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INTRODUCTION

The most popular method for studying stability of nonlinear systems is introduced by a
Russian Mathematician named Alexander Mikhailovich Lyapunov. His work ”The General
Problem of Motion Stability ” published in 1892 includes two methods: Linearization Method, and
Direct Method. His work was then introduced by other scientists like Poincare and LaSalle .
In chapter one of this work, we focussed on the basic concepts of the ordinary differential equations.
Also, we emphasized on relevant theroems in ordinary differential equations
In chapter two of this work, we study the existence and uniqueness of solutions of ordinary dif-
ferential equations. Also, relevant theorems and concepts in ordinary differential equations was
discussed in the chapter.
In chapter three, we study the stability of an equilibrium point and linearization principle. Also,
relevant theorems and concepts in stability of an equilibrium point and linearization principle was
discussed in the chapter
In chapter four, we study the various tools for determining stability of equilibrium points.
In chapter five, we discussed various applications of Lyapunov theorem, and LaSalle’s invariance
principle.
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CHAPTER 1

PRELIMINARIES

1.1 Definitions and basic Theorems

In this chapter, we focussed on the basic concepts of the ordinary differential equations. Also, we
emphasized on relevant theroems in ordinary differential equations.

Definition 1.1.1 An equation containing only ordinary derivatives of one or more dependent vari-
ables with respect to a single independent variable is called an ordinary differential equation ODE.
The order of an ODE is the order of the highest derivative in the equation. In symbol, we can
express an n-th order ODE by the form

x(n) = f(t, x, ..., x(n−1)) (1.1.1)

Definition 1.1.2 (Autonomous ODE ) When f is time-independent, then (1.1.1) is said to be
an autonomous ODE. For example,

x′(t) = sin(x(t))

Definition 1.1.3 (Non-autonomous ODE ) When f is time-dependent, then (1.1.1) is said to
be a non autonomous ODE. For example,

x′(t) = (1 + t2)y2(t)

Definition 1.1.4 f : Rn → Rn is said to be locally Lipschitz, if for all r > 0 there exists k(r) > 0
such that

‖f(x)− f(y)‖ ≤ k(r)‖x− y‖, for all x, y ∈ B(0, r).

f : Rn → Rn is said to be Lipschitz, if there exists k > 0 such that

‖f(x)− f(y)‖ ≤ k‖x− y‖, for all x, y ∈ Rn.

Definition 1.1.5 (Initial value problem (IVP) Let I be an interval containing x0, the follow-
ing problem {

x(n)(t) = f(t, x(t), ..., x(n−1)(t))

x(t0) = x0, x
′(t0) = x1, ..., x

(n−1)(t0) = xn−1

(1.1.2)

is called an initial value problem (IVP).

x(t0) = x0, x
′(t0) = x1, ..., x

(n−1)(t0) = xn−1

are called initial condition.
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Lemma 1.1.6 [9](Gronwall’s Lemma) Let u, v : [a, b] → R+ be continuous such that there exists
α > 0 such that

u(x) ≤ α+

ˆ x

a
u(s)v(s)ds, for all x ∈ [a, b].

Then,

u(x) ≤ αe

ˆ x

a
v(s)ds

, for all x ∈ [a, b].

Proof .

u(x) ≤ α+

ˆ x

a
u(s)v(s)ds

implies that
u(x)

α+

ˆ x

a
u(s)v(s)ds

≤ v(x).

So,
u(x)v(x)

α+

ˆ x

a
u(s)v(s)ds

≤ v(x),

which implies that ˆ x

a

u(x)v(x)

α+

ˆ x

a
u(s)v(s)ds

ds ≤
ˆ x

a
v(x)ds.

So, taking exponential of both side we get

u(x) ≤ α+

ˆ x

a
u(s)v(s)ds ≤ α

ˆ x

a
u(s)v(s)ds.

Thus,

u(x) ≤ αe

ˆ x

a
v(s)ds

, x ∈ [a, b].

Corollary 1.1.7 Let u, v : [a, b]→ R+ be continuous such that

u(x) ≤
ˆ x

a
u(s)v(s)ds, for all x ∈ [a, b].

Then, u = 0 on [a, b].

Proof . Now,

u(x) ≤
ˆ x

a
u(s)v(s)ds

implies that

u(x) ≤
ˆ x

a
u(s)v(s)ds ≤ 1

n
+

ˆ x

a
u(s)v(s)ds, for all n ≥ 1.

So, by Gronwall’s lemma,

u(x) ≤ 1

n
e
´ x
a u(s)v(s)ds,

so as
n→∞, u(x)→ 0.

Thus, u(x) = 0, since u(x) ≥ 0. Hence, u = 0 on [a, b].
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1.2 Exponential of matrices

Definition 1.2.1 Let A ∈Mn×n(R), then eA is an n× n matrix given by the power series

eA =

∞∑
k=0

Ak

k!

The series above converges absolutely for all A ∈Mn×n(R)

Proof . The n-th partial sum is

Sn =
n∑
k=0

Ak

k!

So, let n > m Then,

Sn − Sm =
n∑

k=m+1

Ak

k!
.

So,

‖Sn − Sm‖ ≤
n∑

k=m+1

‖A‖k

k!
.

So as
m→∞, ‖Sn − Sm‖ → 0

So, (Sn)n is Cauchy. Thus, converges.

Theorem 1.2.2 [3](Cayley Hamilton Theorem)
Let A ∈Mn×n(R) and ∆(λ) = det(λI −A) its characteristic polynomial then

∆(A) = 0.

Proof . Let A ∈Mn×n(R),

∆(λ) = det(I − λA) = c0 + c1λ+ c2λ
2 + ...+ cnλ

n.

adj(A− λI) = B0 +B1λ+B2λ
2 + ...+Bn−2λ

n−2 +Bn−1λ
n−1,

where Bi ∈Mn×n(R) for i = 0, 1, 2, ..., n, but, from linear algebra we have that

A−1 =
adj(A)

det(A)
,

where adj(A) denotes the adjugate or classical adjoint of A. So,

det(I − tA)I = (I − tA)adj(I − tA).

(A− λI)(B0 +B1λ+B2λ
2 + ...+Bn−2λ

n−2 +Bn−1λ
n−1) = (c0 + c1λ+ c2λ

2 + ...+ cnλ
n)I.

Observe that the entries in adj(I − tA) are polynomials in λ of degree at most n− 1. So, Bi is the
zero matrix for i = n. Equating the coefficients of λn on both sides gives

c0I + c1A+ c2A
2 + ...+ cnA

n = 0.

Thus,
∆(A) = 0.
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Example 1.2.3 (Application of Cayley Hamilton Theorem)

Find etA for A =

(
0 1

−1 0

)
Solution:
The characteristic equation is s2 + 1 = 0, and the eigenvalues are λ1 = i, and λ2 = −i. So, by
Theorem 1.2.2 we have that,

etA = α0I + α1A,

where we are to find the value of α0, and α1. So,

eti = cos t+ i sin t = α0 + α1i

e−ti = cos t− i sin t = α0 − α1i

which implies that α0 = cos t, and α1 = sin t. So,

etA = cos(t)I + sin(t)A =

(
cos t sin t

− sin t cos t

)
Theorem 1.2.4 [11] Let A,B ∈Mn×n(R). Then,
(1) If 0 denotes the zero matrix, then e0 = I, the identity matrix.
(2) If A is invertible, then eABA

−1
= AeBA−1.

Proof . Recall that, for all integers s ≥ 0, we have (ABA−1)s = ABsA−1. Now,

eABA
−1

= I +ABA−1 +
(ABA−1)2

2!
+ ...

= I +ABA−1 +
AB2A−1

2!
+ ...

= A(I +B +
B2

2!
+ ...)A−1

= AeBA−1.

(3) If A is symmetric such that A = AT , then

e(AT ) = (eA)T .

Proof .

eA =

∞∑
k=0

Ak

k!
.

Then

eA
T

=

∞∑
k=0

(AT )k

k!
=

∞∑
k=0

(Ak)T

k!
= (

∞∑
k=0

Ak

k!
)T = (eA)T .

(4) If AB = BA, then
eA+B = eAeB.

Proof .

eAeB = (I +A+
A2

2!
+
A3

3!
+ ...)(I +B +

B2

2!
+
B3

3!
+ ...)

= (

∞∑
k=0

Ak

k!
)(

∞∑
j=0

Bj

j!
)

=
∞∑
k=0

∞∑
j=0

(A+B)k+j

j!k!
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Put m = j + k, then j = m− k then from the binomial theorem that

eAeB =
∞∑
m=0

∞∑
k=0

AmBm−k

(m− k)!k!
=
∞∑
m=0

Am

m!

∞∑
k=0

m!

(m− k)!

Bm−k

k!
=
∞∑
m=0

(A+B)m

m!
= eA+B.

Theorem 1.2.5 [9]
detA

dt
= AetA = etAA, for t ∈ R.

Proof . x(t, x0) = etAx0. Then,

dx(t, x0)

dt

= etAx0A =
∞∑
k=0

tkAk

k!
x0A = ( lim

n→∞

n∑
k=0

tkAk

k!
)x0A

= lim
n→∞

n∑
k=0

tkAk+1

k!
x0 = lim

n→∞

n∑
k=0

AtkAk

k!
x0 = A

∞∑
k=0

tkAk

k!
x0 = AetAx0

So,
detA

dt
= AetA = etAA.

Proposition 1.2.6 The solution x(., x0) of the following linear space{
x′(t) = Ax(t), t ∈ R
x(0) = x0 ∈ Rn

where A ∈Mn×n(R), is given by
x(t, x0) = etAx0.
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CHAPTER 2

BASIC THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we give a broad discussion of the existence and uniqueness of solutions of ordinary
differential equations. We discuss equilibrium points, stability, fundamental matrix and variation
of constants formula, and other key concepts of dynamical systems. We start this chapter with
the following definitions;

2.1 Definitions and basic properties

Definition 2.1.1 Let I be an interval containing t0, let f : I ×Rn → Rn be continuous and Lips-
chitzian with respect to second variable, let x : I → Rn be continuous, then x is a solution of the
following ordinary differential equation{

x′(t) = f(t, x(t)), t ∈ I
x(t0) = x0, t0 ∈ I

(2.1.1)

on I, if
(i) x is a C1 - function on I.
(ii) x satisfies the above ODE, for all t ∈ I.

Theorem 2.1.2 [9](Peano’s Theorem) Let f : R×Rn → Rn be continuous in a neighbourhood
of (t0, x0) then there exists a > 0 such that the initial value problem{

x′ = f(t, x), t ∈ R
x(t0) = x0 ∈ Rn.

(2.1.2)

has at least one solution on the interval I = [t0 − a, t0 + a] ⊆ R.

Proof . Define the set
E = C([t0 − a, t0 + a],Rn)

then E is a Banach space provided with the ” sup ” norm. Let

M = max
Q
‖f(t, x)‖ for Q = {(t, x) : −a ≤ t− t0 ≤ a, ‖x− x0‖ ≤ b}

and define the set A ⊂ E by

A := {x ∈ E : sup
t∈I
‖x(t)− x0‖ ≤ b} = B(x0, b)C(I,Rn ⊆ E.

Then, A is a closed subset of E, as xn ∈ A implies that

lim
n→∞

xn = x ∈ A

7



(this follows from the uniform convergence in E). Also, A is convex (every ball is convex). Thus,
by the Ascoli-Arzela theorem, A is compact, and A is complete as a closed subset of a complete
metric space with the sup norm.
Also, let T : A→ E be defined by

(Tx)(t) := x0 +

ˆ t

t0

f(s, x(s))ds

Let, (xn)n≥1 ⊆ A such that xn → x ∈ A with the ” sup ” norm, then,

xn(t)→ x(t) implies sup
s∈I
‖xn(s)− x(s)‖ → 0, as n→∞.

Therefore,

‖Txn(t)− Tx(t)‖ ≤
ˆ t

t0

‖f(s, xn(s))− f(s, x(s))‖ds

≤
ˆ t0+a

t0−a
‖f(s, xn(s))− f(s, x(s))‖ds

≤ 2a sup
s∈I
‖f(s, xn(s))− f(s, x(s))‖.

f is continuous on I ×B(x0, b) implies that f is uniformly continuous on I ×B(x0, b). So, as

n→∞, ‖Txn(t)− Tx(t)‖ → 0.

