# A MODIFIED SUBGRADIENT EXTRAGRADEINT METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN REAL BANACH SPACES 

## A Thesis Presented to the Department of

## Pure and Applied Mathematics

African University of Science and Technology

In Partial Fulfilment of the Requirements for the Degree of

Master of Science

## By

OSISIOGU, ONYEKACHI OLUSEYI

Abuja, Nigeria.

December, 2017.

This is to certify that the thesis titled "MODIFIED SUBGRADIENT EXTRAGRADEINT METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN REAL BANACH SPACES" submitted to the school of postgraduate studies, African University of Science and Technology (AUST), Abuja, Nigeria for the award of the Master's degree is a record of original research carried out by Osisiogu, Onyekachi Oluseyi in the Department of Pure and Applied Mathematics.

# A MODIFIED SUBGRADIENT EXTRAGRADEINT METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN REAL BANACH SPACES <br> BY <br> OSISIOGU, ONYEKACHI OLUSEYI <br> A THESIS APPROVED BY DEPARTMENT OF PURE AND APPLIED MATHEMATICS 

## RECOMMENDED:

Supervisor: PROF. C.E. CHIDUME

RECOMMENDED:

Co-Supervisor: DR. M.S. MINJIBIR

RECOMMENDED:

Head, Department of Pure and Applied Mathematics

APPROVED BY:

Chief Academic Officer

Date
© 2017
Osisiogu, Onyekachi Oluseyi


#### Abstract

Let $E$ be a 2-uniformly convex and uniformly smooth real Banach space with dual space $E^{*}$. Let $A: C \rightarrow E^{*}$ be a monotone and Lipschitz continuous mapping and $U: C \rightarrow C$ be relatively nonexpansive. An algorithm for approximating the common elements of the set of fixed points of a relatively nonexpansive map $U$ and the set of solutions of a variational inequality problem for the monotone and Lipschitz continuous map $A$ in $E$ is constructed and proved to converge strongly.


Keywords- Subgradient extragradient algorithm, monotone map, relatively nonexpansive map, Lipschitz map.

## Acknowledgement

First and above all, I praise God, the Almighty for providing me this opportunity and granting me the capability to proceed successfully. I would like to thank my supervisor, Prof. C.E Chidume, for the patient guidance, corrections, encouragement and advice he has provided throughout my time as his student. My utmost gratitude to Dr. M.S. Minjibir, my co-supervisor whose sincerity and encouragement I will never forget. Furthermore, I would like to appreciate all my Professors who have taught me, particularly, Prof. Gane Samb Lo, Prof. N. Djittè, Prof. K. Ezzinbi and Prof. J. Djoko for their advice and encouragement. My regards extend to the Ph.D. students, especially Mr. Emmanuel Otubo and Mr. Ogonnaya Romanus for their assistance. Many thanks go to the Management of the African University of Science and Technology and to African Capacity Building Foundation (ACBF) for their sponsorship, contributions and support. A big thanks to Miss Amaka Udigwe, the Administrative Assistant to the Vice President (Academic).

I must express my gratitude to my parents and my siblings for their support and encouragement. I would particularly like to single out Miss Victoria U. Nnyaba, I want to thank you for being my inspiration as I hurdle all the obstacles in the completion of this thesis and your constant encouragement throughout my studies. I am indebted to the members of the family of Dr. Alabi for their important support to my achievements.

I want to specially thank Miss Lois Okereke and Mr. Abubakar Adamu for being a source of inspiration throughout my M.Sc. program. I will forever be grateful. Many thanks go to BCC members; thank you for allowing the Lord to use you to affect my life positively; your contributions will not be forgotten in a hurry. My classmates, my friends who also supported me, I cannot find the words to say how thankful I am.

This thesis is dedicated to Almighty God.
Certification ..... i
Approval ..... ii
Abstract ..... iii
Acknowledgement ..... iv
Dedication ..... v
1 Introduction ..... 1
1.1 Background of study ..... 1
1.2 Variational inequality problem ..... 2
1.3 Fixed Point Problem ..... 3
2 Literature Review ..... 4
2.1 Review ..... 4
2.1.1 Nonexpansive Mapping ..... 6
3 Theory and Methods ..... 9
3.1 Definitions ..... 9
3.2 Metric Projection Operator ..... 11
3.2.1 Calculating the projection onto a closed convex set in Hilbert spaces ..... 19
4 Main Result ..... 23
4.1 Introduction ..... 23
4.2 Convergence theorem ..... 23
5 Application ..... 29
5.1 Strong Convergence Theorem for a Countable Family of Relatively Nonexpansive Mappings ..... 29
6 Conclusion ..... 31
Bibliography ..... 32
3.1 Metric Projection ..... 12
3.2 Lattice for Spaces ..... 15

### 1.1 Background of study

The notion of monotone operators was introduced by Zarantonello [Zarantonello, 1960], Minty [Minty, 1962] and Kac̆urovskii [Kac̆urovskii, 1960]. Monotonicity conditions in the context of variational methods for nonlinear operator equations were also used by Vainberg and Kac̆urovskii [Vainberg et al., 1959].

A map $A: D(A) \subset H \rightarrow H$ is monotone if

$$
\langle A x-A y, x-y\rangle \geq 0 \quad \forall x, y \in H .
$$

Consider the problem of finding the equilibrium states of the system described by

$$
\begin{equation*}
\frac{d u}{d t}+A u=0 \tag{1.1}
\end{equation*}
$$

where $A$ is a monotone-type mapping on a real Hilbert space. This equation describes the evolution of many physical phenomena which generate energy over time. It is known that many physically significant problems in different areas of research can be transformed into an equation of the form

$$
\begin{equation*}
A u=0 . \tag{1.2}
\end{equation*}
$$

At equilibrium state, equation (1.1) reduces to equation (1.2) whose solutions, in this case, correspond to the equilibrium state of the system described by equation (1.1). Such equilibrium points are very desirable in many applications, for example, economics, ecology, physics and so on.

### 1.2 Variational inequality problem

Let $C$ be a nonempty, closed and convex subset of a real normed space $E$ with dual space $E^{*}$. Let $A: C \subset E \rightarrow E^{*}$ be a nonlinear operator. The classical variational inequality problem is the following: find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0 \forall y \in C . \tag{1.3}
\end{equation*}
$$

The set of solutions of inequality (1.3) is denoted by $\operatorname{VI}(C, A)$. The variational inequality problem is connected with convex minimization, fixed point problem, zero of nonlinear operator and so on.

Variational inequality has been shown to be an important mathematical model in the study of many real problems, in particular equilibrium problems. It provides us with a tool for formulating and qualitatively analyzing the equilibrium problems in terms of existence and uniqueness of solutions, stability, and sensitivity analysis, and provides us with algorithms for computational purposes.

For example, in optimization, we consider $f:[a, b] \rightarrow \mathbb{R}$ differentiable. It is well known that such $f$ has a minimizer, say $x^{*} \in[a, b]$. We have the following cases:

1. $x^{*}=a \Rightarrow f^{\prime}\left(x^{*}\right) \cdot\left(x-x^{*}\right) \geq 0 \quad \forall x \in[a, b]$
2. $x^{*}=b \Rightarrow f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right) \geq 0 \quad \forall x \in[a, b]$
3. $x^{*} \in(a, b) \Rightarrow f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)=0 \quad \forall x \in[a, b]$

Thus, setting $C=[a, b], A=f^{\prime}$ we have

$$
x^{*} \text { is a minimizer } \Rightarrow\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \forall x \in C .
$$

In general, in Euclidean $n$-dimensional $\mathbb{R}^{n}$, the variational inequality (1.3) becomes $\left(y-x^{*}\right)^{\top} A x^{*} \geq$ $0 \forall y \in C$. This is equivalent to $y^{\top} A x^{*} \geq x^{* \top} A x^{*} \forall y \in C$. Thus, $x^{*}$ is a solution to the minimization problem

$$
\left\{\begin{array}{l}
\min y^{\top} A x^{*} ; \\
y \in C,
\end{array}\right.
$$

i.e.

$$
x^{*} \in V I(C, A) \Leftrightarrow x^{*} \text { solves }\left\{\begin{array}{l}
\min y^{\top} A x^{*} ; \\
y \in C .
\end{array}\right.
$$

### 1.3 Fixed Point Problem

In 1922, Banach [Banach, 1922] published his fixed point theorem known as Banach's Contraction Mapping Principle using the concept of Lipschitz mapping. A fixed point of an operator $T$ is a solution of the equation $x=T x$. The set of fixed points of $T$ is denoted by $F(T)$. $T$ is called a contraction if there exists a fixed $L<1$ such that

$$
\begin{equation*}
\|T x-T y\| \leq L\|x-y\| \text { for all } x, y \in E . \tag{1.4}
\end{equation*}
$$

A contraction mapping is also known as a Banach contraction. If inequality (1.4) holds for $L=1$, then $T$ is called nonexpansive and if inequality (1.4) holds for fixed $L<\infty$, then $T$ is called Lipschitz continuous. Clearly, for the mapping $T$, the following obvious implications hold:

$$
\text { Contraction } \Longrightarrow \text { Nonexapansive } \Longrightarrow \text { Lipschitz continuous }
$$

The concept of fixed points makes sense only when the map $T$ maps the space into itself, but this concept does not make sense when $T$ maps the space into its dual.

Our main focus in this thesis is to construct an iterative algorithm that converges strongly to a solution of the set of fixed point problems of a relatively nonexpansive mapping and the set of variational inequality problems for monotone and Lipschitz continuous mapping on a 2 -uniformly convex and uniformly smooth real Banach space.

## Literature Review

In this chapter, we deal with other work done in this area of research.

### 2.1 Review

The variational inequality theory has its origin in the works of Stampacchia (see [Stampacchia, 1964]) and Fichera (see [Ficher, 1963-1964]). This theory does not only provide powerful techniques for studying problems arising in various branches of mathematics, but also in mechanics, transportation, economics equilibrium or contact problems in elasticity. For instance, the moving boundary value problem, the traffic assignment problem, saddle point problem, the free boundary value problem can be characterized as variational inequality problems (see [Baiocchi et al., 1984, Bertsekas et al., 1982, Dafermos, 1990]).

Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex subset of $H$. The following variational inequality problem is studied: find $u \in C$ such that

$$
\begin{equation*}
\langle v-u, A u\rangle \geq 0 \quad \forall v \in C, \tag{2.1}
\end{equation*}
$$

where $A: H \rightarrow H$ is a single-valued map. Various iterative methods for solving problem (2.1) have been proposed and analyzed in Hilbert spaces or more general real Banach spaces when $A$ is monotone and Lipschitz, strongly monotone and Lipschitz or inverse-strongly monotone.

In order to solve a saddle point problem, Korpelevič (1976) proposed the so-called extragradient method in a real Hilbert space $H$ and is given as follows:

## Algorithm 2.1.

$$
\left\{\begin{array}{l}
x_{0} \in C  \tag{2.2}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
x_{n+1}=P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right)
\end{array}\right.
$$

for all $n \geq 0$, where $\lambda_{n} \in\left(0, \frac{1}{k}\right), C$ is closed convex subset of $R^{n}$ and A is monotone and $k$-Lipschitz continuous map of $C$ into $R^{n}$. He proved that if $\operatorname{VI}(C, A)$ is nonempty, the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, generated by (2.2), converge to some point $z \in V I(C, A)$.

