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Abstract
An underlying theorem due to Gauss and Lengendre asserts
that for an over determined system, there are solutions that
minimize ‖Ax − b‖2 which is given by the generalized in-
verse of the matrix A even when A is singular or rectangular.

Our objective is to prove algebraic analogs of this result for
arbitrary operators on complex Hilbert spaces and its gen-
eralization for the Moore-Penrose Inverse. We employ the
generalized inverse matrix of Moore-Penrose to study the
existence and uniqueness of the solutions for over- and under-
determined linear systems, in harmony with the least squares
method.
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Chapter One

1. Introduction

1.1.

The concept of Moore-Penrose pseudoinverse originated from
findings relating to generalized inverses which served as
tool for studying astronomy, geodesy and other physical prob-
lems reduced to over determined system of linear equations
modelled as

Ax = b, (1)

where A ∈ Mat(C, m, n) with m > n. The reason why more
equations than unknowns arise is that repeated measure-
ment are taken to minimize errors.This produces over de-
termined system which are often times inconsistent. We are
interested in finding x ∈ Cn satisfying (1) and it is trivial to
note that if m = n and A is non-singular, then x = A−1b is
the unique solution.

However, in wide applications with large computation as
oftenly observed in areas like control theory, image process-
ing, portfolio analysis, data management and so on, the ma-
trix A is singular or nearly singular matrices. Thus we con-
sider the alternative problem of solving the minimization
problem

min ‖Ax− b‖, (2)

whose solution eventually gives the vectors that are best ap-
proximants to the solution of (1) in terms of Euclidean norm.
In general Gauss and Legendre (1810) discovered [12] that
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for an over determined system, there is a unique solution of
minimum norm that minimizes ‖Ax− b‖2.

The concept of generalised inverse [1] was first introduced
by Fredholm (1903), he called a particular generalized in-
verse as pseudoinverse which served as integral operator.
Generalized inverse of differential operators already explicit
in Hilbert’s discussion of 1904 of the generalized green func-
tions were consequently studied by authors like Myller (1906),
Elliot(1928), Reid (1931).

E.H Moore [4] introduced the study of general reciprocal of
a singular matrix. He writes the objective as thus:" The ef-
fectiveness of the reciprocal of a nonsingular finite matrix in
the study of properties of such matrices makes it desirable to
define if possible an analogous matrix to be associated with
each finite matrix A even if A is not square or, if square, is
not necessarily nonsingular". He established uniqueness, its
main properties and applications to linear equations.

The striking analogies between the theories for linear equa-
tions in n–dimensional Euclidean space, for Fredholm inte-
gral equations in the space of continuous functions defined
on a finite real interval, and for linear equations in Hilbert
space of infinitely many dimensions, led Moore to lay down
his well–known principle. Although this meet a lot of criti-
cism because of some ambiguity. Penrose [9] redefined the
Moore inverse in slightly different ways which gained more
acceptance. C.R Rao [11] discussed methods of of computa-
tion for a singular matrix and applied it to solve the normal
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equation with singular matrix in the least square theory and
also to express the variance of estimators.

The generalized inverse is a great tool in solving linear de-
pendent and ill posed problems proposed as unbalanced
system of linear equations. It has the ability to find the solu-
tion of square and non-square matrices even when they are
singular. The computation of the so called minimizing vec-
tor is essential equivalent to determining the Moore-Penrose
Pseudoinverse of the associated matrix which is the unique
generalized inverse of A. This thesis is organized as follows:

• In Chapter One we introduce generalized inverses and
revisit earliest discussions on this concept.

• Chapter Two is dedicated to basic definitions of all con-
cept in this text, properties and auxiliary results and com-
plete proofs.

• In Chapter Three we motivate, and analyze the Moore-
Penrose Pseudoinverse. We will include the main re-
sults as regards uniqueness and existence of the Moore-
penrose, a survey of Tikhonov’s regularization Theorem,
Single value Decomposition and spectral relationships.

• Finally chapter Four we consider some applications to
least squares problems. Also Some applications to port-
folio selection is investigated with examples.
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Chapter Two

2. Definitions and Auxiliary Results

2.1. PRELIMINARIES

This chapter’s purpose is to introduce relevant definitions
and notations and furthermore to discuss some basic results
that will be needed later on.

2.2. REVIEW OF HILBERT SPACES

Definition (Inner product). Let (C,+, .) be a vector space. A
function on C×C is an inner product if:

1. 〈u, u〉 ≥ 0 and〈u, u〉 = 0 ⇐⇒ u = 0 for every u ∈ C.
2. 〈u, (α1v1 + α2v2)〉 = α1〈u, v1〉+ α2〈u, v2〉, for every u, v1, v2 ∈

C and α1, α2 ∈ F (scalar field) .
3. 〈u, v〉 = 〈v, u〉, ∀ u, v ∈ C.

The pair (C, 〈., .〉) is an inner product space. The norm asso-
ciated to the inner product is a given as ‖u‖ =

√
〈u, u〉 ∀ u ∈

C. We note that as a consequence of the Cauchy-Schwartz
inequality, the inner product is continuous and its associ-
ated norm satisfies the parallelogram law given as

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

With respect to the norm above, a sequence (xn)∞
n=1 ⊂ C is

convergent to a point x ∈ C if and only if

〈xn − x, xn − x〉1
2 := ‖xn − x‖ −→ 0 as n −→ ∞.
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Similarly, a sequence (xn)∞
n=1 ∈ C is Cauchy if and only if

〈xn − xm, xn − xm〉
1
2 := ‖xn − xm‖ −→ 0, as n, m −→ ∞.

Consequently, an inner product space is called complete if
every Cauchy sequence in C converges to a point of C. A
complete inner product space is called a Hilbert Space. We
will denote in the sequelH for a Hilbert space.

