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Abstract

In this thesis, the problem of solving the equation of the form

Au = 0, (0.0.1)

where A is a nonlinear map (either mapping a Banach space, E to itself or
mapping E to its dual, E∗), is considered. This problem is desirable due to its
enormous applications in optimization theory,ecology, economics, signal and
image processing, medical imaging, finance, agriculture, engineering, etc.

Solving equation (0.0.1) is connected to solving the following problems.

• In optimization theory, it is always desirable to find the minimizer of
functions. Let f : E → R be a convex and proper function. The subdif-
ferential associated to f , ∂f : E → 2E

∗ defined by

∂f(x) = {u∗ ∈ E∗ : 〈u∗, y − x〉 ≤ f(y)− f(x) ∀ y ∈ E}.

It is easy to check that the subdifferential map ∂f is monotone on E and
that 0 ∈ ∂f(x) if and only if x is a minimizer of f . Setting ∂f ≡ A,
it follows that solving the inclusion 0 ∈ Au is equivalent to solving for
a minimizer of f . In the case where the operator A is single-valued, the
inclusion 0 ∈ Au reduces to equation (0.0.1).

• The differential equation,
du

dt
+Au = 0, where A is an accretive-type map,

describes the evolution of many physical phenomena that generate over

time. At equilibrium state,
du

dt
= 0, thus the differential equation reduces

to equation (0.0.1). Thus, solution of equation (0.0.1) correspond to
equilibrium state of some dynamical system. Moreover, such equilibrium
states are very desirable in many applications, e.g., economics, physics,
agriculture and so on.
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• In nonlinear integral equations, the Hammerstein integral equation which
is of the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (0.0.2)

where Ω ⊂ Rn is bounded, k : Ω × Ω → R and f : Ω × R → R
are measurable real-valued functions, and the unknown function u and
inhomogeneous function w lie in a Banach space E of measurable real-
valued functions, can be transformed into the form u+KFu = 0, without
loss of generality. Thus, setting A := I + KF , where I is the identity
map, will reduce to equation (0.0.1). Interest in Hammerstein integral
equations stems mainly from the fact that several problems that arise
in differential equations, for instance, elliptic boundary value problems
whose linear part posses Green’s function can, as a rule, be transformed
into the form (0.0.2).

Our objectives in this thesis are: studying and constructing new iterative algo-
rithms; proving that the sequences generated by these algorithms approximate
solutions of some nonlinear problems, such as, variational inequality problems,
equilibrium problem, convex split feasibility problems, convex minimization
problems and so on, and conducting numerical experiments to show the effi-
ciency of our algorithms.

In particular, the following results are proved in this thesis.

• Let E be a uniformly smooth and uniformly convex real Banach space
and let A : E → 2E be a multi-valued m-accretive operator with D(A) =
E such that the inclusion 0 ∈ Au has a solution. For arbitrary x1 ∈ E,
define a sequence {xn} by

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1.

Then the sequence {xn} converges strongly to a solution of the inclusion
0 ∈ Au.

• Let E be a uniformly convex and uniformly smooth real Banach space
and E∗ be its dual. Let A : E → E∗ be a generalized Φ-strongly mono-
tone and bounded map and let Ti : E → E, i = 1, 2, 3, ..., N be a finite
family of quasi-φ-nonexpansive maps such that Q := ∩Ni=1F (Ti) 6= ∅. Let
{xn} be a sequence in E defined iteratively by x1 ∈ E,

xn+1 = J−1(J(T[n]xn)− θnA(T[n]xn)), ∀n ≥ 1,

where T[n] := Tn mod N . Assume V I(A,Q) 6= ∅, then {xn} converges
strongly to some x∗ ∈ V I(A,Q).
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• Let E be a uniformly smooth and 2-uniformly convex real Banach space.
Let C be closed and convex subset of E. Suppose Ai : C → E∗, i =
1, 2, ..., N is a finite family of monotone and L-Lipschitz continuous maps
and the solution set F is nonempty. Then, the sequences {xn}, {yin}, {zin}
generated by

x0 ∈ E, 0 < λ <
1

L
, C0 = C,

yin = ΠCJ
−1(Jxn − λAi(xn)), i = 1, ..., N,

T in = {v ∈ E : 〈(Jxn − λAi(xn))− Jyin, v − yin〉 ≤ 0},
zin = ΠT i

n
J−1(Jxn − λAi(yin)), i = 1, ..., N,

in = argmax{||zin − xn|| : i = 1, ..., N}, z̄n := zinn ,

Cn+1 = {v ∈ Cn : φ(v, z̄n) ≤ φ(v, xn)},
xn+1 = ΠCn+1(x0), n ≥ 0.

converge strongly to ΠFx0.

• Let K be a closed convex subset of E1. Let E1 and E2 be uniformly
smooth and 2-uniformly convex real Banach spaces, and E∗1 , E∗2 be their
dual spaces respectively. Let A : E1 → E2 be a bounded linear operator
whose adjoint is denoted by A∗ and S : E2 → E2 be a nonexpansive
map such that F (S) 6= ∅ and T : K → K be a relatively nonexpansive
map such that F (T ) 6= ∅. Let B : E1 → 2E

∗
1 be a maximal monotone

mapping such that B−10 6= ∅. Then the sequence generated by the
following algorithm: for x1 ∈ K arbitrary and βn ∈ (0, 1),

yn = J−1
E1

(
JE1xn − γA∗JE2(I − S)Axn

)
,

wn = J−1
E1

(
αnJE1x1 + (1− αn)JE1J

B
λ yn

)
,

xn+1 = J−1
E1

(
βnJE1xn + (1− βn)JE1Twn

)
, ∀n ≥ 1.

converges strongly to an element z ∈ Γ, where Γ is the solution set of
some generalized split feasibility problem.

• Let K be a closed convex nonempty subset of a 2-uniformly convex and
uniformly smooth real Banach space E with dual space E∗. Let hi : K×
K → R (i = 1, 2, 3, ...) be a sequence of bifunctions satisfying conditions
(A1) − (A4) and Gi : K → 2E, i = 1, 2, 3, ... be a countable family
of equally continuous and totally quasi-φ-asymptotically nonexpansive
multi-valued nonself maps with nonnegative real sequences {v(i)

n }, {µ(i)
n }

and strictly increasing continuous functions ψi : R+ → R+ such that
v

(i)
n → 0, µ

(i)
n → 0 as n → ∞ and ψi(0) = 0. Let Ai : K → 2E

∗
, i =

1, 2, 3, ... be a countable family of γi-inverse strongly monotone multi-
valued maps and let γ = inf{γi, i = 1, 2, 3, ...} > 0. Let Φi : K →
R (i = 1, 2, 3, ...) be a sequence of lower semi-continuous convex functions
and let Bi : K → E∗ (i = 1, 2, 3, ...) be a sequence of continuous
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monotone functions. Suppose W :=
(
∩∞i=1 F (Gi)

)
∩
(
∩∞i=1 A

−1
i (0)

)
∩(

∩∞i=1 GMEP (hi,Φi, Bi)
)
6= ∅ and the sequence {xn} in K is defined

iteratively as follows:

x0 ∈ K0 = K,

yn = ΠKJ
−1(Jxn − λξin), (ξin ∈ Ainxn),

zn = J−1
(
αJxn + (1− α)Jη

(in)
mn

)
, (η

(in)
mn ∈ Gin(PGin)mn−1yn),

un = Trnzn,

Kn+1 = {z ∈ Kn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = ΠKn+1x0, n ≥ 0,

where θn := (1−α)
[
v

(in)
mn supp∈W ψin

(
φ(p, xn)

)
+µ

(in)
mn

]
; λ ∈ (0, c2

2
γ), c2 > 0

is a positive constant satisfying certain conditions and α ∈ (0, 1). Then,
{xn} converges strongly to some element of W .
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CHAPTER 1

General Introduction

The contents of this thesis fall within the general area of functional analysis,
in particular, nonlinear operator theory, a flourishing area of research for nu-
merous mathematicians. In this thesis, we concentrate on the following three
important topics, namely:

• Approximation of zeros of m-accretive maps with applications to Ham-
merstein integral equations.

• Approximation of solutions of variational inequality problems involving
monotone-type maps.

• Approximation of solutions of generalized split feasibility problems.

• Approximation of solutions of some equilibrium problems.

1.1 Background
It is well known that many physically significant problems in several areas of
research can be transformed as an equation of the form

Au = 0, (1.1.1)

where A is a nonlinear monotone map. Consider for example, the differential
equation

du

dt
+ Au = 0, (1.1.2)

where A is monotone (accretive), describes the evolution of many physical
phenomena that generate energy over time. At equilibrium state, du

dt
= 0, thus
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equation (1.1.2) reduces to equation (1.1.1). Therefore, a solution of equation
(1.1.1) (i.e., a zero of A) corresponds to the equilibrium state of the system
described in equation (1.1.2). Such equilibrium points are very desirable in
many applications, for example, in ecology, economics, physics and so on.

Also, in optimization theory, it is always desirable to find minimizers of a con-
vex function, when they exist. It is known that if a function f is differentiable
and has a minimizer x∗ ∈ D(f) (say), then f ′(x∗) = 0. This is an explicit
method of obtaining a minimizer of f . Unfortunately, most of the significant
functions that arise in optimization problems are not always differentiable in
the usual sense. For example, the absolute value function | · | : R → R has
a minimizer, which in fact is 0, but it is not differentiable at 0. So, in a
case where the operator under consideration is not differentiable, it becomes
difficult to compute a minimizer with the above technique even when it exists.

Let E be a normed space and f : E → R be a convex and proper function.
The subdifferential map associated to f , ∂f : E → 2E

∗ , which always exists
for any convex function f , is defined by

∂f(x) = {u∗ ∈ E∗ : 〈u∗, y − x〉 ≤ f(y)− f(x) ∀ y ∈ E}.

It is easy to check that the subdifferential map ∂f is monotone on E, and that
0 ∈ ∂f(x) if and only if x is a minimizer of f . Setting ∂f ≡ A, it follows that
solving the inclusion 0 ∈ Au is equivalent to solving for a minimizer of f . In
the case where the operator A is single-valued, the inclusion 0 ∈ Au reduces
to equation (1.1.1).

Also, in nonlinear integral equations, consider the Hammerstein integral equa-
tion which is stated as follows:
Let Ω ⊂ Rn be bounded and let k : Ω × Ω → R and f : Ω × R → R be
measurable real-valued functions. An integral equation (generally nonlinear)
of Hammerstein-type has the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (1.1.3)

where the unknown function u and inhomogeneous function w lie in a Banach
space E of measurable real-valued functions. If we define F : F(Ω,R) →
F(Ω,R) and K : F(Ω,R)→ F(Ω,R) by

Fu(y) = f(y, u(y)), y ∈ Ω

and
Kv(x) =

∫
Ω

k(x, y)v(y)dy, x ∈ Ω

respectively, where F(Ω,R) is a space of measurable real-valued functions de-
fined from Ω to R, then equation (1.1.3) can be put in an abstract form

u+KFu = 0, (1.1.4)

2



where, without loss of generality, we have assumed that w ≡ 0. It can easily
be observed that equation (1.1.4) is a special case of equation (1.1.1), where

A := I +KF.

Interest in Hammerstein integral equations stems mainly from the fact that sev-
eral problems that arise in differential equations, for instance, elliptic bound-
ary value problems whose linear part posses Green’s function can, as a rule,
be transformed into the form (1.1.3) (see e.g., Pascali and Sburian [134], chap-
ter p. 164). Among these is the problem of the forced oscillations of finite
amplitude of a pendulum.

Example 1.1.1 Consider the problem of pendulum
d2v(t)

dt2
+ a2 sin v(t) = w(t), t ∈ [0, 1]

v(0) = v(1) = 0,
(1.1.5)

where the driving force w is odd. The constant a 6= 0 depends on the length
of the pendulum and gravity. Since the Green’s function of the problem

v′′(t) = 0, v(0) = v(1) = 0

is the function

k(t, s) :=

{
t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1.

Problem (1.1.5) is equivalent to the nonlinear integral equation

v(t) = −
∫ 1

0

k(t, s)[w(s)− a2 sin v(s)]ds, t ∈ [0, 1]. (1.1.6)

If g(t) :=
∫ 1

0
k(t, s)w(s)ds, u(t) := v(t) + g(t), t ∈ [0, 1], then v = u − g.

Equation (1.1.6) can be written as

u(t) +

∫ 1

0

k(t, s)a2 sin[g(s)− u(s)]ds = 0, t ∈ [0, 1],

which is in the form of (1.1.3) with

f(t, s) = a2 sin(g(t)− s), t, s ∈ [0, 1].

Equations of Hammerstein type play vital role in the theory of optimal control
systems, in automation and in network theory (see, e.g., Dolezale [81])

3



1.2 Approximation of zeros of nonlinearm-accretive
maps with applications to Hammerstein in-
tegral equations

Let E be a real Banach space with a dual space E∗. A mapping A : E → 2E

is called accretive if for each x, y ∈ E, η ∈ Ax, ν ∈ Ay, there exists j(x− y) ∈
J(x− y) such that 〈

η − ν, j(x− y)
〉
≥ 0,

where J : E → 2E
∗ defined by Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ =

‖x∗‖} is the normalized duality map on E. The mapping A is said to be
maximal accretive if, in addition, its graph is not properly included in the
graph of any other accretive mapping. Also, the mapping A is said to be
m-accretive if, in addition to A being accretive, the following range condition
holds: R(I + λA) = E, for all λ > 0. It is noteworthy that in normed spaces,
m-accretive implies maximal accretive. If E is a real Hilbert space, accretive
mappings are called monotone and maximal accretive mappings are called
maximal monotone maps.

Interest in the study of accretive mappings stems from their usefulness in sev-
eral areas of applicable mathematics such as in economics, differential equa-
tions, calculus of variation, and so on (see e.g., Browder [17], Zeildler [182]). In
nonlinear functional analysis, accretive operators appear mainly in two prob-
lems, in elliptic differential problems and in evolution equation problems. In
the case of an elliptic problem, we are solving an inclusion of the form y ∈ Tx,
where the operator T may be decomposed into a sum of operators among
which are accretive operators. In the case of an evolution problem we study
a time-dependent differential inclusion which contains, in one of its terms, an
operator T which may be decomposed into a sum of operators containing an
accretive operator.

In general, a fundamental problem in the study of accretive operators in Ba-
nach spaces is the following:

find u ∈ E such that 0 ∈ Au. (1.2.1)

Several existence theorems for problem (1.2.1) have been proved (see e.g.,
Browder [17]). Also, methods of approximating solutions of the inclusion prob-
lem (1.2.1), when they are known to exist, have been studied extensively. One
of the classical methods for approximating solutions of this inclusion problem
where A is a maximal monotone operator on a real Hilbert space, is the cel-
ebrated proximal point algorithm introduced by Martinet [124] and studied
extensively by Rockafellar [148] and numerous other authors. The algorithm
is given by:

xn+1 =
(
I +

1

λn
A
)−1

xn + en, (1.2.2)
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where λn > 0 is a regularizing parameter. Rockafellar [148] proved that if the
sequence {λn}∞n=1 is bounded from above, then the resulting sequence {xn}∞n=1

of proximal point iterates converges weakly to a solution of (1.1.1) when E =
H, provided that a solution exists (see also Bruck and Reich [25]). Rockafellar
[148] then posed the following question.

Question 1. Does the proximal point algorithm always converge strongly?

The question was resolved in the negative by Güler [87] who produced a
proper closed convex function g in the infinite dimensional Hilbert space l2
for which the proximal point algorithm converges weakly but not strongly, (see
also Bauschke et al. [12]). This naturally raised the following questions.

Question 2. Can the proximal point algorithm be modified to guarantee strong
convergence?

Question 3. Can another iterative algorithm be developed to approximate a
solution of (1.1.1), assuming existence, such that the sequence of the algorithm
converges strongly to a solution of (1.1.1)?

Bruck [22] considered an iteration process of the Mann-type and proved that
the sequence of the process converges strongly to a solution of (1.1.1) in a real
Hilbert space where A is a maximal monotone map, provided the initial vector
is chosen in a neighbourhood of a solution of (1.1.1). Chidume [45] extended
this result to Lp spaces, p ≥ 2 (see also Reich [141, 142, 143]). These results
of Bruck [22] and Chidume [45] are not easy to use in any possible application
because the neighborhood of a solution in which the initial vector must be
chosen is not known precisely.

In connection with Question 2, Solodov and Svaiter [155] proposed a modifi-
cation of the proximal point algorithm which guarantees strong convergence
in a real Hilbert space. Their algorithm is as follows.

Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk, choose µk > 0,
and find (yk, vk), an inexact solution of 0 ∈ Tx+µk(x− xk), with tolerance σ.
Define

Ck = {z ∈ H :
〈
z − yk, vk

〉
≤ 0}, Qk = {z ∈ H :

〈
z − xk, x0 − xk

〉
≤ 0}.

Take xk+1 = PCk∩Qk
x0, k ≥ 1.

The authors themselves noted ([155], p. 195) that ” · · · at each iteration,
there are two subproblems to be solved · · · ": (i) find an inexact solution of the
proximal point algorithm, and (ii) find the projection of x0 onto Ck∩Qk. They
also acknowledged that these two subproblems constitute a serious drawback
in using their algorithm.

Kamimura and Takahashi [101] extended this result of Solodov and Svaiter
[155] to the framework of Banach spaces that are both uniformly convex and

5



uniformly smooth, Reich and Sabach [145] extended this result to reflexive
Banach spaces.

Xu [165] noted that "...Solodov and Svaiter’s algorithm, though strongly con-
vergent, does need more computing time due to the projection in the second
subproblem...". He then proposed and studied the following algorithm:

xn+1 = αnx0 + (1− αn)
(
I + cnA

)−1
xn + en, n ≥ 0. (1.2.3)

He proved that the sequence {xn} generated by algorithm (1.2.3) converges
strongly to a solution of 0 ∈ Au provided that the sequences {αn} and {cn}
of real numbers and the sequence {en} of errors are chosen appropriately. We
note here, however, that the occurrence of errors is random and so the sequence
{en} cannot actually be chosen.

Lehdili and Moudafi [118] considered the technique of the proximal map and
the Tikhonov regularization to introduce the so-called Prox-Tikhonov method
which generates the sequence {xn} by the algorithm:

xn+1 = JAn
λn
xn, n ≥ 0, (1.2.4)

where An := µnI + A, µn > 0 and JAn
λn

:=
(
I + 1

λn
An)−1. Using the notion

of variational distance, Lehdili and Moudafi [118] proved strong convergence
theorems for this algorithm and its perturbed version, under appropriate con-
ditions on the sequences {λn} and {µn}.

Xu also studied the recurrence relation (1.2.4). He used the technique of
nonexpansive mappings to get convergence theorems for the perturbed version
of the algorithm (1.2.4), under much relaxed conditions on the sequences {λn}
and {µn}.
In response to Question 3, Chidume [44] recently proved the following theorem.

Theorem 1.2.1 (Chidume [44]) Let E be a uniformly smooth real Banach
space with modulus of smoothness ρE, and let A : E → 2E be a multi-valued
bounded m-accretive operator with D(E) = E such that the inclusion 0 ∈ Au
has a solution. For arbitrary u1 ∈ E, define a sequence {un} iteratively by,

un+1 = un − λnηn − λnθn(un − u1)
)
, ηn ∈ Aun, n ≥ 1, (1.2.5)

where {λn} and {θn} are sequences in (0, 1) satisfying certain conditions.
There exists a constant γ0 > 0 such that ρE(λn)

λn
≤ γ0θn. Then, the sequence

{un} converges strongly to a zero of A.

We remark that Theorem 1.2.1 of Chidume resolves Questions 1, 2 and 3 but
in the special case in which the operator A is m-accretive and bounded. This
restriction eliminates several important operators, for example, the differential
operator. Hence, the following question is of interest.
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Question 4. Can the requirement that A be bounded imposed in Theorem
1.2.1 be dispensed with?

In Chapter 3 of this thesis, an affirmative answer to Question 4 is given.
This is achieved by means of a new important result concerning accretive
operators, which was recently proved by Chidume et al. [60]. Furthermore,
the convergence theorem proved is applied to approximate a solution of a
Hammerstein integral equation.

1.3 Approximation of solutions of variational in-
equality problems of monotone-type maps

A map A : D(A) ⊂ E → E∗ is called

• monotone if for each x, y ∈ D(A), the following inequality holds: 〈Ax−
Ay, x− y〉 ≥ 0.

• β-strongly monotone if for each x, y ∈ D(A), there exists β > 0 such
that the following inequality holds: 〈Ax− Ay, x− y〉 ≥ β||x− y||2.

• φ-strongly monotone if there exists a strictly increasing function φ :
[0,∞) → [0,∞) with φ(0) = 0 such that 〈Ax − Ay, x − y〉 ≥ φ(‖x −
y‖)‖x− y‖, ∀ x, y ∈ D(A).

• generalized Φ-strongly monotone if there exists a strictly increasing func-
tion Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that 〈Ax − Ay, x − y〉 ≥
Φ(‖x− y‖), ∀ x, y ∈ D(A).

It is easy to see that the class of β-strongly monotone maps is a proper sub-
class of the class of φ-strongly monotone maps (with φ(t) = βt2), which in
turn is a proper subclass of the class of generalized Φ-strongly monotone maps
(with Φ(t) = tφ(t)). It is well known that the class of generalized Φ-strongly
monotone maps is the largest class of monotone maps for which if the equation
Au = 0 has a solution, then the solution is necessarily unique. This class of
maps has been studied by various authors.

Let C be a nonempty subset of E. A map T : C → E is called K- Lipschitzian
if there exists K > 0 such that

||Tx− Ty|| ≤ K||x− y||, ∀x, y ∈ C. (1.3.1)

If in inequality (1.3.1) K = 1, then the map T is called nonexpansive. It is
known that the set F (T ) := {x ∈ E : Tx = x} is closed and convex whenever
T is nonexpansive.

Let A : C ⊂ E → E∗ be a nonlinear operator. The classical variational
inequality problem (VIP) is the following:

find x∗ ∈ C such that 〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ C. (1.3.2)
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The set of solutions of problem 1.3.2 is denoted by V I(A,C). Variational
inequality problem was first introduced and studied by Stampacchia [156] in
1964 and is central in the study of nonlinear analysis. Precisely, such a problem
is connected with convex minimization problems, complementarity problems,
fixed point problems, zeros of nonlinear operators and so on (see e.g., Shi [153],
Noor [129], Yao [173], Stampacchia [156]).

Several existence results for problem (1.3.2) have been proved when A is a
monotone mapping defined on certain real Banach spaces (see e.g., Hartman
and Stampacchia [92], Browder [17], Barbu and Precupanu [9]). Iterative
methods of approximating solutions, assuming existence, have been studied
extensively.

A typical iterative procedure for approximating solutions of 1.3.2 in a real
Hilbert space for a Lipschitz β-strongly monotone operator is the projected
gradient method (see for example, Goldstein [98], Zeidler [182]) expressed as
follows.

Theorem 1.3.1 (Projected Gradient Method, ([98], [182])) Let C be a
closed convex subset of a Hilbert space H and A : C → H be a K- Lipschitz
and β-strongly monotone operator. Let {xn} be a sequence in C defined by
x1 ∈ C and

xn+1 = PC(I − λA)xn, (1.3.3)

for n = 1, 2, ..., where PC is the metric projection onto C, I is the identity
mapping on H and λ ∈ (0, 2β

L2 ). Then, {xn} converges strongly to the unique
x∗ ∈ V I(C,A).

