Knowledge is Freedom

A LIGHTWEIGHT CONVOLUTIONAL NEURAL
NETWORK FOR BREAST CANCER DETECTION
USING KNOWLEDGE DISTILLATION

TECHNIQUES

A Dissertation presented to the Department of Computer Science,
African University of Science and Technology, Abuja-Nigeria
In partial fulfilment of the requirements for a Masters degree in Computer Science

By

Falmata Modu [40853]

Abuja, Nigeria

January, 2023

CERTIFICATION

This is to certify that the thesis titled A CONVOLUTIONAL NEURAL NETWORK
KNOWLEDGE DISTILLATION TECHNIQUES FOR LIGHTWEIGHT DETECTION
OF BREAST CANCER submitted to the school of postgraduate studies, African University
of Science and Technology (AUST), Abuja, Nigeria for the award of the Master’s degree is
a record of original research carried out by Falmata Modu in the Department of Computer

Science.

15.02.2023

SIGNATURE PAGE

A LIGHTWEIGHT CONVOLUTIONAL NEURAL
NETWORK FOR BREAST CANCER DETECTION USING
KNOWLEDGE DISTILLATION TECHNIQUES

By
Falmata Modu

A THESIS APPROVED BY THE COMPUTER SCIENCE
DEPARTMENT

RECOMMENDED: @ 18 Feb 2023

Supervisor: Dr. Rajesh Prasad

% 18 Feb 2023

Head of Department: Dr. Rajesh Prasad

APPROVED:

Chief Academic Officer

January 26", 2023

Date

il

ABSTRACT

The second most heterogeneous cancer ever discovered is Breast Cancer (BC). BC is a
disease that develops from malignant tumors when the breast cells begin to grow abnor-
mally. Although it grows in the breast, it can spread to other body parts or organs.through
the lymph and blood vessels of the breast. Globally, more than two million new cases
and about 600,000 women died from BC in 2020. Early detection increases the chance of
survival by 99%. Deep Learning (DL) models have recorded remarkable achievements in
disease diagnosis and treatments. However, it requires powerful computing resources. In
this work, we propose a lightweight DL. model that can detect BC using the knowledge
distillation technique. The knowledge of a pre-trained deep neural network is distilled to
a shallow neural work that is easily deployable in a low-power computing environment.
We have achieved an accuracy of up to 99%. In addition, we recorded 99% reduction in

trainable parameters compared to deploying with a deep neural network.

il

AKNOWLEDGEMENT

All thanks be to almighty Allah for giving me the ability and opportunity to this level of

my academic carrier.

I would like to express my gratitude to Dr.Rajesh Prasad for his guidance, advice, time
and efforts. Your helpful advice and suggestions were extremely beneficial to me as in

making this work successful.

I like express my special thanks to my mentors Dr. Farouqg Muhammad Aliyu and Dr. Audu
musa Mabu for their undeniable support and push. Their advice led to the success of this

work.

I am grateful to all of my lecturers who taught me over the course of my Master’s degree; |

value and treasure the invaluable knowledge and experience they have shared with me.

I also like to extend my special thanks to my loving parents, my husband and my siblings
for their encouraging words, prayers, financial and emotional support in every aspect of

my life.

Finally, I would like to thank Tertiary Education Trust Fund (TETFUND), Yobe State
University (YSU), family and friends for their support.

v

DEDICATION

I dedicate this thesis to my lovely parents, my husband and my siblings for their immeasur-

able support in one way or the other.

List of Abbreviations and Terms

Al
ANN
BC
CNN
DCIS
DNNS
DL
FN

FP

GT
HA-BiRNN
IBC
IDC
KD
KNN
LC
ML
RCNN
SM
SVM
™
VGG

Artificial Intelligence

Artificial Neural Network

Breast Cancer

Convolutional Neural Network

Ductal Carcinoma in Situ

Deep Neural network with suport value
Deep Learning

False Negative

False Positive

Ground Truth

Bidirectional Recurrent Neural Networks
Inflammatory Breast Cancer

Invasive ductal carcinoma

Knowledge Distillation

K-Nearest Neighbor

Lobular carcinoma

Machine Learning

Region-based Convolutional Neural Network
Student Model

Support Vector Machine

Teacher Model

Visual Geometry Group

vi

Table of Contents

CERTIFICATION s s s s e, i

SIGNATURE PAGE ii

ABSTRACT e e iii

AKNOWLEDGEMENT iv

DEDICATION e e A%

List of Abbreviationsand Terms, vi

Listof Figures ix

Listof Tables e X

1 CHAPTERONE s 1
INTRODUCTION s s s s s

1.1 Problem Statement 2

1.2 Aimand Objectives 2

1.2.1 0 AIm . . . o e, 2

1.2.2 Objectives e 3

1.3 ScopeoftheResearch 3

1.4 Significance of the Research 3

1.5 Expected Results and Deriverables 3

1.5.1 ExpectedResults 3

1.5.2 Deliverables 4

1.6 Research Outline 4

2 CHAPTER TWO s s s s s s, 5

BACKGROUND AND RELATED WORK 5

2.1 Introduction 5

2.2 Machine Learning 5

2.2.1 Supervised Learning oL, 5

2.2.2 Classification e 6

2.2.3 Neural Network o 8

2.2.4 Convolutional Neural Network 10

vii

2.2.5 Knowledge Distillation 11

23 Relatedworks 15

3 CHAPTERTHREE 18
METHODOLOGY e e e e e e 18

3.1 Introduction 18

3.2 Dataset Discription 18
3.2.1 Data Exploration and Visualization 19

3.2.2 Data-preprocessingo ou i u e 19

3.2.3 Model training and validation. 20

3.3 ProposedModel 21

4 CHAPTERFOUR e 27
RESULTS AND DISCUSSION o oo 27

4.1 Introduction 27
42 Experimental Result L oL, 27
4.2.1 Comparisonof TM and SMResults 27

4.2.2 Comparison of SM Results with Prior Approaches 29

S CHAPTERFIVE. 32
SUMMARY, CONCLUSION AND FUTUREWORK 32

5.1 Introduction 32
5.2 Summary e e e e e e 32

5.3 Conclusion 33
54 Future Works L 33
References 34
Appendices 39
A Appendix1 39

viii

~N O L AW

10
11
12
13
14

15
16
17

List of Figures

Types of Machine Learning 6
Classification e 7
Architecture of a perceptron 8
Architecture of a CNN with 6 hidden layers 11
Simple Model of Knowledge Distillation 11
Teacher-Student Model [37] 12
Effect of the Softmax FunctiononData 13
Class Distribution 19
Correlation matrix 20
k-Fold cross-validation 21
Experiment Carried Out 22
ConvID Operation e 23
Lightweight Architecture of the Student Model 24
Teacher-Student learning process 26
SM Accuracyand Loss 28
TM Accuracy and Loss oL 28
TM-SM Accuracy and Loss 28

X

List of Tables

Characteristics of the dataset. 18
Summary of teachermodel 23
Summary of studentmodel 24
Model Evaluation Metric 27
Nomenclature for Expriments Carriedout 29
Performance comparison 30

CHAPTER ONE

INTRODUCTION

Breast cancer (BC) detection is a vital area of research in the medical and healthcare
sectors. BC develops from malignant tumors when breast cells’ growth is abnormal [1,
2]. It grows in different parts of the breast and is common among women, but men can
get it as well [3]. According to the World Health Organization, 2.3 million women are
diagnosed with BC each year, which results in 29% deaths [4]. The higher the age, the
more the chances of breast lump turning out to be malignant [5]. The survival chance
increases to 99% if it is detected early. There are various common types of BC classified
as invasive or non-invasive. Non-invasive is when the abnormal cells are bound to the milk
passage (duct) or the milk-producing glands (lobules); invasive BC is when the abnormal
cells spread beyond the duct or lobules, affecting the tissue connected to the breast or

surrounding fatty tissues [6].

Infiltrating Ductal Carcinoma (IDC) is an invasive BC that starts in the milk duct, breaks
through the duct wall, and spreads to the fatty tissue [5]. About 80% of BC diagnoses
are IDC. Thus, making it the most common BC among women [6]. Infiltrating lobular
carcinoma (ILC) is an invasive BC that usually starts in the milk glands (lobules) and
extends to other breast parts. The most frequent non-invasive BC that accounts for almost
90% is ductal carcinoma in situ (DCIS) [6]. DCIS is when the cancer cells are bounded
to the duct [5]. Inflammatory BC (IBC) and medullary carcinoma (MC) are some of the

invasive BC types that occur less frequently; however, they are extremely fast-growing [7].

Some of the breast cancer diagnosis techniques include ultrasound-guided surgical biopsy,
magnetic resonance imaging, mammography Xray, computed tomography, portion emis-

sion tomography, magnetic resonance imaging, and breast temperature [8, 9].

Researchers from computer disciplines proposed several models for detecting BC using
a Convolutional neural network (CNN). CNN is widely used for the prediction of BC
due to its excellent performance in feature extraction [10]. Deep CNN models have been
developed in recent years to increase the effectiveness and improve the performance of
BC detection [11]. Also, researchers have recorded remarkable achievements as some
deep learning models detect BC with an accuracy of up to 98%. However, deep CNN

architectures are cumbersome models with millions of trainable parameters and many

hidden layers between the input and the output neurons. Thus, they require a lot of
computing resources (such as GPU processors or an FPGA). Lightweight versions of
deep CNN architectures require fewer hardware resources. Thus, it finds applications in

real-time classification, recognition tasks, or resource-constrained environments.

In this work, we implore a lightweight ML model that can detect BC using knowledge
distillation (KD) techniques. KD is a method of knowledge transfer where the knowledge
of a pre-trained deep CNN model, referred to as the teacher model, is used during the
training of a minor or shallow neural network, referred to as the student model. The typical
use of the KD is capturing knowledge in a complex ML model and distilling it to a shallow

model that can be deployed easily without sacrificing accuracy [12].

1.1 Problem Statement

The second most heterogeneous cancer ever discovered is breast cancer [13]. Worldwide,
breast cancer is the fifth most common cause of mortality among women. Globally, more
than two million new cases of breast cancer were diagnosed and about 600 thousand

women died from breast cancer in 2020 worldwide [14].

Various factors contribute to the occurrence of breast cancer. However, its occurrence,
survival, and mortality rates vary across different parts of the world. It could be due to
many factors such as lifestyle (what you eat and how much you exercise), population
structure, genetic factors, imbalances of hormones, environment, and older age [15]. Thus,
there is no specific way of preventing breast cancer, but success is owed to early detection
[16]. Hence, it is useful to have a system that will help us accurately detect it at an early

stage which would reduce the mortality rate.

