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ABSTRACT  

Most of the relevant research work has addressed the properties of internal solitons in a 

greatly simplified environment, usually in the framework of different versions of the two 

layer fluid.  The simplest equation of this class is the well-known Korteweg-de Vries (kdV) 

equation that describes the motion of weakly nonlinear internal waves in the long-wave 

limit.  However,  in many areas of the world’s ocean,  the vertical stratification has a clearly 

pronounced three-layer structure,  with well-defined seasonal thermocline at a depth of 

about 100m or higher.  Hence , the need for a redefinition of the famous KdV equation to 

tackle such scenarios and clearly accounts for nonlinearity  in such environments.  In this 

work, we first derived an analytical solution for the (2+4) KdV-like equation which mimics 

such situations and numerically solved it using the pseudospectral methods due to its 

robustness. After numerical simulations, we observed that the multisoliton solution 

interactions, particularly the three soliton solution interaction showed similar properties 

with the two soliton solution interaction.  

Keywords: solitons, KdV equation, interaction, elastic. 
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                                                              CHAPTER 1 

LITERATURE REVIEW ON SOLITONS 

1.1 Introduction  
Natural occurrences are predominated by nonlinearity.  Fluid and plasma mechanics, 

gas dynamics, elasticity, relativity, chemical reactions, combustion, ecology and many 

more other physical phenomena are all governed inherently by nonlinear equations. 

These nonlinear equations could be ordinary differential equations (ODEs)  or partial 

differential equations (PDEs).  Linear systems are governed by linear equations.  

Majority of natural systems are nonlinear and are therefore modelled by nonlinear 

systems of equations.  Linear systems are systems whose solutions satisfy the 

superposition principle. That is, a linear combination of two or more solutions to the 

equation gives rise to another solution to that same equation. The superposition 

principle is however, not true for nonlinear systems. This superposition principle allows 

the solution to a linear problem to be broken into pieces, which are then solved 

independently by, for example, the Laplace transform, and then added back to form a 

solution to the original problem. The last five decades has seen a tremendous progress 

in solving nonlinear systems, guided by advances in experiments, great success in the 

computer simulation of nonlinear systems. Nature abounds with examples of nonlinear 

waves. 

 

1.2 Soliton 
This is a particular type of Internal waves which is a solution of a nonlinear PDE which 

represents a solitary travelling wave, which: 

 Has a permanent form. 

 Is localised within a region. 

 Does not disperse. 

 Does not obey the superposition principle. 

 

 

1.3 History of Soliton 
The initial observation of a solitary wave in shallow water was made by John Scott 

Russell, shown in Figure 1.1 . Russell was a Scottish engineer and naval architect who 

was conducting experiments for the Union Canal Company to design a more efficient 

canal boat [1]. 

 

 

 



 

2 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: John Scott Russell. Source: G. S. Emmerson (1977). Courtesy of John 

Murray Publishers. 

 

Russell built a water tank to replicate the phenomenon and research the properties of 

the solitary wave he had observed [2] and in 1995, scientists gathered at Heriot-Watt 

University for a conference and successfully recreated a solitary wave but of smaller 

dimensions than the one observed by Russell 161 years earlier (see Figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.2: Recreation of a solitary wave on the Scott Russell Aqueduct on the Union  

Canal. Photograph courtesy of Heriot-Watt University. 

In 1965, Zabusky and Kruskal introduced the concept of a soliton for the Korteweg-
de Vries(KdV) equation [3]. Two years later, by using the Inverse Scattering method on the 
Schrödinger equation, Gardner et al. (GGKM) solved the KdV equation for exact N-soliton 
solutions [4], which can be used to model the interaction of unidirectional solitary waves, on 
water. Their discovery establishes the mathematical foundation of the unidirectional water 
wave interaction. The KdV equation is the leading-order approximation of the Euler 
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equation from a perturbation scheme under the assumption that the wave height is 
relatively small and the wavelength is relatively long compared with the water depth. It also 
assumes that the wave propagates in one direction, which is not a good assumption to 
model the reflection of water waves on a vertical wall. For reflection of water waves, we 
need a model that allows the bidirectional wave interactions, including head-on and 
overtaking collisions.  A solid mathematical foundation of the bidirectional water wave 
interaction has been well-established [5]. 
 

For over forty years now, optical solitons have been shown to form and propagate 
inside a nonlinear Kerr medium. The concept of soliton describes various physical 
phenomena ranging from solitary waves on a water surface to ultrashort optical pulses from 
a laser. The study of optical solitons is interesting for its important applications. The 
generation of a train of soliton pulses from continuous wave light in optical fibers was first 
suggested by Hasegawa and Tappert [6,7] and first realized experimentally in single-mode 
fibers for the case of negative group velocity dispersion by Mollenauer et al. [8] and in 
single-mode optical fibers with large positive group velocity by Nakatsuka et al. [9] . The 
problem of soliton instabilities, leading to the collapse, and which depend on the number of 
space dimensions and strength of nonlinearity has been reported in two principal directions. 
The first direction in the study of the collapse stabilization is the use of a weaker 

nonlinearity, such as saturable [10], cubic-quintic [11–13], quadratic (𝜒(2)) [14–16], or that 
induced by the self-induced transparency [17]. Moreover, in a recent experiment, it has 
been established that the optical susceptibility of 𝐶𝑑𝑆𝑥𝑆𝑒1−𝑥-doped glass processes a 

considerable level of fifth-order susceptibility  𝜒(5). In semiconductor doubled optical fibers 
[18], the doping silica fibers with two appropriate semiconductor particles may lead to an 

increased value of third-order susceptibility  𝜒(3)and a decreased value of 𝜒(5). Thus, in 
order to investigate pulse propagation in such materials, it is necessary to consider higher-
order nonlinearities in place of the usual Kerr nonlinearity. However, when the saturation is 

very strong, a self-focusing 𝜒(7) is also needed. Quite recently, an experiment has been 
reported in material such as chalcogenide glass which exhibits not only third-order 
nonlinearities but even seventh-order nonlinearities [19,20]. In other words, chalcogenide 
glass can be classified as a cubic-quintic-septic nonlinear material. In the past few years, the 
higher-order nonlinear Schrödinger equation with cubic-quintic-septic nonlinearity were 
used, modeling the propagation of ultrashort femtosecond optical pulse [19,20]. 
 

The second direction is the dynamics of optical solitons in the presence of higher-
order dispersions [21]. It is well known that for 1D case, the dispersion effect broadens the 
pulse in the longitudinal direction, which is compensated by the self- focusing effect of the 
nonlinearity to generate a stable soliton propagation. Contrary, for the 2D and 3D cases, the 
dispersion as well as the diffraction effects broaden the pulse in the longitudinal and the 
transversal directions, respectively, which must be compensated by the stronger self-
focusing effect than for the 1D case. Picosecond pulses are well described by the nonlinear 
Schrödinger (NLS) equation which accounts for the second-order dispersion and self-phase 
modulation (SPM). It is known that the NLS equation does not give correct prediction for 
pulse width smaller than one picosecond. For example, in solid state, solitary wave lasers, 
where pulses as short as 10 femtoseconds are generated, the approximation breaks down. 
Thus, quasi-monochromaticity is no longer valid and so, higher-order dispersion terms creep 
in, such as the third-order dispersion and self-steepening. The third-order dispersion is 
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significant because it qualitatively changes the linear dispersion relation. Its effect on the 
NLS soliton is to generate continuous wave radiation and causes the soliton decay [21]. On 
the other hand, it was shown by Fewo and Kofane [22] that, taking in account the third-
orderdispersion term, different numerical simulations lead to some changes of propagation 
properties, where the main observation is the shifting of the temporal position of the pulse 
under several values of the third-order coefficient. This quality may be detrimental for 
transmission systems in the sense that the transmitted pulse will arrive practically out of its 
bit slot at the receiver system, and this may cause a possible loss of information by 
generating a timing jitter [23]. It has been found that the fourth-order dispersion term in 
NLS-type equation stabilizes instabilities [24–26]. Sometimes, an additional fourth-order 
term destabilizes the soliton and the second derivative order term can work as a stabilizer 
for the soliton [27]. If the group velocity dispersion is close to zero, one needs to consider 
the third and higher-order dispersion for performance enhancement along trans-oceanic 
and trans-continental distances. Also, for short pulse widths where group velocity dispersion 
changes within the spectral bandwidth of the signal cannot be neglected, one needs to take 
into account the fourth and sixth-order dispersion terms in addition to the third-order 
dispersion term [28,29]. 