A more general form of (1.3.3) is given by

xn+1 = PC(I − λn+1A)xn. (1.3.4)

The projected gradient method relies on the fact that PC : H → C is a
nonexpansive map with a nonempty set of fixed points and that for any fixed
x ∈ H, 〈PCx − x, y − PCx〉 ≥ 0, ∀ y ∈ C. Other properties of the metric
projection can be found, for example, in section 3 of the book by Goebel and
Reich [97].
We remark that the projected gradient method is especially appealing in ap-
plications when the explicit form of PC is known (e.g., when C is a closed ball
or a closed cone). In order to reduce the possible difficulty with the use of PC
especially when PC is not very easy to compute, Yamada [171] introduced a
hybrid steepest descent method for solving problems of this type.

Theorem 1.3.2 (Hybrid steepest descent method, [171] ) Let T : H →
H be a nonexpansive mapping with F (T ) = {x ∈ H : Tx = x} 6= ∅. Sup-
pose that a mapping A : H → H is k-Lipschitzian and β-strongly mono-
tone over T (H). Then with any x0 ∈ H, any µ ∈ (0, 2η

L2 ) and any sequence
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{λn} in (0, 1] satisfying: (C1) limλn = 0; (C2)
∑
λn = ∞; (C3)

lim λn−λn+1

λ2n+1
= 0, the sequence {xn} generated by

xn+1 = Txn − λn+1A(Txn), n ≥ 0, (1.3.5)

converges strongly to the uniquely existing solution of V IP (A,F (T )).

For C = ∩rk=1F (Tk) 6= ∅, where {Tk}rk=1 is a finite family of nonexpansive
mappings, Yamada [171] also studied the following algorithm:

xn+1 = T[k]xn − λnµA(T[k]xn), n ≥ 1, (1.3.6)

where T[k] = Tk mod r, for k ≥ 1 and the sequence {λn} satisfies conditions
(C1), (C2) and (C4):

∑
|λn− λn+N | <∞, and proved the strong convergence

of {xn} to the unique solution of V IP (A,C).

In the case where f : H → R is a convex functional and A := Of , he obtained
that xn → x∗ ∈ arg infx∈F (T ) f(x), where Of : H → H is the gradient of the
convex functional f .

Xu and Kim [168] studied the convergence of the algorithms (1.3.6) and (1.3.5),
still in the framework of Hilbert spaces, with the condition (C3) replaced by

lim
λn − λn+1

λn+1

= 0 and the condition (C4) replaced by lim
λn − λn+r

λn+r

= 0. The

theorems of Xu and Kim [168] are improvements on the results of Yamada
[171] because the canonical choice λn = 1

n+1
is applicable in their theorem

but is not applicable in the result of Yamada [171]. Other extensions of the
theorem of Yamada, still in Hilbert spaces, can be found in Wang [170], Zeng
and Yao [183] and Yamada et al. [172].

Chidume et al. [56] extended the result of Yamada [171] to q-uniformly smooth
spaces, q ≥ 2, in particular, to Lp spaces, 2 ≤ p < ∞. They proved the
following theorem.

Theorem 1.3.3 (Chidume et al., [56]) Let E be a q-uniformly smooth real
Banach space with constant dq, q ≥ 2. Let Ti : E → E, i = 1, 2, 3, ..., r be a
finite family of nonexpansive mappings with K := ∩ri=1F (Ti) 6= ∅. Let G :
E → E be an η-strongly accretive map which is also k-Lipschitzian. Let {λn}
be a sequence in [0, 1] satisfying: (C1) limλn = 0; (C2)

∑
λn = ∞;

(C6) lim λn−λn+r

λn+r
= 0. For δ ∈

(
0,min{ q

4η
, ( qη
dqkq

)
1

(q−1)}
)
, define a sequence

{xn} iteratively in E by x0 ∈ E,

xn+1 = T[n+1]xn − δλn+1G(T[n+1]xn), n ≥ 0, (1.3.7)

where Tn = Tn mod r. Assume also that K = F (TrTr−1...T1) = F (T1Tr...T2) =
... = F (Tr−1Tr−2...Tr). Then, {xn} converges strongly to the unique solution
x∗ of the variational inequality V I(G,K).
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We remark that in Theorem 1.3.3, the operator G maps the space E into itself,
however, it is desirable to consider when the operator G maps the space into
its dual as it is known to have applications in convex optimization problems.

In Chapter 4 of this thesis, we obtained an analogue of Theorem 1.3.3
in a uniformly convex and uniformly smooth real Banach space for a more
general class of operators, A : E → E∗, a generalized Φ-strongly monotone
and bounded map. Furthermore, we applied the result obtained to a convex
optimization problem.

1.3.1 Parallel and Cyclic Hybrid Subgradient Extragra-
dient Algorithms for Solutions of VIP for Lipschitz
Monotone Maps

In this section, we study iterative methods for approximating a solution of a
VIP for a Lipschitz monotone map. In this case, the solution of VIP is not
necessarily unique.

Korpelevich [113] in 1976, proposed a projection method in a real Hilbert
space H, called the extragradient method, for solving saddle point problems.
The extragradient method is designed as follows:

x0 ∈ H,
yn = PC(xn − λA(xn)),

xn+1 = PC(xn − λA(yn)), n ≥ 0,

where PC is the metric projection onto C, λ is a suitable parameter and C is
a nonempty, closed and convex subset of H. In the case when C has a simple
structure and the projections onto it can be evaluated readily, the extragradient
method is very useful. However, if C is any closed and convex set, one has
to solve two distance optimization problems in the extragradient method to
obtain the next approximation xn+1. This can affect the efficiency of the
method. In 2011, Censor et al. [39] proposed the following algorithm, called
the subgradient extragradient method, for variational inequality problem in a
real Hilbert space H,

x0 ∈ H,
yn = PC(xn − λA(xn)),

xn+1 = PTn(xn − λA(yn)), n ≥ 0,

(1.3.8)

where Tn is a half-space defined as Tn := {v ∈ H : 〈(xn−λA(xn))−yn, v−yn〉 ≤
0}. They proved that the sequences {xn}, {yn} generated by (1.3.8) converge
weakly to a a point in V I(C,A).

Moreover, to obtain strong convergence of these iterative sequences, Censor et
al. [40] proposed a hybrid algorithm which combines the subgradient extra-
gradient method and the outer approximation method.
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They also considered the problem of finding a common solution to variational
inequality problems CSV IP . The CSV IP is stated as follows: Let Ki, i =
1, ..., N be a finite family of nonempty closed and convex subsets of H such
that K := ∩Ni=1Ki 6= ∅. Let Ai : H → H, i = 1, ..., N be nonlinear maps. The
CSV IP is to find x∗ ∈ K such that

〈x− x∗, Ai(x∗)〉 ≥ 0, ∀x ∈ Ki, i = 1, ..., N. (1.3.9)

If N = 1, the CSV IP (1.3.9) becomes V IP . The CSV IP is motivated by
the fact that it includes as special cases, convex feasibility problems, common
fixed point problems, common minimization problems, common saddle-point
problems, variational inequality problems over the intersection of convex sets.
These problems have practical applications in signal processing , networking,
resource allocation, image recovery and many other problems, (see e.g.,[56],
[40], [114], [95] and the references contained in them).

In 2015, Anh and Hieu [4, 55] proposed a parallel monotone hybrid algorithm
for finding a common fixed point of a finite family of quasi φ-nonexpansive
mappings {Si}Ni=1 in a real Hilbert space, H. They considered the following
algorithm:

x0 ∈ C ⊂ H,

yin = αnxn + (1− αn)Sixn, i = 1, ..., N,

in = argmax{||yin − xn|| : i = 1, ..., N}, ȳn := yinn ,

Cn+1 = {v ∈ Cn : ||v − ȳn|| ≤ ||v − xn||},
xn+1 = PCn+1x0, n ≥ 0,

(1.3.10)

where 0 < αn < 1, lim supn→∞ αn < 1. In this algorithm, the intermediate ap-
proximations yin can be found simultaneously. Then, among all yin, the furthest
element from xn, denoted by ȳn, is chosen. After that, using this element, the
closed convex set Cn+1 is constructed. Finally, the next approximation xn+1 is
defined as the projection of x0 onto Cn+1. However, it seems difficult to find
the explicit form of the sets Cn and perform numerical experiments.

In 2016, Hieu [96] proposed two parallel and cyclic hybrid subgradient ex-
tragradient algorithms for CSV IP in Hilbert spaces for a class of Lipschitz
continuous and monotone maps. In this algorithm, the additional computa-
tion of index in, allowed to compute explicitly the next iterate. He proved the
following theorem for parallel hybrid subgradient extragradient method:

Theorem 1.3.4 (Hieu, [96]) Let Ki, i = 1, 2, ..., N be closed and convex
subsets of a real Hilbert space H such that K = ∩Ni=1Ki 6= ∅. Suppose that
{Ai}Ni=1 : H → H is a finite family of monotone and L-Lipschitz continuous
mappings. In addition, the solution set F := ∩Ni=1V I(Ai, Ki) is nonempty.
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Then, the sequences {xn}, {yin}, {zin} generated by the algorithm:

x0 ∈ H, 0 < λ <
1

L
,

yin = PKi
(xn − λAi(xn)), i = 1, ..., N,

T in = {v ∈ H : 〈(xn − λAi(xn))− yin, v − yin〉 ≤ 0},
zin = PT i

n
(xn − λAi(yin)), i = 1, ..., N,

in = argmax{||zin − xn|| : i = 1, ..., N}, z̄n := zinn ,

Cn = {v ∈ H : ||z̄n − v|| ≤ ||xn − v||},
Qn = {v ∈ H : 〈v − xn, xn − x0〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(1.3.11)

converge strongly to PFx0.

We remark that the results of Hieu, [96] and other authors (see e.g., Anh
and Hieu [4, 55]) are in Hilbert space. However, as has been rightly observed
by Hazewinkle [93], “ . . . many and probably most mathematical objects and
models do not naturally live in Hilbert space".

In Chapter 5 of this thesis, we study the parallel and cyclic hybrid sub-
gradient extragradient algorithms and prove that the sequences generated by
these algorithms converge strongly to a common element of the set of solu-
tions of variational inequality problems in a uniformly smooth and 2-uniformly
convex real Banach space.

1.4 Approximation of solution of generalized split
feasibility problem

Let E1 and E2 be real Banach spaces. Let C and Q be nonempty, closed and
convex subsets of E1 and E2, respectively. The split feasibility problem (SFP)
is formulated as:

Find x∗ ∈ C such that Ax∗ ∈ Q, (1.4.1)

where A : E1 → E2 is a bounded linear operator. In finite dimensional Hilbert
space, the SFP was first introduced by Censor and Elfving [38] for modeling
inverse problems which arise from phase retrievals, medical image reconstruc-
tion and recently in modeling of intensity modulated radiation therapy. There
has been growing interest in recent years in the theory of split feasibility prob-
lem due to its application in signal processing (see e.g., [6, 41, 40, 35, 127,
128, 114, 160, 161, 162] and the references therein for further details). In the
recent past, several split type problems have been introduced and studied.
Byrne et al. [106] considered and studied the split common null point problem
(SCNPP) in the setting of Hilbert spaces. They developed some algorithms
for finding the approximate solutions of SCNPP. Very recently, Takahashi and
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Yao [163] introduced SCNPP in the setting of Banach spaces. By using hybrid
method and Halpern-type method, they proposed some iterative algorithms for
computing the approximate solutions of SCNPP. They also established some
strong and weak convergence theorems for such algorithms under some suitable
conditions.

Another split type problem is the generalized split feasibility problem (GSFP),
which in the setting of Banach spaces, is as follows:

Find x∗ ∈ F (T ) ∩B−10 such that Ax∗ ∈ F (S), (1.4.2)

where E1 and E2 are real Banch spaces, B : E1 → 2E
∗
1 is a nonlinear map such

that B−10 6= ∅, S : E2 → E2 is a map such that F (S) 6= ∅, A : E1 → E2 be a
bounded linear map, F (S) denotes the set of fixed points of S and T : K → K
is a map such that F (T ) 6= ∅ and K is nonempty closed convex subset of E1.
If we consider T ≡ I, the identity mapping, then problem (1.4.2) reduces to
the following generalized split feasibility problem:

Find x∗ ∈ B−10 such that Ax∗ ∈ F (S). (1.4.3)

We denote by Γ and Ω the solution set of problem (1.4.2) and (1.4.3), respec-
tively, and assume that Ω 6= ∅ and Γ 6= ∅.
In 2014, Takahashi et al. [162] studied problems (1.4.2) and (1.4.2) in the
setting of Hilbert space. They constructed the following iterative algorithms;
for x1 ∈ H1,

xn+1 = Jλn(I − γnA∗(I − T )A)xn, ∀ n ∈ N,

and,
xn+1 = xn + (1− βn)V Jλn(I − γnA∗(I − T )A)xn, ∀ n ∈ N,

where A : H1 → H2 is a bounded linear map, T : H1 → H1 is a nonexpansive
map, B : H1 → 2E1 is maximal map and Jλn = (I+λnB)−1, V : H1 → H1 and
obtained weak convergence theorems for finding a solution of the generalized
split feasibility problems.

In 2017, Ansari and Rehan [7] studied and extended the result of Takahashi et
al. [162] from Hilbert space to uniformly convex and 2-uniformly smooth real
Banach spaces. They proposed the following iterative algorithms: For x1 ∈ K
and βn ∈ (0, 1),

xn+1 = J−1
E1

(
βnJE1(xn) + (1− βn)JE1(yn)

)
(1.4.4)

and,

xn+1 = JBλ
(
J−1
E1

(xn)− γA∗JE2(I − S)Axn
)

(1.4.5)

where yn = V JBλ (J−1
E1

(xn) − γA∗JE2(I − SAxn)
)
and proved that if E1 and

E2 are uniformly convex and 2-uniformly smooth real Banach spaces, JE1 is
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weakly sequentially continuous and, B, V , A, S and T are certain maps. Then
the sequences generated by Algorithms (1.4.4) and (1.4.5) converge weakly to
a point in Ω and Γ, respectively.

We note that the restriction that JE1 is weakly sequentially continuous elimi-
nates some very important real Banach spaces. It is known that for lp spaces,
1 < p < ∞, Jlp is weakly sequentially continuous but JLp , 1 < p < ∞, p 6= 2
is not weakly sequentially continuous.

In Chapter 6 of this thesis, by dispensing with the condition that the nor-
malized duality map on E1, JE1 is weakly sequentially continuous, we construct
Halpern-type iterative algorithms and prove that the sequences generated by
these algorithms converge strongly to a point in Ω and Γ in a uniformly
smooth and 2-uniformly convex real Banach space.

1.5 Approximation of solutions of some equilib-
rium problems

Let E be a real Banach space with dual space E∗ and K be a nonempty closed
convex subset of E. Let h : K × K → R be a bifunction. The classical
equilibrium problem (EP) for a bifunction h is to find x∗ ∈ K such that

h(x∗, y) ≥ 0, ∀y ∈ K. (1.5.1)

We denote the set of solutions for problem (1.5.1) by EP (h) = {x∗ ∈ K :
h(x∗, y) ≥ 0, ∀y ∈ K}.
The classical equilibrium problem (EP ) includes (see [85] and [29]) as spe-
cial cases the monotone inclusion problems, saddle point problems, variational
inequality problems, minimization problems, optimization problems, vector
equilibrium problems, Nash equilibria in noncooperative games. Furthermore,
there are several other problems, for example, the complementarity problems
and fixed point problems, which can also be written in the form of the classi-
cal equilibrium problem. In other words, the classical equilibrium problem is
a unifying model for several problems arising from engineering, physics, statis-
tics, computer science, optimization theory, operations research, economics,
and many other fields.

A more robust and unifying equilibrium-type problem is the following: find
x∗ ∈ K such that

h(x∗, y) + ψ(y)− ψ(x∗) + 〈y − x∗, Bx∗〉 ≥ 0 ∀ y ∈ K, (1.5.2)

where h : K ×K → R is a bifunction, ψ : K → R∪ {∞} is a proper extended
real-valued function and B : K → E∗ is a nonlinear map. Problem (1.5.2) is
called the generalized mixed equilibrium problem. We denote the set of solutions
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of problem (1.5.2) by GMEP (h, ψ,B) = {x∗ ∈ K : h(x∗, y) + ψ(y)− ψ(x∗) +
〈y − x∗, Bx∗〉 ≥ 0 ∀ y ∈ K}.

The generalized mixed equilibrium problem contains as special cases: the clas-
sical equilibrium problem EP (h) (when ψ ≡ 0 ≡ B) studied by Fan [85], Blum
and Oettli [29] and a host of other authors, the classical variational inequality
problem (when h ≡ 0 ≡ ψ) studied by Stampacchia [156] and a host other
authors, the mixed equilibrium problem (MEP) (when B ≡ 0) studied by Ceng
and Yao [33], the generalized equilibrium problem (GEP) (when ψ ≡ 0) studied
by Takahashi and Takahashi [158] and a host of other authors, the generalized
variational inequality problem (GVIP) (when h ≡ 0), and the convex mini-
mization problem (when h ≡ 0 ≡ B).

A subset K of E is said to be a retract of E if there exists a continuous
map P : E → K such that Px = x for all x ∈ E. It is well known that
every nonempty, closed, convex subset of a uniformly convex Banach space E
is a retract of E (see e.g., Kopecká and Reich [112], for more information on
nonexpansive retracts and retractions). In what follows, we assume that K is
a retract of E and P : E → K is a nonexpansive retraction.

A map A : D(A) ⊂ E → E∗ is called

• monotone, if for all x, y ∈ D(A), we have that 〈x− y, Ax− Ay〉 ≥ 0.

• γ -inverse strongly monotone, if there exists a positive real number γ
such that for all x, y ∈ D(A), 〈x− y, Ax− Ay〉 ≥ γ‖Ax− Ay‖2.

It is easy to see that if A is γ- inverse strongly monotone, then A is Lipschitz
continuous with Lipschitz constant 1

γ
.

Let E be a smooth, strictly convex and reflexive real Banach space and let K
be a nonempty closed convex subset of E. Let G : K → 2E be any map. Define
the Lyapunov function φ : E × E → R by φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2,
for x, y ∈ E. (See e.g., Bo and Yi [30], Yi [174], Chang et al. [34], Butnariu et
al. [31]) A countable family of multi-valued nonself maps, Gi : K → 2E, i =
1, 2, ..., is said to be

• uniformly quasi-φ-nonexpansive if ∩∞i=1F (Gi) 6= ∅,

φ(p, ηx) ≤ φ(p, x) ∀ p ∈ ∩∞i=1F (Gi), x ∈ K, ηx ∈ Gi(PGi)
n−1x;

• uniformly quasi-φ-asymptotically nonexpansive if ∩∞i=1F (Gi) 6= ∅ and
there exists a sequence {kn} ⊂ [1,∞), kn ↓ 1 such that

φ(p, ηin) ≤ knφ(p, x) ∀ p ∈ ∩∞i=1F (Gi), x ∈ K, ηin ∈ Gi(PGi)
n−1x, n ≥ 1;

• uniformly totally quasi-φ-asymptotically nonexpansive if ∩∞i=1F (Gi) 6= ∅
and there exist nonnegative real sequences {υn}, {µn} with υn → 0, µn →
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0 (n → ∞) and a strictly increasing and continuous function ρ : R+ →
R+ with ρ(0) = 0 such that

φ(p, ηin) ≤ φ(p, x) + υnρ
[
φ(p, x)

]
+ µn ∀ p ∈ ∩∞i=1F (Gi), x ∈ K,

ηin ∈ Gi(PGi)
n−1x, n ≥ 1.

It is easy to see from the above definitions that a countable family of uniformly
quasi-φ-nonexpansive multi-valued nonself maps is a countable family of uni-
formly quasi-φ-asymptotically nonexpansive multi-valued nonself maps, and
a countable family of uniformly quasi-φ-asymptotically nonexpansive multi-
valued nonself maps is a countable family of uniformly totally quasi-φ-asymptotically
nonexpansive multi-valued nonself maps, but the converse need not be true.
A motivation for the study of totally quasi-φ-asymptotically nonexpansive self
or nonself maps is to unify various definitions of classes of maps associated with
the class of relatively nonexpansive self or nonself maps which are extensions,
to arbitrary real Banach spaces, of nonexpansive maps with nonempty fixed
point sets in Hilbert spaces; and also, to prove general convergence Theorems
applicable to all of these classes.

Recently, some iterative algorithms for approximating fixed points of self-maps
satisfying certain contractive conditions and zeros of monotone and monotone-
type operators have been studied extensively by various authors. These prob-
lems have also been applied to solve several nonlinear problems such as integral
equations of Hammerstein-type, variational inequality problems and equilib-
rium problems involving nonlinear maps (see e.g., Ofoedu and Malonza [132],
Zegeye et al. [179], Zegeye and Shahzad ([180], [178]), Wang et al. [169], Deng
[76] and the references contained in them).

For approximating a common element of set of solutions for a system of
generalized mixed equilibrium problems, the set of common fixed points of
a countable family of uniformly Lipschitzian and uniformly totally quasi-
φ-asymptotically nonexpansive self-maps and set of common zeros of a finite
family of inverse strongly monotone maps, Wang et al. [169] proposed the
following projection algorithm:

x0 ∈ K0 = K,

yn = ΠKJ
−1[Jxn − λAn+1xn],

zn = J−1
[
αn,0Jxn +

∞∑
i=1

αn,iJG
n
i yn
]
,

un = KΛM
rM,n

K
ΛM−1
rM−1,n ...K

Λ2
r2,n

KΛ1
r1,n

zn,

Kn+1 = {v ∈ Kn : φ(v, un) ≤ φ(v, xn) + ηn},
xn+1 = ΠKn+1x0, n ≥ 0.

The authors established in a 2-uniformly convex and uniformly smooth real
Banach space, strong convergence of the sequence generated by the above
algorithm to a solution of the problem they considered.
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We remark that this result of Wang et al. [169] is an improvement of several
recent results, for example, the results of Ofoedu and Malonza [132], Zhang
[176], Su et al. [157] to mention a few.

In order to dispense with the infinite sum
∑∞

i=1 αn,iJGiyn in the above algo-
rithm of Wang et al. [169], hence simplifying the algorithm; Deng [76] recently
studied the following relaxed hybrid shrinking iterative algorithm:

x0 ∈ K0 = K,

yn = ΠKJ
−1[Jxn − λAinxn],

zn = J−1[αinJxn + (1− αin)JGmn

(in)yn],

un ∈ K such that H(un, zn, y) ≥ 0 ∀y ∈ K,
Kn+1 = {v ∈ Kn : φ(v, un) ≤ φ(v, xn) + ηn},
xn+1 = ΠKn+1x0, n ≥ 0,

and proved strong convergence of the sequence of the above algorithm to a
common element of set of solutions for a system of generalized mixed equi-
librium problems, the set of common fixed points of a countable family of
uniformly Lipschitzian and closed totally quasi-φ-asymptotically nonex-
pansive self-maps and set of common zeros of an infinite family of inverse
strongly monotone maps.

It is worth noting that if the domain D(G) of the operator, G studied in the
papers discussed above is a proper subset of E and GmapsD(G) into E (which
is the case in several applications), then the iterative algorithms proposed in
the paper of Wang et al. [169], Deng [76], Ofoedu and Malonza [132], Zegeye
et al. [179], Zegeye and Shahzad ([180], [178]), may fail to be well defined (see
e.g., [110, 111, 42] for more details).

