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                                                  ABSTRACT 

Surge and swab pressure computation is very important in drilling hydraulics. Most blowout 

problem in oil wells have been as a result of surge and swab pressures developed from running 

or pulling of tubular goods in liquid-filled bore hole. Excessive surge pressures can fracture the 

geological formation, while excessive swab can result in blowouts. In this work the analysis of 

steady state, laminar couette flow of non-Newtonian yield power law drilling fluid model 

(Herschel-Bulkley) is used to compute the surge and swab in Eccentric annuli. 

A slot flow model was first of all developed for a yield power law fluid in a concentric annulus, 

this model equation formed the basis of this work. And in solving for an eccentric annulus, the 

mathematical  concept of conformal mapping was applied. A suitable mathematical bilinear 

function was applied in mapping the original eccentric plane, for a particular eccentricity ratio, 

to a concentric (zero eccentricity ratio) plane. 

By applying a suitable iterative technique the various pressure values were obtained and plots 

of  dimensionless pressures versus dimensionless flow rate or radii were made. From which for 

a particular eccentricity ratio, fluid behavior index, shear stress and consistency index, the 

corresponding surge or swab can be obtained. 

 

 

 

                                     

v 



                                                 LIST OF FIGURES 

Figures                                                                                                                                                      Page 

1.  Shear stress versus Shear rate for a Newtonian fluid                                                          6                                                                                                    

2.  Shear stress versus Shear rate a for power law fluid: (a) pseudoplastic (b) dilatant          7 

3.  Shear Rate versus Shear Stress for a Bingham plastic fluid                                               9 

4.  Cross section for Concentric and Eccentric Annulus, with corresponding  equivalent slot 

models                                                                                                                                             16 

5.  Nomenclature for Eccentric Annulus (A.W.Iyoho et al 1981)                                               18 

6.  Extracted Triangle from Nomenclature of Eccentric Annulus                                               19 

7.   Comparison between Eccentric Heights for Concentric and Eccentric Annulus               22 

8.  Geometric Parameters for a Power law fluid flow through slot  

(Chukwu and Blick 1989)                                                                                                              23 

9.  Slot model representation of a Yield Power Law Fluid of a Concentric Annulus. (Crespo 

and Ahmed 2010)                                                                                                                          26 

10.  Velocity Profile of Yield Power law through a slot of a concentric annulus. (Crespo and 

Ahmed 2010)                                                                                                                                  27 

11. Pressure and shear stress forces on yield power law fluid element in region 1.               28 

12.  Pressure and Shear stress forces on yield power law fluid element  in region III             33 

13.  Mapping from the eccentric region to the concentric region  

(Chen, Tsai, and Liu 2008)                                                                                                            45 

vi 



14.  Graph of Dimensionless Pressure Versus Dimensionless Flow Rate ( For ε = 0.5, shear 

stress  �0 = 10 lbf/100 ft
2
, flow behavior index n =0.80, consistency index  K = 0.0062658 

lbf-secn/ft2  = 0.62658 lbf-secn/100ft2)                                                                                       57 

15.  Graph of Dimensionless Pressure Versus Dimensionless Radii  (For ε = 0.5, shear stress  
�0 = 10 lbf/100 ft2, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
)                                                                                             58 

16.  Graph of Dimensionless Pressure Versus Dimensionless Radii  (For ε = 0.5, shear stress  
�0 = 10 lbf/100 ft

2
, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

secn/ft2  = 0.62658 lbf-secn/100ft2)                                                                                             59 

17.  Graph of Dimensionless Pressure Versus Dimensionless Flow Rate, (For ε = 0.8,Shear 

stress  �0 = 10 lbf/100 ft2, flow behavior index n =0.80, consistency index K = 0.0062658 

lbf-sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
)                                                                                       68 

18.  Graph of Dimensionless Pressure Versus Dimensionless Radii (For ε = 0.8, shear stress  
�0 = 10 lbf/100 ft

2
, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

secn/ft2  = 0.62658 lbf-secn/100ft2)                                                                                             69 

19.  Graph of Pressure Gradient Versus Dimensionless Radii (For ε = 0.8, shear stress  �0 = 
10 lbf/100 ft2, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-secn/ft2  

= 0.62658 lbf-sec
n
/100ft

2
)                                                                                                            70 

                                   

 

                                 

vii 



                                            LIST OF TABLES     

Table                                                                                                                                               Page 

1. Table showing hole geometry for an eccentricity ratio, ε=0.5                                              22          

2. Procedure for computation of different hole parameters given the input parameters   54  

3. Showing various pressure gradient with corresponding with dimensionless  

parameter �, and dimensionless pressure P, for particular tripping speed  

of Vp = 0.5 fps                                                                                                                                 55 

4. Showing solved corresponding dimensionless distance solved using Iterative  

simulation technique and computed dimensionless flow rate and  

dimensionless radii respectively                                                                                                 56 

5. Showing procedure for computation of different parameters 

given the input parameters                                                                                                         65 

6. Showing various pressure gradient with corresponding with dimensionless 

parameter �, and dimensionless pressure P, for particular tripping speed of  

Vp = 0.5 fps                                                                                                                                     66 

7. Showing solved corresponding dimensionless distance solved using Iterative  

simulation technique and corresponding computed dimensionless flow rate 

and dimensionless radii respectively                                                                                         67 

 

 

viii 



                                           NOMENCLATURE 

ε = Eccentricity ratio 

c = concentric radial clearance (r2 – r1), in. (mm) 

d2 = Outer-Pipe or hole diameter, in. (mm) 

d1 = Inner-Pipe (drill Pipe) diameter, in. (mm) 

r2 = Outer-pipe or hole radius, in. (mm) 

r1 = Inner-pipe (drill pipe) radius, in. (mm) 

n = Fluid index behavior, dimensionless 

b = Constant, dimensionless 

τ0 = Yield Stress, lbf/100 ft
2
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n
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2  
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n
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e = inner-pipe offset distance relative to hole center, in. (mm) 

ρ2 = Mapped concentric hole radius, in. (mm) 

ρ1 = Mapped concentric inner-pipe radius, in. (mm) 

a = Real positive constant for bilinear transformation, in
-1

.  (mm
-1

) 

��	  = Dimensionless total flow rate, dimensionless 


� = Dimensionless distance, dimensionless 
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ΔP = Pressure drop, psi (Pa) 

L = Length of drill pipe in liquid filled bore hole, in. (mm) 

P = Dimensionless Pressure, dimensionless 

Vp = Velocity of the drill pipe, fps (mm/s) 

� = Dimensionless term, dimensionless 
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                                                          CHAPTER ONE 

                                                          INTRODUCTION 

1.0 INTRODUCTION: 

This study covers Non-Newtonian fluid flow in eccentric annulus, with special case study to 

Yield Power Law Drilling Fluid Model. The Yield Power law drilling fluid model considered here is 

the yield pseudo plastic (Herschel Buckley Model), where the fluid index behavior is less than 

one. The Herschel Buckley Model is used to commonly represent the behavior of drilling fluids. 

1.1 BACKGROUND OF THESIS: 

There is much relevance in the study of surge and swab in bottom hole while drilling. A surge is 

an increase in the bore hole hydrostatic pressure as a result of increasing velocity of the drill 

string down hole. This can create a pressure that can fracture the formation, that is, if the 

resultant hydrostatic pressure exceeds the fracture pressure of the formation. In lowering the 

drill string in a mud filled hole, great care is taken so that a surge doesn’t occur. A surge can 

lead to lost circulation, whereby mud used in drilling is lost into the formation. 

On the converse, a swab can occur while pulling out the drill string or tubular goods. As a result 

of pulling, a partial vacuum is created and as “Nature abhors a Vacuum” formation fluid from 

the pores of the formation would take up place to replace the vacuum. This can result to a Kick 

and if not controlled can result to a blow out, which is an uncontrollable outpour of formation 

fluid and drilling mud fluid from the hole. 
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As a result of the phenomenon of surge and swab, great care has to be taken to prevent the 

adverse effects of it. The question then becomes, what are the best ways surge and swab can 

be quantified? At what values of pressure is it going to fracture the formation? And also at what 

values can a kick occur? And also at what values of velocity would it be safe to lower or raise 

tubular goods or drill string?  These questions led to research and computational work resulting 

in generation of pressure profiles for different fluid models. Plots are also made using 

dimensionless characteristics. With these charts it is very easy to read up a particular pressure 

surge value for a corresponding velocity value, and with such a value, care is taken so as not to 

exceed such values. These can be applied on the field. 

1.2 SCOPE 

This work would be combining a fluid flow model, a flow phenomenon in a physical situation to 

solve another physical problem. Here the fluid type is a Non-Newtonian Yield Power Law fluid 

model, and would be applying couette flow phenomenon. Couette flow is the phenomenon 

whereby fluid is confined between two coaxial cylinders, one of which is stationary and the 

other is moving at a uniform velocity. This flow characteristic is representative of flow in the 

wellbore annulus where the wall of the wellbore is represented by the stationary cylinder and 

the drill string or casing pipe is represented by the moving cylinder. The fluid average velocity is 

dependent on the velocity of the moving cylinder (Akrong, 2009). 