 
For long-distance communication systems, compensation of attenuation of pulse is 

an important issue. One approach is the use of periodically spaced amplifiers. In the second 
approach, the losses can be compensated by the erbium-doped amplifiers. When frequency 
and intensity dependent gain and loss have to be taken into account, the governing 
equation is the cubic complex Ginzburg–Landau (CGL) equation [30]. In multidimensional 
settings, where various important applications of all-optical devices and switches are 
expected for very high-speed digital communication [31], direct time-independent 
techniques provides straight and accurate solutions. So far, the finite-difference time-
domain (FDTD) method [32] has been applied to model the nonlinear optical pulse 
propagation in one dimension (1D) [33], two dimensions (2D) [34–36], and in three 
dimensions (3D) [37]. However, it is well known that (2 + 1)-Dimensional [(2 + 1)D] (two 
transverse plus one longitudinal dimensions) solitons in self-focusing Kerr medium are 
inherently unstable [38]. On the other hand, it was predicted [39] that a 2D spatial 
cylindrical soliton can be quite effectively stabilized in a bulk layered medium, with opposite 
signs of the Kerr coefficient in adjacent layers, corresponding to self-focusing and self-
defocusing chromatic regimes, respectively [40]. The models which include loss, diffraction 
in one transverse direction, and a combination of diffusion and dispersion in the other one 
have been used to find stable localized pulses [41–43] and collisions between two and three 
stable dissipative solitons have been reported in driven optical cavities [44]. Regions of 
existence of two-dimensional solitons have been studied extensively, either numerically 
[45,46] or with the semi analytical method of moments [47]. Stable (2 + 1)D necklace-ring 
solitons carrying zero, integer, and even fractional angular momentum have also been 

investigated [48,49]. Stable quasi 2D spatiotemporal soliton in 𝜒(2)  crystals has been 
obtained experimentally [50], and predicted for 2D solitons in Bose-Einstein condensates 
[51–53]. It has been numerically demonstrated the existence of stable light bullets using the 
three-dimensional CQLE model in both regimes of chromatic dispersion [54–57]. Akhmediev 
et al. [57,58] have performed numerical simulations which reveal the existence of stationary 
bell-shaped formation of double soliton complexes. Kamagate et al. [59] have used a 
collective variable approach to map domains of existence for (3 + 1)D spatiotemporal 
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stationary and pulsating dissipative light bullets of a cubic-quintic Ginzburg–Landau 
equation. Investigation of spatiotemporal optical solitons [i.e., (3 + 1)D] (two spatial, one 
temporal and plus one longitudinal dimensions), the so-called light bullets localized in all 
spatial and time dimensions are new fundamental entities which have the potential 
applications in all optical processing devices, like all optical switching in bulk media or the 
digital logic gates and eventually in all optical computation and communication systems 
[60,61] , and also on the possibility of violet collapse in a self-focusing medium in higher 
dimensions [62]. By selecting proper parameters in the (3 + 1)D cubic-quintic complex 
Ginzburg–Landau equation, He et al. [63] have proven that the spatiotemporal necklace-ring 
solitons carrying zero or nonzero angular momentum can be self-trapped for a very large 
distance. Some of the (3 + 1)D soliton solutions admit spherical symmetry between 
temporal and all spatial variables. Liu et al. [64] have also intensified the investigation on 
the study of the (3D) complex Ginzburg–Landau (CGL) equation by introducing the external 
annularly periodic potentials in the basic model of the CGL equation. To enlarge the 
information capacity, it is necessary to transmit ultrashort optical solitons at high bit rate in 
the picosecond and femtosecond regimes. However, several new effects such as sixth-order 
dispersion term, self-steepening (Kerr dispersion), self-frequency shift arising from 
stimulated Raman scattering and cubic, quintic, septic nonlinearities of dispersive and 
dissipative types greatly influence their propagation properties.  

 

 

1.4 Soliton Occurrences 
1.4.1 Tsunami 
        A tsunami is a type of tidal wave caused by sudden movement of water (displacement). 
They are one of the world’s  most dangerous natural disasters, having calamitous effects on 
coastal communities. They can reach speeds of up to 800km/h, and grow to over 30m in 
height and travel right across the Pacific [65]. Tsunamis belong to the same family as 
common sea waves that we enjoy at the beach; however, tsunamis are distinct in their 
mode of generation and in their characteristic period, wavelength and velocity. Unlike 
common sea waves that evolve from persistent surface winds, most  tsunamis spring from 
sudden shifts of the ocean floor. These sudden shifts can originate from undersea landslides 
and volcanoes, but mostly, submarine earthquakes parent tsunamis. Tsunamis are often 
called seismic waves. Compared with wind- driven waves, seismic waves have periods, 
wavelengths and velocities ten or a hundred times lager. Tsunamis thus have profoundly  
different propagation characteristics and sholine consequences than do their common 
cousins. (See Figure 1.3). Tsunamis can be prevented through a number of ways among 
which  are: buildings can be built on reinforced concrete ‘stilts’ to raise them out of flood 
waters after a tsunami, tall platforms can be constructed along coastlines for people to 
reach high ground quickly and planting trees along coastlines help  as the trees help to break 
apart the wave before  it reaches homes. 
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                                              Figure 1.3: Tsunami wave. 
 
 

1.4.2 Atmospheric stratification 
The Earth is surrounded by five gaseous layers which is constrained by Earth’s 
gravitational pull. The Earth’s atmosphere is divided into several layers namely; 
Troposphere, Stratosphere, Mesosphere and upper atmospheres. Basically, the 
atmospheres are classified on the basis of variation of temperature with respect to 
height [66]. The temperature decreases with increase in height until the Troposphere. 
But in Stratosphere, the temperature increases with height. Due to the temperature 
difference between any two layer, a thermocline exists, as such any disturbance in the 
atmosphere will result in the generation and propagation of an internal wave through 
the thermocline. (see Figure 1.4) 
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                                Figure 1.4: Layers of Earth Atmosphere. 
 
 
 
 
 

1.5 Conclusion 
In this chapter, we presented the soliton definition, the history of the soliton discovery, 
high-lighted the importance of the KdV equation in the development of the soliton 
theory. A presentation of the different fields of application of soliton was equally made. 
We also saw that by a numerical study of the KdV equation for the time, some 
interesting properties of the soliton such as collision was revealed. 
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                                                            CHAPTER 2 

---------------------------------------------------------------------------------------------------------------- 

                                                         METHODOLOGY 

---------------------------------------------------------------------------------------------------------------- 
2.1   Introduction 

In this chapter, we will present the analytic and numerical methods for solving the KdV 

equation, we will derive the standard KdV equation, state some properties of the KdV 

equation and state some limitations of the KdV and mKdV equations. 