Theorem 1 (Best Approximant Theorem:). Let A be a closed
and convex subset of a Hilbert space H. Then ∀ x ∈ H, there
exists a unique y∗ ∈ A such that ‖x− y∗‖ = infy∈A ‖x− y‖.

Orthogonal Compliments Let A be a subset of a Hilbert
space. Then the orthogonal complement of A denoted by
A⊥ is the set

A⊥ = {y ∈ H : 〈x, y〉 = 0, ∀ x ∈ A}.

It is trivial to check that A⊥ is a closed linear subspace ofH.

Theorem 2 (Orthogonal Decompostion Theorem:). Let A be
a closed linear subspace of a Hilbert space H. Then ∀ x ∈ H,
is written uniquely in the form x = y + z, where y ∈ A and
z ∈ A⊥. The vector y is the best approximant of x in A.

2.3. REVIEW OF MATRICES

Definition. Given A ∈ Mat(C, m, n), the Transpose of A de-
noted by AT ∈ Mat(C, n, m) is the matrix whose elements are
given by

(AT)ij = Aji, ∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m.
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Definition. Let A ∈ Mat(C, m, n). The adjoint of A is the
unique matrix A∗ ∈ Mat(C, n, m) such that

〈u, Av〉 = 〈A∗u, v〉

or equivalently, ∀u ∈ Cm, v ∈ Cn and (A∗ij) = Aji

The following properties are satisfied by the adjoint:

• A∗∗ = A

• (α1A1 + A2)∗ = ᾱ1A∗1 + A∗2

• (AB)∗ = B∗A∗

Definition. A square matrix A ∈ Mat(C, n) is self-Adjoint if
A = A∗.

All self-adjoint matrices are diagonalizable, have real eigen-
value since for any nonzero eigenvector u associated with
the eigenvalue λ, we have

λ =λ〈u, u〉 = 〈u, λu〉 = 〈u, Au〉 = 〈Au, u〉
= 〈λu, u〉 = λ〈u, u〉 = λ.

Definition. A square matrix A ∈ Mat(C, n) is normal if

AA∗ = A∗A

.

Definition. A square matrix A ∈ Mat(C, n) is Unitary or Or-
thogonal if AA∗ = A∗A = I.

Definition. A ∈ Mat(C, n) is a projector if A2 = A and or-
thogonal projector if it is self-adjoint projector i.e. A2 = A and
A∗ = A
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Definition. Let A ∈ Mat(C, n), the spectrum of A denoted by
σ(A) is the set of all eigenvalues of A. i.e λ ∈ C, such that (A−
λI) is singular.

The characteristics polynomial of A defined as PA = det(A−
λI).This is a polynomial of degree n. In particular σ(A) is
precisely the set of the roots of PA. For λ ∈ σ(A) an eigen-
value, it is trivial to see that the set of eigenvector ∪{0} is
a linear subspace. Multiplicity of roots of PA is called alge-
braic multiplicity and the dimension of subspace generated
by the associated eigenvectors is called geometric multiplic-
ity of the eigenvalues of A. We note that the algebraic multi-
plicity is greater than or equal to the geometric multiplicity.

Proposition 2.1. Let A ∈ Mat(C, n) be arbitrary and let B ∈
Mat(C, n) be invertible. Then, there exists M > 0 such that,
A + µB is invertible for all µ ∈ C with 0 < |µ| < M.

Definition. Let A, B ∈ Mat(C, n). Then A is similar to B if,
there exists P ∈ Mat(C, n) invertible, such that A = PBP−1.

Proposition 2.2. Let A, B ∈ Mat(C, n) be similiar. Then

(i) PA = PB ;
(ii) σ(A) = σ(B) as well as the geometric multiplicities of the

eigenvalues ;
(iii) PAB = PBA ;
(iv) σ(AB) = σ(BA).

Proof. (i) Since A, B are similiar, Then B = P−1AP. So
PA = det(A − λI) = det[P−1(A − λI)P] = det(B −
λI) = PB
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(ii) Let (λ, v) is an eigenpair of A. Then v solves Av =
PBP−1v = λv. Premultiplying each side by P−1, it fol-
lows that u := P−1v solves Bu = λu.
Moreover, because P−1 is non-singular, the equation u :=
P−1v has the trivial solution v = 0 if u = 0. Hence
u 6= 0, implies that (λ, u) is an eigenpair of B. Also by
a similar argument if (λ, u) is an eigenpair of B, then
(λ, Pu) is an eigenpair of A

(iii) If A, B or both are non-singular, Then AB and BA are
similar since AB = A(BA)A−1 and BA = B(AB)B−1.
Therefore from (i), it follows that PAB = PBA.
Suppose neither A nor B is invertible. Assume with-
out loss of generality that A is non singular, then by
Proposition 2.1, there exists M > 0, such that A + µI is
invertible, for 0 < |µ| < M. Therefore for such µ and
by (ii) we have P(A+µI)B = PB(A+µI). The corresponding
coefficient of the polynomials are in µ and remains con-
tinuous. Hence equality is maintained as µ → 0. This
eventually results to PAB = PBA

Proposition 2.3. Let A ∈ Mat(C, m, n) and B ∈ Mat(C, n, m).
Since AB ∈ Mat(C, m) and BA ∈ Mat(C, n), we have that
xnPAB = xmPBA. Therefore σ(AB)\{0} = σ(BA)\{0}.
Definition. A matrix A ∈ Mat(Cn) is diagonalizable if it is
similiar to a diagonal matrix D such that D = P−1AP.

