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ABSTRACT

The second most heterogeneous cancer ever discovered is Breast Cancer (BC). BC is a
disease that develops from malignant tumors when the breast cells begin to grow abnor-
mally. Although it grows in the breast, it can spread to other body parts or organs.through
the lymph and blood vessels of the breast. Globally, more than two million new cases
and about 600,000 women died from BC in 2020. Early detection increases the chance of
survival by 99%. Deep Learning (DL) models have recorded remarkable achievements in
disease diagnosis and treatments. However, it requires powerful computing resources. In
this work, we propose a lightweight DL model that can detect BC using the knowledge
distillation technique. The knowledge of a pre-trained deep neural network is distilled to
a shallow neural work that is easily deployable in a low-power computing environment.
We have achieved an accuracy of up to 99%. In addition, we recorded 99% reduction in
trainable parameters compared to deploying with a deep neural network.
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CHAPTER ONE

INTRODUCTION

Breast cancer (BC) detection is a vital area of research in the medical and healthcare
sectors. BC develops from malignant tumors when breast cells’ growth is abnormal [1,
2]. It grows in different parts of the breast and is common among women, but men can
get it as well [3]. According to the World Health Organization, 2.3 million women are
diagnosed with BC each year, which results in 29% deaths [4]. The higher the age, the
more the chances of breast lump turning out to be malignant [5]. The survival chance
increases to 99% if it is detected early. There are various common types of BC classified
as invasive or non-invasive. Non-invasive is when the abnormal cells are bound to the milk
passage (duct) or the milk-producing glands (lobules); invasive BC is when the abnormal
cells spread beyond the duct or lobules, affecting the tissue connected to the breast or
surrounding fatty tissues [6].

Infiltrating Ductal Carcinoma (IDC) is an invasive BC that starts in the milk duct, breaks
through the duct wall, and spreads to the fatty tissue [5]. About 80% of BC diagnoses
are IDC. Thus, making it the most common BC among women [6]. Infiltrating lobular
carcinoma (ILC) is an invasive BC that usually starts in the milk glands (lobules) and
extends to other breast parts. The most frequent non-invasive BC that accounts for almost
90% is ductal carcinoma in situ (DCIS) [6]. DCIS is when the cancer cells are bounded
to the duct [5]. Inflammatory BC (IBC) and medullary carcinoma (MC) are some of the
invasive BC types that occur less frequently; however, they are extremely fast-growing [7].

Some of the breast cancer diagnosis techniques include ultrasound-guided surgical biopsy,
magnetic resonance imaging, mammography Xray, computed tomography, portion emis-
sion tomography, magnetic resonance imaging, and breast temperature [8, 9].

Researchers from computer disciplines proposed several models for detecting BC using
a Convolutional neural network (CNN). CNN is widely used for the prediction of BC
due to its excellent performance in feature extraction [10]. Deep CNN models have been
developed in recent years to increase the effectiveness and improve the performance of
BC detection [11]. Also, researchers have recorded remarkable achievements as some
deep learning models detect BC with an accuracy of up to 98%. However, deep CNN
architectures are cumbersome models with millions of trainable parameters and many
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hidden layers between the input and the output neurons. Thus, they require a lot of
computing resources (such as GPU processors or an FPGA). Lightweight versions of
deep CNN architectures require fewer hardware resources. Thus, it finds applications in
real-time classification, recognition tasks, or resource-constrained environments.

In this work, we implore a lightweight ML model that can detect BC using knowledge
distillation (KD) techniques. KD is a method of knowledge transfer where the knowledge
of a pre-trained deep CNN model, referred to as the teacher model, is used during the
training of a minor or shallow neural network, referred to as the student model. The typical
use of the KD is capturing knowledge in a complex ML model and distilling it to a shallow
model that can be deployed easily without sacrificing accuracy [12].

1.1 Problem Statement

The second most heterogeneous cancer ever discovered is breast cancer [13]. Worldwide,
breast cancer is the fifth most common cause of mortality among women. Globally, more
than two million new cases of breast cancer were diagnosed and about 600 thousand
women died from breast cancer in 2020 worldwide [14].

Various factors contribute to the occurrence of breast cancer. However, its occurrence,
survival, and mortality rates vary across different parts of the world. It could be due to
many factors such as lifestyle (what you eat and how much you exercise), population
structure, genetic factors, imbalances of hormones, environment, and older age [15]. Thus,
there is no specific way of preventing breast cancer, but success is owed to early detection
[16]. Hence, it is useful to have a system that will help us accurately detect it at an early
stage which would reduce the mortality rate.

1.2 Aim and Objectives

This section of the proposal presents the aims and objectives of the research.

1.2.1 Aim

This thesis aims to develop a lightweight machine-learning model that can accurately
detect breast cancer.
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1.2.2 Objectives

1. Develop a DL model for breast cancer detection.
2. Develop a lightweight ML model for detecting breast cancer from the DL model

through KD techniques.
3. Evaluate and compare the performance of the DL model in 1 and the lightweight

model in 2
4. Compare the performance of the proposed system in 2 with some related work.

1.3 Scope of the Research

The scope of this research is limited to the following:

1. The thesis will focus on developing a model that can only classify or diagnose data
related to breast features.

2. We will only consider training and testing of our model.

1.4 Significance of the Research

KD-based ML for breast cancer has many merits. Some of the benefits of this research are
as follows:

1. KD will help develop accurate yet light ML models.
2. It can be easily deployed on resources with limited computing powers, such as

laptops, mobile phones, and tablets.
3. This research will help pave the way for telemedicine in the field of oncology.

1.5 Expected Results and Deriverables

1.5.1 Expected Results

We expect to develop a lightweight machine-learning model that can detect breast cancer
with an accuracy of at least 95 percent.
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1.5.2 Deliverables

By the end of this research, we will publish at least a conference paper for a lightweight
version of breast cancer detection.

1.6 Research Outline

The research outline is as follows:

1. Chapter one contains an introduction to breast cancer, a problem statement, aims
& objectives, the scope of the research, the significance of the research, expected
results & deliverables, and then the thesis outline.

2. Chapter two contains the background of the terms used in the thesis and a literature
review on the machine learning techniques used in BC detection.

3. Chapter three contains a discussion of our proposed model and the method we used
to meet the research objectives.

4. Chapter four contains the performance evaluation of our proposed model. First, we
will compare the two models we build (deep and shallow NN) and then compare
them with some results in the related work.

5. Chapter five contains the summary, conclusion of our research and possible open
research directions.

4



CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Introduction

This chapter prepares the reader for the coming chapters by explaining the concepts
that form the foundation of this thesis. The chapter explains machine learning (ML),
classification, neural networks, convolutional neural networks, and knowledge distillation
(KD) techniques. In addition, we review work done in the past relating to breast cancer
detection using various machine learning algorithms and some related work on knowledge
distillation techniques. To our knowledge, knowledge distillation techniques have never
been used for breast cancer diagnosis.

2.2 Machine Learning

Machine learning (ML) was first introduced by IBM computer scientist called Arthur et
al. [17], where they defined ML as a type of artificial intelligence that allows software
applications to learn and predict output based on experience without being explicitly
programmed. It employs a variety of algorithms to construct mathematical models and
make predictions using historical data or information as an input [18]. ML is capable of
solving complex tasks at high speeds that are beyond human capabilities. With a large
amount of data, a machine can be trained to make analysis, detect patterns, connections, or
relationships which can use for improving decision-making, or optimizing efficiency [19].
A ML model is immune to cognitive bias and fatigue because one of its primary goals is
to draw conclusions from a set of data with little human intervention. Figure 1 depicts
various types of ML.

2.2.1 Supervised Learning

Supervised learning is a machine learning training method that uses labeled datasets for
training. Cunningham et al. [20] described the aim of supervised learning as building
an artificial system that can learn the relationship and connection between input and
output, then anticipate the system’s output given new inputs. The algorithms models the
relationship, dependencies, and connections between the features and target class. After
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Figure 1. Types of Machine Learning

sufficient training, the algorithm should be able to detect the class label of a new data
based on the key characteristics and the knowledge gained [21]. Supervised learning falls
mostly into two categories which are classification and regression which we have used in
this work.

2.2.2 Classification

Classification is the task of determining the class label of a new instance (data) based on a
training set of data with known class label [22, 23].The goal of classification is to build a
classification model g that associates each feature set x with a particular class label y (refer
to Equation 2.1 and Figure 2a). The feature set(x) consists of some properties or attributes
of the task to classify, while the class label (y) is the target class [24]. When the class is
two, then it is called binary classification and if the class is more than two then its referred
to as multi-class classification.

y = g(x) (2.1)

where, y is the class label

A systematic method for creating classification models from input data sets is known as a
classification technique (or classifier). Examples include neural networks, naive Bayes,
rule-based, decision trees and support vector machines. Each classifier determine a model
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Figure 2. Classification

that better describes the connection between the input feature set and the target class using
a learning algorithm. The identified model should be able to fit input features correctly
and effectively predict the target class of a new instance (data).Hence, building models
with a good generalization capabilities or one that correctly anticipate the class labels
of previously unseen data is one of the primary objectives of a learning algorithm. [24,
25]. The general technique for building a classification model is depicted in figure 2b. A
training set of data with known class labels must be provided first. The training set is used
to create a classification model, and it is then applied to the validation set, which consists
of data with unidentified class labels.
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2.2.3 Neural Network

One of the enamous fields of the twenty-first century on which a significant amount of
research has been done is the neural network. Haykin et.al. [26] described neural network
as a type of ML where human biological neurons are simulated to build a computational
network for solving problems and making decision. An essential component of a neural
network’s functionality is its basic information processing unit called the neuron [26]. The
model of a neuron, which consists of weighted input signals, an activation function, and
an output signal, is depicted in the block diagram of Figure3. The weight of a neuron is a
parameter that set the standards for the neuron’s signal strength.

