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Chief Academic Oÿcer (Prof. C. E. Chidume)

..................................................

Date



ABSTRACT

The phase space representation of quantum mechanics are well known as powerful

tools for studying the correspondence between the density operator and classical

distributions in phase space. This representation, known as the third formulation

of quantum mechanics, is given in terms of the joint probability distribution (or

more precisely the quasi-probability), and is independent of the conventional Hilbert

space or the path integral formulations. In this representation on needs not choosing-

coordinate or momentum - it works in the full space, accommodating the uncertainty

principle, and offering a unique insights into the classical limit of quantum theory

[1].

Tunneling is a genuine quantum effect discovered long agosince the heyday of

quantum mechanics. This manifests itself, for instance, as quantum particle passing

through a classically forbidden barrier; the energy of the particle being smaller than

that of the barrier. Although tunneling can be predicted in few simple systems, it

remains a formidable task in a vast majority of quantum systems. Track Tunneling

in a system maybe essential for understanding of its behavior.

In this work, we want to make use of an indicator of quantumness (or non-

classicality) to control tunnelling in dynamical systems. This indicator [6], has

been successfully tested in a large number of quantum states of infinite dimensional

Hilbert space. It is based on the relative volume of the negative part of the Wigner

function and is a quantitative measure of the degree to which a system is quantum.

Attempts have been trying to link the negativity of the Wigner function with the

entanglement of the analysed state on a composed Hilbert space [7].

To proceed, we will first review fundamentals of quantum mechanics in phase

space focusing mainly on the role of different distribution functions. In particular,

we will make use of the indicator of the Nonclassicality [6] to explore few quantum

states including Fock states, Schrondinger cats, and so on. Then we will consider a

tunnel model system such as ammonia (or Umbrella) for which coherent destruction

of tunnelling has been revealed [8, 9]. Finally, we hope to have full control over this

tunnelling model by means of that indicator [6].
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CHAPTER 1

INTRODUCTION

1.1 Formulation of Quantum Mechanics

In this thesis, we want to use the indicator of non-classicality to control tunneling

in Ammonia System (Coherence Control of Tunneling). But before we do that,

we shall take our time to explore different formulations in quantum mechanics.

There are at least three logically autonomous alternative paths to quantization.

The first is the standard one utilizing operators in Hilbert space, developed by

Heisenberg, Schrodinger, Dirac, and others in the 1920s. The second one relies on

path integrals, and was conceived by Dirac[14] and constructed by Feynman. The

third one (the bronze medal!) is the phase-space formulation(which is the focus of

this thesis). It is based on Wigner’s (1932) quasi-distribution function[12] and Weyl’s

(1927) correspondence[13] between ordinary c-number functions in phase space and

quantummechanical operators in Hilbert space.

1.1.1 Path Integral Formulation

The path integral formulation of quantum mechanics is a description of quantum

theory that generalizes the action principle of classical mechanics. It replaces the

classical notion of a single, unique classical trajectory for a system with a sum, or

functional integral, over an infinity of quantum-mechanically possible trajectories

to compute a quantum amplitude.This formulation has proven crucial to the subse-

quent development of theoretical physics, because manifest Lorentz covariance (time

and space components of quantities enter equations in the same way) is easier to

achieve than in the operator formalism of canonical quantization. Unlike previous

methods, the path integral allows a physicist to easily change coordinates between

very different canonical descriptions of the same quantum system. Another advan-

tage is that it is in practice easier to guess the correct form of the Lagrangian of a

theory, which naturally enters the path integrals (for interactions of a certain type,

these are coordinate space or Feynman path integrals), than the Hamiltonian. Pos-
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sible downsides of the approach include that unitarity (this is related to conservation

of probability; the probabilities of all physically possible outcomes must add up to

one) of the S-matrix is obscure in the formulation. The path-integral approach has

been proved to be equivalent to the other formalisms of quantum mechanics and

quantum field theory. Thus, by deriving either approach from the other, problems

associated with one or the other approach (as exemplified by Lorentz covariance

or unitarity) go away [10]. Path integrals are used in a variety of fields, including

stochastic dynamics, polymer physics, protein folding, field theories, quantum me-

chanics, quantum field theories, quantum gravity and string theory. The basic idea

is to sum up all contributing paths.

Figure 1.1: Path Integral Formulation

The path integral formula in terms of the wave function is given as

ψ(x, t) =
1

Z

∫
x(0)=x

DxeiS[x, ẋ]ψ0(x(t)) (1.1)

where Dx denotes integration over all paths x with x(0) = x and where Z is a

normalization factor. Here S is the action, given by S[x, ẋ] =

∫
dt L(x(t), ẋ(t))

1.1.2 Hilbert Space Formulation

The mathematical formulations of quantum mechanics are those mathematical for-

malisms that permit a rigorous description of quantum mechanics. Such are distin-

guished from mathematical formalisms for theories developed prior to the early 1900s
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by the use of abstract mathematical structures, such as infinite-dimensional Hilbert

spaces and operators on these spaces. Many of these structures are drawn from

functional analysis, a research area within pure mathematics that was influenced in

part by the needs of quantum mechanics. In brief, values of physical observables

such as energy and momentum were no longer considered as values of functions on

phase space, but as eigenvalues; more precisely as spectral values of linear operators

in Hilbert space [11]. These formulations of quantum mechanics continue to be used

today. At the heart of the description are ideas of quantum state and quantum ob-

servables which are radically different from those used in previous models of physical

reality. While the mathematics permits calculation of many quantities that can be

measured experimentally, there is a definite theoretical limit to values that can be si-

multaneously measured. This limitation was first elucidated by Heisenberg through

a thought experiment, and is represented mathematically in the new formalism by

the non-commutativity of operators representing quantum observables.

1.1.3 The Phase Space Formulation

Phase Space formulation of quantum mechanics The phase-space formulation of

quantum mechanics places the position and momentum variables on equal footing,

in phase space. The two key features of the phase-space formulation are that the

quantum state is described by a quasi-probability distribution (instead of a wave

function, state vector, or density matrix) and operator multiplication is replaced

by a star product. Wigner’s quasi-probability distribution function in phase-space

is a special (Weyl– Wigner) representation of the density matrix. It has been use-

ful in describing transport in quantum optics, nuclear physics, quantum computing,

decoherence, and chaos. It is also of importance in signal processing, and the mathe-

matics of algebraic deformation. A remarkable aspect of its internal logic, pioneered

by Groenewold and Moyal, has only emerged in the last quarter-century: It furnishes

a third, alternative, formulation of quantum mechanics, independent of the conven-

tional Hilbert space or path integral formulations. In this logically complete and

self-standing formulation, one need not choose sides between coordinate or momen-

tum space. It works in full phase-space, accommodating the uncertainty principle;

and it offers unique insights into the classical limit of quantum theory: The vari-

ables (observables) in this formulation are c-number functions in phase space instead

of operators, with the same interpretation as their classical counterparts, but are

composed together in novel algebraic ways. A variety of these representation exist,
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including Wigner [12], Husimi [3], P [4], Huwi [5], and are distinct one to another by

the way they highlight classical structures against a background of quantum inter-

ferences. This complete formulation is based on the Wigner function (WF), which

is a quasiprobability distribution function in phase-space,

f(x, p) =
1

2π

∫
dyψ∗

(
x− ~

2
y

)
e−iypψ

(
x+

~
2
y

)
(1.2)

It is a generating function for all spatial autocorrelation functions of a given

quantummechanical wave-function ψ(x). More importantly, it is a special repre-

sentation of the density matrix (in the Weyl correspondence, as detailed in chapter

2)

1.2 Coherent State

Coherent states play an important role in quantum optics, especially in laser physics

and much work was performed in this field by Roy J. Glauber who was awarded the

2005 Nobel prize for his contribution to the quantum theory of optical coherence.The

state describing a laser beam can be briefly characterized by (i) an indefinite number

of photons, (ii) A precisely defined phase,

in contrast to a state with fixed particle number, where the phase is completely

random. There also exists an uncertainty relation describing this contrast. It can

be formulated for the uncertainties of amplitude and phase of the state, where the

inequality reaches a minimum for coherent states [16]

∆N∆(sinΦ) ≥ 1

2
cos(Φ) (1.3)

which, for small Φ, reduces to

∆N∆(Φ) ≥ 1

2
(1.4)

1.2.1 Definition and Properties of Coherent States

A coherent state |α〉, also called Glauber state, is defined as eigenstate of the am-

plitude operator which is the annihilation operator a , with eigenvalues α ∈ C

a |α〉 = α |α〉

Since a is a non-hermitian operator the phase α = |α|eiϕ ∈ C is a complex

number and corresponds to the complex wave amplitude in classical optics. Thus

coherent states are wave-like states of the electromagnetic oscillator.
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Properties of Coherent States

1. A vacuum |0〉 is a coherent state with α = 0

2. mean energy of the Harmonic Oscillator can be obtained between the coherent

states

〈H〉 = 〈α|H|α〉 = 〈α| (a+a+
1

2
) |α〉 = ~ω(|α|2 +

1

2
) (1.5)

where ~ω|α|2 is the classical wave intensity

1.2.2 Density Matrix or Density Operator

A density matrix or density operator is a matrix that describes the statistical state

of a system in quantum mechanics. The density matrix is especially helpful for

dealing with mixed states, which consist of a statistical ensemble of several different

quantum systems. The opposite of a mixed state is a pure state.

