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ABSTRACT 

In this research work, we study and analyse Hindmarsh-Rose neuronal system with time delay. 

Considering the fast sub-system of the model, all the possible non-negative equilibria are 

obtained and their local as well as global behaviour are studied. Choosing delay as a bifurcation 

parameter, the existence of the Hopf bifurcation of the system has been investigated. Moreover, 

we use the Descartes’ sign rule, a powerful tool for real polynomials with constant coefficients 

to determine the number of real zeroes of the polynomial function. Classifications of the 

imaginary roots of the characteristic equation were presented. Some numerical simulations are 

given to support the analytical results. Some interesting conclusions are obtained from the 

results obtained at the end of this work. 
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  1.  INTRODUCTION 

1.1 OVERVIEW OF BIOLOGICAL NEURON 

1.1.1 NEURON 

Neuron is an electrically excitable cell that receives, processes, and transmits information 

through electrical and chemical signals[1]. All living animals obtain information from their 

environment through sensory receptors, and this information is transformed to their brain, where it 

is processed into perceptions and commands. All these tasks are performed by a system of nerve 

cells, or neurons. Neurons have four morphologically defined regions: the cell body, dendrites, 

axon, and presynaptic terminals. A bipolar neuron receives signals from the dendritic system; these 

signals are integrated at a specific location in the cell body and then sent out by means of the axon 

to the presynaptic terminals. There are neurons which have more than one set of dendritic systems, 

or more than one axon, thus enabling them to perform simultaneously multiple tasks; they are called 

multipolar neurons[2]. The fundamental task of neurons is to receive, conduct, and transmit signals. 

Neurons carry signals from the sense organs inward to the central nervous system (CNS), which 

consists of the brain and spinal cord. In the CNS, the signals are analysed and interpreted by a 

system of neurons, which then produce a response. The response is sent, again by neurons, outward 

for action to muscle cells and glands. Neurons come in many shapes and sizes, but they all have 

some common features as shown schematically in Figure 1.1[3]. 
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Fig1.1: Schematic diagram of biological neuron [3]. 

1.1.2 MEMBRANE 

Neurons are surrounded by a membrane that distinguishes the cell's interior from the 

extracellular space. The quantity of ions on the inside of the membrane is distinct from that in 

the surrounding fluid. Concentration distinction produces an electrical potential that performs 

a significant role in neuronal dynamics and this is called the membrane potential. 

A neuron is at rest when no signal is sent. On the outside of the neuron, there are relatively 

more sodium ions (Na+) and more potassium salts (K+) on the inside. Compared to the outside, 

the neuron inside is negative. The difference in voltage between the neuron's inside and outside 

gives the resting potential, generally about-70 mV of which is the value [1]. 

1.1.3 MEMBRANE POTENTIAL 

An action (membrane) potential, also called spike or impulse occurs when a neuron sends 

information along an axon away from the cell body. The action potential is an explosion of 

electrical activity that is created by a depolarizing current. A stimulus makes the resting 

potential move up towards positive values. If the potential reaches a certain threshold (about -
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55 mV), the neuron fires an action potential, the amplitude of which is always the same. If the 

potential does not reach this threshold value, no action potential fires (see Fig.1.3). 

                      

       Fig.1.2: Action Potential[1]    

1.1.4 IONIC CHANNEL 

Ionic channels can be seen in the neuron membrane as micro cell pores. They allow the passage of mo

lecules through the membrane.They are the link between intra-cellular and extra-cellular space. 

There are many types of ionic channels. For example, we may cite those which are always 

open, those which are voltage-dependent or those which select the molecule allowed to cross 

the membrane. Sodium channels are so called because they are specific to sodium ions. They 

can be in an active state or in an inactive one. Potassium channels open and close with delay. 

Leak channel are always open. 

Action potentials are caused by an exchange of ions across the neuron membrane when a 

stimulus is applied, sodium channels open. Since there is much more sodium ions on the outside 

of the neuron and since the inside of the neuron is negative compared to the outside, sodium 

ions rush into the neuron. As sodium has a positive charge, the neuron becomes more positive, 

that is depolarized. Besides, potassium channels open with delay. When they do open, 

potassium goes out of the cell, reversing the depolarization. At that time, sodium channels start 

to close. This induces the repolarization. Indeed, it makes the membrane potential go back 
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towards the resting potential. Then, there is the hyperpolarization of the neuron, since the 

potential goes past the resting potential because the potassium channels close with delay. 

