

TEXT RETRIEVAL USING WAVELET TREE

A Thesis Presented to the Department of Computer Science,

African University of Science and Technology

In Partial Fulfilment of the Requirements for the Degree of

Masters of Computer Science

By

Isah Hauwa Yakubu

(ID No. 40807)

Abuja, Nigeria

July, 2021

i

CERTIFICATION

This is to certify that the thesis titled “Text Retrieval Using Wavelet Tree”

submitted to the school of postgraduate studies, African University of

Science and Technology (AUST), Abuja, Nigeria for the award of the

Master's degree is a record of original research carried out by Isah Hauwa

Yakubu in the Department of Computer Science.

ii

TEXT RETRIEVAL USING WAVELET TREE BY:

ISAH HAUWA YAKUBU

A THESIS APPROVED BY THE COMPUTER SCIENCE DEPARTMENT

 APPROVAL BY

Supervisor

Surname: Rajesh

First name: Prasad

Signature:

The Head of Department

Surname: Rajesh

First name: Prasad

Signature:

iii

© 2021

ISAH HAUWA YAKUBU

iv

ABSTRACT

The wavelet tree is a flexible data structure that permits representing sequences

S[1; n] of symbols over an alphabet of size (n), within compressed space and

supporting a wide range of operations on S. It has been used to index the

document in the past. Text mining is the process of retrieving information from

a huge body of text. During mining, we can extract the keywords from the

document and convert them using term indexing, to numbers. Wavelet tree can

then be used as an index to allow fast access of keywords within the documents

using rank and select operations. The focus of this research is to design a hybrid

model using wavelet tree and text mining to retrieve the keywords from the text.

Keywords: Wavelet tree, text mining, term indexing, rank operation, select

operation.

v

DEDICATION

This project is dedicated to the Almighty, the most benevolent. Also friends and

well-wishers for their prayers and non-stop support.

vi

ACKNOWLEDGEMENT

I give the Almighty the glory and honour for knowledge and guidance. I would

like to record my sincerest thanks to my colleagues for sharing their pearls of

wisdom with me and immense gratitude to family and friends for their support

and non-stop encouragement during this thesis. To my supervisor for his

patience, perseverance and guidance. I say thank you. Finally, I thank African

University of Science and Technology (AUST), for providing me with the

scholarship to complete this program. May the Almighty bless you all.

vii

TABLE OF CONTENT

CERTIFICATION ... i

ABSTRACT ... iv

DEDICATION .. v

ACKNOWLEDGEMENT ... vi

INTRODUCTION .. 1

1.1 Text mining ... 1

1.2 Wavelet tree .. 2

1.3 Problem statement ... 2

1.4 Aim and Objectives ... 3

1.5 Limitation .. 3

1.6 Project outline ... 3

CHAPTER TWO .. 5

LITERATURE REVIEW ... 5

2.1 Indexing .. 5

2.2 Indexing techniques .. 5

2.2.1 Inverted index .. 6

2.2.2Suffix tree .. 6

2.2.3 Signature files .. 7

2.3 Article Review .. 8

2.4 Research Gap .. 9

CHAPTER THREE .. 10

METHODOLOGY ... 10

3.1 Hybrid model .. 10

3.2 Implementation ... 10

3.3 Hardware Requirement ... 10

3.4 Theoretical Framework ... 11

3.4.1 Data set ... 11

3.4.2 Data Pre-processing ... 11

3.4.3 Stop words ... 11

3.4.4 Tokenization .. 12

3.4.5 Case changing .. 12

3.4.6 Text representation ... 12

3.5 Constructing the wavelet tree .. 13

3.5.1 Search Operation .. 16

3.5.2 Rank Operation .. 17

viii

3.5.3 Select Operation ... 19

CHAPTER FOUR ... 21

PERFORMANCE ANALYSIS AND RESULTS .. 21

4.1 Analysis... 21

4.2 Performance .. 21

4.3 Result .. 22

4.3.1 Reading the text file ... 23

4.3.2 Data pre-processing.. 23

Removing punctuations... 23

4.3.3 Removing stop word .. 24

4.3.4 Case conversion ... 24

4.3.5 Text to word conversion .. 25

4.3.6 Words to numbers conversion .. 25

4.4 Data Visualization ... 26

4.4.1 Word cloud ... 26

SUMMARY, CONCLUSION AND RECOMMENDATION ... 28

5.1 Summary ... 28

5.2 Possible Applications .. 28

5.3 Future work ... 29

5.4 Conclusion .. 30

APPENDIX ... 31

REFERENCES ... 36

ix

LIST OF FIGURES

Figure 3.1: Text retrieval process ... 13

Figure 3.2: An example of wavelet tree construction ... 14

Figure 3.3: searching for keyword .. 16

Figure 3.4: illustration on how rank query works ... 18

Figure 4.1: reading the .text file .. 22

Figure 4.2: Removing punctuations .. 22

Figure 4.3: Removing stop words ... 23

Figure 4.4: Case conversion .. 23

Figure 4.5: text to word conversion .. 24

Figure 4.6: conversion of words to numbers .. 25

Figure 4.7: Word cloud showing words with different ranks. 26

x

LIST OF TABLES

Table 4.1: search, rank and select execution time……………………………21

1

CHAPTER ONE

INTRODUCTION

1.1 Text mining

It is no doubt that data is everywhere and is rapidly increasing every second. On the internet,

a large amount of text is being exchanged in textual forms such as blogs, social media and e-

mails (Sagayam, 2012).

Text mining is the technique of extracting interesting and significant patterns from textual

data sources in order to ascertain knowledge. (Fan, Wallace, Rich, & Zhang, 2006). It deals

with natural language text which is stored in a semi-structured and unstructured format

(Weiss, Indurkhya, Zhang, & Damerau, 2010). It's a new tool for evaluating large data sets of

texts for easy identification of patterns that are both fascinating and non-trivial. It can be seen

as a leap from data mining or knowledge discovery from (structured) databases (Fayyad,

Piatetsky-Shapiro, & Smyth, 1996).