The physical situation that would be observed in this work is Eccentricity. Majorly, in all drilling 

problems involving drill string or tubular goods in wellbore, concentricity is assumed, but this is 

not actually so. In concentricity it is assumed that the drill string is centrally placed in the 
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wellbore, such that it has the same uniform clearance. But in actual drilling practice, this is not 

so, the drill string is not centrally placed but it tends more towards a particular side of the 

wellbore. A pipe can have an eccentricity of 100%, ε=1.0, that is, the pipe touches on the side of 

the hole and it could also be 50%, that is ε=0.5, 80% or ε=0.8 and eccentricity, ε, could also be 

0%, ε=0.0, that is the pipe is centrally placed hence concentric. In this work couette flow 

analysis would be used. 

 

1.3 PROBLEM STATEMENT 

With the resulting explanation of surge and swab pressures phenomenon for couette flow, and 

the attendant situation of eccentricity of pipe in wellbore, there is need to compute the surge 

or swab pressure values combined for various eccentricity ratios for a yield Power law drilling 

fluid model. The computed surge would be used as a check so as not to exceed the fracture 

gradient of the formation. This would then prevent lost circulation of the drilling mud. Also the 

computed swab pressure value can be used as a check so as not to go below the formation pore 

pressure. This would then prevent kicks or blowouts. 

 

1.4 OBJECTIVES 

The objectives of this work are to use Yield Power Law Drilling fluid Model: 

1) To confirm formula for slot flow model for yield Power law fluid for concentric annulus 

using couette flow analysis. 
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2) Compute the surge or swab Pressure value for Yield Power Law fluid, for varying 

eccentricity ratios. 

3) Develop a Program that computes the surge/swab pressure value for any field 

combination of eccentricity ratio, and yield power law fluid parameters. 

1.5 METHODOLOGY 

The methodology is to develop the slot model for concentric annulus for a yield power law fluid 

and then applying the concept of conformal mapping, and then map the eccentric annulus, 

which is to be solved, into a concentric annulus. 

With the already developed formulation, the mapped concentric annulus is then solved and a 

program that can easily solve for any field value combination is developed. 
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                                          CHAPTER TWO 

                                      THEORY AND LITERATURE REVIEW 

 

The study of fluid flow stems basically from the branch of fluid mechanics called hydraulics. This 

is the branch of engineering or science that studies the movement of fluids and the forces 

exerted by and on them. (Chukwu 2009). 

 

  2.1 Review of Fluid Classification  

A fluid is basically defined as a substance that undergoes shear rate no matter how small upon 

the application of a shear stress. From the definition above the related parameters related 

above are shear stress and shear rate. Hence we expect some form of displacement (shear 

displacement) in the fluid. Fluids can be characterized in behavior based on the rheology or 

deformation behavior using rheological models. Rheology is defined as the “deformation of 

matter” or the study of relationship between applied forces (shear stress) at different shear 

rates. 

2.1.1 Mathematical Models  

A mathematical description of the relation between shear stress and sheer rate and viscous 

forces present in the fluid is required for the development of friction loss equations. The 

rheological models generally used to characterize fluid behavior are: (Adam et al, 1986) 
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a) Newtonian Model 

b) Power Law Fluid Model 

c) Bingham Plastic Fluid Model 

a) Newtonian Model: 

In this model, the shear stress is directly proportional to the shear rate. The constant of 

proportionality is known as the effective fluid viscosity. The mathematical formula for 

the Newtonian fluid is given by: 

      Shear stress (τ ) = Viscosity ( µ ) x Shear Rate (γ )                                                                           (1)     

 

 

Figure 1: Shear stress Vs Shear rate for a Newtonian fluid 
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In the figure above the shear stress is directly proportional to the shear rate for a Newtonian fluid 

and the slope of the graph is the true or effective viscosity. Physical examples of fluid in this 

model are water, gases, kerosene, high gravity oils. 

b) Power Law Fluid Model (Non-Newtonian Model) 

 The relationship between shear stress and rate is a non-linear. The fluid could be shear rate 

dependent. If the apparent viscosity decreases with increasing shear rate, then the fluid is 

termed pseudo plastic, and is dilatant if the apparent viscosity increases with increasing shear 

rate. For both cases the fluid is also called Non-Newtonian Model. The fluid can also be 

classified with respect to shear rate time dependency and it is thixopetric, if the apparent 

viscosity decreases after it has increased to a new constant value and could also be rheopectic, 

if the apparent viscosity increases after it must have increased to a new constant value. 

 

 

Figure 2: Shear stress Vs Shear rate a for power law fluid: (a) pseudo plastic (b) dilatant 
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The profiles in the figure above describe relations for shear stress versus shear rate for a non-

Newtonian power law fluid. The profiles are curved unlike the Newtonian fluid which is a 

straight line. If the slope, which is a measure of the apparent viscosity, is taken at each point on 

the curve  in (a), the slope would be decreasing for increasing shear rate, hence it is termed 

pseudo plastic and the slope in (b) would be increasing with increasing shear rate, hence termed  

dilatant. Note also that for n<1, the fluid is pseudo plastic and for n>1, the fluid is dilatant. 

The power law model can be represented mathematically as: 

                       τ=kγn                                                                                                                     (2)                        

c) Bingham Plastic Model 

This is a model used to characterize fluids that would not flow until the applied shear 

stress exceeds a certain minimum value τy , known as the yield stress. After this point 

the stress is then directly proportional to the shear rate. 
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Figure 3: Shear Stress Vs Shear rate for a Bingham plastic fluid 

In the figure above, the line does not start at the origin but at a particular shear stress 

value, +τy, where the shear rate is zero. And the slope of the line is the plastic viscosity 

given as μp. 

 

This model formula is given: 

            τ=τy + μp(γ)                                                                                                   (3) 

Though there are other models such as Herschel Buckley, Robertson-Stiff, Casson model. These 

other major models have been developed which at low shear rates, exhibit behavior intermediate 

between that of the Bingham and Power-law models. These models are defined by: 

 

(d)  [ ]22/12/1 )( γµττ &po += ……………………………….. (CASSON MODEL)                                                        (4) 
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(e)  
n

oK )( γγτ += …………………………………….(Robertson-stiff model)                                                      (5) 

 

(f) 
n

o Kγττ &+=  ………………………………………(Herschel-Buckley model)                                                     (6) 

 

2.2 LITERATURE REVIEW 

     Study of surge and swab pressure is very important in the drilling industry; hence there has 

been much work in the subject area. In 1934 Canon described the changes in hydrostatic 

pressure due to withdrawing drill pipe from the hole. He predicted that swab pressure from 

pipe swabbing could be a cause of fluid influx and caused blowouts as well. The paper discussed 

the factors that affect the magnitude of pressure drops when drill pipe is withdrawn from hole. 

Such factors include the effect of high gel strength which resulted to high pressure drop, effect 

of mud weight, viscosity, the effect of relation of depth which showed that the pressure drop 

due to withdrawing the drill pipe is proportional to the length of drill pipe in the hole, effect of 

rate of withdrawal, effect of drainage, effect of annular space and so on. 

In 1951 Goins et al studied the down-the-hole pressure surges and their effect on loss of 

circulation, the study also described pressure surges resulting from running pipes which 

resulted in rapidly breaking circulation which then caused lost circulation. He identified surges 

caused from running pipe, spudding while pumping, rapidly opening pumps to start circulation. 

He reported that surges may be avoided through slowed rates of pipe movement and slow 

breaking of circulation. 

A study by Horn in 1951 showed that of the 55 California blowouts, 9 gave strong evidence that 

blowouts were caused principally by the reduction in static pressure during pipe withdrawal. 
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Cardwell in 1953 looked at the pressure changes in drilling well caused by pipe movement. He 

pointed out that many blowouts that occur in drilling operations where as a result of reduction 

in static pressure during drill pipe withdrawal.  

Ormsby in 1954 developed a detailed analysis of the theory of pressure surges. He discussed 

both laminar and turbulent flow regimes of drilling fluid. Clark in 1955 presented graphs of 

surges and gave the equations to predict their magnitudes. He also considered pressure 

variation arising from viscous drag and inertial effects and also looked at a graphic view of 

Pressure Surges and Lost circulation. He concluded that there are very few natural 

combinations of geostatic and hydrostatic gradients that cannot be successfully drilled provided 

operators are willing to put forth the time and effort required for proper mud control. 

Burkhardt in 1961 explained wellbore pressure surges produced by pipe movement. He made 

measurements of surge values from wellbore and made comparison of measured results with 

those predicted by the calculation. In his work the theory correctly predicts the existence and 

magnitude of various positive and negative peaks due to gel breaking, inertia and viscous drag 

of the mud. And that when running drill pipe or casing without fill-up devices, the surge due to 

viscous drag is usually the largest. In 1974 Fontnot and Clark presented an improved approach 

to help calculate down-hole pressures in a drilling well. The fluid properties were compensated 

with their variation with depth. A computer program was developed to compare the values 

obtained with experimental data. Also in 1974 Moore defined the three major causes of surge 

and swab pressure as; Viscous shear, breaking of gel strength and pipe acceleration or 
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deceleration (inertia). He also presented an equation to calculate the surge pressure required 

to break the gel strength. 