1.2 Aim and Objectives

This section of the proposal presents the aims and objectives of the research.

1.2.1 Aim

This thesis aims to develop a lightweight machine-learning model that can accurately

detect breast cancer.

1.2.2 Objectives

1. Develop a DL model for breast cancer detection.

2. Develop a lightweight ML model for detecting breast cancer from the DL. model
through KD techniques.

3. Evaluate and compare the performance of the DL model in 1 and the lightweight
model in 2

4. Compare the performance of the proposed system in 2 with some related work.

1.3 Scope of the Research
The scope of this research is limited to the following:
1. The thesis will focus on developing a model that can only classify or diagnose data

related to breast features.

2. We will only consider training and testing of our model.

1.4 Significance of the Research

KD-based ML for breast cancer has many merits. Some of the benefits of this research are

as follows:

1. KD will help develop accurate yet light ML models.
2. It can be easily deployed on resources with limited computing powers, such as
laptops, mobile phones, and tablets.

3. This research will help pave the way for telemedicine in the field of oncology.

1.5 Expected Results and Deriverables

1.5.1 Expected Results

We expect to develop a lightweight machine-learning model that can detect breast cancer

with an accuracy of at least 95 percent.

1.5.2 Deliverables

By the end of this research, we will publish at least a conference paper for a lightweight

version of breast cancer detection.

1.6 Research Outline

The research outline is as follows:

1. Chapter one contains an introduction to breast cancer, a problem statement, aims
& objectives, the scope of the research, the significance of the research, expected
results & deliverables, and then the thesis outline.

2. Chapter two contains the background of the terms used in the thesis and a literature
review on the machine learning techniques used in BC detection.

3. Chapter three contains a discussion of our proposed model and the method we used
to meet the research objectives.

4. Chapter four contains the performance evaluation of our proposed model. First, we
will compare the two models we build (deep and shallow NN) and then compare
them with some results in the related work.

5. Chapter five contains the summary, conclusion of our research and possible open

research directions.

CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Introduction

This chapter prepares the reader for the coming chapters by explaining the concepts
that form the foundation of this thesis. The chapter explains machine learning (ML),
classification, neural networks, convolutional neural networks, and knowledge distillation
(KD) techniques. In addition, we review work done in the past relating to breast cancer
detection using various machine learning algorithms and some related work on knowledge
distillation techniques. To our knowledge, knowledge distillation techniques have never

been used for breast cancer diagnosis.

2.2 Machine Learning

Machine learning (ML) was first introduced by IBM computer scientist called Arthur et
al. [17], where they defined ML as a type of artificial intelligence that allows software
applications to learn and predict output based on experience without being explicitly
programmed. It employs a variety of algorithms to construct mathematical models and
make predictions using historical data or information as an input [18]. ML is capable of
solving complex tasks at high speeds that are beyond human capabilities. With a large
amount of data, a machine can be trained to make analysis, detect patterns, connections, or
relationships which can use for improving decision-making, or optimizing efficiency [19].
A ML model is immune to cognitive bias and fatigue because one of its primary goals is
to draw conclusions from a set of data with little human intervention. Figure 1 depicts

various types of ML.

2.2.1 Supervised Learning

Supervised learning is a machine learning training method that uses labeled datasets for
training. Cunningham et al. [20] described the aim of supervised learning as building
an artificial system that can learn the relationship and connection between input and
output, then anticipate the system’s output given new inputs. The algorithms models the

relationship, dependencies, and connections between the features and target class. After

Supervised Leaming

achine Leaming

Semi-Supervised Leaming

Bujwes pasiAzadnsun

Reinforcement Leaming

Figure 1. Types of Machine Learning

sufficient training, the algorithm should be able to detect the class label of a new data
based on the key characteristics and the knowledge gained [21]. Supervised learning falls
mostly into two categories which are classification and regression which we have used in

this work.

2.2.2 Classification

Classification is the task of determining the class label of a new instance (data) based on a
training set of data with known class label [22, 23].The goal of classification is to build a
classification model g that associates each feature set x with a particular class label y (refer
to Equation 2.1 and Figure 2a). The feature set(x) consists of some properties or attributes
of the task to classify, while the class label (y) is the target class [24]. When the class is
two, then it is called binary classification and if the class is more than two then its referred

to as multi-class classification.

y=g(x) 2.1)

where, y is the class label

A systematic method for creating classification models from input data sets is known as a
classification technique (or classifier). Examples include neural networks, naive Bayes,

rule-based, decision trees and support vector machines. Each classifier determine a model

input output
Feature set Classification class label
(x) ﬁ> Model 4> y)

(a) Mapping an input x into class label y

Training set
Fl || F2 Fn |Class
17 (|10 122 | M
20 (|17 132 (M Leaming
19 (|21 (- |130 (M algorithm
13 |14 87 B
13 (|15 85 | B Q? @
11 |20 |- |77 M m‘d
09 (12 60 || B AW
20 (14 | (135 | M
08 ||16 51 ||B model
12 (|15 82 M /
. Apply
Test set @f} model
Fl | F2 Fn |Class
18 |19 | (119 |7
20 |14 135 | 7
13 || 22 86 7

(b) General Approach for building classification model

Figure 2. Classification

that better describes the connection between the input feature set and the target class using
a learning algorithm. The identified model should be able to fit input features correctly
and effectively predict the target class of a new instance (data).Hence, building models
with a good generalization capabilities or one that correctly anticipate the class labels
of previously unseen data is one of the primary objectives of a learning algorithm. [24,
25]. The general technique for building a classification model is depicted in figure 2b. A
training set of data with known class labels must be provided first. The training set is used
to create a classification model, and it is then applied to the validation set, which consists

of data with unidentified class labels.

2.2.3 Neural Network

One of the enamous fields of the twenty-first century on which a significant amount of
research has been done is the neural network. Haykin et.al. [26] described neural network
as a type of ML where human biological neurons are simulated to build a computational
network for solving problems and making decision. An essential component of a neural
network’s functionality is its basic information processing unit called the neuron [26]. The
model of a neuron, which consists of weighted input signals, an activation function, and
an output signal, is depicted in the block diagram of Figure3. The weight of a neuron is a

parameter that set the standards for the neuron’s signal strength.

ANN is gaining acceptance in different fields as a solution [27]. ANN is used to opti-
mize the performance of both non-linear and linear control systems [28]. In medicine,
ANN is used for drug discovery[29]. Moreover, ANN is also used in natural language

understanding, speech recognition, video processing, and computer graphics [30].

inputs weights

Xn ___‘@ b

Figure 3. Architecture of a perceptron

Equation 2.2 and 2.3 represent the perceptron (a single neuron) shown in Figure 3. Equation
2.2 is the summation of the bias and the input signals (z;) multiplied with their respective
weights (w;). Equation 2.3 uses an activation function to convert the effects of the input
(z) to an output (y). The process of tuning the weights (wy, wo, . ., w,) until desirable
predictions for the output (y) are obtained compared to a sample dataset is known as

training.

z= <b +) xw) (2.2)
i=1

y=¢(2) (2.3)
where,

(wy,ws, . . ., w,) = weight of neurons

(1,22, ..., x,) = input signals

b = bias

z = intermediate output
@ = activation function

y = output signal of the neuron.

Y=o (WIX +b) (2.4)
Vi = (WHLYi+ bis) Vi €]1,2, .5 — 1] (2.5)
0= (WY +bin) 0
where,

all subscript denotes the layer number

input vector(X) = x1, xa, ..., Ty,

w! = transpose of neurons weight signified by superscript T
b = bias

@ = activation function

Y1 = output between input to hidden layer

Y, 11 = output between hidden to hidden layer

o = final output signal of the network.

Furthermore, there are large neural networks with one or more layers between the input
and the output layer of the network, those layers are called the hidden layers. A neural
network architecture containing only one or not more than two hidden layers is referred to
as a shallow neural network [31, 32], and a network with more than two hidden layers as
shown in Figure 4 or even larger is referred to a deep neural network (DNN). It could be
modeled with Equation 2.4-2.6. Equation 2.4 computes the output between an input layer

and the first hidden layer using matrix multiplication, Equation 2.5 computes the outputs

9

between hidden layer to hidden layer and Equation 2.6 computes the final prediction
(last hidden layer to output layer). The deeper the DNN, the more hidden layers it has
which exponentially increases the complexity of the prediction. Hence, it can solve more
complex problems. Uzair et al.[33] discover that the ideal number of hidden layers is three.
Additionally, they discovered that decreasing the number of hidden layers below this ideal
value decreased accuracy while increasing the number of hidden neurons above the ideal

value increased accuracy and computational complexity.

2.2.4 Convolutional Neural Network

Convolutional Neural Network (CNN) is a group of a deep neural network specially
designed to work with grid-structure input with strong spatial dependencies and some
special cases of it, such as temporal or spatiotemporal data [31]. CNN’s are analogous
to ANN in that they contain a set of neurons that self-optimize through learning. In
addition, CNN requires at least one convolutional layer as it is the crucial step for feature
extraction, although it can have other types of layers like fully connected and pooling
layers [34]. The primary foundation of a CNN is the convolutional layer. It has a parameter
that serves as a weight which is known as a filter (or kernel) that needs to be learned
during the training. In the convolution layer, the kernel slides through the input vector
from top to bottom and computes a dot product to identify features at all spatial positions.
The weighted summation of the dot product represents the input of the next layer. Each
convolutional operations is define by a sliding step (stride), filter size, and padding. A
stride is a parameter of a filter (kernel) that specify the amount of movement in each step-in
convolution; using the default stride length which is implies that the kernel will move one
unit at a time. Padding is also a parameter in the convolutional operation that add zero’s to
the input vector symmetrically; it is used when we want to maintain same dimension for

the input and the output after convolution (feature map).

Figure 4 shows an architecture of a CNN. It has one input layer, six (6) hidden layers (two
of which are convolutional layers (conv1D) and four (4) fully connected dense layers), and
an output layer. Between the convolutional layers is batch normalization, which is used to
sets the pixels in all feature maps in a convolution layer to a new mean and a new standard
deviation. A fully connected layer then performs the same task as in standard ANN. It
multiplies the input by a weight matrix, then adds the bias vector used for classification.

The last layer is the output layer which gives the predictions of the target class.

