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ABSTRACT 

 

Optimal positioning of wells has always been the priority of most reservoir engineers 

in the face of the dwindling global price of crude oil. As it is always the objective to 

maximize recoverable reserves over the years, much research has been carried out 

in order to determine the techniques appropriate for estimating the optimal number 

and location of wells needed to improve the recovery from a given field. 

 

In this research, well placement optimization in a highly heterogeneous reservoir 

involving an executable space-filling design and genetic algorithm workflow was 

developed for improved investment return. The desired objective function was 

derived using a surrogate-based modelling approach. The objective of this study is to 

determine and compare the performance of different surrogate modes. The specific 

objective is the application of the appropriate surrogates in determining the optimal 

location and completion properties of horizontal wells using space-filling design and 

genetic algorithms in a complex multidisciplinary optimization problem. This 

approach was implemented using MATLAB® and Schlumberger Eclipse® 100. More 

specifically, surrogates, such as polynomial-based (quadratic, polynomial and 

multiplicative), geometric-based (kriging and radial basis function) and the integer-

based optimizations were modelled as a function of completion properties of a 

horizontal well using the developed surrogates.  

 

After the numerical simulations, the most economical values of the NPV were 

estimated. It was observed that the NPV increases as the number of infill wells 

increases but attains a constant value at optimal value. In addition, the geometric-

based models are an effective tool useful in developing surrogate-based rather than 

polynomial-based models. The results also demonstrate that this method can 

significantly accelerate the speed of well placement optimization and can help 

achieve a significant increase in investment return of an actual field if implemented 

as demonstrated in this case study.  
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CHAPTER ONE: INTRODUCTION 

 

1.1 Background to Study 

Petroleum engineers are often saddled with the responsibility of increasing the 

amount of recoverable oil or gas obtainable from a given field in order to maximize 

production and increase profit. In order for petroleum engineers to achieve this, they 

are faced with the difficulties arising from the heterogeneous nature of the 

subsurface formation and the uncertainty associated with the estimation of reservoir 

rock and fluid properties. Because of the aforementioned fact, it has always been 

described that the field of petroleum engineering is more an art than it is engineering.  

 

In order to achieve maximum recovery in the face of the recent dwindling global price 

of crude oil, optimal positioning of wells is usually the priority of most reservoir 

engineers. As it is the objective of reservoir engineers to maximize recovery, there 

are three production phases, namely, primary, secondary and tertiary production. 

Primary energy involves the reservoir using its own energy for production. 

Secondary energy involves using water or gas injection to maintain the reservoir 

pressure at a favourable level; while tertiary involves other processes such as 

polymer flooding, CO2 injection, etc. (Craft & Hawkins, 1959).  

 

By using the conventional method of subsurface reservoir management, the 

recovery of the original oil initially in place (OOIP) is typically not more than a mere 

10% during production using the reservoir energy, but its recovery could be 

improved considerably using some of the secondary and tertiary recovery methods 

(DOE, 2008). One of the improved recovery methods is infill drilling which involves 

drilling new wells into the reservoir so as to increase the oil and/or gas production 

rate (Salmachi et al., 2013). These wells are drilled in order to shorten the production 

time, which will increase its net present value in the face of unchanged ultimate 

recovery. Determining the optimal location and number of infill wells is a crucial 

phase in infill drilling because it will be a waste of time if the engineer fails to get it 

right. Of all the positive attributes of infill drilling, the most important is its betterment 

of area sweep efficiency (Salmachi et al., 2013). 
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Over the years, much research has been carried out in order to determine the 

optimal number and location of wells needed to considerably improve the recovery 

from a given field. The different types of optimization algorithms proposed by 

different researchers can be grouped into two types, namely, gradient-based and 

stochastic-based (Sayyafzadeh, 2013). Most of the recently proposed algorithms fall 

into the stochastic-based category because of their computation efficiency. In this 

research, the various advantages provided by the genetic algorithm were explored. 

This was because it has been confirmed to be computationally efficient when 

determining the number and location of wells needed to improve reserve recovery. 

 

The genetic algorithm is an optimization technique based on the principle of natural 

selection and genetics proposed by Darwin. The genetic algorithm uses the principle 

of survival of the fittest (Alexandre, 2009) and proposes a population choosing 

parameters from a specified range, computing the outcomes and combining the best 

to form better individuals (Jefferys, 1993). Its first application to optimize a problem 

was carried out by Holland in 1975 (Holland, 1975). Genetic algorithm is good for 

nonlinear and discontinuous problems for which classic optimization problems have 

limited application (Jefferys, 1993).  

 

To perform an optimization problem, it is very important to define the objective 

function, which in this research, is a maximization problem. Since the optimization 

problem is an economic one which can either be to maximize cumulative crude oil 

produced or net present value calculated from revenue and operating cost, that is, 

CAPEX and OPEX. Possible locations, the number of infill wells, and other 

parameters modelling the geological and depositional structure of the field are the 

variables put into the optimization algorithm.  

 

1.2 Problem Statement 

Infill well placement operation is a herculean task. It involves accessing a number of 

possible locations in the face of geological uncertainties. These uncertainties can 

result in over prediction or under prediction of the optimal number of infill wells. A 

variety of research has been carried out on how to maximize crude oil production 

from an unchanged reserve. They have proposed various methods to achieve this, 

among these is the drilling of infill wells and their placement.  
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In order to maximize the well placement operation, various optimization techniques 

were proposed. In all these, GA is adjudged more effective in optimizing problems, 

especially those with nonlinear variables.  

 

As can be observed in results from previous work, well placement was viewed as a 

non-intuitive problem (Yeten, 2003). This motivated other researchers to design a 

generalized optimization algorithm for the determination of the optimal number and 

location of infill wells. It is also important to stress that the desire to use GA in well 

placement optimization stems from its advantages observed in previous applications 

for field development as well as its ability to perform successfully in complex search 

operations. 

 

1.3 Aim and Objectives 

1.3.1 Aim 

The aim of this study is to determine optimal location and configuration of infill wells 

in a heterogeneous reservoir using a genetic algorithm 

 

1.3.2 Objectives 

The following are the objectives of the aforementioned aim: 

i. Building a synthetic model with heterogeneity; 

ii. Development of a generic framework for infill well placement optimization; 

iii. Determination of the initial infill well locations; 

iv. Development of a proxy model with NPV objective function; 

v. Optimization using a genetic algorithm. 

 

1.4 Scope of Study 

This research is limited to the optimization of infill wells in heterogeneous reservoirs 

using a genetic algorithm. The numerical simulation was limited to the use of the 

Schlumberger Eclipse® black oil simulator. The GA was implemented using 

MATLAB®. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Well Placement Techniques 

Well placement is a comprehensive planned action used in positioning wells in order 

to maximize productivity or injectivity (Griffith, 2009). The basic aim of any drilling 

operation is to locate correctly the hydrocarbon rich zone. Because of this, the well 

orientation becomes a critical factor dependent on the nature of the subsurface 

formation, which is obtained from the seismic well log analysis, well testing and 

production data. Despite these readily available parameters, most well-placement 

techniques have suffered because of a high degree of subsurface heterogeneity 

present within a small resolution. Most traditional well-placement techniques can be 

classified under the following categories (Griffith, 2009): 

 

A. Model, compare and update (MCU) 

This is a method that uses log responses to build a geological model representative 

of the formation under study, depicting the subsurface as well as the well trajectory. 

In this type of well-placement technique, the parameters used were obtained from 

responses such as gamma ray, resistivity, density and neutron responses obtained 

in real time using measurements while drilling (MWD) but transmitted using logging 

while drilling (LWD). 

 

B. Real-time dip determination  

Here, the limitation inherent with the use of the MCU technique was solved by the 

introduction of azimuthal measurements, which have the ability to differentiate 

between boundaries near the well above from the one approaching from below, 

namely, well direction savvy. This technique uses data obtained from wellbore sides 

and extrapolates to calculate other parameters far from the wellbore. This technique 

assumes that the formation dip varies insignificantly. 