In 1988 Mitchell presented a paper on dynamic surge/swab pressure predictions. He extended 

the surge/swab model to include features as (1) Pipe annulus and annulus pressures coupled 

through pipe elasticity (2) longitudinal pipe elasticity and fluid viscous forces to determine pipe 

displacement (3) Fluid properties that would vary as a function of temperature and pressure (4) 

Formation elasticity, pipe elasticity, and cement elasticity to determine the response of the well 

bore. He compared the constructed dynamic surge/swab model with experimental data and 

there was a good agreement. 

Deniz in 1989 studied the flow of a power-law fluid in an eccentric annulus, he modeled the 

eccentric annulus as a slit of variable height and he also compared the volumetric flow rate of 

power-law fluid in the eccentric annulus with that of a concentric one for the same pressure 

drop. His study showed an increase in volumetric flow rate for an eccentric case. 

Yuejin and Peden in 1990 studied the flow of Non-Newtonian fluids through eccentric annuli. 

The study was for laminar eccentric annular flow. The eccentric annulus was represented by an 

infinite number of concentric annuli of variable radii. The authors obtained analytical solutions 

for stress, shear rate, velocity and volumetric flow rate for both Bingham plastic and Power law 

fluids. 

Fredrickson and Bird (1960) derived an analytical solution for steady state axial flow of Non-

Newtonian fluids in a long cylindrical annulus, but the model is limited to concentric (perfectly 

centered) inner pipe. Haciilamoglu and langlinais in 1991 studied the effect of pipe eccentricity 
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on pressure surges, and they discovered as the eccentricity increased the pressures surges 

reduced and that concentricity over predicted the value of the surge pressures. 

Bizanti (1991) in a paper, “Are Improved Surge Models Needed? ”, compared existing surge 

models obtained from steady state. In the paper, he concluded that the steady-state surge 

models over-predict surge pressures for high yield point muds and it under-predicts surge 

pressures for high mud weights in deep wells. Chukwu and Blick in 1991 gave theoretical results 

of surge and swab pressures for couette flow of power law fluids through concentric annulus 

and a graphical technique was used to easily compute the surge and swab pressure from a 

family of curves for different pipe/hole diameter ratios for field applications.  

Chukwu in 1995 developed a practical approach for predicting casing running speed from 

Couette Flow of Non-Newtonian Power-Law Fluids. He made an analysis of steady laminar 

couette flow of Non-Newtonian Power law fluids through concentric annular wellbore and 

employed the computed surge pressures, in combination with family of curves to determine  

the maximum velocities at the which the casing pipes can be run in the hole without the danger 

of fracturing the formation. 

Rubiandini (2000) described new formula of surge pressure for determining safe trip velocities. 

He basically calculated the surge/swab value from existing equations, but introduced a 

correction factor, which is a function of a combination of mud properties, pipe and hole sizes, 

correction parameter factor of plastic viscosity, yield point, mud density and hole-pipe size. He 

prepared a computer program for the new formula for surge. 
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Ramadan (2005) described experimental study and modeling of Yield-Power-law fluid flow in 

pipes. He studied the effects of pipe eccentricity, diameter ratio and fluid rheology on friction 

pressure loss and carried extensive flow experiments with polymer-based fluids. He computed 

pressure loss in eccentric annuli using three hydraulic models and compared the models with 

experimental measurements. 

Ozbayoglu in 2006 made analysis of the effect of eccentricity on flow characteristics of annular 

flow of Non-Newtonian fluids using Finite Element Method (FEM). His results showed that as 

eccentricity increased FEM estimate of the frictional pressure losses were more accurate than 

conventional methods. He pointed out that as eccentricity increases, frictional pressure losses 

decreases, and this was validated from simulation and as well as from experiments. He 

observed the velocity profiles of any cross section of the wellbore using FEM with a realistic 

projection. 

In 2010 Freddy Crespo looked at Surge and Swab Pressure Predictions for yield-Power-law 

Drilling Fluids. He showed that the pressure surge depends strongly on drill pipe tripping speed, 

wellbore geometry, flow regime, fluid rheology and whether pipe is often open or closed. He 

concluded that surge/swab pressure is also attributed to different flow phenomena including 

pipe eccentricity, geometric irregularities, acceleration and dynamic effects.  
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                                                         CHAPTER THREE 

                                               DEVELOPMENT OF MODEL EQUATIONS 

 

In developing the equations for flow of yield power law in eccentric annulus, the geometry 

consists of two cylinders. The smaller inner cylinder represents the tubular goods and the larger 

outer cylinder represents the hole. This is represented by a cross section of two circles and the 

eccentric case does not have circles with the same centre, but they lie on the same straight line 

axis. The inner cylinder moves with a uniform velocity.  

The following assumptions were made in development of the equations: 

1.) Single phase, steady state incompressible fluid flow.  

2.) The flow regime is considered laminar. 

3.) The flow is isothermal that is the temperature of the fluid is constant, and also with 

constant fluid properties. 

4.) Gravitational and slip effects are not considered. 

5.) The inner cylinder moves with at a constant speed Vp. 

6.) Consideration is for a closed pipe system. The inner pipe end is sealed. 

7.) Couette flow phenomenon is assumed. 
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3.1 FORMULATION FOR ECCENTRIC HEIGHT IN ECCENTRIC ANNULUS 

This is a review formulation for Eccentric Height, h 

 

 

Figure 4: Cross section for Concentric and Eccentric Annulus, with corresponding equivalent slot 

models   (A.W. Iyoho et al 1981) 

The figure 4 above shows the cross section for concentric annulus which has a uniform 

clearance and that for an eccentric annulus which has a varying clearance. 
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Given an outer-pipe or hole radius of rO and outer or inner pipe radius of ri, for a concentric 

annulus the radial clearance, c, is uniform. Hence h is also constant. 

     ℎ = ( = ) = *+ − *-                                                                                                                         (7) 

But for an eccentric annulus which is the case study of this work, h, varies around the circle. 

Depending on the nomenclature for angle notation, it starts from a maximum then approaches 

an average concentric value, reaches a minimum and then back to the average, and back to the 

maximum value. The distance between the centers of both circles which is called the offset 

distance, e. Also the eccentricity ratio, ε, is the ratio of offset distance to radial clearance. For a 

concentric case the offset distance is zero, both circles have the same centers and the 

eccentricity ratio is also zero. 

Hence for an eccentric case, the eccentricity ratio: 

.((/01*2(21
	*3124, 5 = 4667/1	827130(/, /93823:	;:/3*30(/, ( 	= /�*+ − *-! = /( 																																																�8! 

 

Therefore,  

                                            																																																					/ = (5																																																										�9!          
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Figure 5: Nomenclature for Eccentric Annulus (A.W.Iyoho et al 1981) 

In the figure 5 above shows the varying eccentric height and the notation for the angle used is 

such that the angle is taken as moving anti-clockwise from the North. 
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It is of interest here to review the formulation for h, for eccentric case: 

Extracting the triangle ABO from figure above: 

                                                                 

Figure 6: Extracted Triangle from Nomenclature of Eccentric Annulus 

                                                             A 

 

                                                                                       *+ 

 

 

                                                                    (*- + ℎ)                           B 

                                                                                                            

 

                                                                                                              / 

                                                                                                      > 

                                                                                                             

                                                                                                        C 

 

By applying cosine rule on the figure 6 

                                                                 *+� = (*- + ℎ)� + /� − 2(*- + ℎ)/;47>                                                         (10) 

                                       	*+� =	*-� + 2*-ℎ +	ℎ� + /� − 2*-/;47> − 2ℎ/;47>                       (11)                      
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Rearranging: 

                                      	ℎ� + 2ℎ�*- − /;47>! + �/�−*+� + *-� − 2/*-;47>! = 0                    (12)                     

Solving the quadratic equation (5) for h, using the quadratic formula;                                   

ℎ	 = 2�/;47> − *-! ± @A4�*- − /;47>!� − 4�/�−*+� + *-� − 2/*-;47>!C2 																									�13! 

Simplifying 

																														 
	�*- − /;47>!� − �/�−*+� + *-� − 2/*-;47>! 																																																																																														

= *-� − 2*-;47> + /�;47�> − /� + *+� − *-� + 2*-;47>																																			�14! 

                                             

= /�;47�> − /� + *+� = *+� − /��1 − ;47�>! = *+� − /�E20�>																																																�15!	 
This becomes the expression in the square root sign, therefore back to Equation (13) 

                                       ℎ = �/;47> − *-! ± �*+� − /�E20�>!G.H                                                      (16)           

Taking the positive root value, and also applying Equation (9)                          (Iyoho, et al, 1981) 

                                        ℎ = �*+� − 5�(�E20�>!G.H − *- + 5(;47>                                                 (17)          

 Equation (8) is the variation of eccentric height in an eccentric annulus and it is the 

fundamental basis for this work. This definitely shows that the height varies with angle of 

rotation and is not uniform like in concentric annular case. Hence h is a function of the 
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clearance, angle and eccentricity ratio. But for a particular drilling geometry, there is a 

particular ro, ri, and off course eccentricity ratio, ε, the angle largely varies while drilling. 