Gradually, the ion concentrations go back to resting levels and the cell returns to -70 mV (see 

Fig. 1.2). For more details, see [4]. 

1.1.5 BURSTING AND SPIKING  

A burst is a group of at least two action potentials that occur close together in time, separated 

from other action potentials by large time intervals which are called quiescent or silent phases. 

Spiking occurs when the membrane potential of a specific axon location rapidly rises and fall. 

Action potential in neurons are also known as ‘spike’ and the temporal sequence of action 

potentials generated by a neuron is called its ‘spike train’. (See Fig1.3) show the spiking and 

bursting behaviour of a neuron in a HR model. 

 

     

                  Fig 1.3: Hindmarsh-Rose neuron output for applied current, I = 2.5[1]. 
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1.2 HISTORICAL BACKGROUND OF NEURONAL MODEL 

1.2.1 Hodgkin-Huxley (HH) Model 

 Hodgkin and Huxley in (1952) were the first neurophysiologist to develop an empirical 

kinetic description of ionic mechanism in a neuron. This model is based on sodium, potassium 

and leakage ion flow[5].  

The model reads as follows 

{
 
 
 

 
 
 −𝐶

𝑑𝑉

𝑑𝑡
=  𝑚3ℎ𝑔`𝑁𝑎(𝑉 − 𝐸(𝑁𝑎)) + 𝑛

4𝑔`𝐾(𝑉 − 𝐸(𝐾)) + 𝑔`𝐿(𝑉 − 𝐸(𝐿)) − 𝐼,

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛,

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚,

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ.

 (1) 

In Eq. (1), 

C is the membrane capacity, V is the total membrane potential, 𝑚 is the 𝑁𝑎  activation variable, 

ℎ is the  𝑁𝑎 inactivation variable, 𝐸(𝑁𝑎) is the Na equilibrium potential. 

𝑔`𝑁𝑎  is the maximum sodium conductance, n is the K activation variable. 

𝐸(𝐾) is the 𝐾 equilibrium potential, 𝑔`𝐾 is the maximum potassium conductance. 

𝐸(𝐿) is the Leakage equilibrium potential, 𝑔`𝐿 is the maximum leakage conductance. 

I is the applied current (applied during experiment), 𝛼𝑖 is the gate inactivation rate. 

𝛽𝑖 is the gate activation rate. 

This model is not convenient for dynamical analysis of a neuron due it complexity[6]. 
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1.2.2 Hindmarsh-Rose (HR) Model 

The HR model of neural activity is aimed to study the spiking-bursting behaviour of 

the membrane potential observed in experiments made with a single neuron. The electric 

activity of neurons is of great concern. A typical example is given by the Rose–Hindmarsh 

model of action potential which has continuously attracted considerable attention in the past 

decades[6]. In 1982, Hindmarsh and Rose simplified the rigorous HH system into a system of 

two differential equations as follows: 

{

𝑑𝑥

𝑑𝑡
= 𝑦 + 𝑎𝑥2 − 𝑥3 ,

𝑑𝑦

𝑑𝑡
= 1 − 𝑑𝑥2 − 𝑦.

                                                                    (2) 

Two years later, Hindmarsh-Rose decided to add a third equation to their model, so that the 

dynamics of their model could be similar to the dynamics of a real biological neuron[1]. This 

model described the dynamical behaviour of membrane potential x in an axon of a neuron and 

has drawn much attention and was studied intensively in literature. Particular attention was 

devoted to the study of the transitions between different nonlinear dynamical behaviours[7]. 

The HR model describes one of the most typical configurations of slow manifolds needed for 

square wave bursting to occur naturally in various neuron models of the Hodgkin–Huxley 

type[8]. 