ANN is gaining acceptance in different fields as a solution [27]. ANN is used to opti-
mize the performance of both non-linear and linear control systems [28]. In medicine,
ANN is used for drug discovery[29]. Moreover, ANN is also used in natural language
understanding, speech recognition, video processing, and computer graphics [30].

x1

x2
 .
 .
 .

xn

w1

w2

wn

y
.
.
.

inputs

output

weights

b

Figure 3. Architecture of a perceptron

Equation 2.2 and 2.3 represent the perceptron (a single neuron) shown in Figure 3. Equation
2.2 is the summation of the bias and the input signals ( xi ) multiplied with their respective
weights (wi). Equation 2.3 uses an activation function to convert the effects of the input
(z) to an output (y). The process of tuning the weights (w1, w2, . ., wn) until desirable
predictions for the output (y) are obtained compared to a sample dataset is known as
training.
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z =

(
b+

n∑
i=1

xiwi

)
(2.2)

y = φ (z) (2.3)

where,

(w1, w2, . . ., wn) = weight of neurons

(x1, x2, . . ., xn) = input signals

b = bias

z = intermediate output

φ = activationfunction

y = output signal of the neuron.

Y1 = φ
(
W T

1 X + b1
)

(2.4)

Yi+1 = φ
(
W T

i+1Yi + bi+1

)
,∀i ∈]1, 2, ..j − 1[ (2.5)

o = φ
(
W T

j+1Yj + bj+1

)
(2.6)

where,

all subscript denotes the layer number

input vector(X) = x1, x2, ..., xn

wT
1 = transpose of neurons weight signified by superscript T

b = bias

φ = activationfunction

Y1 = output between input to hidden layer

Yi+1 = output between hidden to hidden layer

o = final output signal of the network.

Furthermore, there are large neural networks with one or more layers between the input
and the output layer of the network, those layers are called the hidden layers. A neural
network architecture containing only one or not more than two hidden layers is referred to
as a shallow neural network [31, 32], and a network with more than two hidden layers as
shown in Figure 4 or even larger is referred to a deep neural network (DNN). It could be
modeled with Equation 2.4-2.6. Equation 2.4 computes the output between an input layer
and the first hidden layer using matrix multiplication, Equation 2.5 computes the outputs
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between hidden layer to hidden layer and Equation 2.6 computes the final prediction
(last hidden layer to output layer). The deeper the DNN, the more hidden layers it has
which exponentially increases the complexity of the prediction. Hence, it can solve more
complex problems. Uzair et al.[33] discover that the ideal number of hidden layers is three.
Additionally, they discovered that decreasing the number of hidden layers below this ideal
value decreased accuracy while increasing the number of hidden neurons above the ideal
value increased accuracy and computational complexity.

2.2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) is a group of a deep neural network specially
designed to work with grid-structure input with strong spatial dependencies and some
special cases of it, such as temporal or spatiotemporal data [31]. CNN’s are analogous
to ANN in that they contain a set of neurons that self-optimize through learning. In
addition, CNN requires at least one convolutional layer as it is the crucial step for feature
extraction, although it can have other types of layers like fully connected and pooling
layers [34]. The primary foundation of a CNN is the convolutional layer. It has a parameter
that serves as a weight which is known as a filter (or kernel) that needs to be learned
during the training. In the convolution layer, the kernel slides through the input vector
from top to bottom and computes a dot product to identify features at all spatial positions.
The weighted summation of the dot product represents the input of the next layer. Each
convolutional operations is define by a sliding step (stride), filter size, and padding. A
stride is a parameter of a filter (kernel) that specify the amount of movement in each step-in
convolution; using the default stride length which is implies that the kernel will move one
unit at a time. Padding is also a parameter in the convolutional operation that add zero’s to
the input vector symmetrically; it is used when we want to maintain same dimension for
the input and the output after convolution (feature map).

Figure 4 shows an architecture of a CNN. It has one input layer, six (6) hidden layers (two
of which are convolutional layers (conv1D) and four (4) fully connected dense layers), and
an output layer. Between the convolutional layers is batch normalization, which is used to
sets the pixels in all feature maps in a convolution layer to a new mean and a new standard
deviation. A fully connected layer then performs the same task as in standard ANN. It
multiplies the input by a weight matrix, then adds the bias vector used for classification.
The last layer is the output layer which gives the predictions of the target class.
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Figure 4. Architecture of a CNN with 6 hidden layers

2.2.5 Knowledge Distillation

Knowledge distillation is a model compression method in which the knowledge of a deep
neural network is distilled to a small or shallow neural network, as shown in Figure 5.
Hinton et al.[35] described that distillation is training where knowledge of a pre-trained
large network referred to as the teacher model will be transferred to a shallow network
called student model to enable suitable deployment on a low computing power or embedded
devices. The soft probabilities of the pre-trained teacher network have more information
than the target class label. Thus, training the student with soft probabilities will enable it
to absorb more information discovered by the teacher beyond training with the class label
alone [36].

K
n
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d
g
e

Knowledge Transfer

Teacher Model

Student Model

Distill Transfer

Data

Figure 5. Simple Model of Knowledge Distillation
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Figure 6 shows the flowchart of how knowledge distillation works. The figure has two
models; a Teacher model and a Student model. On the one hand, the teacher model is a
CNN with numerous parameters. They allow it to model the dataset accurately. On the
other hand is the student model, which has very few parameters. The parameters are so few
that CNN cannot accurately model the dataset. Scientists desire fewer parameters because
it means fewer computations, which translates to lesser resource (e.g., energy, memory,
and computation time) requirements. Thus, the student model learns from the teacher.
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Figure 7. Effect of the Softmax Function on Data

Softmax(x) =
exi/T∑N

j=1(e
xj/T )

(2.7)

Where,

xi = Prediction for instance i

N = Number of instances

T = Temperature

The flowchart shows that both models learn from the same attributes, Input x. The
predictions of the teacher model are then passed through a Softmax function shown in
Equation 2.7. Softmax converts the predictions into a probability distribution, which
bounds the data between zero and one [38]. To demonstrate how the Softmax function
works, we used the MATLAB code in Listing 2.1. The code generated a uniformly
distributed sample of numbers between 0–100. Then it plots the generated data, as shown
in Figure 7a. The figure shows that the sample size is 50. Next we calculate the Softmax
for the data at temperature 10, 50, and 1 and store them in the variables sf10, sf50 and
sf1, respectively. They are ploted in Figure 7b and their respective cumulative distribution
is shown in Figure 7c. The figures show how the Softmax function works and how
the temperature variable affects the results. The Softmax operation converts the data
into a probability distribution of the predictors — it fills the probability axioms; (1) All
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probabilities are between zero and one as shown in Figure 7b, and (2) The sum of all the
samples is unity as shown in Figure 7c. The softmax function reduces the variance in the
data, thus making it easier for the smaller student model to learn.

Listing 2.1. Matlab Code Simulating the Softmax Function

d t =round ( rand ( 5 0 , 1 ) * 1 0 0 ) ;

p l o t ( d t , ’ l i n e w i d t h ’ , 2 )
t i t l e ( ’ Data D i s t r i b u t i o n ’ ) ;
y l a b e l ( ’ Data ’ )
x l a b e l ( ’ I n s t a n c e ’ )
gr id on ;

s f 1 0 = so f tmax ( d t / 1 0 ) ;
s f 5 0 = so f tmax ( d t / 5 0 ) ;
s f 1 = so f tmax ( d t ) ;

f i g u r e ;
p l o t ( s f1 , ’ −*b ’ , ’ l i n e w i d t h ’ , 2 ) ;
hold on ;
p l o t ( s f10 , ’−om ’ , ’ l i n e w i d t h ’ , 2 ) ;
p l o t ( s f50 , ’ k ’ , ’ l i n e w i d t h ’ , 2 ) ;
t i t l e ( ’ Data a f t e r Softmax ’ ) ;
y l a b e l ( ’ Data ’ ) ;
x l a b e l ( ’ I n s t a n c e ’ ) ;
l egend ( ’T=1 ’ , ’T=10 ’ , ’T=50 ’ ) ;
gr id on ;

f i g u r e ;
p l o t ( cumsum ( s f 1 ) , ’ −*b ’ , ’ l i n e w i d t h ’ , 2 ) ;
hold on ;
p l o t ( cumsum ( s f 1 0 ) , ’−om ’ , ’ l i n e w i d t h ’ , 2 ) ;
p l o t ( cumsum ( s f 5 0 ) , ’ k ’ , ’ l i n e w i d t h ’ , 2 ) ;
t i t l e ( ’ Cumula t ive Sum of Data a f t e r Softmax ’ ) ;
y l a b e l ( ’ Cumula t ive ’ ) ;
x l a b e l ( ’ I n s t a n c e ’ ) ;
l egend ( ’T=1 ’ , ’T=10 ’ , ’T=50 ’ ) ;
gr id on ;

14



The Softmax of the Teacher’s predictions is the Soft Labels because the student model
aims to model them. The Softmax of the student model (at the same temperature (t) as the
teacher model) is called the Soft Predictions. The Soft Predictions and the Soft Labels are
inputted to a Loss Function for performance evaluation of the student model. The result
of the loss function is known as the Distillation Loss.