 

C. Remote detection of boundaries  

Azimuthal data improves well-placement operations by aiding the accurate 

determination of direction of contact to the borehole but suffers from a lack of 

investigation depth.  
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Remote detection techniques use azimuthal data coupled with seismic data to 

account for the limitation associated with the use of azimuthal measurements only. 

Also, this well placement technique uses an inversion process to convert raw 

directional and attenuation measurements to a layered geological model where the 

distance and direction of the formation's resistivity changes are obtainable. 

 

2.2 Why Optimize Well-Placement Technique 

In well-placement operations, the following parameters are critical to effectively 

describing the well position: 

 

A. True vertical depth;  

B. Displacement; 

C. Azimuth; 

D. Inclination. 

 

Due to the high degree of heterogeneity present within the subsurface formation, the 

determination of well placement has suffered from either overestimation or 

underestimation. Because of this, optimization of well-placement techniques is very 

important. According to Wang et al. (2016), and Dossary and Nasrabadi (2016), well-

placement optimization technique is described as a complex, nonlinear and 

multidimensional operation. 

 

In addition, due to the falling global price of crude oil and the increase in demand, it 

is important to determine correctly the position and orientation of the well. Below are 

some of the reasons for well-placement optimization (Dossary & Nasrabadi, 2016; 

Onwunalu & Durlofsky, 2009; Afshari et al., 2014; Chen et al., 2017): 

 

A. Correctly determine the well position; 

B. Correctly determine the optimum number of wells needed to effectively drain the 

reservoir; 

C. Maximize recoverable reserves; 

D. Optimize crude oil and gas production while reducing water production; 

E. Limit the number of wells. 
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2.3 Well-Placement Optimization Algorithm 

Most engineering problems involve the selection of one or more variables that can 

correctly optimize a given set of objective functions (Iqbal, 2013). This process is 

termed optimization and has been used extensively in the past 20 years in product 

design and quality checking, either with the aid of computer simulation or using 

manual techniques.  

 

Equation 1 gives the general configuration of the optimization technique  

 

𝑀𝑖𝑛 ∕ 𝑀𝑎𝑥𝐹(𝑋): 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 ∑ 𝜆𝑖𝑋 > 0: 𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

𝑛

𝑖=1

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

∑ 𝜆𝑗𝑋 = 0

𝑛

𝑗=0

: 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

 

The complexity of each problem increases with number of parameters under study. 

Mathematical formulation of the problem is expected in the aforementioned equation. 

In finding the global minimum or maximum, there is generally a trade-off between 

speed, degree of robustness and likelihood (Reed & Marks II, 1999).  

 

Most well placement optimization algorithms can be classified as either deterministic 

(evaluation or gradient based) or stochastic (gradient free) (Dossary & Nasrabadi, 

2016; Vu et al., 2015). 

 

2.3.1 Gradient-based method 

This is a simple method that uses the derivative of its objective function in the 

determination of the optimal variable(s). Examples include:  

i. steepest descent; 

ii. conjugate gradient descent; 

iii. Newton's method; 

iv. Gauss-Newton method; 

v. Levenberg-Marquardt method; 

vi. quasi-Newton method. 
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Most gradient-based methods converged to the same value if the same initial 

estimate was used. Most deterministic methods failed because of their inability to 

model correctly the nonlinearity and non-continuous nature of oil field variables 

(Montes et al. 2001).   

 

2.3.2 Gradient-free Algorithm  

The absence of derivatives makes the use of the gradient-free optimization algorithm 

important (Vu et al., 2013). A gradient-free optimization algorithm is a simple but 

problem-specific optimization algorithm. This algorithm can tolerate a high degree of 

noise inherent in functions under specific conditions. According to Ciaurri et al. 

(2013), Hosseini S. & Al Khaled A. (2014) , Guyaguler & Horne (2002) and Ebadat & 

Karimaghaee (2001), gradient-free algorithm application has been found in oil and 

gas operations in areas such as history matching, parameter estimation and 

production optimization.  

 

The efficiency of this optimization algorithm depends on the type of algorithm used 

(Montes et al. 2001; Vu et al., 2013). Examples of gradient-free algorithms include 

genetic algorithm (Emerick et al., 2009; Monte et al., 2001; Salmachi et al., 2013), 

simulated annealing (Bangerth et al., 2006; Beckner & Song, 1995), particle swarm 

optimization (Onwualu & Durlofsky, 2009), the differential evaluation algorithm 

(Carosio et al., 2015; Awotunde, 2014), cat swarm optimization algorithm (Chen et 

al., 2017), artificial bee colony (Xu et al., 2013; Sayyafzadeh et al., 2012), imperialist 

competitive algorithm (Dossary & Nasrabadi, 2016) and bat-inspired algorithm 

(Naderi & Khamehchi, 2016). 

 

2.3.2.1 Genetic Algorithm 

Genetic algorithm (GA) is one of the most widely used metaheuristic optimization 

algorithms. GA is an algorithm based on the principle of natural selection as 

proposed by Darwin’s evolutionary theory (Montes et al., 2001). According to Montes 

et al. (2001), GA was first used by John Holland to model a complex task effectively 

and he confirmed that GA could overcome shortcomings associated with the use of 

gradient-based algorithms.  
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Genetic algorithm has found its application in areas of specialization ranging from 

the optimization of gas transmission lines (Goldberg 1993), nonconventional well 

optimization (Yeten et al., 2003; Onwunalu, 2005), reservoir modelling and 

description (Guerreiro et al., 1997), history matching (Askari Firoozjaee & 

Khamehchi, 2015), pressure drop prediction (Ebrahimi & Khamehchi, 2015), gas lift 

design (Rasouli et al., 2015) and others. 

 

The underlining principles inherent in GA are shown in Figure 2.1. 

 

 

 

 

Figure 2.1: Genetic algorithm fundamental principle  
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Some terms used in GA include: 

i. Population - this refers to a set of possible outcomes of a given problem and 

is synonymous with human population. 

ii. Chromosomes – this refers to one of the possible outcomes contained in the 

population and is encoded in either binary or real numbers. 

iii. Gene or Individual – this refers to a potential solution to an optimization 

problem and also the parameters defining a particular element of a 

chromosome. 

iv. Genotype – this represents population in the computational space and also 

refers to the way solutions are codified in computing systems. This can be 

represented in binary, real values, integers or permutations. 

v. Allele – this refers to the value a gene takes for a particular chromosome. 

vi. Phenotype – this represents population in the real world and refers to the way 

solutions are codified in the real world. 

vii. Fitness, also known as objective function – this refers to a function which 

takes the solution as input and returns the suitability of the solution as the 

output. 

viii. Genetic operators – these are tools used to alter the genetic composition of 

offspring during reproduction. These include mutation, crossover and 

selection. 

ix. Seed – this refers to the initial population of an algorithm. 

x. Parents – this refers to two individuals that are genetically fit to undergo 

reproduction. 

xi. Offspring – this refers to individuals resulting from reproduction. 

xii. Reproduction – this refers to the process controlling how new generations are 

formed and here, individuals with the best fitness value in the preceding 

generation as having a higher probability of surviving in the next generation. 

 

Population generation is the first step in a typical GA algorithm where specified 

variables are codified to form chromosomes. This results in an initial population that 

can either reproduce automatically or manually (Montes et al., 2001). After this step, 

the initial population, i.e. the chromosomes, are evaluated by ranking them from best 

to worst. The good chromosomes are retained and used in the next generation 

during reproduction while the poor ones are discarded. In the reproduction phase, 
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three processes, namely, mating, mutation and elitism are used. The differences 

between the three processes are that, in elitism, some of the parent chromosomes 

are passed to the new generation while, in mating, two chromosomes are crossed to 

form new ones, but mutation involves the change in genetic composition of the 

parent chromosomes. Figure 2.2 shows the description of the integrated framework 

in GA. 