In [42], Chidume employed the concept of retraction to study nonexpansive
non-self maps as the generalization of nonexpansive self-maps. A number
of algorithms have also been proposed for approximating fixed points of certain
nonlinear non-self maps (see e.g., [107], [108], [109], and [146]). However,
little or none has been done for approximating common elements in the set of
common fixed points of non-self maps and solutions set of other nonlinear
problems.

It is our purpose in Chapter 7 of this thesis to construct iterative schemes
of Krasnoselkii-type and Halpern-type that approximate common elements in
the set of common fixed points of a countable family of equally continuous
and totally quasi-φ-asymptotically nonexpansive nonself maps, common zeros
of a countable family of inverse strongly monotone maps and a solution of a
system of generalized mixed equilibrium problems. The theorems proved in
this Chapter are significant improvements of the results of Deng [76], Wang et
al. [169], Bo and Yi [30], Ofoedu and Malonza [132] and results of a host of
other authors (see Remark 2 in Chapter 7 for more details).
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, lemmas and examples of some non-
linear mappings used in this thesis; most of which could be found in standard
monographs and papers of researchers working in this area of research for ex-
ample, Chidume [59], Cioranescu [74], Alber and Ryazantseva [3] and Berinde
[14].

2.1 Some of normed linear spaces
Definition 2.1.1 A normed space E is said to be uniformly convex if and only
if for all ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that for x, y ∈ E with
||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε, we have∥∥∥x+ y

2

∥∥∥ < 1− δ.

Definition 2.1.2 A normed space E is said to be strictly convex if and only
if for all x, y ∈ E, x 6= y, ||x|| = ||y|| = 1, we have that ||λx + (1 − λ)y|| <
1, ∀λ ∈ (0, 1).

Remark 2.1.1 Every uniformly convex space is strictly convex. However the
converse may not hold.

Remark 2.1.2 Geometrically, a normed space E is uniformly convex if and
only if the unit ball centred at the origin is “uniformly round”. We list some
examples of uniformly convex spaces.

1. Let E be the cartesian plane, R2 with the norm defined for each x =

(x1, x2) ∈ R2 by ||x||2 =
[
|x1|2+|x2|2

] 1
2 . Then R2 endowed with this norm

is uniformly convex. But the space R2 defined for each x = (x1, x2) ∈ R2

by ||x||1 = |x1|+|x2| and ||x||∞ = max |x1|, |x2| are not uniformly convex.
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2. Every real inner product space H is uniformly convex (see e.g., Chidume,
[59] p.163).

3. Lp (or lp) spaces, 1 < p <∞, are uniformly convex.

Definition 2.1.3 The modulus of convexity of a normed space E is the func-
tion δE : (0, 2]→ [0, 1] defined by

δE(ε) := inf
{

1−
∥∥x+ y

2

∥∥ : ||x|| = ||y|| = 1, ε = ||x− y||
}
,

Some of the properties of modulus of convexity are:

• The modulus of convexity δE is a non-decreasing function.

• The modulus of convexity is continuous (see e.g., V.I. Gurarri, [89]).

Proposition 2.1.1 A normed space is uniformly convex space if and only if
δE(ε) > 0 ∀ ε ∈ (0, 2].

Proof.
Let E be a uniformly convex space. Given ε > 0, there exists δ > 0 such that
δ ≤ 1 −

∥∥x+y
2

∥∥ for every x and y such that ||x|| = ||y|| = 1 and ε ≤ ||x − y||.
Therefore, δE(ε) > 0.
For the converse, assume δE(ε) > 0 for every ε ∈ (0, 2]. Fix ε ∈ (0, 2] and take
||x|| = ||y|| = 1 and ε ≤ ||x− y||, then

0 < δE(ε) ≤ 1−
∥∥x+ y

2

∥∥.
Thus,

∥∥x+y
2

∥∥ ≤ 1− δ with δ = δE(ε).

Definition 2.1.4 A normed space is called smooth if and only if for all x ∈ E
with ||x|| = 1, there exists a unique x∗ ∈ E∗ such that ||x∗|| = 1 and 〈x, x∗〉 =
||x||.

Recall that in any smooth space E, ρE(τ) ≤ τ for all τ ≥ 0, where ρE :
[0,∞)→ [0,∞) is the modulus of smoothness of E.

Definition 2.1.5 Let E be a normed linear space with dim(E) ≥ 2. The
modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) := sup
{ ||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1; ||y|| = τ

}
= sup

{ ||x+ τy||+ ||x− τy||
2

− 1 : ||x|| = 1; ||y|| = 1
}
.

Definition 2.1.6 A normed space E is said to be uniformly smooth if for all
ε > 0, there exists δ > 0 such that if ||x|| = 1 and ||y|| ≤ δ, then

||x+ y||+ ||x− y|| < 2 + ε||y||. (2.1.1)
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Definition 2.1.7 Let E be a Banach space and let J : E → E∗∗ be the canon-
ical injection from E into E∗∗, that is 〈J(x), f〉 = 〈f, x〉 , ∀ x ∈ E, f ∈ E∗.
Then E is said to be reflexive if J is surjective, i.e., J(E) = E∗∗.

Definition 2.1.8 Let E be a real normed linear space and p > 1, Then, the
generalized duality map Jp : E → 2E

∗ is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖p−1}, (2.1.2)

where 〈·, ·〉 is the duality pairing between elements of E and E∗.

In particular, for p = 2, we have from (2.1.2) that,

J2(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}. (2.1.3)

J2 is called the normalized duality map and it is simply denoted as J . Hence,
we make the following remark about J .

Remark 2.1.3 The following basic properties for Banach space E and for the
normalized duality mapping J can be found in Cioranescu, [74]:

(i) If E is an arbitrary Banach space, then J is monotone and bounded.

(ii) If E is strictly convex Banach space, then J is strictly monotone.

(iii) If E is a smooth Banach space, then J is single-valued and hemi-continuous,
i.e., J is continuous from the strong topology of E to the weak star topol-
ogy of E.

(iv) If E is a uniformly smooth Banach space, then J is uniformly continuous
on each bounded subset of E.

(v) If E is a reflexive and strictly convex Banach space with a strictly convex
dual E∗ and J∗ : E∗ → E is the normalized duality mapping in E∗, then
J−1 = J∗, JJ∗ = IE∗ and J∗J = IE.

(vi) A Banach space E is uniformly smooth if and only if E∗ is uniformly
convex. If E is uniformly smooth, then it is smooth and reflexive.

(vii) If E = Lp space (2 ≤ p <∞), then J : Lp → L∗p is Lipschitz.

(viii) If E = Lp space (1 < p < 2), then J : Lp → L∗p is Hölder continuous.
i.e., ∀x, y ∈ E, ||Jx − Jy|| ≤ M ||x − y||α, for some constants M > 0
and α ∈ (0, 1].

Remark 2.1.4 If E = Lp spaces 1 < p < ∞, the formulas for the normal-
ized duality map J : E → E∗ is known precisely (see e.g., Alber [3], p. 36,
Cioranescu [74]), and is given by

Jx = ||x||2−plp
|x|p−2x.
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Remark 2.1.5 If E = lp spaces, 1 < p < ∞, the formula for the normalized
duality map J : E → E∗ is known precisely (see Alber [3], p. 36) and is given
by

Jx = ||x||2−plp
(|x1|p−2x1, |x2|p−2x2, ...),

for any x = (x1, x2, ...) ∈ lp. For example, let x̄ = (1, 1
2
, 1

3
, ...) ∈ l3. Then,

J(x̄) =
1( ∞∑

n=1

1

n3

) 1
3

(
1,

1

2
,
1

3
, ...
)
.

Lemma 2.1.1 (Xu, [167]) Let E be a uniformly convex real Banach space.
For arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, there exists a
continuous strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) =
0, such that for every x, y ∈ Br(0), the following inequality is satisfied

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||), λ ∈ (0, 1)

.

Lemma 2.1.2 (Xu, [167]) Let p > 1 be a given real number. Then the fol-
lowing are equivalent in a Banach space:

1. E is p-uniformly convex;

2. There is a constant c > 0 such that for every x, y ∈ E and jx ∈ Jp(x),
The following inequality holds: ‖x+ y‖p ≥ ‖x‖p + p〈y, jx〉+ c‖y‖p;

3. There is a constant c2 > 0 such that for every x, y ∈ E and jx ∈
Jp(x), jy ∈ Jp(y), the following inequality holds: 〈x − y, jx − jy〉 ≥
c2‖x− y‖p.

Lemma 2.1.3 (Xu, [167]) Let E be a q-uniformly smooth real Banach space.
Then for any x, y ∈ E, there exists Cq > 0 such that

||x− y||q ≤ ||x||q − q〈y, Jq(x)〉+ Cq||y||q.

Lemma 2.1.4 (Xu, [167]) Let E be a 2-uniformly convex real Banach space.
Then for all x, y ∈ E, the inequality ||x − y|| ≤ 2

c2
||Jx − Jy|| holds, where J

is the normalized duality map on E and 0 < c2 ≤ 1 is the 2-uniformly convex
constant of E.

2.2 Some classes of nonlinear maps
In this section, unless otherwise specified, we let E be a real Banach space
with dual E∗. Let T : D(T ) ⊂ E → R(T ) ⊂ E be a mapping, where D(T )
denotes the domain of T and R(T ) denotes the range of T .
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Definition 2.2.1 A mapping T with domain D(T ) and range R(T ) in E is
called a contraction if and only if there exists a constant k ∈ [0, 1) such that
for all x, y ∈ D(T ),

||Tx− Ty|| ≤ k||x− y||.

For k = 1, T is called a nonexpansive mapping.
Observe that every contraction is nonexpansive, but the converse is false.

Let D(T ) and R(T ) denote the domain and range of a mapping T , respectively.

Definition 2.2.2 A mapping T : D(T ) ⊂ E → R(T ) ⊂ E is called pseudo-
contractive if and only if for every x, y ∈ D(T ) and r > 0, the following
inequality holds:

||x− y|| ≤ ||(1 + r)(x− y)− r(Tx− Ty)||.

Proposition 2.2.1 Let E be a real normed space. Then, the duality map
J : E → 2E

∗ is well defined. That is, for every x ∈ E, Jx 6= ∅.

Proof: Let x ∈ E. If x = 0, take x∗ = 0 and the argument follows. Suppose
x 6= 0, then x||x|| 6= 0. By consequences of Hahn Banach theorem, there exists
u∗ ∈ E∗ such that ||u∗|| = 1 and 〈u∗, x||x||〉 = ||x||2.
Now,

〈||x||u∗, x〉 = 〈u∗, x||x||〉 = ||x||2. (2.2.1)

Take x∗ = ||x||u∗. Then, x∗ ∈ Jx. Hence, Jx 6= ∅ ∀x ∈ E.

Definition 2.2.3 (Monotone mapping) A map A : D(A) ⊂ E → 2E
∗ is

said to be monotone if ∀ x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay, we have

〈x∗ − y∗, x− y〉 ≥ 0.

From the definition above, a single-valued map A : D(A) ⊂ E → E∗ is mono-
tone if

〈Ax− Ay, x− y〉 ≥ 0, ∀ x, y ∈ D(A).

Definition 2.2.4 (Accretive mapping) A map A : D(A) ⊂ E → 2E is said
to be accretive if ∀ x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay, there exists j(x − y) ∈
J(x− y) such that

〈x∗ − y∗, j(x− y)〉 ≥ 0.

From the definition above, a single-valued map A : D(A) ⊂ E → E is accretive
if

〈Ax− Ay, j(x− y)〉 ≥ 0, ∀ x, y ∈ D(A).

Definition 2.2.5 A map A : D(A) ⊂ E → E is called strongly accretive if
there exists k ∈ (0, 1) such that ∀ x, y ∈ D(A), there exists j(x− y) ∈ J(x− y)
such that

〈Ax− Ay, j(x− y)〉 ≥ k||x− y||2.
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Definition 2.2.6 A map A : D(A) ⊂ E → E is γ-inverse strongly accretive
if ∀ x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ γ||Ax− Ay||2,

for some γ > 0.

Theorem 2.2.1 (Kato,1967) Let E be a real Banach space with dual E∗.
Then, the following are equivalent: for all x, y ∈ E,
1. ||x|| ≤ ||x+ λy||, λ > 0,
2. there exists j(x) ∈ J(x) such that 〈y, j(x)〉 ≥ 0.

As a consequence of this, the pseudo-contractive mappings can be defined in
terms of the normalized duality mappings as follows:

Definition 2.2.7 A mapping T : D(T ) ⊂ E → R(T ) ⊂ E is called pseudo-
contractive if and only if for every x, y ∈ D(T ), there exists j(x−y) ∈ J(x−y)
such that

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2. (2.2.2)

The following proposition shows that every nonexpansive mapping is pseudo-
contractive.

Proposition 2.2.2 Let T : D(T ) ⊂ E → R(T ) ⊂ E be a nonexpansive
mapping, then the mapping T is pseudo-contractive.

Proof: Let T with domain D(T ) and range R(T ) in E be a nonexpansive
mapping, then for all r > 0 and x, y ∈ D(T ),

||(1 + r)(x− y)− r(Tx− Ty)|| ≥ (1 + r)||x− y|| − r||Tx− Ty||
≥ (1 + r)||x− y|| − r||x− y||
= ||x− y||.

Hence, T is pseudo-contractive.
The converse of this proposition is however, not true. To see this, we consider
the following example.

Example 2.2.1 Consider the map T : [0, 1] → R defined by, Tx = 1 − x 2
3 .

Then, T is a pseudo-contractive but not nonexpansive.
To see that T is pseudo-contractive, let x, y ∈ [0, 1], r > 0, then

||(1 + r)(x− y)− r(Tx− Ty)|| = ||(1 + r)(x− y)− r(1− x
2
3 − 1 + y

2
3 )||

= ||x− y + r(x+ x
2
3 − (y + y

2
3 ))||
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Observe that A : [0, 1] ⊂ R→ R defined by Ax = x+ x
2
3 is monotone i.e., for

all x, y ∈ [0, 1],

〈Ax− Ay, x− y〉 = 〈x− y + (x
2
3 − y

2
3 ), x− y〉

= ||x− y||2 + 〈x
2
3 − y

2
3 , x− y〉

≥ 0.

Hence, by Kato’s theorem, T is pseudo-contractive.
We next show that T is not nonexpansive. Suppose T is nonexpansive, i.e., for
all x, y ∈ [0, 1], ||Tx− Ty|| ≤ ||x− y||.
Take x = 0 and y =

1

8
, then

||Tx− Ty|| = ||1− (1− 1

4
)|| = 1

4
≤ 1

8

This is a contradiction. Hence, T is not nonexpansive.

2.3 Some useful tools
Definition 2.3.1 A continuous, strictly increasing function ω: (0,∞)→(0,∞)
is called modulus of continuity if ω(t)→ 0 as t→ 0. It follows that a function
is uniformly continuous if and only if it has a modulus of continuity.

In the sequel, we shall need the following definitions and results. Let E be a
smooth real Banach space with dual E∗. The function φ : E ×E → R defined
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E, (2.3.1)

where J is the normalized duality mapping from E into E∗ will play a central
role in the sequel. It was introduced by Alber and has been studied by Alber
[1], Alber and Guerre-Delabriere [2], Kamimura and Takahashi [101], Reich
[144] and a host of other authors. If E = H, a real Hilbert space, equation
(2.3.1) reduces to φ(x, y) = ‖x − y‖2 ∀x, y ∈ H. From the definition of the
function φ, we have that

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

≤ ‖x‖2 + 2||x||||y||+ ||y||2

= (||x||+ ||y||)2,

also, we have

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

≥ ‖x‖2 − 2||x||||y||+ ||y||2

= (||x|| − ||y||)2.
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Then, combining the two inequalities, we obtain

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 ∀x, y ∈ E. (2.3.2)

Define a map V : X ×X∗ → R by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2. (2.3.3)

From this definition, we obtain

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

= ||x||2 − 〈x, J(J−1x∗)〉+ ‖J−1x∗‖2

= φ(x, J−1(x∗)).

Thus,

V (x, x∗) = φ(x, J−1(x∗)) ∀ x ∈ X, x∗ ∈ X∗. (2.3.4)

Lemma 2.3.1 (see e.g., [3], p.36) Let E be a reflexive strictly convex Banach
space with strictly convex dual space E∗. If Jp : E → E∗ and J∗q : E∗ → E
are the duality mappings on E and E∗, respectively, such that 1

p
+ 1

q
= 1, then

J−1
p = J∗q , for p ∈ (0,∞).

Lemma 2.3.2 Let f : E → R ∪ {+∞} be a function defined by

f(x) =
1

2
||x||2 ∀x ∈ E.

Then, for each x ∈ E, ∂f(x) = J(x), where J is the duality map on E.

Proof:
Let x∗ ∈ J(x). Then, for any y ∈ E, we have

〈y − x, x∗〉 = 〈y, x〉 − ||x||2

≤ ||y||||x|| − ||x||2

≤ 1

2
||y||2 − 1

2
||x||2

= f(y)− f(x).

Thus, we have x∗ ∈ ∂f(x).
Conversely, for x∗ ∈ ∂f(x), we have

〈y − x, x∗〉 ≤ f(y)− f(x) ∀ y ∈ E.

For t ∈ (0, 1), set y = x+ ty, then we have

〈y, x∗〉 ≤ 1

2t
(||x+ ty||2 − ||x||2) ≤ ||x||||y||+ t

2
||y||2.
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As t→ 0+, we have 〈y, x∗〉 ≤ ||x||||y||, which implies ||x∗|| ≤ ||x||. Also, using
the fact that x∗ ∈ ∂f(x) and setting y = x− tx, t ∈ (0, 1), we have

2t〈−x, x∗〉 ≤ ||x− tx||2 − ||x||2 = (t2 − 2t)||x||2.

So, we have (2− t)||x||2 ≤ 2〈x, x∗〉. Now, as t→ 0+ we obtain

||x||2 ≤ 〈x, x∗〉 ≤ ||x||||x∗||,

which implies ||x|| ≤ ||x∗||.
Therefore, we have ||x|| = ||x∗|| and 〈x, x∗〉 = ||x||2. Thus, x∗ ∈ J(x).
Hence, ∂f(x) = J(x).

Lemma 2.3.3 (Alber, [1]) Let X be a reflexive striclty convex and smooth
Banach space with X∗ as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗) (2.3.5)

for all x ∈ X and x∗, y∗ ∈ X∗.

Proof:
For arbitrary x ∈ E, x∗, y∗ ∈ E∗, we have

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2

= ||x||2 − 2〈x, x∗ + y∗〉+ ||x∗ + y∗||2 + ||x∗||2 − ||x∗ + y∗||2 + 2〈x, y∗〉
= V (x, x∗ + y∗) + ||x∗||2 − ||x∗ + y∗||2 + 2〈x, y∗〉.

Using the subdifferential inequality and the fact that ∂(1
2
||·||2) = J∗ = J−1 (see

lemmas 2.3.1 and 2.3.2), where ‖ · ‖∗ and J∗ are the norm and the normalized
duality map on E∗ respectively. Thus, we have

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗, y∗〉 − 2〈−x, y∗〉
= V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉.

Hence, this completes the proof.

Lemma 2.3.4 (Kamimura and Takahashi, [101]) Let X be a real smooth
and uniformly convex Banach space, and let {xn} and {yn} be two sequences
of X. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then
‖xn − yn‖ → 0 as n→∞.

Lemma 2.3.5 (Alber and Ryazantseva, [3]) Let X be a uniformly convex
Banach space. Then, for any R > 0 and any x, y ∈ X such that ||x|| ≤
R, ||y|| ≤ R, the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX(c−1
2 ||x− y||),

where c2 = 2 max{1, R}, 1 < L < 1.7.
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Observe that from lemma 2.3.5, we obtain

||x− y|| ≤ c2δ
−1
X (2L||Jx− Jy||||x− y||). (2.3.6)

Lemma 2.3.6 (Alber and Ryazantseva, [3]) Let E be a uniformly convex
and smooth Banach space. Then for any x, y ∈ E such that ||x|| ≤ R, ||y|| ≤ R,
the following inequality holds:

〈Jx− Jy, x− y〉 ≤ 8||Jx− Jy||2 + c1ρE∗(||Jx− Jy||),

where c1 = 8 max{L,R} and ρE∗ : [0,∞) → [0,∞) is the modulus of smooth-
ness of E∗.

Lemma 2.3.7 (Alber, [1]) Let C be nonempty closed convex subset of a
smooth Banach space E, x0 ∈ C and x ∈ E. Then, x0 = ΠCx if and only
if 〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.3.8 (Alber, [1]) Let E be a reflexive, strictly convex and smooth
Banach space, let C be a nonempty closed convex subset of E and let x ∈ E.
Then, φ(y,ΠCx) +φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C, where ΠC is the generalized
projection of E onto C.

Lemma 2.3.9 Let E be a 2-uniformly convex and smooth Banach space. Then,
for every x, y ∈ E, φ(x, y) ≥ c1||x − y||2, where c1 > 0 is the 2-uniformly
convexity constant of E.

Lemma 2.3.10 (Tan and Xu, [164]) Let {an} be a sequence of non-negative
real numbers satisfying the following relation:

an+1 ≤ an + σn, n ≥ 0, (2.3.7)

such that
∑∞

n=1 σn < ∞. Then, lim
n→∞

an exists. If, in addition, the sequence
{an} has a subsequence that converges to 0, then the sequence {an} converges
to 0.

Lemma 2.3.11 (Chidume, [59]) Let E be a uniformly convex real Banach
space. For arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, there exists
a continuous strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), the following inequalities is satisfied

〈Jx− Jy, x− y〉 ≥ g(||x− y||),

where J is the single-valued normalized duality map.
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Lemma 2.3.12 (Chidume, [67]) Let E be uniformly convex real Banach space.
For arbitrary d > 0, let Bd := {x ∈ E : ||x|| ≤ d}. Then, for arbitrary
x, y ∈ Bd(0), the following inequality holds:

φ(x, y) ≤ ||x− y||2 + ||x||2. (2.3.8)

Lemma 2.3.13 (Xu and Roach, [167]). Let E be a uniformly smooth real
Banach space. Then, there exist constants D and C such that for all x, y ∈
E, j(x) ∈ J(x), the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+Dmax
{
‖x‖+ ‖y‖, 1

2
C
}
ρE(‖y‖),

where ρE denotes the modulus of smoothness of E.

Lemma 2.3.14 Let E be a normed real linear space. Then, the following
inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉 ∀ j(x+ y) ∈ J(x+ y), ∀ x, y ∈ E. (2.3.9)

Lemma 2.3.15 (Xu, [166]) Let E be a uniformly convex real Banach space.
For arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r}. Then, there exists a
continuous strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), the following inequalities is satisfied

〈Jx− Jy, x− y〉 ≥ g(||x− y||),

where J is the single-valued normalized duality map.
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CHAPTER 3

Approximation of zeros of m-accretive maps with
application to Hammerstein integral equations

3.1 Introduction
In this chapter, we first used a new important result concerning accretive oper-
ators which was recently proved by Chidume et al. [60] to prove a strong con-
vergence to a zero of an m-accretive map in a uniformly smooth real Banach
space. Furthermore, the convergence result obtained is applied to approxi-
mate a solution of a Hammerstein integral equation. Finally, some numerical
examples are presented to illustrate the convergence of the sequence of our
algorithm.