Thus, T is continuous.
Let Tz ∈ T (A),

‖Tz(t)− x0‖ = ‖
ˆ t

t0

f(s, z(s))ds‖

≤
ˆ t

t0

‖f(s, z(s))‖ds

≤
ˆ t

t0

Mds

≤
ˆ t0+a

t0−a
Mds = 2aM ≤ b

for a small enough. Hence, T (A) ⊆ A.
We look for a fixed point of T , that is, we want to find

x ∈ E such that Tx = x.

A fixed point of T solves the IVP(2.1.2), and T has a fixed point as a consequence of the following
Schauder - Tychonoff’s Theorem (If T : X → X is continuous and if A ⊂ X is a convex compact
subset of the normed linear space X and T (A) ⊂ A, then T has a fixed point in A).

Example 2.1.3 Consider {
y′ =

√
|y(t)|, t ≥ 0,

y(0) = 0.

Here, f(y) =
√
|y(t)|.

Solving the given IVP, we have that,

y(t) = − t
2

4
, if y(t) < 0,

y(t) = 0, if y(t) = 0,

y(t) =
t2

4
, if y(t) > 0.

So, the ODE does not have a unique solution. This is because f is not Lipschitzian.
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Theorem 2.1.4 [9] Let f : R+ × Rn → Rn be continuous and Lipschitzian with respect to the
second variable, x is a solution of the following equation.{

x′(t) = f(t, x(t)), t ≥ 0

x(0) = x0

(2.1.3)

on [0, a] if and only if

x(t) = x0 +

ˆ t

0
f(s, x(s))ds, t ∈ [0, a]. (2.1.4)

Proof .
Assume x is a solution of the above IVP on [0, a], then x is a C1-function on [0, a]. Then, by mean
value theorem, we get that

x(t)− x(0) =

ˆ t

0
x′(t)ds (2.1.5)

which implies that

x(t) = x0 +

ˆ t

0
f(s, x(s))ds, t ∈ [0, a].

Assume that

x(t) = x0 +

ˆ t

0
f(s, x(s))ds

holds, then by fundamental law of Calculus

x′(t) = f(t, x(t)),

and

x(0) = x0 +

ˆ 0

0
f(s, x(s))ds = x0.

Thus, x satisfies the IVP, and since x′(t) = f(t, x(t)) where f is a continuous function, we have
that x is a C1-function. Hence, x is a solution of the IVP.

Theorem 2.1.5 [9](Cauchy- Lipschitz Theorem) Let f : R+ × Rn → Rn, be continuous and
Lipschitzian with respect to x. Then, the IVP has a unique solution on R+

Proof.
Let C([0, a],Rn) be the Banach space provided with the ” sup ” norm
x is a solution of the above IVP on [0, a] if and only if

x(t, x0) = x0 +

ˆ t

0
f(s, x(s))ds, t ∈ [0, a].

Let a > 0, and let K : C([0, a],Rn)→ C([0, a],Rn) be defined as

(Kx)(t) = x0 +

ˆ t

0
f(s, x(s))ds, t ∈ [0, a].

Then, x is a solution of the IVP on [0, a] if and only if

x(t) = (Kx)(t), on C([0, a],Rn).

f is Lipschitzian with respect to x implies that

‖f(t, x(t))− f(t, y(t))‖ ≤ k(t)‖x(t)− y(t)‖
≤ max

t∈[0,a]
k(t)‖x(t)− y(t)‖ = ka‖x− y‖.
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Let ka = maxt∈[0,a] k(t). Then,

‖(Ky)(t)− (Kx)(t)‖ = ‖
ˆ t

0
f(s, y(s))− f(s, x(s))ds‖

≤
ˆ t

0
‖f(s, y(s))− f(s, x(s))‖ds.

Thus,
‖(Ky)(t)− (Kx)(t)‖ ≤ kaa‖x− y‖.

‖K2y(t)−K2x(t)‖ = ‖K(Ky)(t)−K(Kx)(t)‖

≤ ka
ˆ t

0
‖(Ky)(s)− (Kx)(s)‖ds

≤ ka
ˆ t

0
kas‖y(s)− x(s)‖ds

≤ k2
a max
s∈[0,a]

‖y(s)− x(s)‖
ˆ t

0
sds

≤ k2
at

2

2
‖y − x‖.

So, we do this for any p ≥ 1,

‖Kpy(t)−Kpx(t)‖ ≤ (kaa)p

p!
‖y − x‖.

Then, we get that
p ≥ 1, ‖Kpy(t)−Kpx(t)‖ < ‖y − x‖.

Thus, Kp is a contraction map. Hence, by Banach fixed point Theorem there exists uniquely
x ∈ C([0, a],Rn) such that

(Kx)(t) = x(t) ⇐⇒ x(t) = x0 +

ˆ t

0
f(s, x(s))ds, t ∈ [0, a].

This holds for any a > 0. Thus, the solution of (2.1.3) exists uniquely on R+.

Theorem 2.1.6 [9] Let x(., x0) and x(., x1) be solutions of the following ODE{
x′(t) = f(t, x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(2.1.6)

starting respectively from x0 and x1 if there exists t1 > 0 such that x(t1, x0) = x(t1, x1). Then,

x(t, x0) = x(t, x1), for all t ≥ 0.

Proof.
Let

E = {t ∈ R+ : x(t, x0) = x(t, x1)}.

Then, E is closed, and E is not empty, since t1 ∈ E.
Claim:
E is open.
Infact,
Let t0 ∈ E, then x(t0, x0) = x(t0, x1) = y0.
Now, consider the following problem{

z′(t) = f(t, z(t)), t ∈ [t0 − δ, t0 + δ], δ > 0

z(t0) = y0

(2.1.7)

10



then, the IVP (2.1.7) has a unique solution on [t0 − δ, t0 + δ].
x(., x1) and x(., x0) are solutions of the IVP (2.1.7). Thus,

x(t, x0) = x(t, x1), t ∈ (t0 − δ, t0 + δ).

This implies that
(t0 − δ, t0 + δ) ⊆ E.

Thus, E is open, and thus E is an open and closed set in R+, which implies that

E = R+.

Thus,
x(t, x0) = x(t, x1), for all t ≥ 0.

2.2 Continuous dependence with respect to the initial conditions{
x′(t) = f(t, x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(2.2.1)

f : R+ × Rn → Rn is continuous and Lipschitzian with respect to the second variable. Then, the
IVP (2.2.1) has a unique solution x(., x0) on R+.

Theorem 2.2.1 [9]

‖x(t, x0)− x(t, x1)‖ ≤ ‖x0 − x1‖e

ˆ t

0
k(s)ds

, for all t ≥ 0.

Proof.

x(t, x0) = x0 +

ˆ t

0
f(s, x(s, x0))ds

and

x(t, x1) = x1 +

ˆ t

0
f(s, x(s, x1))ds,

which implies that,

‖x(t, x0)− x(t, x1)‖ ≤ ‖x0 − x1‖+

ˆ t

0
‖f(s, x(s, x0))− f(s, x(s, x1))‖ds

≤ ‖x0 − x1‖+

ˆ t

0
k(s)‖x(s, x0)− x(s, x1)‖ds

by Gronwall’s Lemma we get,

‖x(t, x0)− x(t, x1)‖ ≤ ‖x0 − x1‖e

ˆ t

0
k(s)ds

, (2.2.2)

for all t ≥ 0
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Semi group law for autonomous ODE

Consider the following ODE {
x′(t) = f(x(t)), t ∈ R
x(t0) = x0 ∈ Rn

(2.2.3)

Let f : R→ R be Lipschitz, and T (t) : Rn → Rn be defined by

T (t)(x0) = x(t, x0),

where x(., x0) is the solution of (2.2.3). Then, we have what we call the semi group law.

Theorem 2.2.2 [9] For all t, s ∈ R.

T (t+ s) = T (t) o T (s).

Proof . Let y(t) = x(t+ s, x0). Then,

y′(t) = x′(t+ s, x0) = f(x(t+ s, x0)) = f(y(t)),

and
y(0) = x(0 + s, x0) = x(s, x0).

Hence, {
y′(t) = f(y(t)), t ∈ R
y(0) = y0 = x(s, x0)

(2.2.4)

y(t) = x(t, y0) = x(t, x(s, x0)),

which implies that
x(t+ s, x0) = x(t, x(s, x0)).

Thus,

T (t+s)(x0) = x(t+s, x0) = x(t, x(s, x0)) = T (t)(x(s, x0)) = T (t)(T (s)(x0)) = (T (t)oT (s))(x0), x0 ∈ Rn.

Hence,
T (t+ s) = T (t) o T (s), t, s ∈ R.

2.3 Local existence and blowing up phenomena for ODEs

Definition 2.3.1 Let x : [0, a)→ Rn, we say that x blows up at a point a if

lim
t→a
‖x(t)‖ = +∞ ⇐⇒ ‖x(t)‖ is not bounded on [0, a)

⇐⇒ ∃(tn)n such that ‖x(tn)‖ → +∞, as tn → a.

Theorem 2.3.2 [9] Consider the following ODE{
x′(t) = f(x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(2.3.1)

where f : Rn → Rn is locally Lipschitz.
Then, the ODE (2.3.1) has a unique maximal defined on [0, tmax), where 0 < tmax ≤ +∞. If
tmax < +∞, then lim

t→tmax
‖x(t)‖ = +∞.
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Proof .
Existence of a maximal solution on [0, tmax):
By Peano’s theorem, there exists at least one solution defined on some maximal interval [0, tmax).
Uniqueness of maximal on [0, tmax):
Let x and y be two solutions of the given ODE on [0, tmax).
Let 0 < a < tmax, and let

D = {x(s), y(s), s ∈ [0a]}.

Then, D is compact since f is locally Lipschitz then it is globally Lipschitz on D.

x(t) = x0 +

ˆ t

0
f(x(s))ds, y(t) = x0 +

ˆ t

0
f(y(s))ds, t ∈ [0, a],

then,

‖x(t)− y(t)‖ = ‖
ˆ t

0
f(x(s))− f(y(s))ds‖ ≤

ˆ t

0
‖f(x(s))− f(y(s))‖ds.

But f is locally Lipschitz implies that there exists q such that

‖f(x(s))− f(y(s))‖ ≤ q‖x(s)− y(s)‖,

for all x, y ∈ D ⊂ Rn, and for all s ∈ [0, a]. So,

‖x(t)− y(t)‖ ≤
ˆ t

0
‖f(x(s))− f(y(s))‖ds ≤ q‖x(s)− y(s)‖,

for all x, y ∈ D = {x(s), y(s) : s ∈ [0, a]}. So, by Gronwall’s Lemma we have that ‖x(s)−y(s)‖ = 0.
Thus, x = y on [0, a], for all 0 < a < tmax.
If tmax < +∞, assume for contradiction, there exists c > 0 such that ‖x(t)‖ ≤ c for all t ∈ [0, tmax),
then

‖x(s)− x(t)‖ ≤ sup
ω∈[0,tmax)

‖x′(ω)‖|s− t|

implies that,

‖x(s)− x(t)‖ ≤ sup
ω∈[0,tmax)

‖f(x(ω))‖|s− t| = M |s− t|, M <∞

Thus, x is uniformly continuous, and so limt→tmax x(t) = xmax ∈ Rn.
Now we consider the following ODE{

z′(t) = f(z(t)), t ≥ tmax
z(tmax) = xmax

(2.3.2)

Using Banach fixed point theorem, there exists ε > 0 such that (2.3.2) has a unique solution on
[tmax, tmax + ε]. Let

y = xVz =

{
x(t), 0 ≤ t ≤ tmax
z(t), tmax ≤ t < tmax + ε

So,

y′+(tmax) = lim
h→0+

y(tmax + h)− y(tmax)

h

= lim
h→0+

z(tmax + h)− z(tmax)

h

= z′(tmax) = f(xmax).
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Also,

y′−(tmax) = lim
h→0−

y(tmax + h)− y(tmax)

h

= lim
h→0−

x(tmax + h)− x(tmax)

h

= x′(tmax) = f(xmax).

Thus,
y′+ = y′− = f(xmax).

y is a C1− function on [0, tmax + ε], and y satisfies{
y′(t) = f(y(t)), t ∈ [0, tmax + ε], ε > 0

y(0) = x0

(2.3.3)

this implies that
[0, tmax + ε] ⊆ [0, tmax).