 

2.2   Derivation of the KdV equation  

We shall start this section by introducing some terminology. Let the vector 

𝑢(𝑥, 𝑡) = (𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡))𝑇 denote the (two-dimensional) flow velocity at an 

arbitrary point  𝑥    and time  𝑡. If we assume an incompressible and irrotational flow, 

mathematically speaking 𝑑𝑖𝑣𝑢 = 0 and 𝑟𝑜𝑡𝑢 = 0, we may rewrite the components 

𝑢  and 𝑣 of the velocity using the velocity potential∅  and the stream function 𝜑: 

𝑢 =
𝜕∅

𝜕∅
=

𝜕∅ 

𝜕∅
  𝑎𝑛𝑑  𝑣 =

𝜕∅

𝜕𝑦
=  −

𝜕∅

𝜕𝑥
 

Which are related to the flow velocity𝑢by grad∅ = 𝑢and𝑢 = 𝑟𝑜𝑡(𝜕𝜑𝑧̃).Inorder to 

demonstrate how Korteweg and de Vries derived their equation, we will start from Eulers 

equation of fluid dynamics and formulate two physical boundary conditions: the free 

surface condition and the kinematic boundary condition. Secondly, we will perform a 

Taylor expansion of the velocity components which will be subsequently inserted into the 

boundary conditions leading to the KdV equation. 

Surface  Condition 

Eulers equation for an inviscid fluid reads 

𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 =  −∇ (

𝑝

𝜚
+ 𝑋).                         (2.2.1) 

Where 𝑝 is the density of the fluid, p the pressure and g = grad X. We write Eq. (2.2.1) using 

the identity (𝑢. ∇) 𝑢 =  (𝑟𝑜𝑡𝑢) Λ𝑢 +  ∇(
1

2
𝑢2) and the velocity potential∅: 



 

9 
 

𝜕∅

𝜕𝑡
+

1

2
𝑢2 + 𝑋 = 𝐶(𝑡) +

𝑝0−𝑝

𝜚
 .                (2.2.2) 

Where we integrated once, thus obtaining an integration constant 𝑝𝑜 which we identify with 

the atmospheric pressure. C(t) is an arbitrary function which only depends on time. As 

already pointed out Korteweg and de Vries included the effect of surface tension which 

causes a net upward force per unit area of surface of  𝑇
𝑑2𝜂

𝑑𝑥2 Δ𝑥 . This upward force has to 

correspond to the difference of pressures, in other word𝑠  𝑝0— 𝑝 =  𝑇
𝑑2𝜂

𝑑𝑥2. Therefore, 

rewrite Eq. (2.2.2): 

 
𝜕∅

𝜕𝑡
+  

1

2
𝑢2 + 𝑔𝜂 − 𝐶(𝑡) =

𝑇

𝜚

𝜕2𝜂

𝜕𝑥2    𝑖𝑓  𝑦 =  𝜂(𝑥, 𝑡).     (2.2.3) 

This is known as the free surface condition (with surface tension). 

 

Kinematic Condition 

Let 𝜂(𝑥, 𝑡) describe the shape of a one-dimensional wave. We define a function 𝐹(𝑥, 𝑦, 𝑡) =

𝜂(𝑥, 𝑡) − 𝑦 which vanishes as long as a particle is on the surface. Taking the total derivative 

with respect to time we obtain 

𝑑𝐹

𝑑𝑡
=  

𝜕𝐹

𝜕𝑡
+ (𝑢. ∇)𝐹 =

𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑡
− 𝑣 = 0 𝑖𝑓 𝑦 =  𝜂(𝑥, 𝑡).                                                       (2.2.4) 

Equation (2.2.4) is referred to as the kinematic boundary condition. 

The Expansion 

Following Korteweg and de Vries expanded the velocity components using Taylor series 

under the assumption of shallow water  ℎ << 1.  By doing so they obtained 

𝑢(𝑥, 𝑡) =  𝑓(𝑥, 𝑡)—
𝑦2

2!
𝑓”(𝑥, 𝑡) +

𝑦4

4
𝑓4— . . . 𝑎𝑛𝑑𝑣(𝑥, 𝑡) =  −𝑦𝑓’(𝑥, 𝑡)  +

𝑦3

3!
𝑓3(𝑥, 𝑡) — . ..                                                                                                     (2.2.5)  

Under the assumption of shallow water ℎ <<  1. In addition, they made the ansatz 

𝑓(𝑥, 𝑡) = 𝑞𝑜 −
𝑔

𝑞0
 (𝜂(𝑥, 𝑡)  +  𝑎 +  𝛾(𝑥, 𝑡)), 

where  𝑞0  is an unknown constant velocity, 𝛼 is a small constant describing the uniform 

motion of the liquid and𝛾  is small compared to 𝜂. By inserting Eq. (2.2.5) into the kinematic 

condition (2.2.4) and into the derivative with respect to time of the free surface condition 

(2.2.3), we obtain two equations (for ℎ  and  𝛾 ). Combining these we may eliminate 

𝛾(𝑥, 𝑡)and eventually obtain the Korteweg de Vries equation as it was originally presented 

in the dissertation of de Vries: 
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𝜕𝜂

𝜕𝑡
=  

3

2

𝑔

𝑞0

𝜕

𝜕𝑥
(

1

2
𝜂2 +

2

3
𝛼𝜂 +  

1

3
𝜎

𝜕2𝜂

𝜕𝑥2
)  𝑤𝑖𝑡ℎ  𝜎 =  

1

3
ℎ3 −

𝑇ℎ

𝜚𝑔
.                                            (2.2.6) 

Equation (2.2.6) can be rewritten in a moving frame  𝜉: =  𝑥 − (√𝑔ℎ − √
𝑔

ℎ
𝛼) 𝑡 𝑤𝑖𝑡ℎ 𝑞𝑜 =

 −√𝑔ℎ  𝑎𝑛𝑑 𝑡 =  𝜏.  In this way we are left with 

𝜕𝜂

𝜕𝜏
+  

3

2
√

𝑔

ℎ

𝜕

𝜕𝜉
(

1

2
𝜂2 +

1

2
𝛼𝜂 + 

1

3
𝜎

𝜕2𝜂

𝜕𝜉2) = 0.                                                                           (2.2.7)                                  

where we neglected the added (constant) velocity . Furthermore, Eq.(2.2.6) becomes 

dimensionless by introducing the variables 𝑡 ∶ =
1

2
√

𝑔

ℎ
𝜏  , 𝑥: = 𝜎

−1

3 ξ, 𝑢 ≔ 𝜎
−1

3 (
1

2
𝜂 +

 
1

3
𝛼) 𝑎nd Eq.(2.2,7) simplifies to 

𝑢𝑡(𝑥, 𝑡)—  6𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) +  𝑢𝑥𝑥𝑥(𝑥, 𝑡) = 0 .                                                                        (2.2.8) 

The subscripts in Eq. (2.2.8) denote partial differentiations. This (simplified) form is how the 

KdV equation usually appears in literatures. 

2.3 Properties of KdV equation 

The KdV equation (2.2.8) obeys the conservation laws. A conservation law is an equation of 

the form  
𝜕𝑇

𝜕𝑡
+  

𝜕𝑋

𝜕𝑥
 = 0. 

The laws are as follows: 

• Conservation of mass:   
𝜕𝑢

𝜕𝑡
+  

𝜕

𝜕𝑥
(𝑢𝑥𝑥 − 3𝑢2) = 0. 

This implies ∫ 𝑢𝑑𝑥 = 𝑀.  𝑤ℎ𝑒𝑟𝑒 𝑀  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∞

−∞
. 

 

• Conservation of momentum:   𝑢𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. 

This implies that  
𝜕

𝜕𝑡
(

𝑢2

2
) +

𝜕

𝜕𝑥
(𝑢𝑢𝑥𝑥 − 2𝑢3 −

𝑢2
𝑥

2
) = 0. 