Total loss = (α× distillation loss) + (β × student loss) (2.8)

Where,

α + β = 1 (2.9)

Our primary aim in knowledge distillation is for the student model to predict the dataset.
Thus, we must compare the student model’s performance with the actual dataset. Hence,
the predictions of the student model are operated on a Softmax with a temperature of
T = 1. The temperature acts as a smoothing factor for the Softmax function where T is
proportional to the smoothness of the result, as Figure 7b and 7c show. The result of the
Softmax operation is known as the Hard Prediction. A loss function compares the hard
prediction with the normalized labels from the dataset. The result is known as the Student
Loss. A weighted sum of the distillation loss and the student loss is the Total loss as
shown in Equation 2.8 and 2.9. The values of α and β are proportional to the importance
the student model gives to the Hard labels (i.e., labels from the dataset) and soft labels
(i.e., labels from the teacher model), respectively. The total loss is the fed back to CNN for
further optimization [39].

2.3 Related works

Authors in [40], developed BC detection using a deep learning algorithm. The authors used
mammogram images of 400 women and apply deep learning neural network algorithm to
identify the BC and type of tumor.

Gupta et al. [41] developed a BC prediction model using six supervised learning algo-
rithms. They trained and evaluated each algorithm twice or three times by varying some
hyperparameters. In their results, the deep learning algorithm outperformed the other five
algorithms they used, achieving 98.24% accuracy and 98.0% for precision, recall, and
F1-score.

Anji et al. [42] developed a novel pseudocode for BC detection using a deep neural network
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(DNN) with support value. The authors employed a histosigmoid-based fuzzy clustering
technique for data segmentation on the histopathology image dataset of over 683 patients.
The performance of their model (DNNS) is compared to the five most widely used ML
algorithms, which are support vector machine (SVM), Naive Bayes, Bi-clustering & Ada
boost, HA-BiRNN, and RCNN) for BC detection. Results proved that DNNS is better
in terms of efficiency, performance, and image quality. Its classification accuracy was
97.21%, a precision of 97.90%, and 97.01% recall.

Gong et.al.[43] developed a self-distilled supervised learning (SDSCL) model to enhance
the predictive performance of a CNN-based computer-aided design for BC. The authors
apply hematoxylin and Eosin (H and E) stain view techniques to some histopathological
images. The decomposed H and E stain views are then fed into the SDSCL algorithm
for learning more intrinsic feature representation. Hematoxylin & Eosin (H and E) stain
views help to identify cells and breast tissues. It also provides more information about the
structures and shape of the cells in a tissue, which help them in improving the classification
performance of SDSCL.

In [44], BC classification using discrete wavelet transformation (DWT) and DL was
developed from the numerical dataset. The authors used DWT techniques for data pre-
processing and then applied a feed-forward neural network (FFNN) for BC classification.
The model obtained a great BC classification accuracy of up to 98.84%. However, one
major drawback of FFNN is time consumption in both development and deployment.

Authors in [45, 46], use Knowledge Distillation to obtain a lightweight model of their
work in computer vision. They show that knowledge distillation can be used to enhance a
CNN model, and can be applied in a situation where there is a limited training dataset or
resource constraints without losing accuracy.

[47] developed breast cancer prediction using ML. The authors compared the performance
of four ML algorithm: SVM, KNN, Random Forest, and logistics regression on different
data set to predict. The results were evaluated using 10-fold cross-validation. They found
out that SVM was more effective than the other classifier and has an accuracy of 97%.
However, the authors mentioned that the variables used were few. Adding more variables
will yield better performance.

In [48], a lightweight deep learning (DL) pipeline for detecting anomalies in mammogram
images was developed. To reduce training time and extensive data processing, the authors
used transfer learning techniques. Transfer learning is a technique that allows an ML
to transfer knowledge obtained while solving one task to a different task. The result is

16



obtained using INbreast public database. To produce lesion area, the authors modified
a pre-trained CNN and for the mammogram classification, they modified a pre-trained
VGG16 model.

Authors in [49] reviewed different AI techniques for the detection of BC. 80 most recent
research papers on BC were reviewed. The authors stated that the most common method
for BC diagnosis was histopathology imaging and only a few used genes. They stated
that for both binary and multi-class classification, CNN and ANN models are the most
often employed models and CNN exhibits outstanding performance for both imaging
and gene expression. In conclusion, the authors mentioned that most of the papers only
consider accuracy while assessing their performance. However, the accuracy matrix does
not distinguish between FP and FN classification.

Zhigiang et al.[50] described various techniques for CNN model compression. They
experimented with knowledge distillation, model pruning, and model quantization. The
performance of the models was compared, where knowledge distillation outperforms the
other two methods as it provides higher accuracy and faster deployment time.

Similarly, authors in [51] employed knowledge distillation to reduce a complex DL model
to a lightweight version while maintaining performance. According to their findings,
KD can effectively improve or compress a CNN model to fit a low computing power
environment or embedded devices without sacrificing accuracy, as other compression
methods do.

DL was designed to examine the key features influencing the diagnosis and treatment
of serious diseases. All the related works in this section used ML techniques in one
way or another to detect BC. However, none consider developing a lightweight model to
reduce deployment time. Moreover, DL is computationally intensive in both training and
deployment. Hence, in this research, we will use KD to distill the knowledge obtained
by training a DL model to a shallow model. The SM model will be used for deployment.
Hence, it achieves DL accuracy while maintaining the lightweight features of the shallow
model.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

In this chapter, we discuss the methodology and the algorithms we have used in our
research. The first part of the chapter describes the data set used, and then the last part
discusses how the proposed model is built to achieve the research objectives.

3.2 Dataset Discription

The dataset used in this research was retrieved from Kaggle’s Wisconsin Diagnostic Breast
Cancer (WDBC) [52]. The dataset contains some features of the breast cell nuclei that were
determined from a digital image of a fine needle aspirate (FNA) [52]. In addition, FNA
is a type of biopsy where a thin needle is inserted into the breast tissue of the suspicious
area with the help of an ultrasound monitor. The biopsy tissue will then be checked by
a pathologist under a microscope to find out if there are cancer cells in it. The dataset
contains 569 cases, of which 212 are malignant (cancer) and 357 are benign (non-cancer).

Each of the features has three pieces of information: mean, standard error, and mean of the
three largest values, thus making a total of 30 features per image.

Table 1. Characteristics of the dataset.

label Features

i radius
ii perimeter
iii texture
iv area
v compactness
vi smoothness
vii concavity
viii symmetry
ix concave points
x fractal dimension
Total dimension: 30
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3.2.1 Data Exploration and Visualization

One of the vital topics in machine learning is data exploration and visualization. It
represents the data in a graphical format, which helps in understanding the data, how the
data looks, and what kind of correlation is held by the features of the data. Overall, it is
easier to grasp the information expressed by the dataset. Figure 8 depicts the count plot
of the class to be predicted. Correlation Coefficient (r) is a way of describing how two

Figure 8. Class Distribution

features are closely related. The value of r ranges between ±1 where positive or negative
values indicate that the least-squares line has a positive or negative relationship and if it
is exactly zero, then it’s said to be uncorrelated. Figure 9 shows a correlation heat map
among the features of benign and malignant classes.

Highly correlated features reduce the performance of some machine learning models. Our
data is valuable to acknowledge as the number of highly correlated features in the breast
cancer dataset is low.

3.2.2 Data-preprocessing

Data preprocessing is a technique in data mining that is used to prepare the raw data
making it useful, efficient, and appropriate for a machine-learning algorithm. WDBC
dataset used has a single column with missing values, a column ’id’ which is a unique
identifier for each patient, thus has no impact on the cancer classification, and a column
’diagnosis’, which is the class we expect to predict in our model. The 3 columns were
removed using dataframe.drop() of pandas which left us with 30 features.

Feature Scaling helps algorithms quickly reach the minima of the cost function. Stan-
dardization is a technique of feature scaling that rescale the features to have the same
characteristics of a conventional normal distribution with a mean of zero and a standard de-
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Figure 9. Correlation matrix

viation of one. For this work, we standardized the features using the Z-score normalization
equation below :

Xscaled =
xi− µ

σ
(3.1)

Where, xiis the feature to be standardized, µ is the mean, and σ is the standard deviation of
the distribution. This was implemented using StandardScaler().fit_transform() of sklearn.

