation caused by directional bias that enters the coherence calculations
through Eq. (4.9) is lower than for larger scan radii. Therefore, with small scan
radii, the dominant source of coherence loss transitions from directional bias to
wind evolution or range weighting at shorter preview distances.

In figure 4.4, the curves for azimuth angles ψ = 90°and ψ = 180°are very similar,
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Figure 4.4: This figure shows the γ2 = 0.5 coherence bandwidth versus preview distance

for the Great Plains-Low Level Jet wind field for scan radii of r = 15.75, 31.5m, 47.25m

and 63m. The wind evolution is based on an exponential coherence model with various

decay parameters.

as are the curves for azimuth angles ψ = 0°and ψ = −90°. For ψ = 90°and ψ = 180°,
the cross-power spectral densities (CPSDs), between the u and v as well as the u
and w components, introduce a negative contribution in Eq. (4.9) and the similar
expression for the Suiû′j(f) term. This behaviour is due to ly and Suv(f) both
having positive signs and lz and Suw(f) both having negative signs. The negative
contribution of the v and w components causes a reduction in both the magnitude
of the measured lidar signal and the overall measurement coherence. In contrast,
for ψ = −90°and ψ = 0°, ly is negative while the sign of Suv(f) is positive, and lz
is positive while the sign of Suw(f) is negative. Therefore, the CPSDs, between the
u and v as well as the u and w components, introduce a positive contribution in
Eq. (4.9) and the similar expression for the Suiû′j(f) term. The positive contribution
of the v and w components causes an increase in both the magnitude of the measured
lidar signal and the overall measurement coherence.

Although the influence of the uv and uw cross-correlations is the main factor
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contributing to the azimuthal dependence of measurement coherence, further vari-
ations between the curves for different azimuth angles in figure 4.4 reveal how the
relative magnitudes of the wind spectra components affect measurement coherence.
Measurements at an azimuth angle of ψ = 0°in the xz plane produce slightly higher
coherence bandwidths than measurements at ψ = −90°in the xy plane. Likewise,
measurements at an azimuth angle of ψ = 180°in the xz plane produce higher co-
herence bandwidths than measurements at ψ = 90°in the xy plane. The improved
results for the measurements in the xz plane can be explained by examining the wind
spectra in figure 3.8. The ratio between the v component of the wind spectrum and
the u component is greater than the ratio between the w and u components at
all heights, so the v component of the wind corrupts measurements more than the
w component. Therefore, when measurements are confined to the xy plane, there
is more coherence loss due to directional bias effects than when measurements are
confined to the xz plane.

Figure 4.5: Integral of measurement coherence from 0Hz to 0.5Hz versus preview distance

for the Great Plains-Low Level Jet wind field for scan radii of r = 15.75m, 31.5m,47.25m

and 63m. Wind evolution is based on an exponential coherence model with various decay

parameters.
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Figure 4.5 shows results for the same measurement scenarios as in figure 4.4, but
with the integral of the coherence curves as the measurement quality metric. Most
of the trends are similar to those in figure 4.4, but with slightly different optimal
preview distances.

While the maximum coherence bandwidths are much lower for larger decay pa-
rameters, as can be expected, interestingly, the optimal measurement preview dis-
tances do not change very much as a is varied when using the coherence bandwidth
metric. When using the integral of coherence as a metric, the optimal preview
distance is much more sensitive to changes in the decay parameter.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

In this thesis, lidar simulation results show that for a circular scan pattern, a scan
radius close to 70% rotor radius provides the strongest measurement correlation.
Small scan radii, such as r = 0.1R produce lower correlations because the measured
winds are representative of a smaller portion of the rotor plane. For preview distances
roughly equivalent to the rotor radius, the coherence drops as the preview distance
increases due to wind evolution. However, preview distance must roughly double
before coherence drops by more than 0.1. When knowledge of the wind speed and
direction at heights other than hub height is used to determine the scan geometry,
measurement coherence can be increased, but at most by 0.1 for r = 0.7R and
24m < D < 130m.

The modified scan pattern (temporal attenuation) improves measurement quality
more for longer preview distances. The general scan pattern optimization results
show that: (i) as the number of beams increases, the measurement accuracy increases
as well and (ii) additional measurement ranges afforded by pulsed lidars improve
measurement accuracy.