 

 

Figure 2.2: Flowchart for integrated framework of genetic algorithm 

 

2.3.2.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a relatively new algorithm (Davis, 1991; Cleric, 

2006; Eberhardt & Kennedy, 1995; Engelbrecht, 2005; Kennedy & Eberhardt, 1995), 

similar to the genetic algorithm (Davis, 1991) because both algorithms are initialized 

randomly with a stochastic-based solution (Russell & James, 1995). Its application 

can be found in solving complex nonlinear problems such as well placement 

(Onwunalu & Durlofsky, 2011; Naderi & Ehian, 2016), reservoir modelling 

(Rwechungura et al., 2014) and optimization of field development programme 

(Isebor et al., 2014). This algorithm was first developed by Kennedy and Eberhardt in 

1995 (Eberhardt & Kennedy, 1995). 

 

This algorithm mimics food-finding behaviour, that is, the social interaction of fish 

and birds while trying to avoid predators by sharing information with fellow species 

(Onwualu & Durlofsky, 2009). In a typical PSO algorithm, the determination of 

particle (that is, potential solution) position and velocity is very important. A particle 

represents a point in space, that is, an individual or one of the possible outcomes, 

while a swarm refers to the population, that is, a set of all possible outcomes 
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(Onwualu & Durlofsky, 2009; Eberhardt & Kennedy, 1995; Kennedy & Eberhardt, 

1995).  

 

In a particle swarm optimization algorithm, the objective function is to obtain the 

current location of each particle. Each particle then determines its bearing within the 

search space by adding its own history and best location, namely, fitness with other 

members within the population (swarm) randomly. Pbest and gbest are the two 

solutions each particle within the population hopes to attain (Russell & James, 1995). 

The pbest is the best solution achieved by the particle in the hyperspace, while the 

gbest is the best overall value, that is, the global version of the optimizer attained by 

the particle. In obtaining the optimal solution, the updating of particle velocity and 

position is done using three stochastically defined parameters, namely, inertia factor, 

self-confidence and swarm confidence factor (Kennedy & Eberhardt, 1995; 

Engelbrecht, 2005; Poli et al., 2007; Onwunalu, 2010). Figure 2.3 shows the 

description of the integrated framework involved in PSO. 

 

 

Figure 2.3: Flowchart for integrated framework of PSO algorithm  

 

2.4 Surrogate Model 

Surrogate model is a technique used when an output of interest cannot be measured 

directly with ease. The surrogate model can be either a cost function or a state 

function (Han & Zhang, 2012) built using data points obtained from random 

experiments. Surrogate-based models are also known as metamodels, response 

surface models, approximation models or emulators (Han & Zhang, 2012; Vu et al., 

2015). 
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Most simulation-optimization models usually take hundreds or thousands of times to 

reach convergence (Johnson & Rodgers, 2001; Wan & Zeng, 1997) and, as such, 

have been found to be computationally costly (Chen et al., 2017). Due to the 

aforementioned fact, most simulation-optimization models are being modelled using 

surrogate-based modelling because it is efficient and computationally cost-effective 

(Han & Zhang, 2012; Chen et al., 2017). As such, the main purpose of developing a 

surrogate-based model is to iteratively construct or design a computer model that 

can correctly model the behaviour of the physical phenomenon under study (Vu et 

al., 2015; Chen et al., 2017).  

 

The first step in building a surrogate-based model, as shown in Figure 2.4, involves 

generating initial data points. This can be achieved using design of experiment 

(DOE) (Giunta et al., 2001). DOE is a technique aimed at maximizing the available 

information from a limited number of sample points (Giunta et al., 2001). DOE 

methods include classic types such as full-factorial design, central-composite design, 

Box-Benken design, D-optimal design and modern DOE types such as Latin 

hypercube design (LHD), translational propagation Latin hypercube design (TPLHD), 

orthogonal array and uniform design (Fang et al., 2000; Giunta et al., 2001). Latin 

hypercube design (LHD) has found its application in various fields such as non-

collapsing and space-filling designs because of its better computational efficiency 

compared to classic DOEs (McKay et al., 1979; Vu et al. 2011). According to Pan et 

al. (2014) and Viana et al. (2010), TPLHD obtains optimal or near-optimal Latin 

hypercube design with minimal computational effort and without formal optimization. 

This research focuses on the use of TPLHD in generating initial points to be used in 

the development of the surrogate-based model. 

 

Onwunalu (2006) stated that metamodels accelerate the optimization process by 

accelerating the convergence rate and reduction of iteration numbers, but do not 

affect the solution-generating characteristics of most metamodelling techniques. 

 

According to Han and Zhang (2012), surrogate-based models can be developed 

using techniques or methods such as polynomial, quadratic, radial basis function, 

kriging, multiplicative and artificial neural networks (ANN). 
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Figure 2.4: Frameworks of building surrogate models (modified from Han and 

Zhang  (2012)). 

 

Figure 2.5: Different forms of surrogate models  

 

2.4.1 Polynomial and Quadratic Models 

Here, the response surface modelling approach is used to fit the sampled data by 

the using the least squared approximation technique. The quadratic method aids the 

smoothing out of various degrees of noise present in most measured sample data 

while polynomial models have the advantage of capturing the noise due to their 

higher order of nonlinearity. This technique also captures the global trend of the 

variation (Han & Zhang, 2012). The general form of both the quadratic and 

polynomial models is given as: 

 

Quadratic model 

𝑌

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × (𝑋𝑖) + 𝐶𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

× 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑚𝑠(𝑜𝑟𝑑𝑒𝑟2) 

 

Polynomial model 

𝑌

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 × (𝑋𝑖) + 𝐶𝑜𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

× 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑛𝑡𝑒𝑟𝑚𝑠(≥ 𝑜𝑟𝑑𝑒𝑟2) 
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2.4.2 Kriging Model 

This was first introduced by Krige in 1951. It is an interpolation technique based on 

geostatistics that approximates the spatial correlation between the sampled points. 

According to Han and Zhang (2012), the kriging technique has been found to be well 

suited to modelling the nonlinear function of the higher order. Its application has 

been found in the optimization of nozzle problems (Simpson et al., 1998), design of 

experiments (Sacks et al., 1989), mathematical modelling (Jin et al., 2000), 

prediction of reservoir accumulation outflow (Mohammadi et al., 2012) and 

optimization of well locations (Guyaguler, 2003). Below is the generalized kriging 

model: 

𝑌(𝑥) = 𝑓𝑇(𝑥)𝛽 + 𝑧(𝑥), 𝑥 ∈ 𝐼𝑅𝑚 

where  

𝑓(𝑥) = [𝑓𝑜(𝑥)𝑓1(𝑥) … … … … 𝑓𝑃−1(𝑥)]𝑇 

𝛽 = [𝛽𝑜𝛽1 … … … … 𝛽𝑃−1] ∈ 𝐼𝑅𝑚 

 

2.4.3 Radial Basis Function (RBF) 

RBF is another metamodelling function where the approximate output of an unknown 

function U(x) at an untried location x is given linearly by the equation below: 

𝑈(𝑥) = ∑ 𝑣𝑖𝑋(𝑥)

𝑚

𝑖=1

+ 𝑁(𝑥) 

subject to the following constraints  

𝑦(𝑥𝑖) = 𝑦𝑖, 𝑖 = 1,2,3 … . 𝑚 

∑ 𝑣𝑖

𝑚

𝑖=0

= 0 

where  

X(x) = basis function which is a function of geometric distance between the 

point of interest xi and untried point x. 

N(x) = global trend function 

vi = weight coefficient of variable i. 

