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ABSTRACT

We theoretically investigated a phenomena arising from the interaction of femtosecond
pulsed lasers with an Hydrogen atom. The phenomena of interest to us, is the High or-
der Harmonic Generation (HHG) of soft and hard-Xray using linearly polarized two-color
femtosecond laser pulses. This HHG process is a commonly employed technique to pro-
duce ultrashort intense light spanning through the ultraviolet to the x-ray region of the
Electromagnetic Spectrum (EM). The development of HHG which has opened fascinat-
ing research at sub- atomistic scale is however been delimited by its lower higher-order
harmonics, and the possibility of obtaining a single burst of attosecond (which is of high
important, since significant amount of the laser energy are carried by single pulses) are
been compromised. We began addressing this challenge, by solving the 1D non-relativistic
Schrödinger equation for an H atom using the dipole approximation, whose solution was
obtained by the split operator method. We separately computed the HHG spectrum due
to a Titanium-Sapphire (fundamental field) and an arbitrary pulsed laser (secondary field)
in the far-visible region. When the fundamental Ti:Sapphire laser field with the param-
eters; 800 nm, 2×1014W/cm2 and 10 cycles, were allowed to irradiate the H atom, we
observed a train of 1330 as pulses extending from the 8th - 36th harmonic order, and whose
energy measured 12 eV -55.8 eV . By considering the interaction of a similar Ti:Sapphire
laser, with a different intensity of 4×1014W/cm2, we observed a train of 677 as pulses
extending from the 25th - 75th harmonic order and whose energy measured 39 eV - 116 eV .
When the secondary laser source in the far visible region with the parameters; 400 nm,
5×1014W/cm2 and 20 cycles irradiated the H atom, a train of 1209 as pulses extending
from the 28th - 50th harmonic order, and whose energy corresponds to 87 eV - 155 eV was
generated. Furthermore, by synthesizing the fundamental and secondary laser, and upon
irradiation with the H atom, an HHG spectrum with a broad plateau whose energy spans
through the ultraviolet region up to the hard X-ray region was observed. The broadness
of the plateau implies the generation of short pulses, which also represents a clear indica-
tion of the possibility of obtaining a single attoseconds pulse. Though by considering a
time delay in the synthesized laser there weren’t obvious change of our results, we finally
obtained a continuum of an abrupt end at the 685th order corresponding to a single pulse
of 1.044 keV of energy with a short time duration of 169 as.

Keywords: Attosecond pulses, femtosecond pulses, High order Harmonic Generation,
laser fields, spectrum, H atom.
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INTRODUCTION

Over the years, the need to probe into smaller dimensions became necessary. Activi-
ties happening in very small time scales have successfully been exploited using lasers [1].
Lasers are ultra fast and strong electromagnetic field with time duration in the order of
10−15s and 10−18s. These ultra fast light are employed to probe into processes occur-
ring within atoms and molecules [2]. Lasers have found wide applications in the areas
of inhibiting cancerous cells growth, coherent diffractive imaging in microscope, tracing
chemical reaction, monitoring/control of electron dynamics in atoms to mention a few [3].

Our main interest of laser application will be limited to research purposes, where lasers
have been employed to follow ultra fast inner shell electron dynamics. Lasers with time
scale of the order of 10−18s otherwise reffered to as attoseconds lasers are used to investi-
gate these phenomena which occur in time scales shorter than 1 femtosecond[3]. Quite a
number of techniques have been devised to produce attoseconds lasers, to include spon-
taneous emission from free electron lasers, Thompson scattering process and High-order
Harmonic Generation(HHG) from gaseous and solid surfaces [3]. So far, HHG is the most
promising way to produce attosecond extreme ultraviolet pulses, owing to the use of mod-
erate intensity of incident light pulses compared to other technigues [4]. HHG occurs when
a moderate intense femtosecond laser field interacts with an atomic gas target in such a
way as to cause suppression of the soft-core arms of the gases. The gas medium responds
in a highly non-linear way by generating radiation with higher frequencies co-propagating
with the fundamental laser beam. The resulting spectra will consist of odd multiples of
the the fundamental frequency [3].

The HHG process predominantlly gives rise to the production of train of attosecond pulses.
However, the interest of researchers are in the production of a single burst of attoseconds
rather than a train of pulses, and this has been realisesd via temporal gating, spatial
gating and spatio-temporal gating. The HHG process is well understood from the 3 step
semiclassical model developed by Lewestein et al. for linearly polarized field, and which
was later extended by Milosevec to include elliptically polarized field [4, 5]. Under the
3-step model, electrons ionizes from the (ground state) coulombic atomic attraction by
tunneling, onces in the continuum, the laser field propagates the electron forth and back,
thereby making several collisons with the atomic core, with the result that high intense
and ultrashort pulses are generated. These pulses have energies in the extreme and X-ray
region. The ability of the HHG process to convert light of a given wavelength into ex-
treme ultraviolet/x-ray light (which is of lower wavelenght) is measured by it conversion
efficiency. Recent research have been geared towards improving the non-linear conversion
efficiency of the HHG process to make this process favourable over other pathways leading
to attosecond pulse generation [6].

By interacting a single laser beam with the gas system, attoseconds pulses of energies
within the extreme ultraviolet region of the EM spectrum have been generated. How-
ever, inorder to extend the pulses energy beyong the extreme ultraviloet region into
the hard X-ray, researchers have done several works by superimposing two distinct laser
beam(different frequencies/colours) on a gas system. It is also worth noting that the
optimization of this two color mixing technique have been achieved through time delay,
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intensity variation and phase difference between the interating laser sources. This opti-
mization technique has resulted to the generation of short time duration pulses of 100-200
as [6, 7, 8, 9].

Our aim in this research is to explore and implement a handful of the two colour
technique mixing of incident femtosecond lasers (800 nm), with a 400 nm femtosec-
ond lasers, which to the best of our knowledge, has not yet been utilized. Both laser
sources, Titanium-Sapphire (800 nm) and 400 nm laser have been successfully generated
experimentally[10].

This work have been systematically arranged into five chapters. Chapter one focuses
on the basic fundamentals of lasers. The Chapter discusses the principles of femtosecond
laser generation, properties of lasers and their mathematical representation. Chapter two
is centered on HHG process. It describes the manner in which the femtosecond lasers in
Chapter one, are used to generate attosecond pulses through the HHG process. Three
commonly used approaches for explaining the HHG process was examined namely; The
Simple Man’s Model, Strong Field Approximation Model and Direct integration of the
TDSE. While Chapter three examines a number of the techniques that have been em-
ployed to isolate a single attosecond pulse from a train of pulses. Chapter four outlines the
algorithm of the computational simulations involved in the work. It specifies explicitly,
the defination of all terms (grid boundary, absorber potential, soft-core potential, wave-
function and energy) used in the simulation. The results of the work are then presented
in Chapter five. The discussion of the results and their implications in research have
been outlined. Throughout this work atomic units (a.u) are considered (see Appendix
A), unless otherwise stated.

2



CHAPTER 1

FUNDAMENTALS OF LASER

1.1 Basics of Light

Light is a form of energy that provides a visual aid to the human eye. Light enables one
to take full cognisance of his immediate environment. The extent to which a particular
light source can probe into a given surrounding depends on the intensity of such light.
So, light of higher intensity can be more informative than an ordinary light, owing to
their power of greater penetration (high frequency). The Electromagnetic Spectrum of
Figure 1.1 characterizes all forms of light. The frequency increases from left to right, while
wavelength decreases. Typically used femtosecond lasers for HHG processes fall within the
near-Infrared region, while the resulting attosecond pulse, have energies ranging from the
ultraviolet - X ray light region. The radio and micro waves found at the extreme left of the
spectrum are lowest in frequency(energy) but highest in wavelength. The high intensity
components of the spectrum are those located to the extreme right of the spectrum, which
are capable of exploring detailed information about matter [2].

Figure 1.1: The Electromagnetic (EM) Spectrum [17]
.

All natural and artificial light sources can be classified under one of the components
in the spectrum. Solar radiation from the sun has varying proportion of the spectrum
components as shown in Figure 1.2. Majority of the components goes undetected by the
human eye, and only a little portion of the radiation (spanning the visible light region)
are visible to the eye. Though, the other parts of the spectrum remains invisible to the
human eyes, but their effects can be felt. [18].

Each component in the spectrum consists of a magnetic and electric field component,
vibrating at an orientation of right angles to one another. As a common property, to

3



Figure 1.2: Solar Spectrum: 80 percent of the spectrum is occupied by the visible region
[19].

all components, they travel at the speed of light [18]. Laser is however a special light
with some unique properties. Laser light are emitted coherently in space and time. The
photons that makes up laser light are emitted exactly in phase to each other [15]. So
that, their intensities add up, and a narrow light is observed. It will be no mistake to say
that laser light (or simply laser) are ’super light’. Table 1.1 below displays the difference
between an ordinary light and a laser.

Table 1.1: Difference between ordinary and laser light

Properties Ordinary light Laser light
Frequency multiple color monochromatic

Pattern of travel diffuse highly directional
Beam size broad beam diameter pencil-like beam

Intensity and power(within an EM region) moderate high

1.2 Principle of Femtosecond Lasers Generation

Ordinary light (or simply light) is the starting point for laser generation. When light
interacts with matter (a gaseous medium) a repeated sequence of excitation and de-
excitation occurs to produce typically femtoseconds laser [15]. These processes can be
summarized under the following headings;

(a) Absorption of incident photon

(b) Stimulated emission of electrons

(c) De-excitation of irradiated atom (/Spontaneous emission of light)

4



Consider a 2-level system of atoms, which are initially in the ground state. By 2-level,
we mean that the system can exist in two (2) discrete energy state (a lower and a higher
excited state). When light of energy equal to the energy difference between the levels is
incident on the system, the electrons upon absorbing the energy makes a transition to
the excited state. This results to a decrease in the population level of atoms in level 1
(ground state), and a subsequent increase in level 2 (excited state). The relationship
between the population of any two level system at thermal equilibrium is given by the
Boltzmann principle (a fundamental law of thermodynamics);

N2 = N1e
−
(
E2 − E1

kT

)
= N1e

−(
hv

kT
) (1.1)

where N2 and N1 are the population of the upper and lower states, respectively, E2 and E1

are energies corresponding to the upper and lower states respectively, T the equilibrium
temperature, and k the Boltzmann constant, h the Planck’s constant and v the frequency
of light. For a normal population of the atoms, there will always be more atoms in the
lower energy state than in the upper ones. In order to achieve stability after excitation,
the electrons in the excited state will decay to their ground state after the elapse of a
characteristic time defining the time constant of level 2. When such a decay occurs without
the influence of an external field, several photons will be emitted in random directions, in
a process called spontaneous emission. However, these stochastic emission of photons and
the the poorly populated higher energy state are detrimental to the production of lasers.
Achieving a relatively high number of atoms in the excited state requires an induced
process called population inversion. While the naturally decay of electrons to a lower
state can be inhibited, so that stimulated decay occurs with the influence of an external
field, a continous stream of laser production can be sustained [18] as seen in Figure 1.3.

Figure 1.3: A 2-level atomic system[24].

In practice, stimulated decay cannot be achieved with a two (2) level atomic system.
This is due to the fact that the decay life of the excited state are usually very short, so
that the electrons return to their ground state soon after been excited. Therefore, the
possibility of allowing an external field to initiate the decay may not be achieved. The 3
-level atomic system is a realistic system for laser production. It was used to produce the
first type of laser; ruby laser in 1960. The 3 -level system is rather ineffiecient because
of the strong pumping action required to achieve population inversion. But a 4 -level
atomic system is sufficient to achieve stimulated emission, and also population inversion.
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The design of the 4 -level system allows majority of the excited atom to remain in some
intermediate state (level 3) for a longer time before decaying to another state (level 2),
and finally to the ground state. During their stay in level 3, an external photon of en-
ergy equal to the energy difference between level 3 and level 2 will stimulate the atoms
to return to level 2. This process is accompanied by the release of a photon having the
same wavelength, in exactly the same direction and in phase as the stimulating photon.
The emitted photon and the stimulating photon couples together to form laser light with
higher intensity and spatial/temporal coherence. Thus spontaneous emission resulting to
incoherent radiation is avoided. By considering a linear assembly of atoms, the intensity
of the generated laser can be progressively increased by allowing the coupled light from
a previous atom to interact with the next atom in space. The coupled light generated at
each atomic site, would serves as the stimulating photon for the next atoms. The next
atom gets excited and undergoes relaxation to level 2 and subsequently to the ground
state. The de-excitation process will be accompanied by the release of another coupled
light, this new coupled light now couples with the previous one,to produce a 4-coupled
light, with a much higher intensity. These sequential amplification of the laser occurs all
along the assembly of the atoms [18].

In a typical laser set-up as seen in Figure 1.4, there is usually a mirror system used to re-
flect the generated photons (laser), so that they can have the opportunity to interact with
the atom several times, thereby sustaining the process. Though, spontaneous emission of
the excited atoms occus but to a lesser degree, and since their emissions result to fluo-
rescence and do not contribute to laser generation, they are reflected out of the system [15].

Figure 1.4: Principle of femtosecond laser generation[3].

There are quite a number of mechanism employed to achieve population inversion. Optical
pumping, electrical pumping and chemical pumping are among techniques employed. This
involves pumping the active medium (gas target-noble gases)in order to excite the atoms.
The atomic density in the metastable population level concerned with population inversion
and subsequently laser generation is given by [15];

dN2

dt
= W03N0 +W13N1 − (A21 + A20)N2 = 0 (1.2)
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dN1

dt
= w01N0 + (W13 + w10)N1 + A21N2 = 0 (1.3)

No +N1 +N2 +N3 = N (1.4)

where No, N1, N2, N3 are the respective level population. N is the total number of
atoms in the active medium, A21 and A20 are the Einstein coefficient characterizing
transition from 2→ 1 and 2→ 0, respectively. w01 and w10 are thermal transition
probabilities for transition 0→ 1 and 1→ 0 respectively, W03 and W13 are induced
transition probability per unit time for transition 0→ 3 and 1→ 3 respectively, caused
by the stimulating radiation.