The model is given by three nonlinear differential equations as follows[6]. 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 − 𝑐𝑧 + 𝐼,

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦,

𝑑𝑧

𝑑𝑡
= 𝜀(𝑆(𝑥 − 𝜒) − 𝑧).

                                                                 (3) 
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where 

x is the membrane potential, y is the recovery /spiking variable. 

z is the bursting variable (adaption current), I is the applied current, 𝜀 is the parameter of 

control. All other parameter a, b, c, d, S and 𝜒 are real constant. 

Hence, the HR model can be called a slow-fast system that has the (x, y) fast sub-system and 

the single slow dynamical equation (z) with a small control parameter(0 < 𝜀 < 1). 

1.2.3 HR MODEL WITH TIME DELAY 

Mathematical models with time delays have been broadly applied in many scientific fields such 

as neurosciences, biology and mechanics. The effects of delay are popular in dynamical systems 

due to the finite propagation speed of signals or the finite time of processing. In the study of delayed 

systems, many delay factors appear in state variables and some of them appear in parameters. In recent 

years, delay feedback control is widely applied in mechanical and electronic facilities. Recently, it 

was found that delay factors are inherent in many biological systems due to finite propagation 

speed of signals and finite processing time in synapses[6,8]. The H-R model with time delay 

takes the form: 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥(𝑡 − 𝜏)2 − 𝑐𝑧 + 𝐼,                 

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦 ,

𝑑𝑧

𝑑𝑡
= 𝜀[𝑆(𝑥 − 𝜒) − 𝑧].

                                                (4) 

Where ᴦ is the time delay. When 𝜏 is zero and I ∈ [3.28, 3.405] Hindmarsh and Rose observed 

system (4) to be chaotic and for > 0 , it delineate so many dynamical behaviour. 
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2. LITERATURE REVIEW 

This chapter introduces the theoretical framework of the Hindmarsh-Rose model and the effect 

of time delay in the model as a bifurcation parameter. A neuron model being a nonlinear system 

is expected to demonstrate at least three fundamental cell types of activity such as quiescence, 

tonic spiking and bursting. The nonlinearity of a neuronal model may often lead to a bi- or 

multi-stability of co-existing cell’s activities, which are selected by initial conditions at the 

same parameter values[8]. 

2.1 BIFURCATION AND STABILITY 

Studies reveal that the dynamical behaviour of system changes quite dramatically with the 

variation of a system parameters. It is important to know that these changes are not only 

qualitative, such as change in the location of a fixed point, but also qualitative, such as change 

in the systems stability. System can change behaviour from regular (steady/periodic) to 

irregular (chaotic). It is this qualitative changes in the system dynamics that is the subject of 

interest in the theory of every dynamical system[7]. 

Therefore, qualitative changes in a system dynamics are called bifurcations and the parameter 

values at which the bifurcation occurs are called bifurcation points. 

HR Model has been studied in[7] by considering the slow-fast system showing the evolution 

of the solution trajectory between the stable slow manifold and the unstable slow manifold by 

applying the single perturbation. 

As it is expressed above, in dynamical systems, a bifurcation happens when a little smooth 

change made to the parameter esteems (the bifurcation parameters) of a system causes an 

unexpected "qualitative" or topological change in its behaviour. Generally, at a bifurcation 

point, the neighbourhood stability properties of equilibria, periodic circles or other invariant 

sets change[10]. It has two types: 
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Local bifurcations, which can be broken down altogether through changes in the local stability 

properties of equilibria, periodic circles or other invariant sets as parameters cross through 

critical thresholds.  

Global bifurcations, which frequently happen when larger invariant a set of the system "crash" 

with one another, or with equilibria of the system. They can't be distinguished absolutely by a 

stability analysis of the equilibria (fixed or equilibrium points)[10]. 

Time delays are inevitable in neural systems due to finite propagation speed of signals and time 

processing in synapses[7]. Studies portrait that time delay can significantly impact the 

behaviours of dynamical systems[11]. Signals transmission time delays in a network of non-

linear oscillators are known to be responsible for a variety of interesting dynamic behaviours 

including phase-flip transitions leading to synchrony or out of synchrony[12]. The dynamical 

transitions resulting from time delay in single HR system are investigated using the method of 

stability switch and geometric singular perturbation theory, which reveals that as the time delay 

varies, the structure of the slow manifold changes[7]. In both systems of coupled HR neurons, 

time-delay induced phase-flip bifurcations to synchrony was observed[11]. 

