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ABSTRACT 

Prodigiosin molecule, whose efficacy in the treatment of cancer has proven positive, has been 

studied using first-principles Density Functional Theory (DFT) methods as implemented in 

VASP - Vienna Ab initio Simulation Package. Initial structure of prodigiosin generated using 

ArgusLab 4.0.1 program was subjected to geometry optimization in the VASP program in 

order to determine the ground state structure. The optimized interatomic bond lengths and 

angles are comprehensively characterized. Important properties such as the electrostatic 

potential (ESP) map, HOMO-LUMO iso-contours, Mulliken charges and solvent accessibility 

surface area were also characterized as determined in the ArgusLab 4.0.1 software. 

The Mulliken charges calculated, predict the direction of delocalization of electrons in the 

molecule. Electrostatic potential map showed the areas of the molecule that would be 

susceptible to nucleophilic and electrophilic attack. As ESP predicts the most reactive part of 

the molecule, the chemical reactivity is also understood from its chemical potential, 

electrophilicity and hardness. HOMO-LUMO energy gap of the molecule also reflects the 

chemical reactivity, polarizability and chemical hardness of a molecule. Solvent accessibility 

surface area of the molecule gives better understanding on the contact surface of the 

molecule when used as drug in the aqueous environment such as in the human body.  

Finally, this study will be helpful in drug design and drug delivery of prodigiosin for cancer 

treatment. It is also foreseen that studies could be done on polymerization of prodigiosin 

molecule as its conjugate bonding system may open a new frontier of research as a promising 

electrically conducting polymer.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Cancer is a medical condition broadly used in defining over 200 human diseases [1]. The 

increasing incidence of cancer [1] has stimulated research on the development of novel 

therapies that would be effective in the treatment and reduction in the rate of re-occurrence. 

Recent findings show that cancer is the second leading cause of death while cardiovascular 

diseases are on top of the list [2].  Among the 200 different classes of diseases, breast cancer 

is the second most common cause of cancer death in women. It is projected that cancer will 

be the leading cause of death by 2030 as seen trend studies [3].  

Abnormal genetic changes which occur in genes cause one cell or a few cells to proliferate 

and multiply in an uncontrolled manner leading to formation of cancer cells. Cancer usually 

starts as mild tumour which is known to be the primary stage and if not arrested, it spreads 

to other healthy cells which is termed as the secondary stage or metastasis [1]. Generally, 

cancer treatment procedures have adverse effects on the body systems, such as blood 

circulation, lymphatic and immune systems, and the hormone system problems [2]. Common 

treatments methods for cancer include surgical means, chemotherapy, targeted therapy, 

immune therapy, radiation etc [1].  

It is believed that cancer is caused both by external factors which include cigarette smoking, 

infections, poor diet, as well as internal factors, such as in hereditary, hormone imbalance, 

and poor immune system.  
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Serratia marcescens is a gram-negative bacillus, which belongs to the family 

Enterobacteriaceae [1]. It is an omnipresent bacterium inhabiting in both terrestrial and 

aquatic habitat. One of its major characteristics that interests us in this study is its ability to 

produce pigments known as Prodigiosin. Prodigiosin accelerates the process of apoptosis in 

cancerous cells. This is a form of caspase-mediated cell death in which cells actively 

participate in their own destruction [4]. 

1.2 Problem Statement 

Designing a drug for cancer treatment basically involves optimisation of small molecules 

aimed at having requisite diagnostic features. Some of the information can be obtained 

experimentally, however, the process is lengthy, financially costly and has a very low success 

rate in identifying potential lead compounds [5] [6].refs As a way to combat these challenges, 

molecular modelling tools, for example, first-principles density functional theory (DFT) 

calculations  and molecular dynamics (MD) simulations can be incorporated in research to get 

the much valuable information necessary for designing drug molecules in a timeous and less 

costly way. Accurate atomistic first-principles DFT calculations carried out on high-

performance computers can significantly reduce the number of time-consuming laboratory 

experiments required to test the efficacy of prodigiosin, its electronic properties etc., hence 

predictive modelling and simulations offer the most intelligent and efficient path forward to 

significantly expand the parameter space whilst lowering both costs and development times. 

DFT methods have become one of the most popular and successful Quantum Mechanics (QM) 

approach for large systems. Currently, DFT has experienced wide applications for “ab initio” 

calculations of the structure of atoms, molecules, crystals, surfaces and their interactions [7]. 

It is nowadays routinely applied for calculating e.g., the binding energy of molecules in 
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chemistry and the band structure of solids in physics. First application relevant for fields 

traditionally considered more distant from quantum mechanics, such as biology and 

mineralogy are beginning to appear [7]. 

1.3 Aim and Objectives 

This thesis aims to presents a theoretical study that provides new insights into the structural 

and electronic properties of prodigiosin, a promising drug reported for its characteristics of 

having antifungal, immune-suppressive, anti-malaria and antiproliferation activity of cancer 

cells in human. Below are the objectives of the current work. 

1. To develop the molecular structure of Prodigiosin and characterise the geometric 

parameters (interatomic bond distances and angles)   

2. Comprehensively characterise the electronic properties such as atomic charges, 

lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO), 

electrostatic potential (ESP) and Solvent accessible surface. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Introduction  

Prodigiosin is a macromolecule which belongs to the family of a natural red pigment 

commonly characterized by a pyrrolylpyrromethene skeleton, are produced by various 

bacteria which was first characterized from Serratia marcescens [8]. It is a pigment and a 

promising drug owing to its repeated characteristics of having antifungal, immunosuppressive 

and antiproliferative activity [1]. Prodigiosin can also induce apoptosis in human cancer cell 

lines [8].  For targeted delivery of anticancer drugs, several receptors, which are over-

expressed in cancer cells, are selected targets for polymer binding, such as prostate specific 

membrane antigen (PSMA), epidermal growth factor receptor (EGFR), and Luteinizing-

hormone-releasing hormone (LHRH) receptor [1]. LHRH is an amino acid peptide hormone 

secreted by the hypothalamus and it also regulates gametogenesis. Effects of the 

overexpression of LHRH receptors are seen in prostate (86%), ovarian (80%), and breast (50%) 

cancers and have low expression in healthy organs [9].  

Recently, LHRH and its analog have been used in the clinical trial in the management of 

prostate cancer. Active targeting by LHRH is expected to be safe and efficient after systemic 

administration. Due to the short half-life of natural LHRH, synthetic LHRH analog with 

improved bioactivity has been widely used for targeting LHRH-receptors [2].  

Of the various approaches to target cancer therapy, one is based on findings that receptors 

for certain peptide hormones such as somatostatin, bombesin, and LHRH are expressed on 

tumours in higher concentrations than on most normal cells [1]. As such, analogs of these 
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peptide hormones can be used as carrier vectors for direct delivery of cytotoxic agents to 

cancerous cells. This increases the concentration of the drugs in tumour tissue and sparing 

normal, noncancerous cells from exposure which are not necessary [3]. 