 

According to Han and Zhang (2012), and Pan et al. (2014), the commonly used 

forms of radial basis function include Gaussian, power, spline and Hardy's multi-

quadratic and inverse multi-quadratic functions.  
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RBF has gained a wide range of applications because of its simplicity and accuracy 

in modelling nonlinearities present in approximation problems (Babu & Surech, 2013; 

Yao et al., 2014; Vukovic & Milvovic, 2013; Couckuyt et al., 2013). In addition, RBF 

is a better choice because of its ability to use limited numbers of sampling points in 

computationally expensive functions (Pan et al., 2014). The use of RBF has been 

applied to such areas as classification problem (Babu & Surech, 2013), optimization 

(Yao et al., 2014; Katayama et al., 2013), function approximation (Vukovic & 

Milvovic, 2013) and modelling of microwave structure (Couckuyt et al., 2013). 

 

2.5 Review of Related Works 

Several works have examined the application of various optimization techniques in 

optimizing well placement. Most applied techniques have yielded favourable results. 

Of all the optimization algorithms used, evolutionary-based and metaheuristic-based 

algorithms have proven to be efficient and effective techniques. 

 

Bittencourt et al. (1997) used a hybridized genetic algorithm combined with an 

integrated economic model and simulation design to determine the optimal location 

of wells and their configurations. They used ninety-nine decision variables and 

observed that the forecast outputs would have an improvement of about 6% in profit 

if implemented. 

 

Montes et al. (2001) applied a non-hybridized genetic algorithm in optimizing vertical 

wells with the objective function being a technically based cumulative oil production. 

Here, two synthetic reservoirs were used, and it was found that elitism improved the 

solution convergence rate optimally. They also concluded that, rather than replacing 

geological and technical parameters with automated well placement techniques, they 

should be combined to complement each other. 

 

Kabir et al. (2002) introduced the use of experimental design on modelling 

uncertainties in geological and engineering parameters. With this approach, both the 

linear and non-linear impacts were captured. They used a response surface model 

as the objective model and concluded that geological features have a greater 

influence on the result than reservoir heterogeneity. 
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Guyaguler et al. (2000) applied a hybrid binary encoded genetic algorithm 

optimization technique and, in addition, used the approach used by Bittencourt et al. 

Kriging and artificial neural networks were used as proxies. Here, the location of four 

vertical injectors for a water-flooding project was studied and it was concluded that 

the kriging-based technique was better than that of the artificial neural network for 

the problem studied. 

 

Yeten (2003) used a genetic algorithm coupled with several helper functions such as 

an artificial neural network and the hill climber technique to enhance the 

effectiveness of the algorithm. A proxy model was developed using an artificial 

neural network and it was found that net present value or cumulative oil production 

increased by approximately 30 % in each scenario studied. It was concluded that the 

optimum well type depends on the reservoir type, objective function and degree of 

uncertainty. 

 

Salmachi et al. (2013) applied a genetic algorithm in a coalbed methane reservoir. 

Here a simulator was coupled with the algorithm using net present value as the 

objective function. It was assumed that the dual porosity system, the Langmuir 

adsorption isotherm hold and the developed framework were validated using a 

standard 5-spot well placement pattern. They noticed that the quality of the sweet 

spot is a function of reservoir rock and fluid properties, as well as economic 

parameters. In addition, coalbed infill well drilling is profitable if and only if the water 

production is at an economical level as a result of a lower gas price. 

 

Moravvej (2008) used a continuous genetic algorithm rather than the widely used 

binary coded genetic algorithm in the optimization of well placement. It was 

concluded that the efficiency of a genetic algorithm search can be increased by 

introducing a minimum Euclidean distance between wells within the population. 

 

Lyons and Nasrabadi (2015) applied an ensemble Kalman filter and a genetic 

algorithm on well placement optimization under time-dependent changes. The 

Kalman filter was used to continuously update the reservoir model in order to 

account for the uncertainties arising from the drilling of wells at different times as 
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against the assumption that wells are drilled simultaneously. It was concluded that 

an ensembled Kalman filter reduces the computational time required for optimization. 

 

Onwunalu and Durlosfky (2010) applied PSO in the determination of the optimal well 

type and location in order to maximize the net present value. Here, they studied four 

different cases, namely, optimization of single and multiple realizations of deviated 

and dual lateral wells. In addition, it was observed that PSO outperforms GA in all 

scenarios and the advantages of PSO change from case to case. 

  



18 
 

CHAPTER THREE: METHODOLOGY 

 

To optimize the number and location of wells required to maximize the reserve 

obtainable from a reservoir, it is customary to build a black box model for simulation. 

Since most reservoirs are highly heterogeneous, their effective management is 

difficult due to the high randomness of their properties, such as porosity and 

permeability. In this study, a numerical reservoir simulator and metamodels were 

used. Optimizations were carried out using nature-inspired algorithms, which have 

been found to perform excellently in most of the field applications. An integrated 

approach that summarizes the aforementioned steps and methods is shown in 

Figure 3.1. 

 

 

 

Figure 3.1: Framework for optimization work via surrogate-based models 

 

3.1 Reservoir Model Description 

The synthetic model used for the analysis was obtained from the Society of 

Petroleum Engineers’ Comparative Solution Project developed by Killough in 1995. 

The SPE 9 reservoir model’s grid is 24*25*15 with the reservoir tops located at 9800 

ft ss. Each X and Y grid block has a dimension of 300 ft and a total of 9000 active 

blocks. The reservoir grid was based on the conventional rectangular coordinates 

with no local grid refinement. The reservoir model was partitioned into fifteen layers 

to adequately capture the heterogeneity inherent within the reservoir. Based on the 

modification effected on the original reservoir simulation data developed by Killough, 

the reservoir was assumed initially to contain two vertical wells. The gas oil contact 

and water oil contact are located at 9876 ft and 9989 ft respectively. The oil, water 

and gas densities at the surface are given as 44.98 lb/ft3, 63.01 lb/ft3 and 0.0702 
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lb/ft3 respectively. The porosity and permeability distribution for the reservoir are as 

shown in Figures 3.2, 3.3 and 3.4. The distribution of the relative permeability of the 

gas, oil and water at different saturations are shown in Figures 3.5 and 3.6. Figures 

3.7 and 3.8 show the distribution of solution gas/oil ratio and oil formation volume 

factor at varying reservoir pressures.   

 

Figure 3.2: Reservoir porosity distribution 

 

 

Figure 3.3: Horizontal permeability distribution within the reservoir 
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Figure 3.4: Vertical permeability distribution within the reservoir 

 

 

Figure 3.5: Oil and water relative permeability distribution 
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Figure: 3.6 Oil and water relative permeability distribution 

 
Figure 3.7: Variation of oil formation volume factor 

 

Figure 3.8: Variation of solution gas/oil ratio with pressure 
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The production of two vertical wells has been ongoing since 1980 but, after ten 

years, the cumulative oil production was observed to be underperforming. Therefore, 

after work on the wells and infill drilling using vertical wells, it was decided to define 

new horizontal wells to enhance the production of the field. 

 

3.2 Determination of Initial Infill Well Location 

In this study, the initial infill wells’ location was determined using a space-filling 

design called the translational propagation Latin hypercube design (TPLHD). Here, 

the TPLHD was used because of its favourable properties such as good space filling 

performance occasioned by its ability to fill up the design space at the minimum 

distance (Vu et al., 2015 Guang Pan et al., 2014). This property is extremely 

important because it helps in capturing all variations evenly over the entire reservoir 

region. The TPLHD used was based on constructing an n-dimensional Latin 

hypercube design (LHD) from a relatively small optimal n-dimensional LHD design. 

Here, the designed TPLHD is a 15 by 2 design based on two variables (X and Y 

coordinates) and 15 sampling points. These sampling points represent the proposed 

location of the infill wells. This algorithm was originally designed by Viana et al. 