3.2.3 Model training and validation

Model training is a process of providing a clean and sufficient dataset to the machine
learning algorithm to extract features, discover and learn patterns from the features involved.
Validation testing is carried out immediately after training the model to evaluate the
performance of the prediction model against the ground truth data. K-Fold Cross Validation
is a model evaluation technique that divides the input dataset into k subset of data referred
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to as folds where a single subset is used for testing or validation and the remaining (k-1) is
allocated to training the model. This process will be repeated k times, in each iteration
new subset of data that was not assigned in the past will be used for the testing phase (see
figure 10.

Figure 10. k-Fold cross-validation

Cross Validation techniques are used to flag problems like overfitting or input-output
selection bias in the dataset. In our work, the dataset is randomly divided into ten equal
parts using 10-fold cross-validation, we take out 1 unique part for validation testing and
the remaining 9 parts are added together to represent the training model dataset. We
fit our model with the training dataset and evaluate the performance with the validation
dataset. This process is repeated ten times where a different subset of the dataset is used
for validation in each iteration. The final evaluation score is the mean of the evaluation
score from the ten iterations.

3.3 Proposed Model

In this research, we used a Convolutional Neural Network (CNN) model to detect BC.
This research aims to develop a lightweight model for detecting breast cancer using
the knowledge distillation technique. In this work, we have used Keras sequential API
(Tensorflow backend). Figure 11 shows the experiment carried out.

A deep CNN model — the teacher model (TM) is defined with over 863 thousand total
parameters of which 862 thousand are trainable parameters, the summary is presented in
Table 2. Before building the model, we used the hyper-band grid search to identify the best
parameters, such as the filter sizes, number of hidden layers, learning rate, and dropout
units. The TM has one input layer, three (3) hidden layers (two of which are convolutional
layers (Conv1D) and a dense layer), and an output layer.
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Define student model as SM

Train SM

Figure 11. Experiment Carried Out

Both convolutional layers use a kernel size of 2 and a ReLU activation function. The first
convolutional layer has 64 filters. It takes the feature vector with a dimension of (30×1) as
input and transforms the sample into a (29×64) shape vector. The second convolutional
layer has 448 filters. It takes the output of the first convolutional layer, processes it, and
produces a 28×448 output vector.

For the convolutional operation, the kernel slides through the input vector and weigh each
feature to extract meaningful information (feature maps). This is done by computing the
dot product of the filter matrix sliding through some portion of the feature vector; an
illustration is shown in Figure 12. We used batch normalization between each hidden
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Table 2. Summary of teacher model

Layer (type) Output Shape Param #
conv1d_1 (Conv1D) (None, 29, 64) 192
batch_normalization_1 (Batch (None, 29, 64) 256
dropout_1 (Dropout) (None, 29, 64) 0
conv1d_2 (Conv1D) (None, 28, 448) 57,792
batch_normalization_2 (Batch (None, 28, 448) 1,792
dropout_2 (Dropout) (None, 28, 448) 0
flatten_1 (Flatten) (None, 12544) 0
dense_1 (Dense) (None, 64) 802,880
dropout_3 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 2) 130
Total params: 863,042
Trainable params: 862,018
Non-trainable params: 1,024

layer to improve accuracy. The third in the table is a dropout which minimizes over-fitting
or enhances generalization. Dropout is a process where some portions of neurons in
the hidden layer are randomly ignored by setting their weights to zero, which drives the
network to learn features differently. Furthermore, it forces the CNN to learn robust
features that do not rely on the presence of other neurons. We used it to randomly turn off
10 percent of the neurons during the training phase.

1 1

1

111 0

0

0

0

0

Future Vector

Filter/kernel

Future map

Figure 12. Conv1D Operation

Flatten layer involves transforming the last feature map (28x448) into one dimension
with 12,544 data. Afterward, two dense layers were employed using ReLU and sigmoid
activation functions. Hence, the TM has over 863 thousand total parameters, of which 862
thousand are trainable. The preprocessed BC dataset discussed in 3.2 was used to train the
teacher model until full convergence, and the final predictions will be used to train the SM
later.

Figure 13 presented the lightweight architecture of a shallow CNN model called the
Student model (SM). The SM has fewer parameters than the TM. It consists of 2 conv1D,
a filter of 4 & 8 with a kernel size of 2, summary is presented in Table 3. SM will be
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Figure 13. Lightweight Architecture of the Student Model

Table 3. Summary of student model

Layer(type) OutputShape Param#
Conv1d_1(Conv1D) (None,29,4) 12
batch_normalization_1(Batc (None,29,4) 16
dropout_1(Dropout) (None,29,4) 0
conv1d_2(Conv1D) (None,28,8) 72
batch_normalization_2(Batc (None,28,8) 32
dropout_2(Dropout) (None,28,8) 0
flatten_1(Flatten) (None,224) 0
dense_29(Dense) (None,2) 450
Total params:582
Trainable params:558
Non-trainable params:24

trained in coordination with the fully trained TM. SM was trained in coordination with the
fully trained TM. The Knowledge is distilled from large, complex TM to SM using the
Distillation loss (Dloss) Equation below 3.2 :

Dloss = HKLD(qt, qs) (3.2)

Where,

HKLD = Kull − Libler divergence loss

qt = softer logit of TM predictions

qs = softer logit of SM predictions
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Dloss is the minimize squared difference between the TM and SM softer logits. We
have used keras’s Kullback-Liebler (KL) divergence loss function to obtain the squared
differences. The KD uses a softmax function to soften the logits of both the TM and the
SM. A temperature parameter (T) is added to the softmax function to control the softness of
the probability distribution of the logits. The soft logits provides us with more information
in each training case than the hard target because it has strong entropy. Also, the variance
in the gradient between training cases is less.

The SM’s performance was evaluated using Equation 3.4 by combining two loss functions.
One loss function is the Dloss, and the second loss function is the student loss (Studentloss).
Studentloss is the comparison between the ground truth and the SM prediction as presented
in Equation 3.3. Figure 14 summarized the TM and SM learning process.

Studentloss = HBCE(p, Zs) (3.3)

Where,

HBCE = Binary cross enropy loss

p = ground truth

Zs = SM predictions

HKD = α ∗ HBCE(p, Zs) + (1− α) ∗ HKLD(qt, qS) (3.4)

Where,

HBCE(p, zs) = Sloss

HKLD(qt, qs) = Dloss

α = hyperparameter to weigh the importance of Sloss and Dloss
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Figure 14. Teacher-Student learning process
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CHAPTER FOUR

RESULTS and DISCUSSION

4.1 Introduction

In this chapter, we present the result and discussion of our proposed system. First, we
present the performance comparison between the TM and the SM, and then we present
the performance comparison of our proposed model and some prior related approaches at
last. The implemented results were carried out using a python programming language in
Kaggle’s notebook, imploring Keras, Tensorflow, and sci-kit-learn frameworks. Kaggle
is a cloud service provider that offers free memory and computational power to run and
process deep learning programs. It has an intel Xeon 2.2 processor with 16.4 GB RAM
and 220GB disk space.

4.2 Experimental Result

4.2.1 Comparison of TM and SM Results

In this section, we used Kaggle’s Wisconsin Diagnostic Breast Cancer (WDBC) dataset
[52]. The dataset contains some features of the breast cell nuclei from digital images of a
Fine Needle Aspirate (FNA) [52]. It has 569 cases; 212 are malignant (cancer), and 357
are benign (non-cancer).

We evaluated the performance of the TM and SM CNN classifier using 10-fold cross-
validation discussed in subsection 3.2.3. The average classification accuracy of SM was
found to be 98.07 ±1.99% and 97.54 ±1.95% for the TM. Table 4 shows the model
evaluation metrics of our model, it follows that a larger model can be made lighter with
less deployment time and without compromising accuracy.

Table 4. Model Evaluation Metric

Average Accuracy Parameters Hidden Layers Running Time
TM 97.54% 863042 3 130 sec
SM 98.07% 582 2 70 sec

In addition, we plotted the accuracy and loss curves for training and validation of the TM
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and the SM using the model evaluation score of the last iteration. The accuracy curves
show that more training implies better accuracy. Given that we repeat our training and
validation 30 times (30 epochs), both training and validation accuracy become stable at
greater accuracy than 97%. Figure 15 - 17 shows the accuracy and loss plot of SM and
TM.

(a) Student Model Accuracy (b) Student Model Loss

Figure 15. SM Accuracy and Loss

(a) Teacher Model Accuracy (b) Teacher Model Loss

Figure 16. TM Accuracy and Loss

(a) Teacher-Student Model Accuracy (b) Teacher-Student Model Loss

Figure 17. TM-SM Accuracy and Loss
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4.2.2 Comparison of SM Results with Prior Approaches

This section compares our work with the works in the literature. In addition to the WDBC
dataset used in Section 4.2.1, we tested the proposed system with two more datasets:
Breast Cancer Diagnosis (BCD) [53] and “Primary Breast Cancer vs Normal Breast
Tissue (PBCT)” [54]. Adding these datasets allows us to determine the reliability of the
system’s performance. Most of the existing works have not used cross-validation for model
evaluation. Thus, we present student model-2 (SM2) to have a fair comparison — it is
SM without the cross-validation technique. We use 85% of our preprocessed dataset for
training and 15% for validation. In a separate set of experiments, we used KMeansSmote
oversampling on all our datasets to have balanced datasets. Table 5 shows the nomenclature
used for all the experiments in this section.