2.2 Prodigiosin Production by Serratia marcescens 

Serratia marcescens a family of Enterobacteriaceae is a gram-negative bacterium [1]. These 

bacteria can produce three special enzymes such as DNAase, lipase, and gelatinase. As a result 

of these characteristics, it has made them different from other genera of bacteria. But there 

are a number of other characteristics that have been seen in this species that may influence 

their pathogenesis [1]. These characteristics include swarming and swimming, motility and 

extracellular enzyme activities; i.e. nuclease, protease, and haemolysin [10]. Serratia 

marcescens can occur in water, soil, on plants, in insects, man and in animals [10]. It is the 

only pathogen of the genera while others such as S. plymuthica, liquefaciens, rubidaea and 

odifera are organism causing diseases. It produces prodigiosin which is a secondary 

metabolite [1].  

Prodigiosin is naturally produced and it represents one of the critical sources of chemical 

diversity and potential medicinal use [11]. The production of prodigiosin by Serratia 

marcescens is a recall of its secondary metabolism commonly referred to as bio-pigments. 

The bio-pigments produced have a vast synthetic and commercial applications [11]. Pigment 

varies among different species and it depends on many factors such as species type and 

incubation time [12]. The variation also depends on species habitats. Terrestrial species found 

in soil especially dump sites, had the incubation time ranging from 24h to 72 h. There is no 

defined role for these pigments in the physiology of producing strains but reports have it to 

have antifungal, antibacterial, algicidal, antiprotozoal, antimalarial activities, immune-
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suppressive, and anticancer activities [13]. The culture media used for prodigiosin 

biosynthesis are nutrient broth and peptone glycerol agar [1]. Powdered l-peanuts medium 

showed forty-fold increase in the concentration of prodigiosin [2].  

Many factors contribute to the anticancer and immune-suppressive activity of prodigiosin.  In 

Prodigiosin structure analogs have been designed and also the ring of pyrrole has also been 

reported to be very important in activity in therapeutic applications. Mekheal and Yousif in 

2009 reported that purified prodigiosin showed plasmid curing activity on plasmids of E. coli 

HB101 and S. aureus [14].  

2.2.1 Prodigiosin Structure 

Prodigiosin is a family of tri-pyrrole red pigments that contains a common 4-methoxy, 2-2 

bipyrrole ring system. The biosynthesis of the pigment is a bifurcated process in which mono 

and bipyrrole precursors are synthesized separately and then assembled to form prodigiosin 

[15]. Studies has shown that prodigiosin is associated with extracellular vesicles, and cells 

associated or present in intracellular granules [12]. It has a chemical formula of C20H25N3O and 

a molecular weight of 323.44 Da. It is sensitive to light and insoluble in water. Its solubility is 

moderate in alcohol and ether, and soluble in chloroform, methanol and acetonitrile. 

 2.2.2 Effects of Growth Conditions on Yield of Prodigiosin 

Serratia species, like other Enterobacteriaceae, thrive well on ordinary media under 

anaerobic and aerobic conditions [1]. They also flourish on synthetic media using various 

compounds as a single carbon source. Many types of differential and selective media have 

been developed for the isolation and presumptive testing for Serratia species [1]. Media such 

as nutrient broth, peptone glycerol broth are currently used for the biosynthesis of 
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prodigiosin [10].  Nakamura [11], used oleic acid substitution instead of sodium oleate and 

has used only triolein as substrate and reported a yield of 0.69g/ml prodigiosin [11]. The idea 

of designing a new, nutritious and economically cheap medium was thought of for the 

prodigiosin biosynthesis.  The maximum production of prodigiosin was seen at 280C and 30 

0C in nutrient broth. It did not show pigment production at 37 0C for nutrient broth. Study 

with an internal adsorbent for prodigiosin in the bioreactor finally yield 13mg/ml [13]. 

Maltose addition to nutrient broth enhanced pigment production only by 2/4 as at 28  0C and 

30 0C. A better source of the substrate in enhancing pigment production in nutrient broth is 

maltose among the two sugars [1]. Catabolite repression can occur due to addition of glucose 

or maltose which can cause a reduction in prodigiosin production [13].  

Methodology and Computational Details 

2.3 Density Functional Theory (DFT)  

Density functional theory (DFT) is a modern approach to the solution of many-body quantum 

mechanical problems in solid state. It is built upon two theorems proposed by Hohenberg and 

Kohn in 1964. The DFT considers some important terms not considered in earlier 

computational methods, such as the Hartree-Fock method. DFT, based on Hohenberg- Kohn 

(HK) theorems [16] and Kohn-Sham (KS) equations [17], is presently the most widely used 

method to compute the total energy and electronic structure of matter. The DFT uses basic 

variable including the ground state electron density no(r) of the system, rather than the many 

electrons wave-functions. DFT further suggests that the electronic density of a system is key 

to obtaining useful information on its various properties. The huge computational cost 

associated with the large number of slater determinants for a many-body system is thus saved 

in this approach. The two Hohenberg-Kohn theorems described next, show that the spatially 
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dependent electron density n(r) is sufficient to determine the ground state energy and 

properties of the system. 

The Density-Functional Theory differs from the wave-function based methods by using the 

electron density n(r) as the central quantity. An important advantage of using the electron 

density over the wave-function is the much-reduced dimensionality. Regardless of how many 

electrons one has in the system, the density is always three-dimensional. This enables DFT to 

be readily applied to much larger systems, hundreds or even thousands of atoms become 

possible. Partly for this reason, DFT has become the most widely used electronic structure 

approach today, particularly in the condensed matter physics community. The electron 

density n(r) is defined as the number of electrons per volume at the point r in space. It is a 

physical quantity – it can (at least in theory) be measured. The integral of the electron density 

gives the total number of electrons: 

 ∫ 𝑛(𝑟)𝑑𝑟 = 𝑁         (2.1) 

The relation between n(r) and the many-electron wave-function ψe is: 

𝑛(𝑟) = 𝑁 ∬ ∫ | Ψ (rσ1, 𝑥2, … , 𝑥𝑁) |2𝑑𝜎1𝑑𝑥2 … 𝑑𝑥𝑁     (2.2) 

where {xi} represents both spin and spatial coordinates. n(r) determines the probability of 

finding any of the N electrons with arbitrary spin in a region dr around r while the other N - 1 

electrons have arbitrary positions and spin in the state represented by ψe. 

The electronic energy Ee can be calculated as the expectation value of the Hamiltonian, 

 𝐸𝑒 = 〈Ψ𝑒|H𝑒|Ψ𝑒〉 = 〈Ψ𝑒|Τ + W + V|Ψ𝑒〉 = 𝑇 + 𝑊 + 𝑉 =

∬ … ∫ (−
1

2
∑ Ψ𝑒

∗∇𝑖
2Ψ𝑒 + ∑

|Ψ𝑒|2

|𝑟𝑖−𝑟𝑗|

𝑁
𝑖<𝑗

𝑁
𝑖=1 + ∑ |Ψ𝑒|2𝑣𝑒𝑥𝑡(𝑟𝑖)

𝑁
𝑖=1 ) d𝐱1d𝐱2 ⋯ d𝐱𝑁         (2.3) 

Here T, W and V are introduced as the individual scalar expectation values of the 

corresponding operators. If one looks at the three terms in the expression for the 
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electronic energy Eq. (2.3), one sees that the term for the external potential V is 

easily rewritten in terms of the density: 

𝑉 = ∫ ∫ ⋯ ∫ ∑

𝑁

𝑖=1

|Ψe|2𝑣ext(𝑟𝑖)  d𝐱1d𝐱2 ⋯ d𝐱𝑁 

=
1

𝑁
∑𝑁

𝑖=1 ∫ 𝑛(𝑟𝑖)𝑣ext(𝑟𝑖)  d𝑟𝑖 = ∫ 𝑛(𝑟)𝑣ext(𝑟)  d𝑟     (2.4) 

The other two terms of the electronic energy Eq. (2.3) are not as easy to rewrite. In the kinetic 

energy term T, the derivative operator between the wave-functions prevents rewriting the 

integrand in the form [ψe]2 as needed to turn the term into an expression of the electron 

density. In the potential energy term W, the particle positions in the denominator preclude a 

direct term by term integration.  