The density matrix is formally defined as the outer product of the wavefunction

and its conjugate.

ρ(t) ≡ |ψ(t)〉 〈ψ(t)| (1.6)

This implies that if you specify a state |χ〉, the integral 〈χ| ρ |χ〉 gives the probability

of finding a particle in the state |χ〉 Its name derives from the observation that it

plays the quantum role of a probability density. If we think of the statistical descrip-

tion of a classical observable obtained from moments of a probability distribution P,

then ρ plays the role of P in the quantum case:

〈A〉 =

∫
AP (A)dA (1.7a)

〈A〉 = 〈ψ|A |ψ〉 = Tr[Aρ] (1.7b)

where Tr[Aρ] refers to tracing over the diagonal elements of the matrix. The ques-

tion is that why do we need a density matrix? We need a density matrix because

It is a practical tool when dealing with mixed states.Pure states are those that are

characterized by a single wavefunction. Mixed states refer to statistical mixtures in

which we have imperfect information about the system, for which me must perform

statistical averages in order to describe quantum observables. A mixed state refers

to any case in which we subdivide a microscopic or macroscopic system into an en-

semble, for which there is initially no phase relationship between the elements of the

mixture. Examples include an ensemble at thermal equilibrium, and independently

prepared states[15].
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Properties of Density Matrix

1. ρ is hermitian: ρ∗nm = ρnm

2. Normalization: Tr[ρ] = 1

3. Tr(ρ2) = 1 for pure state

4. Tr(ρ2) ≤ 1 for mixed state

1.3 Dynamical Tunneling

Tunneling has remained a special phenomenon, a quintessential quantum effect,

starting with the early days of quantum theory. Nearly a century’s worth of the-

oretical and experimental studies have highlighted the crucial role of tunneling in

various physical phenomenal. The far-reaching implications of tunneling are evident

in diverse fields including nuclear, atomic, molecular physics, and more recently, in

the area of mesoscopic science. Despite the obvious relevance of this topic to a wide

range of disciplines, an interdisciplinary scientific community devoted to tunneling

has not yet developed to a satisfactory degree. One may attribute this, at first

glance, to the apparent simplicity of a generic tunneling process, which basically

involves only a quantum particle that crosses a classical barrier due to the

evanescent components of its wave function. The quantitative description of this

seemingly simple process, however, can become rather intricate and rich if more

than one particle and/or more than one spatial dimension are effectively involved.

This is especially the case for ”dynamical Tunneling,” which essentially denotes

classically forbidden transitions through dynamical rather than energetic barriers,

that is barriers that are formed by constraints of the underlying classical dynamics

related to exact or approximate constants of motion[17].

1.3.1 Tunnel Model System(Ammonia or Umbrella)

The ammonia molecule helps illustrate how to simplify the description of a compli-

cated problem. In an ammonia molecule, atoms located at the vertices of a pyramid;

three hydrogen atoms in a plane and a nitrogen atom above or below that plane.

The description of this molecule can be complicated because it is possible to have

an infinite number of motion states, namely,rotation around any axis, translational

motion in any direction and vibrational motions[18].
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The molecule has two possible positions for the nitrogen atom (as shown in the

figure above), which define the two base states |1〉 and |2〉. Where state |1〉 defines

the “down” state of the molecule (a given charge distribution corresponding to the

case when the nitrogen is below the plane defined by the three hydrogen atoms.)

and state |2〉 defines the “up” state of the molecule (a given charge distribution

corresponding to the case when the nitrogen is above the plane defined by the three

hydrogen atoms.)

1.4 The Wigner Function

Because there is no uncertainty principle in classical physics, it is possible to know

a particle’s momentum and position at the same time to an arbitrary precision.

Quantum mechanics is a fundamental theory in physics which describes nature at

the smallest scales of energy levels of atoms and subatomic particles [19]. Quantum

mechanics differs from classical physics in that energy, momentum, angular momen-

tum and other quantities of a bound system are restricted to discrete values (quan-

tization); objects have characteristics of both particles and waves (wave-particle

duality); and there are limits to the precision with which quantities can be mea-

sured (uncertainty principle). This uncertainty principle makes it possible to know

both position (x) and momentum (p) at the same time. In the standard formula-

tion of quantum mechanics one works with probability densities instead. One for

the wave-function in position-basis and one for the wave-function in the momentum

7



basis.

P (x) = |ψ(x)|2

P (x) = |φ(k)|2

Where the two functions are connected by a Fourier transform and use p = ~k

φ(k) = 1√
2π

∫∞
−∞ ψ(x)e−ikxdx

It would be desirable to have a single function that could display the probability

in both position and momentum simultaneously. The Wigner function is a function

constructed to do just that. It must also be able to give the correct expectation

values for operators. What one desire is to have a probability distribution in phase

space P(x,p), that is positive everywhere and such that〈
Â
〉

=

∫∫
P (x, p)A(x, p)dxdp (1.8)

This gives the expectation value of the operator A(x,p). It should be noted that

because of Heisenberg’s uncertainty principle, it is not possible to find such a prob-

ability distribution. The Wigner function comes close to fulfil these demand but it

will not have a direct physical interpretation as a probability distribution we know

from classical physics. For example, the Wigner function can be negative in regions

of phase space, which have no physical meaning if one thinks of it as a probability

distribution. Therefore the Wigner function is quasi-distribution. A main goal of

quantum mechanics is to obtain expectation values for physical observables. If the

Wigner function is to be a complete formulation of quantum mechanics, it must

also be able to reproduce the expectation values of all functions of x and p. When

using the Wigner function, the expectation values are obtained in conjunction with

the closely associated Weyl transforms of the operators corresponding to physical

observables. The correct Weyl-transform is critical for obtaining the spread of the

energy of a state; without it, the Wigner function is little more than a visual aid for

understanding quantum states.

1.4.1 The Weyl Transform and the Wigner Function

In order to construct a Wigner function, what we mean to do is to construct a new

formalism of quantum mechanics based on a phase space formalism. To create such

a formalism successfully, one needs a mapping between functions in the quantum

8



phase space formulation and Hilbert space operators in the Schrodinger picture.

This mapping is given by the Weyl-transform Ã of an operator Â defined in the

following way

Ã(x, p) =

∫
e−

ipy
~

〈
x+

y

2
|Â|x− y

2

〉
dy (1.9)

Where the operator has been expressed in the x basis as the matrix 〈x′| Â |x〉. The

Weyl transform will be indicated by tilde. The Weyl transform converts an operator

into a function of x and p. The Weyl transform can also be expressed in terms of

matrix elements of the operator in the momentum basis,

Ã(x, p) =

∫
e

ixu
~

〈
p+

u

2
|Â|p− u

2

〉
dy (1.10)

A key property of the Weyl transform is that the trace of the product of two

operators Â and B̂ is given by the integral over phase space of the product of their

Weyl transforms,

Tr[ÂB̂] =
1

h

∫∫
Ã(x, p)B̃(x, p)dxdp (1.11)

The prove of equation(2.4) is in appendix A of this Thesis. To represent the

state, we make use of the density operator ρ̂. For a pure state |ψ〉 it is given by

ρ̂ = |ψ〉 〈ψ|. Which is expressed in the position basis as 〈x| ρ̂ |x′〉 = ψ(x)ψ∗(x
′
).