We shall use the following lemma in the sequel.

Lemma 3.1.1 (Fitzpatrick, Hess and Kato, [86]) Let E be a real reflex-
ive Banach space, A : D(A) ⊂ E → E be an accretive mapping. Then A is
locally bounded at any interior point of D(A).

Lemma 3.1.2 (Chidume et al. [60]) Let E be a reflexive Banach space
and A : E → 2E be an accretive map with 0 ∈ IntD(A). Then, for any
M > 0, there is exists C > 0 such that:

(i) (y, v) ∈ G(A);

(ii) 〈v, j(x)− j(x− y)〉 ≤M(2‖x‖+ ‖y‖);

(iii) ‖y‖ ≤M,

imply ‖v‖ ≤ C.
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3.2 Main results
In Theorem 3.2.1 below, {λn} and {θn} are real sequences in (0, 1) satisfying
the following conditions:

(i) limn→∞ θn = 0, {θn‖ is decreasing;

(ii) limn→∞

[ θn−1

θn
− 1

λnθ

]
= 0;

(iii)
ρE(M0λn)

M0λ
≤ γ0θn,

for some constants γ0 > 0 andM0 > 0; where ρE is the modulus of smoothness.

Prototypes for {λn} and {θn} are:

λn =
1

(n+ 1)a
and θn =

1

(n+ 1)b
,

where a+ b < 1 and 0 < b < a (see e.g., Chidume and Idu, [70]).

We now prove the following theorem.

Theorem 3.2.1 Let E be a uniformly smooth real Banach space and let A :
E → 2E be a multi-valued m-accretive operator with D(A) = E such that the
inclusion 0 ∈ Au has a solution. For arbitrary x1 ∈ E, define a sequence {xn}
by

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1. (3.2.1)

Then the sequence {xn} converges strongly to a solution of the inclusion 0 ∈
Au.

Proof:
First, we show that {xn} is bounded. Let x∗ be a solution of the inclusion
0 ∈ Au. Then there exists r > 0 such that x1 ∈ B(x∗, r

2
) := {x ∈ E :

‖x − x∗‖ ≤ r
2
}. Define B = B(x∗, r). Then for any x ∈ B, we have that

‖x‖ ≤ r + ‖x∗‖.
Let x, y ∈ E and uy ∈ Ay be arbitrary. Since A is locally bounded at
0 ∈ E = int(D(A)), there exist δ > 0, K > 0 such that ‖ue‖ ≤ K, for all
w ∈ B(0, δ), uw ∈ Aw. Therefore, we have,

〈uy, j(x)− j(x− y)〉 ≤ ‖uy‖‖j(x)− j(x− y)‖
≤ K‖j(x)− j(x− y)‖, for y ∈ B(0, δ)

≤ K(2‖(x)‖+ ‖y‖), for ‖y‖ ≤ δ.

Define

M := max{r+‖x∗‖, δ,K}. So, ‖y‖ ≤M and 〈uy, j(x)−j(x−y)〉 ≤M(2‖(x)‖+‖y‖),
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which implies, by Lemma 3.1.2, that there exists L > 0 such that ‖uy‖ ≤ L.

Now, define the following:

M0 := sup{‖ux + θ(x− x1)‖ : x ∈ B, u ∈ Ax; 0 < θ < 1}+ 1.

M1 := sup
{
Dmax

{
‖x‖+ λM0,

C

2

}
: x ∈ B, λ ∈ (0, 1)

}
.

γ0 :=
1

2
min

{
1,

r2

4M1M0

}
,

where D and C are the constants in Lemma 2.3.13.

Claim: xn ∈ B, ∀ n ≥ 1.

We prove this by induction. By construction, x1 ∈ B. Assume xn ∈ B for
some n ≥ 1. We prove xn+1 ∈ B. Using the recursion formula (3.2.1), Lemma
2.3.13, the fact that h(τ) := ρE(τ)

τ
is non-decreasing, and denoting 0 ∈ Ax∗ by

0∗, we have

‖xn+1 − x∗‖2 = ‖xn − x∗ − λn(un + θn(xn − x1))‖2

≤ ‖xn − x∗‖2 − 2λn〈un + θn(xn − x1), j(xn − x∗)〉

+Dmax
{
‖xn − x∗‖+ λn‖un + θn(xn − x1)‖, C

2

}
× ρE(λn‖un + θn(xn − x1)‖)

≤ ‖xn − x∗‖2 − 2λn〈un − 0∗, j(xn − x∗)〉 − 2λnθn〈xn − x1.j(xn − x∗)〉
+M1ρE(λn‖un + θn(xn − x1)‖)

≤ ‖xn − x∗‖2 − 2λnθ‖xn − x∗‖2 + λnθn(‖x∗ − x1‖2 + ‖xn − x∗‖2)

+ +M1ρE(λn‖un + θn(xn − x1)‖)

≤ (1− λnθn)‖xn − x∗‖2 + λnθn‖x∗ − x1‖2 +M1
ρE(λnM0)

λnM0

λnM0

≤ (1− λnθn)‖xn − x∗‖2 + λnθn‖x∗ − x1‖2 +M1γ0λnθnM0

≤
(

1− 1

2
λnθn

)
r2 ≤ r2.

Hence, xn ∈ B ∀ n ≥ 1, and so {xn} is bounded. The rest of the proof
of the convergence of {xn} to a zero of A follows the same method as in the
proof of Theorem 3.2 in [44].

3.3 Applications to Hammerstein integral equa-
tions

Definition 3.3.1 Let Ω ⊂ Rn be bounded. Let k : Ω × Ω → R and f :
Ω×R→ R be measurable real-valued functions. An integral equation (generally
nonlinear) of Hammerstein-type has the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (3.3.1)
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where the unknown function u and inhomogeneous function w lie in a Banach
space E of measurable real-valued functions.

By simple transformation (3.3.1) can put in the form

u+KFu = w. (3.3.2)

which, without loss of generality can be written as

u+KFu = 0. (3.3.3)

Interest in Hammerstein integral equations stems mainly from the fact that sev-
eral problems that arise in differential equations, for instance, elliptic bound-
ary value problems whose linear part posses Green’s function can, as a rule, be
transformed into the form (3.3.1) (see e.g., Pascali and Sburian [134], chapter
p. 164).

Many iterative methods for approximating solutions of problem (3.3.3) have
been studied extensively (see e.g., Chidume and Zegeye [46, 47], Chidume and
Djitte [48], Ofoedu and Onyi [132], Shehu [154], Chidume and Idu [70], Djitte
and Sene [80], Chidume and Shehu, [73], Chidume and Bello [72]) and the
references therein.

We shall apply Theorem 3.2.1 to approximate a solution of problem (3.3.3).
To do this, the following lemma would be needed in what follows.

Lemma 3.3.1 (Barbu, [11]) Let E be a real Banach space, A be m-accretive
set of E × E and let B : E → E be a continuous, m-accretive operator with
D(B) = E. Then A+B is m-accretive.

Lemma 3.3.2 Let E be a uniformly convex and uniformly smooth real Banach
space and X = E × E. Let F,K : E → E be m-accretive mappings. Let
A : X → X be defined by A([u, v]) = [Fu−v,Kv+u]. Then, A is m-accretive.

Proof:
Define S, T : E × E → E × E as

S[u, v] = [Fu,Kv] T [u, v] = [−v, u].

Then A = S + T . It is easy to verify that S is m-accretive and that T is
m-accretive, continuous and D(T ) = E. Hence, by Lemma 3.3.1, A is m-
accretive.

Remark 3.3.1 We remark that for A defined in Lemma 3.3.2, [u∗, v∗] is a
zero of A if and only if u∗ solves (3.3.3), where v∗ = Fu∗.

We now prove the following theorem.
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Theorem 3.3.1 Let X be a uniformly smooth and uniformly convex real Ba-
nach space. Let F, K : X → X be m-accretive mappings. Let E := X × X
and A : E → E be defined by A([u, v]) := [Fu − v,Kv + u]. For arbitrary
x1, u1 ∈ E, define the sequences {un} in E by

un+1 = un − λnAun − λnθn(un − x1), n ≥ 1, (3.3.4)

Assume that the equation u + KFu = 0 has a solution. Then, the sequences
{un}∞n=1 converge strongly to a solution of u+KFu = 0.

Proof:
By Lemma 3.3.2, E is uniformly convex and uniformly smooth, and by Lemma
3.3.1, A is m-accretive. Hence, the conclusion follows from Theorem 3.2.1 and
Remark 3.3.1.

Theorem 3.3.1 can also be stated as follows.

Theorem 3.3.2 Let X be a uniformly smooth and uniformly convex real Ba-
nach space and let F, K : X → X, bem-accretive mappings. For (x1, y1), (u1, v1) ∈
X ×X, define the sequences {un} and {vn} in E, by

un+1 = un − λn(Fun − vn)− λnθn(un − x1), n ≥ 1,

vn+1 = vn − λn(Kvn + un)− λnθn(vn − y1), n ≥ 1.

Assume that the equation u + KFu = 0 has a solution. Then, the sequences
{un}∞n=1 and {vn}∞n=1 converge strongly to u∗ and v∗, respectively, where u∗ is
the solution of u+KFu = 0 with v∗ = Fu∗.

3.4 Numerical Experiment
In this section, we shall numerically demonstrate the convergence of the se-
quence generated by the algorithm proposed in this paper. We shall also
investigate the proximal point algorithm and some of its modifications.

Example 3.4.1 Let E = R and Ax = 4x. Then, A is accretive and 0 ∈
A−1(0). Taking λn = 1

(n+1)0.2
, and θn = 1

(n+1)0.25
we obtain the following table

and graph of |xn| against number of iterations, where {xn} is the sequence
generated by the algorithm for approximating solutions of Au = 0, assuming
existence.

No of iterations Initial Points |xn| Time (s)
189 2 0.12506344 0.1206655502319336
198 2 0.1247684 0.1018977165222168
600 0.5 0.02405017] 0.10132288932800293
944 -0.5 0.02157754 0.09952473640441895
1999 1.5 0.05406199 0.12050509452819824
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Example 3.4.2 Let u =

[
u1

u2

]
and v =

[
v1

v2

]
. Let F =

[
3 1
−1 8

]
and K =[

7 −2
2 5

]
. Taking λn = 1

(n+1)0.2
, and θn = 1

(n+1)0.25
, and the initial points

u =

[
2
5

]
and v =

[
2
1

]
, we obtain the following graph of |un| against number

of iterations, where {un} is the sequence generated by Algorithm (3.3.4) for
approximating solutions of u+KFu = 0, assuming existence.

Remark 3.4.1 We observe that from the above diagrams, Algorithm 3.1 is
more desirable than Algorithms 1.4 and 1.5.

All the results obtained in this chapter are results obtained in the following
paper:
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C.E. Chidume,U.V. Nnyaba, O.M. Romanus and A. Adamu; Approximation
of zeros of m-accretive mappings, with applications to Hammerstein integral
equations (to appear).
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CHAPTER 4

Approximation of solutions of variational inequality
problems of generalized Phi-strongly monotone maps with

applications

4.1 Introduction
In this chapter, we construct a new iterative algorithm and prove that the
sequence generated by the algorithm converges strongly to a solution of vari-
ational inequality problem, V I(A,∩Ni=1F (Ti)) in a uniformly smooth and uni-
formly convex real Banach space, where A : E → E∗ is a generalized Φ-strongly
monotone and bounded map and let Ti : C → E, i = 1, 2, 3, ..., N is a finite
family of quasi-φ-nonexpansive maps such that ∩Ni=1F (Ti) 6= ∅. Furthermore,
results obtained are applied to a convex optimization problem. Finally, we
consider a family {Ti}Ni=1 of maps where for each i, Ti maps E into its dual
space E∗ and prove a strong convergence theorem for V I(A,∩Ni=1FJ(Ti)), where
FJ(Ti) is the set of J-fixed points of Ti.

We shall using the following lemma in this chapter.

Lemma 4.1.1 (Alber and Ryazantseva, [3]) Let E be a uniformly convex
Banach space. Then, for any R > 0 and any x, y ∈ E such that ||x|| ≤
R, ||y|| ≤ R, the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δE(c−1
2 ||x− y||),

where c2 = 2 max{1, R}, 1 < L < 1.7, δE is the modulus of convexity of E.

Observe that from lemma 4.1.1, we obtain

||x− y|| ≤ c2δ
−1
E

(
2L||Jx− Jy||||x− y||

)
. (4.1.1)
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4.2 Main result
In Theorem 4.2.1 below, the sequence {θn} in (0, 1) satisfies the following
conditions:

(i) lim
n→∞

θn = 0; (ii)
∞∑
n=1

θn =∞; (iii)
∞∑
n=1

θnδ
−1
E (2KLMθn) <∞;

(iv) c2δ
−1
E (2KLMθn) ≤ γ0,

where δE is the modulus of convexity of E and M , L, K, γ0 are some positive
constants.

Theorem 4.2.1 Let E be a uniformly convex and uniformly smooth real Ba-
nach space and E∗ be its dual. Let A : E → E∗ be a generalized Φ-strongly
monotone and bounded map and let Ti : E → E, i = 1, 2, 3, ..., N be a finite
family of quasi-φ-nonexpansive maps such that Q := ∩Ni=1F (Ti) 6= ∅. Let {xn}
be a sequence in E defined iteratively by x1 ∈ E,

xn+1 = J−1(J(T[n]xn)− θnA(T[n]xn)), ∀n ≥ 1,

where T[n] := Tn mod N . Assume V I(A,Q) 6= ∅, then {xn} converges strongly
to some x∗ ∈ V I(A,Q).

Proof:
Since V I(A,Q) 6= ∅, let x∗ ∈ V I(A,Q) and let δ > 0 be arbitrary but fixed.
Then, there exists r > 0 such that max{φ(x∗, x1), 4δ2 + ||x∗||2} ≤ r. Define

M : = sup{||A(T[n]x)|| : ||x|| ≤
√
r + ||x∗||}+ 1,

γ0 : = min
{

1, δ,
Φ(δ)

2Mc2

}
.

We first show that {xn} is bounded.
Claim: φ(x∗, xn) ≤ r, ∀ n ≥ 1. We proceed by induction. By construction,
φ(x∗, x1) ≤ r. Assume φ(x∗, xn) ≤ r for some n ≥ 1. We now show that
φ(x∗, xn+1) ≤ r. Suppose for contradiction that it is not true, i.e., suppose
φ(x∗, xn+1) > r. Then, using lemma 2.3.3 with y∗ = θnA(T[n]xn), quasi-φ-
nonexpansiveness of Ti and the fact that x∗ ∈ V I(A,Q) we have that

r < φ(x∗, xn+1) = V
(
x∗, J(T[n]xn)− θnA(T[n]xn)

)
≤ φ(x∗, T[n]xn)− 2θn〈J−1(J(T[n]xn)

−θnA(T[n]xn))− x∗, A(T[n]xn)〉
≤ φ(x∗, xn)− 2θn〈T[n]xn − x∗, A(T[n]xn)〉
−2θn〈xn+1 − T[n]xn, A(T[n]xn)〉

= φ(x∗, xn)− 2θn〈T[n]xn − x∗, A(T[n]xn)− A(x∗)〉
−2θn〈T[n]xn − x∗, A(x∗)〉 − 2θn〈xn+1 − T[n]xn, A(T[n]xn)〉

≤ φ(x∗, xn)− 2θn〈T[n]xn − x∗, A(T[n]xn)− A(x∗)〉
+2θn‖xn+1 − T[n]xn‖‖A(T[n]xn)‖.
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Using the fact that A is generalized Φ-strongly monotone and inequality (4.1.1)
we obtain:

r < φ(x∗, xn+1)

≤ φ(x∗, xn)− 2θnΦ(‖T[n]xn − x∗‖) + 2Mc2θnδ
−1
E (2LKMθn). (4.2.1)

Furthermore, ‖xn+1 − T[n]xn‖ ≤ c2δ
−1
E (2LMKθn), implies

‖xn+1 − x∗‖ − ‖T[n]xn − x∗‖ ≤ c2δ
−1
E (2LMKθn),

which yields

‖T[n]xn − x∗‖ ≥ ‖xn+1 − x∗‖ − c2δ
−1
E (2LMKθn). (4.2.2)

From lemma 2.3.12, we have

r < φ(x∗, xn+1) ≤ ||xn+1 − x∗||2 + ||x∗||2. (4.2.3)

Using the choice of r, we obtain from inequality (4.2.3) that

||xn+1 − x∗||2 > r − ||x∗||2 ≥ 4δ2 + ||x∗||2 − ||x∗||2.

Hence,

||xn+1 − x∗|| ≥ 2δ.

Substituting into inequality (4.2.2) and using condition (iv) and choice of γ0,
we obtain

||T[n]xn − x∗|| ≥ 2δ − c2δ
−1
E (2LMKθn) ≥ 2δ − γ0 ≥ δ.

Since Φ is strictly increasing, we obtain

Φ(||T[n]xn − x∗||) ≥ Φ(δ). (4.2.4)

Substituting into inequality (4.2.1) and using condition (iv) and the choice of
γ0 we have that

r < φ(x∗, xn+1) ≤ φ(x∗, xn)− 2θnΦ(δ) + 2Mc2θnδ
−1
E (2LKMθn)

≤ r − 2θnΦ(δ)) + 2Mc2θnγ0 ≤ r − 2θnΦ(δ)) + θnΦ(δ)) < r.

This is a contradiction. Therefore, the claim holds. Hence, the sequence {xn}
is bounded.
We show that the sequence {xn} converges strongly to x∗. By the same method
of computation as before, we have that

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2θnΦ(||T[n]xn − x∗||)
+2Mc2θnδ

−1
E (2LKMθn) (4.2.5)

≤ φ(x∗, xn) + 2Mc2θnδ
−1
E (2LKMθn).
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By using condition (ii) and applying lemma 2.3.10 to the last inequality, we
obtain that limφ(x∗, xn) exists. Also, from inequality (4.2.5), we have that

2θnΦ(||T[n]xn − x∗||) ≤ φ(x∗, xn)− φ(x∗, xn+1) + 2Mc2θnδ
−1
E (2LKMθn).

Claim: lim inf Φ(||T[n]xn − x∗||) = 0.
Suppose not. i.e., suppose lim inf Φ(||T[n]xn−x∗||) := a > 0. Then, there exists
an integer N0 > 0 such that for all integers n ≥ N0, Φ(||T[n]xn − x∗||) >

a

2
.

Hence, using condition (ii) and summing, we have that:

a
∞∑
n=1

θn ≤
∞∑
n=1

(
φ(x∗, xn)− φ(x∗, xn+1)

)
+ 2

∞∑
n=1

Mc2θnδ
−1
E (2LKMθn) <∞,

contradicting the hypothesis that
∞∑
n=1

θn = ∞. Hence, lim inf Φ(||T[n]xn −

x∗||) = 0. So, there exists a subsequence {xnk
} of {xn} such that Φ(||T[n]xnk

−
x∗||)→ 0, k →∞.
From the property of Φ (i.e., Φ is strictly increasing and Φ(0)=0), it follows
that ||T[n]xnk

− x∗|| → 0 as k → ∞. Recall that from Lemma 4.1.1 we have
that

‖xn+1 − T[n]xn‖ ≤ c2δ
−1
E (2LMKθn)→ 0, n→∞.

Therefore,

‖xnk+1
− x∗‖ ≤ ‖xnk+1

− T[n]xnk
‖+ ‖T[n]xnk

− x∗‖ → 0, k →∞.

Using the definition of φ and the continuity of J on bounded subsets of E, we
obtain

φ(x∗, xnk+1
) = ‖x∗‖ − 2〈x∗, Jxnk+1

〉+ ‖xnk+1
‖ → 0, k →∞,

which implies that φ(x∗, xnk
) → 0, k → ∞. Therefore, by Lemma 2.3.10,

φ(x∗, xn)→ 0, as n→∞. Hence, by Lemma 2.3.4, ‖xn− x∗‖ → 0, as n→∞.
This completes the proof.

4.3 Application to convex minimization prob-
lem.

In this section, the following well known important results will be needed.

Lemma 4.3.1 Let E be a real Banach space with E∗ as its dual and let f :
E → R ∪ {∞} be a proper convex functional. Let ∂f : E → 2E

∗ denote the
subdifferential of f . Then, p ∈ E is a minimizer of f if and only if 0 ∈ ∂f(p).

39



Definition 4.3.1 A function f : E → R is said to be generalized h-strongly
convex if there exists a strictly increasing function h : [0,∞) → [0,∞) with
h(0) = 0 such that for every x, y ∈ E with x 6= y and γ ∈ (0, 1), the following
inequality holds:

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y)− 1

2
h(‖x− y‖). (4.3.1)

Lemma 4.3.2 Let E be a real normed space with dual space E∗ and let f :
E → R ∪ {∞} be a proper generalized h-strongly convex function. Then, the
subdifferential map, ∂f : E → 2E

∗ is generalized Φ-strongly monotone.

Proof:
Let x, y ∈ E and let x∗ ∈ ∂f(x), y∗ ∈ ∂f(y). Then,

f(x)−f(z) ≤ 〈x− z, x∗〉, ∀ z ∈ E and f(y)−f(w) ≤ 〈y−w, x∗〉, ∀ w ∈ E.

For γ ∈ (0, 1), take in particular z = γy + (1 − γ)x and w = γx + (1 − γ)y.
Then,

f(x)− f(γy + (1− γ)x) ≤ γ〈x− y, x∗〉; (4.3.2)
f(y)− f(γx+ (1− γ)y) ≤ γ〈y − x, x∗〉. (4.3.3)

Adding inequalities (4.3.2) and (4.3.3) and using the generalized h-strong con-
vexity of f we have that for some strictly increasing function h : [0,∞) →
[0,∞) with h(0) = 0 : 〈x− y, x∗ − y∗〉 ≥ Φ(‖x− y‖).
Therefore, ∂f is generalized Φ-strongly monotone, with Φ = h.

The following lemma is well known (see e.g., Chidume and Idu [70]).

Lemma 4.3.3 Let E be a normed space with E∗ as its dual and let f : E → R
be a convex function that is bounded on bounded subsets of E. Then, the
subdifferential map of f , ∂f : E → 2E

∗ is bounded on bounded subsets of E.

Lemma 4.3.4 Let E be real normed space with dual space E∗. Let f : E →
R ∪ {∞} be a proper convex function and ∂f : E → 2E

∗, the subdifferential of
f . Suppose x∗ ∈ V I(∂f,E). Then, x∗ is a minimizer of f over E.

Proof:
Let x∗ ∈ V I(∂f,E) and x ∈ E. then, for any τx∗ ∈ ∂f we have that:

f(x)− f(x∗) ≥ 〈x− x∗, τx∗〉 ≥ 0,

which implies f(x∗) ≤ f(x). Hence, x∗ is a minimizer of f over E.

We now prove the main theorem of this section.
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Theorem 4.3.1 Let E be a uniformly convex and uniformly smooth real Ba-
nach space with dual space E∗. Let f : E → R ∪ {∞} be a proper and gen-
eralized h-strongly convex function. Let Ti : E → E, i = 1, 2, ..., N be a finite
family of quasi-φ-nonexpansive maps such that Q := ∩Ni=1F (Ti) 6= ∅. Let {xn}
be a sequence in E defined iteratively by x1 ∈ E,

xn+1 = J−1(J(T[n]xn)− θnτn), ∀n ≥ 1, τn ∈ ∂f(T[n]xn),

where T[n] := Tn mod N . Assume V I(∂f,Q) 6= ∅, then {xn} converges strongly
to some x∗ ∈ Q which minimizes f over Q.