A functional is an object that acts on a function to produce a scalar. From the way the 

potential energy term V was written in Eq. (2.4), it is an explicit potential energy functional V 

[n] of the electron density. This and other functionals with the electron density n(r) as 

arguments are called density functionals. The other terms in the electronic energy Eq. (2.3) 

are not in explicit density functional form, but can at least be written as functionals of the 

many-electron wave-function ψe2. 

𝐸e = 𝑇[Ψe] + 𝑊[Ψe] + 𝑉[𝑣ext, 𝑛] = 𝐹[Ψe] + 𝑉[𝑣ext, 𝑛]    (2.5) 

The two Hohenberg-Kohn theorems described next, show that the spatially dependent 

electron density n(r) is sufficient to determine the ground state energy and properties of the 

system. And the question of the existence of an F[n] functional will be considered in the 

following section. 
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2.3.1 The Thomas-Fermi (TF) Model 

Early attempts to express the total internal energy as a density functional was first developed 

in 1927 by Thomas and Fermi [17]. They used some assumptions about the distribution and 

interaction between electrons to come close to the kinetic energy while treating the electron-

nucleus and electron-electron interactions in a classical manner. The electron density in each 

space point is set equal to a number of electrons in a fixed volume, n(r) = ∆N/ ∆V. A system 

of ∆N free non-interacting electrons in an infinite-well model of volume ∆V then gives an 

expression for the kinetic energy per volume. The continuity limit is then taken ∆V→0. The 

result is integrated over the whole space to give the approximate Thomas-Fermi functional 

for the total kinetic energy TTF[n]: 

𝑇 ≈ 𝑇TF[𝑛] =
3

10
(3𝜋)2/3 ∫ 𝑛5/3(𝑟)  d𝑟      (2.6) 

Furthermore, the electrostatic energy of a classical repulsive gas J[n] is used as a 

simplistic approximation of the internal potential energy W: 

𝑊 ≈ 𝐽[𝑛] =
1

2
∬

𝑛(𝑟)𝑛(𝑟 ′)

|𝑟−𝑟 ′|
  d𝑟 d𝑟 ′       (2.7) 

The result is the Thomas-Fermi model: 

𝐸e ≈ 𝑇TF + 𝐽[𝑛] + 𝑉[𝑣, 𝑛]        (2.8) 

The Thomas-Fermi approximation to the internal electronic energy is thus 

𝐹[𝑛] = 𝑇TF[𝑛] + 𝐽[𝑛]         (2.9) 

2.31 The Hohenberg-Kohn (HK) Theorem 

The early efforts to find and use internal electronic energy functionals F[n] by Thomas and 

Fermi, and extensions along the same ideas, were all based on ‘reasonable’ approximations. 

The work of Hohenberg and Kohn [16] was based on a more rigorous theoretical framework. 
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Here we examine the two famous theorems which follow from the work of Hohenberg and 

Kohn: 

HK I: The first Hohenberg-Kohn theorem states that the ground state electron density n(r) 

determines the external potential of a system vext(r) up to an arbitrary additive constant 

(which only sets the absolute energy scale). 

The proof proceeds by reductio ad absurdum. Assume that there exists two local potentials 

𝑣ext(𝑟) and 𝑣ext′(𝑟) differing by more than an additive constant, 𝑣ext(𝑟) ≠ 𝑣ext′(𝑟) + const, 

and giving rise to the same ground-state density, 𝑛(𝑟) . Obviously, 𝑣ext(𝑟)  and 𝑣ext′(𝑟) 

belong to distinct Hamiltonians 𝐻̂ = 𝑇̂ + 𝑊̂ + 𝑉̂  and 𝐻̂′ = 𝑇̂ + 𝑊̂ + 𝑉̂′  which give rise to 

non-degenerate ground-state wave-functions1 Ψ and Ψ′. Using the Rayleigh-Ritz variational 

principle, and the fact that Ψ and Ψ′ have the same density 𝑛(𝑟), we arrive at the following 

inequality: 

𝐸0 < 〈Ψ′|𝐻̂|Ψ′〉 = 〈Ψ′|𝐻̂′|Ψ′〉 + 〈Ψ′|𝐻̂ − 𝐻̂′|Ψ′〉 

= 𝐸0′ + ∫ 𝑛(𝑟)[𝑣ext(𝑟) − 𝑣ext′(𝑟)] d𝑟      (2.10) 

where E0 and E’0 are the ground-state energies for H and H’, respectively. Similarly, 

we can get: 

𝐸0′ < ⟨Ψ|𝐻̂′|Ψ⟩ = ⟨Ψ|𝐻̂|Ψ⟩ + ⟨Ψ′|𝐻̂′ − 𝐻̂|Ψ′⟩ 

= 𝐸0 − ∫ 𝑛(𝑟)[𝑣ext(𝑟) − 𝑣ext′(𝑟)] d𝑟          (2.11) 

Adding Eqs. (2.10) and (2.11), we get: 

𝐸0 + 𝐸0′ < 𝐸0′ + 𝐸0         (2.12) 

which is clearly a contradiction. We therefore conclude that, for systems without degenerate 

GS, there cannot exist two local potentials differing by more than an additive constant which 
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have the same GS density. Thus, the GS density n(r) determines the potential vext(r), which in 

turn determines the Hamiltonian, and thus everything about the many-body problem. In 

other words, the potential vext is a unique (up to an additive constant) functional of the GS 

density n. This means that all GS properties of the system are also consequently determined 

since in theory anything can be calculated from the external potential. For instance, the GS 

wave-function ψ0 is also a GS property of the system and can therefore be considered to be 

a functional of the GS density ψ0[n]. The existence of the total energy functional Ee[n] and an 

internal electronic energy functional directly follows as: 

𝐸e[𝑛] = 〈Ψ0[𝑛]|𝐻̂e|Ψ0[𝑛]〉 = 〈Ψ0[𝑛]|𝑇̂ + 𝑊̂ + 𝑉̂|Ψ0[𝑛]〉 = 𝐹HK[𝑛] + 𝑉[𝑣, 𝑛]      (2.13) 

where 

𝐹HK[𝑛] = 𝐹[Ψ0[𝑛]] = 𝑇[𝑛] + 𝑊[𝑛]       (2.14) 

Here note that FHK[n] is only dependent on n(r) and independent of any external potential 

v(r). Thus FHK[n] is a universal functional of n(r). 