Text mining has a lot of financial potential because written words are the most natural way of

storing and exchanging information. A recent study indicated that 80% of a company's

information was contained in text documents, such as emails, memos, customer

correspondence, and reports. The ability to filter this untapped source of information provides

substantial competitive advantages for a company to succeed in the era of a knowledge-based

economy (Tan, 2002).

It is a multidisciplinary field, involving information retrieval, text analysis, and information

extraction, clustering visualization, database technology, machine learning and data mining

(Brinda, K.Prabha, & S.Sukumaran, 2016).

2

Text mining applications can extend to any area where text document exists (Stavrianou,

Andritsos, & Nicoloyannis, 2007). These include social media, business intelligence, life

science and health, fraud detection, digital libraries, academic and research field.

Text mining had received lots of attention since its inception, gaining a significant importance

in research. This is due to the availability of a huge amount of textual documents from

multiple sources and the increasing demands to obtain knowledge.

1.2 Wavelet tree

The field of wavelets has been growing on both the theoretical and application fronts since its

invention. (Abbas & Rain, 2018).

A wavelet tree is a robust data structure that is useful in problem domains such as data

compression and string processing. It was first introduced by Grossi, Gupta, and Vitter in

2003 as a way to obtain a faster rank and select query times on compressed suffix arrays.

It's a data structure for representing a sequence of elements across a fixed, possibly huge

alphabet in a concise manner. It is large and versatile even when its compression capabilities

are not considered (Castro, Lehmann, P´erez, & Subercaseaux, 2016)

A wavelet tree is a self-indexing binary tree used to index text characters. It implements three

major operations: rank (which returns the number of occurrences of a symbol), select (which

returns the position of a given occurrence of a symbol) and search (which returns the symbol

at any position of the text) (Brisaboa, Cillero, Fari˜na, Ladra, & Pedreira, 2007). It can also

be used with different types of coding schemes to increase the performance of search

operations.

1.3 Problem statement

Text mining, deemed the "next wave of technology" by many, is a real hassle because it

entails dealing with text data that is inherently unstructured and ambiguous. (Tan, 2002).

3

A lot of issues occur during text mining that affects the efficiency and effectiveness of

decision making. The majority are posed by the peculiarities of natural language processing

(Stavrianou, Andritsos, & Nicoloyannis, 2007).

Aside from the fact that it is powerful and easy to code, Wavelet trees have proven to be a

viable approach in the past, particularly in terms of access time and space usage. Its ability to

handle enormous text, the ease with which it can be implemented, and the fact that it can be

seamlessly combined with other data structures gives it a significant benefit.

Exploring its potential, on the other hand, may lead to discoveries and, potentially, a long-

term solution to the indexing problem's complexity.

1.4 Aim and Objectives

This project aims to design a hybrid model that uses wavelet tree and text mining to retrieve

the keywords from texts.

Objectives include:

1. Numerical representation of text.

2. Indexing using wavelet tree.

3. Drawing the wavelet tree of text representation.

4. Retrieving keywords from the tree using rank, search and select operations.

1.5 Limitation

This thesis focuses on single keyword retrieval which is not the final goal of an application,

but a key step of larger text mining systems (Beliga, 2014) and (Siddiqi & Sharan, 2015).

1.6 Project outline

This paper is divided into five chapters. The research aim and objectives are introduced in

chapter one. A literature review of prior works connected to this research is described in

chapter two. The third chapter explained the methodology that was used. Performance

4

analysis and evaluation, future works, and conclusion are contained in chapter four, followed

by a summary and conclusion of the work in chapter five.

5

CHAPTER TWO

LITERATURE REVIEW

This chapter contains an extensive review of different indexing techniques. Some techniques

used over the years were illustrated, some of which include suffice tree, signature files and

inverted index.

2.1 Indexing

Text indexing also known as document indexing is a powerful technique for the retrieval of

documents from repositories that contain thousands of documents (Chauhan & Asthana,

2017)

It’s a collection of an organized, systematic arrangement of language, signs or symbols that

represent ideas (Cleveland & Cleveland, 2013).

Joudrey & Taylor (2009) described indexing as a process that helps in evaluating the content

of the source of information and determining the about-ness of an item.

Indexing forms the main functionality of the text retrieval process. It simplifies the document

to informative terms (Kaur & Guptal, 2016). It has become an important tool in the area of

information Retrieval such that whenever information is to be systematized or organized,

retrieved or used, the need for indexing grows (Shah, 2015).

The difficulty of compressing and indexing excessively repeated sequence collections is

discussed in (Makinnen, Navarro, Siren, & Valimaki, 2009), (Siren, Valimaki, Makinnen, &

Navarro, 2008). Such collections can be found in a variety of applications, including version

control systems and the storing of biological data in computational molecular biology.

2.2 Indexing techniques

There exist lots of indexing techniques, the most common which include an inverted index,

signature files and suffix tree. These techniques differ in many ways from their simplicity of

6

application to their stability, performance, limitation as well as advantages. However,

accuracy expectation usually cuts across all techniques.

2.2.1 Inverted index

 An inverted file index consists of a record, or inverted list, for each term that appears in the

document. A term’s record contains an entry for every occurrence of the term in the

document collection identifies the documents and, possibly, gives the location of the

occurrences or weight associated with the occurrences (Brown, Callan, Croft, & Moss, 1994).

According to (Belew, 2006), the concept of inverted files is mostly used in commercial

library systems. This is due to its enhanced efficiency in searching which is paramount when

dealing with files that comprise large texts.

Inverted indices can be implemented as sorted arrays, tries, B-trees and various hashing

structures. It needs to frequently undergo re-organization under intensive insertion/updating

procedures (Chen, 2001).