 

2.1.1 Hopf bifurcation 

 Hopf bifurcation occurs in systems of differential equations consisting of two or more 

equations. As it is well known, Hopf bifurcations occur when a conjugated complex pair of 

eigenvalues crosses the boundary of stability. In the time-continuous case, a limit cycle 

bifurcates. It has an angular frequency which is given by the imaginary part of the crossing 

pair. In the discrete case, the bifurcating orbit is generally quasi-periodic[10]. The Hopf 

bifurcation theorem is one of the most important results for delay differential equations because 

it is essentially the only method for rigorously establishing the existence of periodic solution. 
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The double Hopf bifurcations are induced if two pairs of imaginary roots appear simultaneously 

on the margins of the “death island” regions [9]. 

Analytic method is used to derive the condition under which Hopf bifurcation occurs, for 

instance by applying the formula of the Sturm sequence to consider the stability, when 

imaginary roots iω of the corresponding polynomial equation has high multiplicity. Hopf 

bifurcation curves are plotted in the (I -𝜏) plane by the numerical software DDE-Biftool. 

Double Hopf bifurcation points are obtained at the intersection points of Hopf bifurcation 

curves by changing values of time delay 𝜏, parameters S and I, and fixing values for other 

parameters[6].  

a =1.0, b=3.0, c=1.0, d=5.0, χ = -1.6, 𝜀=0.001. 
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 3. METHODOLOGY 

Equation (1) has been studied in[7]&[6], where the Hopf bifurcations and dynamical behaviour 

near the equilibrium point are focused. In this present research, stability and Hopf bifurcation 

of the fast subsystem of the HR model with time lag are to be investigated, and as the time 

delay varies, the mechanism of the transitions between bursting oscillation, relaxation 

oscillation, chaotic bursting, and other complex oscillations is to be illuminated, by using the 

methods of stability switch and geometric singular perturbation theory. 

3.1 DELAY INDUCED-DYNAMICAL TRANSITION 

We take 𝜏 as a bifurcation parameter in Eq. (3), and other parameters as: 

a= 1.0, b = 3.0, c = 1.0, d = 5.0, 𝜀 = 0.01, x = -1.6, and I = 3.25 

Therefore, Eq. (3) can be rewritten as  

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑥3 + 3𝑥(𝑡 − 𝜏)2 − 𝑧 + 3.25 = 𝐹(𝑥, 𝑦, 𝑧),

𝑑𝑦

𝑑𝑡
= 1 − 5𝑥2 − 𝑦  = 𝑃(𝑥, 𝑦),

𝑑𝑧

𝑑𝑡
= 0.01[4(𝑥 + 1.6) − 𝑧] = 𝑄(𝑥, 𝑧).

                          (5) 

 

Without the time delay, Eq. (5) undergoes bursting oscillation[12]. 

According to the geometric singular perturbation theory, the key step in understanding the 

time-delay effects on the dynamics is to determine how the time delay impacts on the structure 

of the slow manifold including the shape and stability of the slow manifold and the bifurcation 

points in the slow manifold[7]. 
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3.2 STABILITY AND HOPF BIIFURCATION ANALYSIS 

 We now consider the fast subsystem (x, y) of the model and by setting the third equation of 

the model to zero and take z as system parameter reducing the model to 2D, we have  

{

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑥3 + 3𝑥(𝑡 − 𝜏)2 − 𝑧 + 3.25,

𝑑𝑦

𝑑𝑡
= 1 − 5𝑥2 − 𝑦 .

                                           (6) 

3.2.1 Analyses of the model in the absence of the delay 

In this subsection, we find the possible equilibrium points to the system Eq. (6) without delay, 

and then, we analyse stability criterion of those points. 

Now, we rewrite Eq. (5) as  

{

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑥3 + 3𝑥2 − 𝑧 + 3.25,

𝑑𝑦

𝑑𝑡
= 1 − 5𝑥2 − 𝑦  .