10

Fully Connected Layer

-)

Data

Qs =3>50OrfrFrgy —m

H SO=MfFYN=-=3=02 ITN+0WT
N SO=-#9N=-=3=02 Tor0®

Figure 4. Architecture of a CNN with 6 hidden layers

2.2.5 Knowledge Distillation

Knowledge distillation is a model compression method in which the knowledge of a deep
neural network is distilled to a small or shallow neural network, as shown in Figure 5.
Hinton et al.[35] described that distillation is training where knowledge of a pre-trained
large network referred to as the teacher model will be transferred to a shallow network
called student model to enable suitable deployment on a low computing power or embedded
devices. The soft probabilities of the pre-trained teacher network have more information
than the target class label. Thus, training the student with soft probabilities will enable it
to absorb more information discovered by the teacher beyond training with the class label
alone [36].

Teacher Model

Knowledge Transfer

4 ___— Student Model
fa -
Distill g Transfer]
oz ~| |
L8 L l
_____, _—

Figure 5. Simple Model of Knowledge Distillation

sso| |ejoL

sso|
juapnis

[—

sso|
uone|nsip

| ——

[L€] 19POIA JuapMIS-19YdLa], "9 SIS

(yna punous)

INELTE]
pieH

ug sso1
suonoipaid (T=1)xewyos
piey
[°PPOIN 3UsSpms
suonoipaid _
1Jos le—— (3=1)xewyjos
ug sso7
s|2ge] 3J0s [«——— (i=1)xewlyos <«—— [9PO J3Yydea)

12

Figure 6 shows the flowchart of how knowledge distillation works. The figure has two
models; a Teacher model and a Student model. On the one hand, the teacher model is a
CNN with numerous parameters. They allow it to model the dataset accurately. On the
other hand is the student model, which has very few parameters. The parameters are so few
that CNN cannot accurately model the dataset. Scientists desire fewer parameters because
it means fewer computations, which translates to lesser resource (e.g., energy, memory,

and computation time) requirements. Thus, the student model learns from the teacher.

lative Sum of Data after Softmax
Data Data after Softmax 1

——T-1
—e—T-10

06

Data
a
8
Data
Cumulative

0 10 20 30 40 50
Instance

Instance

(a) Data before Softmax (b) Data after Softmax (¢) Cumulative distribution

Figure 7. Effect of the Softmax Function on Data

e” /T

Softmazx(x) = m

2.7)

W here,
x; = Prediction for instance 1
N = Number of instances

T = Temperature

The flowchart shows that both models learn from the same attributes, Input x. The
predictions of the teacher model are then passed through a Softmax function shown in
Equation 2.7. Softmax converts the predictions into a probability distribution, which
bounds the data between zero and one [38]. To demonstrate how the Softmax function
works, we used the MATLAB code in Listing 2.1. The code generated a uniformly
distributed sample of numbers between 0—100. Then it plots the generated data, as shown
in Figure 7a. The figure shows that the sample size is 50. Next we calculate the Softmax
for the data at temperature 10, 50, and 1 and store them in the variables sf10, sf50 and
sf1, respectively. They are ploted in Figure 7b and their respective cumulative distribution
is shown in Figure 7c. The figures show how the Softmax function works and how
the temperature variable affects the results. The Softmax operation converts the data

into a probability distribution of the predictors — it fills the probability axioms; (1) All

13

probabilities are between zero and one as shown in Figure 7b, and (2) The sum of all the
samples is unity as shown in Figure 7c. The softmax function reduces the variance in the

data, thus making it easier for the smaller student model to learn.

Listing 2.1. Matlab Code Simulating the Softmax Function
dt=round (rand (50,1)%100);

plot(dt,’ linewidth’ ,2)
title (’Data_Distribution’);
ylabel (’Data’)

xlabel (’Instance ’)

grid on;

sfl10=softmax (dt/10);
sf50=softmax (dt/50);
sfl=softmax (dt);

figure ;

plot (sfl ,’—xb’,’linewidth’ ,2);
hold on;

plot (sf10,’—om’,’ linewidth’ ,2);
plot (sf50, ’k’,’ linewidth’ ,2);
title (’Data_after_Softmax’);
ylabel (’Data’);

xlabel (’Instance ’);

legend (°T=1","T=10",°T=50");
grid on;

figure ;

plot (cuamsum(sfl),’ —«b’, linewidth’ ,2);

hold on;

plot (cumsum(sfl10), —om’,’ linewidth’ ,2);

plot (cumsum(sf50),’k’, linewidth’ ,2);

title (’Cumulative_Sum_of_Data_after _Softmax’);
ylabel (° Cumulative ’);

xlabel (’Instance’);

legend ('T=1",’T=10","T=50");

grid on;

14

The Softmax of the Teacher’s predictions is the Soft Labels because the student model
aims to model them. The Softmax of the student model (at the same temperature (t) as the
teacher model) is called the Soft Predictions. The Soft Predictions and the Soft Labels are
inputted to a Loss Function for performance evaluation of the student model. The result

of the loss function is known as the Distillation Loss.

Total loss = (a x distillation loss) + (B x student loss) (2.8)
W here,
atf=1 (2.9)

Our primary aim in knowledge distillation is for the student model to predict the dataset.
Thus, we must compare the student model’s performance with the actual dataset. Hence,
the predictions of the student model are operated on a Softmax with a temperature of
T = 1. The temperature acts as a smoothing factor for the Softmax function where T is
proportional to the smoothness of the result, as Figure 7b and 7c show. The result of the
Softmax operation is known as the Hard Prediction. A loss function compares the hard
prediction with the normalized labels from the dataset. The result is known as the Student
Loss. A weighted sum of the distillation loss and the student loss is the Total loss as
shown in Equation 2.8 and 2.9. The values of o and 3 are proportional to the importance
the student model gives to the Hard labels (i.e., labels from the dataset) and soft labels
(i.e., labels from the teacher model), respectively. The total loss is the fed back to CNN for
further optimization [39].

2.3 Related works

Authors in [40], developed BC detection using a deep learning algorithm. The authors used
mammogram images of 400 women and apply deep learning neural network algorithm to

identify the BC and type of tumor.

Gupta et al. [41] developed a BC prediction model using six supervised learning algo-
rithms. They trained and evaluated each algorithm twice or three times by varying some
hyperparameters. In their results, the deep learning algorithm outperformed the other five
algorithms they used, achieving 98.24% accuracy and 98.0% for precision, recall, and

F1-score.

Anji et al. [42] developed a novel pseudocode for BC detection using a deep neural network

15

(DNN) with support value. The authors employed a histosigmoid-based fuzzy clustering
technique for data segmentation on the histopathology image dataset of over 683 patients.
The performance of their model (DNNS) is compared to the five most widely used ML
algorithms, which are support vector machine (SVM), Naive Bayes, Bi-clustering & Ada
boost, HA-BiRNN, and RCNN) for BC detection. Results proved that DNNS is better
in terms of efficiency, performance, and image quality. Its classification accuracy was
97.21%, a precision of 97.90%, and 97.01% recall.

Gong et.al.[43] developed a self-distilled supervised learning (SDSCL) model to enhance
the predictive performance of a CNN-based computer-aided design for BC. The authors
apply hematoxylin and Eosin (H and E) stain view techniques to some histopathological
images. The decomposed H and E stain views are then fed into the SDSCL algorithm
for learning more intrinsic feature representation. Hematoxylin & Eosin (H and E) stain
views help to identify cells and breast tissues. It also provides more information about the
structures and shape of the cells in a tissue, which help them in improving the classification
performance of SDSCL.

In [44], BC classification using discrete wavelet transformation (DWT) and DL was
developed from the numerical dataset. The authors used DWT techniques for data pre-
processing and then applied a feed-forward neural network (FFNN) for BC classification.
The model obtained a great BC classification accuracy of up to 98.84%. However, one

major drawback of FFNN is time consumption in both development and deployment.

Authors in [45, 46], use Knowledge Distillation to obtain a lightweight model of their
work in computer vision. They show that knowledge distillation can be used to enhance a
CNN model, and can be applied in a situation where there is a limited training dataset or

resource constraints without losing accuracy.

[47] developed breast cancer prediction using ML. The authors compared the performance
of four ML algorithm: SVM, KNN, Random Forest, and logistics regression on different
data set to predict. The results were evaluated using 10-fold cross-validation. They found
out that SVM was more effective than the other classifier and has an accuracy of 97%.
However, the authors mentioned that the variables used were few. Adding more variables

will yield better performance.

In [48], a lightweight deep learning (DL) pipeline for detecting anomalies in mammogram
images was developed. To reduce training time and extensive data processing, the authors
used transfer learning techniques. Transfer learning is a technique that allows an ML

to transfer knowledge obtained while solving one task to a different task. The result is

16

obtained using INbreast public database. To produce lesion area, the authors modified
a pre-trained CNN and for the mammogram classification, they modified a pre-trained
VGG16 model.

Authors in [49] reviewed different Al techniques for the detection of BC. 80 most recent
research papers on BC were reviewed. The authors stated that the most common method
for BC diagnosis was histopathology imaging and only a few used genes. They stated
that for both binary and multi-class classification, CNN and ANN models are the most
often employed models and CNN exhibits outstanding performance for both imaging
and gene expression. In conclusion, the authors mentioned that most of the papers only
consider accuracy while assessing their performance. However, the accuracy matrix does

not distinguish between FP and FN classification.

Zhigiang et al.[50] described various techniques for CNN model compression. They
experimented with knowledge distillation, model pruning, and model quantization. The
performance of the models was compared, where knowledge distillation outperforms the

other two methods as it provides higher accuracy and faster deployment time.

Similarly, authors in [51] employed knowledge distillation to reduce a complex DL model
to a lightweight version while maintaining performance. According to their findings,
KD can effectively improve or compress a CNN model to fit a low computing power
environment or embedded devices without sacrificing accuracy, as other compression
methods do.

DL was designed to examine the key features influencing the diagnosis and treatment
of serious diseases. All the related works in this section used ML techniques in one
way or another to detect BC. However, none consider developing a lightweight model to
reduce deployment time. Moreover, DL is computationally intensive in both training and
deployment. Hence, in this research, we will use KD to distill the knowledge obtained
by training a DL model to a shallow model. The SM model will be used for deployment.
Hence, it achieves DL accuracy while maintaining the lightweight features of the shallow

model.

17

CHAPTER THREE

METHODOLOGY

3.1 Introduction

In this chapter, we discuss the methodology and the algorithms we have used in our
research. The first part of the chapter describes the data set used, and then the last part

discusses how the proposed model is built to achieve the research objectives.