Coherence bandwidth is maximized using shorter preview distances which pre-
vent the coherence at higher frequencies from decaying too much from wind evolu-
tion. Measuring the wind farther away than the optimal preview distances causes
wind evolution to become more severe, increasing measurement error as well. The
extra preview time provided by longer preview distances are useful when attempt-
ing to detect extreme wind events and take necessary action to protect the turbine.
However, using coherence bandwidth as a metric, it was revealed that, for a given
scan radius, the optimal preview distance is not very sensitive to the amount of
wind evolution. Optimal preview distances based on the coherence bandwidth for
lidar measurements in the unstable Great plains wind field, are roughly 60m for a
scan radius of r = 31.5m, 80m for r = 47.25m, and 120m for r = 63m for decay
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parameters less than one. These approximate optimal preview distances are formed
by averaging over all four azimuth angles.

Measuring the wind at multiple range gates with pulsed lidar offers the advantage
of being able to track wind speeds as they travel towards the turbine as well as
allowing measurements at different preview distances to be combined to improve
the simultaneous estimation of wind shear and direction. Thus from a controls
perspective, a preview measurement at 47.25m or 75% rotor radius for the 5 MW
model is the most useful due to maximum power capture near this blade span. The
results reveal that the bandwidth of coherent measurements at r = 47.25m is roughly
0.11Hz based on γ2 = 0.5 bandwidth definition.

When comparing results based on coherence bandwidth for different decay pa-
rameters, it can be seen that unless the intensity of evolution is very strong, the opti-
mal preview distances are almost the same with wind evolution or without (a = 0).
Using the integral of coherence as a metric, the optimal preview distances vary
considerably as the decay parameter changes.

5.2 Perspectives (Future Outlook)

• Future research might need to explore boundary layers that are unstable. That
is, establishing how wind evolution varies with the atmospheric stability.

• There are many promising direction that lidars for control applications could
take in the future:

– The design of Lidar-Assisted Control (LAC) scenarios for extreme event
detection is gaining importance.

– New approaches to wind field estimation, such as coupling of raw lidar
measurements with fluid dynamic models, are being explored.

• The effect of induction zone upwind of the rotor. This extends roughly one
rotor diameter in front of the turbine, and has the effect of slowing down the
advection velocity of the wind near the rotor, thereby detecting the streamlines
around the rotor disc by some amount and distorting the turbulence. The
impact of the induction zone on wind speed measurements is an area of future
study.

68



BIBLIOGRAPHY

[1] Eric Simley, Holger Fürst, Florian Haizmann and David Schlipf, “Optimizing
Lidars for Wind Turbine Control Applications—Results from the IEA Wind
Task 32 Workshop” Remote Sens. 2018, 10, 863.

[2] Andrew Scholbrock, Paul Fleming, David Schlipf, Alan Wright, Kathryn John-
son and Na Wang, “Lidar-Enhanced Wind Turbine Control: Past, Present and
Future”, National Renewable Energy Laboratory, NREL/CP-5000-65879, 2016.

[3] T. Mikkelsen, “Lidar-based research and innovation at DTU Wind Energy – a
review,” Journal of Physics: Conference Series, vol.524, no. 1, 2014.

[4] P. Towers and B. LI. Jones, “Real-time wind field reconstruction from LiDAR
measurements using a dynamic wind model and state estimation” Wind Energ.
(2014) DOI: 10.1002/we.1824.

[5] Lindenberg, S., Smith, B., and O’Dell, K., 20% wind energy by 2030. 2008.
National Renewable Energy Laboratory (NREL), US Department of Energy,
Renewable Energy Consulting Services, Energetics Incorporated, United States.

[6] Abdel Ghani Aissaoui and Ahmed Tahour, Wind Turbines: Design, Control and
Applications, Published by ExLi4EvA, Copyright© 2016, www.Ebook777.com

[7] Funke (2017-06-09). “MHI Vestas launched the world&#039;s most powerful
wind turbine”. Offshore Wind Industry. Retrieved 2018-01-24.

[8] D. Schlipf, J. Mann, and P.W. Cheng, “Model of the correlation between lidar
systems and wind turbines for lidar assisted control,” Journal of Atmospheric
and Oceanic Technology, vol.30, no.10, pp. 2233-2240, 2013.

[9] D. Schlipf, S. Kapp, J. Anger, O. Bischoff, M. Hofs, A. Rettenmeier, and M.
Kühn, “Prospects of optimization of energy production by lidar assisted control
of wind turbines,” in EWEA 2011 conference proceedings, Brussels, Belgium,
2011.

[10] Luis Arturo Soriano, Wen Yu, Jose de Jesus Rubio. “Modeling and Control
of Wind Turbine” in Mathematical Problems in Engineering (2013). DOI:
10.1155/2013/982597.