                                                 (7) 

 

At equilibrium (𝑥0, 𝑦0), we have   

{

0 = 𝑦0 − 𝑥0
3 + 3𝑥0

2 − 𝑧0 + 3.25

0 = 1 − 5𝑥0
2 − 𝑦0

⟹ 𝑧 = −𝑥0
3 − 2𝑥0

2 + 4.25.

                                           (8) 

From Eq. (8), we have 

𝑧 = −𝑥0
3 − 2𝑥0

2 + 4.25.                                                           (9) 

Differentiating with respect to time, leads 

                 − 3𝑥0
2 − 4𝑥0 = 0. 
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Equivalently, we have 𝑥0(3𝑥0 + 4) = 0 . 

Finally, we have 𝑥0 = 0 𝑜𝑟 𝑥0 = −
4

3
. 

Which has two stationary points (0  𝑎𝑛𝑑 −
4

3
), the slow manifold M is an S-shape curve 

plotted with Maple as shown below: 

                            

To investigate the stability and bifurcation of the slow manifold M, consider local stability of 

Eq. (6) about the equilibrium point (𝑥0, 𝑦0) 𝜖M. We have two fixed points 

𝑃1 = (0,1) & 𝑃2 = (−
4

3
, −

71

9
). 

 

We linearize Eq. (6) about the possible equilibrium points (𝑥0, 𝑦0) 𝜖M.  
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1. Linearization about point 𝑷𝟏 (𝒕𝒓𝒊𝒗𝒊𝒂𝒍 𝒆𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎 𝒑𝒐𝒊𝒏𝒕): 

We now obtain the Jacobian J as 

𝐽 = |
𝐹𝑥 𝐹𝑦
𝑃𝑥 𝑃𝑦

| = |
−3𝑥0

2 + 6𝑥0 1
−10𝑥0 −1

|, 

where 𝐹𝑥 =
𝜕𝐹

𝜕𝑥
, 𝐹𝑦 =

𝜕𝐹 

𝜕𝑦
, 𝑃𝑥 =

𝜕𝑃

𝜕𝑥
 , 𝑃𝑦 =

𝜕𝑃

𝜕𝑦
  . 

Therefore, to find the characteristic polynomial, we now equate the Jacobian to zero and 

compute the determinant at point 𝑃1, we have: 

|
−𝜆 1
0 −1 − 𝜆

| = 0. 

That is  

 𝜆(1 + 𝜆) = 0 ⟺ 𝜆 = 0 𝑜𝑟 𝜆 = −1. 

Which implies instability of the system. Hence the system is not stable at 𝑷𝟏. 

2. Linearization about point 𝑷𝟐: 

In a similar vein, we have 

   |
−
40

3
− 𝜆 1

40/3 −1 − 𝜆
| = 0. 

That is, 

(1 + 𝜆) (
80

3
+ 𝜆) = 0 ⟺ 𝜆 = −1 𝑜𝑟 𝜆 = −

80

3
. 

We see that, 

 𝜆 < 0, ℎ𝑒𝑛𝑐𝑒, 𝑡ℎ𝑒 𝑓𝑎𝑠𝑡 𝑠𝑢𝑏 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠. 

Hence, the system is locally stable at 𝑷𝟐. 
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3.3 Analysis of the model in the presence of delay 

By linearization of Eq. (6), we have 

|
−𝜆 − 3𝑥0

2 + 6𝑥0𝑒
−𝜆𝜏 1

−10𝑥0 −𝜆 − 1
| = 0. 

Which leads to   

𝜆2 + 𝜅𝜆 − 𝛽(1 − 𝜆)𝑒−𝜆𝜏+𝛾 = 0,                                                 (10) 

where  𝜅 = 3𝑥0
2 + 1, 𝛽 = 6𝑥0 ,   𝛾 = 3𝑥0

2 + 10𝑥0. 