Contradiction
Thus,

limt→tmax‖x(t)‖ = +∞, if tmax < +∞.

Theorem 2.3.3 [9] Consider the following ODE{
x′(t) = f(t, x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(2.3.4)

If there exists k1, k2 ∈ C(R+,R+) such that

‖f(t, x)‖ ≤ k1(t)‖x‖+ k2(t), t ≥ 0, x ∈ Rn.

Then,
tmax = +∞, for all x0 ∈ Rn.

Proof . Suppose for contradiction that tmax < 0, then

lim
t→tmax

‖x(t)‖ = +∞.

But,

‖x(t)‖ ≤ ‖x0‖+

ˆ t

0
‖f(s, x)‖ds ≤ ‖x0‖+

ˆ t

0
(k1(s)‖x(s)‖+ k2(s))ds

≤ (‖x0‖+

ˆ tmax

0
k2(s)ds) +

ˆ t

0
k1(s)‖x(s)‖ds.

By Gronwall’s Lemma,

‖x(t)‖ ≤ (‖x0‖+

ˆ tmax

0
k2(s)ds)e

ˆ tmax

0
k1(s)ds

,

for all t ∈ [0, tmax). This implies that x is bounded. Contradiction.
Hence, tmax = +∞, for all x0 ∈ Rn.
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2.4 Variation of constants formula

Consider the following ODE {
x′(t) = Ax(t) + f(t), t ∈ R
x(t0) = x0 ∈ Rn

(2.4.1)

where f : R→ Rn, continuous on R, A ∈Mn×n(R), n ≥ 2.

Theorem 2.4.1 [9] The ODE (2.4.1) has a unique solution x(., x0) given by

x(t, x0) = e(t−t0)Ax0 +

ˆ t

t0

e(t−s)Af(s)ds, t ∈ R.

Proof.

Let y(t) = e(t−t0)Ax0 +

ˆ t

t0

e(t−s)Af(s)ds, then

e(t−t0)Ax0 +

ˆ t

t0

e(t−s)Af(s)ds = e(t−t0)Ax0 + etA
ˆ t

t0

e−sAf(s)ds

implies that

y′(t) = Ae(t−t0)Ax0 +A

ˆ t

t0

e(t−s)Af(s)ds+ f(t) = Ay(t) + g(t).

Also, y(t0) = x0. So, y(t) satisfies (2.4.1). y is a C1 function, and thus y is a solution of (2.4.1) on
R.
Claim:
y is unique.
Proof of claim:
Let g : R×Rn → Rn be defined by g(t, x) = Ax(t) + f(t). Then, g is Lipschitzian with respect to
the second variable. Thus, y must be the unique solution of (2.4.1) on R.

Definition 2.4.2 Let I be an interval in R t0 ∈ I and A : I →Mn×n(R) be continuous, R(t, t0)
is called the fundamental matrix of{

x′(t) = A(t)x(t), t ∈ I
x(t0) = x0 ∈ Rn

(2.4.2)

If R : I × I →Mn×n(R) satisfies
(i) R(s, s) = I

(ii) ∂R(t,s)
∂t = A(t)oR(t, s), for t, s ∈ I

It is also called the resolvent operator of (2.4.2).

Theorem 2.4.3 [9] (i) For all t, s, σ ∈ I, R(t, s)oR(s, σ) = R(t, σ).
(ii) R(t, s) is invertible and (R(t, s))−1 = R(s, t), for all t, s ∈ I.
(iii) ∂R(t,s)

∂s = −R(t, s)A(s), for all t, s ∈ I.

Proof .
(i) Let x0 ∈ R and let y(t) = (R(t, s)oR(s, t0))(x0), then,

y′(t) =
∂R(t, s)[R(s, t0)](x0)

∂t
= A(t)R(t, s)[R(s, t0)](x0) = A(t)y(t).

So,
y′(t) = A(t)y(t).
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Also, let
z(t) = R(t, t0)x0,

then,
z′(t) = A(t)R(t, t0)x0 = A(t)z(t).

But
f(t, x) = A(t)x(t)

is continuous and Lipschitzian with respect to x. Thus, by uniqueness of solution z = y. Hence,
for all t, s ∈ I, and x0 ∈ R,
R(t, s)oR(s, t0) = R(t, t0)

(ii) From (i), we have that

for all t, s ∈ I, x0 ∈ R, R(t, s)oR(s, t0) = R(t, t0).

So,
R(t, s)oR(s, t) = R(t, t) = I

Hence, R(t, s) is invertible, and

(R(t, s))−1 = R(s, t), for all t, s ∈ I.

(iii) Let θ : s→ R(s, t)−1, ϕ : s→ R(s, t), and Φ : R(s, t)→ R(s, t)−1.
That is,

ϕ(s) = R(s, t), and Φ(R(s, t)) = R(s, t)−1.

θ(s) = (Φ o ϕ)(s) = R(s, t)−1.

So,

θ′(s) = Φ′(ϕ(s))ϕ′(s)

= Φ′(R(s, t))A(s)R(s, t)

= −R(s, t)−1A(s)R(s, t)R(s, t)−1

= −R(s, t)−1A(s)IdRn

= −R(s, t)−1A(s).

Hence,

∂R(t, s)

∂s
= −R(t, s)A(s), for all t, s ∈ R.

Proposition 2.4.4 If A(t)A(s) = A(s)A(t), for all t, s ∈ I, then

R(t, t0) = e

ˆ t

t0

A(s)ds
, for t, t0 ∈ I

Proof .

Let S(t, t0) = e

ˆ t

t0

A(s)ds
. Then,

∂S(t, t0)

∂t
= e

ˆ t

t0

A(s)ds
oA(t).
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From Riemann integration, we have that,

ˆ t

t0

A(s)ds = lim
p→∞

t− t0
p

p−1∑
k=0

A(t0 + k
t− t0
p

)

so,

e

ˆ t

t0

A(s)ds
= e

limp→∞
t−t0
p

∑p−1
k=0 A(t0+k

t−t0
p

)

= lim
p→∞

e
t−t0
p

∑p−1
k=0 A(t0+k

t−t0
p

)
,

and then,

e

ˆ t

t0

A(s)ds
A(t) = lim

p→∞

p−1∏
k=0

e
t−t0
p
A(t0+k

t−t0
p

)
A(t).

But, by Taylor’s expansion of exponential funtions, we have that,

e
t−t0
p
A(t0+k

t−t0
p

)
A(t) =

∞∑
j=0

(
(t− t0)j

pj

Aj(t0 + k t−t0p )

j!
A(t)

Hence,

e

ˆ t

t0

A(s)ds
= e

limp→∞
t−t0
p

∑p−1
k=0 A(t0+k

t−t0
p

)
A(t)

= lim
p→∞

e
t−t0
p

∑p−1
k=0 A(t0+k

t−t0
p

)

= lim
p→∞

∞∑
j=0

(
(t− t0)j

pj

Aj(t0 + k t−t0p )

j!
A(t)

= A(t) lim
p→∞

∞∑
j=0

(
(t− t0)j

pj

Aj(t0 + k t−t0p )

j!

= A(t)e

ˆ t

t0

A(s)ds
.

Then,
∂S(t, t0)

∂t
= A(t)S(t, t0),

and
S(t, t) = e

´ t
t A(s)ds = I.

Thus,

S(t, t0) = R(t, t0) = e

ˆ t

t0

A(s)ds
.

Theorem 2.4.5 [9] Let x(., t0) be the solution of the following ODE{
x′(t) = A(t)x(t) + f(t), t ∈ I
x(t0) = x0 ∈ Rn

(2.4.3)

where f : I → Rn, is continuous, A : I →Mn×n(R) is continuous.
Then, the IVP (2.4.3) has a unique solution x(., x0) given by

x(t, x0) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s)ds, t ∈ I.
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Proof . Let

y(t) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s)ds,

then,
y(t0) = R(t0, t0)x0 = x0,

and

y′(t) = A(t)R(t, t0)x0 + (
∂R(t, 0)

∂t
)

ˆ t

t0

R(0, s)f(s)ds+R(t, 0)
∂

∂t

ˆ t

t0

R(0, s)f(s)ds

= A(t)(R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s)ds) +R(t, t)f(t)

= A(t)y(t) + f(t).

So, y satisfies (2.4.3), and y is a C1 function. Thus, y is a solution of (2.4.3).

g(t, x) = A(t)x(t) + f(t)

is continuous and Lipschitz with respect to the second variable. Hence, by uniqueness of solution
of (2.4.3),

x(t, x0) = y(t) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s)ds

is the unique solution of (2.4.3) on I ⊆ R.

Formula of R(t, t0)

Scalar ODE {
x′(t) = a(t)x(t), t ∈ I ⊆ R
x(t0) = x0 ∈ R

(2.4.4)

where I is an interval of R and a : I → R is continuous. Then,

R(t, t0) = e

ˆ t

t0

a(s)ds
for all t, t0 ∈ R.

Example 2.4.6 Let α : R→ R be defined by

α(t) = sin t.

Let B ∈Mn×n(R), and let A : R→Mn×n(R) be defined by

A(t) = α(t)B.

Then,
A(t)A(s) = sin t sin sB2 = sin sB sin tB = A(s)A(t).

Hence,

R(t, t0) = e

ˆ t

t0

sin sds
=
∞∑
n=0

Bn(cos t0 − cos t)n

n!
, for all t, t0 ∈ R.

Theorem 2.4.7 [9] (Estimation of ‖R(t, t0)‖ )

‖R(t, t0)‖ ≤ e
´ t
t0
‖A(s)‖ds

, t ≥ t0
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Proof . {
∂R(t,t0)

∂t = A(t)oR(t, t0)

R(t0, t0) = I

R(t, t0) = R(t0, t0) +

ˆ t

t0

A(s)R(s, t0)ds

= I +

ˆ t

t0

A(s)R(s, t0)ds.

Then,

‖R(t, t0)‖ ≤ ‖I‖+ ‖
ˆ t

t0

A(s)R(s, t0)ds‖

≤ 1 +

ˆ t

t0

‖A(s)‖‖R(s, t0)‖ds.

Hence, by Gronwall’s Lemma we get that,

‖R(t, t0)‖ ≤ e

ˆ t

t0

‖A(s)‖ds
.

Hence,

‖R(t, t0)‖ ≤ e

ˆ t

t0

‖A(s)‖ds
, t ≥ t0.

Theorem 2.4.8 [9] Consider the following ODE{
x′(t) = A(t)x(t) + f(t, x(t)), t ≥ 0

x(t0) = x0 ∈ Rn
(2.4.5)

where f : R+ × Rn → Rn, continuous, and Lipschitzian with respect to the second variable, A :
I →Mn×n(R) is continuous.
Then, (2.4.5) has a unique solution x(., x0) given by the following variation of constants formula

x(t, x0) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s, x(t, x0))ds, t ≥ 0

Proof .

Let y(t, x0) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s, x(t, x0))ds, t ∈ R+, then,

y(t) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s, x(t, x0))ds

= R(t, t0)x0 +R(t, 0)

ˆ t

t0

R(0, s)f(s, x(t, x0))ds.

So,

y′(t) = A(t)(R(t, t0))(x0) +A(t)R(t, 0)

ˆ t

t0

R(0, s)f(s, x(t, x0))ds+ f(t, x(t, x0))

= A(t)(R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s, x(t, x0))ds) + f(t, x(t, x0))

= A(t)y(t, x0) + f(t, x(t, x0)).
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Also,
y(t0, x0) = R(t0, t0)x0 = x0.

So, y is a solution of (2.4.5). By, uniqueness of solutions of (2.4.5), we have that

x(t, x0) = R(t, t0)x0 +

ˆ t

t0

R(t, s)f(s, x(t, x0))ds, t ≥ 0.
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CHAPTER 3

STABILITY VIA LINEARIZATION PRINCIPLE

Introduction
An equilibrium point is said to be stable if all solutions starting at nearby points stay nearby.
Moreover, if all solutions starting at nearby points not only stay nearby, but also tend to the equi-
librium point as time approaches infinity, then the equilibrium point is said to be asymptotically
stable.
The most popular method for studying stability of nonlinear systems is introduced by a Russian
Mathematician named Alexander Mikhailovich Lyapunov. His work the general problem of motion
stability published in 1892 includes two methods namely; linearization method, and direct method.
Linearization method studies nonlinear local stability around an equilibrium point from stability
properties of its linear approximation.
This chapter is aimed at examining the stability of equilibrium points. Also, relevant theorems
and concepts in stability of an equilibrium point and linearization principle will be discussed in
this chapter.