 2.2.2Suffix tree

Suffix trees have been extensively explored and utilized to fundamental string problems such

as determining the longest repeated substring (Weiner, 1973) and text compression (Rodeh,

Pratt, & Even, 1981).

Suffix trees have seen some uses in information retrieval fields. They are used for computing

document similarities and related tasks.

The suffix tree algorithm was ranked one of the fastest at that time although the algorithm

was all linear time for size alphabet that was constant. Its running time is generally given as

O(nlogn). It supports insertion, deletion and modification of strings, which is its unique

feature as compared to other techniques (Malki, 2016).

7

Weiner was the first to introduce suffice tree in 1973 (Weiner, 1973). He called them position

trees. His Linear pattern matching algorithm had little follow-up because it was difficult to

understand.

Mc Creight came along in 1976, he introduced another algorithm with better space efficiency

which was considered too difficult to be extended for generalized suffice tree (McCreight,

1976)

 Ukkonen in 1992 introduced an algorithm that conceptually builds the tree differently than

either of the previous algorithms. His algorithm has generally been the preferred suffix tree

construction algorithm mostly due to the paper being considered easier to understand than the

previous two (Ukkonen, 1992).

2.2.3 Signature files

Text signatures and superimposed coding have been attractive in information retrieval

systems as they are efficient in the amount of memory used and the reduction in processing

time that they bring to searching operations. They are well-suited to the Boolean operations

which are used to combine search terms, and are common to text retrieval systems (Colomb,

1985).

 This technique is more efficient in dealing with insertions and queries on parts of words as

compared to other techniques. However, it suffers from inefficiency in query processing since

for each query processed the entire signature file needs to be scanned. According to (Chen,

2001), this disadvantage led to the development of the signature tree which improves the

query processing efficiency of signature file significantly.

Eastman (1989) also explained that the use of bit comparisons in signature searching is an

improvement in the text comparison process used in text scanning. He also suggested that the

signature file technique is more suited to structured databases.

8

2.3 Article Review

Researchers have established comparisons between indexing systems, most of which are

performance-oriented, based on their tests throughout the years.

Nobel, Moffat, & Romamoharao, in their paper, concluded that for current architectures and

typical applications of full-text indexing, inverted files are superior to signature files in

almost every respect, including speed, space, and functionality.

In the book modern information retrieval by Ricardo Baeza-Yates and Berthier Ribeiro-Neto,

some implementation issues of the three main techniques with regards to their performances

were cited; such that inverted file requires less search cost, while signature requires less space

overhead (10- 20 %) than inverted file (Baeza-Yates & Ribeiro-Neto, 1999).

The wavelet tree structure was used as a range structure in (Arroyuelo & Navarro, 2011),

(Russo & Oliveira, 2008) for their compressed self-index on texts compressed with the LZ78

data compression algorithm, and as a component of various substructures in (Kreft &

Navarro, 2010) for their implementation of a self-index on texts compressed with the LZ77

data compression algorithm. This is particularly intriguing since LZ77 can benefit from the

presence of many repetitions in a text, which appears in a variety of applications.

Navarro (2014) shows the most important practical and theoretical achievements in the

literature, as well as applications in a variety of cases, in this outstanding study of wavelet

tree data structure. In contrast to Navarro’s survey, (Castro, Lehmann, P´erez, &

Subercaseaux, 2016) focus is less on the properties of the structure in general, and more on its

practical applications, some adaptations, and also implementation targeting specifically the

issues encountered in programming competitions.

9

2.4 Research Gap

Text mining have many areas including classification, text analysis, text retrieval and more.

Our work focuses on single keyword retrieval. We made use of small and medium size

dataset, although larger dataset can be used to further confirm the performance of the

indexing technique. Also previous algorithms of text retrieval was not practically

implemented, thus their running time was not shown practically in our working environment.

10

CHAPTER THREE

METHODOLOGY

The methodology used to achieve the aim of building the hybrid model was the empirical

model.

3.1 Hybrid model

 The focus of this research is to design a hybrid model using wavelet tree and text mining

(text retrieval) to retrieve the keywords from text. The wavelet tree is used to ensure

sequential representation of data which makes use of repetitions as an advantage to facilitate

fast retrieval. It can handle sequences of elements over a fixed but potentially large alphabet;

after an initial pre-processing, the most typical queries can be answered in time O(logn),

where n is the size of the array of words.

The concept of existing text retrieval models was studied. The wavelet tree was chosen, due

to its versatility and easy implementation.

3.2 Implementation

The proposed model was implemented using Jupyter Notebook, a python programming

environment with built-in functions and a lot of packages for data pre-processing procedures.

Advantages of python language include less coding, flexibility, simplicity, and

interoperability, making it the perfect language for implementation.

3.3 Hardware Requirement

The hardware requirements are:

 All CPU of 64 bits and operating systems (Linux, Windows, Macintosh, etc.)

 4GB RAM with at least 30GB HDD space

11

3.4 Theoretical Framework

The proposed framework consists of the following stage: data set collection, pre-processing,

text representation, code implementation and lastly, performance analysis stage. The data

collected is pre-processed to facilitate easy indexing which converts a document into a list or

array of words, which in turn are given IDs, used as the root of the wavelet tree. Hence, a

keyword can be retrieved and the rank and select query can be performed on the tree.

These have various applications which include crime detection, sentiment analysis, and

analysis of customer feedback in business, risk management, etc.

3.4.1 Data set

A large part of these studies uses small-scale data sets, gotten from open source applications

or public repositories. Some of which include a comprehensive collection of data and articles

or write-ups from Google.

3.4.2 Data Pre-processing

Pre-processing of text data means cleaning of noise such as cleaning of stop words,

punctuations, etc. It is an essential step as here, we prepare the text data ready for mining. If

not applied there is a high tendency of the data inconsistency, thus jeopardizing the intended

results. The majority of these pre-processing tasks are language-specific, and they often vary.