 Note, h, is maximum at θ=0, in Equation (17), is zero and:  

	ℎ = �*+� − 5�(�E20�0!G.H − *- + 5(;470																																																																																								�18!  
ℎ = �*+ − *-! + 5( = ( + 5(																																																																																																																�19!         
Applying Equation (7) to Equation (19)  

ℎIJK = �1 + 5!)																																																																																																																																			�20!	                                                                                                                    
And h is minimum at θ=180

o
 or π radians.    

ℎ = �*+� − 5�(�E20�L!G.H − *- + 5(;47L               

ℎ = �*+ − *-! − 5( = ( − 5(         

And from applying Equation (7) to Equation (19) 

ℎI-M = �1 − 5!)																																																																																																																																					�21!                                                                                                                    
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do(in) di(in) ro(in) ri(in) c(in) ε e(in)

10.00 7.00 5.00 3.50 1.50 0.50 0.75  

 

Table 1: Hole geometry for an eccentricity ratio, ε=0.5   

             

    

Figure 7:  Comparison between Eccentric Heights for Concentric and Eccentric Annulus 

 

By assuming some real values for hole diameter and tubular diameter as shown in Table 1 

above for an eccentricity ratio of 0.50, and for varying angle from 0 to 360 degrees, and by 
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substituting into equation (18), the height for concentric and eccentric case is plotted, and the 

variation is shown in figure 7. 

From this section the eccentric height is seen to vary as in equation (18) and the key idea in the 

methodology of this work was to seek, a function that would transform the varying slot height 

into a uniform one.                                    

 

3.2 ANALYSIS OF SLOT FLOW MODEL OF POWER LAW AND YIELD POWER LAW DRILLING 

FLUIDS FOR CONCENTRIC ANNULUS 

Following the methodology of this thesis, which is first to map the eccentric annulus from the z 

plane to concentric annulus and then to use the slot model to solve for the resultant concentric 

annulus. Hence it is of importance to study the analysis of surge and swab of fluids using the 

slot model. One of such work of importance is by Chukwu and Blick (1989), and it was 

developed for power law fluids. 
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Figure 8: Geometric Parameters for a Power law fluid flow through slot (Chukwu and Blick 

1989) 

 

3.2.1 ANALYSIS OF FORMULATION FOR SLOT MODEL FOR POWER LAW FLUIDS 

In figure 8 accounts for fluid displacement, and so the fluid region is separated into two 

different regions. Region I, a sheared region which is to the left of the figure and another 

sheared region II which is to the right of figure. Chukwu and Blick (1989) obtained the following 

dimensionless velocity profiles: 

                                             N�O = PQA
�∗ − 
�CS − A
�∗CST                                                                    (22)      

                                             N�O = 1 − PQA1 − 
�∗CS − A
� − 
�∗CST                                                    (23) 

For regions 1 and 2 for the fluid profiles in figure 8 above. 
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An identity equation was obtained by equating the velocities in  both equations (22) and (23) to 

obtain the equation below for power law fluids: 

(1 − 
�∗!S − �
�∗!S − UP = V                                                                                                               (24) 

Chukwu and Blick (1989) stated that the equation above can be solved by iteration or by  

Modified Newton-Raphson. 

They also obtained dimensionless flow rate with solution of 
�∗ ,from Equation (24) at assumed 

dimensionless pressure gradient ,P. 

WXO = W�O +W�O =	−PY SSZ�[ �
�∗!SZ� − AP�1 − 
�∗!S − 1CA1 − 
�∗C + P Y �SZ�[ �1 − 
�∗!SZ�	   (25)          

                                       \ = �ZMM                                                                                                                (26) 

                                      P = Y MMZ�[ ]_̂̀ a Ybcde[� Mf 					                                                                                (27) 

The dimensionless regional velocities for regions I and II are given by equations (28) and (29) 

                                      	N�O = gh_̀                                                                                                                 (28) 

                                      	N�O = gi_̀                                                                                                                 (29) 

 

Chukwu and Blick (1989) did the formulation for power law fluids for concentric annulus, and a 

key variable was the dimensionless flow rate which served as an input to read the profile 
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charts. But the fluid of interest here is yield power law drilling fluid. So a similar formulation for 

yield power law drilling fluid would be of relevance. 

 

3.2.2 FORMULATION OF SLOT MODEL FOR YIELD POWER LAW FLUIDS 

The formulation for yield Power law fluid which uses the similar approach as Chukwu and Blick 

(1989) above,  was developed from the work by Crespo and Ahmed (2010).  The formulation by 

Crespo and Ahmed (2010) was done for yield Power law fluid, which suits the purpose of this 

work. The work considers the flow of yield Power law fluid, with an inner pipe diameter, dp, 

been pulled out with a velocity, Vp from a hole diameter dh. 

 

 

      Figure 9: Slot model representation of a Yield Power Law Fluid of a Concentric Annulus. 

(Crespo and Ahmed 2010) 

                                             

According to Crespo and Ahmed, the annular velocity profile during tripping operations would 

be made of three regions as illustrated in figure 9. 

  26 



i) Outer Sheared Region, Region I, with boundary limits 0 � 
 � 
� 

ii) Plug Zone, Region II, with boundary limits   
� � 
 � 
� 

iii) Inner Sheared Region, Region III, within boundary limits 
� � 
 � ) 

Fluid with in the inner sheared region, which is close to the moving wall or drill pipe moves in 

the direction of the upper plate. Figure 10 clearly shows the velocity profile with the 

corresponding boundary limits. 

 

 

Figure 10: Velocity Profile of Yield Power law through a slot of a concentric annulus. (Crespo 

and Ahmed 2010)  

The formulation for the yield Power law fluid here is done with comparison to that by Chukwu 

and Blick (1989). 
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3.2.3 Velocity Profile Development for Region I:  V � j � jU 

From figure 11 consider a fluid element being acted upon by the forces shown below. 

 

Figure 11: Pressure and shear stress forces on yield power law fluid element in region 1 

  ∑ lKmmmmmmmmn = 0																																																																																																																													�30!                                                                                                                             

Summing the net forces in the x direction 

                                      

o8
 , Yo % pc
pK 8q[ 8
 % �8q , Y� % pr

ps 8
[ 8q � 0																																														�31!                                                  

                                               

, pc
pK 8q8
 ,

pr
ps 8
8q � 0																																																																																															�32!                                                                

Dividing both sides of equation (32) by  , have 

                                                  

, pc
pK �

pr
ps 																																																																																																																													�33!		                                                                                                                             

Integrating both sides of (33) with respect to y, within the boundary limits of region I; 

																																													, pc
pK t 8
s

G � t pr
ps 8


r
ru 																																																								�34!                                                                                                            
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Let 
pc
pK = bc

d   and simplifying (34) 

																																																				− bcd 
 = � − �v 																																																																										�35!                                                                                

Therefore  

																																																					� = �v − bcd 
																																																																													�36!                                                          
 

For yield Power law fluid in region I, 

  																																																	� = �+ + x Y− p_ps[M 																																																																		�37!                                                                                                                  
Substituting (36) into (37) 

																																																�v − bcd 
 = �+ + x Y− p_ps[M 																																																					�38!                                                                                               

Making 
p_ps the subject of the formula in (38) 

																																					8z8
 = − 1
x�M ]�v − {o| 
 − �+a�M 																																														�39! 

Integrating both sides of (28) with respect to y, 

																} 8z8
 8
 = }− 1
x�M 	]�v − {o| 
 − �+a�M 8
																																																	 �40!	 
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Solving and applying the limits 

														} 8z_
G = − 1

x�M} ]�v − {o| 
 − �+a�M 8
s
G 																																																														�41! 

Simplifying equation (41)  

								z = 1
x�M Y

00 + 1[	] |{oa ]�v − {o| 
 − �+a MMZ�
G
s 																																																										�42! 

 

Since V is for region 1, V can be designated as z� and simplifying with the limits y and 0. 

z� = 1
x�M Y

00 + 1[	] |{oa ~]�v − {o| 
 − �+a MMZ� − ��v − �+! MMZ��																																										 �43! 

 

Representing Equation (43) into dimensionless form by factorizing out   
bc^d   and also by 

dividing each term by 
bc^d   . 

z�zc 	= 1
x�M Y

00 + 1[ 1zc 	] |{oa ]{o)| a MMZ�
��
��� �v{o)| − �+{o)| − {o| 
{o)| �

MMZ� − � �v{o)| − �+{o)| �
MMZ�

��
��						�44!			 

 

Which is: 
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z�
zc

	= 1
x�M Y

00 + 1[ 1zc 	] |{oa ]{o)| a MMZ�
��
����v − �+{o)| − 
)�

MMZ� − ��v − �+{o)| �
MMZ�

��
��															�45!		 

Simplifying: 

z�zc 	= 	 ]{o)|x a�M Y 00 + 1[�)z�� ��
����v − �+{o)| − 
)�

MMZ� − ��v − �+{o)| �
MMZ�

��
��																															�46!		 