Proof:
By lemma 4.3.2 and lemma 4.3.3, ∂f is generalized Φ-strongly monotone and
bounded on bounded subsets of E. By theorem 4.2.1, {xn} converges strongly
to some x∗ ∈ V I(∂f,Q). By lemma 4.3.4, x∗ is a minimizer of f over Q.

Corollary 4.3.1 Let H be a real Hilbert space. Let f : H → R ∪ {∞} be
a proper and generalized h-strongly convex map and let Ti : H → H, i =
1, 2, ..., N be a finite family of nonexpansive maps such that Q := ∩Ni=1F (Ti) 6=
∅. Let {xn} be a sequence in E defined iteratively by x1 ∈ E,

xn+1 = T[n]xn − θnτn, ∀n ≥ 1, τn ∈ ∂f(T[n]xn).

Assume V I(A,Q) 6= ∅, then {xn} converges strongly to some x∗ ∈ V I(A,Q).
Furthermore, x∗ minimizes f over Q.

4.4 The case of non-self maps
In Section 4.2, we considered a finite family {Ti}Ni=1 of maps, where for each
i, Ti maps E to itself. In this section, we consider a finite family {Ti}Ni=1 of
maps where for each i, Ti maps E to its dual space, E∗. In this case, the
usual notion of fixed points obviously does not make sense. However, a new
notion of fixed points called J-fixed points has been defined for maps from a
normed space E to its dual E∗, (see Chidume and Idu, [70]) for motivation
and definition.

This notion turns out to be very useful in proving convergence theorems for
several important classes of nonlinear maps (see e.g. Chidume and Idu, [70]).
We shall employ this concept here.

Let T : E → E∗ be any map. A point p ∈ E is called a J-fixed point of T if
Tp = Jp, where J : E → E∗ is the normalized duality map. The set of J-fixed
points of T will be denoted by FJ(T ).

Let E be a uniformly smooth and strictly convex real Banach space with dual
space E∗. A map T : C → E∗ will be called J-nonexpansive if the map
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J−1 ◦ T : C → E is nonexpansive, i.e., for each x, y ∈ E, the following
inequality holds:

‖(J∗ ◦ T )x− (J∗ ◦ T )y‖ ≤ ‖x− y‖. (4.4.1)

Observe that since E is uniformly smooth and strictly convex, J−1 : E∗ → E
exists and J∗ = J−1.

Definition 4.4.1 Let E be a uniformly smooth and strictly convex real Banach
space with dual space E∗. A map T : E → E∗ will be called generalized
J-nonexpansive if FJ(T ) 6= ∅ and φ(p, (J−1 ◦ T )x) ≤ φ(p, x), ∀x ∈ E and
p ∈ FJ(T ).

We now prove the following theorem.

Theorem 4.4.1 Let X be a uniformly smooth and uniformly convex real Ba-
nach space with dual space X∗. Let A : X → X∗ be a generalized Φ-strongly
monotone and bounded map. Let Si : E → X∗, i = 1, 2, 3, ..., N be a finite
family of generalized J-nonexpansive maps with W := ∩Ni=1FJ(Si) 6= ∅. Let
{xn} be a sequence in X defined iteratively by x1 ∈ X,

xn+1 = J−1(J(J∗ ◦ S[n])xn − θnA(J∗ ◦ S[n])xn), ∀n ≥ 0 (4.4.2)

where J−1 : X∗ → X is the normalized duality map on X∗ and S[n] :=
Sn mod N . Assume V I(A,W ) 6= ∅. Then, {xn} converges strongly to some
x∗ ∈ V I(A,W ).

Proof:
Set E = X, then E∗ = X∗. Define T[n] = J∗ ◦ S[n]. Then,

• A : E → E∗ is a generalized Φ-strongly monotone and bounded map.

• Clearly, T[n] := J∗ ◦ S[n] : E → E and for each n, T[n] is a quasi-φ-
nonexpansive map.
Furthermore, W := ∩Ni=1FJ(Si) = ∩Ni=1F (Ti) = Q, so that V I(A,W ) =
V I(A,Q).

• The recursion formular (4.4.2) reduces to the recursion formular of the-
orem 4.2.1.

Hence, by theorem 4.2.1, {xn} converges strongly to some x∗ ∈ V I(A,W ) =
V I(A,Q).

Remark 4.4.1 1. Theorem 4.4.1 complements theorem 4.2.1 in the sense
that in theorem 4.2.1, the family Ti, i = 1, 2, 3, ..., N for each i, maps the
space E to itself while in theorem 4.4.1, Ti maps E to its dual space, E∗.
In a real Hilbert space, theorem 4.4.1 and theorem 4.2.1 yield the same
conclusion, basically under the same conditions.
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2. Theorem 4.2.1 is an analogue of theorem 1.3.3 in q-uniformly smooth
spaces, q ≥ 2. In particular, the two theorems coincide in Lp spaces,
2 ≤ p < ∞. Furthermore, theorem 4.2.1 is applicable in Lp spaces,
1 < p < 2 but theorem 1.3.3 is not necessarily applicable in this case,
since for 1 < p < 2, Lp is not q-uniformly smooth for q ≥ 2.

3. Theorem 4.2.1 is a significant improvement of theorem 1.3.2 in the fol-
lowing sense:
In theorem 1.3.2, the class of η-strongly monotone and Lipschitz maps
defined on a Hilbert space is studied. In theorem 4.2.1, the much more
general class of generalized Φ-strongly monotone and bounded maps is
studied in the much more general space of uniformly smooth and uni-
formly convex real Banach spaces.

Remark 4.4.2 Unlike in Theorem 1.3.2 in which Xu and Kim [168] remarked

that the canonical choice αn =
1

n
, n ≥ 1 is not applicable, this choice is appli-

cable in all our theorems, when E = Lp, lp or Wm
p , 1 < p <∞. In particular,

if θn =
1

n
, n ≥ 1, conditions (i), (ii) and (iv) are trivially satisfied. We verify

that condition (iii) is satisfied.
We have (see e.g. Lindenstrauss and Tzafriri [120], p.47) for p > 1, q > 1,
X = Lp, X∗ = Lq, that

δX∗(ε) = 1−
(

1−
( ε

2

)q)1/q

,

and so obtain that:

δ−1
X∗(ε) = 2 [1− (1− ε)q]1/q ≤ 2q1/qε1/q, since (1− ε)q > 1− qε, for q > 1.

For condition (iii), we have that:∑
θnδ
−1
E (2KLMθn) =

∑
2θn[1− (1− 2KLMθn)p]

1
p

≤ 2
∑

θn(2pKLM)
1
p θ

1
p
n

= 2(2pKLM)
1
p

∑( 1

n

)1+ 1
p <∞.

Hence, condition (iii) holds.

All the results of this chapter are the results obtained in [61], which was
published in Journal of Fixed Point Theory and Applications. DOI
10.1007/s11784-018-0502-0.
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CHAPTER 5

Parallel and cyclic hybrid subgradient extragradient
algorithms for approximating solutions of variational

inequality problems for Lipschitz monotone maps

5.1 Introduction
In this chapter, we introduce and study new parallel and cyclic hybrid subgra-
dient extragradient algorithms. The sequences generated by these algorithms
are proved to converge strongly to a common element of the set of solutions of
variational inequality problems in a uniformly smooth and 2-uniformly convex
real Banach space. The theorems proved are applied to a convex feasibility
problem and to approximate a common J-fixed point for a finite family of
strictly J-pseudocontractive maps. Finally, a numerical experiment is pre-
sented to illustrate the convergence of the sequence of our algorithms.

We shall use the following lemma in this chapter.

Lemma 5.1.1 (Rockafellar, [149]) Let C be a nonempty closed convex sub-
set of a Banach space E and let A be a monotone and hemicontinuous map
from C into E∗ with C = D(A). Let T be a map defined by:

Tv =

{
Av +NC(v), v ∈ C,
∅, v /∈ C,

(5.1.1)

where NC(v) is the normal cone for C at a point v ∈ C, defined as

NC(v) := {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, for all y ∈ C.

Then, T is maximal monotone and T−10 = V I(C,A).

44



5.2 Main Results
In the sequel, let E be a uniformly smooth and 2-uniformly convex real Ba-
nach space and C be a closed convex subset of E. Let Ai : C → E∗, i =
1, 2, ..., N be a finite family of monotone and L-Lipschitz maps. We denote
F := ∩∞i=1V I(Ai, C) 6= ∅. We define the following parallel algorithm.

x0 ∈ E, 0 < λ <
1

L
, C0 = C,

yin = ΠCJ
−1(Jxn − λAi(xn)), i = 1, ..., N,

T in = {v ∈ E : 〈(Jxn − λAi(xn))− Jyin, v − yin〉 ≤ 0},
zin = ΠT i

n
J−1(Jxn − λAi(yin)), i = 1, ..., N,

in = argmax{||zin − xn|| : i = 1, ..., N}, z̄n := zinn ,

Cn+1 = {v ∈ Cn : φ(v, z̄n) ≤ φ(v, xn)},
xn+1 = ΠCn+1(x0), n ≥ 0.

(5.2.1)

Lemma 5.2.1 Suppose that x∗ ∈ F and the sequences {yin}, {zin} are gener-
ated by the following algorithm;

x0 ∈ E, 0 < λ <
1

L
, C0 = C,

yin = ΠCJ
−1(Jxn − λAi(xn)), i = 1, ..., N,

T in = {v ∈ E : 〈(Jxn − λAi(xn))− Jyin, v − yin〉 ≤ 0},
zin = ΠT i

n
J−1(Jxn − λAi(yin)), i = 1, ..., N.

(5.2.2)

Then,

φ(x∗, zin) ≤ φ(x∗, xn)− c
(
φ(yin, xn) + φ(xn, y

i
n)
)
, (5.2.3)

where c = 1− λL
c1
> 0 and c1 is the constant in Lemma 2.3.9.

Proof:
Since Ai is monotone on Di and yin ∈ Di, we obtain

〈Ai(yin)− Ai(x∗), yin − x∗〉 ≥ 0, ∀x∗ ∈ F.

This together with x∗ ∈ V I(Ai, Di) implies that

〈Ai(yin), yin − x∗〉 ≥ 0.

So,

〈Ai(yin), zin − x∗〉 ≥ 〈Ai(yin), zin − yin〉. (5.2.4)

Observe that zin ∈ T in and by characterization of T in, we have

〈zin − yin, Jxn − λAi(xn)− Jyin〉 ≤ 0.
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Thus,

〈zin − yin, Jxn − λAi(yin)− Jyin〉 ≤ λ〈zin − yin, Ai(xn)− Ai(yin)〉. (5.2.5)

Let tin = J−1(Jxn−λAi(yin)) and zin = ΠT i
n
(tin). Using Lemma 2.3.8, definition

of φ and inequality (5.2.4), we have

φ(x∗, zin) ≤ φ(x∗, tin)− φ(zin, t
i
n)

≤ φ(x∗, xn)− φ(xn, z
i
n) + 2λ〈x∗ − zin, Ai(yin)〉

≤ φ(x∗, xn)− φ(zin, xn) + 2λ〈yin − zin, Ai(yin)〉. (5.2.6)

Also from defintion of φ and using inequality (5.2.5) and Lemma 2.3.9, we have

φ(zin, xn) −2λ〈yin − zin, Ai(yin)〉
= φ(zin, y

i
n) + φ(yin, xn) + 2〈yin − zin, Jxn − Jyin〉 − 2λ〈yin − zin, Ai(yin)〉

= φ(zin, y
i
n) + φ(yin, xn)− 2〈zin − yin, Jxn − λAi(yin)− Jyin〉

≥ φ(zin, y
i
n) + φ(yin, xn)− 2λ〈zin − yin, Ai(xn)− Ai(yin)〉

≥ φ(zin, y
i
n) + φ(yin, xn)− 2λ||zin − yin||||Ai(xn)− Ai(yin)||

≥ φ(zin, y
i
n) + φ(yin, xn)− 2Lλ||zin − yin||||xn − yin||

≥ φ(zin, y
i
n) + φ(yin, xn)− Lλ

(
||zin − yin||2 + ||xn − yin||2

)
≥ φ(zin, y

i
n) + φ(yin, xn)− Lλ

c1

(
φ(zin, y

i
n) + φ(yin, xn)

)
= c

(
φ(zin, y

i
n) + φ(yin, xn)

)
. (5.2.7)

From inequalities (5.2.6) and (5.2.7), we have

φ(x∗, zin) ≤ φ(x∗, xn)− c
(
φ(zin, y

i
n) + φ(yin, xn)

)
. (5.2.8)

Lemma 5.2.2 Suppose that {xn}, {yin}, {zin} are generated by Algorithm
5.2.1. Then,

(i) F ⊂ Cn and xn+1 is well-defined for all n ≥ 0.

(ii) {xn} converges strongly to a point in E.

(iii) The following hold for i = 1, 2, ..., N ,

lim ||xn+1 − xn|| = lim ||yin − xn|| = lim ||zin − xn|| = 0.

Proof.

(i) Since Ai is Lipschitz continuous, Ai is continuous for each i = 1, 2, ..., N .
It is known that V I(Ai, Di) is closed and convex for each i = 1, ..., N . Hence,
F is closed and convex. Next we show xn is well defined. Clearly, C1 = C is
closed and convex. Suppose Cn is closed and convex for some n ≥ 1. From
definition of Cn+1, we have

φ(v, z̄n) ≤ φ(v, xn)⇔ 2〈v, Jxn − Jz̄〉 ≤ ||xn||2 − ||z̄n||2
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This inequality is affine in v and hence, the set Cn is convex and closed.
Moreover, for each u ∈ F , by Lemma 5.2.1, we obtain that φ(u, z̄n) ≤ φ(u, xn).
Thus, F ⊂ Cn, ∀n ≥ 0. Since F 6= ∅, ΠFx0 and xn+1 = ΠCn+1x0 are well-
defined.

(ii) Since xn = ΠCnx0 and for each u ∈ F ⊂ Cn, we have

φ(x0, xn) ≤ φ(x0, u)− φ(xn, u)

≤ φ(x0, u). (5.2.9)

This implies that {φ(x0, xn)} is bounded and hence, {xn} is bounded.
From inequality (5.2.9), we have φ(x0, xn) ≤ φ(x0, u) ∀u ∈ Cn. Since, xn+1 =
ΠCn+1x0 and Cn+1 ⊂ Cn, we take u = xn+1, so we have φ(x0, xn) ≤ φ(x0, xn+1)
for each n ∈ N. This implies that {φ(x0, xn)} is a monotone non-decreasing
sequence, bounded above by φ(x0, u), so limφ(x0, xn) exists.
Using the fact that xn = ΠCnx0 and xn+1 ∈ Cn, we have for m > n

φ(xn, xm) ≤ φ(x0, xm)− φ(x0, xn), (5.2.10)

which implies limφ(xn, xm) = 0 and by Lemma 2.3.4, we have that lim ‖xn −
xm|| = 0. Hence, {xn} is Cauchy and so, there exists z ∈ E such that xn → z
as n→∞.

(iii) From inequality (5.2.10), take m = n+ 1, we obtain lim ||xn−xn+1|| = 0.
Also, using the fact that xn+1 ∈ Cn, we have that

φ(z̄n, xn+1) ≤ φ(xn, xn+1),

which implies that limφ(z̄n, xn+1) = 0 and by Lemma 2.3.4, we have that
||z̄n − xn+1|| → 0 as n → ∞. Therefore, ||z̄n − xn|| ≤ ||z̄n − xn+1|| + ||xn+1 −
xn|| → 0, n→∞.
Thus,

lim ||z̄n − xn|| = 0. (5.2.11)

From definition of in and (5.2.11), we have

lim ||zin − xn|| = 0, ∀i = 1, 2, ..., N. (5.2.12)

Using Lemma 5.2.1, inequality (5.2.9) and (5.2.12), we have

cφ(yin, xn) ≤ φ(x∗, xn)− φ(x∗, zin)→ 0, asn→∞,

which implies that φ(yin, xn) → 0 as n → ∞ and by Lemma 2.3.4, we have
that

lim ||xn − yin|| = 0, i = 1, 2, ...N. (5.2.13)

This completes the proof of Lemma 5.2.2.
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Theorem 5.2.1 Let E be a uniformly smooth and 2-uniformly convex real Ba-
nach space. Let C be closed and convex subset of E. Suppose Ai : C → E∗, i =
1, 2, ..., N be a finite family of monotone and L-Lipschitz continuous maps and
the set of solution, F , is nonempty. Then, the sequences {xn}, {yin}, {zin}
generated by Algorithm 5.2.1 converge strongly to ΠFx0.

Proof:
By Lemma 5.2.2, F and Cn are nonempty, closed and convex subsets. Besides,
F ⊂ Cn for all n ≥ 0. Therefore, ΠFx0 and ΠCn+1x0 are well-defined. From
Lemma 5.2.2, we have that {xn} converges strongly to a point z. Since, ||yin−
xn|| → 0, then yin → z, n → ∞ for each i = 1, 2, ..., N . Now, we prove that
z ∈ F . By Lemma 5.1.1, we have that the map

Qi(x) =

{
Ai(x) +NC(x), if x ∈ C
∅, if x /∈ C

(5.2.14)

is maximal monotone, where NC(x) is the normal cone at C at x ∈ C. For all
(x, v∗) in the graph of Qi, i.e., (x, v∗) ∈ G(Qi), we have v∗ − Ai(x) ∈ NC(x).
By definition of NC(x), we find that

〈x− w, v∗ − Ai(x)〉 ≥ 0,

for all w ∈ C. Since yin ∈ C,〈
x− yin, v∗ − Ai(x)

〉
≥ 0.

Therefore, 〈
x− yin, v∗

〉
≥
〈
x− yin, Ai(x)

〉
. (5.2.15)

Using the definition of yin in Algorithm (5.2.1) and Lemma 2.3.7, we get〈
x− yin, Ai(xn)

〉
≥
〈
x− yin,

Jxn − Jyin
λ

〉
. (5.2.16)

Therefore, from inequalities (5.2.15), (5.2.16) and the monotonicity of Ai, we
have that〈

x− yin, v∗
〉
≥

〈
x− yin, Ai(x)

〉
=

〈
x− yin, Ai(x)− Ai(yin)

〉
+
〈
x− yin, Ai(yin)− Ai(xn)

〉
+
〈
x− yin, Ai(xn)

〉
≥

〈
x− yin, Ai(yin)− Ai(xn)

〉
+
〈
x− yin,

Jxn − Jyin
λ

〉
.(5.2.17)

Since ||xn−yin|| → 0 as n→∞ and Ai is L-Lipschitz continuous, we have that

lim ||Ai(yin)− Ai(xn)|| = 0. (5.2.18)
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Taking limit as n→∞ over inequality (5.2.17) and using (5.2.18), yin → z, we
have 〈x − z, v∗〉 ≥ 0 for all (x, v∗) ∈ G(Qi). This together with the maximal
monotonicity of Qi gives that z ∈ Q−1

i 0 = V I(Ai, C) for all 1 ≤ i ≤ N . Hence,
z ∈ F = ∩Ni=1V I(Ai, C).
Finally, we show that z = ΠFx0. Let p = ΠFx0. Since z ∈ F , we have

φ(p, x0) ≤ φ(z, x0). (5.2.19)

Also, since xn = ΠCnx0 and p ∈ F ⊂ Cn, we have that φ(xn, x0) ≤ φ(p, x0).
Since xn → z, we have

φ(z, x0) ≤ φ(p, x0). (5.2.20)

From inequalities (5.2.19) and (5.2.20), we obtain φ(z, x0) = φ(p, x0).
Thus, z = p = ΠFx0. This completes the proof.

Next, we propose a cyclic hybrid subgradient extragradient algorithm for solv-
ing CSV IP .

x0 ∈ E, 0 < λ <
1

L
,

yn = ΠD[n]
J−1(Jxn − λA[n](xn)), i = 1, . . . , N,

T[n] = {v ∈ E : 〈Jxn − λA[n](xn)− Jyn, v − yn〉 ≤ 0},
zn = ΠT[n]

J−1(Jxn − λA[n](xn)), i = 1, . . . , N, [n] = n (mod N) + 1,

Cn+1 = {v ∈ Cn : φ(v, zn) ≤ φ(v, xn)},
xn+1 = ΠCn+1(x0), n ≥ 0.

(5.2.21)

Remark 5.2.1 Since Cn+1 is a half-space, then the projection xn+1 = ΠCn+1x0

in Step 3 of Algorithm 5.2.21 can be computed explicitly as in Algorithm 5.2.1.

Theorem 5.2.2 Let E be a uniformly smooth and 2-uniformly convex real
Banach space. Let Di, i = 1, ..., N be closed and convex subsets of E such
that D = ∩Ni=1Di 6= ∅. Suppose Ai : E → E∗, i = 1, 2, ..., N be a finite
family of monotone and L-Lipschitz continuous maps and the solution set F
is nonempty. Then, the sequences {xn}, {yn}, {zn} generated by Algorithm
5.2.21 converge strongly to ΠFx0.

Proof:
By arguing similarly as in the proof of Theorem 5.2.1, we obtain the proof of
Theorem 5.2.2.

Remark 5.2.2 If the mapping A is α-inverse strongly monotone, then A
is 1/α-Lipschitz continuous. Therefore, we can use Algorithms (5.2.1) and
(5.2.21) to solve the CSV IP for the α-inverse strongly monotone mappings
Ai, i = 1, ..., N . However, in this case, instead of using the double projections
as in Algorithms (5.2.1) and (5.2.21), we only need to compute the projection
on Di.
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5.3 Application to convex feasibility problems
Let E be a uniformly smooth and 2-uniformly convex real Banach space. Let
Di, i = 1, ..., N be closed and convex subsets of E such that D = ∩Ni=1Di 6= ∅.
The convex feasibility problem (CFP) is to find x∗ such that x∗ ∈ ∩Ni=1Di.
The CFP is very important and has received a lot of attention in recent years
sue to its applications in many practical problems such as signal and image
processing, data recovery, communication, and geophysics, etc. Using Theorem
5.2.1, we obtain the following result.

Theorem 5.3.1 Let E be a uniformly smooth and 2-uniformly convex real
Banach space. Let Di, i = 1, ..., N be closed and convex subsets of E such that
D = ∩Ni=1Di 6= ∅. Let {xn} be the sequence generated by

x0 ∈ E, yin = ΠDi
xn, i = 1, ..., N,

in = argmax{||yin − xn|| : i = 1, ..., N}, ȳn = yinn ,

Cn+1 = {v ∈ Cn : φ(v, ȳn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0.

(5.3.1)

Then, the sequence {xn} converges strongly to ΠDx0.

In this section, we shall apply our theorem to approximate a common J-fixed
point of a finite family of some class of maps. In what follows, we shall denote
the set of J-fixed points of T by FJ(T ), i.e., FJ(T ) = {x∗ ∈ E : Tx∗ = Jx∗}.

A map T : E → E∗ is said to be strictly J-pseudocontractive (see [43]) if
there exists γ > 0 such that for each x, y ∈ E, the following inequality holds;

〈Tx− Ty, x− y〉 ≤ 〈Jx− Jy, x− y〉 − γ||(Jx− Jy)− (Tx− Ty)||2.