Table 5. Nomenclature for Expriments Carried out

Experiments Description
SM2-WDBC WDBC Dataset
SM2-WDBC-O WDBC Dataset with oversampling
SM2-BCD BCD Dataset
M2-BCD-O BCD Dataset with oversampling
SM2-PBCT PBCT Dataset
SM2-PBCT-O PBCT Dataset with oversampling

We evaluated the performance using different performance metrics explained in Equations
4.1 – 4.3 in addition to the Area Under the ROC Curve (AUC). A Receiver Operating
Characteristics (ROC) curve is a graph that shows a model’s classification performance
at various classification thresholds. Therefore, an AUC reflects a classifier’s reliability
because it provides an aggregate performance measure across all possible classification
thresholds.
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Accuracy =
TP + TN

TP + TN + FN + FP
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

Where,

True positive (TP)= number of cancer that are correctly predicted as cancer

False Positive (FP) = number of not-cancer that are predicted as cancer

True Negative (TN) = number of not-cancer that are classified as not-cancer.

False Negative (FN) = number of cancer that are predicted as not-cancer.

Table 6. Performance comparison

Sn Source Algorithm Accuracy(%) Precision(%) Recall(%) AUC
1 SM2-WDBC KD-CNN 98.8 100 97.0 0.98
2 SM2-BCD KD-CNN 98.4 100 97.0 0.98
3 SM2-PBCT KD-CNN 100.0 100 100 1.0
4 SM2-WDBC-O KD-CNN 99.1 100 98.2 0.99
5 SM2-BCD-O KD-CNN 99.3 100 99.0 0.99
6 SM2-PBCT-O KD-CNN 97.3 100 95.0 0.97
7 [44] DWT-ANN 98.8 98.3 98.3 -

SVM 97.2 0.99 0.95 0.97
RF 96.5 0.97 0.92 0.96

8 [55] LR 95.8 0.98 0.95 0.95
DT 95.1 0.90 0.92 0.95
KNN 93.7 0.97 0.95 0.95

9 [56] ANN 96.0 - - -

Table 6 compares the performance of some BC detection techniques in the literature
with our proposed model. The results SM2-WDBC, SM2-BCD, and SM2-PBCT are
from the SM2 model trained with WDBC, BDC, and PBCT datasets, respectively. The
results show that SM2-PBCT is the best. However the dataset is highly imbalanced; only
20 of the 133 records are benign. Thus, we used oversampling to balance the datasets;
SM2-WDBC-O, SM2-BCD-O, and SM2-PBCT-O. The results show that PBCT dataset is
affected by accuracy paradox while WDBC and BCD shows more better performance after
oversampling. Overall, SM2 is a good model as its tested with three different datasets and
the accuracy ranges between 97-100%.
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Masa et. al [44] used Discrete Wavelength Transformation - Artificial Neural Network
(DWT-ANN) on BCD dataset. The authors used Discrete Wavelength Transformation
techniques in their data preprocessing to ensure accurate results. It has similar perfor-
mance with SM2-BCD. However, it is outperformed by SM2-BCD-O. This shows that
oversampling gives better performance.

Naji et. al [55], and Hajiabadi et. al [56] trained and validated their model with WDBC
dataset. In [55], SVM has the best performance, but it is marginally outperformed by both
SM2-WDBC and SM2-WDBC-O. Similarly, [56] did not perform well. This shows that
the light weight CNN had indeed learn from the complex ANN model (i.e., the TM).
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CHAPTER FIVE

SUMMARY, CONCLUSION AND FUTURE WORK

5.1 Introduction

In this thesis, we proposed a CNN KD method for the lightweight detection of BC. This
chapter concludes the thesis by summarizing our work, the method we have used to combat
the problems, and the findings. Finally, we end the chapter by highlighting possible open
research directions in this field.

5.2 Summary

A convolutional neural network is among the most effective algorithms used for finding
patterns in data to recognize classes, objects, and categories. However, CNN architecture is
large as it requires computing power (such as a GPU processor or an FPGA), among others.
In a circumstance where real-time classification or recognition tasks need to be deployed
in a resource constraint environment, lightweight versions of the CNN architectures
that can be used on limited hardware are required. This work presented a lightweight
CNN- Knowledge Distillation technique for the detection of BC, which can be used for
embedded systems implementation. Knowledge Distillation is a model-agnostic technique
that compresses and transfers knowledge from a computationally expensive deep neural
network (TM) to a single shallow neural work (SM) with better inference efficiency.

We have sourced available datasets from an online source ([52], [53] and [54]), prepro-
cessed them by cleaning, dropping, and applying Z-score normalization to bring the values
of different features to a common scale. After the preprocessing, the TM architecture
was built and trained with one input layer, three (3) hidden layers (two of which are
convolutional layers( Conv1D) and a dense layer), and an output layer. To improve the
performance of our TM, we used a grid search technique called hyper-band to identify the
best parameters, such as the number of filters, number of hidden layers, learning rate, and
dropout units. We applied the values that give the best performance to train and evaluate
the teacher model.

The shallow SM architecture is built with only two convolutional (conv1D) hidden layers
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and a few filters. The total trainable parameters used by the SM [52] were only 0.06%
of the training parameters used by the TM model. We applied a softmax function to the
predictions of TM and obtained smooth and softer labels, which we used along with soft
predictions of the SM to obtain the distillation loss using a Kullback–Leibler divergence
loss function. In addition, we also obtained the hard prediction of the SM using the ground
truth data. A weighted sum of the distillation loss and the student loss is then computed to
evaluate the student model predictions. We found that our proposed system provides an
average accuracy of 98.07±1.99% and reduced the training time of TM by up to 46.2%.

Moreover, we tested the proposed system with two more datasets: Breast Cancer Diagnosis
(BCD) [53] and “Primary Breast Cancer vs Normal Breast Tissue (PBCT)” [54]. Adding
these datasets allows us to determine the reliability of the system’s performance. In [bcd]
and [54], the SM used 0.12% and 0.11% trainable parameters of the TM. SM outperforms
TM in both cases (see the performance of the SM in Table6).

5.3 Conclusion

The main aim of this work is to develop a lightweight CNN model that can mimic the
performance of a deep neural network and accurately classify breast cancer data. The
advantages of the proposed model include; obtaining a highly accurate model with a
reduced running time, requiring few trainable parameters, and easy deployment on low-
power computing devices (such as laptops, mobile phones, and tablets). Hence, this
research can help pave the way for telemedicine in oncology.

5.4 Future Works

For future work, we propose deploying this model on the low computing power device for
use in practice.
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Appendix 1

Implementation Code

import numpy as np # l i n e a r a l g e b r a

import pandas as pd # da ta p r o c e s s i n g , CSV f i l e I /O ( e . g . pd . r e a d _ c s v )

import m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b import cm
import s e a b o r n as s n s
import os
p r i n t ( os . l i s t d i r ( " . . / i n p u t " ) )

%m a t p l o t l i b i n l i n e
import t e n s o r f l o w as t f
from t e n s o r f l o w import k e r a s
from t e n s o r f l o w . k e r a s import l a y e r s
from t e n s o r f l o w . k e r a s import S e q u e n t i a l
from t e n s o r f l o w . k e r a s . l a y e r s import Conv1D , MaxPool1D , F l a t t e n , Dense , Dropout , B a t c h N o r m a l i z a t i o n
from t e n s o r f l o w . k e r a s . o p t i m i z e r s import Adam
from t e n s o r f l o w . k e r a s import u t i l s

# I mp or t models from s c i k i t l e a r n module :

from s k l e a r n import d a t a s e t s , m e t r i c s
from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t
from s k l e a r n . m o d e l _ s e l e c t i o n import KFold
from s k l e a r n . m e t r i c s import c o n f u s i o n _ m a t r i x
from s k l e a r n . m e t r i c s import C o n f u s i o n M a t r i x D i s p l a y
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
from s k l e a r n . f e a t u r e _ s e l e c t i o n import V a r i a n c e T h r e s h o l d

# load d a t a s e t

d a t a = pd . r e a d _ c s v ( " . . / i n p u t / b r e a s t − cance r − w i s c o n s i n − d a t a / d a t a . c sv " , h e a d e r = 0)
d a t a . head ( )

Y= d a t a . d i a g n o s i s
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p r i n t (Y. v a l u e _ c o u n t s ( ) )
p l t . t i t l e ( ’ Count o f c a n c e r t y p e ’ )
s n s . c o u n t p l o t ( d a t a [ ’ d i a g n o s i s ’ ] )
p l t . y l a b e l ( ’ Count ’ )
p l t . show ( )