Let 𝜆(𝜏) = 𝜇 + 𝑖𝜔, be an eigenvalue of the system at point 𝑃2. But the change of stability 

of this point will occur when 𝑅𝑒(𝜆) = 0. Thus, to find out the position of change of stability, 

we substitute for 𝜆(𝜏) = 𝑖𝜔  𝑖. 𝑒(𝜔 > 0) in Eq. (7):  

−𝜔2 + 𝑖𝜔𝜅 − 𝛽(1 − 𝑖𝜔)𝑒−𝑖𝜔𝜏 + 𝛾 = 0, 

Which can be written as 

 −𝜔2 + 𝑖𝜔𝜅 − 𝛽(1 − 𝑖𝜔)[cos(𝜔𝜏) − 𝑖𝑠𝑖𝑛(𝜔𝜏)] + 𝛾 = 0         (11) 

We now separate the real and imaginary part of Eq. (8) above computed using a Maple software 

as: 

Real part 

−𝜔2 − 𝛽 cos(𝜔𝜏) − 𝛽 sin(𝜔𝜏)𝜔 + 𝛾 = 0. 

cos(𝜔𝜏) =
−𝜔2 + 𝛽 sin(𝜔𝜏)𝜔 + 𝛾

𝛽
 

 Imaginary part 

                               𝜅𝜔 + 𝛽 sin(𝜔𝜏) + 𝛽𝜔 cos(𝜔𝜏) = 0. 
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⟺

{
 
 

 
 sin(𝜔𝜏) =

−𝜔(𝜔2 + 𝜅 − 𝛾)

𝛽(1 + 𝜔2)
,

cos(𝜔𝜏) =
𝜅𝜔2 − 𝜔2 + 𝛾

𝛽(1 + 𝜔2)
.

                                                    (12)  

−𝜔2 + 𝛾 = 𝛽 cos(𝜔𝜏) − 𝛽 sin(𝜔𝜏)𝜔.                                         (13) 

𝜅𝜔 = −𝛽𝜔cos(𝜔𝜏) − 𝛽 sin(𝜔𝜏).                                                 (14) 

 

By squaring Eq. (10 and 11) and adding the result, we have: 

𝜔4 + (𝜅2 − 𝛽2 − 2𝛾)𝜔2 + 𝛾2 − 𝛽2 = 0                                       (15) 

Which is a quadratic equation in  𝜔2. Therefore, for simplicity, let 𝜙 = 𝜔2. 

Therefore, Eq.(15) becomes: 

𝐹(𝜙) = 𝜙2 + (𝜅2 − 𝛽2 − 2𝛾)𝜙 + (𝛾2 − 𝛽2) = 0.                     (16) 

We now apply the Descartes’ sign rule in order to know the number of possible positive, 

negative and imaginary zeros of Eq. (16): 

𝑊𝑖𝑡ℎ (𝜅2−𝛽
2
−2𝛾)≥ 0, (𝛾2−𝛽

2
) ≥ 0:       

      Positive            Negative      Imaginary 

              0               2           0 

               0                0            2 
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𝑊𝑖𝑡ℎ (𝜅2−𝛽
2
−2𝛾) < 0, (𝛾2−𝛽

2
) ≥ 0 : 

      Positive            Negative      Imaginary 

              2               0           0 

               0                0            2 

 

𝑊𝑖𝑡ℎ (𝜅2−𝛽
2
−2𝛾) ≥ 0, (𝛾2−𝛽

2
) < 0: 

      Positive            Negative      Imaginary 

              1               1           0 

               1                1            0 

 

Lemma 3.1: [13] The equilibrium 𝑃2 is locally asymptotically stable for any 𝜏 ≥ 0 if and 

only if 𝑃2 is locally asymptotically stable at 𝜏 = 0 . 

We have already seen that in Eq. (7), 𝑃2 is always asymptotically stable in the absence of 

the delay i.e.  (𝜏 = 0). So we have the following theorem: 

Theorem 3.1: Suppose that 𝐹(𝜙) has no positive zero, then 𝑃2 is locally asymptotically 

stable for all 𝜏 ≥ 0. 