A necessary and sufficient condition for A ∈ Mat(C, m, n)
to be diagonalizable is that A has n-linearly independent
eigenvectors. That is it has n- dimensional subspace gen-
erated by its eigenvectors.
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The spectral theorem is a fundamental result of functional
analysis and its versions for bounded and unbounded self -
adjoint operators in Hilbert spaces play crucial roles in prob-
ability and Quantum Physics. Its simplest version for square
matrices is given below:

Theorem 3. Let A ∈ Mat(C, n). Then, A is diagonalizable if
and only if, there exists r : 1 ≤ r ≤ n, scalars (αa)r

a=1 ∈ C and
non-zero distinct projectors (Ea)r

a=1 ∈ A ∈ Mat(C, n) such that

A =
r

∑
a=1

αaEa (3)

and

I =
r

∑
a=1

Ea. (4)

with EiEj = δijEj. (3) is called the spectral decomposition of the
matrix A, αa are distinct eigenvalues of A, Ea are called spectral
projectors of A.

We shall subsequently see that Ea can be expressed in terms of
polynomials.

Proof. =⇒) Suppose A is diagonalizable, then there exists
P ∈ Mat(C, n) such that P−1AP = D = {λ1, ..., λn}, where
(λi)n

i are the eigenvalues of A. Let (αi)r
i : 1 ≤ r ≤ n, be the

set of distinct eigenvalues. Then

D =
r

∑
a−1

αaKa.

where Ka ∈ Mat(C, n) is a diagonal matrix with 0 or 1 as
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diagonal elements so that

(Ka)ij =


1, i = j and (D)ii = αa

0, i = j and (D)ii 6= αa

0, i 6= j.

We have that
r

∑
a=1

Ka = I (5)

and
KaKb = δabKa. (6)

Since A = PDP−1, we have A = ∑r
a=1 αaEa, Ea = PKaP−1.

Then from (3), we have that I = ∑r
a=1 Ea and from (4), we

have that

EiEj = PKiP−1PKjP1 = δijPKiP−1 = δijEi.

⇐=) Suppose that A has a representation like (3) and E′as
maintains the properties mentioned, then for any vector x
and k ∈ {1, ..r} we have by (3) that

AEKx =
r

∑
j=1

αjEjEkx = αkEkx.

Hence Ekx is either zero or an eigenvalue of A. Therefore the
subspace S generated by all the vectors {Ekx, x ∈ Cn, k =
1, ..., r} is a subspace of the space W generated by all the
eigenvalues of A. Also from (4), we have that x = ∑r

i=1 Ekx
and so Cn = S ⊂ W. Hence W = Cn and by since W is
n-dimensional, A is diagonalizable.

Theorem 4. Let A ∈ Mat(C, n) be diagonalizable. Then for any
polynomial p, p(A) = ∑r

a=1 p(αa)Ea.
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Proof. Since A is diagonalizable, the A = ∑r
a=1 αaEa. We see

that

A2 =
r

∑
a,b=1

αaαbEaEb =
r

∑
a,b=1

αaαbδa,bEb =
r

∑
a=1

(αa)
2Ea.

With the convention A0 = I and by induction we have Am =

∑r
a=1(αa)mEa, m ∈ N. One sees that for A non- singular and

diagonalizable, A−1 = ∑r
a=1

(
1
αa

)
Ea since αi 6= 0, for all i.

Proposition 2.4. Let A ∈ Mat(C, n) be non- zero and diagonal-
izable. So we have that A = ∑r

a=1 αaEa. Given the polynomial
pj, j = 1..., r defined as

pj(x) =
r

∏
i=1,i 6=j

(
x− αi

αj − αi

)
. (7)

Then

Ej = pj(A) =
r

∏
k=1,k 6=j

(
1

αj − αk

) r

∏
i=1,i 6=j

(A− αi I) , (8)

for all j = 1, · · · , r.

Proof. By definition of pj, we have that pj(αk) = δj,k. There-
fore by theorem 4, we have that pj(A) = ∑r

k=1 pj(αk)Ek =

∑r
k=1 δj,kEk = Ej

Proposition 2.5. The Spetral decomposition of a diagonalizable
matrix A ∈ Mat(C, n) is unique.[8].

Proof. Since A is diagonalizable, A = ∑r
k=1 αkEk. Suppose

A = ∑s
k=1 βkFk be another spectral decomposition of A with
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βk’s distinct and F′ks non-vanishing and satsifying the prop-
erties of the projectors. Then for a vector x 6= 0, we have
that x = ∑r

k=1 βkFkx. This implies that, there exists some
non-vanishing vector say Fk0x such that Fk0x 6= 0. Then ap-
plying A, we have that AFk0x = ∑r

k=1 βkFkFk0x = βk0Fk0x.
This shows that βk0 is an eigenvalue of A and {β1, ..., βs} ⊂
{α1, ..., αr} and so s ≤ r. Let us order both sets such that
βk = αk , ∀ 1 ≤ k ≤ s. Then

A =
r

∑
k=1

αkEk =
s

∑
k=1

αkFk. (9)

By considering the polynomial, pj, pj(αk) = δj,k, we have
from (9) that for all 1 ≤ j ≤ s, pj(A) = ∑r

k=1 p(αk)Ek =

∑s
k=1 p(αk)Fk. Consequently, Ej = Fj .

The equality follows because Ej and Fj satisfy the same al-
gebraic relations. Since I = ∑r

a=1 Ek = ∑s
a=1 Ek and Ej = Fj ,

for all 1 ≤ j ≤ s, so one has that ∑r
a=s+1 Ek = 0

Hence, multiplying by El with s + 1 ≤ l ≤ r, it follows that
El = 0, s + 1 ≤ l ≤ r. This is only if r = s. Hence E′ks are
non-vanishing. This completes the proof.
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Chapter Three

3. Generalized inverse and the Moore-Penrose
Pseudoinverse

3.1. Introduction

Let A ∈ Mat(C, m, n). we are interested in finding a solution
to the problem Ax = b, x ∈ Cn, b ∈ Cm.