3.1 Definitions and basic results

Definition 3.1.1 Consider the following ODE:{
x′(t) = f(x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(3.1.1)

Let f : Rn → Rn be locally Lipschitz and affine or Lipschitzian. Then, equation (3.1.1) has a
unique solution on R+.
x∗ is an equilibrium point of (3.1.1) if f(x∗) = 0 and x(t, x∗) = x∗, for all t ≥ 0.

Definition 3.1.2 Let x∗ be an equilibrium point of the IVP (3.1.1) , x∗ is stable in Lyapunov
sense if

for all ε > 0, there exists δ > 0 such that

‖x0 − x∗‖ < δ =⇒ ‖x(t, x0)− x∗‖ < ε, for all t ≥ 0.

Definition 3.1.3 x∗ is said to be assymptotically stable if
(i) x∗ is stable
(ii) there exists r > 0 such that if x0 ∈ B(x∗, r) then x(t, x0)→ x∗, as t→∞.

Definition 3.1.4 x∗ is locally exponentially stable if x∗ is assymptotically stable, and there exists
r > 0 such that if

x0 ∈ B(x∗, r), then x(t, x0)→ x∗, as t→∞ exponentially.
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Definition 3.1.5 x∗ is unstable if it is not stable. In other words, x∗ is unstable if there exists
ε > 0 such that for all δ > 0 there exists x0 ∈ B(x∗, δ) and there exists t ≥ 0 such that

‖x(t, x0)− x∗‖ ≥ ε.

Linear systems {
x′(t) = Ax(t), t ≥ 0

x(0) = x0 ∈ Rn
(3.1.2)

where A ∈Mn×n(R). Then,
x(t, x0) = etAx0

Theorem 3.1.6 [9] 0 is stable of equation (3.1.2) if and only if sup
t≥0
‖etA‖ <∞.

Proof .
Assume 0 is stable. Then, for all ε > 0 there exists δ > 0 such that

‖x0‖ < δ implies ‖x(t, x0)‖ < ε, for all t ≥ 0.

In particular,

for ε = 1 there existsδ1 > 0 such that ‖x0‖ < δ1 implies ‖x(t, x0)‖ < 1,

and so

sup
t≥0
‖x(t, x0)‖ ≤ 1, implies that sup

t≥0
‖etAx0‖ ≤ 1 for all t ≥ 0, and for all x0 ∈ B(0, δ1).

Let y ∈ Rn, y 6= 0 and let
‖etA‖ = sup

‖y‖≤1
‖etAy‖.

Then,
y

‖y‖
δ1

2
∈ B(0, δ1) implies that ‖etAy‖ < 2

δ1
‖y‖, for all y ∈ Rn.

Hence,

‖etA‖ ≤ 2

δ1
, for all t ≥ 0 implies that sup

t≥0
‖etA‖ <∞.

Assume, sup
t≥0
‖etA‖ <∞, and let M = sup

t≥0
‖etA‖, let ε > 0 be given, we seek δ > 0 such that for all

‖x0‖ < δ, ‖x(t, x0)‖ < ε.

‖x(t, x0)‖ = ‖etAx0‖ ≤ sup
t≥0
‖etA‖‖x0‖ = M‖x0‖.

Take δ = ε
M+1 . Then,

‖x(t, x0)‖ < ε, for all ‖x0‖ < δ.

Hence, 0 is stable of equation (3.1.2)
Conclusion: 0 is stable of equation (3.1.2) if and only if sup

t≥0
‖etA‖ <∞.

Definition 3.1.7 Let, A ∈Mn×n(R), then the set of all eigenvalues of A is denoted by σ(A).
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Theorem 3.1.8 [9] 0 is globally exponentially stable for equation (3.1.2) if and only if

σ(A) ⊆ {λ ∈ C : Re(λ) < 0}.

Theorem 3.1.9 [9] Let A ∈Mn×n(R). Consider the following ODE,{
x′(t) = Ax(t) + f(t, x(t)), t ≥ 0

x(0) = x0 ∈ R
(3.1.3)

where f : R+ × Rn → Rn is continuous and locally Lipschitz with respect to the second variable.
Moreover, we assume
(i) f(t, 0) = 0, for all t ≥ 0

(ii) σ(A) ⊆ {λ ∈ C : Re(λ) < 0}

(iii) There exists k > 0, a > 0 such that

‖f(t, x)‖ ≤ k‖x‖2, t ≥ 0, ‖x‖ < a.

Then, there exists c, b, α > 0 such that

‖x(t, x0)‖ ≤ c‖x0‖e−αt, for ‖x0‖ < b, t ≥ 0.

Theorem 3.1.10 [9](Linearization Principle) Let f : Rn → Rn be a C2 function and x∗ be
the equilibrium point of f as in (3.1.4). Let A = ∂f

∂x |x=x∗ be the linearization of f , and σ(A) ⊆
{Re(λ) < 0}. Then, x∗ is locally exponentially stable for (3.1.4). If there exists λ0 ∈ σ(A) such
that Re(λ0) > 0, then x∗ is unstable for the following ODE,{

x′(t) = f(x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(3.1.4)

Proof .
Without loss of generosity, we assume that, x∗ = 0.
Let ϕ(t) = f(ty), t ∈ [0, 1]. Then ϕ is differentiable and y ∈ Rn.

ϕ′(t) = f ′(ty)y

Let g(y) = f(y)−Ay. Then,

f(y) = Ay + f(y)−Ay = Ay + g(y) (3.1.5)

But

f(y) = f(y)− f(0)

= ϕ(1)− ϕ(0) =

ˆ t

0
ϕ′(s)ds.

Then, g(y) =
´ 1

0 ϕ
′(s)ds−Ay

g(y) =

ˆ 1

0
[f ′(sy)y − f ′(0)y]ds

‖g(y)‖ ≤
ˆ 1

0
‖f ′(sy)− f ′(0)‖ds‖y‖.

Let r > 0, z ∈ B(0, r),
‖f ′(z)− f ′(0)‖ ≤ sup

σ∈B(0,r)

‖f ′(σ)‖‖z‖.
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Let k = sup
σ∈B(0,r)

‖f ′(σ)‖ and y ∈ B(0, r), then, sy ∈ B(0, r) because 0 ≤ s ≤ 1. So for all

s ∈ [0, 1], ‖f ′(sy)− f ′(0)‖ ≤ k‖sy‖ ≤ k‖y‖.

‖g(y)‖ ≤
ˆ 1

0
‖f ′(sy)− f ′(0)‖ds‖y‖

≤
ˆ 1

0
k‖y‖‖y‖ds

≤
ˆ 1

0
k‖y‖2ds = k‖y‖2

ˆ 1

0
ds = k‖y‖2.

That is,
‖g(y)‖ ≤ k‖y‖2, y ∈ B(0, r).

Hence, by Theorem 3.1.9, there exists

b, c, α > 0 such that ‖x(t, x0)‖ ≤ c‖x0‖e−αt. for ‖x0‖ < b, t ≥ 0.

Hence, 0 is exponentially stable, and therefore, 0 is asymptotically stable.
For the instability, we refer to Theorem 3.1.8.

Theorem 3.1.11 [9](Scalar ODEs) Consider the following ODE:{
x′(t) = f(x(t)), t ≥ 0

x(0) = x0 ∈ R
(3.1.6)

where f : R→ R be C1−function, let x∗ such that f(x∗) = 0. Then, f ′(x∗) < 0 implies that x∗ is
locally exponentially stable, f ′(x∗) > 0 implies that x∗ is unstable.

Example 3.1.12 {
x′(t) = −x(t) + f(x(t)), t ≥ 0

x(0) = x0 ∈ R
(3.1.7)

f : R→ R be a C1−function, f(0) = 0.
Then, 0 is an equilibrium point of equation (3.1.7). if −1+f ′(0) < 0 =⇒ 0 is locally exponentially
stable for (3.1.7). If −1 + f ′(0) > 0 =⇒ 0 is unstable.

Example 3.1.13 
x′(t) = −x(t) + y(t) + x2(t) + y2(t), t ≥ 0

y′(t) = −2y(t) + x4(t)− y4(t)

x(0) = x0 ∈ R, y(0) = y0 ∈ R
(3.1.8)

Let z(t) =

(
x(t)
y(t)

)
Then, z′(t) =

(
x′(t)
y′(t)

)
=

(
−1 1

0 −2

)
z(t) + f(x(t), y(t)), where f : R2 → R2,

defined by

f(x, y) =

(
x2 + y2

x4 − y4

)
.

Let, g(z(t)) = Az(t) + f(z(t)) where A =

(
−1 1

0 −2

)
.

Then, g′(z(t)) = A+ f ′(z(t)). Where f ′(z(t)) =

 2x(t) + 2y(t)

4x3(t)− 4y3(t)

.
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So, at (0, 0), g(0, 0) =

(
0
0

)
and g′(0, 0) = A.

But σ(g′(0, 0)) = {−1,−2} ⊆ {Re(λ) < 0}. Therefore, (0, 0) is locally exponentially stable for
equation (3.1.8).

Example 3.1.14 {
x′(t) = x(t)− x2(t), t ≥ 0

x(0) = x0 ∈ R
(3.1.9)

Then, equilibrium points of (3.1.9) are 0, and 1.
Let f(x(t)) = x(t) − x2(t), then f ′(x(t)) = 1 − 2x(t) =⇒ f ′(0) = 1 > 0 and f ′(1) = −1 < 0.
Therefore, 0 is unstable, and 1 is locally exponentially stable for equation (3.1.9)
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CHAPTER 4

LYAPUNOV FUNCTIONS AND LASALLE’S INVARIANCE PRINCIPLE

Introduction
A Lyapunov function V : D ⊆ Rn → R is an energy-like function that can be used to determine
stability of a system. It is a powerful tool for determining stability.
Therefore, it is the best way to study the asymptotic behaviour of solutions, but the construction
of the Lyapunov functions depends on the nature of the ODE.
Moreover, the LaSalle invariance principle was then introduced by LaSalle, and thus it is an
interesting working tool in dynamical systems and control theory.
In this chapter, our focus is to examine the various tools for determining stability of equilibrium
points, like the Lyapunov functions and LaSalle’s invariance principle.
Let us start this chapter by the following example

Example 4.0.1
x′ = ax3

Linearization about x = 0 yields:

A =
∂f

∂x
|x=0 = 3ax2|x=0 = 0

Linearization fails to determine stability. If a < 0, then x = 0 is asymptotically stable. To see
this, V (x) = x4, implies that V ′ = 4x3x′ = 4ax6.
If a > 0, x = 0 is unstable. If a ≤ 0, x = 0 is stable, starting at any x, remains in x.

A powerful tool for determining stability is the use of Lyapunov functions.
A Lyapunov function V : D ⊆ Rn → R is an energy-like function that can be used to determine
stability of a system. Roughly speaking, if we can find a non-negative function that always de-
creases along trajectories of the system, we can conclude that the minimum of the function is a
stable equilibrium point (locally).
To describe this more formally, we start with a few definitions.

Definition 4.0.2 We say that a continuous function V (x) is positive definite if

V (x) > 0, for all x 6= 0 and V (0) = 0.

Definition 4.0.3 We say that a continuous function V (x) is negative definite if

V (x) < 0, for all x 6= 0 and V (0) = 0.

Definition 4.0.4 We say that a continuous function V (x) is positive semi-definite if

V (x) ≥ 0, for all x.

Definition 4.0.5 We say that a continuous function V (x) is negative semi-definite if

V (x) ≤ 0, for all x.
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4.1 Definitions and basic results

Definition 4.1.1 ( Lyapunov function) The C1 function V : D ⊂ Rn → R a C1, positive
definite function such that V ′ is negative semi-definite is called a Lyapunov function.

Definition 4.1.2 (Strict Lyapunov function) The C1 function V : D ⊂ Rn → R a C1, positive
definite function such that V ′ is negative definite is called a strict Lyapunov function.