Y=Y. map ( { ’B ’ : 0 , ’M’ : 1 } )
Y = u t i l s . t o _ c a t e g o r i c a l (Y, n u m _ c l a s s e s =2)

d a t a . i s n u l l ( ) . any ( ) . d e s c r i b e ( )
d a t a . i n f o ( )

# drop i d and un named 32 colums from t h e f e a t u r e s

d a t a . d rop ( [ ’ i d ’ , ’ Unnamed : 32 ’ ] , a x i s =1 , i n p l a c e =True )
d a t a . d e s c r i b e ( )

c o r r e l a t i o n = d a t a . c o r r ( )
# G e t t i n g t h e Upper T r i a n g l e o f t h e co− r e l a t i o n m a t r i x

m a t r i x = np . t r i u ( c o r r e l a t i o n )
p l t . f i g u r e ( f i g s i z e = ( 4 0 , 1 6 ) )
s n s . heatmap ( c o r r e l a t i o n , vmax =1 , s q u a r e =True , a n n o t =True , cmap= ’ c o pp e r ’ , mask= m a t r i x )
p l t . t i t l e ( ’ C o r r e l a t i o n between d i f f e r e n t f e a r u r e s ’ )
p l t . s a v e f i g ( " c o r . svg " )

f o r i in ( d a t a . columns [ 1 : 6 ] ) :
p l t . s u b p l o t ( 1 , 2 , 1 )
d a t a [ i ] [ d a t a [ ’ d i a g n o s i s ’ ]== ’B ’ ] . p l o t . h i s t ( a l p h a = 0 . 5 , t i t l e = i , c o l o r = ’ g r e e n ’ )
d a t a [ i ] [ d a t a [ ’ d i a g n o s i s ’ ]== ’M’ ] . p l o t . h i s t ( a l p h a = 0 . 5 , c o l o r = ’ r e d ’ )
p l t . l e g e n d ( [ ’B ’ , ’M’ ] , l o c = ’ uppe r r i g h t ’ )
# p l t . g r i d ( v i s i b l e =True )

p l t . s u b p l o t ( 1 , 2 , 2 )
s n s . b o x p l o t ( x=" d i a g n o s i s " , y= i , d a t a = d a t a )
p l t . show ( )

# da ta . drop ( ’ d i a g n o s i s ’ , a x i s =1 , i n p l a c e=True )

X= d a t a . i l o c [ : , 1 : ]
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d e l d a t a

s c a l e r = S t a n d a r d S c a l e r ( )
d a t a = s c a l e r . f i t _ t r a n s f o r m ( d a t a )
d a t a = d a t a . r e s h a p e ( 5 6 9 , 3 0 , 1 )

# c o n s t r u c t d i s t i l l e r c l a s s

c l a s s D i s t i l l e r ( k e r a s . Model ) :
def _ _ i n i t _ _ ( s e l f , s t u d e n t , t e a c h e r ) :

super ( D i s t i l l e r , s e l f ) . _ _ i n i t _ _ ( )
s e l f . t e a c h e r = t e a c h e r
s e l f . s t u d e n t = s t u d e n t

def compi le (
s e l f ,
o p t i m i z e r ,
m e t r i c s ,
s t u d e n t _ l o s s _ f n ,
d i s t i l l a t i o n _ l o s s _ f n ,
a l p h a = 0 . 1 ,
t e m p e r a t u r e =3 ,

) :
" " " C o n f i g u r e t h e d i s t i l l e r .

Args :

o p t i m i z e r : Keras o p t i m i z e r f o r t h e s t u d e n t w e i g h t s

m e t r i c s : Keras m e t r i c s f o r e v a l u a t i o n

s t u d e n t _ l o s s _ f n : Loss f u n c t i o n o f d i f f e r e n c e be tween s t u d e n t

p r e d i c t i o n s and ground − t r u t h

d i s t i l l a t i o n _ l o s s _ f n : Loss f u n c t i o n o f d i f f e r e n c e be tween s o f t

s t u d e n t p r e d i c t i o n s and s o f t t e a c h e r p r e d i c t i o n s

a lpha : w e i g h t t o s t u d e n t _ l o s s _ f n and 1− alpha t o d i s t i l l a t i o n _ l o s s _ f n

t e m p e r a t u r e : Tempera ture f o r s o f t e n i n g p r o b a b i l i t y d i s t r i b u t i o n s .

Larger t e m p e r a t u r e g i v e s s o f t e r d i s t r i b u t i o n s .

" " "

super ( D i s t i l l e r , s e l f ) . compi le ( o p t i m i z e r = o p t i m i z e r , m e t r i c s = m e t r i c s )
s e l f . s t u d e n t _ l o s s _ f n = s t u d e n t _ l o s s _ f n
s e l f . d i s t i l l a t i o n _ l o s s _ f n = d i s t i l l a t i o n _ l o s s _ f n

41



s e l f . a l p h a = a l p h a
s e l f . t e m p e r a t u r e = t e m p e r a t u r e

def t r a i n _ s t e p ( s e l f , d a t a ) :
# Unpack da ta

x , y = d a t a

# Forward pas s o f t e a c h e r

t e a c h e r _ p r e d i c t i o n s = s e l f . t e a c h e r ( x , t r a i n i n g = F a l s e )

w i th t f . G r a d i e n t T a p e ( ) a s t a p e :
# Forward pas s o f s t u d e n t

s t u d e n t _ p r e d i c t i o n s = s e l f . s t u d e n t ( x , t r a i n i n g =True )

# Compute l o s s e s

s t u d e n t _ l o s s = s e l f . s t u d e n t _ l o s s _ f n ( y , s t u d e n t _ p r e d i c t i o n s )
d i s t i l l a t i o n _ l o s s = s e l f . d i s t i l l a t i o n _ l o s s _ f n (

t f . nn . so f tmax ( t e a c h e r _ p r e d i c t i o n s / s e l f . t e m p e r a t u r e , a x i s = 1 ) ,
t f . nn . so f tmax ( s t u d e n t _ p r e d i c t i o n s / s e l f . t e m p e r a t u r e , a x i s = 1 ) ,

)
l o s s = s e l f . a l p h a * s t u d e n t _ l o s s + (1 − s e l f . a l p h a ) * d i s t i l l a t i o n _ l o s s

# Compute g r a d i e n t s

t r a i n a b l e _ v a r s = s e l f . s t u d e n t . t r a i n a b l e _ v a r i a b l e s
g r a d i e n t s = t a p e . g r a d i e n t ( l o s s , t r a i n a b l e _ v a r s )

# Update w e i g h t s

s e l f . o p t i m i z e r . a p p l y _ g r a d i e n t s ( z i p ( g r a d i e n t s , t r a i n a b l e _ v a r s ) )

# Update t h e m e t r i c s c o n f i g u r e d i n ‘ c o m p i l e ( ) ‘ .

s e l f . c o m p i l e d _ m e t r i c s . u p d a t e _ s t a t e ( y , s t u d e n t _ p r e d i c t i o n s )

# R e t ur n a d i c t o f pe r fo rmance

r e s u l t s = {m. name : m. r e s u l t ( ) f o r m in s e l f . m e t r i c s }
r e s u l t s . u p d a t e (

{ " s t u d e n t _ l o s s " : s t u d e n t _ l o s s , " d i s t i l l a t i o n _ l o s s " : d i s t i l l a t i o n _ l o s s }
)
re turn r e s u l t s
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def t e s t _ s t e p ( s e l f , d a t a ) :
# Unpack t h e da ta

x , y = d a t a

# Compute p r e d i c t i o n s

y _ p r e d i c t i o n = s e l f . s t u d e n t ( x , t r a i n i n g = F a l s e )

# C a l c u l a t e t h e l o s s

s t u d e n t _ l o s s = s e l f . s t u d e n t _ l o s s _ f n ( y , y _ p r e d i c t i o n )

# Update t h e m e t r i c s .

s e l f . c o m p i l e d _ m e t r i c s . u p d a t e _ s t a t e ( y , y _ p r e d i c t i o n )

# R e t ur n a d i c t o f pe r fo rmance

r e s u l t s = {m. name : m. r e s u l t ( ) f o r m in s e l f . m e t r i c s }
r e s u l t s . u p d a t e ( { " s t u d e n t _ l o s s " : s t u d e n t _ l o s s } )
re turn r e s u l t s

def c a l l ( s e l f , x ) :
re turn s e l f . s t u d e n t ( x )

# D e f i n e t h e K− f o l d Cross V a l i d a t o r

# D e f i n e per − f o l d s c o r e c o n t a i n e r s <−− t h e s e are new

import t ime
T _ a c c _ p e r _ f o l d = [ ]
T _ l o s s _ p e r _ f o l d = [ ]
TM_time = [ ]

S _ a c c _ p e r _ f o l d = [ ]
S _ l o s s _ p e r _ f o l d = [ ]
SM_time = [ ]