If A is square and invertible, Then x = A−1b. If otherwise,
then either b is not in the range of A in which case we have
no solution or we have infinitely many solutions. A solution
of a linear system of equations in this case is found in gen-
eral from the notion of generalized inverse of a matrix. Gen-
eralized inverse is of great importance in solving linearly de-
pendent and unbalanced equation with lots of applications
to square, non- square, and singular matrices.

Definition. Let A ∈ Mat(C, m, n). Then B ∈ Mat(C, n, m) is a
generalized inverse of A if

i ABA = A
ii BAB = B

If A ∈ Mat(C, n) [1] non-singular, then B = A−1 satisfies
trivially the definition. If A ∈ Mat(C, m, n) is 1 − 1 (has
linearly independent columns i.e rank n ≤ m) then (A∗A)−1

exists and A−1
l = (A∗A)−1A∗, we find that A−1

l A = I. A−1
l

is called the left inverse of A. similarly, if A is surjective (has
linearly independent rows, m ≤ n), then (AA∗)−1 exists and
A−1

r = A∗(AA∗)−1, we find that AA−1
l = I. A−1

r is called
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the right inverse of A. It is obvious to see that whenever
such inverse exists, a solution of the equation Ax = b exists.
A very interesting question that arises is: Can we present a
solution x = Bb of the consistent equation Ax = b in the
absence of these inverse? if yes, then we call B a generalized
inverse. We note there that every matrix A ∈ Mat(C, m, n)
has at least one generalized inverse B. Thus in general, from
[11] B is not unique and is only unique if more conditions
are imposed on it.

Theorem 5. Let A ∈ Mat(C, m, n) and B a generalized inverse
of A. Then, for fixed b ∈ Cm,

1. Ax = b has a solution if and only if ABb = b.
2. x is a solution of Ax = b if and only if x = Bb + (I −

BA)z, z ∈ Cn. A particular solution of ax = b, for b ∈ R(A)
is obtained from x = Bb.

3.2. Algorithm for the Generalized inverse of solution of Ax=b

Given Ax = b the following outlines a procedure to find a
generalized inverse of A.

1. Choose an invertible submatrix G of dimension r.
2. Find (G−1)T.
3. Replace the element of the submatrix G in the original

matrix A by the elements of (G−1)T.
4. Replace all other elements by zero to get a new matrix

A1.
5. then B = (A1)T is a generalised inverse.
6. Use x = Bb + (I − BA)z to calculate a solution for Ax =

b
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Example. Consider A =

1 3 2
5 2 6
2 6 4

 and let b =
(
1 5 2

)
T.

If we take two sub-matrices G1andG2 as follows: Let G1 =

(
1 3
5 2

)
and G2 =

(
2 6
6 4

)
. it follows that (G−1

1 )T =
1

13

(
−2 5
3 −1

)
and (G−1

2 )T =
1

14

(
−2 3
3 −1

)
.The corresponding generalized in-

verses are B1 =
1

13

−2 3 0
5 −1 0
0 0 0

 and B2 =
1

14

0 0 0
0 −2 3
0 3 1


The example above validates that the generalized inverse of
a matrix is not necessarily unique. It depends on the num-
ber of non-singular sub-matrices obtained. consequently it
is obvious to state that the solution is also not unique.

3.3. Moore-Penrose Pseudoinverse

Definition. Given A ∈ Mat(C, m, n), then A† ∈ Mat(C, n, m)
is called a Moore-Penrose inverse of A if and only if

I AA†A = A
II A†AA† = A†.

III (A†A)∗ = A†A (i.e. A†A is self-adjoint)
IV (AA†)∗ = AA† (i.e.AA† self-adjoint)

Remark. A striking difference between the generalized in-
verse and the Moore-Penrose inverse is that the Penrose in-
verse is always unique.
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It is trivial to see that if A ∈ Mat(C, n) is invertible then
A† = A−1 satisfies all defining properties of Moore-Pernrose
inverse. It is also evident from the definition that for A ∈
Mat(C, m, n) such that Aij = 0ij, the A† = 0ji. A ∈ Mat(C, 1, 1),
i.e A = (z) ∈ C Then

(z)† =

{
0, z = 0
z−1, z 6= 0

A ∈ Mat(C, m, 1), a non-zero column vector. Then A† =
1
‖A‖2 A∗. In general, if A ∈ Mat(C, m, n) and is left or right

invertible, the A† = (A∗A)−1A∗ or A† = A∗(AA∗)−1.

Example. Let A =

(
2 0 i
0 i 1

)
. It is clear that A∗ =

 2 0
0 −i
−i 1


and one sees that AA∗ is invertible since detAA∗ = 9 6= 0. There-

fore A† =
1
9

 4 −2i
1 −5i
−i 4

 is the Moore-Penrose Pseudoinverse of

A. This is indeed true since [I, II, III, IV] can be easily verified.

3.4. Properties of Moore-Penrose Pseudoinverse

The following are obvious properties of the Moore-Penrose
Pseudoinverse:

• A†† = A

• (A†)∗ = (A∗)†

• (A†) = (A)
†

18



• (A†)∗ = (A∗)†

• (zA)† = z−1A†

At this juncture, we clearly state that unlike the usual in-
verse, the Moore-Penrose pseudoinverse is not commuta-
tive. Also AA† and A†A is not necessarily the identity. In
the same vain the reverse law, (AB)−1 = B−1A−1, for A ∈
Mat(C, m, n) and B ∈ Mat(C, n, p) for m = n = p, which
is valid for the usual matrix is not necessarily true for the
Moore-penrose Pseudoinverse.