 

Applying boundary conditions 

8z8
 = 0, 31	
 = 
� 

Applying condition above to equation (38) 

�v − {o| 
 = �+ + x ]−8z8
a
M

 

Therefore 

			�v − �+ = x�−0!M + {o| 
�																																																																																																								�47! 

Simplifying 

�v − �+ = {o| 
�																																																																																																																																	�48! 
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Substituting (48) into (46), and simplifying: 

z�
zc

	= 	 ]{o)|x a�M Y 00 + 1[�)z�� ��
���{o| 
�{o)| − 
)�

MMZ� − �{o| 
�{o)| �
MMZ�

��
��																																					�49! 

Therefore, 

z�zc 	= 	 ]{o)|x a�M Y 00 + 1[�)z�� ~Y
�) − 
)[
MMZ� − Y
�)[ MMZ��																																																						�50! 

 

Defining the following dimensionless parameters below: 

z�zc = z�� 																																																										�51! 

�) = 
��																																																											�52! 


) = 
�																																																														�53! 

00 + 1 = \																																																							�54! 

� = Y 00 + 1[�)z��	]{o)|x a�M 																							�55! 

Applying all these dimensionless variables into (50), it becomes: 

z�� 	= �A�
��− 
�!S − �
��!SC																																																																																																															�56! 
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Hence Equation (56) represents the dimensionless velocity profile for the yield power law fluid 

for region 1.  

 

3.2.4 Velocity Profile Development for Region III,   j� � j � � 

From figure 12 consider a fluid element being acted upon by the forces shown below. 

 

 

Figure 12: Pressure and Shear stress forces on yield power law fluid element in region III 

∑ lKmmmmmmmmn = 0                

This then becomes 

	o8
 , ]o % 8o
8q 8qa8
 % ]� % 8�

8
 8
a 8q , �8q � 0																																																					�57!									 

,8o
8q 8q8
 %

8�
8
 8
8q � 0																																																																																															�58! 

Divide both sides of  equation (58) by 8q8
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8o
8q = 8�

8
 																																																																																																																																			�59! 

Integrating both sides of equation (59) with respect to y  

			} 8o8qs
si 8
 = } 8�8
 8
r

r� 																																																																																																												�60!	 
 

Letting
pcpK = bcd , and simplifying (60) 

{o| �
 − 
�! = �� − �+!																																																																																																											�61! 

So 

� = �+ + {o| �
 − 
�!																																																																																																														�62! 

Note formula for Yield Power Law for region (III) is given by (63) 

� = �+ + x ]8z8
a
M 																																																																																																																			 �63! 

Substituting (63) into Equation (62) 

�+ + x ]8z8
a
M = �+ + {o| �
 − 
�!																																																																																		�64! 

Simplifying and integrating (64), for velocity in region III: 
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t 8z_̀
_� = t Ybc

ed[
h
�^

s (
 − 
�)h
�	8
																																																																																																				�65!							 

z� − z� = 			 ]{ox|a
�M Y 00 + 1[ �
 − 
�! MMZ�s

^																																																																																				�66! 

Substituting the limits:					 
z� − z� =			 ]{ox|a

�M Y 00 + 1[ ��) − 
�! MMZ� − �
 − 
�! MMZ��																																																					�67! 

Factorize out H from each term in the square bracket, and also divide both sides of equation 

withzc. From above 

1 − z�z� = 			 ]{o)x| a�M �)z�� Y 00 + 1[ ~Y1 − 
�)[ MMZ� − Y
) − 
�)[ MMZ�� 																																													�68! 

Also by definition already stated above:	 
z�zc = z�O																																										�69! 

�) = 
��																																												�70! 

) = 
�																																														�71! 
00 + 1 = \																																							�72! 

� = 	Y 00 + 1[�)z�� ]{o)|x a�M 					�73! 
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Applying the dimensionless variables to Equation (51), hence the dimensionless velocity profile 

for region III becomes:  

1 − z�O	= �A�1 − 
��!S − �
� − 
��!SC																																																																																				�74!		 
Rearranging the equation just above: 

                                    z�O	= 1 − �A�1 − 
��!S − �
� − 
��!SC																																																								�75!							 
Note: 

The equations for velocity profiles in the sheared region of the yield Power law fluid, Equations 

(56) and (75) are similar to that of Power Law fluid equations (22) and (23) respectively, but in 

addition to these, the yield power law fluid has a plug region. 

 

3.2.5 Velocity Profile Development for the Plug Region II,   jU ≤ j ≤ j� 

Finding the plug thickness and for plug region at 
 = 
�: 

8o8q = − 8�8
																																																																																																																																								 �76!	 
Integrating both sides of equation (3.52) with respect to y, and letting 

pcpK = bcd , and simplifying  

8o8q }8
 = −} 8�8
 8
																																																																																																																		�77! 

−� = {o| 
 + ;�																																																																																																																															�78! 
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Applying the boundary conditions, at 
 = 
�, � = �+, therefore 

−�+ = {o
| 
� + ;�																																																																																																																														�79! 

Stating equation for plug region at 
 = 
� in figure 10 

8o8q = 8�8
																																																																																																																																																		 �80! 

Integrating both sides of equation w.r.t y and	substituting 
 = 
� 

� = {o| 
 + ;�																																																																																																																																						�81! 

Applying boundary conditions, at 
 = 
�, � = �+ 

�+ = {o| 
� + ;�																																																																																																																																		�82! 
Combining equations (79) and (82) results in: 

2�+ = {o| �
� − 
�!																																																																																																																														�83! 

�
� − 
�! 	= 2�+{o| 																																																																																																																																				�84! 
Writing this in dimensionless, dividing both sides of equation (84) with H 

�
�O −
��! 	= 2�+{o)| = �																																																																																																																										�85! 
and 
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�� 	= � + 
��																																																																																																																																												�86! 

Recalling the velocity profiles for regions I and III, equations (56) and (75) 

                                                             

						z�� 	= �A�
��− 
�!S − �
��!SC																																																																																																												�56! 
z�O	= 1 − �A�1 − 
��!S − �
� − 
��!SC																																																																																														�75! 

At the plug flow, the velocity is uniform, therefore at 
 = 
��, the value of z��  is equal to z�O at 


 = 
�� 

Substituting for	z�� 	31	
 = 	
��				 into equation (56) 

z�� 	= ��
��− 
��!S − ��
��!S = −��
��!S =				 z�O																																																																							�87! 

Substituting for	z�O	31	
 = 	
��				 into equation (75) 

z�O	= 1 − �A�1 − 
��!S − �
��− 
��!SC																																																																																															�88!	 
z�O	= 1 − ��1 − 
��!S 																																																																																																																										�89! 

Substituting for 
�� from equation (86) into (89). 

z�O	= 1 − ��1 − 
��−�!S 																																																																																																																			�90! 

From the analysis of plug flow, z�� = z�O. Equating (87) and (90). 

1 − ��1 − 
��−�!S 				= −��
��!S																																																																																																				�91! 

Rearranging 
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−�(1 − 
��− �!S + ��
��!S + 1 = 0																																																																																															�92! 

Dividing (92) by –� 

�1 − 
��−�!S − �
��!S − 1� = 0																																																																																																						�93! 

Substituting back 	� from Equation (85) 

�1 − 
��− 2�+{o)| �
S
− �
��!S − 1� = 0																																																																																													�94!					 

Equation (3.61) is the identity equation for Yield Power Law fluid as developed by Crespo and 

Ahmed (2010), and when �+ = 0  it is equal to that developed by Chukwu and Blick (1989).  

Re-writing the equation (94). 

]1 − 
��− 2�+{o)/|a
S − �
��!S − 1

Y 00 + 1[ ])z�a Y{o)|x [�/M = 0																																																�95! 

 

3.2.6 Development Of Equations for Dimensionless flow rate 

The expression for the flow rate is given by: 

� = �} z8
^
G 																																																																																																																																							�96! 

Recall from dimensionless variable definition: 
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z = z� z�																																																																																																																																																						�97! 

 = 
�)																																																																																																																																																			�98! 

Substituting equations (97)  and (98) into (96) 

� = �} z�z�8^
G �
�)!																																																																																																																													�99! 

��)z� = �� = } z�8�
G 
�																																																																																																																											�100! 

Since the velocity profile is for three regions, the integration above will be done for the three 

velocities and the corresponding interval. 

��	 = } z��sh�
G 8
� + } z�Osi�

s�h 8
� + } z�O�s�i 8
�																																																																																										�101! 

Solving the first integral, substituting the velocity profile: 

} z��sh�
G 8
� = 	} �A�
��− 
�!S − �
��!SC	sh�

G 8
� = −		�	�
��!SZ� 	] \\ + 1a																																				�102!		 
And for the second: 

} z�Osi�
s�h 8
� = } −		�	�
��!Ssi�

s�h 8
� = 		−		��
��− 
��!	�
��!S																																																													�103! 