HK II: The second Hohenberg-Kohn theorem states that the total energy density functional 

Ee[n] satisfies a variational property: the GS energy E0 of the system considered is obtained 

by minimizing this functional with respect to N-electron densities n. 

𝐸0 = min
𝑛

{𝐹[𝑛] + ∫ 𝑛(𝑟)𝑣ext(𝑟)  d𝑟}      (2.15) 

with the minimum being reached for the exact GS density n0(r). We can express 

this as E0[n0] ≤ Ee[n]. 

The proof follows straightforwardly from the first theorem. Suppose ψ is the GS 

wave-function corresponding to the unique GS density n0(r), we then define the 

energy of the GS by: 

𝐸0 = 𝐸e[𝑛0] = 〈Ψ|𝐻̂e|Ψ〉        (2.16) 

If there is another wave-function ψ’ with an arbitrary variation from ψ and its 
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electron density is n0(r), then we can obtain 

𝐸0 = 𝐸e[𝑛0] = 〈Ψ|𝐻̂e|Ψ〉 < 〈Ψ′|𝐻̂e|Ψ′〉 = 𝐸e[𝑛′]    (2.17) 

So, it follows that the correct density that minimizes the energy is the GS density. The many-

electron problem has thus been rewritten into what looks like a straightforward minimization 

with respect to a three-dimensional quantity n(r). Yet the functional form of FHK[n] is not 

known and this poses a serious challenge for practical applications. The major part of the 

complexities of the many-electron problem are associated with the determination of the 

universal functional FHK[n]. 

2.32 Wave-Function Based Methods 

As mentioned earlier, the fundamental quantity for the wave-function based methods is the 

many-electron wave-function, ψe, whose correct functional form is far from simple. The first 

step in the determination of ψe is often simply an ansatz (an educated guess) and then 

reliance on the variational principle. The variational principle says that we can use any 

normalized wave-function to calculate the expectation value of the electronic Hamiltonian 

(He) and we are guaranteed to get an energy above the true ground-state (GS) energy i.e., 

E[ψe] ≥ E0[ψ0]. The equality holds only when the wave-function ψe is in the true GS (ψ0). The 

advantage of the variational principle is that starting with a trial wave-function we can 

approach the GS energy E0[ψ0] from above by variationally improving the quality of the wave-

function. In the following, the variational principle will be applied to minimize the energy and 

obtain the Hartree-Fock equation and wave-function. 

2.3.3 Exchange-correlation functional 

The exchange-correlation term (Exc) is the energy contribution from the quantum effects not 

included in the Coulomb repulsion and the single-particle kinetic energy. The exact form of 
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Exc is not known and may never be known (in a closed mathematical form). Thus, since the 

birth of DFT some sort of approximations for Exc have been used. We review here the main 

classes of approximate xc functionals. These classes are roughly ordered from the simplest to 

the most sophisticated ones as proposed by Perdew [18] and is known as “Jacob’s ladder”. In 

this scheme, functionals are grouped according to their complexity on rungs of a ladder which 

lead from the Hartree approximation on “earth” to the exact xc functional in “heaven”. The 

first few rungs of this ladder are now briefly discussed as a means to introduce some of the 

most common types of xc functionals in widespread use. The discussion is focus on the 

contents of the approximations, not their performance in practical calculations. On the 

average, more sophisticated approximations are usually more accurate than simpler ones, 

even though many exceptions can be found. The commonly used approximations to 

determine the exchange-correlation energy include the local density approximation (LDA), 

generalized gradient approximation (GGA), and hybrid functionals. These approximations are 

discussed below.  

2.3.4 The Local-Density Approximation (LDA) 

In the local-density approximation (LDA), introduced by Kohn and Sham [17], the xc functional 

is approximated as: 

𝐸xc
LDA[𝑛] = ∫ 𝑛(𝑟)𝜀xc

unif(𝑛(𝑟))d𝑟       (2.18) 

where Ɛ𝑥𝑐
𝑢𝑛𝑖𝑓

is the exchange-correlation energy per particle of the interacting uniform 

electron gas with the density n(r)? The uniform electron gas represents a family of systems of 

interacting electrons with an arbitrary spatially constant density n(r) that acts as a parameter. 

Thus, in the LDA, the exchange-correlation energy per particle of an inhomogeneous system 

at a spatial point of density n(r) is approximated as the exchange-correlation energy per 
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particle of the uniform electron gas of the same density. The function "unif xc (n) is a sum of 

exchange and correlation contributions, Ɛ𝑥𝑐
𝑢𝑛𝑖𝑓

(n) =  Ɛ𝑥
𝑢𝑛𝑖𝑓

 (n) +  Ɛ𝑐
𝑢𝑛𝑖𝑓

(n). The exchange energy 

per particle of the uniform electron gas can be calculated analytically  

𝜀x
unif(𝑛) = 𝑐x𝑛1/3         (2.19) 

Where 𝑐x = −(3/4)(3/𝜋)1/3 

Thus, we have the exact analytical expression for the exchange energy: 

𝐸x
LDA[𝑛] = −

3

4
(

3

𝜋
)

1/3

∫ 𝑛4/3(𝑟) d𝑟       (2.20) 

The correlation energy per particle Ɛ𝑐
𝑢𝑛𝑖𝑓

 (n) of the uniform electron gas cannot be calculated 

analytically. This quantity has been obtained numerically for a number of densities n using 

accurate quantum Monte Carlo simulations of the UEG [18], and fitted to a parametrized 

function of n satisfying the known high- and low-density expansions. Expressed in terms of 

the Wigner-Seitz radius rs, the first terms of the high-density expansion (rs → 0) have the form 

𝜀c
unif = 𝐴ln𝑟𝑠 + 𝐵 + 𝐶𝑟𝑠ln𝑟𝑠 + 𝒪(𝑟𝑠),       (2.21) 

and the first terms of the low-density expansion (rs →+∞) have the form 

𝜀c
unif =

𝑎

𝑟𝑠
+

𝑏

𝑟𝑠
3/2 + 𝒪 (

1

𝑟𝑠
2),        (2.22) 

where A, B, C, a, and b are constants depending on the electron spin configuration. The 

Perdew-Zunger [19], Perdew-Wang (PW) [20] and Vosko-Wilk-Nusair (VWN)  functionals are 

all common LDA functionals. 