One of the virtues of the density operator and thus the Wigner function is that it

is easily generalized to mixed states. If we form the trace of p̂ with the operator

corresponding to the observable A, we have for the expectation value

Tr[ρ̂Â] = Tr[|ψ〉 〈ψ| Â] = 〈ψ| Â |ψ〉 = 〈A〉 (1.12)

Thus using equation (2.4) we have

〈A〉 = Tr[ρ̂Â] =
1

h

∫
ρ̃Ãdxdp (1.13)

The Wigner function is thus defined as

W (x, p) = ρ̃/h =
1

h

∫
e−

ipy
~ ψ(x+ y/2)ψ∗(x− y/2)dy (1.14)

And the expectation value of A is given by

〈A〉 =

∫∫
W (x, p)Ã(x, p)dxdp (1.15)

We can vividly see that the expectation value of A has been obtained by what looks

like the average of the physical quantity represented by Ã(x, p) over phase space

9



with probability density W(x,p) characterizing the state. If the Wigner function is

integrated over p alone and use is made of
∫
e

ipx
~ dp = hδ(x), we have∫

W (x, p)dp = ψ∗(x)ψ(x) (1.16)

Equation (2.9) gives the probability distribution for x. A similar integral over x

gives ∫
W (x, p)dx = ϕ∗(p)ϕ(p) (1.17)

Equation (2.10) gives the probability distribution for the momentum variable. Thus,

the Wigner function represents the distribution in phase space represented by ψ(x).

The projection of W(x,p) onto the x axis gives the probability distribution in x,

and the projection on the ρ axis gives the distribution in p. Expectation values of

physical quantities are obtained by averaging Ã(x, p) over phase space. We shall see

that the interpretation of W(x,p) as a simple probability distribution is spoiled by

a number of features.

1.4.2 Characteristics Of The Weyl And Wigner Function

A direct consequence of the definition of the Wigner function in equation (2.7) is

that it is real as can be seen by taking the complex conjugate of equation (2.7) and

changing the variable of integration from y to –y. that is,

W (x, p) = ρ̃/h =
1

h

∫
e−

ipy
~ ψ(x+ y/2)ψ∗(x− y/2)dy

W (x, p)∗ = ρ̃/h =
1

h

∫
e−

ipy
~ ψ∗(x− y/2)ψ(x+ y/2)dy (1.18)

Using equation (2.3) one can express the Wigner function in terms of the momentum

representation of |ψ〉

W (x, p) = ρ̃/h =
1

h

∫
e

ixu
~ 〈p+ u/2|ψ〉 〈ψ|p− u/2〉 (1.19a)

W (x, p) = ρ̃/h =
1

h

∫
e

ixu
~ ϕ∗(p+ u/2)ϕ(p− u/2)du (1.19b)

The Weyl transform of the identity operator Î is I because

Ĩ =

∫
e−

ipy
~

〈
x+

y

2
|Î|x− y

2

〉
dy =

∫
e−

ipy
~ δ(x+

y

2
− (x− y

2
))dy = 1 (1.20)
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A feature of the Wigner function is that it is normalized in x,p space. This is easily

seen by the following∫∫
W (x, p)Ĩ =

∫∫
W (x, p)dxdp = Tr[ρ̂] = 1 (1.21)

Thus W (x, p) is normalized in x, p space. Also from the definition of the density

operator we can vividly see that for pure state ρ̂2 = ρ̂, and thus Tr[ρ̂2] = Tr[ρ̂] = 1.

We can infer from this relation and equations (2.4) and (2.7) that∫∫
W (x, p)2dxdp =

1

h
(1.22)

It should be noted that the Wigner functions have a reasonable translation

property. Meaning that if the wave function ψ(x) gives the Wigner function

W (x, p), then the wave function ψ(x− d) will give W (x− d, p). This shows that a

shifts in the wave function lead to a corresponding shifts in the Wigner function in

the position variable x. In the same vein, if the original wave function is replaced

with ψ(x)e
ixdp
~ , the new Wigner function becomes W (x, p− dp). This vividly shows

that a shift in momentum of the original wave function lead to a corresponding

shifts of the Wigner function in the momentum variable p. Both of these prop-

erties follow directly from the definition of the Wigner function we defined earlier

in equation(1.7). The signs in these shifts might be a little disturbing. If ψ(x) is

concentrated about xo, then ψ(x − d) will be concentrated about xo + d. In addi-

tion, if the ψ(x) has a certain momentum distribution, then ψ(x)e
ixdp
~ will have the

same distribution shifted by +dp. This means that each of the shifts correspond-

ingly shift their respective distribution by +d or +dp, respectively. Now, given two

density operators ρ̂a and ρ̂b, from different states ψa and ψb respectively. forming

the combination of this gives

Tr[ρ̂aρ̂b] = | 〈ψa|ψb〉 |2 (1.23)

The Weyl transform of Equation(2.16) using equation(2.4) and (2.7)∫∫
Wa(x, p)Wb(x, p)dxdp =

1

h
| 〈ψa|ψb〉 |2 (1.24)

This shows that the product of Wigner functions integrated over phase space is the

square of the inner product of the original wave functions divided by h. The left-

hand side of equation(2.17) acts as a positive inner product of the original states. If

we consider orthogonal states where 〈ψa|ψb〉 = 0∫∫
Wa(x, p)Wb(x, p)dxdp = 0 (1.25)
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This can only be true if and only if the Wigner function is negative in the region

of phase space. This is very different from the classical case and shows us that the

Wigner function does not represent a physical property. The integral of the Wigner

function over x and p is the only one that has physical meaning. We cannot not

think of the Wigner function the same way we think of a classical distribution but

we can think of it as a mathematical object that will help us to calculate physical

observables in just the same way we think of the wavefunction in the Schrödinger

picture.

Another key property of a Wigner function is that it must fulfill |W (x, p)| ≤ 1
π~ .

This follows from the fact that we can rewrite the definition of the Wigner function

in equation(2.7) as a product of two wave functions as shown

W (x, p) =
1

π~

∫
dyψ1(y)ψ∗2(y) (1.26)

where we have defined the following normalized wave functions ψ1(y) = e−
−ipy

~
ψ(x+ y

2
)√

2

and ψ2(y) =
ψ(x− y

2
)√

2
and use the relation∫

ψ(x− y

2
)ψ∗(x− y

2
)dy = 2

∫
ψ(x− y

2
)ψ∗(x− y

2
)d(

y

2
) = 2 (1.27)

From the definition of the Wigner function in equation (2.7), it is clear that an even

wavefunction at 0, 0 will have a Wigner function that takes on the value + 1
π~ . An

odd wavefunction will then have a Wigner function at 0, 0 with the value − 1
π~ .

The expectation value is obtained through the average of a physical quantity

represented by Ã(x, p) over phase space with quasi-probability density W (x, p) char-

acterizing the state.The expectation values of the position x and momentum p are

now given by

〈x〉 =

∫∫
W (x, p)xdxdp (1.28a)

〈p〉 =

∫∫
W (x, p)pdxdp (1.28b)

We can now categorically generalize this that to find the expectation value of an

operator from the Wigner function, one has to consider the Weyl-transform of the

said operator. If we have an operator Â(̂x) that depends solely on x̂ which allows us

to write Â = A(x̂). The Weyl-transform for an operator of this form is easy. From

equations(2.2) we have

Ã =

∫
e−

ipy
~

〈
x+

y

2
|Â(x̂)|x− y

2

〉
dy =

∫
e−

ipy
~ A

(
x− y

2

)
δy = A(x) (1.29)
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This shows that the Weyl-transform of such an operator is simply a function A

with the operator x̂ replaced with x. It is the same for an operator Â(p̂) since the

Weyl-transform can be defined in a momentum representation instead of a position

representation [20].Therefore, for an operator B̂(p̂) that depends only on p̂ the Weyl-

transform is the function of B(p). This extends to sums of operators that only

depends on x̃ and p̂. Considering a Hamiltonian operator Ĥ(x̂, p̂) = T̂ (p̂) + Û(x̂).

This operator will have the Weyl transform H(x, p) = T (p) + U(x). So from this

result, we can determine the expectation value from this Hamiltonian operator. The

expectation value of T, U and H are given by

〈T 〉 =

∫∫
dxdpW (x, p)T (p) (1.30a)

〈U〉 =

∫∫
dxdpW (x, p)U(x) (1.30b)

〈H〉 =

∫∫
dxdpW (x, p)H(x, p) (1.30c)

1.5 Time Evolution of the Wigner Function

For a stationary state we have the solution as

ψn(x, t) = un(x)e−
iEnt

~ (1.31)

where un(x) is a real function.By looking at definition (2.7), we can clearly see that

for a stationary state, the Wigner function does not explicitly depend on time. The

phases containing the time evolution e−
iEt
~ will always cancel out.

It is however possible possible to derive an equation that governs the time evolu-

tion of the Wigner function. This approaches uses the fact that x and p will depend

on time t. To describe the time evolution of a given Wigner function, we simply take

the derivative with respect to time t and use the Schrödinger equation to eliminate

the partial derivative of the wavefunction.