69



[11] David Schlipf, et al. “Detection of Wind Evolution and Lidar Trajectory Op-
timization for Lidar-Assisted Wind Turbine Control.” January 2015. DOI:
10.18419/opus-8417.

[12] Betz, A.: Windenergie und ihre Ausnutzung durch Windmühlen,Vandenhoek
und Rupprecht 1926; Viewag, Göttingen 1946

[13] David Schlipf, Dominik Johannes Schlipf and Martin Kühn, “Nonlinear model
predictive control of wind turbines using LIDAR” Wind Energ. (2012) DOI:
10.1002/we.1533.

[14] Cracknell, Arthur P.; Hayes, Ladson (2007) [1991]. Introduction to Remote
Sensing (2 ed.). London: Taylor and Francis. ISBN 978-0-8493-9255-9. OCLC
70765252.

[15] C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmo-
sphere, ser. Springer series in Optical Sciences. Springer, 2005.

[16] A. Jelalian, Laser Radar Systems, ser. Artec House Radar Library. Artec House,
Incorporated, 1992.

[17] Philosophical Magazine and Journal of Science, 1930, Series 7, Volume 9, Issue
60, pp. 1014–1020.

[18] Donegan, J.F.; The Life and Works of Edward Hutchinson Synge pp. 31, 67, (co-
edited with D. Weaire and P. Florides), Pöllauberg, Austria : Living Edition,
ISBN 3901585176

[19] ‘Experimental Advanced Airbone Research Lidar’, USGS.gov. Retrieved 8 Au-
gust 2007.

[20] Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.;
Roback, Vincent E. (2011-05-24). “Lidar Systems for Precision Navigation and
Safe Landing on Planetary Bodies”. International Symposium on Photoelec-
tronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological
and Medical Applications of Photonics Sensing and Imaging. 8192: 819202. Bib-
code:2011SPIE.8192..02A doi:10.1117/12.904062 hdl:2060/20110012163. Re-
trieved May 24, 2011.

[21] Rashid A. Ganeev. Laser-Surface Interactions. Springer Science & Business Me-
dia, 2013. p. 32.

70



[22] J. P. Cariou, “Pulsed lidars,” in Remote Sensing for Wind Energy, DTU Wind
Energy-E-Report-0029(EN), June 2013, ch. 5, pp. 104-121.

[23] M. Pitter, C. Slinger, and M. Harris, “Introduction to continuous-wave doppler
lidar,” in Remote Sensing for Wind Energy, DTU Wind Energy-E-Report-
0029(EN), June 2013, ch. 4, pp. 72-103.

[24] R. S. Hansen and C. Pedersen, “All semiconductor laser Doppler anemometer
at 1.55µm,” Opt. Express, vol. 16, no. 22, p. 18288, 2008.

[25] P. J. Rodrigo and C. Pedersen, “Field performance of an all-semiconductor laser
coherent Doppler lidar,” Opt. Lett., vol. 37, no. 12, p. 2277, 2012.

[26] Martion O. L. Hansen. Aerodynamics of Wind Turbines. 2nd ed. ISBN: 978-1-
84407-438-9. Earthscan, London Sterling, VA. 2008

[27] Panofsky, H. (1974). The atmospheric boundary layer below 150 metres. Annual
Review of Fluid Mechanics 6, 147–177.

[28] Freris, L., editor (1990). Wind Energy Conversion Systems. Prentice Hall, Hert-
forshire, UK.

[29] Walker, J. and Jenkins, N. (1997). Wind Energy Technology. John Wiley &
Sons, Chichester, UK.

[30] Johann Friedrich Gülich (2010). Centrifugal Pumps (2nd ed.). Berlin: Springer-
Verlag. ISBN 978-3-642-12823-3.

[31] Stull RB. An Introduction to Boundary Layer Meteorology, Vol. 13. Springer:
New York City, 1988.

[32] M. Born and J.R. Oppenheimer, Ann. Phys. 87, 457 (1927).

[33] D. F. Swinehart. J. Chem. Educ. 1962, 39, 7, 333. July 1, 1962

[34] Jonathan Mitschele. J. Chem. Educ. 1996, 73, 11, A260. November 1, 1996

[35] Collis, R. T. H. (1966) “Lidar: a New Atmospheric Probe,” Q. J. R. Meteorol.
Soc., 92, 220–230.