2.3.5 The Generalized-Gradient Approximation (GGA) 

It was realized very early that only the local uniform density at each given point is not a 

reasonable approximation for the rapidly varying electron densities of many materials, and 
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that the gradient of the density (∇n(r)) needs to be included. A first attempt was the so-called 

gradient-expansion approximations (GEA). The idea behind GEA is to regard LDA as the first 

term in a power series expansion of Exc in the density’s spatial variation (described by the 

derivatives of n(r)). The second-order GEA thus uses LDA plus the term of next lowest order 

in density variation, giving a functional of the form  

𝐸xc
GEA[𝑛] = 𝐸xc

LDA[𝑛] + ∫ 𝐴xc(𝑛(𝑟))𝑠2 + ∫ 𝐵xc(𝑛(𝑟))𝑞 + ⋯   (2.23) 

where Axc (n(r)) and Bxc (n(r)) are dimensionless functions (not functionals) of n(r), and s and 

q define the appropriate measure of the density gradient both of which have been expressed 

on scale invariant form; the dimensionless gradient  

𝑠 =
|∇𝑛|

2𝑘𝐹𝑛
=

|∇𝑛(𝑟)|

2(3𝜋2)1/3𝑛4/3(𝑟)
=

3

2
(

4

9𝜋
)

1/3
|∇𝑟𝑠|      (2.24) 

and the dimensionless Laplacian 

𝑞 =
∇2𝑛

(2𝑘𝐹)2𝑛
=

∇2𝑛(𝑟)

4(3𝜋2)2/3𝑛5/3(𝑟)
        (2.25) 

Because there is no special direction in the uniform electron gas, there can be no term linear 

in ∇n. Moreover, terms linear in ∇2n can be recast as s2 terms via integration by parts, since: 

∫ d𝑟𝑓(𝑛)∇2𝑛 = − ∫ d𝑟 (
𝜕𝑓

𝜕𝑛
) |∇𝑛|2       (2.26) 

In application to real systems, the GEA has generally been disappointing, indeed often 

worsened the results of the LDA. The failure of the GEA lead to the development of 

generalized-gradient approximation (GGA). The xc functional is written as a function of the 

local density and of the local gradient of the density, usually as an “enhancement factor” Fxc 

multiplying the homogeneous electron: 

𝐸xc
GGA[𝑛] = ∫ 𝜀xc(𝑛(𝑟))𝐹xc(𝑛(𝑟), ∇𝑛(𝑟))d𝑟      (2.27) 
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The enhancement factor is written in terms of rs and the dimensionless density gradient s: 

𝐹xc(𝑛(𝑟), |∇𝑛(𝑟)|) → 𝐹xc(𝑟𝑠, 𝑠) 

Gradient-corrected functionals are the simplest extensions of LDA to inhomogeneous systems 

one can think of. GGA found widespread acceptance due to their improved performance. GGA 

functionals are known to satisfy some known conditions that the exact functional should 

satisfy as well [21]. They yield much better atomic energies and binding energies than LDA, at 

a modest additional computational cost [22]. In particular, they yield better results for the 

band gap in semiconductors and insulators especially for some transition-metal oxides which 

LDA incorrectly describes as metals [23]. Despite the improvement by GGA over LDA 

functions, even greater accuracy can be obtained by using the so-called meta-GGA. 

2.3.6 Meta-GGA (mGGA) 

The next step in the development of gradient approximations is to incorporate the kinetic 

energy density or/and the Laplacian of the density. Such functionals are generally referred to 

as meta-GGA functionals.   

The form of the functional is typically: 

𝐸xc
mGGA = ∫ 𝑛(𝑟)𝜀xc(𝑛, |∇𝑛|, ∇2𝑛, 𝜏)d𝑟      (2.28) 

where the kinetic energy density _ is; 

𝜏 =
1

2
∑𝑖 |∇𝜙𝑖|

2         (2.29) 

Still higher accuracy (of course, at a higher cost) can be obtained by using the so-called hybrid 

schemes. 
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2.3.7 Hybrid Schemes 

These fourth generation functionals add “exact exchange” calculated from the HF-like 

functional to some conventional treatment of DFT exchange and correlation:  

𝐸xc
hybrid

= 𝛼𝐸x
HF + 𝐸𝑐         (2.30) 

where α can be chosen to satisfy particular criteria. The B3LYP functional [24], which is widely 

used in the quantum chemistry community [25], is an example. Here three adjustable 

parameters (a1 - 3) are used to fit calculated values to a molecular data base. It has the 

following form: 

𝐸xc = 𝐸xc
LDA + 𝑎1(𝐸x

HF − 𝐸x
LDA) + 𝑎2Δ𝐸x

GGA + 𝑎3Δ𝐸c
GGA    (2.31) 

Where 𝐸𝑋𝐶
𝐿𝐷𝐴and 𝐸𝑋

𝐻𝐹 and 𝐸𝑋
𝐿𝐷𝐴are the LDA exchange-correlation energy functional, Hartree-

Fock exchange energy functional and LDA exchange energy functional respectively. 

 ∆𝐸𝑋
𝐺𝐺𝐴  and ∆𝐸𝐶

𝐺𝐺𝐴 are respectively the gradient-corrected exchange and correlation 

functionals. As mentioned earlier, the functionals currently used in density functional 

simulations form a natural hierarchy. Although, it cannot be claimed that there is a systematic 

approach to the exact functional, it is clear that improvements are being made in the 

underlying functional form and that the description of ground state properties is improving. 

The most notable recent advances being those in which the non-local nature of the exchange 

potential is introduced in one form or another.  

2.3.1 Basis Sets 

Basis sets are almost always necessary for the practical solution of Kohn-Sham equations. 

Essentially, almost all electronic structure methods today rely on an expansion of the 

unknown wave function in terms of a set of basis functions. Any type of basis function may in 

principle be used like exponential, Gaussian, polynomial, planewave, spline, Slater type 
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orbitals, and numeric atomic orbitals, and so forth. In this thesis, the calculations we do for 

periodic systems are carried out with plane wave basis sets and pseudo-potentials. Also, the 

approach of combining plane wave basis sets and pseudo-potentials is the workhorse of the 

present day DFT calculations for periodic systems, so we briefly discuss such methods. 

2.3.2 Plane Waves 

For the treatment of periodic systems, like solids, plane wave basis sets have become the 

natural choice because of Bloch’s theorem. In a periodic potential, 𝑈(𝑟), where 𝑈(𝑟 + 𝐑) =

𝑈(𝑟) and 𝐑 is the Bravais lattice vector, Bloch’s theorem states that the eigenfunctions of the 

one-electron Hamiltonian 𝐻 = −
1

2
∇2 + 𝑈(𝑟) can be chosen to have the form of a plane wave 

(𝑒𝑖𝐤⋅𝑟) times a function, 𝑢𝑛𝑘(𝑟), having the same periodicity as the potential 𝑈(𝑟):  

𝜙𝑛𝑘(𝑟) = 𝑒𝑖𝐤⋅𝑟𝑢𝑛𝑘(𝑟)  (2.32) 

 where 𝑢𝑛𝑘(𝑟 + 𝐑) = 𝑢𝑛𝑘(𝑟). Here the index 𝑘  reflects the periodicity of the system, the 

index 𝑛 is a second quantum number, the so-called “band index”, and it originates from the 

atomic states which form the Bloch states 𝜙𝑛𝑘: for any value of 𝑘 one finds a complete set of 

bands 𝑛. 

Bloch’s theorem allows to expand the electronic wave function in terms of a discrete set of 

plane waves. But, for a periodic solid which has electrons in the order of Avogadro’s number, 

the spacing of the 𝐤 points goes to zero and 𝐤 can be considered as a continuous variable. So 

far the infinite number of electrons in the solid are accounted for by an infinite number of 𝐤 

points, and only a finite number of electronic states are occupied at each 𝐤  point. The 

occupied states at each 𝐤  point contribute to physical quantities such as the electronic 

potential, electron density, and total energy of the solid. However, the electronic wave 
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functions at 𝐤 points that are very close together will be almost identical. Hence it is possible 

to represent them over a region of 𝐤 space only by that single 𝐤 point. Efficient methods have 

been devised to choose special finite sets of 𝐤 points, for obtaining an accurate electronic 

potential, electron density, and total energy. In this thesis, the method proposed by 

Monkhorst and Pack [60] has been used, in which a uniform mesh of 𝐤 points is generated 

along the three lattice vectors in reciprocal space. The magnitude of any error in the total 

energy or the total energy difference due to inadequacy of the 𝐤 point sampling can always 

be reduced to zero by using a denser set of 𝐤 points. Therefore, it is crucial to test the 

convergence of the results with respect to the number of 𝐤 points in general. 