3.2 Dataset Discription

The dataset used in this research was retrieved from Kaggle’s Wisconsin Diagnostic Breast
Cancer (WDBC) [52]. The dataset contains some features of the breast cell nuclei that were
determined from a digital image of a fine needle aspirate (FNA) [52]. In addition, FNA
is a type of biopsy where a thin needle is inserted into the breast tissue of the suspicious
area with the help of an ultrasound monitor. The biopsy tissue will then be checked by
a pathologist under a microscope to find out if there are cancer cells in it. The dataset

contains 569 cases, of which 212 are malignant (cancer) and 357 are benign (non-cancer).

Each of the features has three pieces of information: mean, standard error, and mean of the

three largest values, thus making a total of 30 features per image.

Table 1. Characteristics of the dataset.

label Features

i radius

ii perimeter

iii texture

v area

\Y compactness
vi smoothness

vii concavity

viii symmetry

X concave points
X fractal dimension

Total dimension: 30

18

3.2.1 Data Exploration and Visualization

One of the vital topics in machine learning is data exploration and visualization. It
represents the data in a graphical format, which helps in understanding the data, how the
data looks, and what kind of correlation is held by the features of the data. Overall, it is
easier to grasp the information expressed by the dataset. Figure 8 depicts the count plot

of the class to be predicted. Correlation Coefficient (r) is a way of describing how two

Count of cancer type

Cancer lethality

Figure 8. Class Distribution

features are closely related. The value of r ranges between +1 where positive or negative
values indicate that the least-squares line has a positive or negative relationship and if it
is exactly zero, then it’s said to be uncorrelated. Figure 9 shows a correlation heat map

among the features of benign and malignant classes.

Highly correlated features reduce the performance of some machine learning models. Our
data is valuable to acknowledge as the number of highly correlated features in the breast

cancer dataset is low.

3.2.2 Data-preprocessing

Data preprocessing is a technique in data mining that is used to prepare the raw data
making it useful, efficient, and appropriate for a machine-learning algorithm. WDBC
dataset used has a single column with missing values, a column ’id” which is a unique
identifier for each patient, thus has no impact on the cancer classification, and a column
"diagnosis’, which is the class we expect to predict in our model. The 3 columns were

removed using dataframe.drop() of pandas which left us with 30 features.

Feature Scaling helps algorithms quickly reach the minima of the cost function. Stan-
dardization is a technique of feature scaling that rescale the features to have the same

characteristics of a conventional normal distribution with a mean of zero and a standard de-

19

Correlation between different fearures

1.0
radius_mean -
texture_mean
perimeter_mean -
area_mean -
smoothness_mean Los
compactness_mean (=R UEZEEERER
concavity_mean -0/ N 0.72 0.69 (71 0.88
concave points_mean -
symmetry_mean
fractal_dimension_mean 06
radius_se -
texture_se - X
perimetar_seﬁ 066N N2Y 0.31 0.04 [XHA 0.22
area_se 0. XN 0.25 0.46 10:620X:] 0.22 -0.09 [0.11 [(KFS 04
smoothness_se -SUPRINIT 33 0.140.0990.028 0.19 0.4 0.16 0.4 0.150.075
compactness_se P INECRPLN P! oazWo.ag 0.42 10,56 0.36 0.23 0.42 0.28 0.34
PR 0,10 014 023 025|087 01] 0.44 0.34 0.45 0.33 019 0.36 0.27 0.27 [(%]
concave points_se JUELIBINESREY ALY ()-8 0.68 [PAVELIVEERLS PR L P IEEY 0.74 0.77
0.2

BYLLEGYETE -0.10.00910.0820.072 0.2 0.23 0.18 0.0950:45 0.35 0.24 0.41 0.27 0.13 0.41 0.39 0.31 0.31

LCESICTIEIEILIEEE 0.0430.0540.00550.02 0.28 [0:51 0.45 0.26 0.33 PENPLNPZRBENRE] 0.8 0.73 Uy
radius_worst - 0.97 [UEE] 0.97 0.96 (R 118 0.69 0.83 (USR] M—D 381 0.7 0.76 0.2 0.19 0.36 -0.13-0.03

texture_worst SUES 0.3 0.290.0360.25 0.3 0.290.091-0.0510.19 0.41 0.2 0.2 0.14 0.1 0.087-0.070.00320.36

perimeter_worst - 0.97 (V&L 0.97 0.96 [UPZR (11 0.73 0.86 (Ub2IRE3 0.1 (VPR -0.220.26 0.23 [0:39] -0.1 -0.00XER 0.37
0.0
area_worst - 0.94 [UEZY 0.94 0.96 EUPARIAIE mo.ﬂl 0.18 -0.23 ey 0.2 0.19 0.34 -0.11-0.02 J¢X:E:F 0.35 VKT

smoothness_worst -JUSENNFE BN 120.57 0.45 0.45 0.43 0.5 0.14-0.0740.13 0.13 0.31 0.23 0.17 0.22-0.0130.17 0.22 0.23 0.24 0.21

[EIRERUEERWVISE 0.41 0.28 0.46 0.39 0.47 (EYANEF 067 0.47 0.46 0.29-C .28-0 0.48 0.45 0.06 0.39 0.48 0.36 0.53 0.44 0.57

concavity_worst JUCEREUERNLTRIE S BIXKE]Y 0.82 0.88 0.75 JUEENVE L0 .39-0 0.66 0.55 0.037 0.38 0.57 0.37 0.62 0.54 0.52 [X:}]
concave points_worst -0.74 JUER 0.77 0.72 HULE 0.82 0.86 0.91 [UUENVEER IR 55054 -0.1 0.48 0.44 BOIGN -0.03 DZZU £ 0.82 0.75 U--1 0.8 0.86 -0.2

BLLEGAYIEE 0.16 0.11 0.19 0.14 0.39 0,51 0.41 03&0.3300 30.110.074-0.11/0.28 0.2 0.14 0.39 0.11 0.24 0.23 0.27 0.21 |0.49 10611 0.53 0.5

MESEIC ML ETLENEIEE 00710.12 0.0510.00370.5 FX:R0.51 0.37 0.44 [FAA 0.05-0.0460.0850.018 0.1 |58 0.44 0.31 0.078[0:5810.093 0.22 0.14 0.08 0N . X 5
E B E B E E E E E E 2 £ 5 § 8§ £ 2 5 8 3 3 3]
ER § § 2 £ ¢z 8 8 § E £ 58 8 E § 5% & § £ 2 2 % ¢
B ¥ E £ £ 8 8 ¢ ¢ o § 8 8 ¢ E E B § B £ £ 85 2 g B
2 g g 8 8 ¢ & E 5 g "= ® § 8 5 ¢ E E
b 55 0 8 T3 ¢ g 3 s EE g 7S
o 5 B g S 5 B
g g £ g

Figure 9. Correlation matrix

viation of one. For this work, we standardized the features using the Z-score normalization

equation below :

Xscaled = n=H

o

3.1)

Where, z;is the feature to be standardized, y is the mean, and o is the standard deviation of

the distribution. This was implemented using StandardScaler().fit_transform() of sklearn.

3.2.3 Model training and validation

Model training is a process of providing a clean and sufficient dataset to the machine
learning algorithm to extract features, discover and learn patterns from the features involved.
Validation testing is carried out immediately after training the model to evaluate the
performance of the prediction model against the ground truth data. K-Fold Cross Validation

is a model evaluation technique that divides the input dataset into k subset of data referred

20

to as folds where a single subset is used for testing or validation and the remaining (k-1) is
allocated to training the model. This process will be repeated k times, in each iteration
new subset of data that was not assigned in the past will be used for the testing phase (see

figure 10.

K-parts

suopjesa3i

Figure 10. k-Fold cross-validation

Cross Validation techniques are used to flag problems like overfitting or input-output
selection bias in the dataset. In our work, the dataset is randomly divided into ten equal
parts using 10-fold cross-validation, we take out 1 unique part for validation testing and
the remaining 9 parts are added together to represent the training model dataset. We
fit our model with the training dataset and evaluate the performance with the validation
dataset. This process is repeated ten times where a different subset of the dataset is used
for validation in each iteration. The final evaluation score is the mean of the evaluation

score from the ten iterations.

3.3 Proposed Model

In this research, we used a Convolutional Neural Network (CNN) model to detect BC.
This research aims to develop a lightweight model for detecting breast cancer using
the knowledge distillation technique. In this work, we have used Keras sequential API

(Tensorflow backend). Figure 11 shows the experiment carried out.

A deep CNN model — the teacher model (TM) is defined with over 863 thousand total
parameters of which 862 thousand are trainable parameters, the summary is presented in
Table 2. Before building the model, we used the hyper-band grid search to identify the best
parameters, such as the filter sizes, number of hidden layers, learning rate, and dropout
units. The TM has one input layer, three (3) hidden layers (two of which are convolutional

layers (Conv1D) and a dense layer), and an output layer.

21

BC dataset
Data preprocessing

(Define teacher model as TM)

Train TM

get TM loss

saturation not reached

saturation reached

(Model Evaluation TM as ETM)

y

(Define student model as SM)

J

(Make a copy of SM as SM-Scratch)

.

Train SM-scratch

get SM-scratch loss

saturation not reached

> Train SM

(Distillation Loss = student predictions - soft teacher predictions)

l

(loss=alpha*student_loss+(1-alpha)*distillation_loss) saturation reached

as loss reach saturation? (Model Evaluation SM-scratch as ESM-scratch)

saturation not reached

saturation reached

(' Model Evaluation M as Esm)

T

(compare, ETM, ESM, and ESM-scracth)

!

Figure 11. Experiment Carried Out

Both convolutional layers use a kernel size of 2 and a ReLLU activation function. The first
convolutional layer has 64 filters. It takes the feature vector with a dimension of (30x 1) as
input and transforms the sample into a (29 x64) shape vector. The second convolutional
layer has 448 filters. It takes the output of the first convolutional layer, processes it, and

produces a 28 x448 output vector.

For the convolutional operation, the kernel slides through the input vector and weigh each
feature to extract meaningful information (feature maps). This is done by computing the
dot product of the filter matrix sliding through some portion of the feature vector; an

illustration is shown in Figure 12. We used batch normalization between each hidden

22

Table 2. Summary of teacher model

Layer (type) Output Shape Param #
convld_1 (ConvlD) (None, 29, 64) 192
batch_normalization_1 (Batch (None, 29, 64) 256
dropout_1 (Dropout) (None, 29, 64) 0
convld_2 (ConvlD) (None, 28, 448) 57,792
batch_normalization_2 (Batch (None, 28, 448) 1,792
dropout_2 (Dropout) (None, 28, 448) 0
flatten_1 (Flatten) (None, 12544) 0
dense_1 (Dense) (None, 64) 802,880
dropout_3 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 2) 130

Total params: 863,042
Trainable params: 862,018
Non-trainable params: 1,024

layer to improve accuracy. The third in the table is a dropout which minimizes over-fitting
or enhances generalization. Dropout is a process where some portions of neurons in
the hidden layer are randomly ignored by setting their weights to zero, which drives the
network to learn features differently. Furthermore, it forces the CNN to learn robust
features that do not rely on the presence of other neurons. We used it to randomly turn off

10 percent of the neurons during the training phase.