∂W

∂t
=

1

2π~

∫
dye−

ipy
~

{
∂ψ∗(x− y

2
)

∂t
ψ
(
x+

y

2

)
+
∂ψ(x+ y

2
)

∂t
ψ∗
(
x− y

2

)}
(1.32)

∂ψ(x, t)

∂t
= − ~

2im

∂2ψ(x, t)

∂x2
+

1

i~
U(x)ψ(x, t) (1.33)
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by substituting equation(2.26) into (2.25), we obtain

∂W

∂t
=

1

2π~

∫
dye−

ipy
~

{
~

2im

∂2ψ(x, t)

∂x2
ψ
(
x+

y

2

)
− 1

i~
U
(
x− y

2

)
ψ∗
(
x− y

2

)
ψ
(
x+

y

2

)
− ~

2im

∂2ψ(x+ y
2
)

∂x2
ψ∗
(
x− y

2

)
+

1

i~
U
(
x+

y

2

)
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)}
(1.34)

Equation(1.27) can be written as

∂W

∂t
=

1

4πim

∫
dye−

ipy
~

{
∂2ψ∗(x− y

2
)

∂x2
ψ
(
x+

y

2

)
−
∂2ψ(x+ y

2
)

∂x2
ψ∗
(
x− y

2

)}

+
2π

i~2

∫
dye−

ipy
~

{
U
(
x+

y

2

)
− U

(
x− y

2

)}
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)
(1.35)

This defines
∂W

∂t
=
∂WT

∂t
+
∂WU

∂t
(1.36)

where

∂WT

∂t
=

1

4πim

∫
dye−

ipy
~

{
∂2ψ∗(x− y

2
)

∂x2
ψ
(
x+

y

2

)
−
∂2ψ(x+ y

2
)

∂x2
ψ∗
(
x− y

2

)}
(1.37)

and

∂WU

∂t
=

2π

i~2

∫
dye−

ipy
~

{
U
(
x+

y

2

)
− U

(
x− y

2

)}
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)
(1.38)
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CHAPTER 2

THEORETICAL BACKGROUND

As aforementioned in the introduction, We want to use the indicator of non-classicality

which was pioneered by Kenfack [6] to explore few quantum states such as Schrödinger

cats state, Fock states and so on. In this project, I used the same indicator of quan-

tumness to control tunneling in Ammonia or umbrella system (i.e Coherence Control

of Tunneling) in which Coherence Destruction of Tunneling has been achieved by

grossmann [9, 8]. To proceed, we start by analysing pure quantum states in an

infinite dimensional Hilbert space which is useful to distinguish a family of coher-

ent states, localized in the classical phase space and minimizing the uncertainty

principle. These quantum analogues of points in the classical phase space are of-

ten considered as ‘classical’ states. For an arbitrary quantum state one may ask

or pose a natural question, to what extent is it ‘non-classical’ in a sense that its

properties differ from that of coherent states? In other words, is there any parame-

ter that may categorically reflect the degree of non-classicality of a given quantum

state? This question was motivated by the first observation of non-classical features

of electromagnetic fields such as sub-Poissonian statistics, antibunching and squeez-

ing. In addition, it is well known that the interaction of linear or non-linear devices

with quantum states may cause them to flip from one state to another; for exam-

ple, nonlinear devices may produce non-classical states from their interaction with

the vacuum or a classical field. A systematic survey of non-classical properties of

quantum states would be worthwhile because of the current ever increasing number

of experiments in nonlinear optics. An earlier attempt to shed some light on the

non-classicality of a quantum state was pioneered by Mandel [22], who investigated

radiation fields and introduced a parameter q to measure the deviation of the photon

number statistics from the Poissonian distribution, characteristic of coherent states.

In general, to define a measure of non-classicality of quantum states one can

follow several different approaches [23]. Distinguishing a certain set C of states (e.g.

the set of coherent states |ψ〉), one looks for the distance of an analysed pure state

|ψ〉 to this set, by minimizing a distance d(|ψ〉 , |ψ〉) over the entire set C. Such a
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scheme based on the trace distance was first used by Hillery [59, 25], while other

distances (the Hilbert– Schmidt distance [26, 27] or the Bures distance [28, 29]) were

later used for this purpose. The same approach is also applicable to characterize

mixed quantum states: minimizing the distance of the density ρ to the set of coherent

states is related [27, 30] to the search for the maximal fidelity (the Hilbert–Schmidt

fidelity (Tr(ρσ) or the Bures–Uhlmann fidelity (Tr
√
ρ1/2σρ1/2) with respect to any

coherent state, σ = |σ〉 〈σ|. On the same footing, the Monge distance introduced in

[32, 31] may be applied to describe to what extent a given mixed state is close to

the manifold of coherent states.

Yet another way of proceeding is based on the generalized (Cahill) phase space

representation Rτ of a pure state, which interpolates between the Husimi (Q), the

Wigner (W) and the Glauber–Sudarshan (P) representations. The Cahill parameter

τ is proportional to the variance of a Gaussian function one needs to convolute with

P representation to obtain Rτ [33]. In particular for τ = 1, 1
2
, 0 one obtains the Q-,

W and P-representations, respectively. By construction the Q representation is non-

negative for all states, while the Wigner function may also admit negative values,

and the P representation may be singular or may not exist. The smoothing effect

of Rτ is enhanced as τ increases. If τ is large enough so that Rτ becomes a positive

definite regular function, thus acceptable as a classical distribution function, then

the smoothing is said to be complete. The greatest lower bound τm for the critical

value was adopted by Lee [34, 35], as the non-classical depth of a quantum state,

and this approach was further developed in [36, 38]. The limiting value, τm = 1,

corresponds to the Q function which is always acceptable as a classical distribution

function. The lowest value, τm = 0, is ascribed to an arbitrary coherent state

because its P function is a Dirac delta function, so its ε-smoothing becomes regular.

The range of τm is thusτm ∈ [0, 1]. If the Husimi function of a pure state admits at

least one zero Q(αo) = 0, then a Cahill Rτ distribution with a narrower smearing,

τ<1, becomes negative in the vicinity of αo. Therefore the classical depth for such

quantum states is maximal, τm = 1 [36]. The only class of states for which Q

representation has no zeros are the squeezed coherent states for which τm is a

function of the squeezing parameter s. In the limiting case s = 0 one obtains the

standard coherent state for which the Ro = P distribution is a Dirac delta function,

that is τm = 0. A possible way to distinguish a classical state is to require that

its P-representation exists and is everywhere non-negative. Such an approach was

advocated in [40] and further explored in [41], while a recent work [42] establishes a
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link between the task of classifying all states with positive P-representation and the

17th Hilbert problem concerning positive polynomials. A closely related approach

to characterizing quantum states is based on properties of their Wigner functions

in phase space p, q. One can prove that the Wigner function is bounded from

below and from above [33]. In the normalization
∫∫

W (q, p)dqdp = 1 used later

in this work, such a bound reads|W (q, p)| ≤ 1
π~ . Further bounds on integrals of

the Wigner function were derived in [43], while an entropy approach to the Wigner

function was developed in [44, 45]. In order to interpret the Wigner function as

a classical probability distribution one needs to require that W is nonnegative. As

found by Hudson in 1974 [46], this is the case for coherent or squeezed vacuum states

only. A possible measure of non-classicality may thus be based on the negativity

of the Wigner function which may be interpreted as a signature of quantumness.

The negativity of the Wigner function has been linked to non-locality, according to

the Bell inequality [47], while investigating the original Einstein–Podolsky–Rosen

(EPR) state [48]. In fact Bell argued that the EPR state will not exhibit non-local

effects because its Wigner function is everywhere positive, and as such will allow

for a hidden variable description of correlations. However, it is now demonstrated

[49, 50] that the Wigner function of the EPR state, though positive definite, provides

direct evidence of nonlocality. This violation of Bell’s inequality holds true for the

regularized EPR state [51] and also for a correlated two-mode quantum state of

light [53]. It is also worth recalling that the Wigner function can be measured

experimentally [54], including the measurements of its negative values [55]. The

interest put on such experiments has triggered a search for operational definitions

of the Wigner functions, based on experimental setup [56, 57].

2.1 Schrödinger cat state

Schrödinger’s cat is a seemingly paradoxical thought experiment devised by Erwin

Schrödinger that attempts to illustrate the incompleteness of an early interpreta-

tion of quantum mechanics when going from subatomic to macroscopic systems.

Schrödinger proposed his ”cat” after debates with Albert Einstein over the Copen-

hagen interpretation, which Schrödinger defended, stating in essence that if a sce-

nario existed where a cat could be so isolated from external interference (decoher-

ence), the state of the cat can only be known as a superposition (combination) of

possible rest states (eigenstates), because finding out (measuring the state) cannot
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be done without the observer interfering with the experiment — the measurement

system (the observer) is entangled with the experiment.

The thought experiment serves to illustrate the strangeness of quantum mechan-

ics and the mathematics necessary to describe quantum states.