Hence, we have that ∫
𝑢2

2
𝑑𝑥 = 𝑝 .  𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

∞

−∞
 

 

• Conservation of energy:   3𝑢2𝑥𝐾𝑑𝑉 +  𝑢𝑥𝑥
𝜕

𝜕𝑥
𝐾𝑑𝑉. 

 

This implies  ∫ (𝑢3 +
𝑢𝑥

2

2
)

∞

−∞
 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐸. 

 

 

 



 

11 
 

2.4  Analytical methods for solving the KdV equation 

Over the past five decades, the construction of exact solutions for a broad class of nonlinear 

equations including the KdV equation has been an extremely active domain of research. 

Much of the literature of the theory of nonlinear equations uses the soliton solution model 

of the KdV equation as example to introduce nonlinear theory. In order to obtain the 

multiple solutions of the KdV equation, thus showing its richness, numerous analytical 

methods leading to the exact solutions of the KdV equation have been studied [67]. In the 

following, we will present some analytical methods for obtaining exact solutions of the 

soliton-type, for different forms of the KdV equation. We will limit ourselves to methods 

able of finding one-soliton solution, and also multisoliton solutions. 

 

2.4.1 Inverse Scattering method 

The Inverse Scattering Transform is a method to solve the KdV equation for certain initial 

values. The Inverse Scattering Transform  uses quantum mechanical principles to solve an 

equation. The Inverse Scattering Method (ISM) played a very important role in the 

development of soliton theory. Indeed, the ISM uses linear techniques to solve the problem 

of value of a large number of nonlinear wave equations and provides N-soliton solutions 

(N=1,2,3, ...) or multisoliton solutions. ISM was discovered and developed by Kruskal, 

Greene, Gardner and Miura in 1967 [68], and it was first applied to find soliton solutions to 

the KdV equation. A general formulation of the ISM was quickly followed by Peter Lax who 

assumed that it is possible to find two linear operators 𝐿(𝑢) 𝑎𝑛𝑑 𝐵(𝑢), which depend on 

the solution 𝑢(𝑥, 𝑡) of the KdV equation, and which can satisfy the following operator 

equation : 

𝑖𝐿𝑡 = [𝐵, 𝐿] = 𝐵𝐿 − 𝐿𝐵.                                                                                                              (2.4.1) 

The form of the KdV equation for the operators 𝐿(𝑢) and 𝐵(𝑢) are: 

 

𝐿 =
𝜕2

𝜕𝑥2 + 𝑢(𝑥, 𝑡),   𝐵 =  −4𝑖
𝜕3

𝜕𝑥3 + 3𝑖 (𝑢
𝜕

𝜕𝑥
+

𝜕

𝜕𝑥
𝑢).                                                          (2.4.2) 

Let us note that 𝐿𝑡  is equivalent to  𝑢𝑡  . The operator L is a function of time by its 

dependence on 𝑢(𝑥, 𝑡), so, we will denote it by 𝐿(𝑡). Then, the eigenvalue problem can be 

formed  by: 

𝐿𝜓 = 𝜆𝜓.                                                                                                                           (2.4.3) 
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If 𝐵 is self-adjoint (𝐵 =  𝐵𝑇), Eq.(2.4.1) implies that the eigenvalue 𝜆 in previous expression 

is independent of time. In addition, the proper function 𝑋 evolves over time according to 

the following equation    𝑖𝜓𝑡 = 𝐵𝜓 .                                                                                 (2.4.4) 

The idea of the ISM is therefore based on three phases: direct scattering, the temporal 

evolution of scattering data and the inverse scattering. It does this in the following way: 

Firstly, the initial wave shape 𝑢(𝑥, 0) is seen as a potential in the time-independent 

Schrödinger equation. Then, the scattering data of that potential is calculated. This 

scattering data can be transformed in a way corresponding to the KdV -equation, and the 

new scattering data can be used to calculate the corresponding potential 𝑢(𝑥, 𝑡) in certain 

situations. 

Direct Scattering 

The initial solution 𝑢(𝑥, 0) solves Eq. (2.4.3) at  𝑡 =  0, for the scattering data at |𝑥| = ∞. In 

the case of KdV equation, the eigenvalue at t = 0 satisfies the following equation: 

𝐿(0)𝜓 =
𝜕2

𝜕𝑥2 𝜓 + 𝑢(𝑥, 0)𝜓 =   𝜆𝜓 ,                                                                                      (2.4.5)  

which is the Schrödinger equation in quantum mechanics. 

 

Temporal evolution of Scattering data 

Using Eq. (2.1.4), with asymptotic form of operator for|𝑥| = ∞, scattering data temporal 

evolution can be calculated for 𝑡 > 0. 

 

Inverse Scattering method 

From the knowledge of the scattering data for  𝑡 >  0, the solution 𝑢(𝑥, 𝑡 > 𝑂) can be built. 

This is accomplished by solving an integral equation derived from equation (2.4.3). The 

name of the method comes from this last step. In addition to the KdV equation, the Inverse 

Scattering Method can be applied to all nonlinear partial differential equations provided 

that it is integrable. 

 

2.4.2  Hirota bilinear method 

In most dynamical systems, integrability implies existence of several conserved quantities. 

This important feature allows us to make some predictions over time and hence, plays a key 

role in obtaining analytical solutions. In the case of solitons, it means conservation of waves 

in the medium in question such as fiber optics. Most dispersive wave systems generate 
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solitary waves that would scatter inelastically, meaning loss of energy and hence loss of 

information. However, dynamics of dispersive wave systems governed by integrable 

nonlinear Schrödinger equation generate nonlinear waves called solitons. Indeed, these 

nonlinear travelling waves collide, on the contrary, elastically, meaning, after a nonlinear 

interaction phase, the waves recover their shape and retain their energy and information. 

In 1971, Ryogo Hirota published an article giving a new method called the Hirota direct 

method to find the exact solution of the KdV equation for multiple collisions of solitons. In 

his successive articles, he dealt also with many other nonlinear evolution equations such as 

the modified Korteweg-de Vries (mKdV), sine-Gordon (sG), nonlinear Schrödinger (NLS) and 

Toda lattice equations. The Hirota direct method has taken an important role in the study of 

integrable systems. Most equations (even non-integrable ones) having Hirota bilinear form 

possess automatically one- and two-soliton solutions. When we come to the three solitons, 

we come across a very restrictive condition. Actually, this condition is not sufficient to 

search the integrability of an equation, but it can be used as a powerful tool for this 

purpose. This condition was also used to produce new integrable equations by Hietarinta. 