(2009) but was modified by using MATLAB® to suit the objective of this study. The 

underlying principles guiding the use of TPLHD in generating the initial infill wells’ 

location is shown in Figure 3.8. During this search, rate allocation (as described in 

Section 3.3) for individuals was carried out using the oil and water production rates 

coupled with the bottomhole flowing pressure maintenance as a basis.  

 

3.3 Well Rate Allocation Using Water Cut and Oil Cumulative Production 

In order to control recovery processes aimed at improving the recoverable reserves 

from any field, reservoir management is a key task (Thakur, 1996). Control of any 

recovery process is through designing a well operating under time-varying pressure 

or production rate (Mojtaba et al., 2017). Most reservoir management approaches 

study the alleviation of the effect of excessive water cuts, gas injection, electric 

submersible pumps and infill drilling operations necessary to maximize recovery 

efficiency while maintaining the field pressure (FPR) at a moderate level (Mojtaba et 

al., 2017).  
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Determination of initial well location always comes with its associated optimization 

problems that result from the well completion and production data. When flow 

interactions between different wells are not significant, the well performance can be 

analyzed individually (Wang, 2003). In order to correctly determine the near-optimal 

rate required to maximize the available reserve, this section aims to develop an 

approach towards optimizing the target of cumulative oil and gas production, water 

cut and field pressure by varying the crude oil production rate while limiting the 

maintaining of field pressure decline and water cut occasioned by drilling new wells. 

 

In this section, three scenarios (Cases 1, 2 and 3) were studied. Here, near-optimal 

production rates were studied by varying the production rate of each horizontal well 

(WOPR) from a high value with a high resultant pressure drop to nearly half its 

original value to study the effect on both the fields’ and wells’ cumulative oil 

production (FOPT and WOPT), water cut (FWCT and WWCT) and flowing pressure 

(WBHP and FPR). All of these scenarios were studied for approximately 20 years to 

assess their impact on outputs such as FOPT, FPR, WWCT, WOPT, WOPR and 

WBHP. The case descriptions are as follows: 

 

Case 1  

In this scenario, all of the fifteen horizontal wells were opened and operated at a 

limiting rate of 1500 STB/day at a bottomhole flowing pressure of about 500 psi. 

 

Case 2 

As shown in Table 3.1, after studying the time-varying behaviour of both the rate and 

pressure occasioned by Case 1, each horizontal well was produced at different 

rates. 

 

Case 3 

The reduction in the production rate of each well from Case 1 to Case 2 by half did 

not produce the optimal rate. The crude oil production rate of each well was further 

reduced by around half in order to study the resultant effect on field pressure and 

well water cut. 

 

 



24 
 

 

Table 3.1: Oil production rate (ORAT) of each horizontal well as used in Cases 

2 and 3 

Wells ORAT (Case 2) ORAT (Case 3) 

1 800 400 

2 400 200 

3 600 400 

4 600 350 

5 300 200 

6 300 200 

7 400 300 

8 400 200 

9 500 300 

10 200 100 

11 300 150 

12 50 50 

13 500 300 

14 400 200 

15 600 400 

 

 

3.4 Determination of the Optimum Number of Wells 

In this work, the optimum number of wells and their corresponding positions can be 

estimated using reservoir fluid flow simulation based on the space-filling modelling 

design, that is, TPLHD with a special focus on minimizing the Euclidean distance 

between points in geometric space rather than using the uniform design used by 

Naderi et al. (2017). Fifteen different simulation designs using the geometric property 

of each horizontal well (x and y) were performed with other parameters such as 

horizontal well heel, length and direction maintained at the base level of oil zone 

midpoint, 1200 ft and 900 ft respectively, in other words, kept constant operating 

under the reservoir and production constraints as shown Table 3.1. A reservoir 

numerical simulation tool, Eclipse® 100 black oil was used to obtain important 

information such as cumulative oil production, gas production, water injection and 

water production. The measure of the index used in obtaining the optimum number 
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of wells and location is based on the economic parameter called normalized net 

present value, obtained using Equations 3.1 and 3.2. 

 

𝑁𝐶𝐹𝑡 = (𝐹𝑂𝑃𝑇 × 𝑂𝑖𝑙𝑝𝑟𝑖𝑐𝑒) + (𝐹𝐺𝑃𝑇 × 𝐺𝑎𝑠𝑝𝑟𝑖𝑐𝑒) − (𝐹𝑊𝑃𝑇 × 𝑊𝐻𝐶) − (𝐹𝑊𝐼𝑇 ×

𝑊𝐼𝐶) − 𝑇𝐶        3.1 

𝑁𝑃𝑉 = ∑
𝑁𝐶𝐹𝑡

(1+𝑟)𝑡
20
𝑡=0       3.2 

𝑁𝑁𝑃𝑉 =
𝑁𝑃𝑉−𝑁𝑃𝑉𝑚𝑖𝑛

𝑁𝑃𝑉𝑚𝑎𝑥−𝑁𝑃𝑉𝑚𝑖𝑛
     3.3 

 

Where:  

FOPT = Field oil production total in STB  

FGPT = Field gas production total in MSCF  

FWPT = Field water production total in STB  

FWIT = Field water injection total in STB  

Oil price = $50 per STB  

Gas price = $ 3.5 per MSCF  

WIC = Water injection cost per bbl at $2 per bbl  

WHC = Water handling cost per bbl at $2 per bbl  

TC = Total drilling, surface equipment and short run maintenance cost at 

$5MM per well  

NPV = Net present value  

NNPV = Normalized net present value  

NPVmin = Minimum net present value  

NPVmax = Maximum net present value  

r = Discount rate at 0 %, 10 % and 20 %  

t = time in years. 

 

3.5 Surrogate Model Development 

Running simulations for all possible sample locations within the reservoir search 

space can be computationally challenging (Anthony, 2014). Employing surrogate 

models or metamodels has been a popular technique for reducing the processing 

load in any optimization problem. The surrogate model approximates response 

behaviour and could be of the following forms, namely, quadratic, polynomial, 

multiplicative, kriging and radial basis function models as used in this work. Most 
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surrogate models require a set of initial points necessary to generate the model 

formulation. The initial points were generated using an experimental design 

approach called D-optimal.   

 

The purpose of this section is to develop a surrogate model to forecast the horizontal 

well performance in a highly heterogeneous and anisotropic field. In this work, the 

objective function used is the net present value of the investment after 20 years of 

production. Parameters considered in the meta-modelling include the heel of the 

horizontal well (A), horizontal well length (B) and well direction (C). The reservoir 

model used was found to be highly heterogeneous and anisotropic, based on the 

Dykstra-Parsons coefficient and reservoir properties distribution respectively. 

 

In this approach, parameters A, B and C were selected because the well geometric 

positions (x and y) were already optimized using the space-filling design techniques. 

As stated earlier, the heel of the horizontal well (A) is the point at which the well 

changes from a vertical to a deviated well, and the length of the well (B), which 

represented the extent of the well penetration, was coded using the number of grid 

blocks either in the x or y direction. 

 

Finally, the horizontal well direction, denoted by variable “C”, is a discrete parameter 

that cannot be introduced into the Eclipse reservoir simulator directly but can be 

represented using an approach similar to Mohammadi et al.’s (2012), as shown in 

Figure 3.9 and interpreted using Table 3.2. 

 

Table 3.2: Interpretation of well direction coding 

Direction 

(degree) 

Direction (rad) Effect on x axis Effect on y axis 

450 1 I j + 1 

900 2 i + 1 j + 1 

1350 3 i + 1 J 

1800 4 i + 1 j – 1 

2250 5 I j – 1 

2700 6 i – 1 j – 1 

3150 7 i – 1 J 
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3600 8 i – 1 j + 1 

 

 

 

Figure 3.8: Frameworks for generating initial wells’ location 
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Figure 3.9: Horizontal well direction coding 

 

3.5.1 Quadratic Approach 

This method has been found to be useful in smoothing out noise associated with 

data measurement. The regression equation (Equation 3.4) developed was based on 

the outcome of the simulation response obtained using Eclipse® black oil simulator. 