It is immediate that if T is strictly J-pseudocontractive, then A := J − T is
γ-inverse strongly monotone and zeros of A correspond to J-fixed points of T
(see Chidume et al. [43], for more details).

Let Ti : E → E∗, i = 1, 2, ..., N be a finite family of strictly J-pseudocontractive
maps. We consider the problem of finding x∗ ∈ E such that x∗ ∈ ∩Ni=1FJ(Ti).

We have the following parallel hybrid algorithm for finding a common J-fixed
point of a finite family of strictly J-pseudocontractive maps, Ti, i = 1, 2, ..., N .

x0 ∈ E,
yin = J−1(Jxn − λ(Jxn − Ti(xn))), i = 1, ..., N,

zin = J−1(Jxn − λ(Jyn − Ti(yn))), i = 1, ..., N,

in = argmax{||zin − xn|| : i = 1, ..., N}, z̄n = zinn ,

Cn+1 = {v ∈ Cn : φ(v, z̄n) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0.

(5.3.2)
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Theorem 5.3.2 Let E be a uniformly smooth and 2-uniformly convex real
Banach space, with E∗ as its dual space. Let Ti : E → E∗, i = 1, 2, ..., N be a
finite family of strictly J-pseudocontractive maps such that F ∩Ni=1 FJ(Ti) 6= ∅.
Then, the sequence {xn} generated by algorithm (5.3.2) converges strongly to
ΠF (x0).

Proof:
Let Di = E for all i. Since TI is strictly J-pseudocontractive, Ai : J − Ti is
γ-inverse strongly monotone. So, Ai is

1

γ
-Lipschitz continuous. Theorem 5.2.1

ensures the proof of Theorem 5.3.2.

5.4 Numerical Experiment
In this section, we consider an example to illustrate the convergence of the
proposed algorithms. The considered operators are of the form Ai(x) =
Mi(x) + qi, i = 1, 2, 3, ..., N [91], where Mi = BiB

T
i +Ci +Di, i = 1, 2, ..., N.

For each i, Bi is an n × n matrix, Ci is an n × n skew-symmetric matrix,
Di is an n × n diagonal matrix, whose diagonal entries arenonnegative (i.e.,
Mi is positive definite), qi is a vector in Rn (n = 4). The feasible sets are
Ki = K = {x ∈ Rn : ||x|| ≤ n}. It is clear that Ai is monotone and L-Lipschitz
continuous with L = max{||Mi|| : i = 1, 2, ..., N}.

For experiments, the entries of Bi, Ci are generated randomly and uni-
formly in [−m,m], the diagonal entries of Di are in [1,m] and qi is equal to
the zero vector. It is easy to see that the solution of the problem in this case
is x∗ = 0. We use the sequence Dn = ||xn − x∗||2, n = 0, 1, 2, ... to check the
convergence of {xn}, where x0 = (1, 1, 1, 1) ∈ R4 and λ = 0.5

L
.

Fig 1.
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Remark 5.4.1

Theorem 7.2.1 improves the results of Hieu [96] in the following ways:

1.• The results of Hieu [96] are proved in Hilbert space while Theo-
rem 7.2.1 is proved in the more general uniformly smooth and 2-
uniformly convex real Banach spaces.

• In the algorithm of Hieu [96], they have projections onto the inter-
section of two half spaces, while in the algorithm of Theorem 7.2.1,
we have projection onto one half space, which has less computation.

All the results of this chapter are results obtained in [62], which was submitted
in Afrika Matematika.

52



CHAPTER 6

Halpern-type iterative algorithms for approximating
solutions of generalized split feasibility problems

6.1 Introduction
In this chapter, we construct new iterative algorithms for approximating so-
lutions of generalized split feasibilty problems in a uniformly smooth and 2-
uniformly convex real Banach space. Strong convergence of the sequences
generated by these algorithms is studied. As application, we derive some al-
gorithms and strong convergence results for some nonlinear problems, such
as, split feasibility problems, equilibrium problems, etc., and a numerical ex-
periment is given to show the implementability of the theorems. Finally, the
results proved improve, complement and generalize most recent results in the
literature.

We shall using the following lemma in this chapter.

Definition 6.1.1 Let C be a nonempty closed convex subset of a smooth Ba-
nach space E and T : C → C be a map. A point p ∈ C is called an asymp-
totic fixed point of T if there exists a sequence {xn} such that xn ⇀ p and
lim
n→∞

‖xn − Txn‖ = 0. The set of asymptotic fixed points of T is denoted by

F̂ ix(T ). The map T : C → C is said to be:

(a) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;

(b) firmly nonexpansive if φ(Tx, Ty) + φ(Tx, x) + φ(Ty, y) ≤ φ(Tx, y) +
φ(Ty, x) for all x, y ∈ C;

(c) relatively nonexpansive if the following properties are satisfied;
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(i) Fix(T) 6= ∅;
(ii) φ(p, Tx) ≤ φ(p, x) for p ∈ Fix(T), x ∈ C;

(iii) F̂ ix(T ) = Fix(T ).

(d) strongly relative nonexpansive if the folloing properties are satisfied:

(i) T is relative nonexpansive;

(ii) lim
n→∞

φ(Txn, xn) = 0 whenever {xn} is bounded sequence in C and
lim
n→∞

(φ(p, xn)− φ(p, Txn)) = 0 for some p ∈ Fix(T ).

Lemma 6.1.1 (Rockafellar, [149]) Let E be a smooth, strictly convex and
reflexive Banch space and K : E → 2E

∗ be a monotone operator. Then K
is maximal monotone if and only if R(J + λK) = E∗ for all λ > 0, where
R(J + λK) is the range of J + λK.

Let E be a smooth, strictly convex and reflexive Banach space and K : E →
2E

∗ be a maximal monotone operator. Then for λ > 0 and x ∈ E, consider

JKλ x := {z ∈ E : Jx ∈ Jz + λK(z)}.

In other words, JKλ = (J + λK)−1J . Also, JKλ is known as relative resolvent
of K for λ > 0. Following [116], we know the following properties:

(i) JKλ : E → D(K) is a single-valued mapping;

(ii) K−10 = Fix(JKλ ) for each λ > 0;

(iii) JKλ is strongly relatively nonexpansive,

where D(K) is the domain of K.

Lemma 6.1.2 [121] Let {αn} be a sequence of real numbers such that there
exists a subsequence {ni}∞i=1 of {n} such that αni

< αni+1 forall i ∈ N. Then
there exists a nondecreasing sequence{mk} ⊂ N such that mk → ∞ and the
following properties are satisfied for all (sufficiently large) numbersk ∈ N:

αmk
≤ αmk+1 and αk ≤ αmk+1.

In fact, mk = max{j ≤ k : αj < αj+1}.

6.2 Main Results
In this section, we assume E1 and E2 to be uniformly smooth and 2-uniformly
convex real Banach spaces, and E∗1 , E∗2 be their dual spaces respectively.

We first prove the following lemma in a smooth and 2-uniformly convex real
Banach space.
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Lemma 6.2.1 Let X be 2-uniformly convex and smooth real Banach space
and B : X → X∗ be a maximal monotone operator. Then for λ > 0 and
x ∈ X, JBλ = (J + λB)−1J is Lipschitz type.

Proof:
From Kohsaka and Takahashi, [116], we have that JBλ is a firmly nonexpansive
type mapping, i.e., for x, y ∈ X and λ > 0,〈

JBλ x− JBλ y,
Jx− JJBλ x

λ
− Jy − JJBλ y

λ

〉
≥ 0.

Hence, from Lemma 2.1.2 (3), we have that〈
JBλ x− JBλ y, Jx− Jy

〉
≥
〈
JBλ x− JBλ y, JJBλ x− JJBλ y

〉
=⇒ ||JBλ x− JBλ y|| ≤

1

c2

||Jx− Jy||

We first establish the strong convergence to a solution of problem (1.4.2).

Theorem 6.2.1 Let K be a closed convex subset of E1. Let E1 and E2 be
uniformly smooth and 2-uniformly convex real Banach spaces, and E∗1 , E∗2 be
their dual spaces respectively. Let A : E1 → E2 be a bounded linear operator
whose adjoint is denoted by A∗ and S : E2 → E2 be a nonexpansive map
such that F (S) 6= ∅ and T : K → K be a relatively nonexpansive map such
that F (T ) 6= ∅. Let B : E1 → 2E

∗
1 be a maximal monotone mapping such that

B−10 6= ∅. Then the sequence generated by the following algorithm: for x1 ∈ K
arbitrary and βn ∈ (0, 1),

yn = J−1
E1

(
JE1xn − γA∗JE2(I − S)Axn

)
,

wn = J−1
E1

(
αnJE1x1 + (1− αn)JE1J

B
λ yn

)
,

xn+1 = J−1
E1

(
βnJE1xn + (1− βn)JE1Twn

)
, ∀n ≥ 1.

(6.2.1)

converges strongly to an element z ∈ Γ.

Proof:
Let p ∈ Γ and zn = JBλ yn. Then JBλ p = p, Tp = p and S(Ap) = Ap. From
definition of φ and Lemma 2.1.3, we have

φ(p, yn) = ||p||2 − 2〈p, JE1xn − γA∗JE2(I − S)Axn〉
+||JE1xn − γA∗JE2(I − S)Axn||2 (6.2.2)

≤ ||p||2 − 2〈p, JE1xn〉+ 2γ〈p,A∗JE2(I − S)Axn〉+ ||xn||2

−2γ〈xn, A∗JE2(I − S)Axn〉+ 2k2γ2||A||2||JE2(I − S)Axn||2

≤ φ(p, xn) + 2γ2||A||2||(I − S)Axn||2

+2γ〈Ap− Axn, JE2(I − S)Axn〉 (6.2.3)
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From nonexpansiveness of S and Lemma 2.1.2 (2), we have

2〈Ap− Axn, JE2(I − S)Axn〉 ≤ ||SAxn − Ap||2 − ||(I − S)Axn||2 − c||Axn − Ap||2

≤ (1− c)||Axn − Ap||2 − ||(I − S)Axn||2

≤ −||(I − S)Axn||2,

so that,

2γ〈Ap− Axn, JE2(I − S)Axn〉 ≤ −γ||(I − S)Axn||2. (6.2.4)

From inequalities (6.2.2) and (6.2.4), we have

φ(p, yn) ≤ φ(p, xn)− γ(1− γ||A||2)||(I − S)Axn||2. (6.2.5)

Using the fact that γ ∈ (0, 1/||A||2), relative nonexpansiveness of JBλ and
inequality (6.2.5), we have

φ(p, zn) = φ(p, JBλ yn) ≤ φ(p, yn)

≤ φ(p, xn)− γ(1− γ||A||2)||(I − S)Axn||2 (6.2.6)
≤ φ(p, xn). (6.2.7)

Using the convexity of φ(p, ·) and inequality (6.2.6), we have

φ(p, xn+1) ≤ βnφ(p, xn) + (1− βn)φ(p, Twn)

≤ βnφ(p, xn) + (1− βn)φ(p, wn)

≤ βnφ(p, xn) + (1− βn)
[
αnφ(p, x1) + (1− αn)φ(p, zn)

]
(6.2.8)

≤ [1− αn(1− βn)]φ(p, xn) + αn(1− βn)φ(p, x1)

− (1− βn)(1− αn)γ(1− γ||A||2)||(I − S)Axn||2 (6.2.9)
≤ [1− αn(1− βn)]φ(p, xn) + αn(1− βn)φ(p, x1)

≤ max{φ(p, xn), φ(p, x1)}.

This implies from induction that for each n ≥ 1, φ(p, xn) ≤ φ(p, x1). Hence,
{φ(p, xn)} is bounded and so are {xn}, {zn}, {wn} and {Twn}.
We consider the following cases:
Case 1: Suppose there exists n0 ∈ N such that ∀n ≥ n0, φ(p, xn+1) ≤ φ(p, xn).
The limn→∞ φ(p, xn) exists. From inequality (6.2.9), we have that

(1−βn)(1−αn)γ(1−γ||A||2)||(I−S)Axn||2 ≤ φ(p, xn)−φ(p, xn+1)+αnφ(p, x1).

Using the fact that limn→∞ αn = 0 and (1− βn)(1− αn)γ(1− γ||A||2) > 0, we
have that that

lim
n→∞

||(I − S)Axn||2 = 0. (6.2.10)
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Using definition of φ, Lemmas 2.3.3 and 2.1.1, we have

φ(p, xn+1) ≤ βnφ(p, xn) + (1− βn)φ(p, Twn)− βn(1− βn)g(||JE1xn − JE1Twn||)
≤ βnφ(p, xn) + (1− βn)V (p, αnJE1x1 + (1− αn)JE1zn)

−βn(1− βn)g(||JE1xn − JE1Twn||)
≤ βnφ(p, xn) + (1− βn)

[
(1− αn)φ(p, zn) + 2αn〈wn − p, JE1x1 − JE1p〉

]
−βn(1− βn)g(||JE1xn − JE1Twn||)

≤ βnφ(p, xn) + (1− βn)(1− αn)φ(p, zn) + 2αn(1− βn)〈wn − p, JE1x1 − JE1p〉
−βn(1− βn)g(||JE1xn − JE1Twn||)

≤ βnφ(p, xn) + (1− βn)(1− αn)φ(p, xn) + 2αn(1− βn)〈wn − p, JE1x1 − JE1p〉
−βn(1− βn)g(||JE1xn − JE1Twn||)

= [1− αn(1− βn)]φ(p, xn) + 2αn(1− βn)〈wn − p, JE1x1 − JE1p〉
−βn(1− βn)g(||JE1xn − JE1Twn||) (6.2.11)

≤ φ(p, xn) + 2αn(1− βn)〈wn − p, JE1x1 − JE1p〉
−βn(1− βn)g(||JE1xn − JE1Twn||) (6.2.12)

From inequality (6.2.12), we have that

βn(1−βn)g(||JE1xn−JE1Twn||) ≤ φ(p, xn)−φ(p, xn+1)+2αn(1−βn)〈wn−p, JE1x1−JE1p〉.

Since βn(1−βn) > 0 and limn→∞ αn = 0, taking limit as n→∞, we have that

g(||JE1xn − JE1Twn||)→ 0 as n→∞.

Since g is strictly increasing and g(0) = 0, we have that

||JE1xn − JE1Twn|| → 0 as n→∞ (6.2.13)

Using the fact that J−1
E1

is uniformly continuous on bounded sets, we have that

‖xn − Twn‖ → 0

Now, using definition of φ and Lemma 2.1.2, we have

φ(xn, yn) = ||xn||2 − 2〈xn, JE1xn − γA∗JE2(I − S)Axn〉+ ||JE1xn − γA∗JE2(I − S)Axn||2

≤ ||xn||2 − 2〈xn, JE1xn〉+ 2γ〈xn, A∗JE2(I − S)Axn〉+ ||xn||2

−2γ〈xn, A∗JE2(I − S)Axn〉+ 2k2γ2||A||2||(I − S)Axn||2 (6.2.14)
≤ φ(xn, xn) + 2γ2||A||2||(I − S)Axn||2

= 2γ2||A||2||(I − S)Axn||2. (6.2.15)

From (6.2.10) and (6.2.14), we obtain

lim
n→∞

φ(xn, yn) = 0, (6.2.16)
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and by Lemma 2.3.4, we have that limn→∞ ||xn− yn|| = 0. Using the fact that
JBλ is relatively nonexpansive and inequality (6.2.8), we have

0 ≤ φ(p, yn)− φ(p, JBλ yn)

≤ φ(p, xn)− φ(p, zn)

≤ φ(p, xn) + αnφ(p, x0)− φ(p, xn+1). (6.2.17)

Taking limit as n→∞, we obtain that φ(p, yn)− φ(p, JBλ yn)→ 0, as n→∞
and by strong nonexpansiveness of JBλ , we have that φ(JBλ yn, yn) → 0, as
n→∞. By Lemma 2.3.4, we have that

lim
n→∞

||JBλ yn − yn|| = lim
n→∞

||zn − yn|| = 0. (6.2.18)

Also, we can easily see that

||xn − zn|| ≤ ||xn − yn||+ ||yn − zn|| (6.2.19)

implies ||xn − zn|| → 0 as n→∞. Also, using Lemma 6.2.1, we have

||JBλ xn − xn|| ≤ ||JBλ xn − zn||+ ||zn − xn||
= ||JBλ xn − JBλ yn||+ ||zn − xn||
≤ ||Jxn − Jyn||+ ||zn − xn||
≤ γ||A||||(I − S)Axn||+ ||zn − xn|| (6.2.20)

Using (6.2.10), (6.2.19) and taking limit as n → ∞ over inequality (6.2.20),
we have that

lim
n→∞

||JBλ xn − xn|| = 0 (6.2.21)

Also, we have from inequality (6.2.19) that ‖zn − xn‖ → 0 as n → ∞ and
using the fact that JE1 is uniformly continuous on bounded sets, we have
‖JE1zn − JE1xn‖ → 0 as n→∞. Hence,

‖JE1wn − JE1xn‖ ≤ αn‖(JE1x0 − JE1xn)‖+ (1− αn)‖(JE1zn − JE1xn)‖

which implies ‖JE1wn − JE1xn‖ → 0 as n→∞, and by uniform continuity of
J−1
E1

on bounded sets, we have

‖wn − xn‖ → 0, n→∞. (6.2.22)

From ‖wn − Twn‖ ≤ ‖wn − xn‖+ ‖xn − Twn‖ → 0 as n→∞, we have that

‖wn − Twn‖ → 0 as n→∞. (6.2.23)

Since {xn} is bounded, there exists {xnk
} ⊂ {xn} such that xnk

⇀ z, k →∞.
Using the fact that JBλ is the resolvent of B, then we have that for each n ≥ 1,
Jxn − JJBλ xn

λ
∈ BJBλ xn. From monotonocity of B, we have

0 ≤
〈
u− JBλ xnk

, ū− Jxnk
− JJBλ xnk

λ

〉
, ∀(u, ū) ∈ G(B).
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Hence we have ∀(u, ū) ∈ G(B), 0 ≤ 〈u − z, ū〉 and since B is maximal
monotone, we obtain that z ∈ B−1(0). Also from (6.2.23), (6.2.22) and demi-
closedness of T at 0, we have that z ∈ F (T ). Hence, z ∈ F (T ) ∩ B−1(0).
Since xnk

⇀ z, k → ∞ for some subsequence {xnk
} of {xn}, without loss of

generality, we let

lim
k→∞
〈xnk

− z, JE1x1 − JE1z〉 = lim sup
n→∞

〈xn − z, JE1x1 − z〉 = lim sup
n→∞

〈wn − z, JE1x1 − z〉,

where z = ΠΓx1. Using Lemma 2.3.7, we obtain

lim sup
n→∞

〈xn−z, JE1x1−JE1z〉 = lim
k→∞
〈xnk
−z, JE1x1−JE1z〉 = 〈x−z, JE1x1−JE1z〉 ≤ 0

By applying Lemma (2.3.13) to (6.2.11), we have that lim
n→∞

φ(z, xn) = 0, and by
Lemma 2.3.4, we have that xn → z, n→∞. Since A is a bounded linear map,
we have that Axn → Az as n→∞, using the fact that limn→∞ ||(I−S)Axn|| =
0 and by demiclosedness of S at 0, we have that S(Az) = Az.

Case 2: Suppose there exists a subsequence {xnj
} of {xn} such that

φ(p, xnj+1
) > φ(p, xnj

) ∀ j ∈ N.

By Lemma 6.1.2, there exists a nondecreasing {nj} in N such that φ(p, xnj
) ≤

φ(p, xnj+1) and φ(p, xj) ≤ φ(p, xnj+1
). By discarding the repeated terms of

{nj}, but still denoted by {nj}, we can view {xnj
} as a subsequence of {xn}.

We show that lim supj→∞〈xnj
− z, JE1x1 − JE1z〉 ≤ 0, where z = ΠΓx1. Since

{xnj
} is bounded, there exists {xnjk} ⊂ {xnj

} such that xnjk
⇀ w for some

w ∈ B1, without loss of generality, we let

lim
k→∞
〈xnjk

− z, JE1x1 − JE1z〉 = lim sup
j→∞

〈xnj
− z, JE1x1 − JE1z〉.

Following similar arguments as in Case 1, we have that

lim
n→∞

‖xnj
− JBλ xnj

‖ = lim
n→∞

‖wnj
− Twnj

‖ = lim
n→∞

‖xnj
− znj

‖ = lim
n→∞

‖xnj
− wnj

‖ = 0

and w ∈ F (T ) ∩B−1(0).Now, using Lemma 2.3.7, we obtain

lim
k→∞
〈xnjk

−z, JE1x1−JE1z〉 = lim sup
j→∞

〈xnj
−z, JE1x1−JE1z〉 = 〈w−z, JE1x1−JE1z〉 ≤ 0.

From inequality (6.2.11), we have

φ(z, xnj+1) ≤
[
1− αnj

(1− βnj
)
]
φ(p, xnj

) + 2αnj
(1− βnj

)〈wnj
− p, JE1x1 − JE1p〉

≤
[
1− αnj

(1− βnj
)
]
φ(p, xnj+1) + 2αnj

(1− βnj
)〈wnj

− p, JE1x1 − JE1p〉.

Since αnj
(1− βnj

) > 0, we have

φ(z, xnj
) ≤ φ(z, xnj+1) ≤ 2〈wnj

− p, JE1x1 − JE1p〉.
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So for each j ∈ N, we have

0 ≤ lim sup
j→∞

φ(z, xnj
) ≤ lim sup

j→∞
φ(z, xnj+1) ≤ 2 lim sup

j→∞
〈wnj
−p, JE1x1−JE1p〉 ≤ 0.

This implies that φ(z, xj) as j →∞ and by Lemma 2.3.4, we have that xj →
z = ΠΓx1 as l→∞. Hence, the conclusion follows as in proof of Case 1. This
completes the proof.

Next, as a consequence of Theorem 6.2.1, we establish the strong convergence
to a solution of problem (1.4.3).

Theorem 6.2.2 Let E1 and E2 be uniformly smooth and 2-uniformly convex
real Banach spaces, and E∗1 , E∗2 be their dual spaces respectively. Let A : E1 →
E2 be a bounded linear operator whose adjoint is denoted by A∗ and S : B2 →
B2 be a nonexpansive mapping such that F (S) 6= ∅. Let B : E1 → 2E

∗
1 be a

maximal monotone mapping such that B−10 6= ∅. Then the sequence generated

the following algorithm: for x1 ∈ C arbitrary, βn ∈ (0, 1) and γ ∈
(

0,
1

||A||2
)
,

{
yn = J−1

E1

(
JE1xn − γA∗JE2(I − S)Axn

)
,

xn+1 = J−1
E1

(
αnJE1x1 + (1− αn)JE1J

B
λ yn

)
, ∀n ≥ 1.

(6.2.24)

converges strongly to an element z ∈ Ω.

Proof:
Putting T ≡ I, the identity map and βn = 0 in Theorem 6.2.1. Hence, we
obtain the conclusion follows from Theorem 6.2.1.