[36] F. G. Fernald: Appl. Opt. 23, 652 (1984)

[37] J. D. Klett: Appl. Opt. 20, 211 (1981)

71



[38] F.G. Fernald, B.M. Herman, J.A. Reagan: J. Appl. Meteorol. 11, 482 (1972)

[39] Y. Sasano, E.V. Browell, S. Ismail: Appl. Opt. 24, 3929 (1985)

[40] D. Schlipf, S. Kapp, J. Anger, O. Bischoff, M. Hofsäß, A. Rettenmeier, U.
Smolka, and M. Kühn, “Prospects of optimization of energy production by
LiDAR assisted control of wind turbines,” in Proceedings of the European Wind
Energy Association annual event, Brussels, Belgium, 2011.

[41] D. Schlipf, A. Rettenmeier, F. Haizmann, M. Hofsäß, M. Courtney, and P. W.
Cheng, “Model based wind vector field reconstruction from lidar data,” in Pro-
ceedings of the German Wind Energy Conference DEWEK, Bremen, Germany,
2012.

[42] Boquet M., Parmentier R. and Cariou J. P. (2009) Analysis and optimization
of pulsed Doppler lidar in complex terrain. EWEC, Marseille

[43] Boquet M., Parmentier R. and Cariou J. P. (2010) Correction of pulsed wind
lidars bias in complex terrain. ISARS

[44] Jonkman B. “TurbSim User’s Guide: Version 1.50,” NREL/TP-500-46198, Gol-
den, CO: National Renewable Energy Laboratory, 2009.

[45] Dunne, F.; Pai, L.-Y.; Wright A.D.; Jonkman, B.; Kelley, N.; Simley, E. “Adding
Feedforward Blade Pitch Control for Load Mitigation in Wind Turbines: Non-
causal Series Expansion, Preview Control, and Optimized FIR Filter Methods,”
in Proc. 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 2011.

[46] Simley, E.; Pao, L.-Y.; Frehlich, R.; Jonkman, B.; Kelley, N. “Analysis of Wind
Speed Measurements Using Coherent LIDAR for Wind Preview Control,” in
Proc. 49th AIAA Aerospace Sciences Meeting, Orlando, FL, January 2011.

[47] Dunne, F.; Pao, L.; Wright, A.; Jonkman, B.; Kelley, N. “Combining Standard
Feedback Controllers with Feedforward Blade Pitch Control for Load Mitigation
in Wind Turbines,” in Proc. 48th AIAA Aerospace Sciences Meeting, Orlando,
FL, January 2010.

[48] Pielke, R.A.; Panofsky, H.A. “Turbulence Characteristics along Several Towers,”
Boundary Layer Meteorology, Vol. 1, No. 2, 1970, pp. 115-130.

72



[49] Beare, B.; MacVean, M.; Holstag, A.; Cuxart, J.; Esau, I.; Golaz, J.; Jimenez,
M.; Khairoutdinov, M.; Kosovic, B.; Lewellen, D.; Lund, T.; Lundquist, J.;
McCabe, A.; Moene, A.; Noh, Y.; Raasch, S.; Sullivan, P. “An Intercomparison
of Large-Eddy Simulations of the Stable Boundary Layer,” Boundary Layer
Meteorology, Vol. 118, No. 2, Dec. 2006, pp. 247–272.

[50] Schlipf, D. “Wind Turbine Control Using Lidar: Notes to Presentation,” in PhD
Summer School: Remote Sensing for Wind Energy, Roskilde, Denmark, June
2011.

73


	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	The Problem
	The Aim
	Objectives
	Significance
	Scope of Work
	Limitation of Work

	Literature Review
	Wind Turbines and Wind Modeling
	The Physics of Wind Energy
	What is a Wind Turbine?
	Wind Modeling

	LIDAR and Lidar Modeling
	Lidar Operating Principle
	Lidar Components
	Lidar Modeling

	Correlation between Wind Systems and LiDAR Systems

	Models and Methodology
	Classical Model
	Structural Mechanics
	Modal shape functions and Principle of Virtual Work
	Cyclic Loading

	Fluid Mechanical Models
	Rotational Effects
	Forces in the Rotating Frame of Reference
	Boundary Layer Assumptions
	Attached Flow on a Rotating Blade

	Quantum Mechanical Model
	Quantum Scattering
	Lidar Equation
	Elastic-Backscattered Lidar

	Correlation models and algorithm for field reconstruction
	Wind Fields and Wind Evolution Models
	The Great Plains-Low Level Jet Wind Field
	Exponential Wind Evolution Model
	LES Stable Boundary Layer Wind Field


	Results and Discussions
	Lidar Measurement Coherence
	Components of Measurement Coherence
	Lidar Measurements of Evolving Wind Fields
	Measurements Using the Exponential Wind Evolution Model

	Conclusions
	Summary
	Perspectives (Future Outlook)

	Bibliography