In this model, the main and interaction effects are set out in Equation 3.4. 

 

𝑁𝑃𝑉 = 𝑏1 + 𝑏2 × 𝐴 + 𝑏3 × 𝐵 + 𝑏4 × 𝐶 + 𝑏5 × 𝐴2 + 𝑏6 × 𝐵2 + 𝑏7 × 𝐶2 + 𝑏8 ×

(𝐴 × 𝐵) + 𝑏9 × (𝐴 × 𝐶) + 𝑏10 × (𝐵 × 𝐶)      3.4 

 

The constants b1 - b10 were obtained using MATLAB® software based on the initial 

points obtained using D-optimal techniques. 

3.5.2 Polynomial Approach 

This model is similar to the quadratic model but has an additional interaction term to 

account for the smooth error. In this research, the polynomial model (Equation 3.5) 

was fitted using MATLAB® and constants (b1 – b11) determined using the existing 

initial points. 

 

𝑁𝑃𝑉 = 𝑏1 + 𝑏2 × 𝐴 + 𝑏3 × 𝐵 + 𝑏4 × 𝐶 + 𝑏5 × 𝐴2 + 𝑏6 × 𝐵2 + 𝑏7 × 𝐶2 + 𝑏8 ×

(𝐴 × 𝐵) + 𝑏9 × (𝐴 × 𝐶) + 𝑏10 × (𝐵 × 𝐶) + 𝑏11 × (𝐴 × 𝐵 × 𝐶)   3.5 

1 

2 

3 

4 5 

6 

7 

8 
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3.5.3 Multiplicative Approach 

This model is similar to both the quadratic and polynomial models but it 

approximates the response by emphasizing the interaction between all the selected 

input parameters rather than the main effects, in other words, the multiplicative 

model considers all the parameters as one entity. In this research, the multiplicative 

model was regressed using Equation 3.6 with the aid of the MATLAB® simulation 

tool. 

 

𝑁𝑃𝑉 = 𝑏1 + 𝑏2 × (𝐴𝑏3 × 𝐵𝑏4 × 𝐶𝑏5)      3.6 

 

Where b1 – b5 are factors determined using Levenberg-Marquardt least-squares 

minimization approach in MATLAB®. 

 

3.5.4 Kriging-based approach 

Kriging is different from most RSMs because it is an interpolation technique that 

features data at sample locations (Zhong-Hua & Zhang, 2012). The kriging model 

assumes points are spatially correlated to one another with its estimated response 

being data exact. For this work, the kriging model was fitted using the Gaussian 

simulation approach because of its ability to account for noise inherent in most data 

measurements. The kriging model was fitted using MATLAB® and JMP statistical 

tools based on Equations 3.7 - 3.11 below. 

 

 𝑁𝑃𝑉 = 𝑓(𝛽, 𝑋) + 𝑧(𝑋)       3.7 

 𝑁𝑃𝑉 = 𝛽𝑓(𝑋) + 𝑧(𝑋)       3.8 

 𝛽 = [𝛽1𝛽2𝛽3 … . . 𝛽𝑚]𝑇       3.9 

 

Where  

β = regression function matrix which can be either constant, linear or 

quadratic model. Note: Constant type was used. 

m = number of sample points being studied 

X is a function of the selected parameters, i.e. A, B and C. 
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z(X) = stochastic process with zero mean and nonzero covariance of the 

Gaussian type was used, due to their ability to model approximately the 

spatial variation of variables. The spatial covariance between points is given 

as: 

𝐸[𝑧(𝑋𝑖), 𝑧(𝑋𝑗)] = 𝜎2𝑅[𝛳, 𝑋𝑖, 𝑋𝑗]     3.10 

 

R = correlation matrix function between two sets of input variables at points Xi 

and Xj. The Gaussian correlation used is given as  

𝑅[𝛳, 𝑋𝑖, 𝑋𝑗] = 𝑒𝑥𝑝 [− ∑ 𝜃𝑘|𝑋𝑖 − 𝑋𝑗|
2𝑚

𝑘=1 ]    3.11 

 

3.5.5 Radial Basis Function (RBF) Model 

RBF is mathematically similar to the kriging-based approach. RBF is also an 

important interpolation technique as it approximates the desired response at untried 

locations using the linear combination of two functions, namely, radial basis and 

global trend. In this research, the RBF model was regressed using Equations 3.12 – 

3.14 with the aid of the MATLAB® simulation tool. 

 

𝑁𝑃𝑉(𝑥) = ∑ 𝑣𝑖𝑋(𝑥)𝑚
𝑖=1 + 𝑁(𝑥)      3.12 

 

subject to the following constraints:  

𝑦(𝑥𝑖) = 𝑦𝑖, 𝑖 = 1,2,3 … . 𝑚       3.13 

∑ 𝑣𝑖
𝑚
𝑖=0 = 0         3.14 

 

 

 

 

where:  

X(x) = basis function which is a function of geometric distance (d) between the 

point of interest xi and untried point x which can be of parameters A, B or C. 

Different basis based on any variable (i) are as follows: 

 

Biharmonic   𝑋(𝑥) = 𝑑𝑖 
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Multiquadric:    𝑋(𝑥) = √𝑑𝑖
2 + 𝑐2 

Inverse Multiquadric:  𝑋(𝑥) =
1

√𝑑𝑖
2+𝑐2

 

Polyharmonic:  𝑋(𝑥) = (𝑑𝑖
2 + 𝑐2) × 𝑙𝑛 (√𝑑𝑖

2 + 𝑐2) 

Gaussian:   𝑋(𝑥) = 𝑒𝑥𝑝 (
−𝑑𝑖

2

2𝛿2 ) 

 

 

3.5.6 Model Selection  

To select a model that is truly representative of the nonlinear process being studied, 

the statistical approach was used to determine which of the surrogate models best 

mimics the interaction between the input and the response. The statistical tool used, 

as shown in Table 3.3, but not limited to absolute deviation (AD), average absolute 

deviation (AAD), root mean square error (RMSE), average absolute percentage 

relative error (AAPRE), maximum error (Emax) and standard deviation (SD), R-

square values, fitting sequence and error band during prediction. 

 

3.6 Optimization 

In this research, the two metaheuristic algorithms used include the integer genetic 

algorithm (iGA) and the particle swarm optimization algorithm (PSO). Generally, GA 

is based on the Darwinian theory of evolution while PSO is based on the social and 

hunting behaviour of birds and fish when finding food while keeping in mind the 

dangers posed by predators. 

 

In the iGA used, a set of individuals corresponding to the number of infill wells were 

randomly generated and the fitness of each solution were evaluated based on the 

already- developed surrogate models used to estimate their objective function, 

namely, NPV. Each solution was then evaluated to determine one with high NPV to 

be selected in the formation of a new population using both the crossover and 

mutation operators. These iteration steps continued until the stopping criterion was 

reached. The parameters used for the genetic algorithm are given in Table 3.4. 
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Similar parameters were used in the PSO algorithm used. In a typical PSO 

algorithm, determining the particles’ position and velocity is key to obtaining an 

acceptable result. As earlier stated, a particle refers to a well location. In PSO, 

updating both the particle’s position and velocity is a key step in achieving an optimal 

solution, but in updating this, three key factors, namely, inertia, self-confidence 

(social) and swarm confidence (cognitive) factors, must be correctly specified. In this 

research, the aforementioned parameters are listed in Table 3.4 and 3.5. 