1.3 Characterization of Lasers

The energy of a laser beam usually extends from micro wave region far into the X-ray
region. The wavelength of the incident light needed for laser genration determines the
wavelength of the resultant intensified light (laser). Table 1.2 below depicts a list of
common lasers. The laser type are named according to the gas target medium used in
their generation. Broadly speaking lasers can be described as been solid state lasers (e.g
Neodymium :YAG laser), gaseous lasers (CO lasers, CO2 laser, Helium-Neon laser), dye
lasers or semiconductor lasers . Solid state lasers are produced from a solid active medium,
while gaseous lasers are generated from gaseous target, and dye lasers have as their active
medium as a complex organic dye in liquid solution [23].

Table 1.2: Common types of lasers

Laser type Wavelength (nm)
(i) Free electron UV- X ray
(ii) Excimer : Argon Flouride 193
(iii) Nitrogen 337
(iv) Argon ion (blue) 488
(v) Argon ion (green) 514
(vi) Helium Neon (blue) 633
(vii) Ruby (CrAlO3) 694
(viii) Rhodamine 6G Dye (tunable) 570 - 650
(ix) Ti:Sapphire 650 - 1100
(x) Nd:YAG 1064
(xi) Carbon dioxide 1064

A few types of lasers like, Ti:Sapphire lasers, Ytterbium laser and Free Electron Laser
shall be investigated.

� Ti:Sapphire lasers: Ti:Sapphire refers to a crystal of Sapphire (Al2O3) that is doped
with Titanium ions. Ti:Sapphire which acts as the active medium in the production
of Ti:Sapphire lasers are usually pumped with argon ion lasers (514 nm). Having
a broad wavelength range from 650nm to 1100 nm, these lasers are mainly used
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in scientific research because of their ability to generate ultrafast lasers, and their
tunability [23]. In this work we shall make use of this laser type as our fundamental
laser.

� Nd:YAG Laser: Neodynium Ytterbium (Nd:YAG) lasers are solid state lasers in
which Nd:YAG is the active medium. Nd:YAG laser generates laser light commonlly
in the near infra red region of the spectrum at 1064 nm. They also emit laser light
at several differnt wavelenght of 1440 nm, 1320 nm, 1120 nm and 940 nm. Optical
pumping of Nd:YAG with laser diode is done to excite the Nd ions to an excited
state, upon which an external photon will act to cause stimulated emission [15].

� Free Electron Laser (FEL): The active medium of a Free Electron Laser consist of
very high speed electrons moving freely through a magnetic structure called an un-
dulator. The undulator generates a periodically varying Lorentz force, which forces
the electrons to radiate with a certain range of frequencies, ranging from microwaves
through terahertz radiation and infra red to the visible spectrum, ultraviolet and
X-ray. As such, they are tunable lasers. They occupy a huge position in the heart of
researchers as they are heavily sought for. The only draw back of FEL is that, their
set up are very large and expensive, so that they can only be used at relatively few
large facilities in the world. An infrared FEL has been built in Dresden (Rossendorf)
and the FEL (formerly VUV-FEL)at DESY in Hamburg generates radiation in the
soft X-ray regime [15].

1.3.1 Pulsed and Continuous Laser

Depending on the technicality of the processes involved in generating a laser, one can
produce a continuous or pulsed laser. The fundamental distinction between a continuous
and pulsed laser lies in the rate at which atoms are been populated in the metastable
state. When there exists an appreciable time between when population inversion occurs
to when Boltzmann law acts (Boltzmann law favours the reversal of population inversion),
a pulsed laser will be generated instead of a continuous laser. [18].

Continuous lasers are lasers whose outputs are essentially constant over time, i.e
their output power is steady when averaged over any time period. They have time du-
rations in few nanoseconds or less. For a continuous laser operation, it is required for
the population inversion of the gain medium to be continually replenished by a steady
pumping source, in order to ensure a steady streaming of wave called ’continuous laser’.
Not all active medium can be subjected to such steady pumping, because an excessive
heat will be generated that will destroy the active medium. Examples of lasers that can
be runned in the continuous mode include Argon lasers and CO2 lasers [18].

Pulsed lasers are those whose output occurs as flashes of light. Of course, one can
turn a continuous laser into a pulsed laser by intentionally turning it on and off at some
rate in order to create pulses of light. This means that the optical power of a pulsed laser
appears in flashes/pulses of some duration at some repetition rate. The energy of a pulsed
laser is expressed as the average energy of the laser divided by their repetition rate. By
lowering the repetition rate, one can build more energy within a pulse. Pulsed lasers are
particularly useful in applications were large amount of energy is required to be delivered
in short time. This explains why researchers prefer to use pulsed laser because all the
power of a laser appears to be concentrated within a pulse. In this thesis we will make
use of pulsed laser. Techniques such as Q-switching, Mode-locking and Pulsed-pumping
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have been used to generate pulsed lasers. Among these techniques, the mode locking
technique is most relevant to us. Ti:sapphire is an active medium used in the generation
of mode-locked lasers. Ti:Sapphire has a very wide gain bandwidth and can thus pro-
duce pulses of only a few femtoseconds duration. Mode-locked laser is a versatile tool for
researching processes occurring on extremely short time scales and for maximizing the
effect of non-linearity in high harmonic generation [18].

Figure ?? is the diagrammatic representation of a continuous and pulsed laser. The form of
the laser in Figure ??a is Eo sin(ωt+φ) (continuous laser). Observe that all the cycles are
of equal amplitude Eo. Figure ??b represents a 6-cycle pulsed laser (Eof(t) sin(ωt+ φ)),
with a period T , of 10 fs and a pulse duration, Tp of 50 fs and Full Width of Half
Maximum (FWHM) τ , of 4.2 fs. Observe that the amplitude, Eo of each cycle is not
uniform but modulated by the envelope, f(t). The amplitude rises starting from the first
cycle until its maximum, Eo, then followed by a decrease.

Figure 1.5: A continuous and pulsed laser: (a)represents a continuous laser. (b) represents
a 2-pulsed laser containing 10 cycles each[21].

1.3.2 Mathematical Representation of a Laser Field

As already pointed out, a laser is a form of light, and as such it is an electromagnetic waves
consisting of a magnetic ( ~B) and an electric ( ~E) component. Here ~B and ~E vibrates at
mutual right angles to each other as observed in Figure 1.6. The combined field propagates
along the z-direction transferring the energy of the system along the same direction, see
Figure 1.6. This amount of energy can be quantified by a term called the Poyting vector
~S(~r, t), given by;

~S(~r, t) =
1

uo

(
~E × ~B

)
~k (1.5)

where uo is perameability of free space. Mathematically, the components of a laser field
can be represented as follows [17].

~E(~r, t) = E0 sin(ωt− kz + φ)~i (1.6)

~B(~r, t) = B0 sin(ωt− kz + φ)~j (1.7)
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~B(~r, t) = −E0

c
sin(ωt− kz + φ)~j (1.8)

Where, B0 = −E0

c
, ~r = x~i+ y~j + z~k, and ~i, ~j, ~k are the unit vectors along x, y, z axis,

respectively

Figure 1.6: Electromagnetic field. Consisting of an electric field ~E vibrating in a perpen-
dicular direction to the magnetic field ~B [9].

The electric component ~E vibrates along the x-axis and propagates along the z direction.
While the magnetic component ~B vibrates along the y-axis propagates along the z
direction as with ~E. Note that the Force due to an electromagnetic field is given by;

~F = q( ~E + v × ~B) (1.9)

where v is the velocity of the particle of charge q, ~E + v × ~B represents the combined
the effect of the combined field. By using Eq.1.6 and Eq.1.8 one obtains;

~E + v × ~B = E0 sin(ωt− kz + φ)
[
~i− v

c
×~j
]

(1.10)

In simplifying Eq.1.10, the following dipole assumptions are made [11].

� Contributions from ~B is neglected

� The positional dependency of the field is neglected

For a laser whose intensity falls in the range of 1013 and 1014 W/cm2, the velocity of the
electrons driven by the EM field will be far less than the speed of light i.e (v << c).

Since v
c

is associated with ~B, then this contribution to the total field will be
insignificant. It turns out that Eq.1.10 reduces to
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~E(~r, t) = E0 sin(ωt− kz + φ)~i (1.11)

For lasers whose wavelength is of the order of 10−9m, ~E will appear constant over the
extension of one atom. Thus the z-component dependency can be ignored. This justifi-
cation follows from the fact that the wavelength of visible - near infra-red light is much
bigger than the size of an atom (10−15 m). Finally, Eq.1.11 becomes;

~E(t) = E0 sin(ωt+ φ)~i (1.12)

Eq.1.12 represents the form of the incident laser field needed to generate High Order
Harmonics. The field is linearly polarized along the x-direction, E0 represents its
amplitude. In a continuous laser, E0 is constant over the entire length of the laser field.
However in a pulsed laser, E0 is modulated by an additional term f(t) refereed to as the
envelope of the field. In general a pulsed laser is defined by:

~E(t) = E0f(t) sin(ωt+ φ)~i (1.13)

where the Carrier Envelope Phase, φ was set to zero in our simulation, and the
frequency ω is given by:

ω =
2πc

λ
(1.14)

Specifically, the envelope f(t) of the laser field can take the following form [22]:

f(t) =

{
sin2( πt

Tp
), Sine form

e−2ln2 τ
2

t2 , Gaussian from
(1.15)

Tp = nc × T (1.16)

Where, T is the period of a cycle, Tp is Pulse length of the laser field, τ is Full Width of
Half Maximum (FWHM). For our simulation, the following laser form have been used.

E(t) = Eo sin2

(
πt

nc × T

)
sin

(
2πc

λ
t

)
(1.17)

1.3.3 Properties of a Laser

Lasers have fascinating properties that no other light sources possess. They represent a
well uniform collection of identical photons. There are four (4) commonly known prop-
erties of lasers, which are coherency of their photons, monochromaticity of its frequency,
directionality of their beam and its high intensity. These properties are briefly summarized
below [18];

� Coherency: Lasers like any other light are made up of photons. Unlike in other
light sources, the constituent photons in lasers are properly aligned with each other.
They possess a fixed phase relationship one to another. i.e φ is the same for all the
photons.

� Monochromaticity: The photons of a laser do not only have identical phase rela-
tionship, but also have a single frequency, ω. No two colours exist in a typical
laser.
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� Directionality: They appear as narrow beams with an extremely small beam diame-
ter. This directional property is supported by the close stacking of the photons. So,
laser beam can travel long distances in a seemingly straight path. Thus exhibiting
spatial coherency, as well as temporal coherency.

� High intensity: Laser intensity is the amount of energy transferred by the laser
through a region of space per unit time. Its derivation can be obtained by taking
the time average of the moduli of the Poyting vector [11]. i.e.

I = 〈S〉 =
1

T

∫ T

0

|~S| dt (1.18)

From Eq.1.5 one gets:

|~S| = 1

uo

∣∣∣ ~E × ~B
∣∣∣ (1.19)

=
1

uo
| ~E|.| ~B| sin(

π

2
) (1.20)

By considering a pulsed laser, and putting Eq.1.5 and Eq.1.8 into Eq.1.20 and note that
the fields are position independent, we get

=
E2
o

u0c
f 2(t) sin2 (ωt+ φ) (1.21)

Taking into account the fact that c2 = 1
u0εo

, Eq.1.21 becomes;

|~S| = cεoE
2
of

2(t) sin2 (ωt+ φ) (1.22)

Substituting Eq.1.22 into Eq.1.18 we have

〈S〉 =
cεoE

2
o

T

〈
f 2(t)

〉 ∫ T

0

sin2 (ωt+ φ) dt (1.23)

We shall shortly see in the next chapter that the average of f 2(t) defined as 〈f 2(t)〉, is
given by 〈f 2(t)〉 = 1

∴ 〈S〉 =
cεoE

2
o

T

∫ T

0

1

2
[1− cos(ωt+ φ)] dt

=
cεoE

2
o

T
.
T

2

Therefore, the laser intensity, I is given as;

I =
cεoE

2
o

2

The amplitude of the laser field, Eo in Eq.1.17 can now be expressed as

Eo =

√
2I

cεo
(1.24)

12



CHAPTER 2

HIGH-ORDER HARMONIC GENERATION

2.1 Models of HHG process

The advent of ultrashort fields like lasers (femtoseconds laser) has opened the door to a
lot of interesting phenomena which hitherto could not have been accessed using ordinary
light [3]. But as advances continues in science, the need to probe deeper into intra-atomic
and intra-molecular region arose. Quite a number of methods have been employed to
produce shorter pulses needed for this action. But HHG process has been embraced by
the attosecond research community, as an economical way to produce shorter pulses (in
the attoseconds (10−18s) and zeptoseconds(10−27s) time scale) [1]. The HHG process is
a non-linear process that produces higher energy multiple of the energy of an incident
photon. When photon of energy Eiph interacts with an atom, it will emit a photon of
energy Eeph in an harmonic order of the incident photon [2], as per:

Eeph = N .Eiph (2.1)

where N , represents the harmonics of the of the incident laser. They occur as odd
integers [21]. Typically, harmonic orders of 30 - 70 have been obtained using a 800 nm,
laser of intensity 2 − 5 × 1014W/cm2 [?]. The Figure 2.1 shows the experimental set up
used for an HHG process.

Figure 2.1: Experimental set up for HHG production[18].

Given a 5-cycle pulsed laser as shown in Figure 2.2, attoseconds pulses will be generated
from each half cycle, thereby amounting to a train of attosecond pulses [16].
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Figure 2.2: Train of attoseccond pulses[1].

It is important to emphasize the observation of noticeable changes in the intensity,
I(W/cm2), energy E(eV ), and time scale t(s), of the generated harmonics. The energy of
the radiated photon shifts from the near infra red region into the ultraviolet region of the
spectrum. The femtosecond time scale of the incident/driving field is converted into the
attoseconds time scale of the high-order harmonics coupled with intensity enhancement.
[16].