6.3 Application to Split Feasibility Problem
Let E be a smooth strictly convex and reflexive real Banach space and K be
a nonempty closed convex subset of E. Then the indicator function iK : E →
(−∞,∞] defined by

iK(x) =

{
0, if x ∈ K,
∞, if otherwise,

is a proper lowers semicontinuous convex function. By Rockafellar [149], we
have that the subdifferential of iK , ∂iK is a maximal monotone. It is known
that for any x ∈ K ,

∂iK = {x∗ ∈ E∗ : iK(x) + 〈y − x, x∗〉 ≤ iK(y) ∀ y ∈ E}
= {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0 ∀ y ∈ K} = NK(x),

where NK is the normal operator for K. It is known that ΠK is the resolvent
of NK . Infact ΠK = (J + 2−1NK)−1J (see [116]).

60



Let K be a nonempty closed convex subset of E1. Consider K = ∂iK and
S = PQ, where PQ is the metric projection onto a nonempty closed convex
subset Q of E2. Then we have JBλ = ΠK and F (T ) = Q. Now we recover the
split feasibility problem in the setting of Banach spaces as follows:

Find x∗ ∈ K such that Ax∗ ∈ Q, (6.3.1)

and Algorithm 6.4.5 reduces to the following; choose x1 ∈ E1 arbitrary,{
zn = ΠK

(
J−1
E1

(
JE1xn − γA∗JE2(I − PQ)Axn

))
,

xn+1 = J−1
E1

(
αnJE1x1 + (1− αn)JE1zn

)
, ∀n ≥ 1.

(6.3.2)

Theorem 6.3.1 Let E1 and E2 be uniformly smooth and 2-uniformly con-
vex real Banach space. Let K and Q be nonempty closed convex subsets of
E1 and E2, respectively, A : E1 → E2 be a bounded linear operator, and

γ ∈
(

0,
2

||A||2
)
. If Ω 6= ∅, then the sequence generated by Algorithm (6.3.2)

converges strongly to an element z ∈ Ω.

Proof:
Letting K = ∂iK , in Theorem 6.2.2, we have that JBλ = ΠK for all λ > 0.
Since ΠK is strongly relative nonexpansive, therefore the result follows from
the arguments in the proof of Theorem 6.2.2.

6.4 Application to equilibrium problems
Let K be a nonempty closed convex subset of a smooth, strictly convex and
reflexive real Banach space E. Let f : K × K → R be a bifunction. The
equilibrium problem (abbreviated EP) is to find x ∈ K such that

f(x, y) ≥ 0, for all y ∈ K. (6.4.1)

The set of solutions of EP is denoted by EP (f). For solving Problem (6.4.1),
we assume that the bifunction f satisfies the following conditions:
(A1) f(x, x) = 0, ∀x ∈ K,
(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ K,
(A3) for all x, y, z ∈ K, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y),
(A4) for all x ∈ E, y 7−→ f(x, y) is convex and lower semicontinuous.

Lemma 6.4.1 (See e.g., Takahashi and Zembayashi [?]) Let f : K×K →
R be a bi-function satisfying (A1)−(A4). Let r > 0, define a resolvent operator
of f , Tr : C → C by

Tr(x) =
{
z ∈ K : f(z, y) +

1

r

〈
y − z, Jz − Jx

〉
≥ 0 ∀ y ∈ K

}
,

for all x ∈ E. Then, the map has the following properties:
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1. Tr is single-valued,

2. Tr is a firmly nonexpansive-type map, that is, for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉,

3. F (Tr) =EP(f) is closed and convex.

Lemma 6.4.2 Let f : K ×K → R be a bifunction satisfying (A1)− (A). Let
Af : E × E → 2E

∗ be a set-valued map defined by

Af (x) =

{
x∗ ∈ E∗ : f(x, y) ≥ 〈y − x, x∗〉 for all y ∈ K, if x ∈ K,
∅, if x /∈ K.

(6.4.2)

Then, Af is a maximal monotone operator with D(Af ) ⊂ K and EP (f) =
A−1
f 0. Furthermore, for r > 0, the resolvent Tr of f coincides with the resolvent

(J + rAf )
−1J of Af , that is,

Tr(x) = (J + rAf )
−1J(x) (6.4.3)

As a consequence of Theorem 6.2.1, we have the following results.

Theorem 6.4.1 Let E1 and E2 be uniformly smooth and 2-uniformly convex
real Banach spaces. Let K be a nonempty closed convex subset of E1, f : K ×
K → R be a bifunction satisfying (A1)− (A), and Tλ denote the resolvent (as
defined in (6.4.3)) of Af of index λ > 0. Let A : E1 → E2 be a bounded linear
operator whose adjoint is denoted by A∗ and S : B2 → B2 be a nonexpansive
map such that F (S) 6= ∅ and T : K → K be a relatively nonexpansive map
such that F (T ) 6= ∅. Then the sequence generated by the following algorithm:

for x1 ∈ K arbitrary, βn ∈ (0, 1) and γ ∈
(

0,
1

||A||2
)
,


yn = J−1

E1

(
JE1xn − γA∗JE2(I − S)Axn

)
,

wn = J−1
E1

(
αnJE1x1 + (1− αn)JE1Tλyn

)
,

xn+1 = J−1
E1

(
βnJE1xn + (1− βn)JE1Twn

)
, ∀n ≥ 1.

(6.4.4)

converges strongly to an element z ∈ {x ∈ EP (f) ∩ F (T ) : Ax ∈ F (S)}.

Proof:
Letting B ≡ Af in Theorem 6.2.1, we have that JBλ ≡ Tλ for all λ > 0. Since Tλ
is firmly nonexpansive type, so by [116], it is strongly relative nonsexpansive.
Hence, the conclusion follows from Theorem 6.2.1.

Theorem 6.4.2 Let E1 and E2 be uniformly smooth and 2-uniformly con-
vex real Banach spaces. Let K be a nonempty closed convex subset of E1,
f : K × K → R be a bifunction satisfying (A1) − (A4), and Tλ denote the
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resolvent (as defined in (6.4.3)) of Af of index λ > 0. Let A : E1 → E2 be a
bounded linear operator whose adjoint is denoted by A∗ and S : B2 → B2 be
a nonexpansive map such that F (S) 6= ∅. Then the sequence generated by the

following algorithm: for x1 ∈ K arbitrary, βn ∈ (0, 1) and γ ∈
(

0,
1

||A||2
)
,{

yn = J−1
E1

(
JE1xn − γA∗JE2(I − S)Axn

)
,

xn+1 = J−1
E1

(
αnJE1x1 + (1− αn)JE1Tλyn

)
, ∀n ≥ 1.

(6.4.5)

converges strongly to an element z ∈ Ξ, where Ξ = {x ∈ EP (f) : Ax ∈ F (S)}.

Proof:
Letting T ≡ I and B ≡ Af in Theorem 6.2.1, we have that JBλ ≡ Tλ for all
λ > 0. Hence, the conclusion follows from Theorem 6.2.1.

6.5 Numerical Experiment
In this section, we give some numerical example to establish the implementabil-
ity of the iterative algorithms proposed in this paper.

Example 6.5.1 Let E1 = E2 = R, K = [−2, 2], Tx = sinx, Sx = 1
3
x,

Ax = 3x, Bx = 4x. It is easy to see that A is bounded and linear, A∗ = A, T ,
S and B satisfy the condition in Theorems 6.2.2 and 6.2.1. By taking x1 = 2,
γ = 1/2, r = 1/2.

Remark 6.5.1 1. Theorems 6.2.2 and 6.2.1 complement and improve the
results of Ansari and Rehan [7] in the following sense:

(i) The condition that the normalized duality map is weakly sequentially
continuous in the theorems of Ansari and Rehan [7] was dispensed
with in Theorems 6.2.2 and 6.2.1.
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(ii) Weak convergence theorems were proved in the result of Ansari and
Rehan [7], whereas in Therorems 6.2.2 and 6.2.1, strong conver-
gence was established.

All the results in this chapter are the results of [63], which was accepted in
Carpathian Journal of Mathematics.
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CHAPTER 7

Iterative algorithms for approximation of solutions of some
equilibrium problems in Banach spaces

7.1 Introduction
In this chapter, we construct and study iterative algorithms of Krasnoselkii-
type and of Halpern-type for approximating an element of the set of common
zeros of a countable family of inverse strongly monotone maps, common fixed
points of a countable family of totally quasi-φ-asymptotically nonexpansive
nonself multi-valued maps, and a solution of a system of generalized mixed
equilibrium problems. Strong convergence of the sequences generated by these
algorithms is established in uniformly smooth and 2-uniformly convex real
Banach spaces. Furthermore, the theorems obtained extend, improve and
generalize several recent important results.

We shall use the following results in this chapter.

Lemma 7.1.1 Let K be a nonempty closed and convex subset of a real Banach
space E and G : K → 2K be a continuous map. Then, G is closed.

Proof:
Let {xn} be a sequence in K such that xn → x and wn → y, wn ∈ Gxn. By
continuity of G, we have that wn → p, p ∈ Gx. By uniqueness of limit, we
have that p = y. Therefore, y ∈ Gx. Hence, G is closed.

Lemma 7.1.2 (Chang et al. [75]) Let E be a real uniformly smooth and
strictly convex Banach space with Kadec-Klee property, and K be a nonempty
closed convex subset of E. Let G : K → 2K be a closed and , ({υn}, {µn}, ρ)-
total quasi-φ-asymptotically nonexpansive multi-valued mapping. If µ1 = 0,
then the fixed point set F (G) of G is a closed and convex subset of K.

65



Let K be a nonempty closed and convex subset of a Banach space E. For
solving the generalized mixed equilibrium problem (1.5.2), we assume that a
bifunction h : K ×K → R satisfies the following conditions:

(A1) h(x, x) = 0, ∀x ∈ E,
(A2) h is monotone, that is, h(x, y) + h(y, x) ≤ 0, ∀x, y ∈ E,
(A3) for all x, y, z ∈ E, lim supt↓0 h(tz + (1− t)x, y) ≤ h(x, y),
(A4) for all x ∈ K, y 7−→ h(x, y) is convex and lower semicontinuous.

Lemma 7.1.3 (Blum and Oettli [29]) Let K be a closed convex subset of a
smooth, strictly convex and reflexive real Banach space E and let h : K×K →
R be a bifunction satisfying conditions (A1)(A4). Let r > 0 and x ∈ E, then
there exists z ∈ K such that h(z, y) + 1

r

〈
y − z, Jz − Jx

〉
≥ 0 ∀y ∈ K.

Lemma 7.1.4 (see e.g., Zhang [176]) Let K be a nonempty closed and con-
vex subset of a uniformly smooth, strictly convex and reflexive real Banach
space E. Let h : K × K → R be a bi-function satisfying (A1) − (A4), let
B : K → E∗ be a monotone map and Φ : K → R be a lower semi-continuous
convex function. For r > 0 define a map Tr : K → K by:

Tr(x) =
{
z ∈ K : h(z, y) + Φ(y)− Φ(z) + 〈Bz, y − z〉+

1

r

〈
y − z, Jz − Jx

〉
≥ 0 ∀ y ∈ K

}
,

for all x ∈ E. Then, the following hold:

1. Tr is single-valued,

2. Tr is a firmly nonexpansive-type map, that is, for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉,

3. F (Tr) =GMEP(h,Φ, B) is closed and convex.

4. φ(q, Trx) + φ(Trx, x) ≤ φ(q, x) ∀q ∈ F (Tr), x ∈ E.

Lemma 7.1.5 (Deng and Bai [78]) The unique solutions to the positive in-
teger equation

n = in +
(mn − 1)mn

2
, mn ≥ in, n = 1, 2, 3, ... are (7.1.1)

in = n− (mn − 1)mn

2
, mn = −

(
1

2
−
(

2n+
1

4

) 1
2

)
, n = 1, 2, 3, ..., (7.1.2)

where [x] denotes the maximal integer that is not larger than x.
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7.2 Main Results

In what follows in and mn are the solutions to the positive integer equation:

n = i +
(m− 1)m

2
(m ≥ i, n = 1, 2, ...), that is, for each n ≥ 1, there exist

unique in and mn such that

i1 = 1, i2 = 1, i3 = 2, i4 = 1, i5 = 2, i6 = 3, i7 = 1, i8 = 2, · · · ;

m1 = 1, m2 = 1, m3 = 2, m4 = 1, m5 = 2, m6 = 3, m7 = 1, m8 = 2, · · ·.

See Deng [77]. We prove the following strong convergence theorem using a
Krasnoselskii-type algorithm (see Krasnoselskii [?] for the original algorithm
of Krasnoselskii).

Theorem 7.2.1 Let K be a closed convex nonempty subset of a 2-uniformly
convex and uniformly smooth real Banach space E with dual space E∗. Let
hi : K × K → R (i = 1, 2, 3, ...) be a sequence of bifunctions satisfying
conditions (A1) − (A4) and Gi : K → 2E, i = 1, 2, 3, ... be a countable family
of equally continuous and totally quasi-φ-asymptotically nonexpansive multi-
valued nonself maps with nonnegative real sequences {v(i)

n }, {µ(i)
n } and strictly

increasing continuous functions ψi : R+ → R+ such that v(i)
n → 0, µ

(i)
n → 0 as

n → ∞ and ψi(0) = 0. Let Ai : K → 2E
∗
, i = 1, 2, 3, ... be a countable family

of γi-inverse strongly monotone multi-valued maps and let γ = inf{γi, i =
1, 2, 3, ...} > 0. Let Φi : K → R (i = 1, 2, 3, ...) be a sequence of lower
semi-continuous convex functions and let Bi : K → E∗ (i = 1, 2, 3, ...) be a
sequence of continuous monotone functions. Suppose W :=

(
∩∞i=1 F (Gi)

)
∩(

∩∞i=1 A
−1
i (0)

)
∩
(
∩∞i=1 GMEP (hi,Φi, Bi)

)
6= ∅ and the sequence {xn} in K

is defined iteratively as follows:

x0 ∈ K0 = K,

yn = ΠKJ
−1(Jxn − λξin), (ξin ∈ Ainxn),

zn = J−1
(
αJxn + (1− α)Jη

(in)
mn

)
, (η

(in)
mn ∈ Gin(PGin)mn−1yn),

un = Trnzn,

Kn+1 = {z ∈ Kn : φ(z, un) ≤ φ(z, xn) + θn},
xn+1 = ΠKn+1x0, n ≥ 0,

where θn := (1− α)
[
v

(in)
mn supp∈W ψin

(
φ(p, xn)

)
+ µ

(in)
mn

]
; λ ∈ (0, c2

2
γ), c2 > 0 is

the constant in Lemma 2.1.4, P : E → K is a nonexpansive retraction and
α ∈ (0, 1). Then, {xn} converges strongly to some element of W .

Proof:
The proof is divided into five steps.

Step 1: We show that the sequence {xn} is well defined.
Observe that for each n ≥ 0, the setKn = {z ∈ Kn−1 : φ(z, un) ≤ φ(z, xn)+θn}
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is equivalent to the setDn = {z ∈ Kn−1 : 2〈z, Jxn−Jun〉 ≤ ||xn||2−||un||2+θn}
and clearly, Dn is closed and convex and soKn is. Next, we show thatW ⊂ Kn

for all n ≥ 0. We do this by induction. Clearly, W ⊂ K0 = K. Suppose
W ⊂ Kk for some k ≥ 0. Let p ∈ W , then using the definition of φ, Lemma
2.1.1 and the fact that Ti is totally quasi-φ-asymptotically nonexpansive for
each i = 1, 2, 3, ... and η(ik)

mk ∈ Gik(PGik)mk−1yk, we have that:

φ(p, uk) = φ(p, Trkzk) ≤ φ(p, J−1(αJxk + (1− α)Jη(ik)
mk

))

= ||p||2 − 2〈p, αJxk + (1− α)Jη(ik)
mk
〉+ ||αJxk + (1− α)Jη(ik)

mk
||2

≤ ||p||2 − 2α〈p, Jxk〉 − 2(1− α)〈p, Jη(ik)
mk
〉

+α||xk||2 + (1− α)||η(ik)
mk
||2 (7.2.1)

= αφ(p, xk) + (1− α)φ(p, η(ik)
mk

)

≤ αφ(p, xk) + (1− α)
[
φ(p, yk) + vkψ(φ(p, yk)) + µk

]
. (7.2.2)

Moreover, by Lemmas 2.3.3 and 2.1.4, we have with y∗ = λξik , ξik ∈ Aikxk
that,

φ(p, yk) = φ(p,ΠKJ
−1(Jxk − λξik)) ≤ φ(p, J−1(Jxk − λξik)) = V (p, Jxk − λξik)

≤ V (p, Jxk)− 2λ〈J−1(Jxk − λξik)− p, ξik〉
= φ(p, xk)− 2λ〈xk − p, ξik〉 − 2λ〈J−1(Jxk − λξik)− xk, ξik〉
≤ φ(p, xk)− 2λγ||ξik ||2 + 2λ||J−1(Jxk − λξik)− J−1(Jxk)||.||ξik ||

≤ φ(p, xk)− 2λγ||ξik ||2 +
4λ2

c2

∥∥∥ξik∥∥∥2

= φ(p, xk)− 2λ
(
γ − 2

c2

λ
)
||ξik ||2. (7.2.3)

Thus, using the fact that λ ≤ c2

2
γ, we have that φ(p, yk) ≤ φ(p, xk). Using

this and inequality (7.2.2), we have that φ(p, uk) ≤ φ(p, xk)+θk, which implies
that p ∈ Kk+1. Then, by induction, W ⊂ Kn for each n ≥ 0 and hence the
sequence {xn} is well defined.

Step 2: We show that the sequence {xn} converges to some x∗ ∈ K.
From xn = ΠKnx0 and by Lemma 2.3.8, we have for each p ∈ W ⊂ Kn, ∀n ≥ 0,
that

φ(x0, xn) ≤ φ(x0, p)− φ(xn, p) ≤ φ(x0, p).

This implies that {φ(x0, xn)} is bounded, so {xn} is bounded.

Now, for each i ≥ 1, set Ki = {k ≥ 1 : k = i+ (m−1)m
2

,m ≥ i,m ∈ N}. Observe
that if for each i ≥ 1, k ∈ Ki, then v

(ik)
mk = v

(i)
mk , µ

(ik)
mk = µ

(i)
mk and ψik = ψi.

Thus, mk ↑ ∞ as k →∞ for k ∈ Ki. Therefore, lim
n→∞

θn = 0.

Since, xn = ΠKnx0 and xn+1 = ΠKn+1x0 ∈ Kn, we have φ(x0, xn) ≤ φ(x0, xn)+
φ(xn, xn+1) ≤ φ(x0, xn+1), which implies that {φ(x0, xn)} is non-decreasing
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and bounded, then limφ(x0, xn) exists. Next, for positve integers m, n such
that m ≥ n and using Lemma 2.3.8, we have that

φ(xn, xm) ≤ φ(x0, xm)− φ(x0, xn) (7.2.4)

which implies limn,m→∞ φ(xn, xm) = 0 and by Lemma 2.3.4, ||xn − xm|| → 0
as n,m → ∞. Hence, {xn} is Cauchy and so, there exists x∗ ∈ K such that
xn → x∗ as n→∞.

Step 3: We show x∗ ∈ ∩∞i=1F (Gi).
Takingm = (n+1) in inequality (7.2.4) yields that φ(xn, xn+1) ≤ φ(x0, xn+1)−
φ(x0, xn)→ 0, n→∞. Hence, ||xn+1 − xn|| → 0 as n→∞ by Lemma 2.3.4.
Since xn+1 ∈ Kn+1 and from the definition of Kn+1, we have, φ(xn+1, un) ≤
φ(xn+1, xn) + θn → 0 as n→∞, which implies ||xn+1−un|| → 0 as n→∞ by
Lemma 2.3.4. It follows that ||xn − un|| ≤ ||xn − xn+1||+ ||xn+1 − un|| → 0 as
n → ∞. Also, by the uniform continuity of J on bounded sets, we have that
||Jxn − Jun|| → 0 as n→∞.
Using basically the same computations as those leading to inequality (7.2.1),
Lemma 2.1.1 and using the fact that η(ik)

mk = η
(i)
mk whenever k ∈ Ki, for each

i ≥ 1, η(in)
mn ∈ Gin(PGin)mn−1yn, we have,

φ(p, un) ≤ ||p||2 − 2α〈p, Jxn〉 − 2(1− α)〈p, η(i)
mn
〉+ α||xn||2 + (1− α)||η(i)

mn
||2

−α(1− α)g(||Jxn − Jη(i)
mn
||)

≤ αφ(p, xn) + (1− α)φ(p, η(i)
mn

)− α(1− α)g(||Jxn − Jη(i)
mn
||)

≤ αφ(p, xn) + (1− α)
[
φ(p, yn) + vnψ(φ(p, yn)) + µn

]
−α(1− α)g(||Jxn − Jη(i)

mn
||)

≤ αφ(p, xn) + (1− α)
[
φ(p, xn) + vnψ(φ(p, xn)) + µn

]
−α(1− α)g(||Jxn − Jη(i)

mn
||)

≤ φ(p, xn) + θn − α(1− α)g(||Jxn − Jη(i)
mn
||),

which implies that

α(1− α)g(||Jxn − Jη(i)
mn
||) ≤ φ(p, xn)− φ(p, un) + θn, ∀n ≥ 0.

Using the definition of φ and the fact that lim ||xn − un|| = 0, we have that
lim g(||Jxn − Jη

(i)
mn||) = 0. Since g is strictly increasing and g(0) = 0, we

have that ||Jxn − Jη
(i)
mn|| → 0 as n → ∞. By uniform continuity of J−1

on bounded sets, we get that ||xn − η
(i)
mn|| → 0 as n → ∞, for each i ≥ 1,

η
(in)
mn ∈ Gin(PGin)mn−1yn.
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Moreover, using inequalities (7.2.2) and (7.2.3), we obtain that

φ(p, un) ≤ αφ(p, xn) + (1− α)
[
φ(p, yn) + vnψ(φ(p, yn)) + µn

]
≤ αφ(p, xn) + (1− α)

[
φ(p, xn) + vnψ(φ(p, xn)) + µn

−2λ
(
γ − 2

c2

λ
)
||ξin||2

]
(7.2.5)

≤ φ(p, xn) + θn − 2(1− α)λ
(
γ − 2

c2

λ
)
||ξin||2. (7.2.6)

Inequality (7.2.16) implies that

2(1− α)λ
(
γ − 2

c2

λ
)
||ξin||2 ≤ φ(p, xn)− φ(p, un) + θn.

Thus, we obtain that lim ||ξin|| = 0. Furthermore, since xn ∈ K for all n ≥ 0,
then using Lemmas 2.3.3 and 2.1.4, we have that,

φ(xn, yn) = φ(xn,ΠKJ
−1(Jxn − λξin))

≤ φ(xn, J
−1(Jxn − λξin)) = V (xn, Jxn − λξin) (7.2.7)

≤ φ(xn, xn)− 2λ〈J−1(Jxn − λξin)− J−1Jxn, ξin〉
≤ 2λ||J−1(Jxn − λξin)− J−1Jxn||.||ξin||

≤ 4

c2

λ2
∥∥∥ξin∥∥∥2

. (7.2.8)

Thus, from inequality (7.2.8) and using the fact that lim ||ξin|| = 0, we have
that limφ(xn, yn) = 0 and by Lemma 2.3.4, we have that lim ||xn − yn|| = 0.