Now expanding the periodic function 𝑢𝑛𝑘  with plane waves whose wave vectors are 

reciprocal lattice vectors (𝐆) of the periodic crystal:  

𝑢𝑛𝑘(𝑟) = ∑𝐆 𝐶𝑛,𝐆 𝑒𝑖𝐆⋅𝑟  (2.33) 

 so the electronic wave function can be rewritten as:  

𝜙𝑛𝑘(𝑟) = ∑𝐆 𝐶𝑛,𝐤+𝐆 𝑒𝑖(𝐤+𝐆)⋅𝑟  (2.34) 

While solving one electron Schrödinger-like equation with an effective periodic potential, e.g., 

the Kohn-Sham potential defined in Eq. (53), the Kohn-Sham wave function can be expanded 

with plane wave basis sets as described in Eq. (108). As a result Eq. (55) can be rewritten as:  

∑𝐆′ [
1

2
|𝐤 + 𝐆′|2𝛿𝐆,𝐆′ + 𝑉eff(𝐆 − 𝐆′)] 𝐶𝑛,𝐤+𝐆′ = 𝜖𝑛𝐶𝑛,𝐤+𝐆 (2.35) 

 where 𝛿𝐆,𝐆′ is the Kronecker 𝛿 and reflects that the kinetic energy is diagonal and 𝜖𝑛 are the 

electronic energies. The above equation is the basic Schrödinger-like equations of a periodic 

crystal with a plane wave basis set. 
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Here the sum over 𝐆′  tells that one needs an infinite number of plane waves to solve 

Eq.(2.35). However, the coefficients 𝐶𝑛,𝐤+𝐆 for the plane waves with small kinetic energy are 

typically more important than those with large kinetic energy. Thus, the plane wave basis set 

can be truncated to include only plane waves that have kinetic energies less than a particular 

energy cutoff 𝐸cut:  

1

2
|𝐤 + 𝐆|2 ≤ 𝐸cut  (2.36) 

 Employing a finite basis set introduces a new source of inaccuracy, which can be reduced by 

increasing the number of plane waves or 𝐸cut. Therefore, appropriate convergence tests have 

to be performed in order to find an 𝐸cut  that is sufficiently converged to compute the 

property of interest with the required accuracy.  

2.4 Frontier Molecular Orbitals 

The frontier molecular orbitals can offer a reasonable qualitative prediction of the excitation 

properties and the ability of electron transport [26]. The energies of HOMO and LUMO are 

negative, which indicates that the studied compound is stable [27]. The molecular orbital 

(MO) is a very important concept in quantum chemistry being extensively employed to 

describe the chemical behaviour [28]. The highest occupied molecular orbital (HOMO) and 

lower unoccupied molecular orbital (LUMO) are the two most important molecular orbitals 

in a molecule as both are used to describe various chemical properties such as reactivity and 

kinetics [29]. Also, these orbitals are an indispensable tool for the description of other 

phenomena involving molecular electronic structures, such as charge transfer, 

photoexcitation, and molecular electronics [30]. Using HOMO and LUMO orbital energies, the 
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ionization energy and electron affinity can be expressed as: I = -EHOMO, A = -ELUMO, η = (-

EHOMO + ELUMO)/2 and μ = (EHOMO + ELUMO)/2 [31]. 

The highest occupied molecular orbitals (HOMOs) and the lowest lying unoccupied molecular 

orbitals (LUMOs) are named as frontier molecular orbitals (FMOs). The FMOs play an 

important role in the optical and electric properties, as well as in quantum chemistry and UV–

Visible spectra [32]. The HOMO represents the ability to donate an electron and LUMO 

represents electron acceptor tendency. The energy gap between HOMO and LUMO reflects 

the chemical reactivity, polarizability and chemical hardness/softness of a molecule [33]. The 

hard molecules are difficult to polarize than the soft ones as they need high energy for 

excitation. The HOMO-LUMO energy separation has served as a simple measure of kinetic 

stability [34]. A molecule with a small or no HOMO-LUMO gap is chemically reactive [34]. 

2.4.1 HOMO-LUMO 

Many organic molecules, containing conjugated p electrons are characterized by large values 

of molecular first hyperpolarizabilities, were analysed by means by vibrational spectroscopy. 

The interaction of two atomic (or) molecule orbital produces two new orbitals. One of the 

new orbitals is higher in energy than the original ones (the anti-bonding orbital) and one is 

lower (the lower orbital) [35]. Highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) are frontier molecular orbitals that play important role 

in predicting chemical reactivity as well charge transfer properties of the molecule [36]. 

HOMO, LUMO energy characterizes the ability of electron accepting. When one of the initial 

orbitals is filled with a pair of electrons (a Lewis base) and the other is empty (a Lewis acid), 

we can place the two electrons into the lower, energy of the two new orbitals. The “Filled- 

Empty” interaction therefore is stabilizing. When we are dealing with interacting molecular 
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orbitals, the two that interact are generally the highest energy occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) of the compound [37]. These 

orbitals are a pair of orbitals in the compound, which allows them to interact most strongly. 

These orbitals are sometimes called the frontier orbitals, because they lie at the outermost 

boundaries of the electrons of compound. The HOMO-LUMO energy gap reveals that the 

energy gap reflects the chemical activity of the molecule. LUMO as an electron acceptor 

represents the ability to obtain an electron, HOMO represents the ability to donate an 

electron. Moreover, the lower value in the HOMO and LUMO energy gap explains the 

eventual charge transfer interactions taking place within the molecule [35] . In terms of 

chemical hardness, a large HOMO-LUMO gap indicates a hard molecule and is related to more 

stable molecules, whereas a small gap indicates a soft  molecule and is related to a more 

reactive molecule [38]. 

2.5 Electrostatic Potential  

Molecular Electrostatic Potential (MEP) is defined as the electrostatic (Coulomb) potential 

created in the neighbouring space by the nuclear charges and the electronic distribution of a 

molecule [39]. Electrostatic potential maps, also known as electrostatic potential energy 

maps, or molecular electrical potential surfaces, illustrate the charge distributions of 

molecules three dimensionally [40]. These maps allow us to visualize variably charged regions 

of a molecule. Knowledge of the charge distributions can be used to determine how 

molecules interact with one another [41]. Electrostatic potential maps are very useful three-

dimensional diagrams of molecules. They enable us to visualize the charge distributions of 

molecules and charge related properties of molecules [42]. They also allow us to visualize the 

size and shape of molecules [43]. In organic chemistry, electrostatic potential maps are 

invaluable in predicting the behaviour of complex molecules. The molecular electrostatic 
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potential (MEP) maps have been used to predict the behaviour and reactivity of the 

molecules. It is mapping potentials created in the space around a molecule by its nuclei and 

electrons [27]. MEP map is very useful for the qualitative interpretation of the electrophilic 

and nucleophilic reactions for the study of biological recognition process and hydrogen 

bonding interactions [44]. This also provides information for understanding the shape, size, 

charge density, delocalization and site of chemical reactivity of the molecules. MEP can be 

measured experimentally by diffraction as well as it can be computed by quantum mechanical 

methods [38]. MEP maps can be obtained by mapping electrostatic potential onto the total 

electron density with colour code [45]. There are three important colours; blue, red and green 

used to indicate the value of the electrostatic potential. The surfaces with blue and red 

colours show the positive and negative values of the potential respectively. The surfaces with 

green colours indicate zero potential [36]. 