The extragradient method has received great attention by many authors who developed and improved it in various ways. In the case when $C$ has a simple structure and the projections onto it can be evaluated readily, the extragradient method is very useful. Now, if $C$ is any closed and convex set, one has to calculate in each iterate two projections onto $C$ of $H$. Therefore, Censor et al. in 2011 modified the extragradient method and proposed the following iterative algorithm:

## Algorithm 2.2.

$$
\left\{\begin{array}{l}
x_{0} \in H,  \tag{2.3}\\
y_{n}=P_{C}\left(x_{n}-\lambda A x_{n}\right), \\
T_{n}=\left\{w \in H:\left\langle x_{n}-\lambda A\left(x_{n}\right)-y_{n}, w-y_{n}\right\rangle \leq 0\right\} \\
x_{n+1}=P_{T_{n}}\left(x_{n}-\lambda A y_{n}\right),
\end{array}\right.
$$

for all $n \geq 0$.

We observe that Algorithm 2.2 replaces the second projection onto the closed and convex subset $C$ in Algorithm 2.1 with the one onto the subgradient half-space $T_{n}$. The modified algorithm is called the subgradient extragradient method for variational inequality problem in real Hilbert space $H$. Censor et al. proved that Algorithm 2.2 converges weakly to a solution of variational inequality (2.1) in a real Hilbert space.

By modifying the extragradient method, Nadezhkina and Takahashi [Nadezhkina et al., 2006] were able to prove a weak convergence result. More precisely, given a nonempty, closed and convex set $C \subset H$, a nonexpansive mapping $S: C \rightarrow C$ and a monotone and $k$-Lipschitz continuous mapping $A: C \rightarrow H$, they introduced the following iterative algorithm in order to find an element of $F(S) \cap V I(C, A)$.

## Algorithm 2.3.

$$
\left\{\begin{array}{l}
x_{0}=x \in C  \tag{2.4}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S y_{n},
\end{array}\right.
$$

for all $n \geq 0$, where $\left\{\alpha_{n}\right\}$ is a sequence on $(0,1),\left\{\lambda_{n}\right\}$ is a sequence in $\left(0, \frac{1}{k}\right)$ and $P_{C}$ is the metric projection of $H$ onto $C$. It is shown that if $F(S) \cap V I(C, A) \neq \emptyset$, then the sequence generated by Algorithm (2.3) converges weakly to some $z \in F(S) \cap V I(C, A)$.

In 2006, to obtain strong convergence, Nadwzhkina and Takahashi [Nadezhkina et al., 2006] introduced an iterative scheme by a hybrid method and proved strong convergence of the sequence generated by their algorithm to a point of $F(S) \cap V I(C, A)$ and it is as follows:

## Algorithm 2.4.

$$
\left\{\begin{array}{l}
x_{0} \in C,  \tag{2.5}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
z_{n}=\alpha_{n} x_{n}+\left(1+\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right), \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

for all $n \geq 0$, where $0 \leq \alpha_{n} \leq c<1$ and $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right)$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to the some point $z \in F(S) \cap V I(C, A)$.

In this thesis, we introduced a subgradient extragradient-like approximation method. The method produces sequences which are shown to converge strongly to a common element of the set of fixed points of a relatively nonexpansive mapping and the set of solutions of a variational inequality problem for a monotone and Lipschitz continuous mapping.

### 2.1.1 Nonexpansive Mapping

The study of the existence of fixed points of nonexpansive mappings was initiated in 1965 by Browder [Browder, 1965], Göhde [Göhde et al., 1965] and Kirk [Kirk, 1965] independently. Indeed, Browder and Göhde obtained an existence theorem for a nonexpansive mapping on a uniformly convex Banach space, while Kirk obtained the same result in a reflexive Banach space using the normal structure property. In this thesis we study the nonexpansivity of the so called relatively nonexpansive mappings.

In a paper of Eldred et al. (2005) two results about the existence of fixed points for relatively nonexpansive mapping were obtained. As the authors explain in the introduction, the significance of these two results lies in the fact that relatively nonexpansive assumption is much weaker than the assumption of nonexpansivity.

It is known that for a nonexpansive mapping $T$ with $F(T):=\{x \in D(T): T x=x\} \neq \emptyset$, the classical Picard iterative sequence $x_{n+1}, x_{0} \in D(T)$ does not always converge to a fixed point of $T$, assuming existence. To see this, consider the following example of the rotation of the unit ball around the origin of co-ordinates in $\mathbb{R}^{2}$ which is a nonexpansive map with the origin as its unique fixed point, the Picard iteration would not converge to the fixed point if for example, $x_{0}=(1,0)$. Krasnoselskii (1957) showed that in this example, the recursion formula:

$$
x_{0} \in E, x_{n+1}=\frac{1}{2} x_{n}+\frac{1}{2} T x_{n}, \quad n \geq 0
$$

would converge to the fixed point. That is, taking the auxilliary nonexpansive mapping $\frac{1}{2}(I+T)$, where $I$ denotes the identity transformation of the plane instead of by the usual Picard iterates, $x_{n+1}=T x_{n}, x_{0} \in K, n \geq 0$. Schacfer (1957) showed that the constant $\frac{1}{2}$ is not crucial. He proved that the recursion formula: $x_{0} \in E$,

$$
\begin{equation*}
x_{n+1}=(1-\lambda) x_{n}+\lambda T x_{n}, \quad n=0,1,2, \ldots ; \lambda \in(0,1), \tag{2.6}
\end{equation*}
$$

would converge to the fixed point. The recursion formula (2.6) is still being studied in connection with other nonlinear operators.

However, the most general iterative scheme now studied is the following: $x_{0} \in K$,

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} T x_{n}, \quad n \geq 0 \tag{2.7}
\end{equation*}
$$

where $\left\{c_{n}\right\}$ is a sequence in $(0,1)$ satisfying the following conditions:
(i) $\sum_{n=0}^{\infty} c_{n}=\infty$, (ii) $\lim _{n \rightarrow \infty} c_{n}=0$ (see for example [Chidume, 1981], [Edelstein et al., 1973] and [Ishikawa, 1976]). The sequence $\left\{x_{n}\right\}$ generated by (2.7) is generally referred to as the Mann sequence in the light of Mann [Mann, 1953]. It is know that the sequence defined by (2.7) converges weakly to a fixed point of a nonexpansive map $T$. To obtain strong convergence which is desirable in several applications, a key step is to first establish that the sequence $\left\{x_{n}\right\}$ defined by (2.6) is an approximate fixed point sequence, i.e., that the sequence satisfies the following condition:

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 \tag{2.8}
\end{equation*}
$$

That is, if the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded, Ishikawa [Ishikawa, 1976] proved that the sequence is an approximate fixed point sequence. The recursion formula (2.6) is consequently called the Krasnoselskii-Mann formula for finding fixed points of nonexpansive mappings. For several years, the study of Krasnoselskii-Mann iterative algorithm for approximating solutions of nonlinear equations became a flourishing area of research for many mathematicians. Edelstein and O'Brian [Edelstein et al., 1973] considered the recursion formula (2.6) and proved that if $K$ is bounded,
then the convergence in $(2.8)$ is uniform. Chidume (1981) considered the recursion formula (2.7), introduced the concept of admissible sequences and proved that if $K$ is bounded, then the convergence in (2.8) is uniform for the sequence defined by (2.7).

In the recent years, the definition of relatively nonexpansive mapping has been presented and studied by many authors. It is known that if we are in a Hilbert space a relatively nonexpansive map reduces to a quasi-nonexpansive map.

In this chapter, we give some definitions of most of the terms and concepts we shall use.

### 3.1 Definitions

Let $H$ be a real Hilbert space. A nonlinear operator $A: D(A) \subset H \rightarrow 2^{H}$ is called monotone if

$$
\begin{equation*}
\langle u-v, x-y\rangle \geq 0 \quad \forall u \in A x, v \in A y . \tag{3.1}
\end{equation*}
$$

We do not require that $A x$ be nonempty. The domain of $A$ is the set $D(A)=\{x \in E: A x \neq \emptyset\}$. If $A$ is single-valued, it is called monotone if

$$
\begin{equation*}
\langle A x-A y, x-y\rangle \geq 0 \forall x, y \in H \tag{3.2}
\end{equation*}
$$

and it is called strongly monotone if there exists $\alpha \in(0,1)$ such that for all $x, y \in D(A)$, the following inequality holds:

$$
\langle A x-A y, x-y\rangle \geq \alpha\|x-y\|^{2} .
$$

For example; let $C$ be a closed and convex nonempty subset of a real Hilbert space $H$ and let $U$ be a nonexpansive map of $C$ into itself: $\|U(x)-U(y)\| \leq\|x-y\|$ for all $x, y \in C$. Let $I$ denote the
identity map in $H$; then $A=I-U$ is monotone, with $D(A)=C$. Indeed, we have for all $x, y \in C$,

$$
\begin{aligned}
\langle A x-A y, x-y\rangle & =\langle x-U x-y+U y, x-y\rangle \\
& =\langle x-y-(U x-U y), x-y\rangle \\
& =\langle x-y, x-y\rangle-\langle U x-U y, x-y\rangle \\
& =\|x-y\|^{2}-\langle U x-U y, x-y\rangle \\
& \geq\|x-y\|^{2}-\|U x-U y\| \cdot\|x-y\| \\
& \geq\|x-y\|^{2}-\|x-y\|^{2}=0 .
\end{aligned}
$$

Hence, $A: H \rightarrow H$ defined by $A=I-U$ is monotone.

Also, consider the next example. Let $f: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex and proper function. Then, the subdifferential of $f$ at $x \in H$ is the map $\partial f: H \rightarrow 2^{H}$ defined by

$$
\begin{equation*}
\partial f(x)=\left\{x^{*} \in X^{*}:\left\langle x^{*}, y-x\right\rangle \leq f(y)-f(x) \forall y \in X\right\} . \tag{3.3}
\end{equation*}
$$

Thus, for all $x, y \in X, u \in \partial f(x)$ and $v \in \partial f(y)$ implies

$$
f(y)-f(x) \geq\langle u, y-x\rangle \text { and } f(x)-f(y) \geq\langle v, x-y\rangle .
$$

Adding the inequalities we get

$$
0 \leq\langle u-v, x-y\rangle .
$$

Hence, $\partial f: H \rightarrow 2^{H}$ is a monotone operator on $H$. Now, $0 \in \partial f(x) \Leftrightarrow f(x) \leq f(y) \forall y \in H$, by definition This implies that $0 \in \partial f(x)$ if and only if $x$ is a global minimizer of $f$. If $\partial f \equiv A$, it follows that solving $0 \in A u$ is solving for a minimizer of $f$. If the operator $A$ is single-valued, then inclusion $0 \in A u$ reduces to equation (1.2).