Applying equation (85) to (103), the integral above becomes 

} z�Osi�
s�h 8
� = −		��	�
��!S 																																																																																																																							�104! 
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And the third integral in equation (101) 

} z�O�

s�i
8
� = 	} �1 − �A�1 − 
��!S − �
� − 
��!SC!�

s�i 8
�																																																																						�105! 

Simplifying (3.80) results in: 

= −A�	�1 − 
��!S − 1CA1 − 
��C + �\ + 1 �1 − 
��!SZ�																																																																		�106! 

So in computing (101), by adding results from (102), (103) and (106) 

��	 = −		� ] \\ + 1a	�
��!SZ� − A�	�1 − 
��!S − 1CA1 − 
��C + �\ + 1 �1 − 
��!SZ�
− ��	�
��!S																																																																																																																�107!	 

 

Substituting for 
��  by applying (86) into (107) 

��	 = −		� ] \\ + 1a	�
��!SZ� − A�	�1 − 
��− �!S − 1CA1 − 
��−�C + �\ + 1 �1 − 
��−�!SZ�
− ��	�
��!S																																																																																																																	�108! 

                                                                                                                                                                        

Note Equation (108) is now only in terms of the variable 
�� 

Also dimensionless flow rate is given as: 

��	 = −��)z� 																																																																																																																																												 �109! 
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For the well bore: 

) = (8� − 8�)
2 																																																																																																																																						�110! 

 

Slot width: 

� = L2 �8� − 8��																																																																																																																																	�111! 

For a closed-pipe condition, the fluid rate in annular geometry is equal to the rate at which the 

fluid is displaced: 

� = �L/4!8��z�																																																																																																																																					�112! 
Substituting  (110), (111) and (112) into (109) 

��	 = −1
]8�8�a� − 1																																																																																																																																	�113! 

These equations would then be applied in determining the surge and swab pressure profiles. 
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                                                                 CHAPTER FOUR  

              APPLICATION OF CONFORMAL MAPPING TO ECCENTRIC ANNULUS 

4.1 Introduction  

In the preceding chapters, the phenomenon of eccentricity was looked at. The corresponding 

formulation which consists of a varying eccentric height was looked at. Also the slot model 

formulation for Yield Power law fluids was also looked at, and it was also related to power law 

fluids in concentric annulus.  

This study looks at providing a surge and swab profile for Yield Power Law fluids in Eccentric 

Annulus. But currently since formulation has been done for yield power law fluids in concentric 

annulus, then it would be of interest to find a connection between the concentric and eccentric 

annulus. 

The mathematical tool that would be used to solve this problem is Conformal Mapping. 

Conformal mapping is a concept mostly used in physical applications involving fluid movement, 

heat conduction, aerodynamics, and electrostatic potential, but as a mathematical concept it 

can also be applied to any field where surface deformations are present. (Perez, 2011) 

The concept here is that the geometry involved, which is the eccentric annulus, can be mapped 

to a much simpler geometry which is the concentric annulus, which has already been presented 

in previous chapters. 
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If the physical problem can be represented by complex functions but the geometric structure 

becomes inconvenient then by an appropriate mapping it can be transferred to a problem with 

much more convenient geometry. Conformal mappings are invaluable for solving problems in 

engineering and physics that can be expressed in terms of functions of a complex variable, but 

exhibit inconvenient geometries. By choosing an appropriate mapping, the analyst can 

transform the inconvenient geometry into a much more convenient one. (Suman 2008) 

 

4.2 Mapping of Eccentric Annulus Using Bilinear Function 

The eccentric annulus will be mapped using the bilinear transformation: 

											� = 3� + \(� + 8 																																																																																																															�114! 
Where a, b, c, d are constants. Z is the plane, given by  � = q + 2
	4*	� = */-  while w is the 

plane given by = ¡ + 2¢	4*	� = £/-  . 

Solving equation (114) for w: 

													� = −8� + \(� − 3 																																																																																																												�115! 
The bilinear transformation has a remarkable property that circles map to as circles. (Chen, 

Tsai, and Liu 2008) 

The equation of any circle in the z plane is known to be in the form: 

¤�q� + 
�! + ¥q + ;
 + ¦ = 0																																																																																								�116! 
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For the eccentric annulus, the bilinear transformation that will be used is in the form: 

� = �
1 − 3� 																																																																																																																						�117) 

 

 a, is a real positive constant. 

 

 

Figure 13: Mapping from the eccentric region to the concentric region (Chen, Tsai, and Liu 

2008) 

In figure 13 above, in the z plane the origin of the smaller circle with radius, r1, is given as (c1,0). 

While the origin of the bigger circle with radius, r2, is given as (c2,0).  The circles map 

correspondingly into circles of new radii, ρ1 and ρ2 respectively which is now concentric. It can 

be shown that the centers and radii in the z plane for both circles are given as: 

 

  45 



 

(� = 3£��1 − 3�£�� 																																																																																																																																	�118! 

(� = 3£��1 − 3�£�� 																																																																																																																														�119! 
*� = £�1 − 3�£�� 																																																																																																																															�120! 

and 

*� = 3£�1 − 3�£�� 																																																																																																																															�121! 
respectively. 

The distance between the centers c1 and c2, is given by the offset distance e. 

/ = (� − (� = 3£��1 − 3�£�� − 3£��1 − 3�£�� 																																																																																					�122! 

From equations (120) and (121), and solving for the new radii.  

From (4.95) 

																																																								*� − 3�£��*� = £�																																																													�123! 

Rearranging: 

																																																											3�£��*� + £� − *� = 0																																																		�124! 

Solving the quadratic equation for£�, using quadratic formula: 
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																																																											£� = §�±¨�§©Jiªh�§ªh!�ªhJi 																																																											 �125! 

 

Taking only the positive square root as a real solution. 

																																									£� = ¨1 + 43�*�� − 12*�3� 																																																																							�126! 
By inference also the second radii is: 

																																										£� = ¨1 + 43�*�� − 12*�3� 																																																																								�127! 
Also solving for 3 

																																						3 = /¨�*�� − *��!� − 2/��*�� + *��! + /© 																																												 �128! 

(culled from Chen, Tsai, and Liu 2008) 

All the parameters for the Eccentric annulus have been defined  into a new concentric format . 

And recall that the slot height for a concentric annulus is constant. 

Recall from equation (9) that / = (5  and so substituting into equation (128) 

																																		3 = (5¨�*�� − *��!� − 2(�5��*�� + *��! + (©5© 																																																		�129! 

Equation (129) shows that the value, a, is function of radii *�, *�, clearance, c, and most 

essentially the eccentricity ratio, ε. 
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Recall that the clearance, c is given by equation (7). Substituting for *+ = *� and *- = *� . 

Therefore:  

																																		( = �*� − *�!																																																																																																											�130! 

Recall in the mapped eccentric annulus to concentric, the concentric height, H, is now given by: 

																																																														) = £� − £�																																																																															�131! 

And this can be evaluated using appropriately equations (101) and (102). 

The new formula for H, (4.106), is used for the procedure for the concentric annulus. Recall 

(113)	
��	 = −1

]8�8�a� − 1																																		 

Making inference of this equation (113) to the new configuration of radii, £�, £�, taking note 

that for any two concentric circles the ratio of diameters is the same as the  ratio of 

corresponding radii. Therefore: 

																																					��	 = −1
Y£�£�[� − 1																																																																																																	�132! 

Also from (132): 

																																			]£�£�a = ]1 − 1��	 a
§G.H 																																																																																										�133! 
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                                                          CHAPTER FIVE 

APPLICATION OF YIELD POWER LAW SLOT MODEL TO EQUIVALENT CONCENTRIC ANNULUS 

FROM MAPPED ECCENTRIC ANNULUS 

5.1 PROCEDURE: 

The following procedures are followed to determine surge and swab pressures: 

1) Given for a particular eccentricity ratio or fraction, ε, the clearance, c, is determined 

from the hole and tubular geometry given by equation (7) and the offset distance, e, is 

then calculated from equation (8) 

2) The value of the clearance known already, then value, a, is calculated from equation 

(128) and this  is the real positive value used for the mapping transformation. 

3) The values £�, £�, and H are computed respectively from Equations (126), (127), and 

(131) respectively. 

4) The value of b using equation (54) is computed for the specific yield power law drilling 

fluid model. 

5) The value of  
�� is gotten by solving equations (94) or (95). It is solved by using secant 

method, and it is solved for various Ybc
bd[ and the specificz�, with its corresponding 

dimensionless Pressure, P and � evaluated for each case. 

6) The corresponding values for dimensionless flow rate,	��	 , are determined using 

equation (108) 

7) Characteristic plots of �{o/{|! versus ��	   are prepared for specific value ofz�. 
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8) From equation (133) the value of��	 , is computed and used as an input into the 

characteristic curves, and the corresponding value of  ({o/{|) is obtained for the 

particularz�. 

9) Then the surge or swab pressure is then calculated as: 

 

{o« = ({o/{|) ∗ |																																								�134! 
Note the above procedures from 1 to 9, are for a particular eccentricity ratio, ε. The 

procedures can be repeated for a different eccentricity ratio. 