The concept of the electrostatic potential as a quantum mechanical observable (the   

expectation value of the one-electron operator r- 1) probing the molecular charge distribution 

and its usage as a tool for describing molecular interactions and chemical reactivity is well 

documented [46]. The development of procedures to generate classical partial atomic 

charges from the quantum mechanical electrostatic potential provides well-defined methods 

for obtaining electrostatic interaction parameters required in molecular mechanics and 

dynamics simulation [47].  

2.6 Solvent Accessibility Surface Area 

solvent-accessible surface area (SASA) is the surface area of a biomolecule that is accessible 

to a solvent. Measurement of ASA is usually described in units of square Angstroms. The 

concept of the solvent accessible surface of a protein molecule was originally introduced in 
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1971, as a way of quantifying hydrophobic burial [48]. In macromolecules, such as peptides 

Assessible surface areas is a measure of thermodynamic parameters [49]. 

Molecules are often represented as a set of overlapping spheres [48]. The solvent-accessible 

surface area (SASA) of a molecule is widely used in describing solvation of solutes and 

macromolecules [50]. The SASA is defined as the surface traced by the centre of a sphere 

rolled over the van der Waals surface [48]. The free energy of aqueous solvation, at least for 

nonpolar molecules, is linearly related to SASA. Therefore, many methods some exact, some 

approximate— have been presented to calculate analytical atomic SASAs and their partial 

derivatives with respect to atomic coordinates [51]. 

For evaluation of this volume, the radii of the balls should be put to the van der Waals radii 

of the corresponding atoms augmented by the effective radius of the water molecule (1.4 A˚) 

[48]. The second term accounts for the energy of the van der Waals interactions and the 

hydrophobic/hydrophilic effects. The contribution to this term from each atom is 

proportional to the area of its surface that is exposed to the solvent (also called the solvent 

accessible surface area, SASA). More precisely, this area can be defined as the uncovered 

surface area of the corresponding ball, with the ball radii being specified above [52]. 
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CHAPTER THREE 

COMPUTATIONAL DETAILS 

This section shall discuss the computations details and approached employed in modelling 

the Prodigiosin molecule. The initial structure of the prodigiosin molecule was constructed 

using the ArgusLab Software version 4.0.1.  The generated was subjected to geometry 

optimisation using the VASP - Vienna Ab initio Simulation Package [53] [54] [55], which 

performs DFT calculations. The projected augmented wave (PAW) method was used to 

describe the interactions between the valence and cores electrons [56] [57]. The electronic 

exchange–correlation potential was calculated using the Perdew–Burke–Ernzerhof (PBE) 

generalized gradient approximation (GGA) functional [58] [59]. Long-range vdW interactions 

were accounted for using the Grimme DFT-D3 scheme [60]. A plane-wave basis set with a 

kinetic energy cut-off of 600 eV was tested to be sufficient to converge the total energy of the 

Prodigiosin molecule to within 10−6 eV and the residual Hellmann–Feynman forces on all 

relaxed atoms reached 10−3 eV Å−1. A Monkhorst–Pack k-points mesh of 1×1×1 was used to 

sample Brillouin zone, which ensures electronic and ionic convergence. The optimized 

geometry from DFT calculations were imported into the ArgusLab software for the generation 

and analyses of the HOMO-LUMO iso-contours, electrostatic potential map and solvent 

accessibility surface area. Viewing and adjusting the molecular structure, atomic sizes, atomic 

distances, lattices parameters, and arrangement of the atoms was done with the aid of VESTA, 

Avogadro and Xcrysden packages. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Optimized Molecular Structure of Prodigiosin and Geometry Parameters 

The optimized geometry structure of the prodigiosin molecule is shown in Figure 4.1. The 

interatomic bond distances and angles relative to the reference numbers shown in Figure 4.1 

are listed in Table 4.1 and Table 4.2, respectively. The C-C bond lengths from table 4.1 ranges 

from 1.3817 Å – 1.540 Å. The highest bond length is between C12-C13 and the shortest bond 

length is between C17-C20. C-O bond lengths represented by O49-C5 with bond length 1.3515 

Å and O49-C5 with bond length 1.4332 Å.  

 

FIGURE 4. 1: OPTIMIZED GEOMETRY OF PRODIGIOSIN MOLECULE. COLOUR CODE: CARBON = RED, OXYGEN = 

RED, NITROGEN = BLUE, HYDROGEN = WHITE. 

 

The C-N bond lengths are N48-C18 (1.3322 Å), N48-C19 (1.4064 Å), N47-C6 (1.3891 Å), N47-

C7 (1.3612 Å), N46-C3 (1.3754 Å), and N48-C2 (1.3855 Å). The highest C-N bond length being 
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N48-C2 (1.3855 Å) and the lowest which is N48-C19 (1.4064 Å). The difference in the bond 

lengths is as a result of the influence of the pyrrole group. The bond angles for C-N-C are C3-

N46-C2 (169.926 degrees), C7-N47-C6 (110.561 degrees) and C19-N48-C18 (105.813 

degrees). The lowest shows the highest delocalization. 

TABLE 4. 1: GEOMETRY OPTIMIZED INTERATOMIC BOND DISTANCES IN PRODIGIOSIN 

ATOM DISTANCE (Å) ATOM DISTANCE (Å) 

C4-C3 1.3876 C18-C11 1.4942 

C1-C4 1.4126 C17-C12 1.5002 

C1-C2 1.3978 C12-C13 1.54 

C2-C7 1.4342 C13-C14 1.5386 

C7-C8 1.4139 C14-C15 1.533 

C8-C5 1.3996 C15-C16 1.5318 

C5-C6 1.4265 N48-C18 1.3322 

C6-C10 1.4041 N48-C19 1.4064 

C10-C19 1.3907 N47-C6 1.3891 

C19-C20 1.442 N47-C7 1.3612 

C20-C17 1.3817 N46-C3 1.3754 

C17-C18 1.4565 N46-C2 1.3855 
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TABLE 4. 2: GEOMETRY OPTIMIZED BOND ANGLES IN PRODIGIOSIN 

ATOMS 

ANGLE 

(DEGREE) 

C3-N46-C2 109.926 

C7-N47-C6 110.561 

C5-O49-C9 115.667 

C19-N48-C18 105.813 

C4-C1-C2 108.003 

C1-C4-C3 107.433 

C5-C8-C7 106.824 

C6-C10-C19 124.817 

C19-C20-C17 106.953 

C20-C17-C19 129.656 

C17-C18-C11 125.732 

C17-C12-C13 117.657 

C12-C13-C14 116.229 

C13-C14-C15 116.394 

C14-C15-C16 112.534 

C8-C7-C2 126.868 

C7-C2-C1 128.611 

C5-C6-C10 131.605 

C2-C7-N47 125.314 
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4.2 Mulliken Atomic Charges 

The calculated Mulliken [61] charges, which helps ascertain the electron population of each 

atom in the prodigiosin molecule are summarized in Table 4.3.The Mulliken charges on 

hydrogen atoms are seen to be positive. Oxygen and nitrogen atoms show negative charges. 