[IT0]1 J0 J1 | Future Vector

0 [1] Filter/kemnel

[0] 01 Future map
Figure 12. Conv1D Operation

Flatten layer involves transforming the last feature map (28x448) into one dimension
with 12,544 data. Afterward, two dense layers were employed using ReLLU and sigmoid
activation functions. Hence, the TM has over 863 thousand total parameters, of which 862
thousand are trainable. The preprocessed BC dataset discussed in 3.2 was used to train the
teacher model until full convergence, and the final predictions will be used to train the SM

later.

Figure 13 presented the lightweight architecture of a shallow CNN model called the
Student model (SM). The SM has fewer parameters than the TM. It consists of 2 conv1D,
a filter of 4 & 8 with a kernel size of 2, summary is presented in Table 3. SM will be

23

B B
a a
t t
C C
h h E
N N |
o o a
© . g t | __@—outputo
3 m m t
© | | e
@) i i n ——@——output 1
z z i
a a n
t t| | g
i i
o o
n n
1 2
Figure 13. Lightweight Architecture of the Student Model
Table 3. Summary of student model
Layer(type) OutputShape Param#
Convld_1(ConvlD) (None,29.,4) 12
batch_normalization_1(Batc (None,29,4) 16
dropout_1(Dropout) (None,29,4) 0
convld_2(ConvlD) (None,28,8) 72
batch_normalization_2(Batc (None,28,8) 32
dropout_2(Dropout) (None,28,8) 0
flatten_1(Flatten) (None,224) 0
dense_29(Dense) (None,2) 450

Total params:582
Trainable params:558
Non-trainable params:24

trained in coordination with the fully trained TM. SM was trained in coordination with the
fully trained TM. The Knowledge is distilled from large, complex TM to SM using the
Distillation loss (D;,ss) Equation below 3.2 :

Dioss = Orrp(qr, 4s) (3.2)
W here,

Nirp = Kull — Libler divergence loss

q: = softer logit of T M predictions

qs = softer logit of SM predictions

24

Dy,ss 1s the minimize squared difference between the TM and SM softer logits. We
have used keras’s Kullback-Liebler (KL) divergence loss function to obtain the squared
differences. The KD uses a softmax function to soften the logits of both the TM and the
SM. A temperature parameter (T) is added to the softmax function to control the softness of
the probability distribution of the logits. The soft logits provides us with more information
in each training case than the hard target because it has strong entropy. Also, the variance

in the gradient between training cases is less.

The SM’s performance was evaluated using Equation 3.4 by combining two loss functions.
One loss function is the D, and the second loss function is the student loss (Student;,ss).
Student;,ss s the comparison between the ground truth and the SM prediction as presented

in Equation 3.3. Figure 14 summarized the TM and SM learning process.

Studentioss = Hpce(p, Zs) (3.3)
W here,

Dpcr = Binary cross enropy loss

p = ground truth

Zs = SM predictions

Hxp = axNpoe(p, Zs) + (1 — a) * Hxro(a:, qs) (3.4)
W here,

HpcE(p, 2s) = Stoss

9xLp(Gt; gs) = Dioss

a = hyperparameter to weigh the importance of Siyss and Dy

25

— Training Data }

Teacher Model e il Student Model
o000

1 p(Ground Truth) |—

Figure 14. Teacher-Student learning process

26

CHAPTER FOUR

RESULTS and DISCUSSION

4.1 Introduction

In this chapter, we present the result and discussion of our proposed system. First, we
present the performance comparison between the TM and the SM, and then we present
the performance comparison of our proposed model and some prior related approaches at
last. The implemented results were carried out using a python programming language in
Kaggle’s notebook, imploring Keras, Tensorflow, and sci-kit-learn frameworks. Kaggle
is a cloud service provider that offers free memory and computational power to run and
process deep learning programs. It has an intel Xeon 2.2 processor with 16.4 GB RAM
and 220GB disk space.

4.2 Experimental Result

4.2.1 Comparison of TM and SM Results

In this section, we used Kaggle’s Wisconsin Diagnostic Breast Cancer (WDBC) dataset
[52]. The dataset contains some features of the breast cell nuclei from digital images of a
Fine Needle Aspirate (FNA) [52]. It has 569 cases; 212 are malignant (cancer), and 357

are benign (non-cancer).

We evaluated the performance of the TM and SM CNN classifier using 10-fold cross-
validation discussed in subsection 3.2.3. The average classification accuracy of SM was
found to be 98.07 +1.99% and 97.54 £1.95% for the TM. Table 4 shows the model
evaluation metrics of our model, it follows that a larger model can be made lighter with

less deployment time and without compromising accuracy.

Table 4. Model Evaluation Metric

Average Accuracy Parameters Hidden Layers Running Time

™ 97.54% 863042 3 130 sec
SM 98.07% 582 2 70 sec

In addition, we plotted the accuracy and loss curves for training and validation of the TM

27

and the SM using the model evaluation score of the last iteration. The accuracy curves
show that more training implies better accuracy. Given that we repeat our training and
validation 30 times (30 epochs), both training and validation accuracy become stable at

greater accuracy than 97%. Figure 15 - 17 shows the accuracy and loss plot of SM and

TM.

Student Model Accuracy

Student Model Loss

1.0 4
254 — Train
~——— Validation
0.9
2.0 4
0.8
g 151
g g
207 1.0
0.6 1 0.5 1
—— Train
054 —— Validation 0.0 4
0 5 10 15 20 25 30 ' 5 10 15 20 25 30
Epoch Epoch
(a) Student Model Accuracy (b) Student Model Loss
Figure 15. SM Accuracy and Loss
Teacher Model Accuracy Teacher Model Loss
1.00 1 —— Train
0.98 - /\/\/_/\/2?? 031 —— Validation
0.96 0.4
. 094
£ 0.92 4031
3 S
< 0.90 024
0.88
J 0.1
086 —— Train
0.84 4 —— Validation
r - - . - - - 0.0+ - . - - - -
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch
(a) Teacher Model Accuracy (b) Teacher Model Loss
Figure 16. TM Accuracy and Loss
Model Accuracy Model Loss
1.0 2,54 — TM_train
—— TM_val
] —— KD_train
09 2.0 — KD_val
508 154
© %]
g k
b 0.7 1.04
—— Tm_train
0.6 1 —— Tm_val 0.5
—— KD_train
0.5 —— KD_val 0.01
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

(a) Teacher-Student Model Accuracy

(b) Teacher-Student Model Loss

Figure 17. TM-SM Accuracy and Loss

28

4.2.2 Comparison of SM Results with Prior Approaches

This section compares our work with the works in the literature. In addition to the WDBC
dataset used in Section 4.2.1, we tested the proposed system with two more datasets:
Breast Cancer Diagnosis (BCD) [53] and “Primary Breast Cancer vs Normal Breast
Tissue (PBCT)” [54]. Adding these datasets allows us to determine the reliability of the
system’s performance. Most of the existing works have not used cross-validation for model
evaluation. Thus, we present student model-2 (SM2) to have a fair comparison — it is
SM without the cross-validation technique. We use 85% of our preprocessed dataset for
training and 15% for validation. In a separate set of experiments, we used KMeansSmote
oversampling on all our datasets to have balanced datasets. Table 5 shows the nomenclature

used for all the experiments in this section.

Table 5. Nomenclature for Expriments Carried out

Experiments Description

SM2-WDBC WDBC Dataset

SM2-WDBC-O WDBC Dataset with oversampling
SM2-BCD BCD Dataset

M2-BCD-O BCD Dataset with oversampling
SM2-PBCT PBCT Dataset

SM2-PBCT-O PBCT Dataset with oversampling

We evaluated the performance using different performance metrics explained in Equations
4.1 — 4.3 in addition to the Area Under the ROC Curve (AUC). A Receiver Operating
Characteristics (ROC) curve is a graph that shows a model’s classification performance
at various classification thresholds. Therefore, an AUC reflects a classifier’s reliability

because it provides an aggregate performance measure across all possible classification
thresholds.

29

TP+ TN
A - 41
Y = TP I TN+ FN + FP “.1

TP

Precision = ——— 4.2
recision TP+ FP 4.2)
TP
= ——— 4.
Reca TPTFN 4.3)

W here,
True positive (TP)= number of cancer that are correctly predicted as cancer
False Positive (FP) = number of not-cancer that are predicted as cancer
True Negative (TN) = number of not-cancer that are classified as not-cancer.

False Negative (FN) = number of cancer that are predicted as not-cancer.

Table 6. Performance comparison

Sn Source Algorithm Accuracy(%) Precision(%) Recall(%) AUC
1 SM2-WDBC KD-CNN 98.8 100 97.0 0.98
2 SM2-BCD KD-CNN 984 100 97.0 0.98
3 SM2-PBCT KD-CNN 100.0 100 100 1.0
4 SM2-WDBC-O KD-CNN 99.1 100 98.2 0.99
5 SM2-BCD-O KD-CNN 99.3 100 99.0 0.99
6 SM2-PBCT-O KD-CNN 973 100 95.0 0.97
7 [44] DWT-ANN 98.8 98.3 98.3 -
SVM 97.2 0.99 0.95 0.97
RF 96.5 0.97 0.92 0.96
8 [55] LR 95.8 0.98 0.95 0.95
DT 95.1 0.90 0.92 0.95
KNN 93.7 0.97 0.95 0.95
9 [56] ANN 96.0 - - -

Table 6 compares the performance of some BC detection techniques in the literature
with our proposed model. The results SM2-WDBC, SM2-BCD, and SM2-PBCT are
from the SM2 model trained with WDBC, BDC, and PBCT datasets, respectively. The
results show that SM2-PBCT is the best. However the dataset is highly imbalanced; only
20 of the 133 records are benign. Thus, we used oversampling to balance the datasets;
SM2-WDBC-0O, SM2-BCD-0O, and SM2-PBCT-O. The results show that PBCT dataset is
affected by accuracy paradox while WDBC and BCD shows more better performance after
oversampling. Overall, SM2 is a good model as its tested with three different datasets and

the accuracy ranges between 97-100%.