By considering the single atom response of HHG process (also called microscopic high
harmonic generation) [17], all the above notable changes of the high harmonics are still
achievable. But in a real system consisting of several atoms, all the possible harmonics
from each atom will add up together through phase matching to increase the intensity
of the harmonic . This holistic consideration is called the macroscopic high harmonic
generation [14]. Our consideration for the rest of this work shall be on the microscopic
high generation process. Models have been established which seek to explain in details the
microscopic generation process. The 3-step model (refereed to as The simple Man-Model),
and the Lewestein model (also called The Strong Field Approximation (SFA) Model), as
well as the Direct integration of the TDSE1 are currently known models. The 3-step
model combines a classical and quantum physics approach to explain the HHG process,
while the SFA Model is a pure Quantum mechanical description. The Direct integration
of the TDSE proves to be a fast technique able to produce the HHG spectrum.

2.1.1 The simple Man-Model

The simple Man-Model was the earliest model developed by Krause, Schafer and Corkum
used to explain high harmonics generation from a linearly polarised and moderately in-
tense laser field (1013 - 1014 W/cm2) [21].

Consider an electron confined to a soft-core potential (as shown in Figure 2.3).
Under the influence of a laser field, the arms of the potential will be suppressed allowing
the electron to escape. The free electron will travel through the free space around the soft
core. Due to the influence of the oscillating nature of the driving field, the electron will
be brought back to recollide with the soft-core. And as before, the shape of the soft-core
potential changes facilitating ionization and subsequent recollision. This action continues
on and on, generating attoseconds pulse at each recollision [2]. This process has been
conviniently divided into three (3) stages: ionization, propagation and recombination.

1TDSE: Time Dependent Schrödinger Equation
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Figure 2.3: An electron wavepacket (blue) confined in a soft core potential (red), the dots
indicate the two classical turning points[16].

� Ionization : Ionization is the first step in the 3-step model. An electron that is
initially confined to coulombic barrier whose height is characterized by ionization
potential, IP , will escape, due to the energy supplied to the electron from the laser
field. This escape can occur in one of the three (3) ways namely: multiphoton
ionization, barrier suppresed ionization and tunneling ionization. Each of these
process can be classified based on the value of their keldysh parameter, γ, defined
as:

γ =

√
IP

2UP
(2.2)

where, UP is the Ponderomotive Energy (maximum kinetic energy gained by the
electron as it travels freely in the continumm). It follows from Eq.2.2 and Eq.1.24
that UP scales directly as the intensity of the driving field.

– Multiphoton ionization (γ >> 1): Occurs when the ponderomotive energy UP
is much smaller than the ionization potential IP of the atom, thus the Coulomb
potential will be weakly distorted. So, inorder for the electron to escape the
coulombic attraction, it will absorb a certain number of the incident photon.

– Barrier suppressed ionization (γ << 1): Occurs when UP greatly exceeds IP ,
thereby completely suppressing the Coulomb barrier that originally confined
the electron. The entire electron leaks away from the ion and enters directly
into continuum states, due to the strong laser field.

– Tunnelling ionization (γ ≈ 1): Occurs when the strenght of Up approaches Ip.
In such a case, the coulomb potential is significantly distorted, thereby creating
a finite barrier through which a portion of the electron wavepacket can tunnel.
Ionization of this kind is a quatum mechanical phenomena, which happens to
be a relevant regime for producing High-order Harmonics [1].

Consider a single-cycle laser shown in Figure 2.4. If the phase of the driving laser
interacting with the soft-core falls within [0, π

2
] the recombination will occur within

[π, 3π
2

] [17].
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Figure 2.4: A single cycle sine wave laser

� Propagation: Once the electron is ionized, it quickly escapes the short-range poten-
tial of the ion whereupon the laser potential dominates. The electron taken away
from the atom is accelerated by the laser field in the direction perpendicular to the
optical axis of propagation of the laser beam [1]. The motion of the electron fol-
lowing ionization can then be classically modeled. The Hamiltonian of the electron
propagating along the x-direction is given by:

H(t) = T + V (2.3)

where T is kinectic energy, V the potential experienced by the electron are given
by:

T =
P 2

2m
(2.4)

V = −
∫
E(t)dx (2.5)

and from the electric field E(t) given by:

E(t) = f(t)Eo sin(ωt+ φ) (2.6)

one gets:

∴ V = −ef(t)Eo sin(ωt+ φ)

∫
dx

V = −exf(t)Eo sin(ωt+ φ) (2.7)

Putting Eq.2.4 and Eq.2.7 into Eq.2.3, we get:

H(x, t) =
P 2

2m
− exEof(t) sin(ωt+ φ) (2.8)
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Using the Hamilton equation in 1D we obtain:

m
d2x

dt2
=
dP

dt
= −∂H(x, t)

∂x
(2.9)

Inserting Eq.2.8 into Eq.2.9, one gets:

m
d2x

dt2
= − ∂

∂x

[
P 2

2m
− exEof(t) sin(ωt+ φ)

]
Thus, by considering m = 1, the acceleration of the ionized electron a(t) is described
by:

a(t) =
d2x

dt2
= Eof(t) sin(ωt+ φ) (2.10)

The velocity v(t) is given by:

v(t) =

∫ t

ti

a(t)dt (2.11)

v(t) =

∫ t

ti

Eof(t) sin(ωt+ φ)dt (2.12)

Where ti is ionization time, tp is propagation time assume ti = 0, Eq.2.12 reads:

v(t) = −Eo
ω
f(t) cos(ωt+ φ) + vd (2.13)

Where vd is the constant of integration (representing the drift velocity of the electron
during ionization)

x(t) =

∫ t

ti

vdt =

∫ t

0

vdt (2.14)

So, the trajectory of the electron is

x(t) = −Eo
ω

∫ t

0

[f(t) cos(ωt+ φ) + vd] dt

x(t) = −Eo
ω
f(t) sin(ωt+ φ) + vdt+ xo (2.15)

Where t is the recombination time and xo, the initial position (integration constant),
assume the electron starts at the origin. A plot of its trajectory is shown in Figure
2.5. For a variety of ionization phases, only ionization phases within [0, π

2
] give

trajectories that return to the origin, leading to recollision.

� Recombination: The recombination step provides the mechanism for the electron
to release its kinetic energy through photon emission. We have already seen that
not all electron trajectories end at the core. In such instances, the electron become
absolutely free, and travel with very high energy. [4]. For trajectories relevant to
HHG, the electron returns to the core. Upon recombining with the core, the total
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Figure 2.5: Electron trajectory in a linearly polarised laser field.

kinetic energy acquired by the propagating electron2 Ek is released together with
the electron’s potential energy, Ip [14], to produce attosecond pulses,whose energy
is E is given as:

E = NEiph = Ip + Ek (2.16)

where;

Ek = 〈Ek〉 =
1

2
m
〈
v2(t)

〉
(2.17)

and,

〈
v2(t)

〉
=

1

T

∫ T

0

v2(t)dt (2.18)

〈
v2(t)

〉
=

1

T

∫ T

0

[
E2
o

ω2
f 2(tp) cos2(ωtp + φ)− Eovdf(tp)

ω
cos(ωtp + φ) + v2

d

]
dt

〈
v2(t)

〉
=

1

T

[
E2
of

2(tp)

2ω2
T + v2

dT

]

〈
v2(t)

〉
=
E2
of

2(tp)

2ω2
+ v2

d

∴ (2.17) becomes

〈Ek〉 =
E2
of

2(tp)

4ω2
+
v2
d

2
(2.19)

For 〈Ek〉 to be maximum, then, v(t) = 0, f(tp) = 1 = cos(ωtp + φ),

2In the simulation, the electron’s kinetic energy is treated as a sum of its intrinsic potential energy
and the kinetic energy gained during propagation. See Chapter 4 for details
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∴ vd = −E0

ω
(2.20)

(2.19) now become

〈Ek〉 =
E2

0

4ω2
+
E2

0

2ω2
(2.21)

〈Ek〉 =
3E2

0

4ω2
(2.22)

If we define Up, as Up =
E2

0

4ω2 , then

〈Ek〉 = 3Up (2.23)

(2.16) becomes

E = Ip + 3Up (2.24)

This result approximately3 corresponds to experimental findings, given by;

E = Ip + 3.17Up (2.25)

N~wc = Ip + 3.17Up (2.26)

wc is the maximum frequency of the emitted photon (cut- off frequency).
We observe that the energy of the maximum frequency wc in a HHG spectrum depends
on the kinetic energy of the recombining electron and to the binding-energy gained while
tunnelling.

One can clearly see in Figure 2.6 a pictorial summary of the HHG process occurring within
a cycle of a pulsed laser. An electron initially at rest can be ionized between (0− 0.25T )
the time interval of the laser field (corresponding to 0 - π

2
). During ionization, the right

arm of the soft-core deflects downward, while the left arm is elevated thereby allowing
the electron to escape from its confinement in a process called tunnelling ionization,
with the strongest ionization occurring at 0.25T (corresponding to π

2
). Upon tunnelling,

the electron leaves the core and travels in the continuum. When the field changes its
sign, the arm suppression reverses, thereby accelerating the electron back to the core (in
our simulation, the arms of the soft-core was long enough to contain the motion of the
electron). The recombination occurs between the time interval 0.5T − 0.75T of the dipole
acceleration (corresponding to π - 3π

2
).

As a step to calculate the HHG spectrum, lets take the fourier transform [1] of (2.10);

a(ω) =
1

2π

∫ Tp

0

dt a(t)e−iωt (2.27)

The HHG spectrum, S(ω) is given [25] as:

S(w) = |a(w)|2 (2.28)

S(w) =

∣∣∣∣ 1

2π

∫ Tp

0

dt a(t)e−iωt
∣∣∣∣2 (2.29)

3This is because we have considered, that all electron motion resulting to HHG are ionized at ti = 0,
but in real situation 0 < ti < 0.25T
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Figure 2.6: The 3-step HHG process. The laser field controls the suppression of the
soft-core potential arms. This suppression in turn controls the motion of the electron[14].

This model breaks down in the presence of elliptical fields. With a circularly polarized
field (an example of elliptical fields), the returning electron would miss its target (core),
because quantum mechanically, the overlap of the returning electron wavepacket and the
nuclear wavepacket is reduced [1]; as such, harmonic photon will not be generated. But
now it has been shown that elliptically polarized fields are capable of supporting HHG
process by mixing two colors of circularly polarized light[5]. As an extension of the Simple
Man-Model, Milosevic successfully generated HHG spectrum with a field vibrating in two
(2) axis direction. The equation below gives the form of polarized light used by Milosevic

E(t) =
1

2i

[
E1√
1 + ε21

(x̂− iε1ŷ)eiω1t +
E2√
1 + ε22

(x̂− iε2ŷ)eiω2t

]
+ c.c (2.30)

where x̂, ŷ are unit vectors of the polarization direction x,y respectively axis of
polarization. Here ω2 = 2ω1, ε1 = ε2 = 1 (two corotating circularly polarized field),
ε1 = ε2 = −1 (two counter-rotating circularly polarized field).

Fields of higher intensity (> 1016 W/cm2) do not give rise to HHG. At such intensities,
the speed of the electron, v will approach the relativistic value c, i.e. v = c

This implies that the magnetic component that was initially ignored in our earliest
derivation of the laser field form in Chapter 1, will now contribute significantly to the
laser field. The presence of the magnetic field ( ~B), will give rise to Lorentz force ~FL

~FL = m
d~v

dt
= e

(
~E + ~V × ~E

)
(2.31)

capable of causing an excessive suppression of the soft core potential. In this case, the
electrons get ionized through the Barrier Suppressed Regime. Figure 2.6 describes the
the response of the soft-core potential to fields higher than 1016 W/cm2

20



The whole electron wavepacket leaves the soft-core and enters into the continuum. As
earlier mentioned, HHG will occur when the returning electron wavepacket interacts
with the remainder of the electron wavepacket in the bound state of the soft-core. Since
in the case of the intensity higher than 1016 W/cm2 intensity, the whole electron
wavepacket leaks out from the core, then HHG can not be realized in this intensity
regime [17]. However models have been employed that explains the possibility of

achieving HHG even in the presence of Lorentz force ~FL. The scope of this research will
apply only to moderate intense and linearly polarized field.

2.1.2 The Strong Field Approximation (SFA) Model

The Strong Field Approximation (SFA) is a full quantum mechanical description of the
HHG process. The basic equation of this theory is the time dependent Schrodinger’s
equation (TDSE) [16].[

− ~2

2m

∂2

∂r2
+ V (~r, t)

]
|Ψ(~r, t)〉 = i~

∂

∂t
|Ψ(~r, t)〉 (2.32)

where V (~r, t) = Vat(r) + Vlaser(r, t), is made of the coulomb potential V (r) = −1
r
, and the

laser potential Vlaser = −exEo cos(ωt+ φ), Eq.2.32) becomes:

[
− ~

2m

∂

∂r
+ Vat(r)− exEo cos(ωt+ φ)

]
|Ψ(~r, t)〉 = i~

∂

∂t
|Ψ(~r, t)〉 (2.33)

Given the following SFA assumption;

� Only the |0〉 bound state (ground state) contributes to the the evolution of the
atomic system, while all other states contributions are neglected.

� The depletion of the ground state, |0〉, is ignored.

� Once the electron ionizes to a continuum state, |p〉 the short-range atomic potential
Vatomic potential(r) no longer acts on it.