Proof: 𝑃2 is locally asymptotically stable at 𝜏 = 0 as we have seen earlier. Also the 

condition 𝐹(𝜙) has no positive zero shows that no root of  △ (𝑖𝜔, 𝜏) = 0 is purely 

imaginary. Thus, there is no pure imaginary value of 𝜆 of the characteristic Eq. (7). Hence, 

by the above discussion the system is locally asymptotically stable at 𝑃2 for ≥ 0 . Hence 

the theorem. 

Note: We only have one case for which 𝐹(𝜙) have non positive zero that is when  
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(𝜅2 − 𝛽2 − 2𝛾) ≥ 0 𝑎𝑛𝑑 (𝛾2 − 𝛽2) ≥ 0 . Shown in the above Table 3.1. 

Theorem 3.2: Suppose that 𝐹(𝜙) has a unique positive zero, then, if the system is unstable 

around 𝑃2 for 𝜏 = 𝜏′  , 𝑖. 𝑒 𝜏′ ≥ 0, then, it remain unstable for any 𝜏 > 𝜏′.  

Proof:  If 𝐹(𝜙) has at least one positive zero, then, at that point 𝐹(𝜙) is an increasing 

function. Thus, it has a positive eigenvalue at 𝑃2,  and this value is increasing as  𝜏 increases. 

Hence, if the system is unstable around 𝑃2, for 𝜏 = 𝜏′  ,   𝑖. 𝑒  𝜏′  ≥ 0, then, it remains 

unstable for 𝜏 > 𝜏′ . 

Note, here, we have two cases for which 𝐹(𝜙) have at least one positive zero: 

(i)  (𝜅2 − 𝛽2 − 2𝛾) ≥ 0 𝑎𝑛𝑑 (𝛾2 − 𝛽2) < 0. 

(ii) (𝜅2 − 𝛽2 − 2𝛾) < 0 𝑎𝑛𝑑 (𝛾2 − 𝛽2) ≥ 0. 

Now, from Eq. (15) and (16) we have: 

𝜙 =
−(𝜅2 − 𝛽2 − 2𝛾) ± √(𝜅2 − 𝛽2 − 2𝛾)2 − 4(𝛾2 − 𝛽2)

2
, 

{
 
 

 
 
𝜔1 = √−

(𝜅2 − 𝛽2 − 2𝛾) + √(𝜅2 − 𝛽2 − 2𝛾)2 − 4(𝛾2 − 𝛽2)

2
,

𝜔2 = √−
(𝜅2 − 𝛽2 − 2𝛾) − √(𝜅2 − 𝛽2 − 2𝛾)2 − 4(𝛾2 − 𝛽2)

2
.

                   (17) 

Theorem 3.3 Suppose that 𝜔∗2 is the only positive zero of  𝐹(𝜙), then, 𝑃2 undergoes a 

Hopf –bifurcation as 𝜏 passes through 𝜏0, where 𝜏0 is the least positive value of 𝜏𝑘 ( with k 

being an integer) and this can be obtained from Eq.(9) above. 

Proof: System Eq. (6) is locally asymptotically stable at  𝑃2,   for 𝜏 = 0 (absence of delay). 

But if 𝜙 = 𝜔∗2  is a simple positive zero of 𝐹(𝜙), then, it has an eigenvalue with non-
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negative real part at 𝑃2, and so, it cannot be stable for all positive 𝜏. Thus, a change of 

stability will occur in this case. Now, for 𝜔2 = 𝜔∗2 𝑎𝑛𝑑 𝜔 = 𝜔∗ , the system has an 

eigenvalue of the form 𝜆 = 𝑖𝜔∗ , hence, the condition for the Hopf-bifurcations holds. 

Thus, we can conclude that at 𝜏 = 𝜏0, the change of stability which is a Hopf-bifurcation 

could occur where  𝜏0  is the least value of 𝜏𝑘 (k being an integer) and this 𝜏𝑘 can be obtained 

by solving for 𝜏 in Eq. (12): 

tan(𝜔𝜏) =
−𝜔(𝜔2 + 𝜅 − 𝛾)

𝜅𝜔2 − 𝜔2 + 𝛾
, 

  Which can be written as 

   𝑡𝑎𝑛(𝜔𝜏) =
−𝜔3 + (𝛾 − 𝜅)𝜔

𝜔2(𝜅 − 1) + 𝛾
 , 

 