Let $H$ be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Let $C$ be a closed convex nonempty subset of $H$.

Definition 3.1. A mapping $A: C \rightarrow H$ is called $\gamma$-inverse strongly monotone if there exists a real number $\gamma>0$ such that

$$
\begin{equation*}
\langle A x-A y, x-y\rangle \geq \gamma\|A x-A y\|^{2} \forall x, y \in C . \tag{3.4}
\end{equation*}
$$

Definition 3.2. Let $T: D(T) \subset E \rightarrow R(T) \subset E$ be a map, where $D(T)$ denotes the domain of $T$ and $R(T)$ denotes the range of $T$. A point $x \in D(T)$ is called a fixed point of the map $T$ if and only if $T x=x$. The set of fixed points of a mapping $T$ denoted by $F(T)$ is defined by $F(T):=\{x \in D(T)$ : $T x=x\}$.

Definition 3.3. A map $T$ with domain $D(T)$ and range $R(T)$ in $E$ is called $L$-Lipschitz if and only if there exists a constant $L>0$ such that for all $x, y \in D(T)$,

$$
\|T x-T y\| \leq L\|x-y\| .
$$

It is easy to see that a $\gamma$-inverse-strongly monotone mapping $A$ is monotone and $\frac{1}{\gamma}$-Lipschitz continuous but converse is not true. In fact, for $x, y \in C$, from Definition 3.1 and $\gamma>0$ we have

$$
\begin{aligned}
\langle A x-A y, x-y\rangle & \geq \gamma\|A x-A y\|^{2} \\
& \geq 0 .
\end{aligned}
$$

Also, from Cauchy-Schwartz's like inequality and $\gamma>0$ we have

$$
\begin{aligned}
\gamma\|A x-A x\|^{2} & \leq\langle A x-A y, x-y\rangle \\
& \leq\|A x-A y\|\|x-y\|
\end{aligned}
$$

Thus, $\|A x-A y\| \leq \frac{1}{\gamma}\|x-y\|$. However, taking $A x=\sin x, x \in C:=[0,2 \pi]$, we see that

$$
\begin{aligned}
\|A x-A y\| & =\|\sin x-\sin y\| \\
& =\left|\cos a_{x, y}\right|\|x-y\| \quad \text { (for some } a_{x, y} \text { between } x \text { and } y, \text { by Mean Value Theorem) } \\
& \leq\|x-y\| \forall x, y \in C .
\end{aligned}
$$

Thus, $A$ is 1 -Lipschitz, i.e., it is nonexpansive. However, $A$ is not monotone (as the sine function is not monotone increasing). Hence, $A$ is not $\gamma$-inverse strongly monotone.

Definition 3.4 (Convex function). Let $E$ be a real normed linear space. The function $f: C \rightarrow$ $\mathbb{R} \cup\{+\infty\}, C$ convex subset of $E$, is said to be convex if for all $x, y \in E$ and for every $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

### 3.2 Metric Projection Operator

We define some nonlinear functional and operators.

Metric projection operators in Hilbert and Banach spaces are widely used to solve many problems in different areas of mathematics such as fixed point theory, optimization theory, nonlinear programming, game theory and variational inequalities (see [Chidume et al., 2005], [Singh, 1997], [Das et al., 1981], [Kazmi, 1997]). In Hilbert spaces, these problems have been sufficiently studied and there are many interesting results (see [Deutsch, 2001], [Mhaskar et al., 2000]). But it is difficult to transfer these results into Banach spaces using the metric projection operator because the metric projection operator in Banach spaces does not possess a number of properties which
make them so effective in Hilbert spaces. For instance, in a Hilbert space, a metric projection operator is monotone (accretive) and nonexpansive which leads to a variety of applications of this operator in analysis. Now, metric projection operators in Banach space do not have the properties mentioned above although they were actively investigated and used in various applications. In 1994, Ya. I. Alber introduced other kinds of projections to replace the metric projection, which is a natural extension of the classical metric projection in Hilbert spaces ([Alber, 1996]).

Definition 3.5 (Metric Projection). Let $C \subset H$ be a nonempty subset and $x \in H$. If there exists a point $y \in C$ such that

$$
\|y-x\| \leq\|z-x\|
$$

for any $z \in C$, then $y$ is called a metric projection of $x$ onto $C$ and is denoted by $P_{C} x$ (see Figure 3.1). That is, the operator $P_{C}: H \rightarrow C \subseteq H$ is called metric projection operator if it yields the correspondence between an arbitrary point $x \in H$ and nearest point $y \in C$ according to minimization problem

$$
P_{C} x=\left\{y: y \in C,\|y-x\|=\inf _{z \in C}\|z-x\|\right\} .
$$



Figure 3.1: Metric Projection

In a Hilbert space $H$ the metric projection operator satisfies the following inequality

$$
\left\|P_{C} x-x\right\| \leq\|x-y\| \forall y \in C
$$

by definition. Furthermore, we can obtain

$$
\left\|P_{C} x-P_{C} y\right\| \leq\|x-y\| \quad \forall x, y \in H .
$$

It also satisfies a stronger property:

$$
\left\|P_{C} x-x\right\|^{2} \leq\|x-y\|^{2}-\left\|P_{C} x-y\right\|^{2} \quad \forall y \in C .
$$

It turns out that in Banach spaces these properties do not hold in general. Alber introduced a new operator which is call generalized projection map. First, we introduce the notion of projection
defined by Ya. Alber which will be central to all the computation in this thesis. In what follows, we shall denote by $\langle f, x\rangle$ the duality paring of $x \in E$ and $f \in E^{*}$, i.e., $\langle f, x\rangle=f(x)$. We note that if $E$ is an inner product space, the duality paring becomes the inner product.

Definition 3.6 (Duality map). Let $\langle\cdot \cdot \cdot\rangle$ denote the duality pairing of elements of $E$ and $E^{*}$. The normalized duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined by

$$
J(x)=\left\{x^{*} \in E^{*} \mid\left\langle x^{*}, x\right\rangle=\|x\|^{2},\|x\|=\left\|x^{*}\right\|\right\}, \quad x \in E .
$$

Proposition 3.7. Let $E$ be a real normed space. Then, the duality map $J: E \rightarrow 2^{E^{*}}$ is well defined. That is, for every $x \in E, J x \neq \emptyset$.

Proof. Let $x \in E$. We consider two cases.
Case 1: Suppose $x=0$. We take $x^{*}=0$. Then the argument follows.
Case 2: Suppose $x \neq 0$, then $\|x\| x \neq 0$. As a consequence of the Hahn Banach theorem, there exists $y^{*} \in E^{*}$ such that $\left\|y^{*}\right\|=1$ and $\left\langle y^{*},\|x\| x\right\rangle=\|x\| x\| \|=\|x\|^{2}$. Now

$$
\left\langle\|x\| y^{*}, x\right\rangle=\left\langle y^{*},\|x\| x\right\rangle=\|x\|^{2} .
$$

Take $x^{*}=\|x\| y^{*} \in E^{*}$. Then, $x^{*} \in J x$. Hence, $J x \neq \emptyset \forall x \in E$.
Definition 3.8 (Reflexive). Let $E$ be a Banach space and let $G: E \rightarrow E^{* *}$ be the canonical injection from $E$ into $E^{* *}$, that is $\langle G x, f\rangle=\langle f, x\rangle, \forall x \in E, f \in E^{*}$. Then, $E$ is said to be reflexive if $G$ is subjective, i.e., $G(E)=E^{* *}$.

Definition 3.9 (Smooth space). A normed space $E$ is called smooth if and only if for all $x \in E$ with $\|x\|=1$, there exists a unique $x^{*} \in E^{*}$ such that $\left\|x^{*}\right\|=1$ and $\left\langle x, x^{*}\right\rangle=\|x\|$.

Equivalently a normed space $E$ is smooth if the

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{3.5}
\end{equation*}
$$

exists for all $x, y \in U$, where $U=\{x \in E:\|x\|=1\}$.
Definition 3.10 (Uniformly smooth space). A normed space $E$ is said to be uniformly smooth if for all $\epsilon>0$, there exists $\delta>0$ such that if $\|x\|=1$ and $\|y\| \leq \delta$, then

$$
\|x+y\|+\|x-y\|<2+\epsilon\|y\| .
$$

Equivalently a normed space $E$ is uniformly smooth if (3.5) is attained uniformly in $x, y \in U$.
Definition 3.11 (Modulus of smoothness). Let $E$ be a normed linear space with $\operatorname{dim}(E) \geq 2$. The modulus of smoothness of $E$ is the function $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\begin{aligned}
\rho_{E}(\tau) & :=\sup \left\{\frac{\|x+y\|+\|x-y\|}{2}-1:\|x\|=1 ;\|y\|=\tau\right\} \\
& =\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1:\|x\|=1 ;\|y\|=1\right\} .
\end{aligned}
$$

Definition 3.12 (Strictly convexity). A normed space $E$ is said to be strictly convex if for any $x, y \in E, x \neq y,\|x\|=\|y\|=1$ we have that $\|\lambda x+(1-\lambda) y\|<1 \forall \lambda \in(0,1)$.

Definition 3.13 (Uniformly convexity). A normed space $E$ is said to be uniformly convex if for each $\epsilon \in(0,2]$, there exists $\delta>0$ such that for any $x, y \in U,\|x-y\| \geq \epsilon$ implies $\left\|\frac{x+y}{2}\right\|<1-\delta$. It is known that a uniformly convex Banach space is reflexive and strictly convex.

Definition 3.14 (Modulus of convexity). A function $\delta:[0,2] \rightarrow[0,1]$ called the modulus of convexity of $E$ is defined as follows:

$$
\delta(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in U,\|x-y\| \geq \epsilon\right\}
$$

Using this idea of modulus convexity, one can define uniform convexity of a normed linear space. In fact, a normed linear space $E$ is uniformly convex if and only if $\delta(\epsilon)>0$ for all $\epsilon \in(0,2]$.

Remark 3.15. Geometrically, a normed space $E$ is uniformly convex if and only if the unit ball centred at the origin is "uniformly round". We list some examples of uniformly convex spaces.

1. Let $E$ be the Cartesian plane, $\mathbb{R}^{2}$ with the norm defined for each $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ by $\|x\|_{2}=\left[\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}\right]^{\frac{1}{2}}$. Then $\mathbb{R}^{2}$ endowed with this norm is uniformly convex. But the space $\mathbb{R}^{2}$ defined for each $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ by $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$ and $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ are not uniformly convex.
2. Every real inner product space $H$ is uniformly convex (see e.g., [Chidume, 2009]).
3. $L_{p}\left(\right.$ or $\left.l_{p}\right)$ spaces, $1<p<\infty$, are uniformly convex.

Some of the properties of modulus of convexity are:

1 The modulus of convexity $\delta_{E}$ is a non-decreasing function.

2 The modulus of convexity is continuous (see [Gurarri, 1967]).

Remark 3.16. Properties of the normalized duality map in different Banach spaces (see [Takahashi, 2000], [Vainberg, 1973] and [Chidume, 2009]).