Proposition 3.1. Let A ∈ Mat(C, m, n) then
I a) A = AA∗(A†)∗ = (A†)∗A∗A

b) A∗ = A∗A(A†) = (A†)AA∗
c) A† = A†(A†)∗A∗ = A∗(A†)∗A†

II (AA∗)† = (A∗)†A†

Proof. I. Recall that A† = A†AA† = A†(AA†)∗ = A†(A†)∗A∗.
Similarly A† = A†AA† = (A†A)∗A† = A∗(A†)∗A† and
so equality is established as obtained in Ia). The same
argument is valid in proving for A since A = AA†A
thus we have Ib). Replacing A by A∗ we have Ic).

II. Let C = (A∗)†A†. We show that C satisfies the defini-
tion for the the Moore-penrose inverse of AA∗. We have

i. for the first one

AA∗ = A(A∗) = AA∗(A†)∗A∗

= AA∗(A†)∗A†AA∗ = AA∗CAA∗.

ii. Also,

C = (A∗)†A† = (A∗)†A†(A†)∗A∗

= (A†)∗A†AA∗(A†)∗A† = C(AA∗)C.
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iii. AA∗C = (AA∗)(A∗)†A† = (AA∗(A∗)†)A† = AA†.
iv. Lastly,

C(AA∗) = (A∗)†A†(AA∗) = (A∗)†(A†AA∗)
= (A∗)†A†.

Analogously Replacing A by A∗, we have (A∗A)† =
(A)†(A∗)†

3.5. Uniqueness

Theorem 6 (Uniqueness Theorem). Let A ∈ Mat(C, m, n).
Then the Moore-Penrose Pseudoinverse, A† ∈ Mat(C, n, m) is
unique.[2]

Proof. Assuming existence, we show the uniqueness of the
Moore-penrose pseudoinverse. Let A† ∈ Mat(C, n, m) be
the Moore-Penrose Pseudoinverse. Suppose that there exists
B ∈ Mat(C, n, m), another Moore-Penrose Pseudoinverse.
We show that A† = B.

Define M1 = AB − AA† = A(B − A†). Clearly M1 is self-
adjoint. It follows that M2

1 = (AB − AA†)A(B − A†) =
(ABA− AA†A)(B− A†) = (A− A)(B− A†) = 0. This im-
plies that M1 = 0, since for x ∈ Cn, ‖M1x‖2 = 〈M1x, M1x〉 =
〈x, (M1)2x〉 = 0. Hence AB = AA†.

Similarly, let M2 = BA− A†A. Then BA = A†A.
Therefore A† = A†(AA†) = (A†A)B = BAB = B.
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3.6. Existence

We present two existence theorems for the Moore-penrose
Pseudoinverse. Our discussion will be based on the Single
Value Decompositon(SVD) and the next is a spectral decom-
position approach.

3.7. Single Value Decomposition.

The singular value decomposition (SVD) is a powerful tech-
nique in many matrix computations and analysis. Using the
SVD of a matrix in computations rather than the original
matrix has the advantage of being more robust to numerical
error. Additionally the SVD exposes the geometric struc-
ture of a matrix, an important aspect of many matrix calcu-
lations. A matrix can be described as a transformation from
one vector space to another. The components of the SVD
quantify the resulting change between the underlying ge-
ometry of those vector spaces.

A singular value decomposition of an m × n matrix A is
any factorization of the form A = UDV∗ where U is an
m × m orthogonal matrix, V is an n × n orthogonal matrix
and D is an m × n diagonal matrix with sij = 0, if i 6= j
and sii = si, si > 0, [5] The columns of U are orthonormal
eigenvectors of AA∗ , the columns of V are orthonormal
eigenvectors of A∗A, and D is a diagonal matrix contain-
ing square roots of the eigenvalues of the square matrices
A∗A or AA∗ in descending order, which are the same val-
ues, and the number of singular values is equal to the rank
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of A. . The quantities si are called the singular values of A
and the columns of U and V are called the left and right sin-
gular vectors respectively.

The SVD can be rewritten as a summation,

A =
r

∑
i=1

sixiy∗i .

Where the columns of U are {x1, ...xm} and V are {y1, ...yn}
and orthonormal.

Theorem 7. Let A ∈ Mat(C, m, n) and has rank r and A =
UDV∗. Define X = VD†U∗ such that D† = diag{ 1

si
, ..., 1

sr
, 0, ..., 0}.

Then X = A†.

Proof. We observe that from [12] X can also be written as

X =
r

∑
i=1

s−1
i yix∗i .

Our job is to prove that X = A† satisfies the defining prop-
erties of the Moore-Penrose Pseudoinverse.

i

AXA =
r

∑
a=1

saxay∗i
r

∑
b=1

s−1
b x∗byb

r

∑
c=1

scxcy∗c

=
r

∑
a=1

r

∑
b=1

r

∑
c=1

sasc

sb
xa(ya.yb)(xb.xc)y∗c

=
r

∑
i=1

sixiy∗i = A
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ii

XAX =
r

∑
a=1

s−1
a x∗aya

r

∑
b=1

sbxby∗b
r

∑
a=1

s−1
c x∗c yc

=
r

∑
a=1

r

∑
b=1

r

∑
c=1

sb

sasc
x∗a(ya.y∗b)(xb.x∗c )yc

=
r

∑
i=1

six∗i yi = X

iii

AX =
r

∑
a=1

saxay∗i
r

∑
b=1

s−1
b x∗byb

=
r

∑
a=1

r

∑
b=1

sa

sb
xa(y∗a .yb)x∗b

=
r

∑
i=1

xix∗i = I

XA is also self-adjoint. Hence having satisfied all the condi-
tions, we conclude that X = A†.