The solution to Eq.2.33 is :

|Ψ(~r, t)〉 = eiIp/~
[
a(t) |0〉+

∫
d3~p b(~p, t)

]
|p〉 (2.34)

where a(t) is the portion of the wavefunction that stays in the ground state and is given
by

a(t) = 1 (2.35)

b(t) the portion of the wavefunction that ionizes and enters the continuum state

b(~p, t) =
i

~

∫ t

0

dt′eEo cos(ωt′)dy(~p− eA(t′))e−iS(~p,t,t′) (2.36)

where S(~p, t, t′) is the Semi-classical action (defining the trajectory of the electron)

S(~p, t, t′) =
1

~

∫ t

t′
dt′′
[

(~p− eA(t′′))2

2m
+ Ip

]
(2.37)
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The dipole moment dm of the electron reads:

dm(t) = 〈Ψ(~r, t)| y |Ψ(~r, t)〉 (2.38)

Puting Eq.2.35, Eq.2.36, Eq.2.37 into Eq.2.38 results to:

dm(t) =

∫
d3~p b∗(~p, t) 〈~p| y |0〉+ c.c (2.39)

Finally, we get:

dm(t) =
i

~

∫ t

o

dt′
∫
d3~peEo cos(ωt′)dy(~p− eA(t′))e−iS(~p,t,t′)d∗y(~p− eA(t)) + c.c (2.40)

Ionization, propagation and recombination can be explained using (2.40) as follows [3]:

� Ionization: An electron is ionized at time t′ from the bound state into the continuum
state with a probability amplitude; eEo cos(ωt′)dy(~p− eA(t′))

� Propagation: During its flight (from t′ to t), the electron is considered as a particle
moving freely in the laser electric field and therefore the wavefunction describing
the electron acquires an additional phase factor e−iS(~p,t,t′).

� Recombination: Finally, the electron recombines with the ion at time t, transitioning
from a continuum state to the bound state with a probability amplitude: d∗y(~p −
eA(t))

The resulting dipole acceleration da(t) is given by:

da(t) = ˙dm(t) (2.41)

The emission amplitude into the N th harmonic with frequencyNω reads:

E =

∫ ∞
−∞

dte.da(t)e
−iNωt (2.42)

It is important to note that E which represents the energy of the emitted photon as
calculated by ths model is given by:

E = αIp + 3.17Up (2.43)

Where α = 1.32. It is larger than the value obtained with the Simple-man model because
the quantum calculations involve wave-packet spreading (spatial extension of the wave
function) [23].

2.1.3 Direct integration of the TDSE

This is one of the most straightforward approach to investigate HHG process involving
the numerical solution of the TDSE. This approach provides us with exact numerical
solutions, and in this thesis, the TDSE will be solved using the Fast Fourier Transform
(FFT) Split Operator Method. It is important to note that, the effect of the atomic
coulomb potential which was neglected during the propagation stage in section (2.1.2) is
taken into account in this model [21].

We shall adopt the direct integration of the TDSE in our research to generate the HHG
spectrum, while the semi-classical model shall be employed to verify the results that
follows.
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2.1.3.1 The Split Operator Method

The split operator method is a spectral method developed by Feit and Fleck to solve the
TDSE [24]. This is an extremely fast technique that relies on computing the solution
in small steps with a high accuracy, thereby making this method particularly attractive
for application with the spectral method to the Schrödinger equation in Cartesian coordi-
nates. Ψ(x, t) which carries information regarding the dynamics of the electron is obtained
from the Split operator method. In this subsection, we shall provide detailed derivation
of Ψ(x, t) by analytically solving the TDSE. For a 1-D consideration, the TDSE is given
by;

i~
d

dt
|Ψ(x, t)〉 = Ĥ |Ψ(x, t)〉 (2.44)

where,
|Ψ(x, t)〉 = U(t, to) |Ψ(x, t0)〉 (2.45)

Ĥ is Hamiltonian, U(t, to) is Evolution Operator, to is initial time, t is some later time,
|Ψ(x, to)〉 is initial wavefunction. The time interval ∆t reads:

∆t = t− to (2.46)

and, |Ψ(x, t)〉 is given by:
|Ψ(x, t)〉 = U(t, to) |Ψ(x, to)〉 (2.47)

We now proceed to solve Eq.(2.44) using the Split Operator Method. This method involves
spiting the Ĥ of the system as a sum of two operators (namely the kinetic energy operator
and potential energy operator) [24]. Inserting Eq.2.47 into Eq.2.44 yields:

|Ψ(x, to)〉 i~
d

dt
U = ĤU(t, to) |Ψ(x, to)〉

i~
dU

dt
= ĤU(t, to)

∫
dU

U
= −iĤ

~

∫ t

to

dt

lnU = −iĤ
~
t

U(t, to) = e−
i
~ Ĥ(t−t0) (2.48)

∴ Eq.(2.47) becomes;

|Ψ(x, t)〉 = e−
i
~ Ĥ∆t |Ψ(x, to)〉 (2.49)

Upon using Eq.(2.46), and noting that Ĥ = T̂ + V̂ , we get

|Ψ(x, t0 + ∆t)〉 = e−
i
~ (T̂+V̂ )∆t |Ψ(x, to)〉 (2.50)
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where T̂ is the kinetic energy operator, V̂ is the potential energy operator

Next we will use the Baker- Campell-Hausdorfff approximation which is given by:

e(T̂+V̂ )∆t = eT̂∆teV̂∆te−
∆t2

2
[T̂ ,V̂ ]e

∆t3

6
(2[V̂ ,[T̂ ,V̂ ]]+[V̂ ,[T̂ ,V̂ ]]) (2.51)

For a small ∆t, the third higher order terms becomes negligible, so, Eq.2.51 becomes:

e(T̂+V̂ )∆t = eT̂∆teV̂∆t (2.52)

∴ Eq.(2.50) now reads

|Ψ(x, t0 + ∆t)〉 = e−
i
~ T̂∆te−

i
~ V̂∆t |Ψ(x, to)〉 (2.53)

|Ψ(x, t0 + ∆t)〉 = e−
i

2~ V̂∆te−
i
~ T̂∆t.e−

i
2~ V̂∆t |Ψ(x, to)〉 (2.54)

We should quickly note that the T̂ operator acts only in the momentum configuration (p),
while the V̂ operator acts only in the position configuration (x).

Eq.2.54 was numerically solved by employing Fourier Transform. In which case, the
wavepacket is transformed between position configuration Ψ(x, t), and momentum con-
figuration, Ψ(p, t), to allow the operators act accordingly [24].

The computational implementation of Eq.2.54 is summarized in the 3 -steps below;

� Action of V̂ : By acting the 3rd exponential term in Eq.2.54, we have

e−
i

2~ V̂∆t |Ψ(x, to)〉 = |Ψ(x′, to)〉 (2.55)

Eq.2.54 now reduces to

|Ψ(x, t0 + ∆t)〉 = e−
i

2~ V̂∆te−
i
~ T̂∆t. |Ψ(x′, to)〉 (2.56)

� Action of T̂ : we fourier transform |Ψ(x′, to)〉 into momentum space |Ψ(p, to)〉, then
by acting the second exponential term in Eq.2.56, it follows that:

|Ψ(p, to)〉 = F(|Ψ(x′, to)〉) =
1√
2π

∫
dx |Ψ(x′, to)〉 e−i

p
~x (2.57)

Then, Eq.2.56 becomes,

|Ψ(x, t0 + ∆t)〉 = e−
i

2~ V̂∆t.e−
i
~ T̂∆t. |Ψ(p, to)〉 = e−

i
2~ V̂∆t. |Ψ(p′, to)〉 (2.58)

where |Ψ(p′, to)〉 = e−
i
~ T̂∆t. |Ψ(p, to)〉

� Action of V̂ : The last term in the preceeding result Eq.2.58 is in the momentum
configuration, in order for V̂ to act, we first perform an inverse Fourier on transform
|Ψ(p′, to)〉 so as to obtain its equivalent in position configuration (|Ψ(x′′, to)〉);

|Ψ(x′′, to)〉 = F(|Ψ(p′, to)〉) =
1√
2π

∫
dx |Ψ(p′, to)〉 ei

p
~x (2.59)
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So, that Eq.2.58 becomes;

|Ψ(x, t0 + ∆t)〉 = e−
i

2~V∆t |Ψ(x′′, to)〉 (2.60)

Eq.2.60 represents the final form of electron wave motion.

Set

|Ψ(x, t0 + ∆t)〉 = |Ψ(x, t)〉 (2.61)

The obtained wavefunction in Eq.2.60 can be used to compute the average kinectic energy,
〈Ekin〉 and the potential energy, 〈Epot〉 of the electron. Thus,

〈Ekin〉 =

〈
Ψ(x, t)

∣∣∣ p2

2m

∣∣∣Ψ(x, t)

〉
(2.62)

〈Ekin〉 =

∫ Tp

0

Ψ∗(x, t)
p2

2m
Ψ(x, t) dt (2.63)

While 〈Epot〉 is given by,

〈Epot〉 = 〈Ψ(x, t)|V |Ψ(x, t)〉 (2.64)

〈Epot〉 =

〈
Ψ(x, t)

∣∣∣− 1√
x2 + a2

− xE0f(t) sin(ωt+ φ)
∣∣∣Ψ(x, t)

〉
(2.65)

Whose integral representation is

〈Epot〉 = −
∫ Tp

0

Ψ∗(x, t)

(
1√

x2 + a2
+ xE0f(t) sin(ωt+ φ)

)
Ψ(x, t)dt (2.66)

2.1.3.2 Dipole acceleration of the atom

The dipole acceleration is a term used to describe the ion - electron motion. The ion (soft
core) been massive, remains relatively fixed, while the electron propagates in an oscillatory
motion around the ion. This relative motion between the electron and the core is refereed
to as the dipole acceleration of the atom. The Ehrenfest theorem in quantum mechanics
happens to be the technique commonly used to compute the dipole acceleration [25]. We
present in this subsection, a direct and simple way for calculating the dipole acceleration
da(t).

From the following Hamilton’s equation:

m
d2x

dt2
= −∂H(x, t)

dx
(2.67)

the dipole acceleration takes the form:

da(t) = −∂H(x, t)

∂x
(2.68)

The expectation value of da(t), is given by:

〈da(t)〉 = −
〈

Ψ(x, t)
∣∣∣∂H(x, t)

d∂x

∣∣∣Ψ(x, t)

〉
(2.69)
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The Hamiltonian H is defined as:

H(x, t) = Tion + Te + Vat + Vlaser (2.70)

where Tion is the kinectic energy of the soft -core ion, Te is the kinectic energy of the
propagating electron, Vat is the soft core atomic potential, Vlaser is the potential of the
laser field.

Now, since the soft-core ion is stationary

Tion = 0 (2.71)

Te =
P 2

2m
(2.72)

By considering a soft - core hydrogenic system, in a.u., the potential reads:

Vat = − 1√
x2 + a2

(2.73)

where a is the so-called soft-core parameter.
From Eq.2.7, Vlaser, is

Vlaser = −xE(t) (2.74)

Vlaser = −xEof(t) sin(ωt+ φ) (2.75)

Substituting Eq.2.71, Eq.2.72, Eq.2.73 and Eq.2.75 into Eq.2.70, one gets:

H(x, t) =
P 2

2m
− 1√

x2 + a2
− xEof(t) sin(ωt+ φ) (2.76)

With Eq.2.76, it turns out that Eq.2.69 becomes:

〈da(t)〉 = −
〈

Ψ(x, t)
∣∣∣ d
dx

[
P 2

2m
− 1√

x2 + a2
− xEof(t) sin(ωt+ φ)

] ∣∣∣Ψ(x, t)

〉
(2.77)

〈da(t)〉 = −
〈

Ψ(x, t)
∣∣∣ x

(x2 + a2)2

∣∣∣Ψ(x, t)

〉
+ Eof(t) sin(ωt+ φ) (2.78)

2.1.3.3 High-order Harmonics Spectrum

From classical physics, we know that an accelerating electron radiates radiation accord-
ing to Lamor Radiation Law, however, such radiations are not considered for high order
harmonic generation, rather it is the emission due to the impulsive acceleration upon re-
combination that is considered. For the case of our laser field, E(t), the harmonic emission
will be brightest in the y-z plane, while there will be zero emission along the x-direction
(polarization axis) [17]. As in section (2.1.1), the emitted spectrum is computed from the
Frequency Fourier transform of the atomic dipole acceleration.

〈da(ω)〉 = F [〈da(t)〉] (2.79)
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Using the definition of Frequency Fourier Transform, Eq.2.79 turns out to be;

〈da(ω)〉 =
1√
2π

∫ Tp

0

da(t)e
−iωtdt (2.80)

〈da(ω)〉 = −
∫ Tp

0

[
−
〈

Ψ(x, t)| x

(x2 + a2)2
|Ψ(x, t)−

〉]
e−iωtdt+Eo

∫ Tp

0

f(t) sin(ωt+φ)e−iωtdt

(2.81)
It immediately follows that, the HHG spectrum is computed as:

S(ω) = |da(ω)|2 (2.82)

S(ω) =

∣∣∣∣−∫ Tp

0

[
−
〈

Ψ(x, t)| x

(x2 + a2)2
|Ψ(x, t)−

〉]
e−iωtdt+ Eo

∫ Tp

0

f(t) sin(ωt+ φ)e−iωtdt

∣∣∣∣2
(2.83)

A typical HHG spectrum generated (as shown in Figure 2.7) from direct numerical inte-
gration of TDSE was the outcome of using 800 nm, 50 fs with a 5 - cycle pulse laser to
interact with an Hydrogen atom.

Figure 2.7: HHG spectrum from an H atom[7].

Let’s verify the cut-of law in Eq.2.26, by trying to obtain the result shown in the figure
above. Then from the equation, the harmonic order N becomes;

N =
Ip + 3.17Up

w
(2.84)

Given Ip = 0.5 a.u., (see Table 2.2) I = 2× 1014W/cm2, λ = 800 nm, Up = E2
o

4ω2

Recall that we have previously set, Up = E2
o

4ω2 . Using Eq. 2.23 (I = 1
2
cεoE

2
o) one gets:

Up =
I

2cεoω2
(2.85)

where

ω =
2πc

λ
(2.86)

So, that Eq.(2.85) becomes
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Up =
I

8cεo

(
λ

πc

)2

(2.87)

Up =
2× 1018W/m2

8× 3× 108m/s× 8.854× 1012

(
800× 10−9nm

22
7
× 3× 108m/s

)2

(2.88)

Up = 1.9095486× 10−18Joules (2.89)

Since 1 a.u of energy is 4.3597× 10−18 Joules (see Appendix A), Up now reads, Up =
0.438 a.u.. Noting that 1 a.u. of frequency =4.1341× 1016s−1, the highest harmonic
order, N of coherent emission is;

N =
0.5 + 3.17(0.438)

0.057
(2.90)

∴ N ≈ 33 (2.91)

This result is in goood agreement with the experimental results in Figure (2.7).