 

Hirota D operator and bilinear transformation 

Definition 2.4.1 Let 𝑆 ∶  𝐶2 →  𝐶 be a space of differentiable functions. Then, the Hirota D-

operator 𝐷 ∶ 𝑆 𝑥 𝑆 → 𝑆 is defined as 

[𝐷𝑥
𝑚1𝐷𝑡

𝑚2. . ]{𝑓(𝑥, 𝑡). 𝑔(𝑥, 𝑡)} = [(𝜕𝑥 − 𝜕𝑥′)
𝑚1(𝜕𝑡 − 𝜕𝑡′)

𝑚2 … ] 𝑓(𝑥, 𝑡)𝑥𝑔(𝑥′, 𝑡′)|𝑥 = 𝑥′, 𝑡 =

𝑡′ … |  ,                                                                                                                                                                (2.4.6) 

where 𝑚𝑖 , 𝑖 =  1,2 …  are positive integers and 𝑥;  𝑡;  . ..  are independent variables. For 

example: 

𝐷𝑡 𝑓. 𝑔 = 𝑓𝑡𝑔 − 𝑓𝑔𝑡 .                          (2.4.7) 

𝐷𝑡𝑡𝑓. 𝑔 =  𝑓𝑡𝑡𝑔 −  2𝑓𝑡𝑔𝑡 +  𝑓𝑔𝑡𝑡 .(2.4.8) 

𝐷𝑡𝑡𝑡𝑓. 𝑔 = 𝑓𝑡𝑡𝑡𝑔 − 3𝑓𝑡𝑡𝑔𝑡 + 3𝑓𝑡𝑔𝑡𝑡−𝑓 𝑔𝑡𝑡𝑡  .                                                                               (2.4.9) 

𝐷𝑡𝐷𝑥
2{𝑓. 𝑔} = 𝑓𝑥𝑥𝑡𝑔𝑡 − 2𝑓𝑥𝑡𝑔𝑥 + 2𝑓𝑥𝑔𝑥𝑡 + 𝑓𝑥𝑔𝑥𝑥 − 𝑓𝑔𝑥𝑥𝑡.(2.4.10) 

If 𝑓(𝑥, 𝑡, . . . ) =  𝑔(𝑥, 𝑡, . . . ), we get that 

𝐷𝑡𝑓. 𝑔 =  𝐷𝑡𝑓. 𝑓 =  𝑓𝑡𝑓 −  𝑓𝑓𝑡 .                                                                                                 (2.4.11) 

However, we have that: 

𝐷𝑡𝑡𝑓. 𝑓 =  𝑓𝑡𝑡𝑓 − 2𝑓𝑡𝑓𝑡 + 𝑓𝑓𝑡𝑡.                                                                                                    (2.4.12) 

Hirota D is a linear operator and hence: 

(∝1 𝐷𝑇 +∝2 𝐷𝑥)𝑓. 𝑔 =∝1 𝐷𝑡𝑓. 𝑔 +∝2 𝐷𝑥𝑓. 𝑔,                                                                    (2.4.13)  
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where 

(∝1 𝐷𝑡 +∝2 𝐷𝑥)𝑓. 𝑔 = 𝑃(𝐷){𝑓. 𝑔}.                                                                                         (2.4.14) 

Proposition 2.4.2 Let P(D) be an Hirota D-operator, 𝑔 and 𝑓  be two differentiable functions, 

then 

𝑃(𝐷){𝑓. 𝑔} =  𝑃(−𝐷){𝑓. 𝑔}.                                                                                                     (2.4.15) 

Proof. We can simply take   𝑃(𝐷)  =  𝐷𝑥
𝑚. The other combinations of D-operators follow in 

same manner. We can write 

𝑃(𝐷) =  𝐷𝑥
𝑚. {𝑓. 𝑔}.                                                                                                                     (2.4.16) 

Then, we have that 

𝑃(𝐷){𝑓, 𝑔) =  ∑ (−1)𝑘 (
𝑚
𝑘

) 𝑓(𝑚−𝑘)𝑥𝑔𝑘𝑥
𝑚
𝑘=0  .                                                                         (2.4.17) 

That again gives 

𝑃(𝐷){𝑓. 𝑔} =  𝑓𝑚𝑥 𝑔 —  𝑚𝑓(𝑚−1)𝑥𝑔𝑥 + ⋯ . +(−1)𝑚𝑓. 𝑔𝑚𝑥,                                               (2.4.18) 

where the subscripts of the functions 𝑓 and  𝑔 define the order of the partial derivatives with 

respect to 𝑥. Indeed, 

𝑃(𝐷){𝑓. 𝑔} = (−1)𝑚[𝑓𝑚𝑥𝑔 − 𝑚𝑓𝑥𝑔(𝑚−1)𝑥 + ⋯ + (−1)𝑚−1𝑚𝑓(𝑚−1)𝑥𝑔𝑥 + (−1)𝑚𝑓𝑚𝑥𝑔 ], 

                                                                                                                                         (2.4.19) 

which is equal to   (— 𝐷) {𝑓. 𝑔) . Hence,   𝑃(𝐷) {𝑓. 𝑔}. Note that if 𝑚  is a positive even 

integer, interchanging the functions does not change the value of the Hirota bilinear equation. 

 

2.5  Numerical solutions to the KdV equation 

Since the discovery of the soliton and the derivation of nonlinear partial differential 

equations, including families of KdV equations, many studies have been carried out in order 

to find numerical solutions for these equations. To this end, several numerical methods have 

been proposed for the numerical processing of families of KdV equations according to the 

initial and boundary conditions. These are the Spectral and Pseudospectral methods, the 

Fourier spectral method, the Finite difference method (explicit, implicit and exponential), 

the Finite element method and many others. Semi-analytical methods such as the domian 

decomposition method, the Variational iteration method and the Homotopy analysis 

method were also used [67]. The numerical study of the KdV equation is essential, because 

of the unavailability of solitonic solutions for KdV family equations at determined boundary 

conditions. In what follows, we will briefly present some of these methods. 
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2.5.1 Fourier Spectral methods for the KdV equation 

 In this section, a general spectral method will be presented. 

• Step 1: Select a computational domain ([𝜋𝐿, 𝜋𝐿]  𝑜𝑟  [0,2𝜋𝐿]) and scale the partial 

derivative equation (PDE) accordingly. 

• Step 2: Take the Fourier transform of the scaled equation. 

• Step 3: Use an integrating factor or an exponential integrator to solve the linear term 

exactly (if applicable). 

• Step 4: Use the method of lines to rewrite the PDE as a system of ODEs (ordinary 

derivative equation) in time. The exponential integrator alleviates the often stiff 

system of ODEs. 

• Step 5: Apply a time stepping technique to solve the resulting system of ODEs. The 

set of steps above give a general idea of the algorithm. Other advanced steps can be 

included, for instance, preconditioning, interring, dealiasing, smoothing, and other 

post-processing techniques. To start, we state the general abstract problem. ‘.We 

would like to solve the KdV equation given an initial condition and enforcing periodic 

boundary conditions: 

𝑢𝑡 + 6𝑢𝑢𝑥 +  𝑢𝑥𝑥𝑥 = 0,   𝑥 ∈ [𝑝, 𝑝],   𝑡 >  0 ,                              (2.5.1) 

𝑢(𝑥, 0) =  𝑓(𝑥) ,                                                                                                                           (2.5.2) 

𝑢(−𝑝, 𝑡) =  𝑢(𝑝, 𝑡),     𝑡 >  0 .                                                                                                 (2.5.3) 

(i) Step 1: 

We  re-write the KdV equation in the form 

𝑢𝑡  +  3(𝑢2) 𝑥 +  𝑢𝑥𝑥𝑥  =  0,                                                                                          (2.5.4) 

where the initial condition and boundary conditions are as given above. The first step is to 

use change of variables to scale the domain of [𝑝, 𝑝] to a computational domain of [0, 2𝜋], 

where  𝑃 = 𝜋𝐿. This is done because, eventually, we will discretize the Fourier transform 

and employ the Fast Fourier Transform (FFT). To do this transformation, we make a change 

of variables: 

𝑥 =
𝜋𝑋

𝑝
+ 𝜋 .                                                                                                                                     (2.5.5) 

We have changed the solution interval from [𝑝, 𝑝] to [0, 2𝜋] . Thus, the above equation 

becomes 

𝑢𝑡 +
3𝜋

𝑝
(𝑢2) 𝑥 +

𝜋3

𝑝3 𝑢𝑥𝑥𝑥 = 0,        𝑥 ∈  [0,2𝜋].                                                               (2.5.6) 
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(ii) Step 2: 

Let the continuous univariable Fourier transform be denoted by the symbol F(.) 