Definition 4.1.3 ( Lyapunov surface) The surface V (x) = c, for some c > 0 is called a
Lyapunov surface or level surface.

If V ′(x) ≤ 0, when a trajectory crosses a Lyapunov surface V (x) = c, it moves inside the set

Ωc = {x ∈ Rn : V (x) ≤ c}

and traps inside Ωc.
If V ′ < 0, trajectories move from one level surface to an inner level with smaller c till V (x) = c
shrinks to zero as time goes on.

Suppose V is C1, we want to examine the derivative of V along trajectories of the system,{
x′(t) = f(x(t)), t ≥ 0

x(0) = x0 ∈ Rn
(4.1.1)

where x and f(x) are in Rn, f is continuous and locally Lipschitzian. Suppose that x is a solution
of (4.1.1), then we have that

dV (x(t))

dt
=

n∑
j=1

∂V (x(t))

∂xj
x′j(t) =

n∑
j=1

∂V (x(t))

∂xj
fj(t). (4.1.2)

Definition 4.1.4 (Quadratic functions) A class of scalar functions for which sign definition
can be easily checked is quadratic functions.

Definition 4.1.5 (How to check the sign of quadratic functions)

V (x(t)) = xTPx =

n∑
i=1

n∑
j=1

xixjPij (4.1.3)

where P = P T is a real matrix.
(i) V (x(t)) is positive definite/ positive semi-definite iff λi(P ) > 0/λi(P ) ≥ 0, i = 1, 2, 3, ..., n
iff all leading principle minors of P are positive / non-negative, respectively.
If V (x(t)) is positive(positive semi-definite), we say the matrix P is positive(positive semi-definite)
and write (P > 0)(P ≥ 0).

Theorem 4.1.6 [4](Lyapunov Theorem) Let the origin be an equilibrium point for equation
(4.1.1). Let D be a neighborhood of the origin. The origin is stable if there is V : D ⊂ Rn →
R a C1, positive definite function such that V ′ is negative semi definite. Then the origin is
asymptotically stable if V ′ is negative stable.
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Proof.
Let x0 ∈ Rn, and t ≥ 0, then

V (x(t, x0)) ≤ V (x0),

and V −1([0, V (x0)]) is compact, so every solution curve stays bounded in forward time.
To show Lyapunov stability suppose ε > 0 is given. Choose ε1 ∈ (0, ε). Since V is continuous and
[0, ε1]n ⊆ (0, ε)n is compact, there exists M ∈ R such that V is bounded above by M on [0, ε1]n.
Since V is continuous, there exists δ > 0 such that for all x ∈ [0, δ]n, V (x) < M. Hence for every
x0 ∈ [0, δ]n, and every t ≥ 0, since V ′ < 0, then

V (x(t, x0)) = V (x0) +

ˆ t

0
V ′(s, x0)ds ≤ V (x0) ≤M

Hence for every x0 ∈ [0, δ]n and all t ≥ 0, x(t, x0) ∈ [0, ε1]n ⊆ (0, ε)n. So, for all ε > 0 there is
δ > 0 such that ‖x(t, x0)‖ < ε, for all t ≥ 0. Hence the origin is stable. To show that the origin is
asymptotically stable, fix any p ∈ D ⊂ Rn and define

c = lim inf
t≥0

V (x(t, x0)) = lim
t→∞

V (x(t, x0))

If c = 0 then we are done since V is positive definite.
Otherwise, choose δ > 0 such that 0 < c − δ < c + δ < V (p), and consider the annular region
A = V −1([c − δ < c + δ]) ⊆ D ⊂ Rn.V ′ is continuous. V ′ is negative definite, then there exists
q > 0 such that for all x ∈ A, V ′(x) ≤ −q. By choice of c there exists T ∈ R such that
V (x(T, x0)) < c+ δ, that is, x(T, x0) ∈ A. So,

V (x(T +
2δ

q
, x0)) = V (x(T, p)) +

ˆ 2δ
q

0
V ′(x(T + s, p))ds ≤ (c+ δ) +

ˆ 2δ
q

0
−qds ≤ (c− δ) (4.1.4)

which contradicts the choice of c. Thus c = 0 and the origin is asymptotically stable.

Theorem 4.1.7 [4](Babashin - Krasovskii Theorem) Suppose f : Rn → Rn is locally Lips-
chitz, f(0) = 0, and V : Rn → R be a C1 function, radially unbounded, positive definite such that
V ′ is negative definite. Then the origin is a globally asymptotically stable equilibrium of x′ = f(x).

Proof.
Let x0 ∈ Rn, and t ≥ 0, then V (x(t, x0)) ≤ V (x0), and V −1([0, V (x0)]) is compact, so every
solution curve stays bounded in forward time.
To show Lyapunov stability suppose ε > 0 is given. Choose ε1 ∈ (0, ε). Since v is continuous and
[0, ε1]n ⊆ (0, ε)n is compact, there exists M ∈ R such that V is bounded above by M on [0, ε1]n.
Since V is continuous, there exists δ > 0 such that for all x ∈ [0, δ]n, V (x) < M. Hence for every
x0 ∈ [0, δ]n, and every t ≥ 0, since V ′ < 0, then

V (x(t, x0)) = V (x0) +

ˆ t

0
V ′(s, x0)ds ≤ V (x0) ≤M.

Hence for every x0 ∈ [0, δ]n and all t ≥ 0, x(t, x0) ∈ [0, ε1]n ⊆ (0, ε)n. To show that the origin is
attractive, fix any x0 ∈ Rn and define

c = lim
t≥0

V (x(t, x0)) = lim
t→∞

V (x(t, x0))

If c = 0 then we are done since V is positive definite.
Otherwise, choose δ > 0 such that 0 < c− δ < c+ δ < V (p), and consider the annular region

A = V −1([c− δ < c+ δ]) ⊆ Rn.

Since V is proper, A is compact. V ′ is continuous. V ′ is negative definite, then there exists q > 0
such that for all

x ∈ A, V ′(x) ≤ −q.
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By choice of c there exists T ∈ R such that

V (x(T, x0)) < c+ δ,

that is,
x(T, x0) ∈ A.

Hence,

V (x(T +
2δ

q
, x0)) = V (x(T, p)) +

ˆ 2δ
q

0
V ′(x(T + s, p))ds ≤ (c+ δ) +

ˆ 2δ
q

0
−qds ≤ (c− δ)

which contradicts the choice of c. Thus c = 0 and the origin is globally asymptotically stable. The
C1 function V (x) is called a Lyapunov function.
The surface V (x) = c, for some c > 0 is called a Lyapunov surface or level surface.
When V ′(x) ≤ 0, when a trajectory crosses a Lyapunov surface V (x) = c, it moves inside the set
Ωc = {x ∈ Rn : V (x) ≤ c} and traps inside Ωc.
When V ′ < 0, trajectories move from one level surface to an inner level with smaller c till V (x) = c
shrinks to zero as time goes on.

4.2 Instability Theorem

Theorem 4.2.1 [2](Chetaev’s Theorem) Let x = 0 be an equilibrium point of x′ = f(x). Let
V : D → R be a C1 function such that V (0) = 0 and V (x0) > 0 for some x0 with arbitrary small
‖x0‖. Define a set v = {x ∈ Br : V (x) > 0} where Br = {x ∈ Rn : ‖x‖ < r} and suppose that
V ′(x) is positive definite in v. Then, x = 0 is unstable.

Proof.
Let Ω = Br, and let ε > 0 be so small that B(0, ε) is contained in B(0, r) and let

M = Ω ∩ {‖y‖ < ε}.

We affirm that there are points arbitrarily close to the equilibrium point which move a distance
at least ε from the equilibrium.
Note that M has points arbitrarily close to the origin, so for any δ > 0 there is a point x ∈ M
with ‖x‖ < δ and V (x) > 0.
If x(t, x0) remains in M , for all t ≥ 0 then y(t) is increasing since ∆V (x(t, x0)) > 0 and so

y(t) ≥ y(0) = V (x0) > 0 for t ≥ 0.

The closure of
Ω = {x(t, x0) : t ≥ 0}

is compact and then defining
γ = min

y∈Ω
∆V (y).

Since ∆V (y) is positive definite in Ω, it is clear that γ > 0. So, x(t, x0) ∈ Ω, for every t implies
that

V (x(t, x0))− V (x0) =
t−1∑
s=0

∆V (x(s, x0)) ≥ γt.

So, V (x(t, x0)) → ∞ as t → ∞. Contradiction because x(t, x0) remains in B(0, ε) and V is
continuous.
Therefore, there exists t∗ > 0 such that x(t, x0) crosses the boundary of M for the first time at
t = t∗, and

∆V (x(t, x0)) > 0 for 0 ≤ t < t∗

and so
y(t∗) ≥ V (x0) > 0.

Because the complment of M consist of points q where V (q) ≤ 0 or where ‖q‖ ≥ ε, it follows that
‖x(t∗, x0)‖ ≥ ε. Therefore, x = 0 is unstable.
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4.3 How to search for a Lyapunov function (variable gradient
method)

Idea is working backward:
Investigate an expression for V ′(x) and go back to choose the parameters of V (x) so as to make
V ′(x) negative definite.
Let V = V (x) and g(x) = (∂V∂x )T , then, V ′ = ∂V

∂x f = gT f .
Choose g(x) such that it would be the gradient of a positive definite function V and make V ′

negative definite.
g(x) is the gradient of a scalar function if and only if the Jacobian matrix ∂g

∂x is symmetric:

∂gi
∂xj

=
∂gj
∂xi

, for all i, j = 1, 2, 3, ..., n.

Select g(x) such that gT (x)f(x) is negative definite.
Then, V (x) is computed from the integral;

V (x) =

ˆ x

0
g(y)dy =

ˆ x

0

n∑
i=1

gi(y)dy

The integration is taken over any path joining the origin to x. This can be done along the axes :

V (x) =

ˆ x1

0
g1(y1, 0, 0, ..., 0)dy1 +

ˆ x2

0
g2(x1, y2, 0, 0, ..., 0)dy2 + ...+

ˆ xn

0
gn(x1, x2, ..., yn)dyn

By leaving some parameters of g undetermined, one would try to choose them so that V is positive
definite.

Definition 4.3.1 (Region of Attraction) Let Φ(t, x) be the solution of the system (4.1.1) start-
ing at x0, then the Region of Attraction (R o A) is defined as the set of all points x such that
limt→∞Φ(t, x) = 0.

Lyapunov function can be used to estimate the R o A.
If there is a Lyapunov function satisfying asymptotic stability over domain D and the set

Ωc = {x ∈ Rn : V (x) ≤ c}

is bounded and contained in D, then all trajectories starting in Ωc remains there and converges to
0 as t→∞.

4.4 LaSalle’s invariance principle

Lasalle’s theorem enables one to conclude asymptotic stability of an equilibrium point even when
one can’t find a function V (x) such that V ′(x, t) is locally negative definite. However, it applies
only to time-invariant or periodic systems. We will deal with the time-invariant case and begin by
introducing a few more definitions.

Definition 4.4.1 The set S ⊂ Rn is the limit set of a trajectory x(t, x0) if for every p ∈ S, there
exists a strictly increasing sequence of times tn such that x(tn, x0)→ p as tn →∞.

Definition 4.4.2 A set M is said to be a positive invariant set with respect to the system (4.1.1),
if

x0 ∈M implies x(t, x0) ∈M, for all t ≥ 0.

A set M is said to be an invariant set with respect to the system (4.1.1), if

x0 ∈M implies x(t, x0) ∈M, for all t ∈ R.
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Example 4.4.3 Set of equilibrium points, and set of limit cycles are invariant sets. Also, the set

Ωc = {x ∈ Rn : V (x) ≤ c} withV ′ ≤ 0, forall x ∈ Ω

is a positive invariant set.

Lemma 4.4.4 [10] Suppose Ω ⊆ Rn is open, f : Ω → Rn is locally Lipschiptz function and
V : Ω→ R is a C1 function and bounded from below. Suppose that p ∈ Ω and for all t ≥ 0, x(t, p)
is defined and is contained in Ω. Then

for all q ∈ L+, V ′(q) = 0.