30

Masa et. al [44] used Discrete Wavelength Transformation - Artificial Neural Network
(DWT-ANN) on BCD dataset. The authors used Discrete Wavelength Transformation
techniques in their data preprocessing to ensure accurate results. It has similar perfor-
mance with SM2-BCD. However, it is outperformed by SM2-BCD-O. This shows that

oversampling gives better performance.

Naji et. al [55], and Hajiabadi et. al [56] trained and validated their model with WDBC
dataset. In [55], SVM has the best performance, but it is marginally outperformed by both
SM2-WDBC and SM2-WDBC-O. Similarly, [56] did not perform well. This shows that
the light weight CNN had indeed learn from the complex ANN model (i.e., the TM).

31

CHAPTER FIVE

SUMMARY, CONCLUSION AND FUTURE WORK

5.1 Introduction

In this thesis, we proposed a CNN KD method for the lightweight detection of BC. This
chapter concludes the thesis by summarizing our work, the method we have used to combat
the problems, and the findings. Finally, we end the chapter by highlighting possible open

research directions in this field.

5.2 Summary

A convolutional neural network is among the most effective algorithms used for finding
patterns in data to recognize classes, objects, and categories. However, CNN architecture is
large as it requires computing power (such as a GPU processor or an FPGA), among others.
In a circumstance where real-time classification or recognition tasks need to be deployed
in a resource constraint environment, lightweight versions of the CNN architectures
that can be used on limited hardware are required. This work presented a lightweight
CNN- Knowledge Distillation technique for the detection of BC, which can be used for
embedded systems implementation. Knowledge Distillation is a model-agnostic technique
that compresses and transfers knowledge from a computationally expensive deep neural
network (TM) to a single shallow neural work (SM) with better inference efficiency.

We have sourced available datasets from an online source ([52], [53] and [54]), prepro-
cessed them by cleaning, dropping, and applying Z-score normalization to bring the values
of different features to a common scale. After the preprocessing, the TM architecture
was built and trained with one input layer, three (3) hidden layers (two of which are
convolutional layers(ConvlD) and a dense layer), and an output layer. To improve the
performance of our TM, we used a grid search technique called hyper-band to identify the
best parameters, such as the number of filters, number of hidden layers, learning rate, and
dropout units. We applied the values that give the best performance to train and evaluate

the teacher model.

The shallow SM architecture is built with only two convolutional (conv1D) hidden layers

32

and a few filters. The total trainable parameters used by the SM [52] were only 0.06%
of the training parameters used by the TM model. We applied a softmax function to the
predictions of TM and obtained smooth and softer labels, which we used along with soft
predictions of the SM to obtain the distillation loss using a Kullback—Leibler divergence
loss function. In addition, we also obtained the hard prediction of the SM using the ground
truth data. A weighted sum of the distillation loss and the student loss is then computed to
evaluate the student model predictions. We found that our proposed system provides an
average accuracy of 98.07£1.99% and reduced the training time of TM by up to 46.2%.

Moreover, we tested the proposed system with two more datasets: Breast Cancer Diagnosis
(BCD) [53] and “Primary Breast Cancer vs Normal Breast Tissue (PBCT)” [54]. Adding
these datasets allows us to determine the reliability of the system’s performance. In [bed]
and [54], the SM used 0.12% and 0.11% trainable parameters of the TM. SM outperforms
TM in both cases (see the performance of the SM in Table6).

5.3 Conclusion

The main aim of this work is to develop a lightweight CNN model that can mimic the
performance of a deep neural network and accurately classify breast cancer data. The
advantages of the proposed model include; obtaining a highly accurate model with a
reduced running time, requiring few trainable parameters, and easy deployment on low-
power computing devices (such as laptops, mobile phones, and tablets). Hence, this

research can help pave the way for telemedicine in oncology.

5.4 Future Works

For future work, we propose deploying this model on the low computing power device for

use in practice.

33

References

[1]

[9]

[10]

[11]

[12]
[13]

Ahmed Mohammed and N Arunachalam. “Imbalanced Machine Learning Based
Techniques for Breast Cancer Detection”. In: 2021 International Conference on
System, Computation, Automation and Networking (ICSCAN). IEEE. 2021, pp. 1-4.

Momna Hejmadi. Introduction to cancer biology. Bookboon, 2014.

About Breast Cancer. 2022. URL: https://www.cancer.org/content/
dam/CRC/PDF/Public/8577.00.pdf.

World Health Ogranization. Breast Cancer Statistics. 2021. URL: https://www.

who.int/news—-room/fact—-sheets/detail/breast—-cancer.

AKTH Kano Imam Mohammed Ibrahim; Consultant Pathologist Dept. Of
Histopathology. Pathology of breast.

Ganesh N Sharma et al. “Various types and management of breast cancer: an
overview”. In: Journal of advanced pharmaceutical technology & research 1.2
(2010), p. 109.

Fredika M Robertson et al. “Inflammatory breast cancer: the disease, the biology,
the treatment”. In: CA: a cancer journal for clinicians 60.6 (2010), pp. 351-375.

Xiaomin Zhou et al. “A comprehensive review for breast histopathology image
analysis using classical and deep neural networks”. In: IEEE Access 8 (2020),
pp. 90931-90956.

Yash Amethiya et al. “Comparative analysis of breast cancer detection using machine
learning and biosensors”. In: Intelligent Medicine 2.02 (2022), pp. 69-81.

Seung Seog Han et al. “Augmented intelligence dermatology: deep neural networks
empower medical professionals in diagnosing skin cancer and predicting treatment
options for 134 skin disorders”. In: Journal of Investigative Dermatology 140.9
(2020), pp. 1753-1761.

Yongwei Wang et al. “Ssd-kd: A self-supervised diverse knowledge distillation
method for lightweight skin lesion classification using dermoscopic images”. In:
Medical Image Analysis 84 (2023), p. 102693.

2022. URL: https://neptune.ai/blog/knowledge—-distillation.

Md Islam et al. “Breast cancer prediction: a comparative study using machine

learning techniques”. In: SN Computer Science 1.5 (2020), pp. 1-14.

34

https://www.cancer.org/content/dam/CRC/PDF/Public/8577.00.pdf
https://www.cancer.org/content/dam/CRC/PDF/Public/8577.00.pdf
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://www.who.int/news-room/fact-sheets/detail/breast-cancer
https://neptune.ai/blog/knowledge-distillation

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

2022. URL: https ://www . cancer . net /cancer - types /breast -

cancer/statistics.

Zohre Momenimovahed and Hamid Salehiniya. “Epidemiological characteristics
of and risk factors for breast cancer in the world”. In: Breast Cancer: Targets and
Therapy 11 (2019), p. 151.

Carol E DeSantis et al. “Breast cancer statistics, 2015: Convergence of incidence
rates between black and white women”. In: CA: a cancer journal for clinicians 66.1
(2016), pp. 31-42.

Arthur L Samuel. “Machine learning”. In: The Technology Review 62.1 (1959),
pp- 42-45.

2021. URL: https://www.techtarget .com/searchenterpriseai/

definition/machine-learning—ML.

expert.ai. 2022. URL: https : / / www . expert . ai /blog/machine -

learning-definition/.

Péadraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Supervised learning”.

In: Machine learning techniques for multimedia. Springer, 2008, pp. 21-49.

Rebala Gopinath, Ravi Ajay, and Churiwala Sanjay. An Introduction to machine

learning. Springer Nature, Switzerland, 2019.

Sinno Jialin Pan. “Transfer Learning.” In: Data Classification: Algorithms and
Applications 21 (2014).

Tan pang-ning, Michael Steinbach, and kumar vipin kumar. Introduction to data

mining. Pearson Education, Inc, 2006.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
Pearson Education India, 2016.

Allan David Gordon. Classification. CRC Press, 1999.

Simon Haykin and N Network. “A comprehensive foundation”. In: Neural networks
2.2004 (2004), p. 41.

Imad A Basheer and Maha Hajmeer. “Artificial neural networks: fundamentals,
computing, design, and application”. In: Journal of microbiological methods 43.1
(2000), pp. 3-31.

Kenneth J Hunt et al. “Neural networks for control systems—a survey”. In: Auto-
matica 28.6 (1992), pp. 1083-1112.

Natalie Stephenson et al. “Survey of machine learning techniques in drug discovery”.
In: Current drug metabolism 20.3 (2019), pp. 185-193.

35

https://www.cancer.net/cancer-types/breast-cancer/statistics
https://www.cancer.net/cancer-types/breast-cancer/statistics
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.expert.ai/blog/machine-learning-definition/
https://www.expert.ai/blog/machine-learning-definition/

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE

transactions on neural networks and learning systems 32.1 (2020), pp. 4-24.

Aggarwal Charu-C. Neural Network and deep learning. Springer International
Publishing AG, part of Springer Nature 2018, 2018.

2019. URL: Available%$20at : $20https : / /towardsdatascience.

com/shallow—neural-networks.

Muhammad Uzair and Noreen Jamil. “Effects of hidden layers on the efficiency of
neural networks”. In: 2020 IEEE 23rd international multitopic conference (INMIC).
IEEE. 2020, pp. 1-6.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a
convolutional neural network™. In: 2017 international conference on engineering
and technology (ICET). Ieee. 2017, pp. 1-6.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. “Distilling the knowledge in a
neural network™. In: arXiv preprint arXiv:1503.02531 2.7 (2015).

Jang Hyun Cho and Bharath Hariharan. “On the efficacy of knowledge distillation”.
In: Proceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 4794-4802.

Knowledge Distillation on NNI - Neural Network Intelligence. 2022. URL: https:
/ /nni . readthedocs.io/en/stable/sharings/kd_example.
html.

Khandelwal Renu. Knowledge Distillation in a Deep Neural Network. 2021.
URL: https : / /medium . com / analytics — vidhya / knowledge —
distillation-in-a-deep—-neural-network-c9dd59aff89b.

Rikiya Yamashita et al. “Convolutional neural networks: an overview and application
in radiology”. In: Insights into Imaging 9.4 (Aug. 2018), pp. 611-629. 1SSN: 1869-
4101.DOI: 10.1007/s13244-018-0639-9. URL: https://doi.org/
10.1007/s13244-018-0639-09.

S Prasath Alias Surendhar and RIMTP Vasuki. “Breast cancers detection using deep
learning algorithm”. In: Materials Today: Proceedings (2021).

Puja Gupta and Shruti Garg. “Breast cancer prediction using varying parameters of

machine learning models”. In: Procedia Computer Science 171 (2020), pp. 593-601.

Anji Reddy Vaka, Badal Soni, and Sudheer Reddy. “Breast cancer detection by
leveraging Machine Learning”. In: ICT Express 6.4 (2020), pp. 320-324.