1. For any $x \in E, J(x)$ is nonempty, bounded, closed and convex.
2. $J$ is a homogeneous operator in arbitrary Banach space $E$, that is, for any $x \in E$ and a real number $\alpha$,

$$
J(\alpha x)=\alpha J(x) .
$$

3. $J$ is a monotone operator in arbitrary Banach space $E$, that is, for any $x, y \in E, k \in J(x)$ and $l \in J(y)$,

$$
\langle k-l, x-y\rangle \geq 0
$$

4. If $E$ is smooth, then $J$ is a single-valued mapping.
5. If $E$ is reflexive, then $J$ is a map of $E$ onto $E^{*}$.
6. If $E$ is uniformly smooth, then $J$ a is norm-to-norm uniformly continuous on each bounded subset of $E$.
7. If $E$ is strictly convex, then $J$ is one-to-one, that is, $x \neq y \Rightarrow J(x) \cap J(y)=\emptyset$.
8. $J$ is the identity operator in Hilbert spaces.
9. If $E=L_{p}$ space $(2 \leq p<\infty)$, then $J: L_{p} \rightarrow L_{p}^{*}$ is Lipschitz.
10. If $E=L_{p}$ space $(1<p<2)$, then $J: L_{p} \rightarrow L_{p}^{*}$ is Hölder continuous.
11. If $E$ is reflexive and strictly convex Banach with a strictly convex dual $E^{*}$ and $J^{*}: E^{*} \rightarrow E$ is the normalized duality mapping in $E^{*}$, then $J^{-1}=J^{*}, J J^{*}=I_{E^{*}}$ and $J^{*} J=I_{E}$.

We have the following lattice below which shows the properties of $J$ on different normed linear spaces.

## LATTICE FOR SPACES



Figure 3.2: Lattice for Spaces

We are now ready to define the generalized duality map due to Alber [Alber, 1996].

Let $E$ be a smooth real Banach space. We define the following Lyapunov functional by:

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \forall x, y \in E, \tag{3.6}
\end{equation*}
$$

where $J$ is the normalized duality mapping from $E$ into $E^{*}$. This map has been studied by Alber and Guerre-Delabriere [Alber et al., 2001].

Remark 3.17. From the definition of the Lyapunov function $\phi$ we have the following properties;

1. If $E=H$, a real Hilbert space, then equation (3.6) reduces to $\phi(x, y)=\|x-y\|^{2}$ for $x, y \in H$.
2. For all $x, y \in E$,

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2} . \tag{3.7}
\end{equation*}
$$

3. For all $x, y, z \in E$

$$
\begin{equation*}
\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle . \tag{3.8}
\end{equation*}
$$

Proof. Let $x, y \in E$. Using definition of $\phi$ and Cauchy-Schwartz's like inequality we have

$$
\begin{aligned}
\phi(x, y) & =\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \\
& =(\|x\|+\|y\|)^{2} .
\end{aligned}
$$

Also, using $\langle x, J y\rangle \leq\|x \mid\| y \|$, we have

$$
\begin{aligned}
\phi(x, y) & =\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \\
& \geq\|x\|^{2}-2\|x\|\|y\|+\|y\|^{2} \\
& =(\|x\|-\|y\|)^{2} .
\end{aligned}
$$

Hence, $(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}$. Next, by expanding the RHS of equation (3.8), we have

$$
\begin{aligned}
\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle= & \|x\|^{2}-2\langle x, J z\rangle+\|z\|^{2}+\|z\|^{2}-2\langle z, J y\rangle+\|y\|^{2} \\
& +2\langle x-z, J z\rangle-2\langle x-z, J y\rangle \\
= & \|x\|^{2}-2\langle x, J z\rangle+\|z\|^{2}+\|z\|^{2}-2\langle z, J y\rangle+\|y\|^{2} \\
& +2\langle x, J z\rangle-2\langle z, J z\rangle-2\langle x, J y\rangle+2\langle z, J y\rangle \\
= & \|x\|^{2}+\|y\|^{2}-2\langle x, J y\rangle=\phi(x, y) .
\end{aligned}
$$

Lemma 3.18. Let $E$ be a strictly convex and smooth Banach space, then $\phi(x, y)=0$ if and only if $x=y$.

Proof. Let $x, y \in E$. We show first show that if $\phi(x, y)=0$ then $x=y$. From equation (3.7), we have that $0 \leq(\|x\|-\|y\|)^{2} \leq \phi(x, y)=0 \Rightarrow\|x\|=\|y\|$. Then

$$
\begin{aligned}
\phi(x, y) & =\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}=0 \\
& =2\|x\|^{2}-2\langle x, J y\rangle=0
\end{aligned}
$$

This implies $\langle x, J y\rangle=\|x\|^{2}=\|y\|^{2}$. From the definition of $J$, we have $J x=J y$. Using the fact that $J$ is strictly convex, we have that $J$ is one-to-one, hence $x=y$. We can easily see that if $x=y$ then by definition of $\phi$, we have that $\phi(x, y)=0$.

Lemma 3.19. Let $E$ be a reflexive, strictly convex and smooth real Banach space and $C$ be a nonempty, closed and convex subset of $E$. For each $x \in E$, there exists a unique element $z_{x} \in C$ such that

$$
\phi\left(z_{x}, x\right)=\min _{y \in C} \phi(y, x) .
$$

To prove the Lemma, we use the following result:

Lemma 3.20 ([Chidume, 2009]). Let $E$ be a reflexive real Banach space and $f: E \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex proper lower semi-continuous function. Suppose $\lim _{\|x\| \rightarrow \infty} f(x)=+\infty$. Then $\exists \bar{x} \in C$ such that $f(\bar{x}) \leq f(x) \forall x \in E$, i.e.,

$$
f(\bar{x})=\inf _{x \in E} f(x)=\min _{x \in E} f(x) .
$$

Proof. Let $C$ be a closed, convex and nonempty subset of a reflexive real Banach space $E$ and let $\phi_{x}: C \rightarrow \mathbb{R}$ defined by

$$
\phi_{x}(y)=\phi(y, x) \quad \forall y \in C .
$$

To show existence, we first show that the function $\phi_{x}$ is convex and lower semi-continuous.
Let $y_{1}, y_{2} \in C$ and $\lambda \in(0,1)$. We want to show that

$$
\phi_{x}\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \leq \lambda \phi_{x}\left(y_{1}\right)+(1-\lambda) \phi_{x}\left(y_{2}\right) .
$$

Let $x \in E$. Since $E$ is strictly convex, $\|\cdot\|^{2}$ is a strictly convex function. Therefore, we have

$$
\begin{aligned}
\phi_{x}\left(\lambda y_{1}+(1-\lambda) y_{2}\right) & =\phi\left(\lambda y_{1}+\left(1-\lambda y_{2}, x\right)\right. \\
& =\left\|\lambda y_{1}+(1-\lambda) y_{2}\right\|^{2}-2\left\langle\lambda y_{1}+(1-\lambda) y_{2}, J x\right\rangle+\|x\|^{2} \\
& <\lambda\left\|y_{1}\right\|^{2}+(1-\lambda)\left\|y_{2}\right\|^{2}-2\left\langle\lambda y_{1}, J x\right\rangle-2\left\langle(1-\lambda) y_{2}, J x\right\rangle+\|x\|^{2} \\
& =\lambda\left\|y_{1}\right\|^{2}+(1-\lambda)\left\|y_{2}\right\|^{2}-2\left\langle\lambda y_{1}, J x\right\rangle-2\left\langle(1-\lambda) y_{2}, J x\right\rangle+\lambda\|x\|^{2}+(1-\lambda)\|x\|^{2} \\
& =\lambda \phi\left(y_{1}, x\right)+(1-\lambda) \phi\left(y_{2}, x\right) \\
& =\lambda \phi_{x}\left(y_{1}\right)+(1-\lambda) \phi_{x}\left(y_{2}\right) .
\end{aligned}
$$

Hence, the function $\phi_{x}$ is convex, in fact strictly convex. Next we show lower semi-continuity. It suffices to show that the function $\phi_{x}$ is continuous. Let $\left(y_{n}\right)_{n} \subseteq E$ such that $y_{n} \rightarrow y$. We want to show that $\phi_{x}\left(y_{n}\right) \rightarrow \phi_{x}(y)$ as $n \rightarrow \infty$. By definition we have $\phi_{x}\left(y_{n}\right)=\phi\left(y_{n}, x\right)=\left\|y_{n}\right\|^{2}-2\left\langle y_{n}, J x\right\rangle+$ $\|x\|^{2}$. Using the fact that $\|\cdot\|^{2}$ and duality paring are continuous, taking limit as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\left\|y_{n}\right\|^{2}-2\left\langle y_{n}, J x\right\rangle+\|x\|^{2} & \rightarrow\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2} \\
& =\phi(y, x)=\phi_{x}(y) .
\end{aligned}
$$

Hence, the function $\phi_{x}$ is continuous which implies that it is lower semi-continuous. Secondly, we show that the function $\phi_{x}$ is coercive. By inequality (3.7) i.e., $\phi_{x}(y)=\phi(y, x) \geq(\|y\|-\|x\|)^{2} \forall x, y \in$ $E$. As $\|y\| \rightarrow \infty$ we have that $\phi(y, x) \rightarrow \infty$. This implies that $\phi_{x}$ is coercive. Clearly, $\phi_{x}$ is proper (in fact it is real-valued). Therefore, by Lemma 3.20 we have that there exists $y^{*} \in C$ such that $\phi_{x}\left(y^{*}\right) \leq \phi_{x}(y) \quad \forall y \in C$.

For uniqueness: suppose there exists $y_{1}, y_{2} \in C$ such that $y_{1} \neq y_{2}$ and $\phi_{x}\left(y_{1}\right)=\phi_{x}\left(y_{2}\right) \leq \phi_{x}(y)$ $\forall y \in E$. Then, by strict convexity of $\phi_{x}$, we have

$$
\begin{aligned}
\phi_{x}\left(y_{1}\right)=\phi\left(y_{1}, x\right) & \leq \phi\left(\lambda y_{1}+(1-\lambda) y_{2}, x\right) \\
& <\lambda \phi\left(y_{1}, x\right)+(1-\lambda) \phi\left(y_{2}, x\right) \\
& =\phi\left(y_{1}, x\right)
\end{aligned}
$$

a contradiction. Hence $y_{1}=y_{2}$. This implies that it is unique.
Definition 3.21 (Generalized projection of Alber [Alber, 1996]). The map $\Pi_{C}: E \rightarrow C$, defined by $\Pi_{C} x=z_{x}$, is called the generalized projection map from $E$ onto $C$.