 

Table 3.3: Performance indices for model evaluation (Arinkoola & Ogbe, 2015) 

Name of measure Formula 

Absolute deviation 

𝐴𝐷 =
1

𝑁
∑(𝑃𝑟𝑒𝑑. −𝑒𝑥𝑝. )

𝑁

𝑖=1

 

Average absolute deviation 

𝐴𝐴𝐷 =
1

𝑁
∑|𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. |

𝑁

𝑖=1

 

Root mean square error 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. )2

𝑁

𝑖=1

 

Average absolute percentage relative error 

𝐴𝐴𝑃𝑅𝐸 =
1

𝑁
∑|(𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. )𝑖|

𝑁

𝑖=1

 

Maximum error 𝐸𝑚𝑎𝑥 = 𝑀𝑎𝑥 |(𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. )𝑖| 

𝐸𝑚𝑖𝑛 = 𝑀𝑖𝑛 |(𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. )𝑖| 

𝐸𝑖 =
𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝.

𝐸𝑥𝑝.
× 100 

Standard deviation 

𝑆𝐷 =
1

𝑁 − 1
× ∑(𝑃𝑟𝑒𝑑. −𝐸𝑥𝑝. )𝑖

2

𝑁

𝑖=1
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Table 3.4: Selected genetic algorithm parameters 

Parameters Value 

Population size 30 

Crossover probability 0.8 

Mutation probability  0.01 

Stopping criteria 1000 

Selection function Stochastic uniform  

Ranking scale 2 

 

 

Table 3.5: Selected particle swarm optimization parameters 

Parameter Value 

Population size 30 

Inertia coefficient 1 

Cognitive parameter 2 

Social parameter 2 

Stopping criteria 1000 
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CHAPTER FOUR: RESULTS AND DISCUSSIONS 

 

The results from the initialization of the number and position of infill wells in a highly 

heterogeneous reservoir were generated using a space-filling design coupled with 

Eclipse® 100 black oil simulator and are presented below. Surrogate models were 

developed for the system based on a polynomial, kriging and radial basis function 

model. D-optimal design was used to generate initial data points for prediction. 

Metaheuristic-based optimization was carried out to determine the optimum value for 

the different parameters’ effects on the desired response. As indicated earlier, the 

value of the objective function was maximized as earlier discussed. 

 

4.1 Rate Allocation 

In this research, before the optimization was carried out, production rates were 

allocated using water cut and cumulative oil production. The results of all the 

scenarios obtained, using this allocation approach, are presented in this section.  

 

4.1.1 Analysis of Wells 1, 2, 3 and 4 

Figures 4.1, 4.2, 4.3 and 4.4 show the profile of the crude oil production rate 

(WOPR), cumulative oil production (WOPT), bottomhole flowing pressure (WBHP) 

and water cut (WWCT) respectively for each of the first four horizontal wells using 

the rate allocation method, as described.  

 

For Well 1, reducing the production rate resulted in a similar water breakthrough 

time, but a reduced WWCT for about 10 years and a slight change in WOPT and 

WBHP due to a high degree of heterogeneity characteristic of the reservoir. Wells 2, 

3, and 4 show a similar trend to Well 1 but in Well 3, Case 3, with the lowest 

production rate, approximately matches that of Case 1 due to the presence of 

sufficient pressure support. 
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Figure 4.1: Crude oil production rate of Wells 1, 2, 3 and 4 for all cases 

 

 

Figure 4.2: Cumulative oil production profile of Wells 1, 2, 3 and 4 for all cases 
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Figure 4.3: Bottomhole flowing pressure profile of Wells 1, 2, 3 and 4 for all 

cases 

 

 

Figure 4.4: Well water cut profile of Wells 1, 2, 3 and 4 for all cases 
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4.1.2  Analysis of Wells 5, 6, 7 and 8 

Figures 4.5, 4.6, 4.7 and 4.8 show the profile of the crude oil production rate 

(WOPR), cumulative oil production (WOPT), bottomhole flowing pressure (WBHP) 

and water cut (WWCT) respectively for four horizontal wells (INFL 5, 6, 7 and 8) 

using the rate allocation method as described. For Wells 5 and 6, reducing the 

WOPR did not significantly change the WOPT after 20 years but the plateau rate and 

WBHP were maintained at an appreciable level for about five years with a resultant 

reduction in WWCT for about 10 years. In contrast, reducing the oil production rate 

for Wells 7 and 8 had a significant effect on WOPT and a favourable WBHP 

maintenance with a corresponding reduction in WWCT for about 10 years. 

 

 

 

Figure 4.5: Crude oil production rate of Wells 5, 6, 7 and 8 for all cases 
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Figure 4.6: Cumulative oil production profile of Wells 5, 6, 7 and 8 for all cases 

 

 

Figure 4.7: Bottomhole flowing pressure profile of Wells 5, 6, 7 and 8 for all 

cases 
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Figure 4.8: Well water cut profile of Wells 5, 6, 7 and 8 for all cases 

 

4.1.3 Analysis of Wells 9, 10, 11 and 12 

The results of the effect of crude oil production rate variation in estimating the near-

optimal rate for wells are shown in Figures 4.9 - 4.12. Figures 4.9, 4.10, 4.11 and 

4.12 show the profile of the crude oil production rate (WOPR), cumulative oil 

production (WOPT), bottomhole flowing pressure (WBHP) and water cut (WWCT) 

respectively for four horizontal wells (INFL 9, 10, 11 and 12) using the rate allocation 

method, as described. Reducing the WOPR of each well resulted in appreciable 

plateau rate maintenance. The resultant decrease in WOPT and significant 

improvement in pressure decline is shown in Figures 4.9, 4.10 and 4.11 respectively. 

In all scenarios shown in Figure 4.12, the WWCT trend of all wells shows a 

significant reduction in WWCT but a marked increase towards the end of production. 
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Figure 4.9: Crude oil production rate of Wells 9, 10, 11 and 12 for all cases 

 

 

Figure 4.10: Cumulative oil production profile of Wells 9, 10, 11 and 12 for all 

cases 
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Figure 4.11: Bottomhole flowing pressure profile of Wells 9, 10, 11 and 12 for 

all cases 

 

Figure 4.12: Well water cut profile of Wells 9, 10, 11 and 12 for all cases 
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4.1.4 Analysis of Wells 13, 14 and 15 

Figures 4.13 – 4.16 show all the rate allocation studies of Wells 13, 14 and 15 using 

parameters WOPR, WOPT, WBHP and WWCT for all aforementioned scenarios.  

From the results, it was observed that Well 13 showed a small variation in the WOPT 

after 20 years with favourable BHP maintenance traits but reduced WWCT for the 

first 10 years, as shown in Figures 4.14, 4.15 and 4.16 respectively. In contrast, Well 

14 shows a marked difference in WOPT but a reduced BHP decline compared to 

Well 13 as seen in Figures 4.14 and 4.15 respectively. For Well 15, reducing 

production rate resulted in a good plateau rate maintenance trend for about 10 years 

(Figure 4.13), but declined slowly afterwards. From its WBHP (Figure 4.15) and 

WWCT (Figure 4.16) trends, it was observed that its WOPR results reduced at a 

similar rate to Wells 13 and 14, but it had a significant pressure decline. 

 

 

Figure 4.13: Crude oil production rate of Wells 13, 14 and 15 for all cases 
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Figure 4.14: Cumulative oil production profile of Wells 13, 14 and 15 for all 

cases 

 

Figure 4.15: Bottomhole flowing pressure profile of Wells 13, 14 and 15 for all 

cases 
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Figure 4.16: Well water cut profile of Wells 13, 14 and 15 for all cases 

 

From the study of each well’s performance on the basis of WOPR, WOPT, WBHP 

and WWCT, it was observed that, in order to maintain the field production at a near-

optimal rate for a favourable number of years occasioned by a favourable WBHP, 

each of the 14 agile horizontal wells must be operated to give a higher FOPT while 

maintaining the FPR at an optimized decline rate as shown in Figure 4.17.  