Figure 2.1: Schrodinger Cat State

The idea of a particle existing in a superposition of possible states, while a fact

of quantum mechanics, is a concept that does not scale to large systems (like cats),

which are not indeterminably probabilistic in nature.

Philosophically, these positions which emphasize either probability or determined

outcomes are called (respectively) positivism and determinism.

2.2 Indicator Of Non-classicality

The Wigner function of a state |ψ〉 defined by

Wψ(q, p) =
1

2π

∫ +∞

−∞
dx
〈
q − x

2
|ψ〉 〈ψ| q +

x

2

〉
exp(ipx) (2.1)

satisfies the normalization condition
∫∫

Wψ(q, p)dpdq = 1. Hence the double

volume of the integrated negative part of the wigner function may be written as

δ(ψ) =

∫∫
[| Wψ(q, p) | −Wψ(q, p)] dpdq =

∫∫
| Wψ(q, p) | dqdp− 1 (2.2)
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By definition, the quantity δ is equal to zero for coherent and squeezed vacuum

states, for which W is non-negative. equation(2.2) is the indicator of non-classicality

which always measures the degree to which a system is quantum. As we can vividly

see that by giving a Wigner function, we can perform double integration over its

absolute function minus one to get the degree at which that system is quantum. It is

also worth noting that for a vacuum, the indicator gives zero. In the case of Kenfack

[6] (The pioneer of this indicator), he used it to measure the quantumness of a

system by exploring different quantum system as mentioned earlier but in this work,

I want to use the same indicator of quantumness to control tunneling in ammonia

system[9]. As we shall see later, by giving a Hamiltonian that describe an ammonia

system, one can easily get the Wigner function of the Hamiltonian of the ammonia

system. after which, we will use the indicator of quantumness (or non-classicality)

to control tunneling in this system. As we already know that Ammonia System is a

tunneling system. In the work by Kenfack [6], he studied a simple indicator of non-

classicality, which depend on the negative part of the Wigner function to explore

few quantum state.

Similar quantities related to the volume of the negative part of theWigner func-

tion were used in [60, 62] to describe the interference effects which determine the

departure from classical behaviour.

Furthermore, a closely related approach was recently advocated by Benedict and

collaborators [63, 64]. Their measure of the non-classicality of a state |ψ〉 reads

v(ψ) = 1− I+(ψ)− I−(ψ)

I+(ψ) + I−(ψ)
(2.3)

where I+(ψ) and I−(ψ) are the moduli of the integrals over those domains of the

phase space where the Wigner function is positive and negative respectively. The

normalization condition implies I+−I− = I+, so that v = 2I−/2I− + 1 leads to 0 ≤ v<1.

Now, by using this notation, we may rewrite equation(2.2) as δ = I+ + I−− 1 = 2I−

and obtain a simple relation between both quantities.

v =
2I−

1 + 2I−
=

δ

1 + δ
(2.4)

with δ = v
1−v . It turns out that both quantities are equivalent in the sense that

they induce the same order in the space of pure states: the relation δ(ψ1)>δ(ψ2).

However, from a practical point of view there exists an important difference between

both quantities. To compute explicitly the quantity in equation (2.4), one faces a

difficult task to identify appropriately the domains in which the integration has to be
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carried out. In this indicator of quantumness proposed by Kenfack [6], by knowing

the Wigner function W (x, p) of a quantum state, one can easily and simply get its

absolute value and evaluate numerically the integration in equation(2.2).

2.2.1 Test of Indicator of quantumness on Schrödinger cat

state

The Schrödinger cat state owes its name to the Schrödinger’s famous Gedankenex-

periment [42]. In this experiment, the cat paradoxically turns out to be simulta-

neously in two macroscopically distinguishable states, namely dead and alive. The

Schrödinger cat state is then defined as a superposition of two such states [37]. In

Kenfack’s work [6], he constructed similar ‘cat states’ by choosing two coherent states

φ± localized in two distant points of the configuration space, ±qo. The wavefunction

of such a state reads in the position representation

ψ(q) =
N√

2
[φ+(q) + φ−(q)] (2.5)

where

φ±(q) =
(mω
π~

) 1
4

exp
(
−mω

2~
(q ± qo)2 + i

po
~

(q ± qo)
)

(2.6)

the atomic units were used (m = ~ = ω = 1) in order words, the size of pq were

measured in units of ~. The classical limit ~→ 0 means the action pq characteristic

of the system many orders of magnitude larger than ~. equation (2.6) reveals that

the phase, governed by po, is of great importance in that it induces oscillations on

the wavefunction. It should be noted that the normalization constant N depends

solely on the location of the centres (qo, po) of both coherent states that make up

the cat state. One can clearly see that the Wigner function may depend not only

on the distance 2qo between both states, but also on their momentum, po. So far,

the studies on the cat states [34] have usually been restricted to the case of standing

cats, po. In Kenfack’s paper [6], he demonstrated that the parameter po influences

the shape of the Wigner function, in particular, if qo ≈ 1 and both packets are not

spatially related.

by inserting equation 2.6 into eqn 2.5, we obtain

Wψ(q, p) = W+(q, p) +W−(q, p) +Wint(q, p) (2.7)

here

W±(q, p) =
N2

2π
exp(−(q ± qo)2 − (p− po)2) (2.8)
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represents two peaks of the distribution centred at the classical phase point (±qo, po),
while

Wint(q, p) =
N2

π
cos(2pqo) exp(−q2 − (p− po)2) (2.9)

stands for the interference structure which appears between both peaks. Nor-

malizing equation 2.2 yields

N = (1 + cos(2poqo) exp(−q2o))−1/2 (2.10)

making use of the equation 2.3 for the wigner function of the cat state |ψ〉, its

non-classicality parameter is given as

δ(ψ) =

∫∫
| W+(q, p) +Wint(q, p) +W−(q, p) | dqdp− 1 (2.11)

Check the appendix for detailed calculation of how this was solved and the python

code I use to generate the result. In chapter 4, the results of the indicator of

quantumness is displayed.

2.3 Double Well Potential

The double well potential has a number of applications; it is applied in the mod-

elling of the ammonia potential [69] in studies involving ionization energy, quantum

tunnelling to study a particle moving in a region of more than one constant potential

[70] and ring puckering potential function, [71], where in chemistry a ring molecule

is a molecule made up of several series of atoms bonded together to form a ring or

cycle. Therefore ring puckering/gathering is the study that analyses the anharmonic

energies that results from ring puckering/gathering vibrations. The double-well po-

tential, though there are several functional forms, is usually in the form of,

V (x) = αx2 + βx4

with α<0, the barrier height and β>0,the steepness parameter. Despite the different

functional forms of the double-well, the potential always has the following basic

shape.
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Figure 2.2: Double Well Potential

One notices that near the two local minima, the potential looks similarly to the

harmonic potential. The height of the potential barrier at the center is represented

by α but it is also affected by β, taken as the steepness parameter. As α → ∞the

barrier height becomes infinite and the system decomposes into two independent

components(almost harmonic potential but not, due to the quartic term), separated

from each other. Harmoniously , the wave function of the system should tend to two

split up sets of wave functions. If α is no longer infinite, a particle in either of the

left or right hand region, has a non-zero tunnelling probability, that is tunnelling

through the barrier to the other well. And therefore the wave functions for the

left and right hand region are mixed with each other. Since the action will be

symmetric ,x→ −x, the solutions for the Schrödinger equation can be broken up in

to symmetric and antisymmetric wave functions. Usually the symmetric states have

a lower energy compared to the antisymmetric states (since fewer number of nodes

implies less kinetic energy for the particle). But this difference in lower energies is

usually very small (slightly non-degenerate) and it gets more smaller and smaller as

we increase α [72].

For instance, we take the example of Ammonia inversion. It is used to explain

the inversion of the ammonia molecules, nitrogen and two hydrogen molecules. The

hydrogen atoms forms a plane and at any given time, the nitrogen can be above

or below the plane (quantum tunnelling). The position x, represent the position

above or below this plane and the potential barrier is represented by the energy gap

between the states of the positions of the nitrogen (above or below), see [73].