Remark 3.22. In Hilbert space, $\Pi_{C}=P_{C}$.
Define a map $V: E \times E^{*} \rightarrow \mathbb{R}$ by

$$
V\left(x, x^{*}\right)=\|x\|^{2}-2\left\langle x, x^{*}\right\rangle+\left\|x^{*}\right\|^{2} .
$$

If $E$ is reflexive and strictly convex Banach with a strictly convex dual $E^{*}$ and $J^{*}: E^{*} \rightarrow E$ is the normalized duality mapping in $E^{*}$, then $J^{-1}=J^{*}$. That is $J^{-1}$ exists. Then, it is easy to see that

$$
\begin{equation*}
V\left(x, x^{*}\right)=\phi\left(x, J^{-1}\left(x^{*}\right)\right) \forall x \in E, x^{*} \in E^{*} . \tag{3.9}
\end{equation*}
$$

Proof. Let $x \in E$ and $x^{*} \in E^{*}$.
Using definition and the fact that $J^{-1}$ is a duality map, i.e., $\left\|J^{-1}\left(x^{*}\right)\right\|=\left\|x^{*}\right\|$, we have

$$
\begin{aligned}
V\left(x, x^{*}\right) & =\|x\|^{2}-2\left\langle x, x^{*}\right\rangle+\left\|x^{*}\right\|^{2} \\
& =\|x\|^{2}-2\left\langle x, J\left(J^{-1}\left(x^{*}\right)\right)\right\rangle+\left\|J^{-1}\left(x^{*}\right)\right\|^{2} \\
& =\phi\left(x, J^{-1}\left(x^{*}\right)\right) .
\end{aligned}
$$

Using the definition of $V$ above, Alber proved the following lemma which we shall use in the sequel.

Lemma 3.23 (Alber, [Alber, 1996]). Let $E$ be a reflexive, strictly convex and smooth real Banach space with $E^{*}$ as its dual. Then,

$$
\begin{equation*}
V\left(x, x^{*}\right)+2\left\langle J^{-1} x^{*}-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right) \tag{3.10}
\end{equation*}
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}$.

Now, we describe the properties of the operator $\Pi_{C}$ :

Lemma 3.24 ([Alber, 1996], [Kamimura et al., 2002]). Let $C$ be a nonempty closed and convex subset of a smooth real Banach space $E$ and $x \in E$. Then $x_{0}=\Pi_{C} x$ if and only if $\left\langle x_{0}-y, J x-J x_{0}\right\rangle \geq$ $0, \forall y \in C$.

Lemma 3.25. Let $E$ be a reflexive, strictly convex and smooth real Banach space and $C$ be a nonempty closed and convex subset of $E$. Then for any $x \in E$,

$$
\begin{equation*}
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x), \quad \forall y \in C \tag{3.11}
\end{equation*}
$$

Proof. By definition Lemma 3.24 and putting $x_{0}=\Pi_{C} x$, we have

$$
\begin{aligned}
\phi(y, x)-\phi\left(x_{0}, x\right)-\phi\left(y, x_{0}\right)= & \|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2}-\left\|x_{0}\right\|^{2}+2\left\langle x_{0}, J x\right\rangle-\|x\|^{2} \\
& -\|y\|^{2}+2\left\langle y, J x_{0}\right\rangle-\left\|x_{0}\right\|^{2} \\
= & -2\langle y, J x\rangle-\left\|x_{0}\right\|^{2}+2\left\langle x_{0}, J x\right\rangle+2\left\langle y, J x_{0}\right\rangle-\left\|x_{0}\right\|^{2} \\
= & -2\left\langle y-x_{0}, J x\right\rangle+2\left\langle y, J x_{0}\right\rangle-2\left\|x_{0}\right\|^{2} \\
= & -2\left\langle y-x_{0}, J x\right\rangle+2\left\langle y, J x_{0}\right\rangle-2\left\langle x_{0}, J x_{0}\right\rangle \\
= & -2\left\langle y-x_{0}, J x\right\rangle+2\left\langle y, J x_{0}\right\rangle+2\left\langle y-x_{0}, J x_{0}\right\rangle-2\left\langle y, J x_{0}\right\rangle \\
= & \left\langle y-x_{0}, J x_{0}-J x\right\rangle \geq 0 \quad \forall y \in C .
\end{aligned}
$$

Hence, $\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x), \quad \forall y \in C$.

Remark 3.26. The operator $\Pi_{C}$ is fixed in each point $y \in C$, i.e., $\Pi_{C} y=y$.

### 3.2.1 Calculating the projection onto a closed convex set in Hilbert spaces

Iterative algorithms involving projection onto closed, convex sets abound in the literature. While these algorithms can be shown to converge strongly to the desired points, implementation of these algorithms can be very difficult when the convex set is arbitrary. For this reason, much effort has been made to replace arbitrary convex sets with, for example, half-spaces. This is because
projection onto half-spaces can be computed with ease.

In this section, we give formulas that can be used to calculate projections onto a half-space. In this thesis, convergence of the algorithm is established using a special choice of half-space.

Example 3.27. Suppose that $u$ is a non-zero vector in $H$ and $\eta \in \mathbb{R}$. We set $C=\{x \in H:\langle x, u\rangle=\eta\}$. Then $C$ is convex, closed and nonempty. Indeed, for $\frac{\eta u}{\|u\|^{2}} \in C$ and continuity of inner product together with its linearity in the first component makes $C$ closed and convex respectively. For this set $C$, we have (see, for example [Heinz et al., 2011])

$$
P_{C} x=x+\frac{\eta-\langle x, u\rangle}{\|u\|^{2}} u .
$$

In the next example, we provide a closed-form expression for the projection onto a half space.

Example 3.28. Let $u \in H, \eta \in \mathbb{R}, u \neq 0$ and set $C=\{x \in H:\langle x, u\rangle \leq \eta\}$. As in the example above, $C$ is a closed, convex and nonempty subset of $H$. In this case, we have (see, for example [Heinz et al., 2011])

$$
(\forall x \in H) P_{C} x= \begin{cases}x, & \text { if }\langle x, u\rangle \leq \eta ; \\ x+\frac{\eta-\langle x, u\rangle}{\|u\|^{2}} u, & \text { if }\langle x, u\rangle>\eta .\end{cases}
$$

Lemma 3.29. Let $E$ be a 2-uniformly convex and smooth real Banach space. Then, for every $x, y \in E, \phi(x, y) \geq c_{1}\|x-y\|^{2}$, where $c_{1}>0$.

Lemma 3.30 ([Kamimura et al., 2002]). Let $E$ be a real smooth and uniformly convex Banach space, and let $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences of $E$. If $\phi\left(y_{n}, z_{n}\right) \rightarrow 0$ and either $\left\{y_{n}\right\}$ or $\left\{z_{n}\right\}$ is bounded, then $y_{n}-z_{n} \rightarrow 0$.

Next we define a relatively nonexpansive mapping.

Let $C$ be a nonempty closed and convex subset of a smooth, strictly convex and reflexive real Banach space $E$ and $T$ be a map from $C$ into itself. We recall that a point $x \in C$ is said to be a fixed point of $T$ if $T x=x$. We denote the set of fixed points of $T$ by $F(T)$. A point $p \in C$ is said to be an asymptotic fixed point of $T$ if there exists $\left\{x_{n}\right\}$ in $C$ which converges weakly to $p$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. We denote the set of all asymptotic fixed points of $T$ by $\hat{F}(T)$. Following Matsushita and Takahashi [Matsushita et al., 2004], a map $T$ of $C$ into itself is said to be relatively nonexpansive if the following conditions are satisfied:
(i) $F(T)$ is nonempty;
(ii) $\phi(u, T x) \leq \phi(u, x) \forall u \in F(T), x \in C$;
(iii) $\hat{F}(T)=F(T)$.

Lemma 3.31. Let $E$ be a strictly convex and smooth real Banach space and $C$ be a closed convex subset of $E$. Let $T$ be a relatively nonexpansive mapping from $C$ into itself. Then $F(T)$ is closed and convex.

Proof. We first show that $F(T)$ is closed. Let $\left(x_{n}\right)_{n} \subseteq F(T)$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. We want to show that $x^{*} \in F(T)$. Using the fact the $T$ is relatively nonexpansive, we have

$$
\phi\left(x_{n}, T x^{*}\right) \leq \phi\left(x_{n}, x^{*}\right) \forall x_{n} \in F(T) \forall n \in \mathbb{N} .
$$

This implies that, using the fact that $\phi$ is continuous in the first component, we have

$$
\begin{aligned}
\phi\left(x^{*}, T x^{*}\right) & =\lim _{n \rightarrow \infty} \phi\left(x_{n}, T x^{*}\right) \\
& \leq \lim _{n \rightarrow \infty} \phi\left(x_{n}, x^{*}\right) \\
& =\phi\left(x^{*}, x^{*}\right) \\
& =0
\end{aligned}
$$

By Lemma 3.18, we get $x^{*}=T x^{*}$. So we have $x^{*} \in F(T)$. Next, we show that $F(T)$ is convex. Let $x, y \in F(T)$ and $t \in(0,1)$, we put $k=t x+(1-t) y$. We show that $k \in F(T)$, i.e., $T k=k$. Let $z \in T(k)$. Then, we have

$$
\begin{aligned}
\phi(k, z)= & \|k\|^{2}-2\langle k, J z\rangle+\|z\|^{2} \\
= & \|k\|^{2}-2\langle t x+(1-t) y, J z\rangle+\|z\|^{2} \\
= & \|k\|^{2}-2 t\langle x, J z\rangle-2(1-t)\langle y, J z\rangle+\|z\|^{2} \\
= & \|k\|^{2}+t\|x\|^{2}-t\|x\|^{2}-2 t\langle x, J z\rangle+(1-t)\|y\|^{2}-(1-t)\|y\|^{2}-2(1-t)\langle y, J z\rangle \\
& +t\|z\|^{2}+(1-t)\|z\|^{2} \\
= & \|k\|^{2}+t\left(\|x\|^{2}-2\langle x, J z\rangle+\|z\|^{2}\right)+(1-t)\left(\|y\|^{2}-2\langle y, J z\rangle+\|z\|^{2}\right)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
= & \|k\|^{2}+t \phi(x, z)+(1-t) \phi(y, z)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
\leq & \|k\|^{2}+t \phi(x, k)+(1-t) \phi(y, k)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
= & \|k\|^{2}+t\left(\|x\|^{2}-2\langle x, J k\rangle+\|k\|^{2}\right)+(1-t)\left(\|y\|^{2}-2\langle y, J k\rangle+\|k\|^{2}\right)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
= & \|k\|^{2}-2\langle t x, J k\rangle-2\langle(1-t) y, J k\rangle+t\|k\|^{2}+(1-t)\|k\|^{2} \\
= & \|k\|^{2}-2\langle t x+(1-t) y, J k\rangle+\|k\|^{2} \\
= & \|k\|^{2}-2\langle k, J k\rangle+\|k\|^{2} \\
= & 0 .
\end{aligned}
$$

By Lemma 3.18, we obtain $k=z$. Hence, $k=T(k)$. So, $k \in F(T)$. Therefore $F(T)$ is convex.

It is known that the generalized projection $\Pi_{C}$ of $E$ onto $C$ is relatively nonexpansive if $E$ is smooth, strictly convex, and reflexive.