T S _ a c c _ p e r _ f o l d = [ ]
T S _ l o s s _ p e r _ f o l d = [ ]
KD_time = [ ]
num_folds =10
epoch =30
k f o l d = KFold ( n _ s p l i t s =num_folds , s h u f f l e =True )
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# K− f o l d Cross V a l i d a t i o n model e v a l u a t i o n

f o l d _ n o = 1

f o r t r a i n , t e s t in k f o l d . s p l i t (X, Y ) :
# C re a t e t h e t e a c h e r

t e a c h e r = k e r a s . S e q u e n t i a l (
[

k e r a s . I n p u t ( shape =(30 , 1 ) ) ,
l a y e r s . Conv1D ( f i l t e r s =64 , k e r n e l _ s i z e = 2 , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . B a t c h N o r m a l i z a t i o n ( ) ,
l a y e r s . Dropout ( 0 . 2 ) ,
# l a y e r s . LeakyReLU ( a lpha = 0 . 2 ) ,

l a y e r s . Conv1D ( 4 4 8 , 2 , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . B a t c h N o r m a l i z a t i o n ( ) ,
l a y e r s . Dropout ( 0 . 2 ) ,

l a y e r s . F l a t t e n ( ) ,
l a y e r s . Dense ( 6 4 , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . Dropout ( 0 . 2 ) ,

l a y e r s . Dense ( 2 , a c t i v a t i o n = ’ s igmoid ’ ) ,
] ,
name=" t e a c h e r " ,
)

# C re a t e t h e s t u d e n t

s t u d e n t = k e r a s . S e q u e n t i a l (
[

k e r a s . I n p u t ( shape =(30 , 1 ) ) ,
l a y e r s . Conv1D ( 4 , 2 ) ,
l a y e r s . B a t c h N o r m a l i z a t i o n ( ) ,
l a y e r s . Dropout ( 0 . 2 ) ,

# l a y e r s . LeakyReLU ( a lpha = 0 . 2 ) ,

l a y e r s . Conv1D ( 8 , 2 ) ,
l a y e r s . B a t c h N o r m a l i z a t i o n ( ) ,
l a y e r s . Dropout ( 0 . 2 ) ,
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l a y e r s . F l a t t e n ( ) ,
l a y e r s . Dense ( 2 , a c t i v a t i o n = ’ s igmoid ’ ) ,

] ,
name=" s t u d e n t " , )

# Clone s t u d e n t f o r l a t e r compar i son

s t u d e n t _ s c r a t c h = k e r a s . models . c lone_mode l ( s t u d e n t )

# c o m p i l e t e a c h e r

t e a c h e r . compi le ( o p t i m i z e r =Adam( l e a r n i n g _ r a t e = 0 . 0 0 0 1 ) , l o s s = ’ b i n a r y _ c r o s s e n t r o p y ’ ,
m e t r i c s =[ ’ a c c u r a c y ’ ] )

# Genera te a p r i n t

p r i n t ( sep = ’ \ n ’ )
p r i n t ( sep = ’ \ n ’ )
p r i n t ( ’ −−−−−−−−−−−−−−−−−−−−−+++++++++++++++++++++++++++++−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( sep = ’ \ n ’ )
p r i n t ( f ’ T r a i n i n g f o r f o l d { f o l d _ n o } . . . ’ )
p r i n t ( sep = ’ \ n ’ )
p r i n t ( ’TEACHER ’ )
s t a r t _ t i m e _ T M = t ime . t ime ( )
# F i t da ta t o model

t e a c h e r H i s t o r y = t e a c h e r . f i t (X[ t r a i n ] , Y[ t r a i n ] , epochs =epoch , v a l i d a t i o n _ d a t a =(X[ t e s t ] ,Y[ t e s t ] ) ,
# b a t c h _ s i z e=b a t c h _ s i z e ,

v e r b o s e =1)
end_time_TM = t ime . t ime ( )
# Genera te g e n e r a l i z a t i o n

s c o r e s = t e a c h e r . e v a l u a t e (X[ t e s t ] , Y[ t e s t ] )
p r i n t ( f ’ Sco re f o r f o l d { f o l d _ n o } : { t e a c h e r . m e t r i c s _ n a m e s [ 0 ] } o f { s c o r e s [ 0 ] } ; { t e a c h e r . m e t r i c s _ n a m e s [ 1 ] } o f { s c o r e s [1]*100}% ’ )
T _ a c c _ p e r _ f o l d . append ( s c o r e s [ 1 ] * 100)
T _ l o s s _ p e r _ f o l d . append ( s c o r e s [ 0 ] )
TM_time . append ( end_time_TM − s t a r t _ t i m e _ T M )

p r i n t ( " E x e c u t i o n t ime : " , end_time_TM − s ta r t_ t ime_TM , " s e c s " )
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# c o m p i l e STUDENT

# s t u d e n t _ s c r a t c h . c o m p i l e ( o p t i m i z e r=Adam ( l e a r n i n g _ r a t e = 0 . 0 0 0 1 ) , l o s s =’ b i n a r y _ c r o s s e n t r o p y ’ ,

# m e t r i c s =[ ’ a c c u r a c y ’ ] )

# p r i n t ( sep = ’\ n ’ )

# p r i n t ( ’STUDENT ’ )

# s t a r t _ t i m e _ S M = t i m e . t i m e ( )

# s t u d e n t H i s t o r y = s t u d e n t _ s c r a t c h . f i t ( X[ t r a i n ] , Y [ t r a i n ] , epochs=epoch , v a l i d a t i o n _ d a t a =(X[ t e s t ] , Y [ t e s t ] ) , v e r b o s e =1)

# end_time_SM = t i m e . t i m e ( )

# Genera te g e n e r a l i z a t i o n

# S c o r e s= s t u d e n t _ s c r a t c h . e v a l u a t e ( X[ t e s t ] , Y [ t e s t ] )

# p r i n t ( f ’ Score f o r f o l d { f o l d _ n o } : { s t u d e n t _ s c r a t c h . m e t r i c s _ n a m e s [ 0 ] } o f { S c o r e s [ 0 ] } ; { s t u d e n t _ s c r a t c h . m e t r i c s _ n a m e s [ 1 ] } o f { S c o r e s [1]*100}% ’)

# S _ a c c _ p e r _ f o l d . append ( S c o r e s [ 1 ] * 100)

# S _ l o s s _ p e r _ f o l d . append ( S c o r e s [ 0 ] )

# SM_time . append ( end_time_SM − s t a r t _ t i m e _ S M )

# p r i n t ( " E x e c u t i o n t i m e : " , end_time_SM − s t a r t _ t i m e _ S M , " s e c s " )

# I n i t i a l i z e and c o m p i l e d i s t i l l e r

d i s t i l l e r = D i s t i l l e r ( s t u d e n t = s t u d e n t , t e a c h e r = t e a c h e r )
d i s t i l l e r . compi le ( o p t i m i z e r = k e r a s . o p t i m i z e r s . Adam ( ) ,
m e t r i c s =[ ’ a c c u r a c y ’ ] ,
s t u d e n t _ l o s s _ f n = k e r a s . l o s s e s . B i n a r y C r o s s e n t r o p y ( ) ,
d i s t i l l a t i o n _ l o s s _ f n = k e r a s . l o s s e s . KLDivergence ( ) ,
a l p h a = 0 . 1 ,
t e m p e r a t u r e =10 ,
)

# D i s t i l l t e a c h e r t o s t u d e n t

p r i n t ( sep = ’ \ n ’ )
p r i n t ( ’ DISTILL TEACHER TO STUDENT ’ )
s t a r t _ t i m e _ K D = t ime . t ime ( )
h i s t o r y = d i s t i l l e r . f i t (X[ t r a i n ] , Y[ t r a i n ] , epochs =epoch , v e r b o s e =1 , v a l i d a t i o n _ d a t a =(X[ t e s t ] ,Y[ t e s t ] ) )
end_time_KD = t ime . t ime ( )
# Genera te g e n e r a l i z a t i o n

S c o r e s = d i s t i l l e r . e v a l u a t e (X[ t e s t ] ,Y[ t e s t ] )
# p r i n t ( S c o r e s )
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p r i n t ( f ’ Sco re f o r f o l d { f o l d _ n o } : l o s s o f { S c o r e s [ 1 ] } ; { d i s t i l l e r . m e t r i c s _ n a m e s [ 0 ] } o f { S c o r e s [0]*100}% ’ )
# p r i n t ( d i s t i l l e r . m e t r i c s _ n a m e s )

T S _ a c c _ p e r _ f o l d . append ( S c o r e s [ 0 ] * 100)
T S _ l o s s _ p e r _ f o l d . append ( S c o r e s [ 1 ] )
KD_time . append ( end_time_KD − s t a r t _ t i m e _ K D )

p r i n t ( " E x e c u t i o n t ime : " , end_time_KD − s ta r t_ t ime_KD , " s e c s " )

# I n c r e a s e f o l d number

f o l d _ n o = f o l d _ n o + 1

p r i n t ( sep = ’ \ n ’ )
# == P r o v i d e average s c o r e s ==

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ T e a c h e r s Score p e r f o l d ’ )
f o r i in range ( 0 , l e n ( T _ a c c _ p e r _ f o l d ) ) :