 

Definition 2.5.1 Given a function 𝑓 ∈ 𝐶0, the Fourier transform of 𝑓 is 

𝐹(𝑓(𝑡))  =  𝑓(𝑘)  =  ∫ 𝑓(𝑥)
+∞

−∞
exp (−𝑖𝑘𝑥) 𝑑𝑥.     (2.5.7) 

The above definition requests that f is continuous. However, this condition can be 

weakened. In order for spectral accuracy f will have to be smoother than just continuous. 

Also, the reader may be aware that there are many different (but equivalent) Fourier 

transform definitions. The integral form in above definition was adopted for simplicity. For 

more information, see the comprehensive Fourier analysis book [69]. 

There are two properties of the Fourier transform that we are mainly interested in for the 

spectral method. The first property is linearity. 

Fourier Transform property 1 

Given functions 𝑓, 𝑔 ∈ 𝐶0 and scalars𝑎, 𝑏 ∈ ℝ, we have 

𝐹[𝑎𝑓 +  𝑏𝑓] =  𝑎𝐹𝑓 +  𝑏𝐹𝑔                                                                                                    (2.5.8) 

The second property deals with differentiation identities: 

Fourier Transform property 2 

If 𝑓 ∈ 𝐶𝑚, then 

𝐹(𝑓(𝑛)(𝑡)  =  (𝑖𝑘)𝑛𝐹(𝑓(𝑡)),                                                                                                       (2.5.9) 

where   𝑓(𝑛 ) is the  𝑛𝑡ℎ  derivative of 𝑓  and 𝑖  is the imaginary unit. Taking the Fourier 

transform on both sides ofEq. (2.5.6) yields 

𝑑𝑢𝑘(𝑡)

𝑑𝑡
+

3𝑖𝑘𝜋

𝑝
(𝑢2̂)𝑘 −

𝑖𝑘3𝜋3

𝑝3 𝑢𝐾 = 0,                                                                              (2.5.10) 

where  𝑢̃𝑘 = 𝐹(𝑢) 

(iii) Step 3: 

In Eq. (2.5.7), we isolate linear and nonlinear terms and obtain 

𝑑𝑢𝑘̃(𝑡)

𝑑𝑡
−

𝑖𝑘3𝜋3

𝑝3 𝑢𝐾 =  
3𝑖𝑘𝜋

𝑝
(𝑢̃2)𝑘 .                                                                                           (2.5.11) 

To reduce numerical stiffness, we use an integrating factor in order to exactly solve the 

linear portion of Eq. (2.5.11). Since integrating factors are a standard technique in the 

theory of linear differential equation, they will be introduced first. 
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(iv) Step 4: The method of integrating factors seeks a function I(t) (called an integrating 

factor) such that the linear portion of a differential equation multiplied by I(t) can be written 

as the derivative of a product. In our case, the integrating factor takes the form 

I(t) = exp (−𝑖𝑘3𝜋3 𝑡

𝑝3
) .                                                                                                            (2.5.12) 

Multiplying equation (2.5.11) by (2.5.12), we have 

𝐼(𝑡)
𝑑𝑢𝑘(𝑡)

𝑑𝑡
− 𝐼(𝑡)

𝑖𝑘3𝜋3

𝑝3 𝑢𝑘 = −𝐼(𝑡)
3𝑖𝑘𝜋

𝑝
(𝑢2̃)𝑘.                                                                    (2.5.13) 

To complete the integrating factor method, we make a change of variables in Eq. (2.5.13) 

,namely:  𝑤̃𝑘 = 𝐼(𝑡)𝑢̃𝑘. We carry time derivative of 𝑤̃𝑘  using the product rule. We have 

𝑑𝑤̃𝑘

𝑑𝑡
= −

𝑖𝑘3𝜋3

𝑝3
𝐼(𝑡)𝑢̃𝑘 +

𝑑𝑢𝑘

𝑑𝑡
𝐼(𝑡).                                                                                         (2.5.14) 

Making substitution of Eq. (2.5.14) into Eq. (2.5.13) and cancelling out common terms, we 

obtain the transformed equation, where the linear term is gone, and the problem is no 

longer stiff.                                                                                                                                                

𝑑𝑤̃𝑘

𝑑𝑡
=  

3𝑖𝑘𝜋

𝑝
exp (−𝑖𝑘3𝜋3 𝑡

𝑝3) [(𝐹−1(𝑤̃ exp (𝑖𝑘3𝜋3 𝑡

𝑝3)]
2

.                                                     (2.5.15) 

Equation (2.5.15) has the distinct advantage of recurring the linear portion of the 

differential equation exactly when one applies an ODE solver. In practice, one replaces  𝑡 

with ∇𝑡 in the function I(t) part. 

(v) Step 5: 

In order to increase the flexibility within the model, we discretize the spatial dimension in Eq. 

(2.5.15). This results in a system of coupled ODEs that we can approximate using an ODE 

solver. Truncating to finite domain, we divide the interval [𝑂, 2𝜋] into 𝑁 evenly spaced grid 

points defined by 

𝑥𝑗 =
2𝜋

𝑁
,   𝑗 = 0,1 … . . , 𝑁 − 1 .                                                                                                  (2.5.16) 

We truncate the Fourier transform of 𝑤̃(𝑘, 𝑡). Let 

𝑤̃(𝑘, 𝑡) = 𝐹(𝑤) =
1

𝑁
∑ 𝑤(𝑥𝑗 , 𝑡) exp(−𝑖𝑘𝑥𝑗) ,𝑁−1

𝑗=0    −
𝑁

2
< 𝑘 <

𝑁

2
− 1.                            (2.5.17) 

In similar manner, the inverse Fourier transform is truncated to 

𝑤̃(𝑘, 𝑡) = 𝐹−1(𝑤) =
1

𝑁
∑ 𝑤(𝑥𝑗 , 𝑡) 𝑒𝑥𝑝(−𝑖𝑘𝑥𝑗) ,

𝑁

2
−1

𝑘=
−𝑁

2

0 < 𝑗 < 𝑁 − 1.                            (2.5.18) 

With this discretization, a system of ordinary differential equations arises from Eq.  (2.5.15): 

𝑤̃(𝑘,𝑡)

𝑑𝑡
= −

3𝑖𝑘𝜋

𝑝
exp (−𝑖𝑘3𝜋3 𝑡

𝑝3
) 𝐹 [𝐹−1(𝑤̃ exp (𝑖𝑘3𝜋3 𝑡

𝑝3
))2].                                       (2.5.19) 

Let 
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𝑊 = [𝑤(𝑥0, 𝑡), 𝑤(𝑥1, 𝑡), 𝑤(𝑥2, 𝑡), … . . 𝑤(𝑥𝑁−1, 𝑡)].                                                          (2.5.20) 

The Eq. (2.5.19) can be written in the vector form 

𝑑𝑊

𝑑𝑡
=  𝐹(𝑊),                                                                                                                                 (2.5.21) 

where 𝐹 denotes the right hand side of Eq. (2.5.19). To complete the approximation of the 

KdV equation, we need to apply an ODE solver to the system of ODEs found in Eq. (2.5.21) 

and take the inverse discrete Fourier transform to the resulting solution. As mentioned 

above, the Fourier transform has many variations of its definition, and this is also true for 

the discrete Fourier transform. 

 

2.6  Limitation of KdV and mKdV equations 

The KdV and mKdV equations could only explain the two layer model which only 

conditionally represents the vertical structures of seas and oceans. It direct extensions, 

three layer stratification has proven to be a proper approximation of the sea water density 

profile in some basins in the wall oceans with specific hydrological conditions. 

 

2.7  Conclusion 

In this chapter, we saw the analytic and numerical methods for solving the KdV equation. We 

equally derived the standard KdV equation and stated some properties of the KdV equations. 