Some carbon atoms C2, C3, C5, C6, C7, C9, C17, C18 and C19 have positive charges whereas 

the rest are negative, indicating the direction of delocalization. 

TABLE 4. 3: MULLIKEN ATOMIC CHARGES OF PRODIGIOSIN 

Element Charge Element Charge Element Charge Element Charge 

    1    C -0.0825    16    C    -0.155    31    H     0.0762    46    H     0.0477 

    2    C     0.0669    17    C     0.0183    32    H     0.0663    47    H     0.0498 

    3    C     0.0543    18    C     0.2306    33    H     0.0748    48    H     0.0492 

    4    C    -0.1121    19    C     0.1263    34    H     0.0448    49    H     0.0698 

    5    C     0.1857    20    C    -0.1179    35    H     0.0596   

    6    C     0.1543    21    N    -0.3521    36    H     0.0688   

    7    C     0.1993    22    N    -0.3899    37    H     0.0545   

    8    C    -0.1139    23    N    -0.558    38    H     0.0535   

    9    C     0.0025    24    O    -0.3847    39    H     0.0491   

   10    C    -0.138    25    H     0.0669    40    H     0.0397   

   11    C    -0.1349    26    H     0.0967    41    H     0.0526   

   12    C    -0.0859    27    H     0.0697    42    H     0.0443   

   13    C    -0.0944    28    H    0.2394    43    H     0.047   

   14    C    -0.0926    29    H     0.2621    44    H     0.0485   

   15    C    -0.0934    30    H     0.078    45    H     0.058   
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4.3 Frontier Molecular Orbital: HOMO and LUMO 

The frontier molecular orbitals can offer a reasonable qualitative prediction of the excitation 

properties and the ability of electron transport in the molecule as shown by [62]. The energies 

of HOMO and LUMO are negative, which indicates that the studied compound is stable [63]. 

Using HOMO and LUMO orbital energies, the ionization energy and electron affinity can be 

expressed as: I = -EHOMO, A = -ELUMO, η = (-EHOMO + ELUMO)/2 and μ = (EHOMO + 

ELUMO)/2 [31]. Parr et al., [64] proposed the global electrophilicity power of a ligand as ω = 

μ2/2η. The hardness η and chemical potential μ are given by the following relations: η = (I-

A)/2 and μ = -(I + A)/2, where I and A are the first ionization potential and electron affinity of 

the chemical species [27]. For the title compound, EHOMO = -3.687 eV, ELUMO = -2.254 eV, 

Energy gap = ELUMO - EHOMO = 1.433 eV, Ionization potential I = 3.687 eV, Electron affinity 

A = 2.254 eV, global hardness η = 0.7165 eV, chemical potential μ = -2.9705 eV and global 

electrophilicity = μ2/2η = 6.1576eV. The energy gap between HOMO and LUMO reflects the 

chemical reactivity, polarizability and chemical hardness/softness of a molecule. This lower 

gap allows it to be the softest molecule. Kinetic stability decreases with the decrease of 

HOMO-LUMO gap. As a result, removal of electrons from ground state HOMO to excited state 

LUMO requires less energy. The diagrammatic representation of the HOMO and LUMO for 

the optimized prodigiosin molecule is shown in Figures 4.2 and figure 4.3, respectively. 
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FIGURE 4. 2: HIGHEST OCCUPIED MOLECULAR ORBITAL DIAGRAM OF PRODIGIOSIN 

 

 

FIGURE 4. 3:  LOWEST UNOCCUPIED MOLECULAR ORBITAL DIAGRAM OF PRODIGIOSIN 
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4.4 Electrostatic Potential Map (ESP) 

Electrostatic potential map is an important descriptor used in understanding sites for both 

nucleophilic and electrophilic reactions [65] as well as for the study of biological recognition 

process [40]. Figure 4.5 provides a visual presentation of the chemically active sites and 

comparative reactivity of atoms. Potential value increases in the order red < orange < yellow 

< green < blue. The negative (red and yellow) regions of ESP are related to electrophilic 

reactivity and the positive (blue) regions to nucleophilic reactivity. From the ESP map of the  

Mapped surface was generated using ArgusLab software. This is a surface where one property 

is superimposed onto a surface created by another property. A negative ESP, is often a vicinity 

of stability for test charge. On the other hand, a positive ESP, is often a vicinity of relative 

instability for the positive test charge. The sites of the molecule which are susceptible to 

nucleophilic or electrophilic attack can be seen using ESP-mapped density surface as shown 

in figure 4.5. This surface is helpful for qualitative interpretations of chemical reactivity.  Here, 

the maximum negative potentiality to be -0.500 a.u (deepest red) for oxygen atom and the 

highest positive potentiality of +0.0136 a.u (deepest blue) of other atoms. 

 

FIGURE 4. 4: ELECTROSTATIC POTENTIAL-MAPPED ELECTRON DENSITY SURFACE OF PRODIGIOSIN 
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4.5 Solvent Accessibility Surface Area 

The solvent accessibility of the prodigiosin molecule is shown in Figure which shows the 

highest value of 103 square Å. This is a large surface area for interaction and accessibility to 

water medium when used as a cancer drug as it will find itself in an aqueous media.   

 

FIGURE 4. 5: SOLVENT ACCESSIBILITY SURFACE AREA OF PRODIGIOSIN 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

In the work, the structural and electronic properties of the prodigiosin, a potential cancer 

drug was comprehensively characterized using computational approaches based on density 

functional theory calculations. Geometric parameters including interatomic bond distances 

and angles are systematically characterized.  The Electrostatic potential map (ESP) map of the 

prodigiosin molecule shows that the negative potential sites are around O49 (oxygen) and 

N48 (one of the nitrogen atom) and the positive potential site are around the carbon atoms. 

The sites provide information about the possible reaction regions of the prodigiosin molecule. 

The value of the energy separation between HOMO and LUMO is very small compared to 

other compounds and this energy gap gives valuable information about the reactivity of the 

molecule. As ESP predicts the most reactive part of the molecule, the chemical reactivity is 

also understood from its chemical potential, electrophilicity and hardness. The solvent 

accessibility surface area of the molecule better understanding on the contact surface of the 

molecule when used as drug in the aqueous environment such as in the human body and this 

can help in drug delivery design.  

A clearer understanding of the molecular properties of prodigiosin has been seen and these 

properties can be used to understand how prodigiosin may be used in other applications. As 

a pyrrole molecule with conjugate bonding system, polymerization is foreseen for the 

prodigiosin molecule as this may lead to the production of an electrically conducting polymer 

from it. 
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