Leading to 

                    𝜏 =
1

𝜔
arctan(

−𝜔3+(𝛾−𝜅)𝜔

𝜔2(𝜅−1)+𝛾
).                                       (18) 

In general, we have 𝜔 = 𝜔∗. Which gives 

𝜏𝑘 =
2𝜋𝑘

𝜔𝑖
∗
+

1

𝜔𝑖
∗
arctan(

−𝜔𝑖
∗3 + (𝛾 − 𝜅)𝜔𝑖

∗

𝜔𝑖
∗2(𝜅 − 1) + 𝛾

)                        (19) 

𝑘 = 0,±1,±2,…  𝑎𝑛𝑑 𝑖 = 1,2 . 

Using the above equations, time series, phase portrait and bifurcation diagrams would be 

plotted in the subsequent Chapter. 
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                                       4.  RESULTS AND DISCUSSION 

In this chapter, we try to interpret, compare and discuss the analytical and numerical results 

obtained. 

Case1: The RH fast sub-system  𝑤𝑖𝑡ℎ 𝜏 = 0 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑃1  

 

(a) 

 

(b) 
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(c) 

Fig.4.1: Solution trajectories without delay evaluated around 𝑃1. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable, (c): Phase portrait of the 

membrane potential against the spiking variable. 

Case2:  The HR fast sub-system with 𝜏 = 0 𝑎𝑛𝑑 𝑧 = 0 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑎𝑟𝑜𝑢𝑛𝑑 𝑃2 

 



  
 

22 
 

(a) 

  

(b) 

 

(c) 

Fig 4.2:  Solution trajectories without delay evaluated around 𝑃2. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable, (c): Phase portrait of the 

membrane potential against the spiking variable. 
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Case 3: The HR fast subsystem  in the presence of delay evaluated at 𝑃2 

 

(a) 

 

(b) 
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(c) 

Fig 4.3: Solution trajectories with tau=0.1 evaluated around 𝑃2. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable, (c): Phase portrait of the 

membrane potential against the spiking variable. 

 

(a) 
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(b) 

    

(c) 
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Fig 4.4: Solution trajectories with tau=0.2 evaluated around 𝑃2. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable, (c): Phase portrait of the 

membrane potential against the spiking variable. 

 

(a) 

     

(b) 
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(c) 

Fig 4.5: Solution trajectories with tau=2.0 evaluated around 𝑃2. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable, (c): Phase portrait of the 

membrane potential against the spiking variable.  

          

 

(a) 
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(b) 

Fig 4.6: Solution trajectories with tau=5.0 evaluated around 𝑃2. (a): Time series of the 

membrane potential, (b): Time series plot of the spiking variable. 

 

 

 

 

 

 

 

 



  
 

29 
 

5. CONCLUSION 

The dynamical behaviour of the Hindmarsh-Rose model with time delay was intensively 

investigated. By applying the Descartes’ sign rule, which is a powerful tool for real 

polynomials with constant coefficients, we have determined the number of real zeroes of a 

polynomial function. Classifications of the imaginary roots of the characteristic equation were 

presented. It was proved that the Hindmarsh-Rose system was absolutely stable for any time 

delay less than the critical delay. Time series curves and phase portrait were drawn using dde23 

tool. It reveals that the equilibrium point 1 is neutral stable and 2 is asymptotically stable. We 

have seen that there exist a critical value of the delay where the asymptotically stable system 

becomes unstable called the bifurcation point/value (at 𝜏 = 0.2). Therefore, for 𝜏 > 0.2, the 

system is unstable.  

The time delay can induce various dynamical transitions in HR model system, in particular, 

medium time delay can lead to the transition from bursting oscillation to relaxation oscillation 

and complex oscillation, and large time delay can result in chaotic bursting oscillation. 
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FUTURE WORK 

 Incorporating the model with double time delay. 

 Considering the model with a time dependent delay. 

 Considering the case of a coupled neuron with both dependent and independent time 

delay. 

 Describe the local kinetics of the neuronal network and the memristive electromagnetic 

induction current with time delay. 

 

 

 

 