The HHG spectrum plot is usually a semi-logarithmic plot. The vertical axis is the
logarithm scale, while the horizontal axis is a real number scale. Two common scaling
forms of the horizontal axis are the Harmonic order and Energy scaling(eV ).

(a) Harmonic order (N): In this case, the a.u. of emitted photon frequency ω is divided
by the ωi of the incident photon. i.e.

N =
ω

ωi
(2.92)

We adopted the harmonic order horizontal scale in our work.

(b) Energy (eV ): In this case, the a.u of emitted photon frequency ω is multiplied by
27.211eV (see Appendix A). The conversion between N and eV is defined by;

1 Harmonic order = ωi × 27.211eV (2.93)

In order to estimate the energy range in which the attoseecond pulse in Figure 2.7 were
emitted, see Table 2.1. Thus, it follows that, a single attoseconds pulse of 51.18 eV in
the soft x-ray region is emitted.

Table 2.1: Energy and wavelength of the Electromagnetic Spectrum

Region Wavelength (m) Energy (eV)
Radiowave > 0.3 < 7×10−7

Microwave 0.001-0.3 7×10−7 - 2×10−4

Infra red 7.6×10−7 - 0.001 2×10−4 - 0.3
Visible 380×10−9 - 760×10−9 0.3 - 0.5
Ultraviolet 8×10−9 - 3.8×10−7 0.5 - 20
X-rays 6×10−12 - 8×10−9 20 - 30,000
γ - rays < 6×10−12 > 30,000
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2.1.3.4 Characteristics of the HHG Spectrum

Until now, we know that when a laser interacts with an atom, higher energy photons are
emitted. Depending on the temporal profile of the driving lasers, the resulting attosec-
onds pulse could either be a pulse train or single pulse as illustrated in Figure 2.2.

A multiple cycle driving laser results to the generation of attoseconds pulses from each
of their half-cycles, thereby resulting to a train of attoseconds pulse, while single cycle
driving laser encourages the emission of a single attoseconds pulse [14]. Our interest in
this work will be, towards producing a single attosecond pulse. The emitted attosecond
pulses can be represented either in time or frequency domain representation.

Figure 2.8: Frequency and Time Domain Representation of High order Harmonics[12].

(a) Time domain representation : In order to obtain the time domain Tpulse train(t) repre-
sentation, we perform an inverse Fourier Transform4 of Eq.2.83 [8], as per:

Tpulse train(t) = F−|S(ω)| (2.94)

4Note that Eq.2.83 and Figure 2.7 represent the frequency domain representation of the attoseconds
pulses.
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Ipulse train(t) =

∣∣∣∣ 1√
2π

∫ Tp

0

S(ω)eiωtdω

∣∣∣∣ (2.95)

If it is required to obtain the time domain characteristics of an isolated attoseconds
pulses Tsinge pulse(t) then we perform the inverse Fourier Transform only across the
length of the plateau region[8].

Let q = q2− q1 (the number of harmonics spanning the plateau length); t1 and t2 the
time corresponding to q1 and t2respectively. It turns out that:

Isinge pulse(t) =

∣∣∣∣ 1√
2π

∫ t2

t1

S(ω)eiωqtdt

∣∣∣∣2 (2.96)

Figure 2.9 represents a pictorial illustration of time domain of an HHG.

Figure 2.9: Temporal profile a single attosecconds pulse [23].

(b) Frequency (Spectrum) domain representation: The Frequency Fourier transform of
the time domain attoseconds pulse gives the spectrum representation. Figure 2.8
shows the conversion scheme between the spectral and temporal HHG representation.
By this simple action, details in the emitted photon can be extracted. It is a plot of
Intensity 5, S(arbitary unit) as function of photon energy ω. A typical HHG spectrum
of the type in Figure 2.8 has 3 distinct regions, namely; perturbative region, plateau
region and cut-off region [25].

(i) Perturbative region: This region is characterized by a rapidly decreasing yield
with increasing harmonic order. This behaviour can be understood by consider-
ing an atom absorbing n photons then emitting a single photon. The probability
of absorbing n photons decreases as n increases, explaining the rapid decreases
in the initial intensities [3].

5The Intensity has an arbitrary unit
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(ii) Plateau region: In this region, the number of absorbed photons remains con-
stant; i.e a saturation will occur. As such, a flat and broad region in the spectrum
will be seen. In this region, all the harmonics are coherently emitted (have ap-
proximately the same intensity in phase). Plateau harmonics spanning several
tens of harmonic order have been measured which extends into the soft-xray
regime [14].
The observed saturation intensity depends on the noble gases used. Gases with
lower Ip leads to higher intensity of the generated pulses. Typically the region
that begins the plateau is Ip[14]. The width of each spectral peak in this region,
is referred to as bandwidth w. The spectral banwidth w is related to the pulse
width τ by the relationship;

τ =
1

w
(2.97)

The larger the spectral width, the smaller the value of τ . This implies that
broader plateau are produced by shorter attoseconds pulses. In the next sec-
tion we will see that broader plateau region supports single attoseconds pulse
generation [14].

(iii) Cut-off region: This marks an abrupt end of the pleateu region. It gives a
measure of the maximum energy of the emitted attoseconds pulse [17]. From
Eq.2.25 and Eq.2.85, the cut-off energy varies linearly with the laser intensity I,
and Ionization potential Ip. As illustrated in Table 2.2, Ip is dependent on the
gases used as the atomic target.

Table 2.2: Ionization Energies of Noble Gases[13].

Ionization energy (Ip)
Atomic species eV a.u.

H 13.6 0.5
He 24.587 0.904
Ne 21.565 0.79
Ar 15.759 0.58
Kr 13.999 0.51
Xe 12.129 0.45

Higher I extends the cut-off as well as higher Ip. A gase that supports higher cut-off
energy leads to reduced saturation intensity of their plateau region. He and Ne would
have been the best candidates for for higher energies, but their intensities will be compro-
mised. So, there is a balance to be found depending on the intensity and energy of the
expected attosecods pulse [14]. Our interest in this work will be on maximizing the highest
obtainable energy. Therefore we shall use the Hydrogen atom as our atomic species.
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CHAPTER 3

SINGLE ATTOSECOND PULSE

3.1 Fundamentals of Single Attoseconds Pulse

We have already seen in the previous section that a multi-cycle incident laser is capable
of generating a train of attosecond (as) pulse. If one, however, decides to obtain a single
pulse, then the number of cycles in the incident laser needs to be reduced [9]. We can have
fewer cycles experimentally, by chirping. Laser pulse chirping is a technique employed to
produce a single cycle pulsed laser by chopping-off the side peaks and leaving behind
the central peak in the pulse envelope. We shall however seek to bypass experimental
requirements for generating this ultrashort incident pulses, by considering the interaction
of two femtosecond laser pulses. When the parameters of these driving lasers are carefully
selected, a nearly single-cycle pulsed laser can be achieved from their interaction.

In our work, and as what is obtainable in most literatures, we shall apply the two-colour
scheme. This involves coupling a second laser source to the incident 800 nm Ti: Sapphire
laser. As a common nomenclature, the 800 nm Ti: Sapphire laser is called the fundamental
laser, and the second laser as the secondary laser. In literatures, the secondary laser used
where either high harmonics of the fundamental laser field or an arbitrary laser field. A
secondary laser field of a lower wavelength has a constructive interference at the second
or third peak when mixed with the fundamental field. This unfortunately does not favour
the generation of a broader plateau. Hence a secondary laser field of a higher wavelength
and higher number of cycles are often preferred [9]. We shall however demonstrate a
counter opinion, in which we have generated higher energy attosecond pulses by using
a secondary laser field of lower wavelength (400 nm). With these new configurations,
the resultant form (synthesized laser) of the driving laser shows marked differences [9].
Figure 3.1 shows an example of a fundamental laser (green), secondary laser (red) and
synthesized laser (blue).

The addition of the secondary field is observed to divide the electric field profile of the
fundamental pulse into three segments, namely the first, the middle and last segments.
The electric field amplitude of the first and last segments are dramatically suppressed in
relation to the middle segment. Thus, it is realized that, the mixture of different colour
can result in a larger difference in the field amplitude among neighbouring cycles than in
a single color field [9].

If this synthesized pulse is adopted as the incident driving pulse, only the middle segment
of the electric field makes a major contribution to the plateau and the cut - off position
of the harmonic spectrum. The electric field of this specific two-color pulse is similar to
that of an isolated 5 fs ultrashort pulse, but it relaxes the requirements for the pump
pulse duration. That is to say, we may obtain an isolated attosecond pulse under the
frame of a multicycle two-color driving pulse [12]. Broadly speaking, three (3) gating
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Figure 3.1: Two color mixing of an incident laser. Green: fundamental field, Red: sec-
ondary field, Blue: synthesized field [8].

schemes are used to produce an isolated attoseconds pulse. They are temporal gating,
spatial gating and spatio-temporal gating [14]. A temporal gating is the technique that
has been discussed so far. The other two schemes will not be captured in this work.

The essential properties of a typical synthesized laser can be summarized as per:

(i) Short time duration

(ii) Few cycles within a pulse

(iii) Large amplitude difference between the strongest and 2nd strongest cycle in the
synthesized laser.

It has been demonstrated that the broadness of the plateau is dependent on the
amplitude difference between the strongest and 2nd strongest cycle in the synthesized
pulse [9]. A parameter referred to as the intensity ratio difference, δd was used as a
deterministic factor for plateau length, defined as per:

δd =
E2

1 − E2
2

E2
1

(3.1)

where E2
1 and E2

2 represent the strongest and the second strongest amplitude of the cycles
respectively. From Eq.(1.24) and Eq.(2.26). It turns out that the larger the field ampli-
tude, the higher the cut-off energy of the harmonic photons. So, that larger amplitude
differences of E2

1 −E2
2 , results to wider plateau. In their simulation studies, they plotted

δd and plateau length (otherwise called continuum length) against wavelength, in order to
determine the optimum wavelength of the needed secondary laser field. It was observed
that δd increases with the continuum length upto a certain maximum and vice-versa.

One important implication of a broad plateau is the ease of isolation of a single pulse.
The several peaks in the plateau region represents some n- number of coherent pulses
stacked together. Broader plateau implies that the corresponding time domain of each
peak is ultrashort [12]. Figure 3.2 shows the pulse repetition rate of a short and ultrashort
attosecond pulse.
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Figure 3.2: The effect of pulse repetition rate, Trep on easy attoseconds pulse isolation[7].

As seen in the Figure 3.2, ultrashort pulses defined by fewer cycles have a larger pulse
repetition rate, Trep hence they can easily be selected because they are widely spaced.
Though, the two-color mixing technology are excellent for producing higher energy cut -
off, but the intensity of the photons are generally low [8]. Hence, the optimization of the
two-color scheme for practical applications is important. Remarkably, the intensity I(t),
and phase φ variation as well as time lag between the two laser fields τ have been studied
[8, 9, 6]. We shall endeavour to review recent works in these regard.

3.2 Temporal Gating (two color mixing)

In this section, we aim to summarize a handful of literature works that employed the two
color mixing techniques.

3.2.1 Two Intensity Mixing

A simulation studies was carried out on an Helium atom by [9] for which, two colours
were mixed together, with the aim of optimizing the intensity. The Lewestein Model was
employed to generate the HHG spectrum of which 800 nm Ti: Sapphire laser was used
throughout, as the fundamental field. The equation for the form of the linearly polarized
synthesized laser field can be expressed as follows:

E(t) = E1e
−2ln2 t

2

τ2
1 cos(ω1t) + E2e

−2ln2 t
2

τ2
2 cos(ω2t) (3.2)

where E1, τ1 and ω1 are the field amplitude, FWHM and frequency of the fundamental
laser respectively. Likewise, E2, τ2 and ω2 are the field amplitude, FWHM, frequency of
the secondary laser respectively.

Table 3.1 below summarizes the optimization result of the simulation. The second column
represents the information of the single as, and plateau extension. The first and last
columns define the parametrics (λ, τ1, I(t) ) of the laser. Here, E1, E2 and ω1, ω2 can be
calculated using Eq.(2.23), Eq.(3.89) respectively. Throughout, indices 1 and 2 stand for
the fundamental laser and secondary laser respectively.

34



Table 3.1: Driving lasers parameters and HHG results

Fundamental laser as/-plateau extension Secondary laser
i 800 nm, 6fs, 3 ×1014 W/cm2 90 as 1760 nm, 64fs, 1.1 ×1014 W/cm2

ii 800 nm, 11fs, 3 ×1014 W/cm2 80 as (160 - 260 eV ) 1840 nm, 64fs, 1.1 ×1014 W/cm2

iii 800 nm, 11fs, 5 ×1014 W/cm2 80 as (160 - 260 eV ) 1440 nm, 64fs, 1.1 ×1014 W/cm2

iv 800 nm, 22fs, 3 ×1014 W/cm2 180 as 1840 nm, 64fs, 7.5 ×1014 W/cm2

v 800 nm, 33fs, 5 ×1014 W/cm2 230 as 1840 nm, 64fs, 2.9 ×1013 W/cm2

Three frequency forms (1440 nm, 1760 nm, and 1840 nm) of the secondary lasers were
used to interfere with the fundamental laser. Characteristics (ii) and (iii) are the most
favourable for single as. Note that 80 as with a broad pleateun extending from 160 to
260 eV were obtained with higher intensities of the fundamental laser than the secondary
laser.