So in pre-processing of the data, the sequence of strings was divided into words, all

punctuation, stop words were removed. Words were grouped into groups, all missing values

were replaced with some values and the case of text was transformed into a single one.

3.4.3 Stop words

Stop words are terms which doesn’t carry much weightage in context to the text. They are a

set of commonly used words in English. Examples include ‘is’, ‘the’, ’a’, ‘we’ and ‘they.

Removing these terms from the dataset can significantly improve retrieval performance

12

(Zaman, Matsakis, & Brown, 2011). Stop word lists are one of the key parameters when

retrieving keywords.

3.4.4 Tokenization

Tokenization is as simple as splitting the text into white spaces and punctuation marks that do

not correspond to the abbreviations found in the previous phase.

3.4.5 Case changing

A lot of techniques propose to lowercase only the words at the beginning of the sentence

leaving the words in the middle capitalized. The standard approach is to lowercase all words,

although this may result in the loss of information. This process is paramount to avoid

duplications in further analysis.

3.4.6 Text representation

The pre-processing of a document gives a bag of words only. There is a need to convert this

bag of words into numerical form for easy indexing.

Indexing is the most crucial part of the retrieval system. It was used for the conversion of the

data set into numerical form which eases the indexing process. It represents the text of the

document as a sequence of numbers, which can then be used as the root for the construction

of wavelet tree.

Indexing starts at the beginning of a text, giving each unique word a unique ID number. This

is done on the pre-processed text, hence only relevant words are indexed. Because it is

sequential, the text can be represented using the created IDs.

This is implemented using dictionaries in python, where the words are the values with their

corresponding ids as keys. Figure 3.1 explains the text retrieval process.

13

Figure 3.1: Text retrieval process

3.5 Constructing the wavelet tree

The wavelet tree is used to store the data set and run queries on it. It takes a numerical

representation of the sentence as the root node and partitions it into two parts, the left child

and the right child. The left child contains words whose IDs are less than the average A, of

the smallest and largest id of the words in the sentence. The right child contains IDs greater

than A. This is done recursively until just one word remains, which becomes the leaf.

Let L be the length of the root node. Each node stores a list of size n, containing all the IDs of

words in the document. The number of leaf nodes is equivalent to the length of the root node.

Figure 3.2 is an example of wavelet tree construction for the list of words in a sentence

Text

Representation

Searching

Ranking

Selecting

User Query

Data

preprocessing

Text IDs

Query

Operations

14

([dog, ran, across, farm, house, ran, dog, across, farm, house, behind, lake] with

corresponding IDs [1,2,3,4,5,2,1,3,4,5,6,7]).

Algorithm 1 below is used in the practical implementation of text representation.

Algorithm1 (Text representation)

function TextRep(sentence)

dict{}

IdList[]

newList[]

for all w in sentence do

 if w not in newlist then

 x x+1

 newList.append(w)

 IdList.append(x)

 dict[w] x

 else

 IdList.append(dic[w])

 end if

end for

Figure 3.2: An example of wavelet tree construction

<=2.5
>2.5

<=4 >4

>3.5
<=3.5 <=1.5

>1.5

[1, 2, 3, 4, 2, 1, 3, 4]

[1, 2, 2, 1]

[3, 4, 3, 4]

[1, 1] [2, 2]
[3, 3]

[4, 4]

<=6
>6

<=5.5

[1, 2, 3, 4, 2, 1, 3, 4, 5, 6, 7]

[5, 6, 7]

[5, 6]

[7]

[5]
[6]

>5.5

15

Note: only the IDs are stored in the tree.

Algorithm 2 (Knudsen & Pedersen, 2015) explains the creation of wavelet tree

Algorithm 2 (creating wavelet tree)

function NODE(sentence)

rep  sorted(sentence)

 If |sentence| = 1 or |rep| = 0 then

 return self

 end if

 (Rleft,Rright)  sentence

 splitWord Rleft []

 for all w in sentence do

 if w > SplitWord then

 Sright. Append(w)

 Self.Bitmap.Append(1)

 else

 Sleft.Append(w)

 Self.Bbitmap.Append(0)

 end if

 end for

 RightNode  NODE(Sright , Rright)

 leftNODE  NODE (Sleft, Rleft)

 return Self

end function

16

3.5.1 Search Operation

This involves finding a keyword present in the wavelet tree. Traversing through the entire

wavelet tree is not done. This is because all IDs contained on the wavelet tree are at the root

node, which is a list or array of all words present on the tree. Hence, a serial search is done to

check if an ID corresponds to the word being search. Searching stops where it hits an ID that

corresponds to the keyword. Also, the whole array is searched when the word is not present

or is present at the final index.

For instance, searching for the keyword ‘house’ at the node of the wavelet tree in Figure 3.2.

Searching begins at the first index 0. It compares ID 1 with its value, which returns false. The

index is incremented, this is done recursively until it reaches index 4 with ID 5, whose value

corresponds to the search term. Hence, it returns true. Figure 3.3 depict searching for the

keyword ‘house’ in array of IDs in relation with the dictionary {‘dog’:1, ‘ran’:2, ‘across’:3,

‘farm’:4, ‘house’: 5, ‘ran’:2, ‘dog’:1, ‘across’:3, ‘farm’:4, ‘house’:5, ‘behind’:6, ‘lake’:7}.

Figure 3.3: searching for keyword

Algorithm 3 explains the search operation on the wavelet tree.