Proof .
If L+ = ∅ then there is nothing to prove. Suppose q1 = q3 ∈ L+, q2 ∈ L+ and fix any ε > 0.
Since V is continuous at q1 and at q2, there exists δ > 0 such that for all x ∈ Ω, for i = 1, 2, if

‖x− qi‖ < δ then |V (x)− V (qi)| <
ε

4
.

Since qi ∈ L+, i = 1, 2, there exists 0 ≤ t1 ≤ t2 ≤ t3 such that for i = 12, 3, ‖x(t, p)− qi‖ < δ,
and hence for

i = 1, 2, 3, |V (x(t, p))− V (qi)| <
ε

4
.

This implies that

|V (x(t3, p))− V (x(t1, p))| ≤ |V (x(t3, p))− V (q1)|+ |V (q1)− V (x(t1, p))| <
ε

2
.

Since V ′ does not change the sign this implies

|V (x(t2, p))− V (x(t1, p))| = |
ˆ t2

t1

V ′(x(s, p))ds|

≤ |
ˆ t3

t1

V ′(x(s, p))ds|

≤ |V (x(t3, p))− V (x(t1, p))| <
ε

2
.

Therefore,

|V (q2)− V (q1)| ≤ |V (q2)− V (x(t2, p))|+ |V (x(t2, p))− V (x(t1, p))|+ |V (x(t1, p))− V (q1)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Since ε > 0 was arbitrary, this establishes that V is constant on L+.
Now use that L+ is invariant, q ∈ L+ and all t ∈ R, V (x(t, q)) = V (q) and therefore

V ′(q) =
d

dt
|t=0

1

t
(V (x(t, q))− V (q)) = 0,

proving that V ′ vanishes identically on L+.

Theorem 4.4.5 [10](LaSalle’s Theorem ) Let f be a locally Lipschiptz function defined over a
domain D ⊂ Rn and Ω ⊂ D be a compact set that is positively invariant with respect to x′ = f(x).
Let V (x) be a C1 function defined over D such that V ′(x) ≤ 0 in Ω. Let E be the set of all points
in Ω where V ′(x) = 0, and M be the largest invariant set in E. Then, every solution starting in
Ω approaches M as t→∞, means that d(x(t, x0),M) →

t→∞
0, for all x0 ∈ Ω.
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Proof .
Suppose p ∈ Ω and consider the curve t→ x(t, p). Since V is continuous it is bounded from below
from on the compact set Ω. Since Ω is invariant by hypothesis,

for all t ≥ 0, x(t, p) ∈ Ω.

More over, using that Ω is compact , and hence bounded, the positive limit set L+ is non-empty.
Since Ω is closed,

L+ ⊆ Ω.

Using the Lemma above,
for all q ∈ L+, V ′(q) = 0

and therefore,
L+ ⊆ {y : V ′(y) = 0} = E ⊆M.

Since the positive limit sets are invariant,

L+ ⊆M.

Since
L+ ⊆M,

it follows that
q ∈M.

Thus, the solution curve starting at an arbitrary p ∈ Ω approaches M as t→∞.

Theorem 4.4.6 [4] Let f be a locally Lipschitz function defined over a domain D ⊂ Rn; 0 ∈ D.
Let V (x) be a C1 positive definite function defined over D such that V ′(x) ≤ 0 in D − {0}. Let

Γ = {x ∈ D : V ′(x) = 0}

(i) If no solution can stay identically in Γ, other than the trivial solution x(t) = 0, then the origin
is asymptotically stable.
(ii) Moreover, if Γ ⊂ D is compact and positively invariant, then it is a subset of the region of
attraction.
(iii) Furthermore, if D = Rn and V (x) is radially unbounded, then the origin is globally asymptot-
ically stable.

Lasalle’s theorem can also extend the Lyapunov theorem in three different directions.
(1) It gives an estimate of the RoA not necessarily in the form of

Ωc = {x ∈ Rn : V (x) ≤ c}, (4.4.1)

the set can be a positively invariant set which leads to less conservative estimate.
(2) Can determine stability of equilibrium set, rather than isolated equilibrium points.
(3) The function V (x) does not have to be positive definite.

4.5 Barbashin and Krasorskii Corollaries

Corollary 4.5.1 [4] Let x = 0 be an equilibrium point of x′ = f(x). Let V : D → R be a C1,
positive definite function on a domain D containing the origin x = 0, such that V ′(x) ≤ 0 in D.
Let

S = {x ∈ D : V ′ = 0}

and suppose that no solution can stay identically in S, other than the trivial solution x(t) = 0.
Then, the origin is asymptotically stable.
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Proof .
S = {x ∈ D : V ′ = 0} = {0}

since no solution can stay identically in S, other than the trivial solution x(t) = 0. So, we have
that V is a C1, positive definite with V ′ negative definite. Thus, by Lyapunov theorem the origin
is asymptotically stable.

Corollary 4.5.2 [4] Let x = 0 be an equilibrium point of x′ = f(x). Let V : Rn → R be a C1,
radially unbounded, positive definite function such that V ′(x) ≤ 0, for all x ∈ Rn. Let

S = {x ∈ Rn : V ′ = 0}

and suppose that no solution can stay in S forever except at x = 0. Then, the origin is asymptot-
ically stable.

Proof .
S = {x ∈ D : V ′ = 0} = {0}

since no solution can stay identically in S, other than the trivial solution x(t) = 0. So, we have
that V is a C1, positive definite, and a radially unbounded function with V ′ negative definite.
Thus, by the Barbashin and Krasorskii theorem the origin is globally asymptotically stable.

Example 4.5.3 Consider x′ = −g(x) where g(x) is locally Lipschitz on (−a, a), a > 0 and

g(0) = 0, xg(x) > 0

for all x 6= 0, x ∈ (−a, a). Origin is an equilibrium point. Then the origin is globally asymptotically
stable.
Infact, consider the function,

V (x) =

ˆ x

0
g(y)dy

over D = (−a, a). Then, V (x) is a C1 function, and V (0) = 0, V (x) > 0, for all x 6= 0. Also,

V ′(x) =
∂V

∂x
.f(x) = g(x)f(x) = −g2(x)

=⇒ V ′(x) = −g2(x) < 0, for all x ∈ D − {0}.

Therefore, V (x) is a valid Lyapunov function. Thus, the origin is asymptotically stable.

Example 4.5.4 (Pendulum with friction){
x′1 = x2

x′2 = −g
I sinx1 − k

mx2

(4.5.1)

the origin is an equilibrium point of the above system. The origin is asymptotically stable.

Infact, consider the function,

V (x) =
1

2
xTPx+

g

I
(1− cosx1)

where P =

(
P11 P12

P21 P22

)
is positive definite, that is (P11 > 0, P22 > 0, P11P22 − P 2

12 > 0)

V ′ =
1

2
((xT )′Px+ xTPx′) + (

g

I
sinx1).x′1

=
g

I
x2 sinx1(1− P22) + x2x1(P11 −

k

m
P12) + x2

2(P12 −
k

m
P22)− g

I
P12(x1 sinx1)
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Let, 1− P22 = 0, P11 − k
mP12 = 0, and 0 < P12 <

k
m , then in particular,

P22 = 1, P11 =
k

m
P12 =

k2

2m2
, P12 =

k

2m
.

Then, we have that P is positive definite, and V ′ is reduced to

V ′ = −x2
2

k

2m
− gk

2mI
(x1 sinx1).

x1 sinx1 > 0,∀x1 such that 0 < ‖x1‖ < π, defining a domain D by

D = {x ∈ R2 : ‖x1‖ < π}.

Note: k,m, g, I > 0.
Therefore, V (x) is positive definite and V ′ is negative definite over D. Thus, the origin is asymp-
totically stable by the Lyapunov Theorem.

Example 4.5.5 {
x′1 = x2

x′2 = −h(x1)− ax2

where a > 0, h(.) is locally Lipschitz, h(0) = 0, yh(y) > 0, for all
y 6= 0, y ∈ (−b, c), b, c > 0.
Find the proper Lyapunov function.

Using variable gradient method

V ′(x) = (
∂V

∂x
)f(x) = (

∂V

∂x1
)f1(x) + (

∂V

∂x2
)f2(x)

= g1(x)f1(x) + g2(x)f2(x)

= g1(x)x2 + g2(x)(−h(x1)− ax2)

We select g(x) such that V ′ < 0 and V (x) =
´ x

0 g
T (y)dy > 0 for x 6= 0.

Choose g(x) =

(
α(x)x1 + β(x)x2

γ(x)x1 + δ(x)x2

)
where α, β, γ, δ are to be determined.
To satisfy

∂g1

∂x2
=
∂g2

∂x1

we need

β(x) +
∂β(x)

∂x2
.x2 +

∂α(x)

∂x2
.x1 = γ(x) +

∂γ(x)

∂x1
.x1 +

∂δ(x)

∂x1
.x2

which implies that β = γ.

V ′(x) = g1(x)x2 + g2(x)(−h(x1)− ax2) = (α(x)x1 + β(x)x2)x2 + (γ(x)x1 + δ(x)x2)(−h(x1)− ax2)

= x2(α(x)x1 − aγ(x)x1 − δ(x)h(x1))− x2
2(aδ(x)− β(x))− γ(x)h1(x1)x1

Let, α(x)x1 − aγ(x)x1 − δ(x)h(x1) = 0, then

V ′(x) = −x2
2(aδ(x)− β(x))− γ(x)h(x1)x1
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and g(x) =

(
aγ(x)x1 + δ(x)h(x1) + γ(x)x2

γ(x)x1 + δ(x)x2

)
.

By integration, we have

V (x) =

ˆ x1

0
(aγ(x)y1 + δ(x)h(y1) + γ(x)x2)dy1 +

ˆ x2

0
(γ(x)x1 + δ(x)y2)dy2

=
aγ(x)x2

1

2
+
γ(x)x1x2

2
+
δ(x)x2

2

2
+ δ(x)

ˆ x1

0
h(y)dy

=
xTPx

2
+ δ(x)

ˆ x1

0
h(y)dy

where P =

(
aγ(x) γ(x)

γ(x) δ(x)

)
choosing δ(x), aγ(x) > 0, and aγ(x)δ(x)− γ(x)2 > 0. We choose γ(x) such that 0 < γ(x) < aδ(x).
This implies that V is positive definite .
Also,

V ′(x) = −x2
2(aδ(x)− β(x))− γ(x)h(x1)x1 = −x2

2(aδ(x)− γ(x))− γ(x)h(x1)x1 < 0, x 6= 0

Thus, V ′ is negative definite, and V is positive definite.

Taking P = δ(x)

(
ka2 ka

ka 1

)
, 0 < k < 1, δ(x), a > 0

V (x) =
xT

2
δ(x)

(
ka2 ka

ka 1

)
x+ δ(x)

ˆ x1

0
h(y)dy

over D = {x ∈ Rn : −b < x1 < c}. Conditions of the theorem are satisfied. Thus, the origin is
asymptotically stabe.

Example 4.5.6 Consider {
x′1 = x2

x′2 = −g(x1)− h(x2)

where g(.), h(.) are locally Lipschitz and satisfy g(0) = 0, yg(y) > 0, for all y 6= 0, y ∈ (−a, a)
h(0) = 0, yh(y) > 0, for all y 6= 0, y ∈ (−a, a), a > 0
The system has an isolated equilibrium point at origin. The origin is globally asymptotically stable.

To see this, let

V (x) =
x2

2

2
+

ˆ x1

0
g(y)dy

with D = {x ∈ R2 : −a < xi < a, i = 1, 2}. Then, V (x) ≥ 0 on D. So,

V ′(x) = g(x1)x2 + x2(−g(x1)− h(x2)) = −x2h(x2) < 0, x2 6= 0.

Thus, V ′(x) is negative semi definite, and the origin is stable by Lyapunov theorem.
Using Lasalle’s theorem, define

S = {x ∈ D : V ′ = 0}

V ′ = 0 implies that x2h(x2) = 0, and this implies that x2 = 0.
Hence,

S = {x ∈ D : x2 = 0}.

Suppose x(t) is a trajectory in S, for all t, then x2 = 0 =⇒ x′1 = 0 =⇒ x1 = c, where c is a
constant in (−a, a). Also, x2 = 0 implies that x′2 = 0 which implies that g(c) = 0, this then
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implies that c = 0.
Therefore,, the only solution that can stay in S, for all t ≥ 0 is the origin. Thus, the origin is
asymptotically stable.
Now, let a =∞ and assume g satisfy

ˆ x

0
g(y)dy →∞ as ‖x‖ → ∞,

then the Lyapunov function

V (x) =
x2

2

2
+

ˆ x1

0
g(y)dy

is radially unbounded, and V ′ ≤ 0 in R2. Thus, the origin is globally asymptotically stable.