Consequently, for each i, k ∈ Ki, η
(i)
mk ∈ Gi(PGin)mk−1yk, we have ||yk −

η
(i)
mk || → 0, as k → ∞, since ||yk − η(i)

mn|| ≤ ||yk − xk|| + ||xk − η
(i)
mk || → 0, as

k → ∞. Also, since limk→∞ xk = x∗ and lim ||xk − yk|| = 0, we have that
lim yk = x∗ and limk→∞ η

(i)
mk = x∗ for each i, η(i)

mk ∈ Gi(PGin)mk−1yk, η
(i)
mk+1 ∈

GiPη
(i)
mk ⊂ Gi(PGi)

mk+1−1yk and s(i)
mk+1 ∈ Gi(PGi)

mk+1−1yk+1. Now,

||η(i)
mk+1

− η(i)
mk
|| ≤ ||η(i)

mk+1
− s(i)

mk+1
||+ ||s(i)

mk+1
− yk+1||+ ||yk+1 − yk||+ ||yk − η(i)

mk
||

Since GiP, i = 1, 2, 3, ... is equally continuous, for each i = 1, 2, 3, ..., we have
that limk→∞ ||η(i)

mk+1 − η
(i)
mk || = 0. Thus, η(i)

mk+1 → x∗ as k → ∞, but η(i)
mk+1 →

six
∗, six∗ ∈ GiPx

∗ = Gix
∗, by continuity of GiP for each i. Hence, by

uniqueness of limit, six∗ = x∗ for each i, so x∗ ∈ ∩∞i=1F (Gi).

Step 4: We show that x∗ ∈ ∩∞i=1A
−1
i (0).

For each i, k ∈ Ki, ξik ∈ Aikxk and noting that ξik = ξi, ξi ∈ Aixk, we have
from inequality (7.2.17) that limk→∞ ||ξik || = 0. Since xk → x∗, k →∞ and Ai
is γi-inverse strongly montone for each i, it is Lipschitz continuous and thus,
ξik → uix

∗ as k → ∞ for uix∗ ∈ Aix∗, i = 1, 2, 3, .... Thus, by the uniqueness
of limit, we have that uix∗ = 0 , i = 1, 2, 3, .... Hence, x∗ ∈ ∩∞i=1A

−1
i (0).
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Step 5: Finally, we show that x∗ ∈ ∩∞i=1GMEP (hi,Φi, Bi).
Define a function τi : K ×K → R (i = 1, 2, 3, ...) by

τi(x, y) = hi(x, y) + Φi(y)− Φi(x) + 〈y − x,Bix〉 ∀x, y ∈ K i = 1, 2, 3, ....

Clearly, τi satisfies (A1)− (A4) for each i. Now, from un = Trnzn, p ∈ W and
Lemma 7.1.4, we have

φ(un, zn) = φ(Trnzn, zn) ≤ φ(p, zn)− φ(p, Trnzn)

≤ φ(p, xn)− φ(p, Trnzn)

= φ(p, xn)− φ(p, un)

which implies that limn→∞ φ(un, zn) = 0. Since {un} is bounded, we have
from Lemma 2.3.4 that limn→∞ ||un − zn|| = 0. Since xn → x∗ and un → x∗

as n → ∞, we obtain that zn → x∗ as n → ∞ and by uniform continuity
of J on bounded sets, we get that limn→∞ ||Jun − Jzn|| = 0. Again, since
riK = ri as k ∈ Ki for each i ∈ N and ri ∈ [d,∞) for some d > 0, we have

limk→∞
||Juk − Jzk||

ri
= 0.

Next, since τi(uk, y) + 1
ri

〈
y − uk, Juk − Jzk

〉
≥ 0∀y ∈ K, we obtain that

1

ri

〈
y − uk, Juk − Jzk

〉
≥ −τi(uk, y) ≥ τi(y, uk)∀y ∈ K.

This implies that

τi(y, uk) ≤
1

ri

〈
y − uk, Juk − Jzk

〉
≤ (M0 + ||y||) ||Juk − Jzk||

ri
, (7.2.9)

for some M0 ≥ 0. Since y 7−→ τi(x, y) is convex and lower semi-continuous, we
obtain from inequality (7.2.9) that

τi(y, x
∗) ≤ lim inf τi(y, uk) ≤ 0 ∀y ∈ K. (7.2.10)

Now, for t ∈ (0, 1) and y ∈ K, let yt = ty+(1− t)x∗. Since y ∈ K and x∗ ∈ K,
we have that yt ∈ K and so from inequality (7.2.10), τi(yt, x∗) ≤ 0 for each i.
But from conditions (A1) and (A4) we have that

0 = τi(yt, yt) ≤ tτi(yt, y) + (1− t)τi(yt, x∗) ≤ tτi(yt, y).

So, τi(yt, y) ≥ 0 ∀y ∈ K, i = 1, 2, 3, ... and condition (A3) implies that
τi(x

∗, y) ≥ lim supt→0 τi(yt, y) ≥ 0 ∀y ∈ K, i = 1, 2, 3, .... Thus, x∗ ∈
EP (τi) = GMEP (hi,Φi, Bi) for each i, so x∗ ∈ ∩∞i=1GMEP (hi,Φi, Bi). Hence,
x∗ ∈ W . This completes the proof.

We now prove the following strong convergence theorem using a Halpern-type
algorithm (see [?] for the original algorithm of Halpern).
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Theorem 7.2.2 Let K be a closed convex nonempty subset of a 2-uniformly
convex and uniformly smooth real Banach space E with dual space E∗. Let
hi : K × K → R (i = 1, 2, 3, ...) be a sequence of bifunctions satisfying
conditions (A1) − (A4) and Gi : K → 2E, i = 1, 2, 3, ... be a countable family
of equally continuous and totally quasi-φ-asymptotically nonexpansive multi-
valued nonself maps with nonnegative real sequences {v(i)

n }, {µ(i)
n } and strictly

increasing continuous functions ψi : R+ → R+ such that v(i)
n → 0, µ

(i)
n → 0 as

n → ∞ and ψi(0) = 0. Let Ai : K → 2E
∗
, i = 1, 2, 3, ... be a countable family

of γi-inverse strongly monotone multi-valued maps and let γ = inf{γi, i =
1, 2, 3, ...} > 0. Let Φi : K → R (i = 1, 2, 3, ...) be a sequence of lower
semi-continuous convex functions and let Bi : K → E∗ (i = 1, 2, 3, ...) be a
sequence of continuous monotone functions. Suppose W :=

(
∩∞i=1 F (Gi)

)
∩(

∩∞i=1 A
−1
i (0)

)
∩
(
∩∞i=1 GMEP (hi,Φi, Bi)

)
6= ∅ and the sequence {xn} in K

is defined iteratively as follows:

x0 ∈ K0 = K,

yn = ΠKJ
−1(Jxn − λξin), (ξin ∈ Ainxn),

zn = J−1
(
αnJx0 + (1− αn)Jη

(in)
mn

)
, (η

(in)
mn ∈ Gin(PGin)mn−1yn),

un = Trnzn,

Kn+1 = {z ∈ Kn : φ(z, un) ≤ αnφ(z, x0) + (1− αn)φ(z, xn) + θn},
xn+1 = ΠKn+1x0, n ≥ 0,

where θn := (1− αn)
[
v

(in)
mn supp∈W ψin

(
φ(p, xn)

)
+ µ

(in)
mn

]
; αn ∈ (0, 1) satisfying

the following (i) limαn = 0 and (ii) lim inf αn(1−αn) > 0; λ ∈ (0, c2
2
γ) and

c2 > 0 is the constant in Lemma 2.1.4. Then, {xn} converges strongly to some
element of W .

Proof:
The proof is divided into five steps.

Step 1: We show that the sequence {xn} is well defined.
From the proof of Theorem 7.2.1, the set Kn = {z ∈ Kn−1 : φ(z, un) ≤
αnφ(z, x0)+(1−αn)φ(z, xn)+θn}, ∀n ≥ 0 is closed and convex. Next, we show
that W ⊂ Kn for all n ≥ 0. We do this by induction. Clearly, W ⊂ K0 = K.
Suppose W ⊂ Kk for some k ≥ 0. Let p ∈ W , then using the definition of φ,
Lemma 2.1.1 and the fact that Ti is totally quasi-φ-asymptotically nonexpan-
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sive for each i = 1, 2, 3, ... and η(ik)
mk ∈ Gik(PGik)mk−1yk, we have that:

φ(p, uk) = φ(p, Trkzk) ≤ φ(p, J−1(αkJx0 + (1− αk)Jη(ik)
mk

))

= ||p||2 − 2〈p, αkJx0 + (1− αk)Jη(ik)
mk
〉+ ||αkJx0 + (1− αk)Jη(ik)

mk
||2

≤ ||p||2 − 2αk〈p, Jx0〉 − 2(1− αk)〈p, Jη(ik)
mk
〉+ αk||x0||2

+(1− αk)||η(ik)
mk
||2 − αk(1− αk)g(||Jx0 − Jη(ik)

mk
||) (7.2.11)

≤ αkφ(p, x0) + (1− αk)φ(p, η(ik)
mk

)

≤ αkφ(p, x0) + (1− αk)
[
φ(p, yk) + vkψ(φ(p, yk)) + µk

]
. (7.2.12)

Moreover, by Lemmas 2.3.3 and 2.1.4, we have with y∗ = λξik , ξik ∈ Aikxk
that,

φ(p, yk) = φ(p,ΠKJ
−1(Jxk − λξik)) ≤ φ(p, J−1(Jxk − λξik)) = V (p, Jxk − λξik)

≤ V (p, Jxk)− 2λ〈J−1(Jxk − λξik)− p, ξik〉
= φ(p, xk)− 2λ〈xk − p, ξik〉 − 2λ〈J−1(Jxk − λξik)− xk, ξik〉
≤ φ(p, xk)− 2λγ||ξik ||2 + 2λ||J−1(Jxk − λξik)− J−1(Jxk)||.||ξik ||

≤ φ(p, xk)− 2λγ||ξik ||2 +
4λ2

c2

∥∥∥ξik∥∥∥2

= φ(p, xk)− 2λ
(
γ − 2

c2

λ
)
||ξik ||2. (7.2.13)

Thus, using the fact that λ ≤ c2

2
γ, we have that φ(p, yk) ≤ φ(p, xk). Using this

and inequality (7.2.12), we have that

φ(p, uk) ≤ αkφ(p, x0) + (1− αk)φ(p, xk) + θk, (7.2.14)

which implies that p ∈ Kk+1. Then, by induction, W ⊂ Kn for each n ≥ 0
and hence the sequence {xn} is well defined.

Step 2: We show that the sequence {xn} converges to some x∗ ∈ K.
This follows as in step 2 of the proof of Theorem 7.2.1.

Step 3: We show x∗ ∈ ∩∞i=1F (Gi).
Following the same argument as in step 3 of the proof of Theorem 7.2.1, we
obtain that ||Jxn − Jun|| → 0 as n → ∞. Also, using basically the same
computataions as those leading to inequality (7.2.11) and using the fact that
η

(ik)
mk = η

(i)
mk whenever k ∈ Ki, for each i ≥ 1, η(in)

mn ∈ Gin(PGin)mn−1yn, we
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have,

φ(p, un) ≤ ||p||2 − 2αn〈p, Jx0〉 − 2(1− αn)〈p, η(i)
mn
〉+ αn||x0||2 + (1− αn)||η(i)

mn
||2

−αn(1− αn)g(||Jx0 − Jη(i)
mn
||)

≤ αnφ(p, x0) + (1− αn)φ(p, η(i)
mn

)− αn(1− αn)g(||Jx0 − Jη(i)
mn
||)

≤ αnφ(p, x0) + (1− αn)
[
φ(p, yn) + vnψ(φ(p, yn)) + µn

]
−α(1− α)g(||Jxn − Jη(i)

mn
||)

≤ αnφ(p, x0) + (1− αn)
[
φ(p, xn) + vnψ(φ(p, xn)) + µn

]
−αn(1− αn)g(||Jx0 − Jη(i)

mn
||)

≤ αnφ(p, x0) + (1− αn)φ(p, xn) + θn − αn(1− αn)g(||Jx0 − Jη(i)
mn
||),

which implies that

αn(1− αn)g(||Jxn − Jη(i)
mn
||) ≤ αnφ(p, x0) + (1− αn)φ(p, xn)

+θn − φ(p, un), ∀n ≥ 0.

Using the definition of φ, the fact that lim ||xn − un|| = 0 and lim inf αn(1 −
αn) > 0, we have that lim g(||Jxn − Jη(i)

mn||) = 0. Since g is strictly increasing
and g(0) = 0, we have that ||Jxn − Jη

(i)
mn|| → 0 as n → ∞. By uniform

continuity of J−1 on bounded sets, we get that ||xn − η(i)
mn|| → 0 as n → ∞,

for each i ≥ 1, η(in)
mn ∈ Gin(PGin)mn−1yn.

Moreover, using inequalities (7.2.12) and (7.2.13), we obtain that

φ(p, un) ≤ αnφ(p, x0) + (1− αn)
[
φ(p, yn) + vnψ(φ(p, yn)) + µn

]
≤ αnφ(p, x0) + (1− αn)

[
φ(p, xn) + vnψ(φ(p, xn)) + µn

−2λ
(
γ − 2

c2

λ
)
||ξin||2

]
(7.2.15)

≤ αnφ(p, x0) + (1− αn)φ(p, xn) + θn

−2(1− αn)λ
(
γ − 2

c2

λ
)
||ξin||2. (7.2.16)

Inequality (7.2.16) implies that

2(1− αn)λ
(
γ − 2

c2

λ
)
||ξin||2 ≤ αnφ(p, x0) + (1− αn)φ(p, xn)

−φ(p, un) + θn. (7.2.17)

Thus, we obtain that lim ||ξin|| = 0. Furthermore, since xn ∈ K for all n ≥ 0,
then using Lemmas 2.3.3 and 2.1.4, we have that,

φ(xn, yn) = φ(xn,ΠKJ
−1(Jxn − λξin))

≤ φ(xn, J
−1(Jxn − λξin)) = V (xn, Jxn − λξin)

≤ φ(xn, xn)− 2λ〈J−1(Jxn − λξin)− J−1Jxn, ξin〉
≤ 2λ||J−1(Jxn − λξin)− J−1Jxn||.||ξin||

≤ 4

c2

λ2
∥∥∥ξin∥∥∥2

. (7.2.18)
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Thus, from inequality (7.2.18) and using the fact that limn→∞ ||ξin|| = 0, we
have that limφ(xn, yn) = 0 and by Lemma 2.3.4, we have that lim ||xn−yn|| =
0.
Consequently, for each i, k ∈ Ki, η

(i)
mk ∈ Gi(PGin)mk−1yk, we have ||yk −

η
(i)
mk || → 0, as k → ∞, since ||yk − η(i)

mn|| ≤ ||yk − xk|| + ||xk − η
(i)
mk || → 0, as

k → ∞. Also, since limk→∞ xk = x∗ and lim ||xk − yk|| = 0, we have that
lim yk = x∗ and limk→∞ η

(i)
mk = x∗ for each i, η(i)

mk ∈ Gi(PGin)mk−1yk, η
(i)
mk+1 ∈

GiPη
(i)
mk ⊂ Gi(PGi)

mk+1−1yk and s(i)
mk+1 ∈ Gi(PGi)

mk+1−1yk+1. Now,

||η(i)
mk+1

− η(i)
mk
|| ≤ ||η(i)

mk+1
− s(i)

mk+1
||+ ||s(i)

mk+1
− yk+1||+ ||yk+1 − yk||+ ||yk − η(i)

mk
||

Since GiP, i = 1, 2, 3, ... is equally continuous, for each i = 1, 2, 3, ..., we have
that limk→∞ ||η(i)

mk+1 − η
(i)
mk || = 0. Thus, η(i)

mk+1 → x∗ as k → ∞, but η(i)
mk+1 →

six
∗, six∗ ∈ GiPx

∗ = Gix
∗, by continuity of GiP for each i. Hence, by

uniqueness of limit, six∗ = x∗ for each i, so x∗ ∈ ∩∞i=1F (Gi).

Step 4: We show that x∗ ∈ ∩∞i=1A
−1
i (0).

The verification follows as in the verifcation of step 4 of the proof of Theorem
7.2.1.

Step 5: Finally, we show that x∗ ∈ ∩∞i=1GMEP (hi,Φi, Bi).
This follows as in step 5 of the proof of Theorem 7.2.1. This completes the
proof.

Remark 7.2.1 We note here that one reason for developing an algorithm for
finding an element in W as defined in Theorems 7.2.1 and 7.2.2 is that such
an algorithm unifies various algorithms for approximating solutions of several
problems of interest in nonlinear operator theory, for example, convex feasibility
problems [?]; zeros of gamma inverse strongly monotone maps; equilibrium
problems; optimization problems, etc.

7.3 Applications

7.3.1 A system of convex optimization problems

By setting Bi ≡ 0, hi ≡ 0 (i = 1, 2, 3, ...) in Theorem 7.2.1, the sequence
{xn} defined in Theorem 7.2.1 converges strongly to some element ofW , where
W :=

(
∩∞i=1 F (Gi)

)
∩
(
∩∞i=1 A

−1
i (0)

)
∩
(
∩∞i=1 MP (Φi)

)
.

7.3.2 A system of equilibrium problems

By setting Bi ≡ 0, Φi ≡ 0 (i = 1, 2, 3, ...) in Theorem 7.2.1, the sequence
{xn} defined in Theorem 7.2.1 converges strongly to some element ofW , where
W :=

(
∩∞i=1 F (Gi)

)
∩
(
∩∞i=1 A

−1
i (0)

)
∩
(
∩∞i=1 EP (hi)

)
.
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7.3.3 A system of variational inequality problems

By setting hi ≡ 0, Φi ≡ 0 for each i = 1, 2, 3, ... in Theorem 7.2.1, the sequence
{xn} defined in Theorem 7.2.1 converges strongly to some element ofW , where
W :=

(
∩∞i=1 F (Gi)

)
∩
(
∩∞i=1 A

−1
i (0)

)
∩
(
∩∞i=1 V IP (Bi, K)

)
.

7.3.4 Application in Classical Banach spaces

Let E = Lp, lp, or Wm
p (Ω), 1 < p < ∞, where Wm

p (Ω) denotes the usual
Sobolev space and let E∗ be the dual space of E. Cleary, E is uniformly
convex and uniformly smooth. Consequently, Theorem 7.2.1 is applicable in
these spaces.

Remark 7.3.1 (see e.g., ) The analytical representations of duality maps are
known in a number of Banach spaces. For instance, in the spaces lp, Lp(G)
and Sobolev spaces W p

m(G), p ∈ (1,∞), p−1 + q−1 = 1, the representations can
be seen Alber and Ryazantseva, [3]; page 36 and Cioranescu [?].

Application in Hilbert spaces

The following theorem follows immediately from Theorem 7.2.1.

Corollary 7.3.1 Let H be a real Hilbert space and K be a nonempty closed
and convex subset of H. Let hi : K × K → R, i = 1, 2, 3, ... be a sequence
of bifunctions satisfying (A1) − (A4). Let Bi : K → H be a sequence of
continuous monotone maps and Gi : K → 2H , i = 1, 2, ..., be a countable family
of equally continuous and totally quasi-φ-asymptotically nonexpansive multi-
valued nonself maps with nonnegative real sequences {v(i)

n }, {µ(i)
n } and strictly

increasing continuous functions ψi : R+ → R+ such that v(i)
n → 0, µ

(i)
n → 0 as

n → ∞ and ψi(0) = 0. Let Ai : K → 2H , i = 1, 2, 3, ... be a countable family
of γi-inverse strongly monotone multi-valued maps and let γ = inf{γi, i =
1, 2, 3, ...} > 0. Let Φi : K → R (i = 1, 2, 3, ...) be a sequence of lower semi-
continuous convex functions. Suppose W :=

(
∩∞i=1 F (Gi)

)
∩
(
∩∞i=1 A

−1
i (0)

)
∩(

∩∞i=1GMEP (hi,Φi, Bi)
)
6= ∅ and the sequence {xn} in K is defined iteratively

as follows: 

x0 ∈ K0 = K,

yn = ΠK(xn − λξi), (ξi ∈ Aixn),

zn = αxn + (1− α)η
(i)
n , (η

(i)
n ∈ Gi(GTi)

n−1yn),

un = Trnzn,

Kn+1 = {z ∈ Kn : ||un − z||2 ≤ ||xn − z||2 + θn},
xn+1 = PKn+1x0, n ≥ 0,
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where θn := (1 − α)
[
v

(in)
mn supp∈W ψin

(
||xn − p||2

)
+ µ

(in)
mn

]
; λ ∈ (0, c2

2
γ), c2 > 0

is the constant in Lemma 2.1.4, PK is the metric projection of H onto K and
α ∈ (0, 1). Then, {xn} converges strongly to some element of W .

7.4 Numerical experiment
In this section, we give a numerical example to establish the implementability
of the algorithm proposed in this paper.

Example 7.4.1 In Theorem 7.2.1 and Theorem 7.2.2, we assume that E = R
and [−1, 1]. Define Bx = x, h(x, y) = (y + x)(y − x), Φ ≡ 0, A(x) = 3x and
Gx = sinx. It is easy to see that f satisfies (A1) − (A4), A is 1/4-inverse
strongly montone and B is continuous montone. Thus, for any y ∈ K and
r > 0, we have

h(u, y) +〈B(x), y − u〉+
1

r
〈u− x, y − u〉 ≥ 0

⇔ h(u, y) +
1

r
〈u− (I − rB)x, y − u〉 ≥ 0

⇔ ry2 + y[u− (1− r)x]− u[(1 + r)u− (1− r)x] ≥ 0

Let Q(y) = ry2 +y[u− (1−r)x]−u[(1+r)u− (1−r)x]. Since Q is a quadratic
function relative to y, Q(y) ≥ 0 for all y ∈ K, if and only if the coefficient of
y2 is positive and the discriminant M≤ 0. But

M = [u− (1− r)x]2 + 4ru[(1 + r)u− (1− r)x]

= [(1 + 2r)u− (1− r)x]2.

Thus, we obtain that

u =
1− r
1 + 2r

x

and then un = Trnzn =
1− r
1 + 2r

zn. Taking x1 = 0.7, r = 2, λ = 1/15,

αn =
1

n+ 1
, we obtain the following graph.

No of iterations |xn| for Theorem 7.2.1 |xn| for Theorem 7.2.2
3 0.474663617 0.44668362
18 0.01997619 0.0167733
25 0.00497983 0.0167733
37 0.000460236793 0.0167733
48 0.0000518720861 0.0167733
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Remark 7.4.1 1. Theorem 7.2.2 complements and improves the results of
Bo and Yi [30] in the following sense:

• The map T : K → E, considered in Bo and Yi [30] is single-valued,
whereas in Theorem 7.2.2 the class of maps, Ti : K → 2E, i =
1, 2, 3, ... considered is multi-valued.

• The map T : K → E such that T is uniformly L-Lipschitz continu-
ous studied in Bo and Yi [30] is extended to the much more general
class of maps Ti : K → 2E such that for each i, Ti is equally con-
tinuous in 2-uniformly convex and uniformly smooth real Banach
space.

2. Theorem 7.2.1 is also a significant improvement of the results of Deng
[76] in the following sense: The class of self-maps Ti : K → K such
that for each i is uniformly Li-Lipschitz continuous is generalized to the
more general class of nonself maps Ti : K → 2E such that for each i,
Ti is equally continuous; and also the assumption that Ti is closed in the
result of Deng [76] is dispensed with in Theorem 7.2.1.

All the results in this chapter are results in [64], published in Journal of
Fixed Point Theory and Applications.
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