Example. Let A =

(
3 1 1
−1 3 1

)
. Find the Moore-penrose inverse

using SVD.
Solution.
We are interested in finding U,V orthogonal matrices such that
A = UDV∗ after which the may find A†.

For U, We consider the matrix AA∗ =
(

11 1
1 11

)
. We have the

eigenvalues are λ = 12, and λ = 10 with eigenvectors v1 = [1, 1]
and v2 = [1,−1] respectively. Arranging in desending order
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of the singular values we have the matrix P1 =

(
1 1
1 −1

)
. So

by Gram-schmidt Orthonormalization process to convert to or-
thonormal matrix we that

u1 =
v1

‖v1‖
(10)

wn = vn −
n−1

∑
k=1
〈vn, uk〉uk, k ≥ 2 (11)

un =
wn

‖wn‖
(12)

So we have u1 =

[
1√
2

,
1√
2

]
and u2 =

[
1√
2

,
−1√

2

]
.

Therefore

U =


1√
2

1√
2

1√
2
−1√

2

 .

Now for V, consider A∗A =

10 0 2
0 2 4
2 4 2

 With eigenvalues λ =

12, λ = 10 and λ = 0 with eigenvectors v1 = [1, 2, 1] and
v2 = [2,−1, 0] and v3 = [1, 2,−5] respectively. Arranging in
desending order of the singular values we have the matrix

P2 =

1 2 1
2 −1 2
1 0 −5

 .

Also by Gram-schmidt Orthonormalization process, we that u1 =[
1√
6

,
2√
6

,
2√
6

]
, u2 =

[
2√
5

,
−1√

5
, 0
]

and u3 =

[
1√
30

,
2√
30

,
−5√

30

]
.
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Therefore V =


1√
6

2√
5

1√
30

2√
6
−1√

5
2√
30

1√
6

0
−5√

30


So by SVD, we have that

A = UDV∗ =


1√
2

1√
2

1√
2
−1√

2


(√

12 0 0
0
√

10 0

)


1√
6

2√
5

1√
30

2√
6
−1√

5
2√
30

1√
6

0
−5√

30



∗

.

Consequently, we have that

A† = VD†U∗ =


1√
6

2√
5

1√
30

2√
6
−1√

5
2√
30

1√
6

0
−5√

30




1√
12

0

0
1√
10

0 0




1√
2

1√
2

1√
2
−1√

2

 =

17
60
−7
60

1
15

4
15

1
12

1
12

.

It is easily verifiable that A† satisfies all defining properties of the
Moore-Penrose inverse.

3.8. Tikhonov’s Regularization Process

We have earlier seen that if A−1, A−1
r , A−1

l exists, then A† =
A−1, A† = A−1

r , and A† = A−1
l respectively.

Suppose (AA∗)−1 and (A∗A)−1 do not exist, Then an alter-
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native way to obtain A† is the provisional replcament of the
singular matrices AA∗ and A∗A by the non-singular ones
(AA∗+µI) and (A∗A+µI), (Regularization procedure) with
µ 6= 0 and |µ| small enough [2]. This regularization process
is guranteed by proposition (2.1).
Thus given the problem Ax = b and applying A∗ to get
A∗Ax = A∗b. We Consider the regularization equation and
rather seek a solution x̌ such that (A∗A + µI)x̌ = A∗b. we
ask if the lim as µ → 0 exists. Consequently, the following
ensues:

Lemma 3.1. Let A ∈ Mat(C, m, n) be arbitrary and µ ∈ C

such that AA∗ + µIm and A∗A + µIn are non-singular. Then
A∗(AA∗ + µIm)−1 = (A∗A + µIn)−1A∗

Proof. Let B := A∗(AA∗+µIm)−1 and C := (A∗A+µIn)−1A∗.
Then applying A∗A to B, we have

A∗AB = A∗AA∗(AA∗ + µIm)
−1

= A∗[AA∗](AA∗ + µIm)
−1

= A∗[AA∗ + µIm − µIm](AA∗ + µIm)
−1

= A∗[Im − µ(AA∗ + µIm)
−1]

= A∗ − µB.

So we have B(A∗A + µIn) = A∗. This implies that B =
(A∗A + µIn)−1A∗ = C

Lemma 3.2. Let A ∈ Mat(C, m, n). Then

lim
µ→0

A∗(AA∗ + µIm)
−1 = lim

µ→0
(A∗A + µIn)

−1A∗

Proof. We note that A is not identically zero matrix else A∗A
and AA∗ is zero. Suppose A∗A and AA∗ are non-zero Ma-
trices.
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Since AA∗ is self-adjoint , then it is diagonalizable. Let α1, ..., αr

be distinct eigenvalues of AA∗, Then AA∗ = ∑r
k=1 αkEk, and

satisfying I = ∑r
a=1 Ea, EiEj = δijEi and E∗k = Ek.

So we have (AA∗+µIm) = ∑r
k=1(αk +µ)Ek Since µ /∈ {α1, ..., αr},

by theorem (4) we have

(AA∗ + µIm)−1 = ∑r
k=1

1
(αk + µ)

(αk + µ)Ek and so applying

A∗ from the left we have
A∗(AA∗ + µIm)−1 = ∑r

k=1
1

(αk + µ)
A∗Ek now consider two

cases:

Case I: 0 /∈ σ(AA∗).

Then lim
µ→0

A∗(AA∗ + µIm)−1 = ∑r
k=1

1
αk

A∗Ek.