With the above arguments, we are bound to encounter interesting results, that

there will be two slightly ordered pair non-degenerate energy levels for the system
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This means that the wave functions for ordered pairs of eigenvalues will be symmetric

and asymmetric of each other and this effect will be more pronounced at a larger

barrier height. Using this well known argument, we use the matrix method to

confirm them.
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CHAPTER 3

METHODOLOGY

3.1 Ammonia System

The phenomenon of tunneling is investigated for symmetric double-well potential

perturbed by a monochromatic driving force. The analysis is based on a numerical

treatment of the quantum map that propagates the system over one period of the

external force, and of the spectrum of its eigenphases (quasienergies). The variety in

the quasienergy spectrum, such as exact and avoided crossings, leads to novel forms

of tunneling. In 1927, Hund [] demonstrated that quantum tunneling is of impor-

tance for intramolecular rearrangements in pyramidal molecules such as ammonia,

as manisfested by tunnel splitting of vibrational spectra. We want to study the

influence of periodic on such tunnel model. The Hamiltonian defining the Ammonia

System is

H(x, p) =
p2

2
− 1

4
x2 +

x4

64D
(3.1)

We make use of the dimensionless units. In the above expression, D is the barrier

height and it is given as D = EB

~ωo
. EB is in units of ~ωo, with ωo denoting the angular

frequency of harmonic oscillations on the bottom of each well, and t is measured

in units of the corresponding period 2π
ωo

. This model Hamiltonian is of general

interest: It characterizes the Physics of a wide class of systems, such as the transfer

of hydrogen in atoms and molecules along chemical bond [65], the transport of

hydrogen isotopes or muons between interstitial sites in metals [66] and macroscopic

quantum coherence phenomena in SQUIDs [67, 68].

In this project, we attempt to gain insight into the deep quantum regime of this

system. Meaning that we focus on the parameter range of low barriers, such that

D is of order of unity and in the corresponding unperturbed problem, there are

only a few levels below the barrier.The concept of autocorrelation function (i.e the

probability to stay), local spectrum and quantum chaos was adopted.
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3.2 Propagator of Hermitian operator

3.2.1 Time Dependence

The time evolution of any state is governed by Schrödinger’s equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (3.2)

It should be noted that in quantum mechanics, time, t, plays a fundamentally dif-

ferent role than the position, q̂, or momentum, p̂. The latter two are represented by

operators that act on the states, while time is treated as a parameter. The state of

the system depends solely on the parameter, t, but makes no sense to have a state

that depends on an operator like q̂. That is to say, |ψ(t)〉 is well defined but |ψ(q̂)〉
is not.

in most cases, the dependence on time t is understood and the short-hand version

of the Schrödinger’s equation:

i~ |ψ̇n〉 = Ĥ |ψ〉 (3.3)

Now, we want to know how the eigenstates of the Hamiltonian (i.e energy eigen-

states) evolves with time. Applying Schrödinger’s equation,

i~ |ψ̇n〉 = Ĥ |ψn〉 = En |ψn〉 (3.4)

This is a first order differential equation for |ψn(t)〉 and it is easily verified that the

general solution is:

|ψn(t)〉 = e−
iEnt

~ |ψn(0)〉 (3.5)

Thus, if the system starts in an energy state, it will remain in this eigenstate.

The only effect of the time evolution is to multiply the state by a time-dependent

phase factor e−
iEnt

~ . Since an overall phase factor cannot influence the outcome of

an observation, from an experimental perspective, energy eigenstates do no change

with time. It is therefore a ”stationary state”. This motivates our interest in finding

energy eigenstates for arbitrary Hamiltonians; any other state has the potential to

change between observations, but a stationary state lives forever if we do not disturb

it.

3.2.2 The Propagator Governs Time Evolution

It is trivial to determine |ψ(t)〉 if the system begins in a stationary state. The

question is ”What if the initial state is not an eigenfunction of the Hamiltonian?”
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How do we evolve an arbitrary |ψ(t)〉 As we shown below, time evolution is governed

by the propagator,

Û(t) ≡ e−
iĤt
~ (3.6)

in terms of which the time evolved state is given by

|ψ(t)〉 = Û(t) |ψ(0)〉 (3.7)

Û(t) takes any state and evolves that state forward to time t according to the

Schrödinger’s equation.

3.3 Matrix Transformation for the Hamiltonian

of Ammonia System

As already be defined, the hamiltonian of the Ammonia system reads

H(x, p) =
p2

2
− 1

4
x2 +

x4

64D
(3.8)

where D is the barrier height . It should also be noted that equation can be

written as

Hψn = Eψn (3.9)

Now, we need to solve equation (3.1) to get the eigenvalues and the corresponding

eigenvectors. We start by setting

x =
1√
2

(a+ + a−) and p =
d

dx
=

1√
2

(a− − a+) (3.10)

by substituting equation (3.4) into equation(3.1), we obtain

H(x, p) = −1

4
(a− − a+)2 − 1

4

(
1√
2

(a+ + a−)

)2

+
1

64D

(
1√
2

(a+ + a−)

)4

(3.11)

H(x, p) = −1

4
(a− − a+)2 − 1

8
((a+ + a−))2 +

1

256D
((a+ + a−))4 (3.12)

but

a− =



0 1 0 0 . . .

0 0
√

2 0 . . .

0 0 0
√

3 . . .

0 0 0 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .


(3.13)
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a+ =



0 0 0 0 . . .

1 0 0 0 . . .

0
√

2 0 0 . . .

0 0 0
√

3 . . .
...

...
...

...
. . .

0 0 0 0 . . .


(3.14)

a− − a+ =



0
√

1 0 0 . . .

−
√

1 0
√

2 0 . . .

0 −
√

2 0
√

3 . . .

0 0 −
√

3 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .


(3.15)

in the same vein,

a+ + a− =



0
√

1 0 0 . . .
√

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .


(3.16)

Substituting equation(3.9) and (3.10) into equation 3.6, we obtain

H = −1

4



0
√

1 0 0 . . .

−
√

1 0
√

2 0 . . .

0 −
√

2 0
√

3 . . .

0 0 −
√

3 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .



2

− 1

8



0
√

1 0 0 . . .
√

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .



2

− 1

256D



0
√

1 0 0 . . .
√

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .

0 0
√

3 0 . . .
...

...
...

...
. . .

0 0 0 0 . . .



4
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as can be seen, the Hamiltonian of the Ammonia system has been transformed to

the matrix form. To get the eigenvalues and the eigenvectors of this matrix analyti-

cally will be very difficult especially for highs dimension of the matrix. Analytically,

I solved for 4X4, 3X3, and 2X2, matrices to get the eigenvalues and the correspond-

ing eigenvectors. The results were confirmed analytically using Sagemath. After the

confirmation of the results, we then extend to solve the eigenvalues and the corre-

sponding eigenvectors of N dimension matrices. Where N can be any positive real

number greater than one.

3.4 Sagemath code for the Numerical Solution of

the Hamiltonian

Given that we are dealing with matrices, the first thing we have to do is to specify the

dimensions of the matrix that we want to achieve. Let N represent the dimension.

Note that we are only dealing with square matrices, N x N. But since we have

matrices for the lowering, raising, and Hamiltonian matrix, it is best we start with

defining the ladder operators first.

#modules that we will use for plotting the wave functions

import numpy as np

import math as m

###########################################################

def double_w2(N,n,D):

l_op=matrix(RDF,(N)) #creates an N by N matrix of zeros

#we then fill the initial matrix with the correct entries

for i in range(l_op.nrows()):

for j in range(l_op.ncols()):

if i <> j-1:

l_op[i, j] = 0

else:

l_op[i, j] = sqrt(j)

#########################################################

r_op=matrix(RDF,(N)) #creates an N by N matrix of zeros

#we then fill the initial matrix with the correct entries

for i in xrange(r_op.nrows()):

for j in xrange(r_op.ncols()):

28



if i <> j+1:

r_op[i, j] = 0

else:

r_op[i, j] = sqrt(j+1)

########################################################

A=r_op+l_op;B=l_op-r_op

########################################################

def H(A,B,list):

a=-0.25*B**(2) #evaluates the first part of the summation of H

b1=-0.125*A**(2)

b2=0.015625*0.2*D*A**(4)

return a+b1+b2

########################################################

#calculates and returns the eigen values

def eva(A,B,list):

mat = H(A,B,list)

ls=mat.eigenvalues()

ls.sort()

return ls

########################################################

#calculates and returns the eigen values

def evec(A,B,list):

mat = H(A,B,list)

ls=mat.eigenvectors_left()

ls.sort()

return ls

#######################################################

def coefficients(A,B,list,n):

eigenvectors = evec(A,B,list)

List = eigenvectors[n][1][0].list()

return List

#######################################################

#######################################################
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def hermite(n):

var(’x’)

if n==0:

return 1

else:

return (-1)**(n)*np.exp(x**(2))*derivative(np.exp(-1*(x**(2))),x,n)

#########################################################

#wave functions for the simple Harmonic Oscillator

def wave_function(n):

pn = 1/(np.pi**(4))*(1/np.sqrt(2**(n)*m.factorial(n)))*hermite(n)*np.