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( f ’> Fold { i +1} − Loss : { T _ l o s s _ p e r _ f o l d [ i ] } − Accuracy : { T _ a c c _ p e r _ f o l d [ i ]}% ’ )
p r i n t ( ’ Running t ime : ’ , TM_time [ i ] , " s e c s " )

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ T e a c h e r s Average s c o r e s f o r a l l f o l d s : ’ )
p r i n t ( f ’> Accuracy : { np . mean ( T _ a c c _ p e r _ f o l d ) } (+ − { np . s t d ( T _ a c c _ p e r _ f o l d ) } ) ’ )
p r i n t ( f ’> Loss : { np . mean ( T _ l o s s _ p e r _ f o l d ) } ’ )
p r i n t ( sep = ’ \ n ’ )
p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ Average r u n n i n g t ime : ’ , np . mean ( TM_time ) )

p r i n t ( sep = ’ \ n ’ )
p r i n t ( sep = ’ \ n ’ )
# == P r o v i d e average s c o r e s ==

# p r i n t (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

# p r i n t ( ’ S t u d e n t s Score per f o l d ’ )

# f o r i i n range ( 0 , l e n ( S _ a c c _ p e r _ f o l d ) ) :

# p r i n t (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

# p r i n t ( f ’> Fold { i +1} − Loss : { S _ l o s s _ p e r _ f o l d [ i ] } − Accuracy : { S _ a c c _ p e r _ f o l d [ i ]}% ’)

# p r i n t ( ’ Running t i m e : ’ , SM_time [ i ] , " s e c s " )

# p r i n t (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)
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# p r i n t ( ’ S t u d e n t s Average s c o r e s f o r a l l f o l d s : ’ )

# p r i n t ( f ’> Accuracy : { np . mean ( S _ a c c _ p e r _ f o l d ) } (+− { np . s t d ( S _ a c c _ p e r _ f o l d ) } ) ’ )

# p r i n t ( f ’> Loss : { np . mean ( S _ l o s s _ p e r _ f o l d ) } ’ )

# p r i n t (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

# p r i n t ( ’ Average r u n n i n g t i m e : ’ , np . mean ( SM_time ) )

# p r i n t ( sep = ’\ n ’ )

p r i n t ( sep = ’ \ n ’ )
# == P r o v i d e average s c o r e s ==

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ knowledge d i s t i l l Sco re p e r f o l d ’ )
f o r i in range ( 0 , l e n ( T S _ a c c _ p e r _ f o l d ) ) :

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( f ’> Fold { i +1} − Loss : { T S _ l o s s _ p e r _ f o l d [ i ] } − Accuracy : { T S _ a c c _ p e r _ f o l d [ i ]}% ’ )
p r i n t ( ’ Running t ime : ’ , KD_time [ i ] , " s e c s " )

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ knowledge d i s t i l l Average s c o r e s f o r a l l f o l d s : ’ )
p r i n t ( f ’> Accuracy : { np . mean ( T S _ a c c _ p e r _ f o l d ) } (+ − { np . s t d ( T S _ a c c _ p e r _ f o l d ) } ) ’ )
p r i n t ( f ’> Loss : { np . mean ( T S _ l o s s _ p e r _ f o l d ) } ’ )
p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
p r i n t ( ’ Average r u n n i n g t ime : ’ , np . mean ( KD_time ) )

t e a c h e r . summary ( )
s t u d e n t . summary ( )

# t e a c h e r cm

#Make p r e d i c t i o n s

y_probs = t e a c h e r . p r e d i c t (X[ t e s t ] )

# Conver t p r e d i c t i o n p r o b a b i l i t i e s i n t o i n t e g e r s

y _ p r e d s = y_probs . argmax ( a x i s =1)

# C o n f u s i o n m a t r i x

cm= m e t r i c s . c o n f u s i o n _ m a t r i x (Y[ t e s t ] . argmax ( a x i s = 1 ) , y _ p r e d s )
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# P l o t

d i s p = C o n f u s i o n M a t r i x D i s p l a y ( c o n f u s i o n _ m a t r i x =cm , d i s p l a y _ l a b e l s =[ ’B ’ , ’M’ ] , )
f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 5 , 5 ) )
d i s p . p l o t ( ax=ax ) ;

# s t u d e n t cm

#Make p r e d i c t i o n s

y_probs = d i s t i l l e r . p r e d i c t (X[ t e s t ] )

# Conver t p r e d i c t i o n p r o b a b i l i t i e s i n t o i n t e g e r s

y _ p r e d s = y_probs . argmax ( a x i s =1)

# C o n f u s i o n m a t r i x

cm= m e t r i c s . c o n f u s i o n _ m a t r i x (Y[ t e s t ] . argmax ( a x i s = 1 ) , y _ p r e d s )
# P l o t

d i s p = C o n f u s i o n M a t r i x D i s p l a y ( c o n f u s i o n _ m a t r i x =cm , d i s p l a y _ l a b e l s =[ ’B ’ , ’M’ ] , )
f i g , ax = p l t . s u b p l o t s ( f i g s i z e = ( 5 , 5 ) )
d i s p . p l o t ( ax=ax ) ;

# p l o t s o f a c c u r a c y and l o s s

# a c c u r a c y and l o s s o f t e a c h e r model

def p l o t L e a r n i n g C u r v e ( h i s t o r y , epochs ) :
epochRange = range ( 1 , epochs +1)
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ a c c u r a c y ’ ] )
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ v a l _ a c c u r a c y ’ ] )
p l t . t i t l e ( ’ Teache r Model Accuracy ’ )
p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Accuracy ’ )
p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ lower r i g h t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( "TmAcc . svg " )
p l t . show ( )

p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ v a l _ l o s s ’ ] )
p l t . t i t l e ( ’ Teache r Model Loss ’ )
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p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Loss ’ )
p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ uppe r r i g h t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( " TmLoss . svg " )
p l t . show ( )

p l o t L e a r n i n g C u r v e ( t e a c h e r H i s t o r y , epoch )

# S t u d e n t knowledge d i s t i l l e d a c c u r a c y and l o s s

def plotKDCurveD ( h i s t o r y , epochs ) :
epochRange = range ( 1 , epochs +1)
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ a c c u r a c y ’ ] )
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ v a l _ a c c u r a c y ’ ] )
p l t . t i t l e ( ’ S t u d e n t Model Accuracy ’ )
p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Accuracy ’ )
p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ lower r i g h t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( "KdAcc . svg " )
p l t . show ( )

p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ s t u d e n t _ l o s s ’ ] )
p l t . p l o t ( epochRange , h i s t o r y . h i s t o r y [ ’ v a l _ s t u d e n t _ l o s s ’ ] )
p l t . t i t l e ( ’ S t u d e n t Model Loss ’ )
p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Loss ’ )
p l t . l e g e n d ( [ ’ T r a i n ’ , ’ V a l i d a t i o n ’ ] , l o c = ’ uppe r l e f t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( " KdLoss . svg " )
p l t . show ( )

plotKDCurveD ( h i s t o r y , epoch )

# Accuracy and l o s s o f Teacher vs S t u d e n t KD model

def plo tKDCurveProf ( h i s , tH i s , epochs ) :
epochRange = range ( 1 , epochs +1)
p l t . p l o t ( epochRange , t H i s . h i s t o r y [ ’ a c c u r a c y ’ ] )
p l t . p l o t ( epochRange , t H i s . h i s t o r y [ ’ v a l _ a c c u r a c y ’ ] )
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p l t . p l o t ( epochRange , h i s . h i s t o r y [ ’ a c c u r a c y ’ ] )
p l t . p l o t ( epochRange , h i s . h i s t o r y [ ’ v a l _ a c c u r a c y ’ ] )

p l t . t i t l e ( ’ Model Accuracy ’ )
p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Accuracy ’ )
p l t . l e g e n d ( [ ’ Tm_t ra in ’ , ’ Tm_val ’ , ’ KD_t ra in ’ , ’ KD_val ’ ] , l o c = ’ lower r i g h t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( "Tm−SmAcc . svg " )
p l t . show ( )

p l t . p l o t ( epochRange , t H i s . h i s t o r y [ ’ l o s s ’ ] )
p l t . p l o t ( epochRange , t H i s . h i s t o r y [ ’ v a l _ l o s s ’ ] )
p l t . p l o t ( epochRange , h i s . h i s t o r y [ ’ s t u d e n t _ l o s s ’ ] )
p l t . p l o t ( epochRange , h i s . h i s t o r y [ ’ v a l _ s t u d e n t _ l o s s ’ ] )
p l t . t i t l e ( ’ Model Loss ’ )
p l t . x l a b e l ( ’ Epoch ’ )
p l t . y l a b e l ( ’ Loss ’ )
p l t . l e g e n d ( [ ’ TM_tra in ’ , ’ TM_val ’ , ’ KD_t ra in ’ , ’ KD_val ’ ] , l o c = ’ uppe r l e f t ’ )
p l t . g r i d ( v i s i b l e =True )
p l t . s a v e f i g ( "Tm−SmLoss . svg " )
p l t . show ( )

p lo tKDCurveProf ( h i s t o r y , t e a c h e r H i s t o r y , epoch )
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