We denote by $N_{C}(v)$ the normal cone for $C$ at a point $v \in C$, that is

$$
N_{C}(v)=\left\{x^{*} \in E^{*}:\left\langle v-y, x^{*}\right\rangle \geq 0, \forall y \in C .\right.
$$

Lemma 3.32 ([Rockafellar, 1970]). Let C be a nonempty closed convex subset of a real Banach space E and A be a monotone and hemicontinuous map from C into $E^{*}$ with $\mathrm{C}=\mathrm{D}(\mathrm{A})$. Let T be a map defined by:

$$
T v= \begin{cases}A v+N_{C}(v), & v \in C,  \tag{3.12}\\ \emptyset, & v \notin C .\end{cases}
$$

Then, $T$ is maximal monotone and $T^{-1}(0)=V I(C, A)$.
Lemma 3.33 ([Kohsaka et al., 2008]). Let C be a closed convex subset of a uniformly smooth and 2-uniformly convex Banach space E and $\left(S_{i}\right)_{i=1}^{\infty}$ be a countable family of relatively nonexpansive maps such that $\bigcap_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$. Let $\left(\eta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ and $\left(\mu_{i}\right)_{i=1}^{\infty} \subset(0,1)$ be sequences such that $\sum_{i=1}^{\infty} \eta_{i}=1$. Consider the map $T: C \rightarrow E$ defined by

$$
\begin{equation*}
T x=J^{-1}\left(\sum_{i=1}^{\infty} \eta_{i}\left(\mu_{i} J x+\left(1-\mu_{i}\right) J S_{i} x\right)\right), \text { for each } x \in C \tag{3.13}
\end{equation*}
$$

Then, $T$ is relatively nonexpansive and $F(T)=\bigcap_{i=1}^{\infty} F\left(S_{i}\right)$.

## Main Result

### 4.1 Introduction

In this chapter, we construct an iterative sequence which converges strongly to a point common to the set of fixed points of a relatively nonexpansive mapping $U$ and the solution set of a variational inequality problems for a monotone and Lipschitz continuous mapping $A$.

In what follows, except if stated otherwise, $E$ is a 2 -uniformly convex and uniformly smooth real Banach space with dual space $E^{*}$ and 2 -uniform convexity constant $c_{1}$. Also $C$ is a nonempty closed convex subset of $E, A: C \rightarrow E^{*}$ is monotone and Lipschitz continuous on $C$ with Lipschitz constant $L>0, U: C \rightarrow C$ is relatively nonexpansive and $F(U) \cap V I(C, A) \neq \emptyset$.

### 4.2 Convergence theorem

We shall study the following algorithm.

$$
\left\{\begin{array}{l}
x_{0} \in C_{0}=C,  \tag{4.1}\\
y_{n}=\Pi_{C} J^{-1}\left(J x_{n}-\mu A x_{n}\right), \\
T_{n}=\left\{x \in E:\left\langle J x_{n}-\mu A x_{n}-J y_{n}, x-y_{n}\right\rangle \leq 0\right\}, \\
z_{n}=\Pi_{T_{n}} J^{-1}\left(J x_{n}-\mu A y_{n}\right), \\
\left.w_{n}=J^{-1}\left((1-\alpha) J x_{n}+\alpha J U z_{n}\right)\right) \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, w_{n}\right) \leq \phi\left(z, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0},
\end{array}\right.
$$

where $\alpha \in(0,1), \mu$ and $c$ are positive constants.
Remark 4.1. We show that $\left\{x_{n}\right\}$ generated by the algorithm is well-defined. We observe that $C \subseteq$ $T_{n}$. To see this, let $y \in C$, we show that $y \in T_{n}$. From Algorithm 4.1, $y_{n}=\Pi_{C} J^{-1}\left(J x_{n}-\mu A x_{n}\right)$ implies that $\left\langle x-y_{n}, J y_{n}-J x_{n}+\mu A x_{n}\right\rangle \geq 0 \forall x \in C$. In particular for $y=x$ we get $\left\langle y-y_{n}, J y_{n}-J x_{n}+\mu A x_{n}\right\rangle \geq 0$, this implies that $y \in T_{n}$. Hence $C \subseteq T_{n}$. Thus, the half-space $T_{n}$ is nonempty, closed and convex. Also we show that $C_{n}$ is closed, convex and nonempty.
Claim: $C_{n}$ is closed and convex for all $n \geq 0$.
Proof of Claim: To show that $C_{n}$ is convex $\forall n \geq 0$. We proceed by induction. Clearly, for $n=0$, $C_{n}=C$ is convex. Suppose $C_{n}$ is convex for some $n \geq 0$. We show that $C_{n+1}$ is convex.
From Algorithm 4.1, $C_{n+1}=\left\{z \in C_{n}: \phi\left(z, w_{n}\right) \leq \phi\left(z, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)\right\}$ which is equivalent to $\left\{z \in C_{n}: 2\left\langle z, J x_{n}-J w_{n}\right\rangle \leq-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)+\left\|x_{n}\right\|^{2}-\left\|w_{n}\right\|^{2}\right\}$.
Let $x, y \in C_{n+1}$ and $\lambda \in[0,1]$. We show that $\lambda x+(1-\lambda) y \in C_{n+1}$.

$$
\begin{aligned}
2\left\langle\lambda x+(1-\lambda) y, J x_{n}-J w_{n}\right\rangle= & 2\left\langle\lambda x, J x_{n}-J w_{n}\right\rangle+2\left\langle(1-\lambda) y, J x_{n}-J w_{n}\right\rangle \\
= & 2 \lambda\left\langle x, J x_{n}-J w_{n}\right\rangle+2(1-\lambda)\left\langle y, J x_{n}-J w_{n}\right\rangle \\
\leq & \lambda\left[-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)+\left\|x_{n}\right\|^{2}-\left\|w_{n}\right\|^{2}\right] \\
& +(1-\lambda)\left[-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)+\left\|x_{n}\right\|^{2}-\left\|w_{n}\right\|^{2}\right] \\
= & -\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)+\left\|x_{n}\right\|^{2}-\left\|w_{n}\right\|^{2}
\end{aligned}
$$

Hence, we have that $C_{n}$ is convex for all $n \geq 0$. Next we show that $C_{n}$ is closed $\forall n \geq 0$. We proceed by induction. Clearly, for $n=0, C_{n}=C$ is closed. Suppose $C_{n}$ is closed for some $n \geq 0$, we show that $C_{n+1}$ is closed. Let $\left(v_{n}\right)_{n} \subseteq C_{n+1}$ such that $v_{n} \rightarrow \bar{v}$ as $n \rightarrow \infty$. It suffices to show that $\bar{v} \in C_{n+1}$. Now $v_{n} \in C_{n+1}$ implies $\phi\left(v_{n}, w_{n}\right) \leq \phi\left(v_{n}, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)$. But $\phi$ is continuous in the first component, so taking limit as $n \rightarrow \infty$, we have $\phi\left(\bar{v}, w_{n}\right) \leq \phi\left(\bar{v}, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)$. Hence $\bar{v} \in C_{n+1}$. Therefore, $C_{n}$ is closed $\forall n \geq 0$. Thus, $C_{n}$ is convex and closed for all $n \geq 0$. Therefore $\left\{x_{n}\right\}$ is well-defined as $C_{n}$ is closed, convex and nonempty $\left(\emptyset \neq \Omega \subset C_{n}\right)$.

The following Lemma will be used in what follows.
Lemma 4.2. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by (4.1). Then,

$$
\begin{equation*}
\phi\left(p, z_{n}\right) \leq \phi\left(p, x_{n}\right)-\left(1-\frac{\mu L}{c_{1}}\right)\left[\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right] \forall p \in V I(C, A) . \tag{4.2}
\end{equation*}
$$

Proof. Let $p \in F(U) \cap V I(C, A)$. Since $z_{n}=\Pi_{T_{n}} J^{-1}\left(J x_{n}-\mu A y_{n}\right)$, using Lemma 3.25 and the definition
of $\phi$, we estimate as follows

$$
\begin{align*}
\phi\left(p, z_{n}\right) & =\phi\left(p, \Pi_{T_{n}} J^{-1}\left(J x_{n}-\mu A y_{n}\right)\right) \\
& \leq \phi\left(p, J^{-1}\left(J x_{n}-\mu A y_{n}\right)\right)-\phi\left(z_{n}, J^{-1}\left(J x_{n}-\mu A y_{n}\right)\right) \\
& \leq \phi\left(p, x_{n}\right)-\phi\left(z_{n}, x_{n}\right)+2 \mu\left\langle p-z_{n}, A y_{n}\right\rangle \\
& \leq \phi\left(p, x_{n}\right)-\phi\left(z_{n}, x_{n}\right)+2 \mu\left\langle y_{n}-z_{n}, A y_{n}\right\rangle . \tag{4.3}
\end{align*}
$$

Thus, from definition of $\phi$, (3.8), Lemma 3.24, Lipschitz continuity of A and Lemma 3.29, we have

$$
\begin{align*}
\phi\left(z_{n}, x_{n}\right)-2 \mu\left\langle y_{n}-z_{n}, A y n\right\rangle & =\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)+2\left\langle y_{n}-z_{n}, J x_{n}-J y_{n}\right\rangle-2 \mu\left\langle y_{n}-z_{n}, A y_{n}\right\rangle \\
& =\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-2\left\langle z_{n}-y_{n}, J x_{n}-\mu A y_{n}-J y_{n}\right\rangle \\
& \geq \phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-2 \mu\left\langle z_{n}-y_{n}, A x_{n}-A y_{n}\right\rangle \\
& \geq \phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-2 \mu\left\|z_{n}-y_{n}\right\|\left\|A x_{n}-A y_{n}\right\| \\
& \geq \phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-2 L \mu\left\|z_{n}-y_{n}\right\|\left\|x_{n}-y_{n}\right\| \\
& \geq \phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-L \mu\left(\left\|z_{n}-y_{n}\right\|^{2}+\left\|x_{n}-y_{n}\right\|^{2}\right) \\
& \geq \phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)-\frac{\mu L}{c_{1}}\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right) \\
& =c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right) \tag{4.4}
\end{align*}
$$

where $c=1-\frac{\mu L}{c_{1}}$.
From inequalities (4.3) and (4.4), we have

$$
\begin{equation*}
\phi\left(p, z_{n}\right) \leq \phi\left(p, x_{n}\right)-c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right) . \tag{4.5}
\end{equation*}
$$

We now prove the following theorem.

Theorem 4.3. Let E be a 2-uniformly convex, uniformly smooth real Banach space and $C$ be a nonempty closed convex subset of $E$. Let $U: C \rightarrow C$ be a relatively nonexpansive mapping and $A: C \rightarrow E^{*}$ be a monotone and L-Lipschitz mapping on C. Let $\mu$ be a real number satisfying $\mu<\frac{c_{1}}{L}$. Suppose that $F(U) \cap \operatorname{VI}(C, A)$ is nonempty. Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ generated by Algorithm 4.1 converge strongly to $\Pi_{F(U) \cap V I(C, A)} x_{0}$.