Ronglin Gong et al. “Self-Distilled Supervised Contrastive Learning for diagnosis
of breast cancers with histopathological images”. In: Computers in Biology and
Medicine (2022), p. 105641.

36

Available%20at:%20https://towardsdatascience.com/shallow-neural-networks
Available%20at:%20https://towardsdatascience.com/shallow-neural-networks
https://nni.readthedocs.io/en/stable/sharings/kd_example.html
https://nni.readthedocs.io/en/stable/sharings/kd_example.html
https://nni.readthedocs.io/en/stable/sharings/kd_example.html
https://medium.com/analytics-vidhya/knowledge-distillation-in-a-deep-neural-network-c9dd59aff89b
https://medium.com/analytics-vidhya/knowledge-distillation-in-a-deep-neural-network-c9dd59aff89b
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9

[44] Emmanuel Masa-Ibi and Rajesh Prasad. “Breast Cancer Classification Using Dis-
crete Wavelet Transformation and Deep Learning”. In: Recent Advances in Computer

Science and Communications (Formerly: Recent Patents on Computer Science) 14.7
(2021), pp. 2103-2112.

[45] Junho Yim et al. “A gift from knowledge distillation: Fast optimization, network
minimization and transfer learning”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017, pp. 4133-4141.

[46] Sajjad Abbasi et al. “Modeling teacher-student techniques in deep neural networks
for knowledge distillation”. In: 2020 International Conference on Machine Vision
and Image Processing (MVIP). IEEE. 2020, pp. 1-6.

[47] Ramik Rawal. “Breast cancer prediction using machine learning”. In: Journal of
Emerging Technologies and Innovative Research (JETIR) 13.24 (2020), p. 7.

[48] Hugo S Oliveira, Jodo F Teixeira, and Hélder P Oliveira. “Lightweight deep learning
pipeline for detection, segmentation and classification of breast cancer anomalies”.
In: International Conference on Image Analysis and Processing. Springer. 2019,
pp. 707-715.

[49] Ali Bou Nassif et al. “Breast cancer detection using artificial intelligence tech-
niques: A systematic literature review”. In: Artificial Intelligence in Medicine (2022),
p. 102276.

[50] Chen Xi, Xing Zhigiang, and Cheng Yuyang. “Introduction to Model Compres-
sion Knowledge Distillation”. In: 2021 6th International Conference on Intelligent
Computing and Signal Processing (ICSP). IEEE. 2021, pp. 1464—1467.

[51] Hao Ni, Jie Shen, and Chong Yuan. “Enhanced knowledge distillation for face
recognition”. In: 2019 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communi-
cations, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE. 2019, pp. 1441-1444.

[52] 2022. URL: https://www.kaggle.com/datasets/uciml /breast -

cancer—-wisconsin—data.

[53] UCI. Breast Cancer Diagnosis. 2022. URL: https://www . kaggle . com/
datasets/thedevastator/uncovering-breast-cancer-diagnosis-

with-wisconsi.

[54] N Matamala et al. Primary breast cancer vs Normal breast tissue. 2015. URL:
https://www.kaggle.com/datasets/rhostam/primary-breast-

cancer—-vs—normal-breast—-tissue.

37

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/thedevastator/uncovering-breast-cancer-diagnosis-with-wisconsi
https://www.kaggle.com/datasets/thedevastator/uncovering-breast-cancer-diagnosis-with-wisconsi
https://www.kaggle.com/datasets/thedevastator/uncovering-breast-cancer-diagnosis-with-wisconsi
https://www.kaggle.com/datasets/rhostam/primary-breast-cancer-vs-normal-breast-tissue
https://www.kaggle.com/datasets/rhostam/primary-breast-cancer-vs-normal-breast-tissue

[55] Mohammed Amine Naji et al. “Machine learning algorithms for breast cancer

prediction and diagnosis”. In: Procedia Computer Science 191 (2021), pp. 487—-492.

[56] Hamideh Hajiabadi et al. “Combination of loss functions for robust breast cancer
prediction”. In: Computers & Electrical Engineering 84 (2020), p. 106624.

38

Appendix 1
Implementation Code

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file 1/0 (e.g. pd.read_csv)
import matplotlib.pyplot as plt

from matplotlib import cm

import seaborn as sns

import os

print(os. listdir (" ../ input"))

Jmatplotlib inline

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras import Sequential

from tensorflow.keras.layers import ConviD, MaxPoollD, Flatten ,Dense, Dro
from tensorflow.keras.optimizers import Adam

from tensorflow.keras import utils

#Import models from scikit learn module:

from sklearn import datasets , metrics

from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold

from sklearn.metrics import confusion_matrix

from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.preprocessing import StandardScaler

from sklearn.feature_selection import VarianceThreshold

#load dataset
data = pd.read_csv("../input/breast—-cancer—wisconsin—data/data.csv" hea

data . head ()

Y=data.diagnosis

39

print (Y. value_counts ())

plt.title (’Count_of_cancer_type’)
sns.countplot(data[’diagnosis’])
plt.ylabel (’Count’)

plt.show ()

Y=Y.map({’B’:0, M’ :1})

Y = utils.to_categorical (Y, num_classes=2)

data.isnull ().any (). describe ()
data.info ()

#drop id and un named 32 colums from the features
data.drop ([*id’ , ’Unnamed: 32’],axis=1,inplace=True)
data.describe ()

correlation=data.corr ()

Getting the Upper Triangle of the co-relation matrix

matrix = np.triu(correlation)

plt.figure (figsize=(40,16))

sns . heatmap(correlation , vmax=1, square=True, annot=True ,cmap="copper’ , 1
plt.title (’Correlation_between_different_fearures’)
plt.savefig("cor.svg")

for i in (data.columns[1:6]):
plt.subplot(1,2,1)
data[1i][data[’diagnosis’]=="B’]. plot.hist(alpha=0.5,title=1,color="’
data[i][data[’ diagnosis’]=="M’].plot.hist(alpha=0.5,color="red’)
plt.legend (['B’,’M’],loc="upper_right’)
#plt.grid(visible=True)

plt.subplot(1,2,2)
sns . boxplot(x="diagnosis", y=i, data=data)
plt.show ()

#data.drop(’ diagnosis ',axis=1,inplace=True)
X=data.iloc [:,1:]

40

del data

scaler=StandardScaler ()
data = scaler.fit_transform (data)
data=data.reshape (569,30,1)

#construct distiller class
class Distiller (keras.Model):
def __init__ (self, student, teacher):
super (Distiller , self).__init__ ()
self.teacher = teacher

self.student = student

def compile(
self ,
optimizer ,
metrics ,
student_loss_fn ,
distillation_loss_fn ,
alpha=0.1,
temperature =3,

i

Configure the distiller.

Args:
optimizer: Keras optimizer for the student weights
metrics: Keras metrics for evaluation
student_loss_fn: Loss function of difference between studen
predictions and ground—truth
distillation_loss_fn: Loss function of difference between s
student predictions and soft teacher predictions
alpha: weight to student_loss_fn and I-alpha to distillatior
temperature: Temperature for softening probability distribu
Larger temperature gives softer distributions .
super (Distiller , self).compile(optimizer=optimizer , metrics=me!
self.student_loss_fn = student_loss_fn

self.distillation_loss_fn = distillation_loss_fn

41

def

self .alpha = alpha

self.temperature = temperature

train_step (self , data):
Unpack data
X, y = data

Forward pass of teacher

teacher_predictions = self.teacher(x, training=False)

with tf.GradientTape () as tape:
Forward pass of student

student_predictions = self.student(x, training=True)

Compute losses
student_loss = self.student_loss_fn(y, student_predictions)
distillation_loss = self.distillation_loss_fn(
tf .nn.softmax (teacher_predictions / self.temperature, a
tf .nn.softmax (student_predictions / self.temperature, a

)

loss = self.alpha % student_loss + (1 — self.alpha) % disti

Compute gradients
trainable_vars = self.student.trainable_variables

gradients = tape.gradient(loss, trainable_vars)

Update weights

self.optimizer.apply_gradients (zip(gradients , trainable_vars))

Update the metrics configured in ‘compile() *.

self.compiled_metrics.update_state(y, student_predictions)

Return a dict of performance

results = {m.name: m.result () for m in self.metrics}
results . update (

{"student_loss": student_loss , "distillation_loss": distillz:

)

return results

42

def test_step(self, data):
Unpack the data
X, y = data

Compute predictions

y_prediction = self.student(x, training=False)

Calculate the loss

student_loss = self.student_loss_fn(y, y_prediction)

Update the metrics.

self.compiled_metrics.update_state(y, y_prediction)

Return a dict of performance
results = {m.name: m.result() for m in self.metrics}
results .update ({ "student_loss": student_loss })

return results

def call(self, x):

return seclf.student(x)

Define the K-fold Cross Validator

Define per—fold score containers <—— these are new
import time

T_acc_per_fold = []

T_loss_per_fold = []

TM_time =[]

S_acc_per_fold = []
S_loss_per_fold = []
SM_time =[]

TS_acc_per_fold = []

TS _loss_per_fold = []

KD_time =[]

num_folds=10

epoch=30

kfold = KFold(n_splits=num_folds, shuffle=True)

43

K-fold Cross Validation model evaluation
fold no =1

for train, test in kfold.split(X, Y):

Create the teacher

teacher = keras.Sequential(

[
keras . Input(shape=(30, 1)),
layers .ConvlD(filters =64,kernel_size= 2,activation="relu’),
layers.BatchNormalization (),
layers .Dropout(0.2),
#layers.LeakyReLU (alpha=0.2),

layers .ConvlD (448, 2,activation="relu’),
layers.BatchNormalization (),
layers .Dropout(0.2),

layers . Flatten (),
layers .Dense (64, activation="relu’),

layers . Dropout(0.2),

layers .Dense(2,activation="sigmoid’),
I,

name="teacher",

)

Create the student

student = keras.Sequential (

[
keras . Input(shape=(30, 1)),
layers .ConvlD(4, 2),
layers.BatchNormalization (),
layers .Dropout(0.2),

layers.LeakyReLU(alpha=0.2),

layers .ConvlD(8, 2),
layers.BatchNormalization (),

layers .Dropout(0.2),

44

layers . Flatten (),
layers .Dense(2,activation="sigmoid’),
I,

name="student" ,)

Clone student for later comparison

student_scratch = keras.models.clone_model(student)

#compile teacher
teacher.compile(optimizer=Adam(learning_rate=0.0001),loss="binary_c

metrics=["accuracy’])

Generate a print
print(sep='\n’)
print(sep="\n")

print(sep="\n")

print (f’Training_for_fold_{fold_no}_...")