We concluded the chapter with limitation of the KdV and mKdV equations. 
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                                                                CHAPTER 3 

----------------------------------------------------------------------------------------------------------- 

                                                   RESULTS AND DISCUSSION                                                         

------------------------------------------------------------------------------------------------------------------- 

Introduction  

In this chapter, we will present the (2 + 4) KdV model equation, derive its analytical solution 

and analyse the multisoliton interactions of its solutions. We then end the chapter with a 

general conclusion. 

 

3.1  2D Nonlinear evolution equation in the shallow water for interfacial waves in a 

symmetric three-layer fluid 

We present, in this section, the schematic representation of the symmetric three layer fluid 

from which our model is stated and the relevant evolution equation derived. 

 

3.1.1 Formulation of the problem 

 

 

 

Figure 3.1: Schematic representation of symmetric three layer fluid. 
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Most of the relevant research work has addressed the properties of internal solitons in a 

greatly simplified environment, usually in the framework of different versions of the two 

layer fluid. The simplest equation of this class is the well-known Korteweg-de Vries equation 

that describes the motion of weakly nonlinear internal waves in the long-wave limit. 

However, in many areas of the world ocean, the vertical stratification has a clearly 

pronounced three-layer structure, with well-defined seasonal thermocline at a depth of 

about 100m or higher. Several Basins such as the Baltic sea host more or less continuously 

three-layer model so, the need for an extended KdV equation. 

3.1.2  Derivation of an approximate equation 

In his paper titled ‘’Higher-order (2+4)Korteweg-de Vries like equation for interfacial waves 

in a symmetric three-layer fluid”, Kurkina et al. [70] went through a series of asymptotic 

expansions to derive the (2+4) KdV model equation for interfacial waves in a symmetric 

three-layer fluid. This equation in its original form incorporates the cubic and quintic 

nonlinearities, and a dispersive term and has the following form: 

𝑢𝑡 + 𝛼1𝑢2𝑢𝑥 + 𝛼3𝑢4𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0,                                                                                     (3.1.1) 

where  𝛼1 and   𝛼3  are nonlinear coefficients and 𝛽  is a dispersive coefficient. For full 

derivation of the Eq. (3.11), we make reference to Kurkina et al. [70]. 

3.2 Analytic solution of the (2+4) Korteweg-de Vries-like equation 

We shall consider the (2 + 4) KdV equation given by 

𝑢𝑡 + 𝛼1𝑢2𝑢𝑥 + 𝛼3𝑢4𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0.                                                                                        (3.2.1) 

We assume a travelling wave solution of the form 𝑢(𝑥, 𝑡) =  𝑓(𝑧)  where 𝑧 =  𝑥 − 𝑐𝑡 to Eq. 

(3.2.1). Now, we have that 

𝑢𝑡 = −𝑐
𝑑𝑓

𝑑𝑧
.                                                                                                                     (3.2.2) 

𝑢𝑥 =
𝑑𝑓

𝑑𝑧
  .                                                                                                                                         (3.2.3) 

Consequently, it becomes 

𝑢𝑥𝑥 =
𝑑2𝑓

𝑑𝑧2
  .                                                                                                                                      (3.2.4) 
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𝑢𝑥𝑥𝑥 =
𝑑3𝑓

𝑑𝑧3
 .                                                                                                                              (3.2.5) 

Substituting Equations (3.2.2), (3.2.3) and (3.2.5) into (3.2.1), we obtain 

 

−𝑐
𝑑𝑓

𝑑𝑧
+ 𝛼1𝑓2 𝑑𝑓

𝑑𝑧
+ 𝛼3𝑓4 𝑑𝑓

𝑑𝑧
+ 𝛽

𝑑3𝑓

𝑑𝑧3 = 0.                                                                       (3.2.6) 

Integrating (3.2.6)  with respect to z, we get  

−𝑐𝑓 + 𝛼1
𝑓3

3
+ 𝛼3

𝑓5

5
+ 𝛽

𝑑2𝑓

𝑑𝑧2 = 𝐴,              (3.2.7) 

Where A is a constant. 

We multiply Eq. (3.2.7) by  
𝑑𝑓

𝑑𝑧
  and then integrate to obtain 

−𝑐
𝑓2

2
+ 𝛼1

𝑓4

12
+ 𝛼3

𝑓6

30
+

𝛽

2
(

𝑑𝑓

𝑑𝑧
)

2

= 𝐴𝑓 + 𝐵 ,                                                                             (3.2.8) 

where A and B are constants. 

We apply the asymptotics conditions, where 𝑓’(𝑧) =  𝑓”(𝑧) = 𝑓’’’(𝑧)  =  0. This implies that 

𝐴 =  𝐵 =  0. Thus, we have that 

−𝑐
𝑓2

2
+ 𝛼1

𝑓4

12
+ 𝛼3

𝑓6

30
+

𝛽

2
(

𝑑𝑓

𝑑𝑧
)

2

= 0.                                                                                    (3.2.9) 

Hence, we have 

(
𝑑𝑓

𝑑𝑧
) +

1

𝛽
(𝑐𝑓2 −  

𝛼1𝑓4

6
−

𝛼3𝑓6

15
).       (3.2.10) 

Consequently, we have that 

𝑑𝑧 = √𝛽 (𝑐𝑓2 −
𝛼1𝑓4

6
−

𝛼3𝑓6

15
)

−1

2
𝑑𝑓.       (3.2.11) 

Integrating, we obtain  

𝑧 − 𝑧0 = √𝛽 ∫ (𝑐𝑓2 −
𝛼1𝑓4

6
−

𝛼3𝑓6

15
)

−1

2
𝑑𝑓.                                                                            (3.2.12) 

Now, we substitute  for  𝑓(𝑧)  =  𝑢(𝑧) into (3.2.10) and set    𝛽 = 𝛽1, we have  

(
𝑑𝑢

𝑑𝑧
)

2

=
1

𝛽
(𝑐𝑢2 −

𝛼1𝑢4

6
−

∝3𝑢6

15
).                                                      (3.2.13) 

We substitute using the Ansatz        

𝑢2 =  
𝛼

1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧
.                                                                                                            (3.2.14)

   

Differentiating (3.2.14) with respect to 𝑧, we get    
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2𝑢
𝑑𝑢

𝑑𝑧
=  

−𝛼𝜆𝛽𝑠𝑖𝑛ℎ𝛽𝑧

(1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧)2
.                                                                                            (3.2.15) 

Hence, we have that          

𝑑𝑢

𝑑𝑧
=  

−𝛼
1
2𝜆𝛽𝑠𝑖𝑛ℎ𝛽𝑧

2(1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧)
3
2

.                                                                                                 (3.2.16) 

 

Thus, we get          

(
𝑑𝑢

𝑑𝑧
)

2

=  
𝛼𝜆2𝛽2𝑠𝑖𝑛ℎ2𝛽𝑧

4(1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧)3.                                                                                          (3.2.17) 

Also, we have that          

𝑢4 =  
𝛼2

(1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧)3
.                                                                                                 (3.2.18) 

𝑢6 =  
𝛼3

(1+𝜆𝑐𝑜𝑠ℎ𝛽𝑧)3
.                                                                                                 (3.2.19) 

We substitute Eq. (3.2.14), (3.2.17), (3.2.18) and (3.2.19) into Eq. (3.2.13), that leads to 

expressions for 𝛼, 𝛽   and 𝜆 , that is 

𝛼 =
12𝑐

𝛼1
  .                                                                                                                                         (3.2.20) 

𝛽 = 2√
𝑐

𝛽1
.(3.2.21) 

𝜆 =
√25𝛼1

2+240𝛼3𝑐

5𝛼1
   .             (3.2.22) 