Proof. We divide our proof into these steps.
Step 1: We show that $\Omega=F(U) \cap V I(C, A) \subset C_{n}$, for all $n \geq 0$. We proceed by induction. For $n=0$, we have that $\Omega \subset C_{n}$. Suppose $\Omega \subset C_{n}$ for some $n \geq 0$. We show that $\Omega \subset C_{n+1}$. Let $p \in \Omega$, then
using the fact that $U$ is relatively nonexpansive and Lemma 4.2, we have that

$$
\begin{aligned}
\phi\left(p, w_{n}\right) & =\phi\left(p, J^{-1}\left((1-\alpha) J x_{n}+\alpha J U z_{n}\right)\right) \\
& =V\left(p,(1-\alpha) J x_{n}+\alpha J U z_{n}\right) \\
& \leq(1-\alpha) \phi\left(p, x_{n}\right)+\alpha \phi\left(p, U z_{n}\right) \\
& \leq(1-\alpha) \phi\left(p, x_{n}\right)+\alpha\left[\phi\left(p, x_{n}\right)-c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)\right] \\
& =\phi\left(p, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right) .
\end{aligned}
$$

This implies that $p \in C_{n+1}$. Hence $\Omega \subset C_{n}, \forall n \geq 0$.

Step 2: We show that $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$ exists.
Since $x_{n}=\Pi_{C_{n}} x_{0}$ and $\Omega \subset C_{n} \forall n \geq 0$, then using Lemma 3.25, we have that for any $p \in \Omega$

$$
\begin{align*}
\phi\left(x_{n}, x_{0}\right) & \leq \phi\left(p, x_{0}\right)-\phi\left(p, x_{n}\right) \\
& \leq \phi\left(p, x_{0}\right) . \tag{4.6}
\end{align*}
$$

It follows that the sequence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded and so by inequality (3.7) $\left\{x_{n}\right\}$ is bounded. Since $C_{n+1} \subset C_{n} \forall n \geq 0$ and $x_{n}=\Pi_{C_{n}} x_{0}$, we obtain that for $x_{n+1} \in C_{n+1}$

$$
\begin{equation*}
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right) . \tag{4.7}
\end{equation*}
$$

Therefore, $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is monotone nondecreasing and bounded above by $\phi\left(p, x_{0}\right)$. Hence, $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)$ exists.

Step 3: We show $\left\{x_{n}\right\}$ converges to $\Pi_{F(U) \cap V I(C, A)} x_{0}$.
Using the fact that $x_{n}=\Pi_{C_{n}} x_{0}$ and $x_{n+1} \in C_{n}$, we have that for $m>n$,

$$
\begin{equation*}
\phi\left(x_{m}, x_{n}\right) \leq \phi\left(x_{m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right), \tag{4.8}
\end{equation*}
$$

this implies $\lim _{n \rightarrow \infty} \phi\left(x_{m}, x_{n}\right)=0$ and by Lemma 3.30 , we have

$$
\begin{equation*}
\left\|x_{n}-x_{m}\right\| \rightarrow 0 \text { as } n, m \rightarrow \infty . \tag{4.9}
\end{equation*}
$$

Hence $\left\{x_{n}\right\}$ is Cauchy which implies that there exists $x^{*} \in E$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. Since $\left\{x_{n}\right\}_{n \geq 1}$ is in $C$ and $C$ is closed, then $x^{*} \in C$.

So, from equation (4.9), we have for $m=n+1$. We get $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Again, since $x_{n+1} \in C_{n+1}$, we have

$$
\begin{align*}
\phi\left(x_{n+1}, w_{n}\right) & \leq \phi\left(x_{n+1}, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)  \tag{4.10}\\
& \leq \phi\left(x_{n+1}, x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{align*}
$$

and by Lemma 3.30, we have $\left\|x_{n+1}-w_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Thus,

$$
\left\|x_{n}-w_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-w_{n}\right\| \rightarrow 0 .
$$

We have $\left\|x_{n}-w_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Similarly, using the fact that $x_{n+1} \in C_{n+1}$ and using inequality (4.10), we have that

1. $\phi\left(z_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ which implies by Lemma 3.30 that $\left\|z_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
2. $\phi\left(y_{n}, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ which implies by Lemma 3.30 that $\left\|y_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Also,

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-z_{n}\right\| \rightarrow 0
$$

i.e., $\left\|x_{n}-z_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Now, using the fact that $J$ is norm-to-norm uniformly continuous on bounded sets and the fact that $\left\|x_{n}-w_{n}\right\| \rightarrow 0$, we have $\left\|J x_{n}-J w_{n}\right\| \rightarrow 0$, which implies that

$$
\left\|J x_{n}-J U z_{n}\right\|=\frac{1}{|\alpha|}\left\|J w_{n}-J x_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
$$

By the $\|\cdot\|$ to $\|\cdot\|$ uniform continuity of $J^{-1}$ on bounded sets, we have

$$
\left\|x_{n}-U z_{n}\right\| \rightarrow 0 \text {, as } n \rightarrow \infty .
$$

Thus,

$$
\left\|z_{n}-U z_{n}\right\| \leq\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-U z_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Therefore,

$$
\begin{equation*}
\left\|z_{n}-U z_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty . \tag{4.11}
\end{equation*}
$$

We now show that $x^{*} \in F(U) \cap V I(C, A)$. It suffices to show that $x^{*} \in F(U)$ and $x^{*} \in V I(C, A)$. But since $x_{n} \rightarrow x^{*}$ and $\left\|x_{n}-z_{n}\right\| \rightarrow 0$, we have that $z_{n} \rightarrow x^{*}$. Hence, using the fact that $U$ is relatively nonexpansive and from $\left\|z_{n}-U z_{n}\right\| \rightarrow 0, x^{*} \in F(U)$. Next, we show that $x^{*} \in V I(C, A)$.

From Lemma 3.32 we have that the map $T: E \rightarrow 2^{E^{*}}$ defined by

$$
T v= \begin{cases}A v+N_{C}(v), & \text { if } v \in C \\ \emptyset, & \text { if } v \notin C\end{cases}
$$

where $N_{C}(v)$ is the normal cone of $C$ at $v \in C$ is maximal monotone. For all $\left(v, u^{*}\right) \in G(T)$, we have the $u^{*}-A(v) \in N_{C}(v)$. By definition of $N_{C}(v)$, we find that

$$
\left\langle v-y, u^{*}-A v\right\rangle \geq 0 \quad \forall y \in C .
$$

Since $y_{n} \in C$, we have

$$
\begin{equation*}
\left\langle v-y_{n}, u^{*}\right\rangle \geq\left\langle v-y_{n}, A v\right\rangle . \tag{4.12}
\end{equation*}
$$

By the definition of $y_{n}\left(=\Pi_{C} J^{-1}\left(J x_{n}-\mu A x_{n}\right)\right)$ and Lemma 3.24 , we get

$$
\begin{equation*}
\left\langle v-y_{n}, A x_{n}\right\rangle \geq\left\langle v-y_{n}, \frac{J x_{n}-J y_{n}}{\mu}\right\rangle . \tag{4.13}
\end{equation*}
$$

Therefore, it follows from inequalities (4.12) and (4.13) and monotonicity of A that

$$
\begin{align*}
\left\langle v-y_{n}, u^{*}\right\rangle & \geq\left\langle v-y_{n}, A v\right) \\
& =\left\langle v-y_{n}, A v-A y_{n}\right\rangle+\left\langle v-y_{n}, A y_{n}-A x_{n}\right\rangle+\left\langle v-y_{n}, A x_{n}\right\rangle \\
& \geq\left\langle v-y_{n}, A y_{n}-A x_{n}\right\rangle+\left\langle v-y_{n}, \frac{J x_{n}-J y_{n}}{\mu}\right\rangle . \tag{4.14}
\end{align*}
$$

Since $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $A$ is $L$-Lipschitz continuous, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A y_{n}-A x_{n}\right\|=0 \tag{4.15}
\end{equation*}
$$

Taking limit in inequality (4.14) and using (4.15) with $y_{n} \rightarrow x^{*}$, we have $\left\langle v-x^{*}, u^{*}\right\rangle \geq 0 \forall\left(v, u^{*}\right) \in$ $G(T)$. Since $T$ is maximal monotone, we have $x^{*} \in T^{-1} 0=V I(C, A)$. Hence, $x^{*} \in V I(C, A)$. Therefore, $x^{*} \in F(U) \cap V I(C, A)$.

Next, we show the $\lim _{n \rightarrow \infty} x_{n}=x^{*}=\Pi_{F(U) \cap V I(C, A)} x_{0}$. Let $w=\Pi_{F(U) \cap V I(C, A)} x_{0}$. Using the fact that $x^{*} \in F(U) \cap V I(C, A)$, we have

$$
\begin{equation*}
\phi\left(w, x_{0}\right) \leq \phi\left(x^{*}, x_{0}\right) . \tag{4.16}
\end{equation*}
$$

Since $x_{n}=\Pi_{C_{n}} x_{0}$ and $w \in F(U) \cap V I(C, A) \subseteq C_{n}$, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(w, x_{0}\right) .
$$

But we have that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. This implies that by continuity of $\phi\left(\cdot, x_{0}\right)$, we have

$$
\begin{equation*}
\phi\left(x^{*}, x_{0}\right) \leq \phi\left(w, x_{0}\right) . \tag{4.17}
\end{equation*}
$$

Hence, with inequalities (4.16) and (4.17), we have

$$
\begin{equation*}
\phi\left(x^{*}, x_{0}\right)=\phi\left(w, x_{0}\right) . \tag{4.18}
\end{equation*}
$$

We observe that, from Lemma 3.25 and Lemma 3.18 and equation (4.18), we have

$$
\begin{aligned}
0 \leq \phi\left(x^{*}, w\right) & \leq \phi\left(x *, x_{0}\right)-\phi\left(w, x_{0}\right)=0 \\
\Rightarrow \phi\left(x^{*}, w\right) & =0 .
\end{aligned}
$$

Thus, $x^{*}=w=\Pi_{F(U) \cap V I(C, A)} x_{0}$.

## Application

### 5.1 Strong Convergence Theorem for a Countable Family of Relatively Nonexpansive Mappings

In this section, we prove a strong convergence theorem for relatively nonexpansive mappings in 2-uniformly convex and uniformly smooth Banach spaces. To this end, we need the following lemma.