3.2.2 Two Phase Mixing

A Numerical Simulation of an Intense Isolated Attosecond Pulse by a Chirped Two-
Color Laser Field was recently carried out [8]. The work involved a direct simulation
of the TDSE for He atom using the split operator method. An isolated 126 as pulse
with maximum harmonic order N of 450 was observed. This was achieved using the
fundamental laser (800 nm, 1015W/cm2) assisted with the secondary laser (1600 nm, 10
fs) and by varying the FWHM of the fundamental laser and the intensity of the secondary
laser.The equation defining the synthesized pulses is given by:

E(t) = E1f1(t) cos(ω1t+ δ(t)) + E2f2(t) cos(ω2t) (3.3)

Where δ(t) = −β tanh t
σ
, ω1 → ω1 + d∆(t)

dt
= ω1 − β

σ
cosh−2( t

σ
)

Ei, fi(t) = e
−4ln2 t

2

τ2
i , ωi for, i = 1, 2

Here, δ(t) is the phase. β (which controls the frequency sweeping range of the fun-
damental pulse) and σ (which controls the chirping steepness of the fundamental pulse)
are varied, thereby affecting δ(t) and ω1. The simultaneous variation of ∆(t) and ω1 ul-
timately results to chirping.

The simulation was specifically carried out with the following laser parameters as per:

(i) σ and β were set to zero. This is the simplest case for the two-color scheme (without
chirping). The laser parameters are
Laser 1 : 7fs, 800 nm, 1015W/cm2

Laser 2 : 10fs, 1600 nm, 1014W/cm2

(ii) σ was fixed at 200 a.u while β was varied. The optimum value of β corresponding to
the highest cut-off was 6.25. The laser parameters are
Laser 1 : 7fs, 800 nm, 1015W/cm2

Laser 2 : 10fs, 1600 nm, 1014W/cm2
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(iii) For σ was fixed at 200 and β at 6.25, while the intensity of the secondary laser was
varied. The laser parameters are
Laser 1 : 7fs, 800 nm, 1015W/cm2

Laser 2 : 10fs, 1600 nm, 1015W/cm2

It turns out that the optimum result corresponds to case (iii) for which a single pulse
duration of 126 as of 450 harmonic order were observed.

3.2.3 Time Lag

The time lag/delay refers to a shift in time between when a fundamental and a secondary
fields. A time delay could either be positive or negative. A positive time delay means that
the pulse envelope (of the secondary field) comes before that of the fundamental field, and
vice versa. There are two aspects of time lag consideration which are;

� The time lag between multi-cycle fields: Here, the time lag is equivalent to Car-
rier Envelope Phase, φ. Assuming a positive time delay between two laser fields
containing multi cycles, the associated synthesized field can be written as:

E(t) = E1f1(t) cos(ω1t) + E2f2(t+ τ) cos(ω2t+ φ) (3.4)

τ is time delay. More generally (3.4) can be redefined as

E(t) = E1f1(t) cos(ω1t) + E2f2(t+ τ) cos[ω2(t+ φ/ω2)] (3.5)

where

τ = φ/ω2 (3.6)

� The time lag between few cycle fields: When short pulses containing few oscillations
are considered, a time delay between two pulses envelope can no longer be viewed
as equivalent to a CEP shift. Consider the sine carrier form of synthesized laser
without time delay, Entd(t)

Entd(t) = E1f1(t) sin(ω1t+ φ1) + E2f2(t) sin(ω2t+ φ2) (3.7)

A theoretical and simulation studies were carried on H atom [6]. They adopted the direct
simulation of the TDSE, expressed in spherical coordinates, and which was solved using
a time-dependent generalized pseudo-spectral method, upon which the wavefunction is
expanded in Legendre polynomials and the time propagation done with a second-order
split operator technique. And because this model is not quite informative, their results
were analysed and interpreted using time -frequency and analytical analysis.

A 800 nm fundamental laser field was assisted with their second harmonic ω2 (= 2ω1) and
third harmonic ω3 (= 3ω1). Both fields contained few cycles. The FWHM τ and intensity
I of the fields were fixed at (fundamental: 8.0fs, 6× 1013W/cm2) and (secondary: 5.6fs,
4× 1013W/cm2) respectively.
The simulation procedure can be divided into 4 stages. As we shall shortly see, stage i-iii
major on positive time delay, while the remainder is centered on comparing positive and
negative time delay.
In all of these procedures, the parameters that varied other than the frequency of the
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secondary lasers are φ1 and φ2. Since τ is dependent on φ2. It implies that as φ2 is varied,
τ also varies.

The simulation was carried out with the following laser parameters per as:

(i) Firstly, φ2 is varied while φ1 and φ
′
2 are set to 0. In this two colour mixing technique,

the second harmonics ω2 is used. Two spectrum are obtained, one without time delay
and another with time delay. It was shown that the time delay case was favourable
to the generation of attosecond pulse of high intensity, but having a low cut-off
energy.

(ii) Here, both φ1 and φ2 are varied. Again, two spectra, without and with time delay
were obtained. In a much similar situation as above, high intensity attosecond pulse
with loow cut-off energy was obtained.

(iii) Also, the same form of the spectral is realized when φ2 is varied in conjunction
with/without φ1 and φ

′
2.

(iv) Furthermore, the above procedures were repeated, only that a negative time delay
was considered. Results from the respective spectra indicated a better intensity yield
over the cut-off energy. However, no emphasis was placed in generating an isolated
attosecond pulse.
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CHAPTER 4

SIMULATION PROCEDURE

This chapter presents the methodology of the research, in systematic arrangement of how
the simulation is been carried out on the computer. Firstly, we define the environment of
the simulation work, referred to as the grid and absorber system. Within the environment,
we setup a system that mimics the H atom, and hereafter, a laser beam was introduced to
interact with the H atom. Upon irradiation, the Hydrogen electron oscillates within the
simulation environment back and forth the H core. Measurement of the electron motion
and its total energy due to propagation was done, including the attosecond pulse arising
from the re-collision of the H electron with its core.

4.1 Grid and Absorber System

The grid was the environment of the simulation accommodating the motion of the electron.
It consist of the position, momentum and time grid. The position grid was defined large
enough to contain the propagation and recombination motion of the electron. Its length,
L was

L = 2πLx (4.1)

where Lx is an arbitrary number, used to control the length of the grid. The momentum
grid was defined based on the specifications of the position grid, while the time grid was
defined independently of either the position or momentum grid. The absorber system was
defined on the position grid and serves as a form of restraint to the electron motion.

4.1.1 Position Grid

The position grid has a size of
[
−L

2
, L

2

]
Each point xm in the grid has the relation;

xm = xmin +m∆x (4.2)

Where ∆x = xmax−xmin
Nx

, m = 0, ..., Nx − 1, xmax = L
2
, xmin = −L

2
, Nx is the

number of position grid points. ∆x is the position step size. See Appendix B for the
specifications of the position grids.

4.1.2 Momentum Grid

The momentum grid has a size of [−pmax, pmax]. Each point pm in the grid has the relation;

pm = pmin +m∆p (4.3)

where ∆p is momentum step size. pmax = π
∆x
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∆p =
pmax − (−pmax)

Nx

=
2π

Nx∆x
(4.4)

Therefore, setting pmin = 0, Eq.4.3 becomes

pm = m

(
2π

Nx

)(
Nx

2πLx

)
(4.5)

pm = i

(
1

Lx

)
(4.6)

∆t is the step size. See Appendix B for the specifications of the momentum grids.

4.1.3 Time Grid

Different time grid was used for the imaginary propagation, real propagation and spec-
trum computation, depending on the values corresponding to the expected results. The
step size were however chosen very small in accordance to Baker Campbell Approximation.

The time grid had a size of [0, tmax]. Each point t in the grid has the relation;

t = t0 +m∆t (4.7)

where

∆t = −i
(
tmax
Nt

)
(4.8)

t0 = 0, m = 0, ..., Nt − 1, tmax is the maximum time, Nt is the no of points in the time
grid, ∆t is the time step. See Appendix B for the specifications of the imaginary, real and
spectrum time grids.

4.1.4 Boundary Absorber

A boundary absorber is a potential, added to the laser potential to cause a damping action
on the electron motion near the grid boundaries. The form of the absorber used in our
work, was the optical potential. Potential ofthis kind are purely imaginary absorber that
operates to weaken the strength of the electron density as it approaches the two edges in
the grid [11].

Vopt = −i

[
θ(x− x1)

(
x− x1

xmax − x1

)2

− θ(x2 − x)

(
x− x2

xmin + x2

)2
]

(4.9)

Where x1 = xmax − 5πLx
10

, x2 = xmin + 5πLx
10

, θ is the step function, which controls the
absorption. The form of absorber used for the single color lasers is as shown in Figure
4.1, while Figure 4.1b is the corresponding absorber for the the two color laser field.
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(a) (b)

Figure 4.1: Absorber Potential

The maximum strength of Vopt, is 0.5. However if Vopt = 1.0 (same as the strength of
the wavepacket [ψ]2 = 1), then it behaves in similar way as the grid boundaries. In such
cases, the wavepacket are heavily reflected1 at x1 and x2 thereby resulting to entrance of
ghost wavefunction and eventually leading to spurious harmonics.

By defination Vopt acts at region x1 (−60 and −100) and x2 (60 and 100). An electron
wavepacket approaching x1 from the origin becomes moderately absorbed at x1. And as
it makes further translation from x1 to xmin, the remainder of [ψ]2 were all absorbed.
So, that at the edge (xmin) there was practically no wavepacket. Thus the possibility of
a ghost wavefunction entering our system was prevented. Similar action also took place
between xmax and x2 when the wavepacket advanced toward the right edge of the grid.

4.2 Setting up the Atomic System

4.2.1 Soft Core Potential

The core potential of the H atom is

V = − e

4πεox
(4.10)

in a.u. Eq.4.10 becomes

V = −1

x
(4.11)

However in order to avoid singularity when x = 0, and to allow the electron motion to
continue along x, the core potential is softened so that;

Vsoft core = − 1√
x2 + a2

(4.12)

Refer to Figure 4.2 for the form of potentials. The value of ’a’ has an effect on the
broadness of the plateau. It has been verified that, smaller values of a gives rise to broader
plateau than larger values [13]. The Soft-core potential was centered at the position grid.
See Appendix B for the chosen values of a both for the single and two color simulation.

1The occurrence of wavepacket reflection at the grid boundaries was because the evolving wavepacket
must be periodic, according to the FFT action in propagating the wavefunction
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(a): for single color case (b):for double color case

Figure 4.2: Soft Core Potential

As seen in Figure 4.2a and Figure 4.2b, the depth of the potential well differs as a result
of different values of a. The nuclei is located at the bottom of the core, while the electron
is situated above the core.

4.2.2 Imaginary Time Propagation

We adopted an initial wavefunction ψ(x, 0), given by;

ψ(x, 0) = e−
x2

2 (4.13)

The absorber was added to the soft-core potential. So, we have a modified potential of
the form;

V → Vsoft core + Vabs (4.14)

We performed an imaginary time action (i.e going back in time ) so.

∆t→ −i∆t (4.15)

It turns out that Eq.2.54 becomes

Ψ(x, t0 + ∆t) = e−
1
2~ (Vsoft core+Vabs)∆t.e−

1
~T∆t.e−

1
2~ (Vsoft core+Vabs)∆te−

x2

2 (4.16)

Where t0 = 0. The actions in Eq.2.55 to Eq.2.60 were carried out, to get the final form
of Ψ(x, t0 + ∆t) denoted as Ψimg(x, t)
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The initial and imaginary propagated electron density are depicted in Figure 4.3

(a): for single color case (b):for double color case

Figure 4.3: Electron probability distribution

For the colour code in Figure 4.3, BLUE represented the initial wavefunction, while
RED represented the ground state wavefunction. In Figure 4.3a, the electron was
initially located at the origin with a probability of 0.55, but after relaxing the system
through imaginary time propagation, the probability dropped to 0.1, same as that
obtained with the two color laser. In Figure 4.3b, the electron was initially closer to the
origin than in (a), so the time for relaxation was typically smaller (see Figure 4.3).

4.2.3 Computation of the Ionization-energy Observable

We computed the the energy of the H electron by using Eq.2.63 and Eq.2.66. Thus

〈Ekin〉 = −i
tmax∑

0

Ψ∗img(x, t)
p2

2m
Ψimg(x, t)∆t (4.17)

while 〈Epot〉 is given by;

〈Epot〉 = −i
tmax∑

0

Ψ∗img(x, t)(Vsoft core + Vabs)Ψimg(x, t)∆t (4.18)

The ionization-energy, Ip now reads;

Ip = 〈Ekin〉+ 〈Epot〉 (4.19)

Ip now represents the total energy of the electron in Figure 4.4. The energy plot shown
in the Figure reveals that the atomic species was an H atom.
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(a): Energy relaxation for single color (b):Energy relaxation for double color

Figure 4.4: Ground state energy plot for H atom

In Figure 4.4a, the electron’s initial energy was approximately 1.8 a.u., but after about
2 a.u. time of propagation the system was well relaxed. In Figure 4.4b, the electron’s
initial energy was approximately 2.25 a.u., but after about 1.5 a.u. time of propagation
the system was well relaxed. The reason for the shorter relaxation time was due to the
fact that the electron was initially located close to the grid origin, as such minimum time
is required for its relaxation even though its initially energy was higher than in Figure
4.4a.

4.3 Laser Irradiation

Two forms of laser fundamental fields were separately coupled to the H atom. The forms
of the fundamental and secondary field were already given (see Eq.1.17), and refer to
Eq.4.20 for the form of the synthesized field.

E(t) = E1f1(t) sin(ω1t) + E2f2(t+ τ) sin[ω2(t+ τ)] (4.20)

Where τ = φ
ω2

. The laser parameters are given in Table 4.1.