Consequently, Eq. (3.2.14) becomes 

𝑢2 =
60 𝑐

5𝛼1+√25𝛼1
2+240𝛼3𝑐  𝑐𝑜𝑠ℎ2√

𝑐

𝛽1

   .                    (3.2.23) 

 

Hence, we have that 

𝑢(𝑧) =
√

60 𝑐

5𝛼1+√25𝛼1
2+240𝛼3𝑐  𝑐𝑜𝑠ℎ2√

𝑐

𝛽1

  .                     (3.2.24) 

 

3.3 Numerical method for solving the (2 + 4) Korteweg- de Vries-like equation 

Several numerical methods exit that can be used to solve Eq. (3.1.1), among which are the 

Finite difference methods and the Pseudospectral method. We choose to use the 

Pseudospectral method in solving the nonlinear PDE (3.1.1) above because of its robustness 

and good accuracy for large N. 
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3.3.1 The Pseudospectral method 

In the Pseudospectral approach, in a finite difference like manner, the PDEs are solved point 

wise in physical space (x, t). However, the space derivatives are calculated using orthogonal 

functions (e.g Fourier integrals, Chebyshev polynomials). They are either evaluated using 

matrix multiplications, Fast Fourier Transforms (FFT), or convolutions. 

Spectral solutions to the time dependent PDE (3.1.1) are formulated in the frequency wave 

number domain and solutions are obtained in terms of spectra (e.g seismograms). This 

technique is particularly interesting for geometrics where partial solutions in the 𝜔 − 𝐾 

domain can be obtained analytically (the case of our three-layer symmetric model above). 

Detail of the procedure  is not shown here. The pseudospectral method has some 

advantages such as it robustness, good accuracy for large N and small time step. 

 

3.3.2 Properties of the (2 + 4) KdV equation 

The (2 + 4) KdV  Eq. (3.1 .1)  has two conservation laws which are as follows: 

• Conservation of mass 

𝑀 =  ∫ 𝑢𝑑𝑥
∞

−∞
.                                                                                                                               (3.3.1) 

• Conservation of energy 

E = ∫ 𝑢2𝑑𝑥
∞

−∞
  .                                                                                                                                (3.3.2) 

3.4 Interaction of the solitary solution of the (2 + 4) KdV- like equation 

An important feature of Eq. (3.1.1) is that it has solitary wave solutions. The decisive 

parameters for wave motion in media described by Eq. (3,1.1) are the signs of the coefficients 

at its nonlinear terms. The coefficient 𝛼1  which is the cubic nonlinearity, is sign variable in 

the vicinity of  
ℎ𝑐𝑟 

𝐻  
 . The coefficient 𝛼3 which is the quintic nonlinearity, is negative in this 

region, but may change its sign at  
ℎ

𝐻
< 0.1384 . 

All our numerical simulations of the initial problem for Eq. (3.1.1) with smooth and localized 

initial conditions showed a stable wave dynamics, with no evidence of instabilities or 

collapses even in interactions. Therefore, it seems plausible that the cubic nonlinearity plays a 

stabilizing role. 

Both positive and negative solitary wave solutions are possible for each combination of the 

signs of the coefficients of Eq. (3.1.1). The wave speeds are directly proportional to the 
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amplitudes. Large amplitude solutions to Eq. (3.1.1) form a table like wide signal. The 

described table like appearance of solutions for the relatively large amplitudes and rapidly 

moving disturbances with steep fronts may have substantial consequences in practical 

applications. Generally speaking, interactions and collisions of solitary solutions to non 

integrable evolution equations are inelastic. It is therefore not unexpected that solitary 

solutions to Eq. (3.1.1) interact inelastically with each other and with the back ground wave 

fields. As a demonstration of the feature, we present here an example of numerically 

simulated collisions of two and multi solitonic  solutions. We shall discuss the two and multi-

soliton solution interactions. 

 

 

3.4.1 Two soliton solution interaction of same polarity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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3.4.2 Two soliton solution interaction of different polarity 

 

 

 

 

 

 

 

 

 

3.5 Multisoliton interaction 

Here we limited ourselves to three solitons interaction. 

 

3.5.1 Three soliton solution interaction of same polarity 

 

 

 

 

 

 

 

 

 

3.5.2 Three soliton solution interaction of different polarity 
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3.6   Results and discussion 

The initial states for studies of interaction of these solitary waves were composed simply as 

a linear superposition of the counterpart. The smaller wave was placed ahead of the larger 

one. The evolution of solitary wave of elevation resemble the typical scenarios for soliton 

interaction of similar type in the classical KdV and mKdV frame works in which the taller 

wave overtakes the smaller one. In such interaction, the counterpart usually loses their 

identity and merges into a composite structure at a certain instant. After a while, the 

counterpart emerge again whereas one cannot say whether the counterparts propagate 

through each  other as waves do or collide as particles do. 

The interaction process is accompanied as in the case of KdV solitons by a clear decrease of 

the amplitude of the composite structure during the merging phase and by a substantial 

phase shift. The entire process was also accompanied by a modest radiation of wave energy 

from the interaction region. The collision of the solitary wave of different polarities has a 

similar appearance. Both the counterpart largely survive the collision but the phase shift for 

the wave of depression is more pronounced (See Fig 3.8) above. Consequently, collisions of 

solitary wave solutions of Eq. (3.1.1) basically have inelastic nature, although, both the 

intensity of wave radiation and changes to the amplitude of the solitons are fairly minor. For 

example, the collision of waves of elevation led to the increase in the amplitude of the taller 

soliton from 1 to 1.002 and an accompanied decrease in the smaller solutions from 0.5 to 

0.477. The collision of wave of different polarity led to much smaller changes. The post 

collision amplitudes of the waves were 1.001 and - 0.499, respectively. Similar observation 

was made for the three soliton case as the amplitude of the tallest soliton of elevation 

slightly increased from 1 to 1.001, while the taller and tall solitons  slightly decreased in 

amplitudes from 0.7 and 0.4 to 0.687 and 0.349, respectively. Also, the post collision 

amplitudes of the waves were 1.001 ,  - 0.698  and 0.399, respectively. 
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                                                        CHAPTER 4 

--------------------------------------------------------------------------------------------------------- 

                                                  GENERAL CONCLUSION 

--------------------------------------------------------------------------------------------------------- 
 

This thesis was devoted to the study of the dynamics of solitary waves described by the 

model of the (2 +4) KdV equation for a symmetric three layer fluid. The model equation is 

obtained starting from the Euler equation through a series of asymptotic expressions. 

In chapter one, we presented the history of the soliton discovery, the different fields of 

application of the soliton and concluded the chapter with two examples of nonlinear 

evolution equations with solitary solution. 

In chapter two, we presented the derivation of the KdV equation. Some properties of the 

KdV equation were examined. Some analytical methods for solving the KdV equation such as 

the inverse scattering method and some numerical methods such as the Fourier and 

spectral methods were also presented.  

In chapter three, we  were concerned with the presentation of different results obtained in 

our work and their interpretation. 

 We propose that this work can be extended to an asymmetric three layer fluid. Also, the 

model in our work can be considered for variable coefficients of nonlinearity and dispersion. 

 

PARAMETERS 

         In calculations, we used the following parameters of the medium : total depth H= 
100m, depth of the uppermost and lowermost layers h=30m.  The corresponding values of 
the linear wave speed and the coefficients of  Eqn(3.1.1) are as follows : 
 
                                                              𝛼1  = 0.002859 𝑚−1/𝑠 . 
 
                                                                  𝛽 = 771.98 𝑚3/𝑠 . 
 
                                                     𝛼3 = −0.00004924 𝑚−1/𝑠 .  . 
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