 

5.2 APPLICATION OF THE PROCEDURE TO DETERMINING SURGE AND SWAB PRESSURE 

PROBLEM 1. 

In a directional well, a 7-inch casing string is being lowered at a velocity of 0.5 ft/sec into a 10-

inch hole. The diameter of casing collars is 8.5 inches and the mud in the hole has a flow 

behavior index, n equal to 0.8 with a consistency index, K equal to 300 eq. cp (0.0062658 lbf-

secn/ft2). Assume the fluid is a yield power law fluid yield stress of 10 lbf/100ft2.  What would be 

the surge pressure when running down hole? 

SOLUTION: 

i) The eccentricity ratio,             5 = �G§¬.H�G§­ = 0.50 

ii) n = 0.80 
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                                                                 \ = M
MZ� 

 

										\ = 0.80.8 + 1 = 0.4444 

 

iii) Given �0	=	10 lbf/100 ft
2
, K = 0.0062658 lbf-sec

n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
, Vp = 

0.5 fps. 

iv) d2 = 10.0 inch, d1 = 7.0 inch 

Therefore   

*� = 102 = 5.0®® 
*� = 72 = 3.5®® 

v) The annular clearance, C is given by  (130): 

( = *� − *� = 5.0®® − 3.5®® = 1.5	′′ 
 

vi) Then the offset distance, e, is computed by using equation (9) 

/ = (5 = 1.5�0.5! = 0.75					 
vii) Then the application of conformal mapping hence to solve for the new radii, from  

equations (128), (127) and (126) 

3 = 0.75¨�5� − 3.5�!� − 2�0.75�!�5� + 3.5�! + 0.75© 	= 0.068190	20§�										 

	£� = ¨1 + 4�0.068190�!�5�! − 12�5!�0.068190�! 	= 4.5241	20																																																	 

  51 



	£� = ¨�Z©�G.G°¬�±Gi!��.Hi!§����.H!�G.G°¬�±Gi! = 3.3206	20																																																											 
So, the eccentric circle is now concentric, with radii, £� = 3.3206	20 and£� = 4.5241	20	. So, 

with the concentric geometry it is easier to solve the original eccentric geometry. 

viii) Therefore concentric height, from equation (131)  

                                                          H = £� − £� = 1.2035	20 

A table is then produced for different combinations of,	�{o/|! ,�, Vp, andP. From the various 

combinations, the dimensionless length was solved using Matlab Program secant method and 

with simulation. Also the dimensionless flow rate was evaluated. 

ix) A graph of dimensionless pressure versus dimensionless flow rate and dimensionless 

radii was plotted and a graph of Pressure gradient versus dimensionless flow rate 

was plotted as well. 

x) With the graphs already plotted, the specific dimensionless flow rate is calculated 

using Equation (132) 

��	 = −1
Y£�£�[� − 1 		=

−1
Y4.52413.3206[� − 1 = −1.1679 

 

With this value, the dimensionless pressure can be obtained from the chart of 

dimensionless pressure against dimensionless flow rate or evaluated using the chart 

equation. (Figure 14) 

xi) Therefore reading from chart, or using the equation: (Figure 14) 
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P = 0.0167��	 3 + 0.4145��	 2 - 0.0895��	 + 6.9221, Substituting ��	 = −1.1679 

o = 0.0167�−1.1679�! + 0.4145�−1.1679�! − 0.0895�−1.1679! + 6.922 

                  o = 7.5654 

This can also be read from the graph of Dimensionless Pressure versus Dimensionless Flow rate. 

xii) The surge pressure can then be calculated from equation (73). 

{o| = oM
Y 00 + 1[M ])z�aM Y)x[

																																																										�135! 

{o| = 7.5654G.¬
Y 0.80.8 + 1[G.¬ Y 1.203612 × 0.5[G.¬ Y 1.203612 × 0.0062658[

= 2.1808	³76/61 
 

Appropriately converting the value above by dividing by 144 sq inches, therefore 

{o| = 0.01514	³72/61 
And with the value of the length of the drill string or tubular goods, the value of the 

surge or swab can then be evaluated. 

 

xiii) Also this can be checked with from the graph of pressure surge versus dimensionless 

flow rate. The fitted equation is given as: 

  
bcd = 0.00003��	3		 + 	0.0006��	2		 − 	0.0004��	 	+ 	0.0139	, and when ��	 =
−1.1679 
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Substituting,  

{o
| = 0.00003(−1.1679�! + 0.0006�−1.1679�! − 0.0004�−1.1679! + 	0.0139 

   
bcd = 0.01514	³72/61 

This value can also be read from the graph. The computed value is also exactly close to that 

computed in step (xii). 

 

0.50 0.80 0.4444 10.0000 0.626580 10.0000 7.0000 5.000 3.500

 

 

1.500 0.750 0.06819 4.5241 3.3206 1.2036

 

Table 2:   Procedure for computation of different hole parameters given the input parameters. 
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0.015 0.50 0.9232 7.4749

0.016 0.8655 8.1030

0.017 0.8146 8.7409

0.018 0.7693 9.3883

0.019 0.7288 10.0447

0.020 0.6924 10.7098

0.021 0.6594 11.3833

0.022 0.6294 12.0649

0.023 0.6021 12.7542

0.024 0.5770 13.4511

0.025 0.5539 14.1553

0.026 0.5326 14.8666

0.027 0.5129 15.5847

0.028 0.4946 16.3095

0.029 0.4775 17.0409

0.030 0.4616 17.7785

0.031 0.4467 18.5224

0.032 0.4327 19.2722

0.033 0.4196 20.0280

0.034 0.4073 20.7894

0.035 0.3956 21.5565

0.036 0.3847 22.3292

0.037 0.3743 23.1071

0.038 0.3644 23.8904

0.039 0.3551 24.6789

0.040 0.3462 25.4724

 

Table3: Showing various pressure gradient with corresponding with dimensionless parameter 

�, and dimensionless pressure P, for particular tripping speed of Vp = 0.5 fps. 
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0.01538 -1.0641 0.7180

0.03702 -1.6307 0.7873

0.05907 -2.0793 0.8217

0.07957 -2.4569 0.8430

0.09895 -2.7994 0.8584

0.11695 -3.1155 0.8701

0.13354 -3.4119 0.8794

0.14893 -3.6944 0.8871

0.16314 -3.9654 0.8936

0.17651 -4.2295 0.8993

0.18863 -4.4835 0.9042

0.20005 -4.7332 0.9086

0.21069 -4.9782 0.9125

0.22063 -5.2192 0.9161

0.22992 -5.4569 0.9193

0.23872 -5.6925 0.9223

0.24692 -5.9251 0.9250

0.25466 -6.1561 0.9275

0.26196 -6.3854 0.9298

0.26883 -6.6130 0.9320

0.27534 -6.8396 0.9340

0.28151 -7.0653 0.9360

0.28736 -7.2901 0.9377

0.29291 -7.5142 0.9394

0.29818 -7.7377 0.9410

0.30300 -7.9591 0.9425

 

Table 4: Showing solved corresponding dimensionless distance solved using Iterative simulation 

technique and computed dimensionless flow rate and dimensionless radii respectively. 
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Figure 14: Graph of Dimensionless Pressure Versus Dimensionless Flow Rate ( For ε = 0.5, shear 

stress  �0 = 10 lbf/100 ft2, flow behavior index n =0.80, consistency index  K = 0.0062658 lbf-

sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
) 
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Figure 15: Graph of Dimensionless Pressure Versus Dimensionless Radii  (For ε = 0.5, shear 

stress  �0 = 10 lbf/100 ft2, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
) 

 

 

 

 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 0.20 0.40 0.60 0.80 1.00

D
im

e
n

si
o

n
le

ss
 P

re
ss

u
re

, 
P

Dimensionless Radii

Dimensionless Pressure Versus Dimensionless 

Radii

n = 0.50, Vp = 0.5 fps

  58 



 

 

Figure 16: Graph of Dimensionless Pressure Versus Dimensionless Radii  (For ε = 0.5, shear 

stress  �0 = 10 lbf/100 ft2, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
) 
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PROBLEM 2: 

In a directional well, a 7-inch casing string is being lowered at a velocity of 0.5 ft/sec into a 10-

inch hole. If the eccentricity ratio is 0.8, and the mud in the hole has a flow behavior index, n 

equal to 0.8 with a consistency index, K equal to 300 eq. cp (0.0062658 lbf-sec
n
/ft

2
). Assume the 

fluid is a yield power law fluid yield stress of 10 lbf/100ft2.  What would be the surge pressure 

when running down hole? 

SOLUTION: 

Now the problem is resolved maintaining the same parameters, except that the eccentricity 

ratio is now increased to 0.80. The effect now is to observe the value of the surge pressure, if it 

increases or reduces? 