Case II: 0 ∈ σ(AA∗).
Suppose say α1 = 0. then E1 projects on to the kernel of
AA∗ and so for x ∈ Ker(AA∗), A∗x = 0 so that A∗E1 = 0

Therefore A∗(AA∗ + µIm)−1 = ∑r
k=2

1
(αk + µ)

A∗Ek and so

lim
µ→0

A∗(AA∗ + µIm)−1 = ∑r
k=2

1
αk

A∗Ek. This provides the ex-

istence of the limit and by Lemma (3.1), we have that

lim
µ→0

(A∗A + µIn)
−1A∗, (13)

exists and are equal.

The main consequence of the previous discussion is the next
theorem which contains a general proof for the existence of
the Moore-penrose Pseudoinverse.
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Theorem 8 (Tikhonov’s Regularization). Let A ∈ Mat(C, m, n).

A† = lim
µ→0

A∗(AA∗ + µIm)
−1 (14)

A† = lim
µ→0

(A∗A + µIn)
−1A∗ (15)

Proof. Sequel to the lemmas above, we consider these two
cases again
Case I: 0 /∈ σ(AA∗).

Then lim
µ→0

A∗(AA∗ + µIm)−1 = ∑r
k=1

1
αk

A∗Ek := B.

We show that B satisfies the defining conditions of Moore-
Penrose Pseudoinverse of A. Now

AB =
r

∑
k=1

1
αk

AA∗Ek

=
r

∑
k=1

1
αk

(
r

∑
i=1

αiEi

)
Ek

=
r

∑
k=1

r

∑
i=1

1
αk

αiδkiEk

=
r

∑
k=1

Ek = I

since I is self-adjoint, then AB is self-adjoint.

BA =
r

∑
k=1

1
αk

A∗EkA. (16)

We observe that (A∗EkA)∗ = A∗EkA since ∀ k, E∗k = Ek.
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From AB = I, we have that ABA = A

BAB =

(
r

∑
k=1

1
αk

A∗EkA

)(
r

∑
i=1

1
αi

A∗Ei

)

=
r

∑
k=1

r

∑
i=1

1
αkαi

A∗EkAA∗Ei.

But recall AA∗Ei = αiEi, so that

BAB =
r

∑
k=1

r

∑
i=1

1
αk

A∗EkEi

=

(
r

∑
k=1

1
αk

A∗Ek

)(
r

∑
i=1

Ei

)
= B

CASE II: 0 ∈ σ(AA∗).

Then lim
µ→0

A∗(AA∗ + µIm)−1 = ∑r
k=2

1
αk

A∗Ek := B.

AB =
r

∑
k=2

1
αk

AA∗Ek =
r

∑
k=2

1
αk

αkEk = I − E1. (17)

which is self-adjoint.

BA =
r

∑
k=2

1
αk

AA∗EkA (18)

which is also self-adjoint.
From (17), we have that ABA = A− AE1.
But (AE1)∗ = A∗E1 = 0. Therefore AE1 = 0 and hence

29



ABA = A.

BAB =

(
r

∑
k=2

1
αk

A∗EkA

)(
r

∑
i=2

1
αi

A∗Ei

)

=
r

∑
k=2

r

∑
i=2

1
αkαi

A∗EkAA∗Ei

=
r

∑
k=2

r

∑
i=2

1
αk

A∗EkEi

=

(
r

∑
k=2

1
αk

A∗Ek

)
(Im − E1)

= B−
(

r

∑
k=2

1
αk

A∗EkE1

)
= B,

since for every k 6= 1 we have EkE1 = 0.

Theorem 9. Let A ∈ Mat(C, m, n) be non-zero matrix and let
AA∗ = ∑r

k=1 αkEk be the spectral representation of AA∗ where
{α1, ..., αr} ⊂ R is the set of distinct eigenvalues of AA∗ and Ek

are the corresponding self-adjoint spectral projections. Then

A† =
r

∑
a=1,αa 6=0

1
αa

A∗Ea (19)

Analogously if A∗A = ∑s
b=1 βbFb and {β1, ..., βs} ⊂ R is the

set of distinct eigenvalues of A∗A and Fb the corresponding self-
adjoint spectral projections. Then

A† =
s

∑
b=1,βb 6=0

1
αa

FaA∗ (20)
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consequently for A non zero, we have

A† =
r

∑
a=1,αa 6=0

1
αa

(
r

∏
k=1,k 6=a

(αa − αk)
−1

)
A∗
[

r

∏
k=1,k 6=a

(AA∗ − αk Im)

]
(21)

A† =
s

∑
b=1,βb 6=0

1
βb

(
s

∏
l=1,l 6=b

(βb − βl)
−1

)[
s

∏
l=1,l 6=b

(A∗A− βl In)

]
A∗

(22)

Expressions (21) or (22) provide a general algorithm for the
computation of the Moore-Penrose pseudoinverse for any
non-zero matrix A. Its implementation requires only the de-
termination of the eigenvalues of AA∗ or of A∗A and the
computation of polynomials on AA∗ or A∗A.
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Chapter Four

4. Applications of the Moore-Penrose Pseudoinverse

4.1. Application to least squares problem

In general, there is no solution to overdetermined systems.
The Moore-Penrose Pseudoinverse solves the problem in least
square sense. This is rather interesting because it finds the
best approximant to the possible solution of the equation
Ax = b.
The least square solution of a sysem is a vector x† such that

‖Ax† − b‖ ≤ ‖Ax− b‖∀x ∈ Cn

Theorem 10. Every linear system Ax = b for A ∈ Mat(C, m, n)
has a unique least square solution of smallest norm.