4.6 Linear systems and linearization

Given x′ = Ax, the equilibrium point is at origin. It is isolated iff detA 6= 0. System has an
equilibrium subspace if detA = 0, the subspace is the null space of A.
The linear system cannot have multiple isolated equilibrium point since, linearity requires that
if x1 and x2 are equilibrium points, then all points on the line connecting them should also be
equilibrium points.
Recall that the equilibrium point x = 0 of x′ = Ax is stable iff all eigenvalues λ of A satisfy
Re(λ) < 0, asymptotic stability can be verified by using Lyapunov method:
- Consider a quadratic Lyapunov function candidate

V (x) = xTPx, P = P T > 0

then,
V ′ = (xT )′Px+ xTPx′ = (Ax)TPx+ xTPAx = xT (ATP + PA)x = −xTQx,

where −Q = ATP + PA; Q = QT , Lyapunov equation.
- If Q is positive definite, then we conclude that x = 0 is globally asymptotically stable.
- We can proceed alternatively as follows:
- Start by choosing Q = QT , Q > 0, then solve the Lyapunov equation for P .
- If P > 0, then x = 0 is globally asymptotic stable.

Theorem 4.6.1 [4] A matrix A ∈ Mn×n(R) is a stable one, that is , Re(λi, i = 1, 2, ..., n) < 0
if and only if for every given Q = QT > 0, there exists P = P T > 0 that satisfies the Lyapunov
equation. Moreover, if A is a stable matrix, then P is unique.

Proof.
Assume that for every positive definite Q = QT there exists a positive definite P = P T such that

ATP + PA = −Q

is satisfied, consider
V (x) = xTPx,

then V is positive definite, and V ′ is negative definite, and also V is radially unbounded. So x = 0
is asymptotically stable for x′ = Ax. Thus,

Re(λi) < 0.

Conversely, suppose Re(λi, i = 1, 2, ..., n) < 0, and Q = QT is positive definite. Define

P =

ˆ ∞
0

etA
T
QetAdt
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This integral converges absolutely because the norm of the integrand is bounded by a function of
the form CtNe−αt for some constants C, N, α. To show that P is positive definite, suppose
x ∈ Rn is such that xTPx = 0. Then

ˆ ∞
0

(etAx)TQ(etAx)dt = 0

since Q is positive definite this implies that for all t ≥ 0, etAx = 0. Since for every t, etA is
invertible, this implies x = 0 proving that P is positive definite. To show that V (x) = xTPx has
the desired derivative along solutions, first note that

V ′(x) = xT (PA+ATP )x.

Now,

PA+ATP =

ˆ ∞
0

(etA
T
QetAA+AT etA

T
QetA)dt =

ˆ ∞
0

d(etA
T
QetA)

dt
dt = etA

T
QetA|∞0 = −Q

To show uniqueness, suppose P, P ∗ ∈ Rn×n are both positive definite, and satisfy

PA+ATP = P ∗A+ATP ∗ = −Q.

Then
(P − P ∗)A+AT (P − P ∗) = 0,

and hence for every t ≥ 0

etA
T

((P − P ∗)A+AT (P − P ∗))etA = 0

which implies that

d(etA
T

(P − P ∗)etA)

dt
= 0.

Thus,
for all t ≥ 0, etA

T
(P − P ∗)etA = e0.AT (P − P ∗)e0.A = P − P ∗.

On the other hand, since we assumed that the origin is asymptotically stable,

P − P ∗ = lim
t→∞

etA
T

(P − P ∗)etA = 0.

Thus, P = P ∗.

Example 4.6.2 Let A =

(
0 −1

1 −1

)
, Q =

(
1 0

0 1

)
= QT > 0, and P =

(
P11 P12

P12 P22

)
= P T > 0

The Lyapunov equation ATP + PA = −Q becomes
2P12 = −1

−P11 − P12 + P22 = 0

−2P12 − 2P22 = −1

(4.6.1)

which implies


P11

P12

P22

 =


1.5

−0.5

1


so, P = P T =

(
1.5 −0.5

−0.5 1

)
> 0. Hence, x = 0 is globally asymptotically stable.
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Remark 4.6.3 Computationally, there is no advantage in computing the eigenvalues of A over
solving Lyapunov equation.

Consider x′ = f(x) where f : D → Rn, D ⊂ Rn, is continuously differentiable. Let x = 0
be in the interior of D and f(0) = 0. In a small neighborhood of x = 0, the nonlinear system

x′ = f(x)

can be linearized by
x′ = Ax.

Theorem 4.6.4 [4] Let x = 0 be an equilibrium point for x′ = f(x) where f : D → Rn is
continuously differentiable and D is a neighborhood of the origin. Let A = ∂f

∂x |x=0, then
(1) x = 0 is asymptotically stable if Re(λi) < 0, i = 1, 2, 3, ..., n
(2) x = 0 is unstable if Re(λi) > 0, for one or more eigenvalues.

Proof .
- Let D be a small neighborhood of x = 0, then

x′ = f(x)

can be linearized by
x′ = Ax.

So, the solution of the system
x′ = Ax

is
x(t, x0) = etAx0.

Let λ be the eigenvalues of A, then for some M ≥ 1, and α > 0

‖x(t, x0)‖ = ‖etA‖‖x0‖
≤Me−αt‖‖x0‖
< M‖x0‖.

Take δ = ε
M+1 , then

‖x(t, x0)‖ ≤M‖x0‖ < Mδ < ε.

So, x = 0 is stable. Also,

‖x(t, x0)‖ ≤Me−αt‖x0‖ → 0, as t→∞,

since Re(λ) < 0. So,
x(t, x0)→ 0, as t→∞.

Thus, x = 0 is asymptotically stable.
- If Re(λ0) > 0, for one or more eigenvalues, say λ0, then for λ0,

‖x(t, x0)‖ = ‖etAx0‖ = ‖eλ0t‖‖x0‖ = ‖eReλ0t‖‖x0‖ → ∞ as t→∞.

Thus, x = 0 is unstable.

Example 4.6.5
x′ = ax3

Linearization about x = 0 yields:

A =
∂f

∂x
|x=0 = 3ax2|x=0 = 0

Linearization fails to determine stability. If a < 0, then x = 0 is asymptotically stable. To see
this, V (x) = x4, implies that V ′ = 4x3x′ = 4ax6.
If a > 0, x = 0 is unstable. If a ≤ 0, x = 0 is stable, starting at any x, remains in x.
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Example 4.6.6 {
x′1 = x2

x′2 = −(gI ) sinx1 − ( kmx2)

Linearization about 2 equilibrium points (0, 0), and (π, 0):

A = ∂f
∂x =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

(
0 1

−g
I cosx1 − k

m

)
.

At (0, 0) A =

(
0 1

−g
I − k

m

)
. So, solving for eigenvalues we get

λ1,2 = − k
2m +

√
( k
m

2− 4g
I

)

2 . Therefore, for all g, k, I,m > 0 Re(λ1, λ2) < 0. Thus, x = 0 is
asymptotically stable.
If k = 0, then Re(λ1, λ2) = 0. Therefore, stability cannot be determined.
At (π, 0), change the variable to z1 = x1 − π, z2 = x2,

A =

(
0 1

−g
I − k

m

)
, implies that λ1,2 = − k

2m +

√
( k
m

2
+ 4g
I

)

2 . Therefore, for all g, k, I,m > 0, there is

one eigenvalue in the open right-half plane.Thus, x = 0 is unstable.
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CHAPTER 5

MORE APPLICATIONS

Introduction
In this chapter, we discussed various applications of Lyapunov Theorem, and LaSalle’s invariance
principle.

Example 5.0.1 [6](Robot Manipulator) Dynamics:

M(q)q′′ + C(q, q′)q′ +Bq′ + g(q) = u (5.0.1)

where M(q) is the n× n inertia matrix of the manipulator, C(q, q′)q′ is the vector of coriolis and
centrifugal forces, g(q) is the term due to the gravity, Bq′ is the viscous damping term, u is the
input torque, usually provided by a DC motor.
Objective: To regulate the joint position q around desired position qd.
A common control strategy PD + gravity:

u = KP q
∗ −KDq

′ + g(q) (5.0.2)

where q∗ = qd − q is the error between the desired and actual position. KP and KD are diagonal
positive proportional and derivative gains.
Consider the following Lyapunov function candidate:

V =
(q′)TM(q)q′

2
+

(q∗)TKP q
∗

2
(5.0.3)

The first is the kinetic energy of the robot and the second term accounts for ”artificial potential
energy” associated with virtual spring in PD control law (proportional feedback KP q

∗)
Physical properties of a robot manipulator:
1. The inertia matrix M(q) is positive definite
2. The matrix M ′(q)− 2C(q, q′) is skew symmetric.
V is positive in Rn except at the goal position q = qd, q′ = 0

V ′ = (q′)TM(q)q′′ +
(q′)TM ′(q)q′

2
+ (q′)TKP q

∗ (5.0.4)

Substituting M(q)q′′ from (5.0.1) into the above equation yields
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V ′ = (q′)T (u− C(q, q′)q′ −Bq′ − g(q)) +
(q′)TM ′(q)q′

2
− (q′)TKP q

∗

= (q′)T (u− C(q, q′)q′ −Bq′ − g(q)) +
(q′)TM ′(q)q′

2
− (q′)T (u+KDq

′ − g(q))

= (q′)T (−C(q, q′)q′ −KDq
′ −Bq′) +

(q′)TM ′(q)q′

2

= −(q′)T [2C(q, q′)q′]q′

2
+

(q′)TM ′(q)q′

2
− (q′)T (Bq′ +KDq

′)

=
(q′)T [M ′(q)− 2C(q, q′)q′]q′

2
− (q′)T (B +KD)q′

= −(q′)T (B +KD)q′ ≤ 0.

So, V is non increasing, and thus the goal position is stable.
Use the invariant set Theorem:
Suppose V ′ = 0, then V ′ = −(q′)T (B+KD)q′ implies that q′ = 0 and hence q′′ = 0. From equation
(5.0.1) with (5.0.2), we have that

M(q)q′′ + C(q, q′)q′ +Bq′ = KP q
∗ −KDq

′ (5.0.5)

we must then have KP q
∗ = 0 which implies that q∗ = 0. V is radially unbounded. Therefore, global

asymptotic stability is ensured.
In case, the gravitational terms is not canceled, V ′ is modified to:

V ′ = −(q′)T ((B +KD)q′ + g(q)) (5.0.6)

The presence of gravitational term means PD control alone cannot guarantee asymptotic tracking.
Assuming that the closed loop system is stable, the robot configuration q will satisfy

KP (qd − q) = g(q) (5.0.7)

The physical interpretation of the above equation is that:
The configuration q must be such that the motor generates a steady state ”holding torque” KP (qd−q)
sufficient to balance the gravitational torque g(q). Therefore, the steady state error can be reduced
by increasing KP .

5.1 Control design based on lyapunov’s direct method

Basically there are two approaches to design control using Lyapunov’s direct method
- Choose a control law, then find a Lyapunov function to justify the choice
- Candidate a Lyapunov function, then find a control law to satisfy the Lyapunov stability condi-
tions.
Both methods have a trial and error flavor. In robot manipulator example the first approach was
applied:
First a PD controller was choosen based on physical intuition. Then a Lyapunov function is found
to show globally asymptotic stability.

Example 5.1.1 (Regulator design) Consider the problem of stabilizing the system:

x′′ − (x′)3 + x2 = u (5.1.1)

In other word, make the origin an asymptotically stable equilibrium point
Recall the example: {

x′1 = x2

x′2 = −g(x1)− h(x2)
(5.1.2)
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where g(.) and h(.) are locally Lipschitz and satisfy g(0), h(0) = 0, yg(y), yh(y) > 0 for all
y ∈ (−a, a), a > 0.
Asymptotic stability of such system could be shown by selecting the following Lyapunov function:

V (x) =
x2

2

2
+

ˆ x1

0
g(y)dy. (5.1.3)

Let x1 = x, x2 = x′. The above example motivates us to select the control law u as

u = u1(x′) + u2(x) (5.1.4)

where
x′((x′)3 + u1(x′)) < 0, x′ 6= 0, x(u2(x)− x2) < 0, x 6= 0.