SOLUTION: 

i) ε = 0.80 

ii) n = 0.80 

Therefore from (3.39d)                      

\ = 0
0 + 1 

 

\ = 0.80.8 + 1 = 0.4444 
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iii) Given �0 = 10 lbf/100 ft2, K = 0.0062658 lbf-secn/ft2  = 0.62658 lbf-secn/100ft2, Vp = 

0.5 fps. 

iv) d2 = 10.0 inch, d1 = 7.0 inch 

Therefore   

*� = 102 = 5.0 ®® 

*� = 72 = 3.5 ®® 

v) The annular clearance, C is given by  (130): 

 

( = *� − *� = 5.0 − 3.5 = 1.5 ′′ 
 

vi) Then the offset distance, e, is computed by equation (9) 

 

/ = (5 = 1.5�0.8! = 1.20 "      
 

vii) Then the application of conformal mapping hence to solve for the new radii, from  

Equations (128), (127), (126) 

3 = 1.2¨�5� − 3.5�!� − 2�1.2�!�5� + 3.5�! + 1.2©  = 0.158445 20§�           

£� = ¨1 + 4�0.158445�!�5�! − 12�5!�0.158445�!  = 3.47992 20                                                 
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	£� = ¨1 + 4�0.158445�!�3.5�! − 12�3.5!�0.158445�! = 2.80745	20																																													 
 

So, the eccentric circle is now concentric, with radii, £� = 2.80745	20 and  £� = 3.47992		20	. 
So, with the concentric geometry it is easier to solve than the original eccentric geometry. 

viii) Therefore concentric height, by Equation (131)  

                                                          H = £� − £� = 0.67247	20 

 

A table is then produced for different combinations of,	�{o/|! ,  �, Vp, and P. From the 

various combinations, the dimensionless length was solved using Matlab Program secant 

method and also with simulation. Also the dimensionless flow rate was evaluated. 

ix) A graph of dimensionless pressure versus dimensionless flow rate and dimensionless 

radii was then plotted and also a graph of Pressure gradient versus dimensionless 

flow rate was plotted as well. 

 

x) With the graphs already plotted, the specific dimensionless flow rate is calculated 

using Equation (132) 
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��	 = −1
Y£�£�[� − 1 		=

−1
Y3.479922.80745[� − 1 = −1.8642 

 

With this value, the dimensionless pressure can be read from the chart of 

dimensionless pressure against dimensionless flow rate or evaluated using the chart 

equation. (Figure 17) 

xi) Therefore reading from chart, or using the equation: y = 0.0528x3 + 0.6942x2 - 

0.4496x + 4.0196   (Figure 17) 

o = 0.0528��	 � + 	0.6942��	 � − 0.4496��	 + 4.0196	 Substituting ��	 = −1.8642 

o = 0.0528�−1.8642�! + 0.6942�−1.8642�! − 0.4496�−1.8642! + 4.0196											 
	o = 6.9282																																																																																																																																				 
This can also be read from the graph. 

xii) The surge pressure can then be calculated from equation (73). 

{o| = oM
Y 00 + 1[M ])z�aM Y)x[

																																																									�135!	 

 

{o| = 6.9282G.¬
Y 0.80.8 + 1[G.¬ Y 0.672412 × 0.5[G.¬ Y 0.672412 × 0.0062658[

= 5.7968	³76/61 
 

Appropriately converting the value above by dividing by 144 sq inches, therefore  
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bc
d = 0.04025	³72/61																																																																																												 

And with the value of the length of the drill string or tubular goods, the value of the 

surge or swab can then be evaluated. This value can also be read from the graph of 

pressure gradient versus dimensionless flow rate. 

 

xiii) Also this can be checked with from the graph of pressure surge versus dimensionless 

flow rate. The fitted equation is given as: (figure 19)  y = 0.0004x3 + 0.0035x2 - 

0.0024x + 0.026 

  
bcd 	= 0.0004��	 3

  + 0.0035��	 2
  - 0.0024��	  + 0.026, and when ��	 = −1.8642 

 

Substituting,  

{o| = 0.0004�−1.8642�! + 0.0035�−1.8642�! − 0.0024�−1.8642! + 	0.026 

{o| = 0.0400	³72/61																																																																																																								 
 

This value can also be read from the graph. The computed value is also quite close to 

that computed in step (xii). 
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0.80 0.80 0.4444 10.0000 0.626580 10.0000 7.0000 5.000 3.500  

 

1.500 1.200 0.15845 3.4799 2.8074 0.6724 -1.8642  

Tables 5:  showing procedure for computation of different parameters given the input 

parameters. 

The table 5 above shows the different columns in an Excel Program, the columns for 

eccentricity ratio, hole diameter, tubular goods diameter, fluid behavior index, yield stress and 

consistency index. The other columns were computed using the appropriate formula. 
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0.025 0.50 0.9914 3.8202

0.026 0.9533 4.0121

0.027 0.9180 4.2059

0.028 0.8852 4.4015

0.029 0.8547 4.5989

0.030 0.8262 4.7980

0.031 0.7995 4.9987

0.032 0.7745 5.2011

0.033 0.7511 5.4050

0.034 0.7290 5.6105

0.035 0.7081 5.8176

0.036 0.6885 6.0261

0.037 0.6699 6.2360

0.038 0.6522 6.4474

0.039 0.6355 6.6602

0.040 0.6196 6.8743

0.041 0.6045 7.0898

0.042 0.5901 7.3066

0.043 0.5764 7.5247

0.044 0.5633 7.7441

0.045 0.5508 7.9647

0.046 0.5388 8.1866

0.047 0.5273 8.4096

0.048 0.5164 8.6339

0.049 0.5058 8.8593

0.050 0.4957 9.0859

 

 

Table 6: Showing various pressure gradient with corresponding with dimensionless parameter 

�, and dimensionless pressure P, for particular tripping speed of Vp = 0.5 fps. 

  66 



 

0.007378 #NUM!

0.00002 0.0035 #NUM!

0.00387 -0.2818 0.4688

0.01154 -0.4861 0.5719

0.02090 -0.6550 0.6291

0.03080 -0.7997 0.6666

0.04131 -0.9341 0.6950

0.05146 -1.0536 0.7163

0.06169 -1.1674 0.7339

0.07175 -1.2753 0.7487

0.08164 -1.3788 0.7613

0.09108 -1.4768 0.7722

0.10030 -1.5721 0.7818

0.10926 -1.6647 0.7904

0.11788 -1.7546 0.7981

0.12620 -1.8423 0.8051

0.13423 -1.9281 0.8115

0.14202 -2.0126 0.8174

0.14950 -2.0954 0.8228

0.15628 -2.1743 0.8276

0.16363 -2.2570 0.8324

0.17025 -2.3358 0.8368

0.17685 -2.4149 0.8409

0.18277 -2.4906 0.8447

0.18912 -2.5692 0.8484

0.19498 -2.6455 0.8519

 

Table 7: Showing solved corresponding dimensionless distance solved using Iterative simulation 

technique and corresponding computed dimensionless flow rate and dimensionless radii 

respectively 
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Figure 17: Graph of Dimensionless Pressure Versus Dimensionless Flow Rate, (For ε = 0.8,Shear 

stress  �0 = 10 lbf/100 ft
2
, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-

sec
n
/ft

2
  = 0.62658 lbf-sec

n
/100ft

2
) 
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Figure 18: Graph of Dimensionless Pressure Versus Dimensionless Radii (For ε = 0.8, shear stress  
0 = 10 lbf/100 ft

2
, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-sec

n
/ft

2
  = 

0.62658 lbf-sec
n
/100ft

2
) 
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Figure 19: Graph of Pressure Gradient Versus Dimensionless Radii (For ε = 0.8, shear stress  0 = 
10 lbf/100 ft

2
, flow behavior index n =0.80, consistency index K = 0.0062658 lbf-sec

n
/ft

2
  = 

0.62658 lbf-sec
n
/100ft

2
) 
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                                                   CHAPTER 6 

                           CONCLUSIONS AND RECOMMENDATIONS 

 6.1 CONCLUSIONS 

The following conclusions can be made based from the analysis showed above: 

1) The Conformal Mapping - Slot Model Technique made a reasonable prediction for 

dimensionless pressure, which in turn can be used to evaluate the pressure gradient. 

2) The dimensionless pressure profiles for the yield power law fluids in the annulus are 

therefore dependent on the specific shear stress of the given fluid, and as well on other 

fluid parameters such as consistency index behavior, and it also depends on the fluid 

index behavior.  

3) The annular clearance is very important in the computation of surge and swab. As the 

annular clearance increases the surge pressure reduces and as the clearance reduces 

the surge increases. 

4) It is possible to apply conformal mapping on eccentric annulus to map it to a concentric 

annulus and provide surge/swab pressure values for the eccentric annulus. This 

technique has not been used in literature before. This technique avoids the laborious 

mathematical computations involved in applying polar coordinate system to eccentric 

annulus. 
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RECOMMENDATIONS 

Further recommended studies include: 

1) Consider the case of unsteady flow of yield power law fluids , and the estimate of the 

corresponding surge and swab for concentric and eccentric annulus, as in real life 

situations where of fluid flow is unsteady. 

2) Also a model can be developed for surge and swab pressure for an open end drill string, 

as the model developed in this paper is for closed drill string. 

3) With respect to the yield power law fluid and eccentric annulus, the pipe velocity at 

which the tubular goods can be operated without fracturing the formation can be 

evaluated. 
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