Proof. Let b be a point ∈ Cm and U ⊆ Cm be the image of
subspace of A. We claim that x minimizes ‖Ax− b‖2 if and
only Ax is the orthogonal projection p of b onto U i.e pb =
b− Ax being orthogonal to U. Since U⊥ is orthogonal to U,
the space b + U⊥ is a unique point p. Thus ∀y ∈ U, py and
bp are orthogonal. So that

‖by‖2 = ‖bp‖2 + ‖py‖2

Thus p is the unique point in U that minimizes the distance
from b to any point in U. To show uniqueness of x for which
‖Ax− b‖2 is minimized, we use the fact that Cn = KerA

⊕
(KerA)⊥.

Then x = u+ v, u ∈ KerA, v ∈ (KerA)⊥. So for u ∈ KerA, Au =
0, and Ax = p if and only Av = p which show that the so-
lution of Ax = p for which x has a minimum norm is in
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(kerA)⊥. Since A|(KerA)⊥ is injective, there exist a unique x of
minimum norm minimizing ‖Ax− b‖2.

Theorem 11. The least squares solution of smallest norm of the
linear system Ax = b is given by x† = A†b = VD†U∗b

Proof. Assume A is (rectangular) diagonal matrix D. Since x
minimizes ‖Dx − b‖∗2 if and only if Dx is the projection of
b onto the image subspace F of D. Then x† = D†b. But by
single value decomposition, A = UDV∗, U, V being orthog-
onal. Since U is isometry,

‖Ax− b‖ = ‖UDV∗x− b‖ = ‖DV∗x−U∗b‖.

if y = V∗x, then ‖x‖ = ‖y‖ since V is isometry and surjec-
tive. Therefore ‖Ax− b‖ is minimized if and only if ‖Dy−
U∗b‖ is minimized and we showed that the least square so-
lution is y† = D†U∗b and so x† = VD†U∗b = A†b which is
the optimal solution to the least sqaure problem.

This theorem allows us to affirm that A†b is either the unique
least square solution or is the least square solution of mini-
mum norm.

Example. Given a problem modelled as

A =


2 1
1 1
4 1
3 1


(

x
y

)
=


6
1
4
3

 .

As earlier stated, the solution is given by the Moore-penrose . we
compute as follows:
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Since (A∗A)−1 exist, we have

A† = (A∗A)−1A∗ = 1
120

(
−2 −6 −6 −2
10 20 −10 0

)
.

Also, x0 = A†b = 1
120

(
−48
40

)
.

4.2. Application to Finance (Portfolio Selection)

Maximimizing profit with least risk is the objective of every
investor thus the construction of portfolios. Introduced by
Harry Markowitz in 1952, the portfolio selection problem is
really the process of delineating the most efficient portfolios
and then selecting the best portfolio from the set. This co-
variance matrix is used to calculate the portfolio weights.
When the number of stocks N is of the same order of magni-
tude as the number of returns per stock T, the total number
of parameters to estimate is of the same order as the total
size of the data set. When N is larger than T the covariance
matrix is always singular. In this case the problem is that
we need the inverse of the covariance matrix and it does not
exist. To get around to this problem we can use the gener-
alized inverse or Moore-Penrose inverse. Especially if we
replace the inverse of the sample covariance matrix by the
pseudo-inverse we can define the portfolio weights wi.
The problem of portfolio selection is, as defined by Markowitz
in [7]

min w
′
Σw (23)

subject to w′1 = 1 and w′µ = q, where 1 denotes a con-
formable vector of ones and q is the expected rate of return
that is required on the portfolio. Negative elements of w de-
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note short positions. The well-known solution is:

w =
1

AC− B2 [(C− qB)1 + (qA− B)µ] (24)

where A = 1′Σ−11, B = 1′Σ−1µ, C = µ′Σ−1µ.
This equation shows that optimal portfolio weights depend
on the inverse of the covariance matrix. This sometimes
causes difficulty if the covariance matrix estimator is not
invertible, close to singular or numerically ill-conditioned,
which means that inverting it amplifies estimation error tremen-
dously. One possible trick to get around this problem is to
use the Moore-Penrose inverse. Replacing the inverse of the
sample covariance matrix by the pseudo-inverse into equa-
tion (24) yields well-defined portfolio weights,
We shall make use of this property of the Moore-Penrose In-
verse to minimize the risk in portfolio selection. Since the
covariance matrix is self-adjoint (Σ = Σ∗), it is well known
that Σ† = Σ†∗. An interesting property of self adjoint matri-
ces, is that their Moore-Penrose inverse coincides with two
other types of generalized inverses, the Drazin inverse and
the Group inverse.
When the matrix Σ is singular, [8] then we propose Σ† as
a candidate for the minimizer, in order to achieve the opti-
mal portfolio positions. The proof of Markowitz’s problem
is performed using the standard Langrage method. The con-
ditions for the Lagrangian give the equation:

Σw =
−1
2
(λ1µ + λ21) (25)

When the covariance matrix Σ is singular, then from the fact
that Moore-penrose gives the best approximant, then the
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minimum norm solution (i.e the optimal portfolio positions)
of this system of equations is

w′ =
−1
2
(
λ1Σ†µ + λ2Σ†1

)
(26)

The uniqueness of the solution is due to the uniqueness of
the Moore-Penrose Inverse. Using this vector, we have that
the optimum portfolio selection is given by

w =
1

AC− B2

[
(C− qB)Σ†1 + (qA− B)Σ†µ

]
(27)

where A = 1′Σ†1, B = 1′Σ†µ, C = µ′Σ†µ.
When the covariance matrix is close to singular, then, if we
replace Σ−1 with Σ†, the results coincide. In the case of a
close to singular, but ill-conditioned covariance matrix, (a
large condition number) the use of the Moore-Penrose In-
verse Σ† gives marginally better results than Σ−1.
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