Algorithm 3 (search operation)

Function exist(dict, textRep)

 Input keyword k

 if k is in dict then

 if dict[k] is in textRep then

0 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 2 1 3 4 5 6 7

17

 Output ‘keyword found’

 Output ‘keyword found’

 else

 Output ‘keyword not found’

 Print output

 end if

 else

 Output  ‘doesn’t exists’

 Print output

 end if

end function

3.5.2 Rank Operation

The rank is an operation that counts the occurrences of value w till an ID i of S in a sequence

S. It is usually denoted by rankw (S,i). That is, if S = (s1,...,sn) then

 rankw (S,i) = |{e ∈{1,...,i}| se= w}|

For the non-leaf node S of W, we encapsulate the rank operation above in two abstract

functions, mapLeftW(S,k) and mapRightW(S,k). The map function shows the new index k,

which the index i from the previous level of the tree, maps to. As shown in Figure 3.4

mapLeftW (S
0
,10)=7, mapLeftW(S

1
,7)=3, and mapLeftW(S

2
,3)=2. The superscripts 0, 1 and

2 depict the level of the tree at which the mapping occurs.

The rank operation on a wavelet tree begins at the root and travels down the tree until it hits

the leaf node that fits to the input word. The index rank obtained in the root node when the

leaf node is reached is the rank of the input symbol up to the original input point. This means

that the rank of a word up to a point in a sentence containing only that word is the same as the

18

location in a sentence containing only that word. For instance, in Figure 3.4, a rank query was

performed on the wavelet tree in Figure 3.3 thus showing how the rank query works.

In Figure 3.4 we have that rank3 (10) = 2. Assume that W is a wavelet tree for S, then

rankw(S,i) can be easily computed with the following strategy. If w ≤ A then we know that all

occurrences of w in S appear in the sequence LeftW(S), and thus rankw (S,i) = rankw (LeftW

(S), mapLeftW(S,i)). Similarly, if w > A then rankw(S,i) = rankw(RightW(S),

mapRightW(S,i)). These process is repeated until we reach a leaf node; if we reach a leaf S

with this process, we know that rankw(S,i) = i.

Figure 3.4: illustration on how rank query works

In the example, the rank operation looks for the number of occurrences of the word before

offset 10. Traversal begins from the root node and moves downward until it reaches the leaf

node. At each level the query rankw (i) is performed where i is index or value gotten from the

previous level, thus i becomes the new offset of the next level.

The execution of rank3(S, 10) is shown with blue lines. Index 10 was mapped down the tree

using either mapLeftW or mapRightW depending on the A value of every node in the path.

We first map 10 to 7, then 7 to 3 and finally 3 to 2, reaching a leaf node. Thus, the result of

[3, 4, 3, 4]

 1 2 3 4

[3, 3]

 1 2

EXAMPLE: QUERY= Rank3 (10) = ?)

[1, 2, 3, 4, 2, 1, 3, 4]

 1 2 3 4 5 6 7 8

[1, 2, 3, 4, 2, 1, 3, 4, 5, 6, 7]

 1 2 3 4 5 6 7 8 9 10 11

19

the overall query, rank3 (10)=2. Algorithm 4 (Knudsen & Pedersen, 2015) was used in the

practical implementation of the rank operation.

Algorithm 4 (rank operation)

 Function rank (S,w,i)

if S is a leaf then

return i

else if w ∈ leftW(S) then

 return rank (leftW(S), w,mapleftW(S, i))

else return rank (rightW(S), w,mapRightW(S,i)

end if

end function

3.5.3 Select Operation

The select query can be used to find the position of a character's occurrence. Traversal on the

wavelet tree begins at the leaf node that matches a word up until it reaches the root node. This

is the reverse of the rank query. Thus, it is paramount to determine the leaf node which

corresponds to the word whose position is to be determined.

After the leaf node has been determined, an upward traversal is done to determine the

position of the word. Algorithm 5 was used in implementing the select operation.

Algorithm 5 (select operation)

select(S,w,i)

 if S is a leaf then

return i

else if w ∈ labels then

return select0 (Bv,select(vl,w,i))

20

 else

return select1(Bv,select(vr,w,i))

end if

21

CHAPTER FOUR

PERFORMANCE ANALYSIS AND RESULTS

This chapter includes the implemented framework and results with the programming

language used, from the pre-processing phase to the testing and debugging phase of the

hybrid model. The following steps were taken to achieve this research work: data pre-

processing; removal of stop words and punctuation, evaluation of the model’s performance in

terms of accuracy, precision and sensitivity are presented; all the phases of pre-processing,

text representation and testing of data, and measures of accuracy are implemented using

created classes and functions using Jupiter notebook in python programming

Screenshots of results were presented to support our framework.

4.1 Analysis

The focus was to improve the keyword search, rank and select functionality. The main thing

needed is to randomly assign IDs to the available data from the dataset to make the ranking,

searching and selecting process less tedious. This was achieved using Jupyter IDE and python

programming language. The hybrid model is based on text mining and single keyword

retrieval and any text format can be converted into numbers. Searching is made efficient for

the query sent by the user. The complexity of the rank, select and search process is hidden

from the user. In the ranking of keywords, the rank frequency is displayed to the user. In

searching, it shows the existence of a keyword that returns a positive result, if the keyword is

an exact match to the user’s query. This model will be effective whenever keywords are

needed to be retrieved from structured or unstructured text.

4.2 Performance

Our model is efficient in searching, ranking and retrieving the data. So when a query is sent,

the system can search the information relevant to the query and retrieve relevant keywords

22

with their frequencies of appearance, from the document. The frequencies depict how

relevant a keyword in the text is. The results from our model give the user insight of what the

whole text entails. It is understood by the rank given to keywords present in the data. These

frequencies were given after the entire pre-processed text had been scanned and converted.

But in the case of rank gotten from a keyword search, the size of the data is reduces in each

step.

A small data set of size 1384 gotten from Google was used. A dictionary of values and keys

was established, these were used to determine the result from our model. Table 4.1 shows the

different times it takes to run different rank, select and search queries.

Table 4.1: search, rank and select execution time

Based on the results gotten, we concluded that our code has a logarithmic complexity of

O(log n). Where n is the number of keywords in the dataset.

4.3 Result

 The results were obtained after the model was tested and analyzed using random datasets

from different repositories, especially Google.