print(sep="\n")

print ('TEACHER)

start_time_TM = time.time ()

Fit data to model

teacherHistory = teacher. fit(X[train], Y[train],epochs=epoch, valida
#batch_size=batch_size ,

verbose=1)
end_time_TM = time.time ()
Generate generalization
scores = teacher.evaluate (X[test], Y[test])
print (f’Score_for_fold_{fold_no}:_{teacher.metrics_names[0]}_,of_{sc
T_acc_per_fold.append(scores[1] = 100)
T_loss_per_fold.append(scores[0])
TM_time . append (end_time_TM - start_time_TM)

print (" Execution_time: ", end_time_TM - start_time_TM , "secs")

45

#compile STUDENT
#student_scratch.compile(optimizer=Adam(learning_rate=0.0001),loss =
metrics=["accuracy ’])

#print(sep="\n’)

#print(STUDENT)

#start_time_SM = time.time ()

#studentHistory=student_scratch. fit (X[train],Y[train], epochs=epoch,
#end_time_SM = time.time ()

Generate generalization

#Scores= student_scratch.evaluate (X[test],Y[test])

#print(f ' Score for fold {fold_no}: {student_scratch.metrics_names]/[0
#S_acc_per_fold.append(Scores[1] =+ 100)
#S_loss_per_fold.append(Scores[0])

#SM_time . append (end_time_SM — start_time_SM)

#print (" Execution time: ", end_time_SM — start_time_SM 6 "secs"

Initialize and compile distiller

distiller = Distiller (student=student, teacher=teacher)
distiller .compile(optimizer=keras.optimizers.Adam() ,
metrics=[accuracy’],

student_loss_fn= keras.losses.BinaryCrossentropy () ,

distillation_loss_fn=keras.losses.KLDivergence (),

alpha=0.1,
temperature=10,
)

Distill teacher to student

print(sep='\n’)

print (°DISTILL _TEACHER_TO_STUDENT)

start_time_KD = time.time ()

history=distiller . fit(X[train], Y[train], epochs=epoch, verbose=1,
end_time_KD = time.time ()

Generate generalization

Scores= distiller .evaluate(X[test],Y[test])

#print(Scores)

46

print (f’Score_for_fold_{fold_no}:_ loss_of_{Scores[1]};_{distiller.n
#print(distiller . metrics_names)

TS_acc_per_fold.append(Scores[0] = 100)

TS _loss_per_fold.append(Scores|[1])

KD_time . append (end_time_KD - start_time_KD)

print ("Execution_time: ", end_time_KD - start_time_KD ,b "secs")

Increase fold number

fold _no = fold _no + 1

print(sep='\n’)

== Provide average scores ==

print("--——1—m—"—m o —_— —_— —_—————
print (’ Teachers_Score_per_fold’)
for i in range (0, len(T_acc_per_fold)):

print (’ —_—_—— - - —_—_————
print (f’>_Fold_{i+1}_-_Loss: {T_loss_per_fold[i]}_—_Accuracy:_{T_acc_
print (’Running_time:’ ,TM_time[i],"secs")

print("----—1————moo o —_— —_— —_—————————

print(’Teachers_Average _scores _for_all_folds:’)

print (f’>_Accuracy:_{np.mean(T_acc_per_fold)} _(+-_{np.std(T_acc_per_fol
print (f’>_Loss: _{np.mean(T_loss_per_fold)})

print (sep="\n")

print("-———"mm—M——Hm——— —_— —_— —_—_—

2

print (’ Average_running_time:’ ,np.mean(TM_time))
print(sep="\n’)
print(sep='\n’)

== Provide average scores ==

#print(’ Students Score per fold’)
#for i in range(0, len(S_acc_per_fold)):

#print(f’> Fold {i+1} — Loss: {S_loss_per_fold[i]} — Accuracy: {S_acc

#print(’ Running time:’ ,SM_time[i],"secs”

#print(’ Students Average scores for all folds:’)

#print(f’> Accuracy: {np.mean(S_acc_per_fold)} (+— {np.std(S_acc_per_fo

#print(f’> Loss: {np.mean(S_loss_per_fold)})

#print(’ Average running time:’ ,np.mean(SM_time))

#print(sep=’\n’)

print(sep='\n’)

== Provide average scores ==

print("-—————m—-"-r— —— —— — -
print ("knowledge _ distill _Score_per_fold’)
for i in range(0, len(TS_acc_per_fold)):

print(’ ——————— - —_— —_—

print (f’>_Fold_{i+1}_-_Loss: {TS_loss_per_fold[i]}_—_Accuracy: {TS_ac

print (’Running_time:’ ,KD_time[i],"secs")
print("--———m——m—ro i o o o —_—— —_—— —_——

print ("knowledge distill _ Average_scores _for_all_folds:’)

print (f’>_Accuracy:_{np.mean(TS_acc_per_fold)} _(+—_{np.std(TS_acc_per_f

print (f’>_Loss: {np.mean(TS_loss_per_fold)}’)

print("———m—m——"+—————— —— —— -

print (’ Average_running_time:’ ,np.mean(KD_time))

teacher .summary ()

student .summary ()
teacher cm
#Make predictions

y_probs=teacher.predict(X[test])

#Convert prediction probabilities into integers

y_preds = y_probs.argmax(axis=1)

#Confusion matrix

cm=metrics.confusion_matrix (Y[test].argmax(axis=1),y_preds)

48

#Plot

disp=ConfusionMatrixDisplay (confusion_matrix=cm, display_labels=["B’, M’
fig, ax = plt.subplots(figsize=(5,5))

disp.plot(ax=ax);

student cm
#Make predictions
y_probs=distiller . predict(X[test])

#Convert prediction probabilities into integers

y_preds = y_probs.argmax(axis=1)

#Confusion matrix
cm=metrics.confusion_matrix (Y[test].argmax(axis=1),y_preds)

#Plot

disp=ConfusionMatrixDisplay (confusion_matrix=cm, display_labels=["B’, M’
fig, ax = plt.subplots(figsize=(5,5))

disp.plot(ax=ax);

plots of accuracy and loss

accuracy and loss of teacher model

def plotLearningCurve (history ,epochs):
epochRange = range(1,epochs+1)
plt.plot(epochRange , history . history [accuracy’])
plt.plot(epochRange , history . history[’val_accuracy’])
plt.title (’Teacher_Model_ Accuracy’)
plt.xlabel ("Epoch’)
plt.ylabel (" Accuracy’)
plt.legend ([*Train’,’ Validation’],loc="lower_right’)
plt.grid(visible=True)
plt.savefig ("TmAcc.svg")
plt.show ()

plt.plot(epochRange , history . history [loss’])
plt.plot(epochRange, history . history [’ val_loss’])
plt.title (’Teacher_Model_Loss’)

49

plt.
plt.
plt.
plt.

plt.
.show ()

plt

xlabel ("Epoch’)

ylabel (’Loss’)

legend ([Train’,’ Validation’],loc="upper_right’)
grid(visible=True)

savefig ("TmLoss.svg")

plotLearningCurve (teacherHistory ,epoch)

Student knowledge distilled accuracy and loss
def plotKDCurveD (history ,epochs):
epochRange = range(1,epochs+1)

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
.show ()

plt

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
.show ()

plt

plot (epochRange , history . history [accuracy’])
plot(epochRange , history . history[’val_accuracy’])
title (’Student_Model_ Accuracy’)

xlabel (*Epoch’”)

ylabel (* Accuracy ’)

legend ([" Train’,’ Validation’],loc="lower_right’)
grid (visible=True)

savefig ("KdAcc.svg")

plot (epochRange , history . history[’student_loss’])
plot (epochRange , history . history[’val_student_loss’])
title (*Student_Model_Loss’)

xlabel ("Epoch’”)

ylabel ("Loss’)

legend ([" Train’,’ Validation’],loc="upper_left’)

grid (visible=True)

savefig ("KdLoss.svg")

plotKDCurveD (history , epoch)

Accuracy and loss of Teacher vs Student KD model
def plotKDCurveProf (his ,tHis ,epochs):
epochRange = range(1l,epochs+1)

plt.
plt.

plot (epochRange , tHis . history [accuracy’])
plot (epochRange , tHis . history [’ val_accuracy’])

50

plt.plot(epochRange, his. history [accuracy’])
plt.plot(epochRange , his. history[’val_accuracy’])

plt.title (’Model_Accuracy’)

plt.xlabel ("Epoch’)

plt.ylabel (" Accuracy’)

plt.legend ([’Tm_train’, ’Tm_val’,’ KD_train’,’KD_val’],loc="lower_right
plt.grid(visible=True)

plt.savefig ("Tm—SmAcc.svg")

plt.show ()

plt.plot(epochRange ,tHis. history[’loss’])
plt.plot(epochRange , tHis. history [val_loss’])
plt.plot(epochRange , his. history [student_loss’])
plt.plot(epochRange , his. history[’val_student_loss’])
plt.title (’Model_Loss’)

plt.xlabel ("Epoch’)

plt.ylabel (’Loss’)

plt.legend (["TM_train’,’TM_val’,’ KD_train’,’KD_val’],loc="upper_left’
plt.grid(visible=True)

plt.savefig ("Tm—SmLoss.svg")

plt.show ()

plotKDCurveProf (history ,teacherHistory ,epoch)

51

	CERTIFICATION
	SIGNATURE PAGE
	ABSTRACT
	AKNOWLEDGEMENT
	DEDICATION
	List of Abbreviations and Terms
	List of Figures
	List of Tables
	CHAPTER ONE
	INTRODUCTION
	Problem Statement
	Aim and Objectives
	Aim
	Objectives

	Scope of the Research
	Significance of the Research
	Expected Results and Deriverables
	Expected Results
	Deliverables

	Research Outline

	CHAPTER TWO
	BACKGROUND AND RELATED WORK
	Introduction
	Machine Learning
	Supervised Learning
	Classification
	Neural Network
	Convolutional Neural Network
	Knowledge Distillation

	Related works

	CHAPTER THREE
	METHODOLOGY
	Introduction
	Dataset Discription
	Data Exploration and Visualization
	Data-preprocessing
	Model training and validation

	Proposed Model

	CHAPTER FOUR
	RESULTS AND DISCUSSION
	Introduction
	Experimental Result
	Comparison of TM and SM Results
	Comparison of SM Results with Prior Approaches

	CHAPTER FIVE
	SUMMARY, CONCLUSION AND FUTURE WORK
	Introduction
	Summary
	Conclusion
	Future Works

	References
	Appendices
	Appendix 1