The globally stabilizing controller can be designed even in the presence of some uncertainties on
the dynamics:

x′′ + α1(x′)3 + α2x
2 = u (5.1.5)

where α1 and α2 are unknown, such that α1 > −2, and ‖α2‖ < 5. This system can be globally
stabilized uing the control law:

u = −2(x′)3 − 5(x+ x3) (5.1.6)

Sometimes just knowing a system is asymptotically stable is not enough. At least an estimation of
RoA is required.
Let x = 0 be an equilibrium point of x′ = f(x). Let Φ(t, x) be the solution starting at x at time
t = 0. The region of attraction (RoA) of the origin denoted by RA is defined by:

RA = {x ∈ <n : Φ(t, x)→ 0 as t→∞}. (5.1.7)

Example 5.1.2 (Van-der-Pol) Dynamics of oscillator in reverse time{
x′1 = −x2

x′2 = x1 + (x2
1 − 1)x2

(5.1.8)

Checking by linearization method

A = ∂f
∂x |x=0 =

(
0 −1

1 −1

)
which implies that λ1 = −1+j

√
3

2 and λ2 = −1−j
√

3
2 . Thus,

Re(λi) < 0, i = 1, 2.

Hence, the origin is asymptotically stable.

Example 5.1.3 {
x′1 = x2

x′2 = −x1 +
x31
3 − x2

(5.1.9)

There are 3 isolated equilibrium points (0, 0), (
√

3, 0), (−
√

3, 0).
Checking by linearization method

At (0, 0) A = ∂f
∂x |x=(0,0) =

(
0 −1

1 −1

)
which implies that λ1 = −1+j

√
3

2 and λ2 = −1−j
√

3
2 . Thus,

Re(λi) < 0, i = 1, 2. Hence, the origin is asymptotically stable.

At (
√

3, 0) A = ∂f
∂x |x=(

√
3,0) =

(
0 −1

2 −1

)
which implies that λ1 = 1 > 0 and λ2 = −2. Thus,

(
√

3, 0) is not stable.

At (−
√

3, 0) A = ∂f
∂x |x=(−

√
3,0) =

(
0 −1

2 −1

)
which implies that λ1 = 1 > 0 and λ2 = −2. Thus,

(−
√

3, 0) is not stable.
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Example 5.1.4 Recall the example: {
x′1 = x2

x′2 = −h(x1)− ax2

(5.1.10)

V =
δ

2
xT

(
ka2 ka

ka 1

)
x+ δ

ˆ x1

0
h(y)dy (5.1.11)

Let,

V =
δ

2
xT

(1
2

1
2

1
2 1

)
x+

ˆ x1

0
(y − 1

3
y3)dy =

3x2
1

4
− x4

1

12
+

1

2
x1x2 +

x2
2

2
.

We get,

V ′ = −x
2
1

2
(1− x2

1

3
)− 1

2
x2

2.

Define
D = {x ∈ R2 : −

√
3 < x1 <

√
3}.

Therefore, V (x) > 0 and V ′(x) < 0 in D − {0}. D is not a subset of RA. Trajectory starting
in D move from one Lyapunov surface to V (x) = c1 to an inner surface V (x) = c2 with c2 < c1.
However, there is no guarantee that the trajectory will remain in D forever. Once, the trajectory
leaves D, no guarantee that V ′ remains negative. This problem does not occur in RA since RA is
an invariant set. The simplest stimate is given by the set

Ωc = {x ∈ Rn : V (x) ≤ c} (5.1.12)

where Ωc is bounded and connected and Ωc ∈ D. To find RoA, first we need to find a domain D
in which V ′ is negative definite, then a bounded set Ωc ⊂ D shall be sought. We are interested in
largest set Ωc, that is the largest value of c since Ωc is an estimate of RA. V is positive definite
everywhere in R2. If V (x) = xTPx, let

D = {x ∈ R2 : ‖x‖ ≤ r}.

Once D is obtained, then select
Ωc ⊂ D

by
c < min

‖x‖=r
V (x).

In other words, the smallest V (x) = c which fits into D. Since

xTPx ≥ λmin(P )‖x‖2 (5.1.13)

We can choose
c < λmin(P )r2 (5.1.14)

To enlarge the estimate of RA implies find largest ball on which V ′ is negative definite.

Example 5.1.5 {
x′1 = −x2

x′2 = x1 + (x2
1 − 1)x2

(5.1.15)

From the linearization principle

A = ∂f
∂x |x=0 =

(
0 −1

1 −1

)
, the origin is stable.

Taking Q = I and then solving the Lyapunov equation

PA+ATP = −I
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we give

P =

(
1.5 −0.5

−0.5 1

)
.

λmin(P ) = 0.69,

V ′ = −(x2
1 + x2

2)− (x3
1x2 − 2x2

1x
2
2)

≤ −‖x‖22 + ‖x1‖‖x1x2‖‖x1 − 2x2‖

≤ −‖x‖22 +

√
5

2
‖x‖42

where |x1| ≤ ‖x‖2, |x1x2| ≤
‖x‖22

2 , |x1 − 2x2| ≤
√

5‖x‖2. V ′ is negative definite on a ball D of
radius r2 = 2√

5
= 0.894, so c < 0.894× 0.69 = 0.617. To find less conservative estimate of Ωc

Let x1 = α cos θ, x2 = α sin θ

V ′ = −α2 + α4 cos2 θ sin θ(2 sin θ − cos θ)

≤ −α2 + α4| cos2 θ sin θ||2 sin θ − cos θ|
≤ −α2 + α4(0.3849)(2.2361)

≤ −α2 + 0.861α4 < 0

for α2 < 1
0.861 , c < 0.8 < 0.69

0.861 = 0.801. Thus the set:

Ωc = {x ∈ R2 : V (x) ≤ 0.8} (5.1.16)

is an estimate of RA.

Example 5.1.6 {
x′1 = −2x1 + x1x2

x′2 = −x2 + x1x2

(5.1.17)

There are two equilibrium points, (0, 0), (1, 2).

At (1, 2), A =

(
−2 + x2 x1

x2 −1 + x1

)
x=(1,2)

=

(
0 1

2 0

)
,

which implies that λ1 =
√

2, and
λ2 = −

√
2. Thus (1, 2) is unstable.

At (0, 0), A =

(
−2 + x2 x1

x2 −1 + x1

)
x=(0,0)

=

(
−2 0

0 −1

)
,

which implies that λ1 = −1, and λ2 = −2. Thus (0, 0) is asymptotically stable.
Taking Q = I and solving Lyapunov equation ATP + PA = −I

=⇒ P =

(1
4 0

0 1
2

)
. Therefore the Lyapunov function is

V (x) = xTPx,

which implies that

V ′ = −(x2
2 + x2

1) +
1

2
(x2

1x2 + 2x2
2x1).
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Now we find largest D such that V ′ is negative definite in D.
Let x1 = α cos θ, x2 = α sin θ

V ′ = −α2 + α3 cos θ sin θ(sin θ +
1

2
cos θ)

≤ −α2 +
1

2
α3| sin 2θ|| sin θ +

1

2
cos θ|

≤ −α2 +

√
5

4
α3 < 0

for α < 4√
5
.

Since λmin(P ) = 1
4 , then we choose c = 0.79 < 1

4 × ( 4√
5
)2 = 0.8. Thus the set:

Ωc = {x ∈ R2 : V (x) ≤ 0.79} ⊂ RA (5.1.18)

Estimating RoA by the set Ωc is simple but conservative, alternatively LaSalle’s theorem can be
used. It provides an estimate of RA.

Example 5.1.7 {
x′1 = x2

x′2 = −4(x1 + x2)− h(x1 + x2)
(5.1.19)

where h : R→ R such that h(0) = 0, and xh(x) ≥ 0, for all ‖x‖ ≤ 1
Consider the Lyapunov function candidate:

V (x) = xT

(
2 1

1 1

)
x = 2x2

1 + 2x1x2 + x2
2.

Then

V ′ = −2x2
1 − 6(x1 + x2)2 − 2(x1 + x2)h(x1 + x2)

≤ −2x2
1 − 6(x1 + x2)2

= −xT
(

8 6

6 6

)
x, for all |x1 + x2| ≤ 1.

Therefore V ′ is negative definite in the set

G = {x ∈ R2 : |x1 + x2| ≤ 1},

and thus (0, 0) is asymptotically stable, to estimate RA, first we do it from Ωc. Find the largest c
such that Ωc ⊂ G. Now, c is given by c = min|x1+x2|=1 V (x) or c = min{minx1+x2=1 V (x),minx1+x2=−1 V (x)}.
The first minimization yields

min
x1+x2=1

V (x) = min
x1
{2x2

1 + 2x1(1− x1) + (1− x1)2} = 1

and
min

x1+x2=−1
V (x) = 1.

Hence, Ωc with c = 1 is an estimate of RA.
A better estimate of RA is possible. The key point is to observe that trajectory inside G cannot
leave it through certain segment of the boundary |x1 + x2| = 1.
Let

ω = x1 + x2
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then ∂G is given by ω = 1 and ω = −1.
We have

d

dt
ω2 = 2ω(x′1 + x′2) = 2ωx2 − 8ω2 − 2ωh(ω) ≤ 2ωx2 − 8ω2, for all |ω| ≤ 1.

On the boundary

ω = 1 implies that
d

dt
ω2 ≤ 2x2 − 8 ≤ 0, for all x2 ≤ 4.

Hence, the trajectory on ω = 1 for which x2 ≤ 4 cannot move outside the set G since ω2 is
non-increasing. Similarly, on the boundary ω = −1 we have

d

dt
ω2 ≤ −2x2 − 8 ≤ 0, for all x2 ≥ −4

Hence, the trajectory on ω = −1 for which x2 ≥ −4 cannot move outside the set G. To define
the boundary of G, we need to find two other segments to close the set. We can take them as the
segments of Lyapunov function surface. Let c1 be such that

V (x) = c1

intersects the boundary of
x1 + x2 = 1 at x2 = 4

let c2 be such that
V (x) = c2

intersects the boundary of
x1 + x2 = −1 at x2 = −4.

Then, we define
V (x) = min(c1, c2),

we have
c1 = V (x)|x1=−3, x2=4 = 10,

and
c2 = V (x)|x1=3,x2=−4 = 10

The set ω is defined by
ω = {x ∈ R2 : V (x) ≤ 10, |x1 + x2| ≤ 1}

This set is closed and bounded and positively invariant. Also, V ′ is negative definite in Ω since
Ω ⊂ G, which implies that

Ω ⊂ RA.

Let x(t) be the integral curve of f starting at x0. Suppose x(t) remains in D for 0 ≤ t < T . The
equation

x′ = Ax(t) +R(x(t)) (5.1.20)

with initial conditions x(0) = x0 has a solution that satisfies the variation of constants formula,
namely

x(t) = etAx0 +

ˆ t

0
e(t−s)AR(x(s))ds (5.1.21)

and so

‖x(t)‖ ≤Me−tε‖x0‖+ α

ˆ t

0
e−(t−s)ε‖x(s)‖ds (5.1.22)

letting f(t) = etε‖x(t)‖, the previous inequality becomes

f(t) ≤M‖x0‖+ α

ˆ 1

0
f(s)ds (5.1.23)
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and so, by Gronwall’s inequality,
f(t) ≤M‖x0‖eαt

and thus,

‖x(t)‖ ≤Me(α−ε)t‖x0‖ = M‖x0‖e−
1
2
tε. (5.1.24)

Therefore, x(t) ∈ D, 0 ≤ t < T , so as x(t) may be indefinitely extended in t and the foregoing
estimates holds.
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CONCLUSION

The aim of this thesis is to study a long time behaviour solution using 3 approaches .
The first one is the linearization principle: If it works that fine, but most of cases it does not work
well, like we have seen in many examples.
The second one is the Lyapunov functions, it is the best way to study the asymptotic behaviour
of solutions, but the construction of the Lyapunov functions depends on the nature of the ODE.
The third one is based on LaSalle invariance principle, it is an interesting working tool in dynam-
ical systems and control theory.
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