Keyword Search (secs) Rank (secs) Select (secs)

Domestic 1.562… 1.435… 2.443…

Health 1.875… 1.243… 1.989…

application 1.278… 1.604.. 2.333…

Theft 1.334... 2.041… 1.232…

Tracking 1.644… 0.992… 1.876…

23

Figure 4.2: Removing punctuations

Figure 4.1: reading the .text file

4.3.1 Reading the text file

The data files used were downloaded to my local drive E in the folder ‘Hauwa’ as

‘sampleWLT.text file’. Its directory "E:\Hauwa\sampleWLT.txt". The python functions open

() and read () were used to load and read the content of the .text file as shown in Figure 4.1.

4.3.2 Data pre-processing

In the implementation of the data pre-processing both inbuilt and created functions were

used.

Removing punctuations

This is the first pre-processing step performed on data. It involves the removal of all English

punctuation like the comma, full-stop, bracket, etc. It is implemented using snapshot of the

code of Figure 4.2.

24

4.3.3 Removing stop word

The nltk package which contains specified English stop words was imported. These stop

words were then downloaded and removed from text with the code as seen in Figure 4.3

below.

Figure 4.3: Removing stop words

After running the code in Figure 4.3 above, all stop words were removed from the document

file.

4.3.4 Case conversion

After the removal of stop words and punctuation, the doc which now contains a bunch of

words was converted to a single case (lower case). This was done with the help of the lower

() inbuilt method .This step is important to avoid duplication in subsequent phases.

Figure 4.4 contains the snap shot of case conversion code.

25

Figure 4.4: Case Conversion

4.3.5 Text to word conversion

The text gotten from the previous pre-processing steps was then changed to words. This was

achieved with the split () function. Figure 4.5 is the snapshot of code used in text to word

conversion.

 Figure 4.5: text to word conversion

4.3.6 Words to numbers conversion

Finally, the collection of words gotten from the above step was converted to list or array of

numbers. This simplifies the indexing phase that comes after the data pre-processing phase. A

function called TextRep was created, in which contains dictionaries and list were used. All

the words where taken as keys and the unique numbers generated as values. The process is

depicted in Figure 4.6.

26

Figure 4.6: conversion of words to numbers

4.4 Data Visualization

4.4.1 Word cloud

This is a data visualization technique that displays all text in a single space. The words with

the highest frequency distribution are displayed larger than those with lower frequencies. The

word cloud of our data set containing 55 keywords is shown in Figure 4.7.

27

Figure 4.7: Word cloud showing words with different ranks.

Figure 4.7 shows the most frequent words are in descending order; health, domestic,

violence, well, widely and so on.

28

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 Summary

The amount of data created, generated, and saved is enormous. The retrieval of text would be

tedious without appropriate knowledge of Information Retrieval procedures. Studies have

also shown that text retrieval approaches are paramount for information storage and retrieval

in information centers (such as sentiment analysis). Hence, the right text retrieval model can

be of great improvement to the status quo of retrieval systems.

The present indexing techniques were investigated in this study. Problems related to them

were researched. The concept of existing text retrieval models was studied, and the

knowledge gained was used to design this hybrid system. It was successfully implemented

using real-life data. It merely informs the user of the existence or non-existence and

whereabouts of the keyword relating to the query and how frequently it appears. The model

was built using an algorithm, to perform efficiently for different dataset formats.

5.2 Possible Applications

Documents contain the majority of an organization's knowledge that is obscured in electronic

media. Acquiring this knowledge necessitates good data querying as well as the combining of

data from many textual sources. Due to the wide range of applications, discovering such

concealed knowledge is a crucial requirement for many organizations.

Some of these applications of keywords mined include:

 Academic Research: As a researcher, one of the major tasks while building up your

paper is to mention or suggest keywords for your article. It helps both rookie and

29

experienced researchers to choose, organize, document, and interpret data in a way

that produces legitimate and reliable knowledge for academic study.

 Customer service: The worldwide industrial advancement has surpassed the mass

production era and has entered a period of mass customization. Specifically, the

saturation of product supply generated a need to assess customer demand and

preference as a strategy to promote purchases from consumers. This coincided with

the birth of affective engineering, which converts a consumer’s feelings toward a

product into design factors (Nagamachi, 1995). Keywords mined from text collected

from blogs, surveys, newspaper articles, social media, and other text information

sources can inform owners of the status of their businesses. These pieces of

information can be used to enhance a product or service and improve customer

experience as the case may be.

 Resume filtering: Every day, large corporations and headhunters receive thousands

of resumes from job seekers. Extracting information from this resume can be quite a

challenging task. Moreover, these resumes are of different file formats (pdf, word,

jpeg, etc.), and in different languages. Recruiters are concerned with mistakes,

qualifications, fuzz words, employment history, job titles, and other relevant

information. Extracting keywords elated to these concerns can be the major first step

in filtering resumes. Hence, easing the resume filtering task.

 Other applications include Crime detection, Decision making, Spam filtering and

sentiment analysis, etc.

5.3 Future work

This thesis focuses on single keyword retrieval. An extension can be done to accommodate

phrases, multiple word combinations. Term frequency and inverse document frequency is can

be used in future work, to help filter relevant keywords.

30

The TF-IDF statistic reflects the importance of terms appearing in a text in comparison to a

large corpus of texts. Its many different extensions are commonly used by search engines

(Croft, Metzler, & Strohman, 2009). It is also frequently used in document classifiers for

checking relevance between documents or between a given search query and a found

document (Łażewski, Pikuła, Siemion, & Szklarzewski, 2005).

5.4 Conclusion

Within the context of time utilization, this model can be of tremendous help in solving some

of the identified problems of text retrieval.

Of the many other ways data simplification can be done, the wavelet tree was used due to its

ease of traversal. Making searching half as less tedious as it should be. Although this model

has the problem of data size limitation, it can be very efficient. On increasing the query

length the performance increases more than had been seen before.