Lemma 5.1 ([Kohsaka et al., 2008]). Let C be a closed convex subset of a uniformly smooth and 2-uniformly convex Banach space E and $\left(S_{i}\right)_{i=1}^{\infty}$ be a family of relatively nonexpansive maps such that $\bigcap_{i=1}^{\infty} F\left(S_{i}\right) \neq \emptyset$. Let $\left(\eta_{i}\right)_{i=1}^{\infty} \subset(0,1)$ and $\left(\mu_{i}\right)_{i=1}^{\infty} \subset(0,1)$ be sequences such that $\sum_{i=1}^{\infty} \eta_{i}=1$. Consider the map $T: C \rightarrow E$ defined by

$$
\begin{equation*}
T x=J^{-1}\left(\sum_{i=1}^{\infty} \eta_{i}\left(\mu_{i} J x+\left(1-\mu_{i}\right) J S_{i} x\right)\right) \text { for each } x \in C \tag{5.1}
\end{equation*}
$$

Then, $T$ is relatively nonexpansive and $F(T)=\bigcap_{i=1}^{\infty} F\left(S_{i}\right)$.
Theorem 5.2. Let $C$ be a nonempty, closed and convex of a 2-uniformly convex and uniformly smooth real Banach space $E$ such that $J(C)$ is convex. Let $A_{i}: E \rightarrow E^{*}, i=1,2, \ldots, N$ be a countable family of monotone and $L_{i}$-Lipschitz continuous maps. Let $U_{i}: C \rightarrow C, i=1,2,3, \ldots$, be a countable family of relatively nonexpansive maps such that $\bigcap_{i=1}^{\infty} F\left(U_{i}\right) \neq \emptyset$. Suppose $\left\{\eta_{i}\right\}_{i=1}^{\infty} \subset(0,1)$ and $\left\{\beta_{i}\right\}_{i=1}^{\infty} \subset(0,1)$ be sequences such that $\sum_{i=1}^{\infty} \eta_{i}=1$ and $U: C \rightarrow E$ defined by $U x=J^{-1}\left(\sum_{i=1}^{\infty} \eta_{i}\left(\beta_{i} J x+\left(1-\beta_{i}\right) J U_{i} x\right)\right)$ for each $x \in$ C. Let $\left\{x_{n}\right\}$ be generated by the following algorithm:

## Algorithm 5.3.

$$
\left\{\begin{array}{l}
x_{0} \in C, \\
y_{n}=\Pi_{C} J^{-1}\left(J x_{n}-\mu A_{i} x_{n}\right), \\
T_{n}=\left\{x \in E:\left\langle J x_{n}-\mu A_{i} x_{n}-J y_{n}, x-y_{n}\right\rangle \leq 0\right\}, \\
z_{n}=\Pi_{T_{n}} J^{-1}\left(J x_{n}-\mu A_{i} y_{n}\right), \\
w_{n}=J^{-1}\left((1-\alpha) J x_{n}+\alpha J U z_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, w_{n}\right) \leq \phi\left(z, x_{n}\right)-\alpha c\left(\phi\left(z_{n}, y_{n}\right)+\phi\left(y_{n}, x_{n}\right)\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0},
\end{array}\right.
$$

where $\alpha \in(0,1), \mu$ and $c$ are positive constants. Then the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ generated by Algorithm 5.3 converge strongly to $\Pi_{F(U) \cap V I(C, A)} x_{0}$.

Proof. From Lemma 5.1, $U$ is relatively nonexpansive and $F(U)=\bigcap_{i=1}^{\infty} F\left(U_{i}\right)$ and $V I(C, A)=$ $\bigcap_{i=1}^{\infty} V I\left(C, A_{i}\right)$. The conclusion follows from Theorem 4.3.

## CHAPTER 6

## Conclusion

Construction of fixed points is an important subject in nonlinear operator theory and its applications; in particular in image recovery and signal processing. In addition, several physical problems can be reduced to variational inequality problems. Such problems can be found in the theories of lubrication, filtrations and flows, moving boundary problems, to mention but few.

In this thesis, a subgradient extragradient method for finding a common element of the set of fixed points of relatively nonexpansive mapping and the set of solutions of variational inequality problem for monotone and Lipschitz continuous mapping is proposed. As a consequence of the result, a strong convergence theorem for approximating a common fixed point for a countable family of relatively nonexpansive mappings and an element of the solution set of variational inequality problems is obtained.

Our result extends and improves many recent and important results. For example, firstly, our result is proved in more general real Banach space than real Hilbert space - in a uniformly smooth and 2-uniformly convex real Banach space. This is an improvement of the result of Nadwzhkina and Takahashi [Nadezhkina et al., 2006] which was proved in a real Hilbert space. Secondly, our algorithm involves a parameter that is fixed. This reduces computational cost. This is an improvement of the result of Censor et al. [Censor et al., 2011] which involves parameters that are computed for each iteration. Finally, strong convergence theorem for obtaining a common element of the set of fixed points of relative nonexpansive mapping and the set of solutions of variational inequality problem for monotone and Lipschitz continuous mapping is obtained in this work. This is an improvement on the result of Censor et al. [Censor et al., 2011] where they
proved a weak convergence theorem for obtaining a solution of a variational inequality problem and a fixed point problem.

## Bibliography

[Alber, 1996] Ya. Alber, (1996) Metric and generalized projection operators in Banach spaces: properties and applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. G. Kartsatos, Ed.), Marcel Dekker, New York, pp. 15-50.
[Alber et al., 2001] Ya. Alber and S. Guerre-Delabriere (2001), On the projection methods for fixed point problems, Analysis (Munich), vol. 21, no. 1, pp. 17-39.
[Baiocchi et al., 1984] C. Baiocchi, A. Capelo, Variational and Quasi-Variational Inequalities, Wiley, New York.
[Banach, 1922] S. Banach (1922). Sur les oprations dans les ensembles abstraits et leur application aux èquations intègrales. Fundamenta Mathematicae, 3:133-181, 1922.
[Bertsekas et al., 1982] D.P. Bertsekas, E.M. Gafni (1982), Projection methods for variational inequalities with applications to the traffic assignment problem, Math. Prog. Study 17, 139159.
[Browder, 1965] Browder, FE, (1965): Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044.
[Censor et al., 2011] Censor, Y., Gibali, A. \& Reich, S. (2011), The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 , 318-335.
[Chidume, 1981] C.E. Chidume (1981), On the approximation of fixed points of nonexpansive mapping, Houston J. math., 345-554.
[Chidume et al., 2005] C. E. Chidume and J. Li (2005), Projection methods for approximating fixed points of Lipschitz suppressive operators, Panamer. Math. J. 15, no. 1, 29-39.
[Chidume, 2009] Charles Chidume (2009), Geometric properties of Banach spaces and nonlinear iterations, springer verlag series: Lecture notes in mathematics, Vol. 1965, ISBN 978-1-184882-189-7.
[Chidume, 2009] Charles Chidume (2009), Applicable Functional Analysis,ICTP, Trieste, Italy
[Dafermos, 1990] S. Dafermos, Exchange price equilibria and variational inequalities, Math. Programming 46, 391-402.
[Das et al., 1981] K. M. Das, S. P. Singh, and B. Watson (1981), A note on Mann iteration for quasinonexpansive mappings, Nonlinear Anal. 5, no. 6, 675-676.
[Deutsch, 2001] F. Deutsch (2001), Best Approximation in Inner Product Spaces, CMS Books in Mathematics 7, Springer-Verlag, New York.
[Edelstein et al., 1973] M. Edelstein and R.C. O’Brian (1973), Nonexpansive mappings, asymptotic regularity and successive approximation, J. London math. Soc. 17, no.3, 547-554.
[Eldred el al., 2005] A. A. Eldred, W. A. Kirk and P. Veeramani (2005), Proximinal normal structure and relatively nonexpansive mappings, Studia Math. 171 (3), 283-293.
[Ficher, 1963-1964] G. Fichera (1963-1964), Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Natur. Sez. la 7(8), 91-140.
[Göhde et al., 1965] Göhde (1965), D: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251-258.
[Gurarri, 1967] V.I. Gurarri (1967); Differential properties of the convexity moduli of Banach spaces, Mat.Issled.2, no.1, 141-148.
[Heinz et al., 2011] Heinz H. Bauschke and Patrick L. Combettes (2000), Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer New York.
[Ishikawa, 1976] S. Ishikawa (1976), Fixed points and iteration of nonexpansive mapping in a Banach space, Pro. Amer. math. Soc. 73, 61-71.
[Kac̆urovskii, 1960] R. I. Kac̆urovskii (1960), On monotone operators and convex functionals, Uspekhi Mathematicheskikh Nauk, vol. 15, no. 4, pp. 213-215.
[Kamimura et al., 2002] S. Kamimura and W. Takahashi (2002), Strong convergence of a proximaltype algorithm in a Banach space, SIAM J. Optim., vol. 13, no. 3, pp. 938-945.
[Kazmi, 1997] K. R. Kazmi (1997), Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl. 209, no. 2, 572-584.
[Kirk, 1965] Kirk, WA (1965): A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004-1006.
[Kohsaka et al., 2008] Kohsaka, F. and Takahashi, W. (2008): The set of common fixed points of an infinite family of relatively nonexpansive mappings, in Banach and Function Spaces Yokohama Publishers, Yokohama, Japan. II, 361-373.
[Korpelevic̆c, 1976] G. M. Korpelevic̆ (1976), An extragradient method for finding saddle points and for other problems, (Russian) Èkonom. i Mat. Metody, 12, 747-756.
[Krasnoselkii, 1957] M.A Krasnoselkii (1957), Two observations about the method of successive approximations, Uspehi Math. Nauk 10, Abt. 1, 131-140.
[Mann, 1953] W. R. Mann (1953), Mean value methods in iteration, Proc. Amer. Math. Soc., vol. 4, pp. 506-510.
[Matsushita et al., 2004] S. Matsushita and W. Takahashi (2004), Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 37-47.
[Mhaskar et al., 2000] H. N. Mhaskar and D. V. Pai (2000), Fundamentals of Approximation Theory, CRC Press,Narosa Publishing House, New Delhi.
[Minty, 1962] G. J. Minty (1962), Monotone (nonlinear) operators in Hilbert space, Duke Math. J, vol. 29, no. 4, pp. 341-346.
[Nadezhkina et al., 2006] N. Nadezhkina and W. Takahashi (2006), Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128, 191-201.
[Nadezhkina et al., 2006] N. Nadezhkina and W. Takahashi (2006), Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16, 1230-1241.
[Noor,2003] M.A. Noor (2003), New extragradient-type methods for general variational inequalities, J. Math. Anal. Appl., 277, 379-394.
[Rockafellar, 1970] R.T Rockafellar (1970); On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 75-85.
[Schaefer, 1957] H. Schaefer,(1957) Ber die Methode Sukzessiver Approximation, (German) Jber. Deutsch Math. Verein 59, Abt. 1, 131-140.
[Singh, 1997] S. P. Singh (1997), Ky Fan's best approximation theorems, Proc. Nat. Acad. Sci. India Sect. A 67, no. 1, 1-27.
[Stampacchia, 1964] G. Stampacchia, 1964 Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, 258, 4413-4416.
[Takahashi, 2000] W. Takahashi (2000), Nonlinear Functional Analysis, Yokohama Publishers, Yokohama.
[Takahashi et al. 2009] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal.45-57.
[Vainberg, 1973] M. M. Vainberg (1973), Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley \& Sons, New York-Toronto.
[Vainberg et al., 1959] M. M. Vainberg and R. I. Kacurovskii, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk 129, 1199-1202.
[Zarantonello, 1960] E. H. Zarantonello (1960), Solving functional equations by contractive averaging,Tech. Rep. 160, U. S. Army Math. Research Center, Madison, Wisconsin.