↪→ exp(-((x)**(2))/2)

return pn

#########################################################

def wave_function_new(A,B,list,n):

x = var(’x’) #variable x

CI = coefficients(A,B,list,n)

pn = 0 #iniatialises the wavefunctin, equation 1.3

for i in range(len(CI)):

pn = pn + CI[i]*wave_function(i)

return pn #the wavefunction for a given level n

###########################################################

y = wave_function_new(A,B,[0,0,-1*D,0,0],n)

return plot(y,(x,-10,10),legend_label="Energy level %d" %(n), color =

↪→ hue(0.1*n))

return evec(A,B,[0,0,-1*D,0,0.2])

def doub(N,n,D):

figure = graphics_array(((double_w2(N,n,D)+double_w2(N,n+1,D),

↪→ double_w2(N,n+2,D)+double_w2(N,n+3,D)), (double_w2(N,n+4,D)+

↪→ double_w2(N,n+5,D),double_w2(N,n+6,D)+double_w2(N,n+7,D)),(

↪→ empty,empty)))

return figure.show(figsize = [10,10])

double_w2(30,0,4.3)
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results of non-classicality indicator showing

the quantumness of a Schrodinger Cat State
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The figures above showed the plots of the Wigner function of the cat states for several

values of the separation qo and the momentum po.One can clearly see the formation of

the quantum interference structure halfway between the two humps as the separation

distance qo increases. The frequency of the interference structure increases with the

separation. For intermediate separations (0 < qo 6 4), the Wigner function changes

its structure with po as shown in figure b and d above. In the case of standing cats

po = 0, the indicator increases monotonically with the separation qo, and reflects

the presence of the interference pattern at qo = 0. The growth of the nonclassicality

saturates at qo ≈ 4, as the interference patterns become practically separated from

both peaks, and parameter δ tends to the limiting value, δmax ≈ 0.636.

The python code that generated this result is shown in Appendix A.2
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4.2 EigenValues of the Ammonia System

level n En, D = 0.6 En, D = 2 En, D = 4.3

0 -1.5996026637742005 -0.23989769946841885 0.0012448675099148107

1 -1.5994780323149402 -0.12851278556529844 0.34488305213777404

2 -0.7152002068804574 0.43741395914869696 1.065307812791431

3 -0.704970406885417 0.9631474872240787 1.8921767319973726

4 -0.06719356717834728 1.6242594500994405 2.8413659533604205

5 0.09635906023750233 2.3616186834033983 3.886202558206958

6 0.5309999381359086 3.1680579818635257 5.013748108452283

7 0.947046025019612 4.0345299851867615 6.214361610901761

8 1.4311467606023378 4.954813977345615 7.480794864195151

9 1.9529839490776302 5.924030685676718 8.80733437086849

10 2.5121734546719887 6.938268247431709 10.189397129349661

11 3.095945116482782 7.9942874397075325 11.62300451045438

12 3.3985971540757043 9.089398792751739 13.104879631918923

13 3.7257035502317892 10.220968279130082 14.610116948544468

14 4.380214090897581 11.387636815175291 16.163031369506054

15 5.05244572687154 12.175536535226875 16.205717169459685

16 5.754544754121348 12.636797546090813 17.82749951274338

17 6.4728743548878285 13.819056394996759 19.450967921247557

18 7.285860803321794 15.088447385269955 21.57570083504065

19 7.929372370597309 16.371194396304425 22.876645441747172

20 9.124294988624456 17.807873928097933 25.103192122682866

21 9.473971955551193 18.950681413254408 25.93480906613931

22 11.423929451766353 20.810227400611776 33.15582190346988

23 11.480216553254438 22.11104785331129 34.138434499120734

24 14.170408285348529 23.729196139769414 47.33931810670286

25 14.326882571147868 23.94970916815751 48.31857639726889

26 17.72993260405349 30.0777454324631 70.06774712091088

27 18.076804496024288 30.730934415268457 71.03222640470486

28 22.73837588362689 45.42734282931892 108.9474217458324

29 23.306610978403505 46.271687862747854 109.90369723273429

Table 4.1: Table of eigenvalues,En, at different barrier heights D
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From table (4.1), one can clearly see that as the Barrier is very small i.e D = 0.6,

the system behaves exactly like double well potential having degeneracies. At D =

2, the system behaves exactly as Ammonia System having two bound state as can

be seen from the result below. This result is generated by Fourier Grid Hamiltonian

method. Check appendix A.3 and A.3.1 for more details.

Finally as D becomes large, the system behaves exactly as Harmonic Oscillator

(No bound states and No degeneracy). We now investigate the corresponding eigen-

functions/wave functions. The wave functions for ordered pairs of eigenvalues will

be symmetric and asymmetric of each other and this effect will be more pronounced

at a larger barrier height. Below are the results of wave functions for some energy

levels.

When The ground state Energy is zero, we have the following results
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Figure 4.1: Wavefunction of Ammonia System for groundstate at D = 2

Figure 4.2: Wavefunction of Double Well System for groundstate at D = 0.6
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Figure 4.3: Wavefunction of Harmonic Oscillator for groundstate at D = 4.3

For the first excited state energy, we have the following results

Figure 4.4: Wavefunction of Ammonia for First excited state at D = 2
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Figure 4.5: Wavefunction of Double Well for First excited state at D = 0.6

Figure 4.6: Wavefunction of Harmonic Oscillator for First excited state at D = 4.3

For the second excited state energy, we have the following results
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Figure 4.7: Wavefunction of Ammonia System for Second excited state at D =2

Figure 4.8: Wavefunction of Double Well for Second excited state at D =0.6
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Figure 4.9: Wavefunction of Harmonic Oscillator for Second excited state at D

=4.3

For the Third excited state energy, we have the following results

Figure 4.10: Wavefunction of Ammonia System for Third excited state at D =2
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Figure 4.11: Wavefunction of Double Well for Third excited state at D =0.6

Figure 4.12: Wavefunction of Harmonic Oscillator for Third excited state at D

=4.3

The result of the quartic double well potential describing our system is shown
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Figure 4.13: Double Well Potential

by setting an initial wavefunction at the left of the potential to be ψin = 1√
2
(ψo−

ψ1) we obtained

Figure 4.14: Double Well Potential
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CHAPTER 5

CONCLUSION

What we are actually trying to do is to get the initial wavefunction and use a split

operator method to get the evolution of the wavefunction. after which, we will get

the corresponding Wigner Function of the evoluted wavefunction. We will then take

the absolute squared of the Wigner Function since the indicator of non-classicality

depends solely on this. Finally, this indicator of non-classicality will make us to have

full control over tunneling in this system(i.e Ammonia System)
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APPENDIX A

CODES AND CALCULATIONS

A.1 Detailed solution of Schrodinger cat state

ψ(q) =
N√

2
[φ+(q) + φ−(q)] (A.1)

where

φ±(q) =
(mω
π~

) 1
4
exp

(
−mω

2~
(q ± qo)2 +

ipo
~

(q ± qo)
)

(A.2)

using the atomic unit m = ~ = ω = 1, equation (2) can be written as

φ±(q) =

(
1

π

) 1
4

exp

(
−1

2
(q ± qo)2 + ipo(q ± qo)

)
(A.3)

but the Wigner Function of a state |ψ〉 is defined by

Wψ(q, p) =
1

2π

∫ ∞
−∞

dx
〈
q − x

2
|ψ〉 〈ψ| q +

x

2

〉
exp(ipx) (A.4)

substituting equation (1) into equation (iv) gives

Wψ(q, p) =
N2

4π

∫ ∞
−∞

dx
〈
q − x

2
|φ+ + φ−〉 〈φ+ + φ−| q +

x

2

〉
exp(ipx) (A.5)

Wψ(q, p) =
N2

4π

∫ ∞
−∞

dx
[〈
q − x

2
|φ+〉 〈φ+| q +

x

2

〉
+
〈
q − x

2
|φ+〉 〈φ−| q +

x

2

〉
+
〈
q − x

2
|φ−〉 〈φ+| q +

x

2

〉]
+

+
[〈
q − x

2
|φ−〉 〈φ−| q +

x

2

〉]
exp(ipx)

This can be written in a reduced form as

Wψ(q, p) =
N2

4π

{∫ ∞
−∞

dxI1 +

∫ ∞
−∞

dxI2 +

∫ ∞
−∞

dxI3 +

∫ ∞
−∞

dxI4

}
exp(ipx) (A.6)

W1 =

∫ ∞
−∞

dxI1exp(ipx), W2 =

∫ ∞
−∞

dxI2exp(ipx), W3 =

∫ ∞
−∞

dxI3exp(ipx), and so on
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where