31

APPENDIX

##############NLTK STOPWORDS COLLECTION

import time

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

import re

 ################Loading the the data set from excel

#doc1= open("E:\Hauwa\sampleWLT.txt")

doc1= open("E:\Hauwa\sim.txt")

doc2=doc1.read()

text=re.sub(r'[^a-zA-Z]'," ", doc2) #for word cloud

#print(text)

doc3=doc2.lower() #####remove all caps

#print(doc3)

###########USING NLTK TO FILTER STOPWORDS

stop_words = stopwords.words('english')

stop_words=set(stop_words)

#print(stop_words)

###########REMOVING ALL PUNCTUATIONS

punc= '''!()-[]{};:'"\,<>./?@#$%^&*_~'''

doc4=""

for char in doc3:

 if char not in punc:

 #newlist.append(char)

32

 doc4= doc4+char

#print(doc4)

#############CONVERTING DOC TO WORDS

doc4= doc4.split()

#(doc4)

#print(len(doc4))

##########REMOVING ALL STOP WORDS

relevant=[]

for word in doc4:

 if word not in stop_words:

 relevant.append(word)

#print(relevant) #1) print words

#print()

#print(len(relevant))

NewDict={}

################TEXT REPRESENTATION TO NUMBER

def TextRep(relevant):

 #NewDict={}

 Numlist=[]

 Emptylist=[]

 x=0

 for word in relevant:

 if word not in Emptylist:

 x+=1

33

 Emptylist.append(word)

 Numlist.append(x)

 NewDict[word]=x

 else:

 Numlist.append(NewDict[word])

 return Numlist

rep=TextRep(relevant) #2)print ids

#print (rep)

#print((end - start), 'secs')

#print (relevant)

start=time.time()

############TO CHECK IF A KEYWORD EXIST:

def exist(dict,numrep):

 keyword=input(' enter keyword ')

 if keyword in dict:

 if dict[keyword] in numrep:

 output='found'

 print('word',output)

 else:

 output='not found'

 print('word',output)

 else:

 output='doesnt exist'

 print('word',output)

 return keyword,output

rep=TextRep(relevant) #3)existance of a word

34

e=exist(NewDict,rep)

end = time.time()

print('time it takes to execute = ',(end - start), 'secs')

"""

#exist=list(exist(NewDict,rep))

start=time.time()

rep=TextRep(relevant)

###################### RANK QUERY

keyword=input('keyword is ')

count=0

#e=list(exist(NewDict,rep))

if keyword in NewDict:

 if NewDict[keyword] in rep: output='found'

 else: output='not found'

else: output='doesnt exist'

if output=='found':

 for c in rep:

 if c==NewDict[keyword]:

 count+=1

 print('Rank of' ,keyword ,'is', count)

else: print('please enter existing keyword on WLT')

end = time.time()

print('Time it takes to execute = ',(end - start), 'in secs')

35

##############SElECT QUERY

keyword=(input('keyword is '))

start=time.time()

rep=TextRep(relevant)

count=0

keyword=keyword.lower()

#e=list(exist(NewDict,rep))

if keyword in NewDict:

 if NewDict[keyword] in rep: output='found'

 else: output='not found'

else: output='doesnt exist'

if output=='found':

 for c in rep:

 if c==NewDict[keyword]:

 print('found at position(s)',end=" ")

 for i, y in enumerate(rep):

 if y == c:

 print (i , end =" ")

 # print()

 break

 #print('Rank of' ,keyword ,'is', count)

else: print('please enter an existing keyword on wavelet tree')

end = time.time()

print()

print('Time it takes to execute = ',(end - start), 'in secs'

36

REFERENCES

Abbas, Z., & Rain, P. (2018). A Study on Applications of Wavelets to Data Mining.

International Journal of Applied Engineering Research, 13, 10886-10896 . Retrieved

from http://www.ripublication.com

Arroyuelo, D., & Navarro, G. (2011). Space-efficient construction of Lempel-Ziv compressed

text indexes. Information and Computation. 209, 1070-1102.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. New York:

ACM press.

Belew, R. (2006). Adaptive information retrieval. In Machine Learning in Associative

Networks (pp. 78-83). Michigan: University of Michigan Press.

Beliga, S. (2014). Keyword Extraction: A Review of Methods and Approaches. . Rijeka:

Google scholar.

Brinda, S., K.Prabha, D., & S.Sukumaran, D. (2016, September). The comparison of text

based methods using text mining. International Journal of Computer Science and

Mobile Computing., 5(9), 112-116. Retrieved from www.ijcsmc.com

Brisaboa, N. R., Cillero, Y., Fari˜na, A., Ladra, S., & Pedreira, O. (2007). A New Approach

for Document Indexing Using Wavelet Trees. International Workshop on Database

and Expert Systems Applications (DEXA 2007). Regensburg: IEEE.

Brown, E. W., Callan, J. P., Croft, W. B., & Moss, J. E. (1994). Supporting Full-Text

information retrieval with a persistent object store. International Conference on

Extending Database Technology. 779, pp. 365-378. USA: EDBT.

Castro, R., Lehmann, N., P´erez, J., & Subercaseaux, B. (2016). Wavelet Trees for

Competitive Programming. INTERNATIONAL OLYMPIADS IN INFORMATICS, 10,

19-37.

Chauhan, E., & Asthana, D. A. (2017, July). Review of Indexing Techniques in Information

Retrival. International Journal of Engineering Science and Computing (IJESC), 7.

Chen, Y. (2001). Signature files and signature trees. Information processing letter, 82, 213-

221.

Cleveland, D. B., & Cleveland, A. D. (2013). Introduction toIndexing and Abstraction (4th

Edition). Cataloging and classification quarterly, 52, 337-338. Retrieved from

https://doi.org/10.1080/01639374.2013.877113

Colomb, R. M. (1985). Use of Superimposed Code Words for Partial Match Data Retrieval.

The Australian Computer Journal, 17, 181-188.