Table 4.1: Incident laser parameters

Wavelength (λ) nm intensity (1014)W/cm2 nc
1st fundamental 800 2 10
2nd fundamental 800 4 10

secondary 400 5 20
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The chosen parameters of τ and φ are given in Table 4.2

Table 4.2: Incident time lag parameters

τ (φ
ω

) a.u. φ
(i) 50 0.04π
(ii) 400 0.2π
(iii) 1768 π
(iv) 3203 1.6π

4.3.1 Soft Core-Laser Potential

The total potential of the system (otherwise called soft core-laser potential) was computed
as a sum of Eq.2.6, Eq.4.9 and Eq.4.12. i.e

V = Vsoft core + Vlaser + Vopt (4.21)

4.3.2 Real Time Propagation

We performed real time propagation by setting

∆t→ ∆treal (4.22)

It turns out that Eq.2.54 becomes;

Ψ(x, t+ ∆treal) = e−
1
2~V∆treal .e−

1
~T∆treal .e−

1
2~V∆trealΨimg(x, t) (4.23)

The actions in Eq.2.55 to Eq.2.60 were carried out, to get the final forms of Ψ(x, t+∆treal)
denoted as Ψreal

4.3.3 Computation of the Accelerating electron’s -energy

During the propagation motion of the electron under the influence of the laser field, the
maximum attainable energy which we have earlier refereed to as the ponderomotive energy
Up, was computed by th foloowing expression using Eq.2.63 and Eq.2.66.

〈Ekin〉 =
tmax∑

0

Ψ∗real(x, t)
p2

2m
Ψreal(x, t)∆treal (4.24)

〈Epot〉 =
tmax∑

0

Ψ∗real(x, t)VΨreal(x, t)∆treal (4.25)

Etotal = Up = 〈Ekin〉+ 〈Epot〉 (4.26)

4.4 Spectrum Generation

By using Eq.2.83, we simulated the spectrum S(ω) as;
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S1(ω) =

∣∣∣∣∣ 1√
2π

tmax∑
0

(
tmax∑

0

Ψ∗real(x, t)
x

(x2 + a2)3/2
Ψreal(x, t)∆treal − E(t)

)
e−iωt∆tspec

∣∣∣∣∣
2

(4.27)
where ∆tspec is the time step in the spectrum time grid.

4.5 Single Pulse Generation

An inverse fourier transform of the frequency spectrum can be performed to get the
corresponding single temporal pulse.

For the single attoseconds pulse due to the field E(t), we have;

S−1(ω) = F−|S(ω)| = 1√
2π

t12∑
t11

S1(ω)ei(q
1
2−q1

1)ωt∆tspec (4.28)

where q1
2 − q1

1 = harmonic order in the plateau region ; t12, t11 are the corresponding time
The above however is a common technique for visualizing a single attoseconds pulse.

ALTERNATIVELY;

We decided to generate the single attoseconds pulse from the computed dipole accelera-
tion. By using Eq.2.78, we simulated da(t) as;

da(t) =
tmax∑

0

Ψ∗real(x, t)
x

(x2 + a2)3/2
Ψreal(x, t)∆treal − E(t) (4.29)

Observe from the Hamilton’s equation, that the dipole acceleration is a direct represen-
tation of the electric field profile of the generated attoseconds pulse.

m
d2x

dt2
= −dH

dt
= −eE(t) (4.30)

By considering a.u. conversion (See Appendix A), we obtain;

da(t) =
d2x

dt2
= −E(t) (4.31)

By making use of the conversion;

1a.u. of time = 2.4188× 10−2fs (4.32)

We were able to obtain the time duration of the emitted pulses.
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CHAPTER 5

RESULT AND DISCUSSION

5.1 Single Colour Lasers

The simulation results due to the interaction of the single colour laser fields with the H
atom are presented in this section. Two out of the single colour lasers, been of Ti:Sapphire
lasers type were refereed to as fundamental lasers (800 nm), while the other refereed to as
the secondary laser (400 nm), is a laser source in the visible region of the EM spectrum.

5.1.1 Case 1 (a): 1st Fundamental Laser Field

The characteristics of the first fundamental field considered is of the 800 nm pulsed
Ti:Sapphire laser of 2 ×1014 W/cm2 intensity, with 10 cycles in a pulse. The results of
their interaction with the H atom are presented below;

(a) (b)

Figure 5.1: The 1st fundamental electron density and total energy of the propagating
electron

Figure 5.2: 1st fundamental field dipole acceleration
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Figure 5.3: 1st fundamental field HHG spectrum

The probability density plot of the evolving electron wavepacket is as shown in Figure 5.1a.
The time axis which was not represented in the plot can be visualized as a perpendicular
extension of the position grid, pointing inward into the page. The electron travelled away
from the soft core, but within -40 to 20 a.u. of position. The above plot is in good
agreement with the 2nd postulate of the SFA Model, in that the depletion of the ground
state is ignored. i.e. not all of the electron wavepacket leaked out of the core. The
percentage of unionised electron density, that remained in the ground state is computed
thus;

unionised fraction = 1−
|ψ|2ground state − |ψ|2propagated

|ψ|2ground state

(5.1)

unionised % = 1−
[

0.1− 0.083

0.1
× 100

]
(5.2)

= 20.48 % (5.3)

So, about 80 % of |ψ(x, 0)|2 was leaked out. The total instantaneous total energy of
the oscillating electron is as shown in Figure 5.1b. Just before ionization, the electron is
restricted to be within the core with a binding energy of -0.5 a.u.But upon irradiation with
the laser, the electron tunnels out into the continuum with approximately zero energy.
The several peaks shows that the electron was on several times ionized and subsequently
recombined with the core. The energy of the electron became approximately stable beyond
200 a.u. of time, and by taking the average we measured 0.55 a.u. energy.

∴ Etotal energy = 0.55 a.u. (5.4)

We observed that the electron’s initial energy corresponds approximately to Ip i.e. the
energy contribution from excited bound states had no effect. Thus, the result of the
energy plot also follows closely the 1st postulate of the SFA Model in section 2.1.2

The dipole acceleration of the generated pulse is as shown in Figure 5.2. This
corresponds to the electric field profile of the attosecond pulse. It’s profile shows
resemblance with the driving laser field, which means that it depends on the laser field.
The attosecond pulse has a periodicity of 55 a.u. of time. From Appendix A we have
that;

1 a.u. of time = 2.4188× 10−2 fs (5.5)
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so that

55 a.u. = 2.4188× 10−2fs× 55 (5.6)

≈ 1330× 10−18 s (5.7)

≈ 1330 as (5.8)

Eq.5.8 which represents the pulse duration appears to be too large as against 102 orders
of attoseconds pulse that are currently been generated. The large number of cycles in
Figure 5.2 explains the reason for the large pulse duration. The HHG spectrum of the
corresponding attosecond pulse is as shown in Figure 5.3. The plateau extends from the
8th to 35th order, after which there was a sharp cut off. By using Eq.5.4, the harmonic
order at the cut-off is calculated thus;

N =
|Ip|+ 3.17Etotal energy

ω
(5.9)

N =
0.5 + 3.17(0.55)

0.057
(5.10)

N ≈ 39.4 (5.11)

We thus see that harmonic cut off order closely corresponded to the result in our HHG
spectrum in Figure 5.3. By using Eq2.93, we computed the attosecond pulse energy in
eV , thus;

8 harmonic order = 0.057× 27.211× 8 (5.12)

≈ 12.4 eV (5.13)

Similarly;
36 harmonic order = 0.057× 27.211× 35 (5.14)

≈ 54.3 eV (5.15)

Each peak in the plateau corresponding to an attosecond pulse have equal intensity and
phase orientation. This harmonic order corresponds to 12.4 eV - 54.3 eV (soft x-ray
region). Though, the form of the plateau in Figure 5.3 indicated that attosecond pulses
are emitted, but the pulses aren’t short in time duration.
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5.1.2 Case 1(b): 2nd Fundamental Laser Fields (4× 1014W/cm2)

The following results are those obtained due to irradiation from an 800 nm pulsed
Ti:Sapphire laser of 4 ×1014 W/cm2 intensity, with 10 cycles in a pulse.

(a) (b)

Figure 5.4: The 2nd fundamental electron density and total energy of the propagating
electron.

Figure 5.5: 2nd fundamental field dipole acceleration

Figure 5.6: 2nd fundamental field HHG spectrum

The probability density of the evolving electron wavepacket is as shown in Figure 5.4a.
The electron motion was majorly centered at the origin. We also realized that, the electron
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density plot shows that the ground state was not completely depleted. The percentage of
unionised electron density, that remained in the ground state is computed using Eq.5.1;

unionised % = 1−
[

0.1− 0.088

0.1
× 100

]
(5.16)

= 12 % (5.17)

We thus see that 88 % of the electron density was leaked out. This again agreed with
the SFA assumption. We observed from Figure 5.4b, that when ionization occurred, the
electron entered the field with zero energy, and oscillated with an average energy of 1.2
a.u, which remained constant beyond 200 a.u. of time. i.e

E = 1.2 a.u. (5.18)

We realized that the electron’s initial energy corresponds approximately to Ip, i.e. the
energy contribution from excited bound states had no effect. Thus, the result of the
energy plot also follow closely the 1st postulate of the SFA Model in section 2.1.2. Figure
5.5 represent the dipole acceleration, whose fourier transforom squared yields the HHG
spectrum in 5.6. The attosecond pulse has a periodicity of 28 a.u. of time. From Appendix
A we have that;

1 a.u. of time = 2.4188× 10−2 fs (5.19)

so that

28 a.u. = 2.4188× 10−2fs× 28 (5.20)

≈ 677× 10−18 s (5.21)

≈ 677 as (5.22)

Eq.5.22 which represents the pulse duration is of the order of 10 less than that obtained
in case 1(a). The HHG spectrum of the corresponding attoseconds pulse is as shown in
Figure 5.6. The plateau extends from 25th to 75th order, after which there was a sharp
cut off. By using Eq.5.18, the harmonic order at the cut-off is calculated thus;

N =
|Ip|+ 3.17Etotal energy

ω
(5.23)

N =
0.5 + 3.17(1.2)

0.057
(5.24)

N ≈ 75.5 (5.25)

We thus see that harmonic cut off order closely corresponded to the result in our HHG
spectrum in Figure 5.6. By using Eq.2.93, we computed the attoseconds pulse energy in
eV , thus;

25 harmonic order = 0.057× 27.211× 25 (5.26)

≈ 38.7 eV (5.27)
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Similarly;
75 harmonic order = 0.057× 27.211× 75 (5.28)

≈ 116.3 eV (5.29)

Each peak in the plateau corresponding to an attosecond pulse have equal intensity and
phase orientation. This harmonic order corresponds to 39 eV - 116 eV (soft x-ray region).
Though the form of the plateau in Figure 5.6 indicated that attosecond pulses are emitted
but, it would pose great difficulty in isolating a single pulse due to the likely short pulse
repetition rate of the pulse train.

5.1.3 Case 2 : Secondary Laser Field

The following results are those obtained due to irradiation from a 400 nm pulsed visible
laser of 4 ×1014 W/cm2 intensity, with 20 cycles in a pulse.

(a) (b)

Figure 5.7: The secondary electron density and total energy of the propagating electron

Figure 5.8: The secondary field dipole acceleration

The snapshot of the electron possible position at an instance of time is as shown in
Figure 5.7a. As before, the electron underwent ionization, followed by propagation and
subsequently recombination.
The percentage of unionised electron density, that remained in the ground state is com-
puted using Eq.5.1;

unionised % = 1−
[

0.1− 0.095

0.1
× 100

]
(5.30)

= 15 % (5.31)
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Figure 5.9: The secondary field HHG spectrum

We thus see that 85 % of the electron density was leaked out. This again agreed with
the SFA assumption. It is the same result as for case 1(b). The total instantaneous
total energy of the oscillating electron is as shown in Figure 5.7b. Just before ionization,
the electron is restricted to be within the core with a binding energy of -0.5 a.u., upon
irradiation with the laser, the electron tunnels out into the continuum with approximately
zero energy. The several peaks shows that the electron was on several times ionized and
subsequently recombined with the core. The energy of the electron became approximately
stable beyond 100 a.u. of time, and by taking the average, we measured 1.50 a.u. energy.
i.e

E = 1.70 a.u. (5.32)

We observed that the electron’s initial energy corresponds approximately to Ip, which is
an indication that the energy contribution from excited bound states had no effect. Thus,
the result of the energy plot also follow closely the 1st postulate of the SFA Model in
section 2.1.2

The dipole acceleration plot is as shown in Figure 5.8. It consisted of about 20 cycles
just as the same number of cycles in the driving laser field. The attosecond pulse has a
periodicity of about 50 a.u. of time. From Appendix A we have that;

1 a.u. of time = 2.4188× 10−2 fs (5.33)

so that

50 a.u. = 2.4188× 10−2fs× 50 (5.34)

≈ 1379× 10−18 s (5.35)

≈ 1209 as (5.36)

Eq.5.36 which represents the pulse duration appears to be too large owing to the large
number of cycles in the dipole acceleration. The HHG spectrum of the corresponding
attoseconds pulse is as shown in Figure 5.9. Two plateau peaks were observed, the
first extended from 5th to 25th order, while the other extended from 28th to 50th order
after which there was a sharp cut off. The cut-off in the second plateau approximately
corresponded to the cut off corresponding to Figure 5.7b. The harmonic order at the
cut-off is calculated thus;
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N =
|Ip|+ 3.17Etotal energy

ω
(5.37)

N =
0.5 + 3.17(1.7)

0.113886
(5.38)

N ≈ 51.7 (5.39)

We thus see that, the harmonic cut off order approximately corresponded to the result in
our HHG spectrum in Figure 5.9. By using Eq.2.93, we computed the attosecond pulse
energy in eV as per;

50 harmonic order = 0.113886× 27.211× 50 (5.40)

≈ 154.9 eV (5.41)

Similarly

28 harmonic order = 0.113886× 27.211× 28 (5.42)

≈ 86.77 eV (5.43)

Each peak in the plateau corresponding to an attoseconds pulse have equal intensity and
phase orientation. This harmonic order corresponds to 87 eV - 155 eV (soft x-ray region).
Though the form of the plateau in Figure 5.9 indicated that attosecond pulses are emitted
but, it would some difficulty in filtering out a single pulse from the the trains of pulses
following from our discussion in Chapter 3.