I1 =
〈
q − x

2
|φ+〉 〈φ+| q +

x

2

〉
, I2 =

〈
q − x

2
|φ+〉 〈φ−| q +

x

2

〉
I3 =

〈
q − x

2
|φ−〉 〈φ+| q +

x

2

〉
, I4 =

〈
q − x

2
|φ−〉 〈φ−| q +

x

2

〉
Now, we want to solve I1, I2, I3, I4. Recall that from equation three we have

φ±(q) =

(
1

π

) 1
4

exp

(
−1

2
(q ± qo)2 + ipo(q ± qo)

)
Therefore〈

q − x

2
|φ+

〉
=

(
1

π

) 1
4

exp

{
− 1

2

(
(q − x

2
) + qo

)2
+ ipo

(
(q − x

2
) + qo

)}

〈
φ+|q +

x

2

〉
=

(
1

π

) 1
4

exp

{
− 1

2

(
(q +

x

2
) + qo

)2
− ipo

(
(q +

x

2
) + qo

)}

〈
q − x

2
|φ+

〉〈
φ+|q +

x

2

〉
=

(
1

π

) 1
2

exp

{
−1

2

{(
(q − x

2
) + qo

)2
+
(

(q +
x

2
) + qo

)2}
−ipox

}

I1 =
〈
q − x

2
|φ+

〉〈
φ+|q +

x

2

〉
=

(
1

π

) 1
2

exp

{
−
(

(q + qo)
2 +

x2

4

)
− ipox

}
(A.7)

in the same vein,

I2 =
〈
q − x

2
|φ+

〉〈
φ−|q +

x

2

〉
=

(
1

π

) 1
2

exp

{
−
(
q2 − x2

4

)
+ ipo(−x+2qo)

}
(A.8)

also,

I3 =
〈
q − x

2
|φ+

〉〈
φ−|q +

x

2

〉
=

(
1

π

) 1
2

exp

{
−
(
q2 − x2

4

)
+ ipo(−x−2qo)

}
(A.9)

finally,

I4 =
〈
q − x

2
|φ−
〉〈

φ−|q +
x

2

〉
=

(
1

π

) 1
2

exp

{
−
(

(q + qo)
2 +

x2

4

)
− ipox

}
(A.10)

Therefore,

W1 =

∫ ∞
−∞

dxI1exp(ipx) =
1√
π

∫ ∞
−∞

dxexp

{
−
(

(q + qo)
2 +

x2

4

)
− ipox

}
exp(ipx)
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W2 =

∫ ∞
−∞

dxI2exp(ipx) =
1√
π
exp

{
−
(
q2 − x2

4

)
+ ipo(−x+ 2qo)

}
exp(ipx)

W3 =

∫ ∞
−∞

dxI3exp(ipx) =
1√
π
exp

{
−
(
q2 − x2

4

)
+ ipo(−x− 2qo)

}
exp(ipx)

W4 =

∫ ∞
−∞

dxI1exp(ipx) =
1√
π

∫ ∞
−∞

dxexp

{
−
(

(q − qo)2 +
x2

4

)
− ipox

}
exp(ipx)

Recall ∫ ∞
−∞

exp(−1

2
ax2 + iβx)dx =

√
2π

a
exp

(
−β

2

2a

)
(A.11)

we then have

W1 = 2e−(q+qo)
2−(p−po)2 (A.12)

W2 = 2e2ipoqoe−q
2−(p−po)2 (A.13)

W3 = 2e−2ipoqoe−q
2−(p−po)2 (A.14)

W4 = 2e−(q−qo)
2−(p−po)2 (A.15)

Now, let’s substitute W1,W2,W3,W4 into equation (6)

Wψ(q, p) =
N2

4π

[
2e−(q+qo)

2−(p−po)2 + 2e2ipoqoe−q
2−(p−po)2 + 2e−2ipoqoe−q

2−(p−po)2 + 2e−(q−qo)
2−(p−po)2

]
(A.16)

Wψ(q, p) =
N2

2π

[
e−(q+qo)

2−(p−po)2 + e−(q−qo)
2−(p−po)2

]
+
N2

π
cos(2poqo)e

−q2−(p−po)2

(A.17)

A.2 Python code for Schrödinger cat state using

indicator of non-classicality

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm
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dq = 0.01

dp = 0.01

q = [i for i in np.arange(-10,10+dq,dq)]

p = [j for j in np.arange(1,7+dp,dp)]

s1 = 0.0

q_0 = 6.0

p_0 = 4.0

N = (1+np.cos(2*p_0*q_0)*np.exp(-(q_0)**2))**-0.5

for i in range(len(q)):

for j in range(len(p)):

s1+= abs(N**2/(2*np.pi)*(np.exp(-(q[i]+q_0)**2 - \

(p[j]-p_0)**2))+N**2/(2*np.pi)*(np.exp(-(q[i]-q_0)**2 - (p[j]-p_0)

↪→ **2))+\

N**2/np.pi*np.cos(2*p[j]*q_0)*np.exp(-q[i]**2-(p[j]-p_0)**2))

s1 = s1*dq*dp

print(s1-1.0)

fig = plt.figure(figsize=(10,10))

ax = fig.add_subplot(111, projection=’3d’)

# Make data.

N = (1+np.cos(2*p_0*q_0)*np.exp(-(q_0)**2))**-0.5

q, p = np.meshgrid(q, p)

W1 = N**2/2*np.pi*(np.exp(-(q+q_0)**2 - (p-p_0)**2))

W2 = N**2/2*np.pi*(np.exp(-(q-q_0)**2 - (p-p_0)**2))

W3 = N**2/2*np.pi*(2*np.cos(2*p*q_0)*np.exp(-(q)**2-(p-p_0)**2))

W = W1 + W2 + W3

print(type(W))
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# Plot the surface.

surf = ax.plot_surface(q, p, W)

# Customize the z axis.

ax.set_xlabel(’q’)

ax.set_ylabel(’p’)

ax.set_zlabel(’W’)

plt.show()

A.3 The Fourier Grid Hamiltonian method

The method computes the matrix elements of the kinetic energy operator in position

representation analytically. For position-dependent potentials, the potential energy

operator is diagonal in position representation. Both terms are added to obtain the

symmetric Hamiltonian matrix, which is diagonalised to obtain both eigenvalues and

eigenvectors (wavefunctions in position representation).

A.3.1 Fourier Grid Hamiltonian Code

from itertools import cycle

import numpy as np

import matplotlib.pyplot as plt

from scipy.linalg import eigh

from scipy.integrate import simps

%load_ext Cython

%%cython

# cython: boundscheck=False

# cython: cdivision=True

# cython: wraparound=False
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import numpy as np

cimport numpy as np

cpdef H_cont(double L, double[:] V):

cdef int N = len(V)

cdef np.ndarray[dtype=double, ndim=2] Hij = np.zeros([N, N])

cdef double K, pi = np.pi

cdef int i, j

K = pi/(L/N) # pi/dx

for i in range(N):

for j in range(i+1):

if i == j:

Hij[i, j] = 0.5*K**2/3. + V[i]

else:

Hij[i, j] = K**2/pi**2 * (-1.)**(j-i)/(j-i)**2

Hij[j, i] = Hij[i, j] # use Hermitian symmetry

return Hij

pot = lambda x: x**4/64 - x**2/4 # potential function callable

N = 2**10 # number of samples in discretization

L = 10. # length of x support

x_vals = np.linspace(-L/2, +L/2, N, endpoint=False)

V_sampled = pot(x_vals)

H_sampled = H_cont(L, V_sampled)

# diagonalize the Hamiltonian matrix:

E, psi = eigh(H_sampled)

# quick and dirty visualization:
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N_plot_min = 0 # quantum number of first eigenfunction to plot

N_plot = 6 # number of eigenfunctions to plot

WF_scale_factor = (np.max(V_sampled) - np.min(V_sampled))/N_plot

plt.plot(x_vals, V_sampled, ls="-", c="k", lw=2, label="$V(x)$")

style_cycler = cycle(["-", "--"]) # line styles for plotting

color_cyler = cycle(["blue", "red", "gray", "orange", "darkturquoise"

↪→ , "magenta"])

for i in range(N_plot_min, N_plot_min+N_plot):

# physically normalize WF (norm = 1)

WF_norm = simps(np.abs(psi[:,i])**2, x=x_vals)

psi[:,i] /= np.sqrt(WF_norm)

# higher energy --> higher offset in plotting

WF_plot = WF_scale_factor*np.abs(psi[:,i])**2 + E[i] # also try

↪→ plotting real part of WF!

plt.plot(x_vals, WF_plot, ls=style_cycler.next(), lw=1.5, color=

↪→ color_cyler.next(),

label="$\psi_{}(x)$".format(i))

print("E[%s] = %s"%(i, E[i]))

plt.xlabel("$x$")

plt.legend(loc="best")

plt.show()
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