Croft, B., Metzler, D., & Strohman, T. (2009). Search Engines: Information Retrieval in

Practice. Pearson Education Inc.

Eastman, C. M. (1989). Handling incrementally specified Boolean queries: a comparison of

inverted and signature file organizations. Information processing and management.

37

Fan, W., Wallace, L., Rich, S., & Zhang, Z. (2006). Tapping the power of text mining.

Communications of the ACM, 49(9), 76-82.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery: An overview. Cambridge: MIT Press.

Feldman, R., & Dagan, I. (1995). Knowledge discovery in textual databases (KDT). KDD 95.

112-117.

Grossi, R., Scott, J., & Xu, B. (2011). Wavelet tree from theory to practice. International

Conference on Data Compression, Communications and Processing (pp. 210-221).

IEEE. doi:10.1109/CCP.2011.16

Joudrey, D. N., & Taylor, A. G. (2009). The organization of Information. (3rd, Ed.)

CT:Libraries Unlimited.

Kaur, H., & Guptal, V. (2016). Indexing Proess, Insights and Evaluation. International

Conference on Inventive Computational Technologies (ICICT). Coimbatore: IEEE.

doi:https://doi.org/10.1109/INVENTIVE.2016.7830087

Knudsen, J. H., & Pedersen, R. L. (2015). Engineering Rank and Select Queries on Wavelet

trees . thesis. Retrieved from https://cs.au.dk/~gerth/advising/thesis/jan-hessellund-

knudsen-roland-larsen-pedersen.pdf

Kreft, S., & Navarro, G. (2010). Self-indexing based on LZ77. In Lecture Notes in Computer

Science (Vol. 6661, pp. 239-248). Heidelberg: Springer.

doi:https://doi.org/10.1007/978-3-642-21458-5_6

Łażewski, L., Pikuła, M., Siemion, A., & Szklarzewski, M. (2005). Klasyfikacja

Dokumentów Tekstowych (Text Document Classification). Poland: Google Scholar.

Makinnen, V., Navarro, G., Siren, J., & Valimaki, N. (2009). Storage and retrieval of highly

repetitive sequence collections. Journal of Computational Biology JCB, 281-308.

Malki, Z. (2016). Comprehensive Study and Comparison of Information Retrieval Indexing

Techniques. International journal for advanced computer science and applications

(IJACSA), 7. Retrieved from www.ijacsa.thesai.org

McCreight, E. M. (1976). A space-economical su_x tree construction algorithm. Journal of

the ACM, 23(2), 262-272. Retrieved from https://doi.org/10.1145/321941.321946

Mooney, R. J., & Nahm, U. Y. (2005). Text mining with Information Extraction.

Multilingualism and Electronic Language Management: Proceedings of the 4th

International MIDP Colloquium, (pp. 141-160). South Africa.

Nagamachi, M. (1995). Affective engineering: A new ergonomic consumer-oriented

technology for product. International Journal of Industrial Ergonomics, 15, 3-11.

Navarro, G. (2012). Wavelet tree for all. Combinatorial Pattern Matching:Lecture notes in

computer science. 7354, pp. 2-26. Heidelberg: CPM. Retrieved from

https://doi.org/10.1007/978-3-642-31265-6_2

Nobel, J., Moffat, A., & Romamoharao, K. (1998). Inverted Files Versus Signature Files for

Text indexing. ACM transaction Database Systems, 23, 453-490.

38

Rodeh, M., Pratt, V. R., & Even, S. (1981). Linear algorithm for data compression via string

matching. Journal of the ACM, 28, 16–24.

Russo, L., & Oliveira, A. (2008). A compressed self-index using a Ziv-Lempel Dictionary.

Information Retrieval. SPIRE'06: Proceedings of the 13th international conference on

String Processing and Information Retrieval, (pp. 501-513). Retrieved from

https://doi.org/10.1007/11880561_14

Sagayam, R. (2012). A survey of text mining: Retrieval, extraction and indexing techniques.,

2, pp. 1443-1446.

Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using Text Mining

Techniques for Extracting Information from Research Articles. Intelligent Natural

Language Processing: Trends and Applications, Studies in Computational

Intelligence .

Shah, N. S. (2015). Review of Indexing Techniques Applied in Information Retrieval.

Pakistan Journal of Engineering, Technology & Science (PJETS), 5, 27-47.

Siddiqi, S., & Sharan, A. (2015). Keyword and keyphrase extraction techniques: a literature

review. International Journal of Computer Applications. International Journal of

Computer Applications, 18-23.

Siren, J., Valimaki, N., Makinnen, V., & Navarro, G. (2008). Run-Length compressed

indexes are superior for highly repetitive sequence collections. Proceedings of the

15th International Symposium on String Processing and Information Retrieval, (pp.

164-175). Retrieved from 10.1007/978-3-540-89097-3_17

Stavrianou, A., Andritsos, P., & Nicoloyannis, N. (2007, September). Overview and

Semantic Issues of Text Mining. ACM SIGMOD records, 36(3), 23-34.

Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: Techniques,

Applications and Issues. International Journal of Advanced Computer Science and

Applications, 7(11).

Tan, A. H. (2002). TEXT MINING:PROMISES AND CHALLENGES. Singapore.

Ukkonen, E. (1992). On-line construction suffix trees in linear time. 14, pp. 249-260.

Algorithmica . Retrieved from https://doi.org/10.1007/BF01206331

Weiner, P. (1973). Linear pattern matching algorithms. In The 14th Annual Symposium on

Foundations of Computer Science. IEEE. Retrieved from 10.1109/SWAT.1973.13

Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2010). predictive methods for

analyzing unstructured information. In Text mining. Springer Science and Business

Media.

Zaman, A. N., Matsakis, P., & Brown, C. (2011). Evaluation of stop word list in information

retrieval using latent semantic indexing. International conference of digital

information management, (pp. 26-28). Melbourne.