5.2 Two Colour Mixing

The interaction between the 1st fundamental and secondary laser field gave rise to the
two colour mixing, whose resultant field is referred to as the synthesized field. Here we
considered the effect of introducing the secondary laser source to jointly interact also with
the H atom, and by excluding and/or including a time delay, we realized an improvement
in the results over irradiation by a single coloured beam. A larger grid size was used in
the computation for the two colour mixing.

5.2.1 Two Colour without Time Delay

In the form of the synthesized laser field as given by Eq.4.20, by setting τ to be zero, we
have obtained marked differences in our results, whose respective plots are shown below.
The plot in Figure 5.10a revealed that the electron was at the origin at some point in
time, while at other time it was propagating along the left and right sides of the grid.
Due to the absorber, the electron motion was restricted from approaching the grid edges.
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(a) (b)

Figure 5.10: 1st Two color electron density and total energy plot

Figure 5.11: 1st Two color dipole acceleration.

Figure 5.12: 1st Two color HHG spectrum

By using Eq.5.1 we found out that 23 % of the electron density remained in the ground
state, during propagation. The total energy gained by the electron is as shown in Figure
5.10b. The electron ionizes and gains energy progressively until its energy become stabi-
lized at around 22 - 48 a.u. of time. The stabilized energy is about 12 a.u. energy. The
attosecond pulse has a periodicity of 7.00 a.u. of time. From Appendix A we have that;

1a.u. of time = 2.4188× 10−2 fs (5.44)

so that
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0.65 a.u. = 2.4188× 10−2fs× 7.00 (5.45)

≈ 169.3× 10−18 s (5.46)

≈ 169 as (5.47)

Eq.5.47 which represents the pulse duration is of the order of 102. The dipole acceleration
of the corresponding attosecond pulse is as shown in Figure 5.11, consisting of three pulses.
It mimics the electric field profile of the generated attosecond pulses. Hence we observed
that the pulses have been emitted coherently. It shows some marked differences compared
to that of the single color. The attosecond pulses emitted , were of very short duration.
It appeared that the shorter the pulses, the less intense the field would appear to be 1. It
tuns out that attosecond pulses (in Figure 5.11) were less intense than the pulses produced
in Figures 5.5 and 5.8. From our discussion in Chapter 3, we know that, a very short
attosecond pulse generation is an indication of a broad plateau. This made the plateau
to appear broad as seen in Figure 5.12 extending from 200th - 673th order. The harmonic
order at the cut-off is calculated as per;

N =
|Ip|+ 3.17Etotal energy

ω
(5.48)

N =
0.5 + 3.17(12.0)

0.057
(5.49)

N ≈ 676 (5.50)

We thus see that the harmonic cut off order corresponded closely to the result in our HHG
spectrum in Figure 5.12. By using Eq.2.93, we computed the attosecond pulse energy in
eV , as per;

200 harmonic order = 0.057× 27.211× 200 (5.51)

≈ 310.2 eV (5.52)

Similarly;
673 harmonic order = 0.057× 27.211× 673 (5.53)

≈ 1043.84 eV (5.54)

Each peak in the plateau corresponding to an attosecond pulse have equal intensity and
phase orientation. The harmonic order corresponds to 310 eV - 1044 eV (hard x-ray). The
broad plateau region forming the continuum length indicated that an isolated attosecond
pulse is realizable.

1High energy attosecond pulses usually have lower intensity and vice versa
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5.2.2 Two Colours With Time Delay

The time delay consideration is for the case where τ 6= 0. As an important note, the
fundamental laser has a pulse duration Tp, of about 3536 a.u. of time (refer to Appendix
A), which also happen to be secondary laser pulse duration. For a given phase φ, we
computed the corresponding time delay τ as a fraction of this period, by using Eq.3.6.

(i) Consideration for phase, φ = 0.04π

τ =
φ

ω
(5.55)

where ω = 2πc
λ

, ω1 = 2πc
λ1

, λ is the wavelength of the fundamental laser field, λ1 is
the wavelength of the secondary laser field, τ is the time lag. λ = 800 nm, λ1 = 400
nm. By converting into atomic unit (See Appendix A). We have

τ =
0.04× 1768

0.057
≈ 50 a.u (5.56)

(a) (b)

Figure 5.13: 2nd two colour electron density and total energy plot

Figure 5.14: 2nd two colour dipole acceleration
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Figure 5.15: 2nd two colour HHG spectrum

(ii) Consideration for phase, φ = 0.2π

Using Eq.5.55 it follows that;

τ =
0.2× 1768

0.057
≈ 400 a.u

(a) (b)

Figure 5.16: 3rd two color electron density and total energy plot

Figure 5.17: 3rd two colour dipole acceleration
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Figure 5.18: 3rd two colour HHG spectrum

(iii) Consideration for phase, φ = π

Using Eq.5.55, it follows that;

τ =
1768

0.057
≈ 1768 a.u

(a) (b)

Figure 5.19: 4th two color electron density and total energy plot

Figure 5.20: 4th two color dipole acceleration
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Figure 5.21: 4th two color HHG spectrum

(iv) Consideration for phase, φ = 1.6π Using Eq.5.55, it follows that;

τ =
1.6× 1768

0.057
≈ 3203 a.u

(a) (b)

Figure 5.22: 5th two color electron density and total energy plot

Figure 5.23: 5th two color dipole acceleration

We observed that all the results for time lag consideration appeared exactly the same
as those obtained in 5.10, 5.11 and 5.12. So, we conclude that the system was already
optimized for the initially chosen laser parameters.
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Figure 5.24: 5th two color HHG spectrum
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CONCLUSION

The aim of this research was to study the response of an H atom in the presence of a
moderately intense laser field, with respect to generating trains of attosecond pulses and
single attosecond pulse. We started by reviewing the basic fundamentals of femtosecond
lasers needed for a proper comprehension of the HHG process attributed to attosecond
production. Subsequently, we considered the production mechanism of femtosecond lasers,
unique properties as a super light and their mathematical representation were examined
too.

The HHG process that produces a multiplier effect of the incident femtoseconds laser
energy upon laising with an atomic system was well understood via the Simple-man’s
Model, Lewestein Model and direct TDSE simulation Model. However, owing to the ob-
served low conversion efficiency of the simplified HHG process, and the need to generate
a single attosecond pulse, the two-color scheme was strongly reviewed, been the common
theoretical technique for generating an ultrashort single pulse whose energy extends into
the X-ray regime.

Our particular interest was on pushing the cut-off energy limit farther into the EM spec-
trum scale (into the extreme ultraviolet- hard X ray region). In the theory of our work,
we derived the 1D non-relativistic Schrodinger equation for an H atom using the dipole
approximation and whose solution was obtained by the split operator method. In our
computer work, the resultant wavefunction was simulated and propagated in momentum
(p) and space (x) configuration by Fast Fourier Transforming back and forth between p
and x, and finally expressed in x configuration.

For the case of the imaginary time propagation (where the H system was back propa-
gated in time to relax it to its ground state), the resulting ground state wavefunction was
used to compute the ground state energy. This ground state wavefunction served as the
initial wavefunction in the real time propagation. The energy profile of the laser-driven
electron showed that ionization, propagation and recombination occurred multiple times
resulting to the generation of trains of pulses. The final wavefunction from the real time
propagation was used to compute the HHG spectrum of the generated harmonics. And
by computing the electric field profile describing the generated attosecond pulse, the time
profile indicating the pulse duration was calculated.

We have employed different characteristics laser forms. For the three forms of the single-
coloured laser used, the real time propagated electron wavepacket, energy profile, pulse
electric profile plot and HHG spectrum was computed. When the fundamental Ti:Sapphire
laser with the parameters 800 nm, 2×1014W/cm2, 10 cycles irradiated the H atom, a train
of 1330 as pulses extending from the 8th - 36th harmonic order corresponding to 12 eV
-55.8 eV was generated. When another fundamental Ti:Sapphire laser with the param-
eters 800 nm, 4×1014W/cm2, 10 cycles irradiated the H atom, a train of 677 as pulses
extending from the 25th - 75th harmonic order corresponding to 39 eV - 116 eV was gen-
erated. Furthermore, by when a secondary laser source in the far visible region with the
parameters 400 nm, 5×1014W/cm2, 20 cycles irradiated the H atom, we obtained a train
of 1209 as pulses extending from the 28th - 50th harmonic order corresponding to 87 eV
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- 155 eV .

In a bid to extend the spectral cut-off energy, we generated a synthesized laser from
the interference of the fundamental and secondary laser. Upon the introduction of the
synthesized laser, a broad plateau region occurred corresponding to a single attosecond
been generated. As a means of trying to optimize our result, several time delay were
introduced into the system by varying the Carrier Envelope Phase, φ. We however noticed
that the corresponding results were similar to those obtained without time delay. In both
cases, an isolated 169 as pulse was observed having a maximum of 685 harmonic order
corresponding to 1.044 keV of energy. This is an incredible result which can be achieved
experimentally owing to the recent experimental generation of the driving pulsed laser
used in the simulation.
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APPENDIX A

ATOMIC UNIT CONVERSION

m = ~ = e = 1
1 a.u. of time = 2.4188× 10−2fs
1 a.u. of position = 5.29177× 10−2nm
1 a.u. of velocity = 2.188× 106m/s
1 a.u. of frequency = 4.1341× 1016s−1

1 a.u. of permitivity = 4π × 8.8542× 10−2As/V m
1 a.u. of energy = 4.3597× 10−18J = 27.211eV

This code was written in Python programming language, It was compiled on an un-
buntu system with IP[y]:Notebook (Python version: Python 3.5.2)

### DOUBLE COLOR (synthesized field)###

### Parameters of fundamental laser ###

E0=np.sqrt(2e14/3.51e16) # amplitude of the driving laser

w =0.057# angular frequency of the driving laser

T =2 *np.pi/w # time duration of a single cycle in the driving laser

nc = 10

### Parameters of secondary laser ###

E01=np.sqrt(5e14 /3.51e16) # amplitude of the driving laser

w1 = 0.113886143 # angular frequency of the driving laser

T1 =2 *np.pi/w1 # time duration of a single cycle in the driving laser

nc1 = 20

############ Time delay variation ##################

tau_d = 0.0

#tau_d = 50.0

#tau_d = 400.4 # corresponds to (0.2 * pi)/w

#tau_d = 17684.3 # corresponds to pi/w

#tau_d = 3203.2 # corresponds to (1.6 * pi)/w

##### parameters for IMAGINARY TIME PROPAGATION ####

TM = 85 #temporal grid size

dp_im = 0.03767209

ic= complex(0,1) #imaginary quantity, sqrt(-1)

dt_im=-ic*dp_im #time step
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p_im = 0.0 #initial time

### parameters for REAL TIME PROPAGATION ####

GG_r = 8000 #temporal grid size

dt_r =5.10006600e-02 #time step

p_r = 0.0 #initial time

######## parameters for COMPUTING THE HHG SPECTRUM #######

GG_sp = GG_r #temporal grid size

dt_sp =0.6006600e-02

p_sp = 0 #initial time

a = 0.4582 # the soft core parameter

Nx = TM # no of points in the position grid

Lx =7.0 # lenght of the position grid

### points in the position grid ###

x = [i*10.0*np.pi*(Lx/Nx) for i in range(-Nx /2, 1+Nx/2)]

### points in the momentum grid ###

k_x = (1.0/Lx)*np.array([ic*n for n \

in range(0,Nx/2) + [0] + range(-Nx/2+1 ,0)])

Xmin=min(x) # minimum point in the position grid

Xmax=max(x) # maximum point in the position grid

dx =(Xmax-Xmin)/Nx # time step in the position grid

x1 = Xmax-(5.*np.pi*Lx)/10.0 # RHS location of the absorber pot.

x2 = Xmin +(5.*np.pi*Lx)/10.0 # LHS location of the absorber pot.

###initiatilization of the momentum,position,soft core parameter###

k2xm=np.zeros(Nx, dtype=float)

xx=np.zeros(Nx, dtype=float)

av=np.zeros(Nx, dtype=float)

for i in range(Nx):

k2xm[i] = abs(np.real(k_x[i]**2)) # momentum squared

xx[i]=x[i]

av[i]=a

### soft core potential ###

Vs= - 1/(np.sqrt(xx**2 + a**2))

### initialization of other parameters ###

pot=np.zeros(Nx, dtype= float)

pott=np.zeros(Nx, dtype= float)

u=np.zeros(Nx, dtype= complex)

una=np.zeros(Nx, dtype= complex)

unb=np.zeros(Nx, dtype= complex)

v=np.zeros(Nx, dtype= complex)
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vna=np.zeros(Nx, dtype= complex)

vnb=np.zeros(Nx, dtype= complex)

Vopt = np.zeros(Nx, dtype= complex)

### Initial wavefunction ####

alpha =1.0

uinit =np.exp((-alpha*xx**2)/2) # initial wavefuntion

usinit =abs(uinit)** 2

I_usinit = usinit

norm2i =0

for i in range(Nx):

norm2i += usinit[i]*dx

u= uinit/(norm2i**0.5)#normalized initial wavefuntion

I_u = u

#### Laser PotentialS #######

def Vlaserp(xx ,pp,E0): # potential of fundamental lasers

vv = -xx*E0*np.sin(w*pp)*(np.sin((np.pi*pp)/(T*nc)))** 2

return vv

def Vlaserp1(xx ,pp,E01): # potential of secondary lasers

vv1 = -xx*E01*np.sin(w1*(pp + tau_d))*(np.sin(((np.pi*pp)/(T1*nc1))+tau_d))**2

return vv1

#### Absober Potential ######

def thetax(yy): #theta = absorption strength

if yy > 0.0 :

return 0.5

else:

return 0.0

for i in range(0,Nx):

Vopt[i] = (thetax(xx[i]-x1)*((xx[i]-x1)/(Xmax-x1))**2 \

+ thetax(x2-xx[i])*((xx[i]-x2)/(Xmin-x2))**2)

### IMAGINARY TIME PROPAGATION ###

### REAL TIME PROPAGATION ###

### COMPUTING THE HHG SPECTRUM ###

### PLOTS ###
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