 

4.2 Well Placement Initialization and Maximization  

In order to obtain the best Euclidean position of the additional infill wells required to 

give the maximum return on investment, the net present value (NPV) rather than the 

cumulative oil production was used as the desired objective function and maximized 

using an improved space-filling design coupled with a reservoir simulator. Executing 

the reservoir simulation based on the translational propagation Latin hypercube 

design suggests that both the undiscounted net present value (UNPV) and NPV 

were maximized for eleven horizontal wells, as shown in Figure 4.18, using the 

heterogeneous reservoir model as the case study. Figures 4.19 and 4.20 show the 

initial location and optimum location of the individual horizontal wells that were 

obtained using initial guess and TPLHD respectively, it was observed that increasing 
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either the number of wells or the discount rate would not affect the optimum number 

of wells of the studied scenario.  

 

 

Figure 4.17: Recommended crude oil field production profile 

 

 

Figure 4.18: Results of simulation-based optimization using TPLHD design 
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Figure 4.19: Wells’ initial location based on TPLHD 

 

Figure 4.20: Optimum wells’ number and locations 

 

4.3 Surrogate Model 

In this section, after the different production profiles had been converted to 

appropriate monetary values, based on the distribution of selected parameters 

obtained using the D-optimal design technique for each of the horizontal wells. 

Different surrogate models were developed using the method discussed in the 
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methodology. In the following section, the fitting and prediction performances are 

explained in relation to each well’s surrogate. 

 

4.3.1 Well 1 

In this approach, the desired response, that is, NPV was fitted over approximately 

85% of the sample data obtained from the simulation approach used. As it is this 

work’s objective to determine the optimal completion strategy for each of the 

optimized horizontal wells, each surrogate model was developed as a function of 

each of the selected horizontal well parameters while maintaining other wells at their 

base case as obtained during maximization using space-filling design. Equations 3.4, 

3.5 and 3.6 were used in obtaining quadratic, polynomial and multiplicative models 

for each of the horizontal wells. In addition, the Gaussian regression process and 

various radial basis functions, as outlined in the methodology, were used in the 

kriging and radial basis function approach fittings respectively. For Well 1, five 

different surrogate models were considered. Table 4.1 shows the statistical analysis 

performance of each model. The fitting and prediction performance of each 

surrogate model was compared with that of the simulator, as shown in Figures 4.21a 

and 4.21b respectively. For the quadratic, polynomial and multiplicative models, the 

constants obtained are shown in Table 4.1. Different colours depict the different 

proxy models’ performance with black, blue, red, yellow, brown and green 

representing Eclipse® 100 simulator output, kriging, RBF, quadratic, multiplicative 

and polynomial respectively. In the kriging model, the variogram-based model, which 

has the best fit to the data outlined by Mohammadi et al. (2002), was chosen, while 

different basis functions were used in fitting the RBFs. To compare the model 

prediction with the actual data, the predicted and simulator response were plotted, as 

shown in both graphs. From the graph, it was observed that both kriging and RBF 

had the best fitting tendencies with the multiplicative being the poorest as buttressed 

by their least estimation error and highest values of correlation coefficients, as 

kriging is a data-exact estimator because they tend to replicate the actual response 

rather than force fitting. In the prediction graph (Figure 4.21b), it was observed that 

responses from some surrogate models did not match the actual value accurately 

but showed appreciable error because of the noisy nature of the data characteristic 

of the dataset. The kriging-based models were observed to perform better because 

of their ability to smooth out noise inherent in different data.    
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Figure 4.21a: Fitting results of surrogate models for Well 1 with selective initial 

points  

 

Figure 4.21b: Prediction results of surrogate models for Well 1 with selective 

initial points 

 

Table 4.1: Summary of the performance indices of surrogate models for Well 1  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 428.58 -39285.71 -177230.57 

AAD 6195748.05 6226861.21 11411245.89 110714.29 884755.83 

RMSE 7323398.06 7290447.11 13656344.36 422999.49 2730744.16 

Emax 1.43 1.36 2.62 0.15 0.62 

AAPRE 0.46 0.46 0.85 0.01 0.07 

SD 0.31 0.31 1.09 0.00 0.04 
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R2_fitting 0.95 0.95 0.82 0.99 0.99 

R2_Prediction 0.94 0.94 0.82 0.98  0.95  

 

4.3.2 Well 2 

An approach similar to that used for Well 1, was used for Well 2. Eclipse® 100 

simulation data was used for model development. Three different polynomial-based 

surrogate models (quadratic, polynomial and multiplicative) as well as two geometric-

based surrogate models (kriging and radial basis function) were considered for this 

research. For each of the selected response surface models, the results of the 

performance indices used are shown in Table 4.2. Similarly, to validate the different 

surrogate models developed, the models were used to estimate the objective 

function at points with known responses, and each response was compared with that 

of the simulator as shown in Figure 4.22b. For the quadratic, polynomial and 

multiplicative models, the constants obtained are shown in Table 4.2. The response 

(NPV) was then calculated using the weights obtained by solving kriging equations 

with the MATLAB® and JMP tools. Figure 4.22a shows the plot of actual and proxy 

estimates of the objective function over twenty years of cumulative production. 

Different colours depict the different proxy models’ performances with black, blue, 

red, yellow, brown and green representing Eclipse® 100 simulator output, kriging, 

RBF, quadratic, multiplicative and polynomial models respectively. From Figure 

4.22a, it was observed that both kriging and RBF have the best fitting tendencies 

with the multiplicative being the poorest and highest regression coefficients and least 

error. It should be noted that kriging is an exact estimator, which means the 

estimations of the kriging and RBF models for the initial sample points must be exact 

because they tend to replicate the actual response rather than force fitting ( 

Mohammadi et al., 2012; Kentwell, 2014). Similarly, in the prediction phase, it was 

observed that responses from the surrogate models matched the actual value at an 

appreciable range as shown in Figure 4.22b with the kriging-based approach and 

multiplicative models having the best and worst fits respectively.   
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Figure 4.22a: Fitting results of surrogate models for Well 2 with selective initial 

points.  

 

Figure 4.22b: Prediction results of surrogate models for Well 2 with selective 

initial points.  

 

Table 4.2: Summary of the performance indices of surrogate models for Well 2  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 355.73 -423912.98 -135727.65 

AAD 8984505.48 6902271.10 12546830.47 423912.98 707422.50 

RMSE 10915948.19 9033682.42 16309347.93 1390462.81 2692061.39 

Emax 1.60 1.47 2.92 0.45 0.91 

AAPRE 0.67 0.51 0.93 0.03 0.05 

SD 0.69 0.47 1.55 0.01 0.04 

R2_fit 0.96 0.97 0.91 0.99 0.99 
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R2_Pred 0.95  0.96 0.89  0.99 0.95 

 

4.3.3 Well 3  

An approach similar to those above was used. Five different surrogate models were 

also considered. Table 4.3 shows the statistical analysis results while the fitting and 

prediction performance of each surrogate model was compared with that of the 

simulator, as shown in Figures 4.23a and 4.23b respectively. From Figure 4.23a, it 

was observed that both kriging and RBF have the best fitting tendencies with the 

multiplicative being the poorest, as indicated by the performance indices as shown in 

Table 4.3. In the prediction plot (Figure 4.23b), it was observed that responses from 

the surrogate models did not match the actual value accurately but showed 

appreciable error because of the noisy nature of the dataset. The polynomial-based 

models were observed to performed better because of their ability to smooth out 

noise inherent in different data but kriging and RBF had the best fit.    

 

 

Figure 4.23a: Fitting results of surrogate models for Well 3 with selective initial 

points  
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Figure 4.23b: Prediction results of surrogate models for Well 3 with selective 

initial points  

 

Table 4.3: Summary of the performance indices of surrogate models for Well 3  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 1284.90 1702338.15 814373.61 

AAD 7341663.16 6861968.16 10833202.32 1936769.70 1629867.57 

RMSE 9183951.31 9005346.48 13223467.59 6837599.56 5182970.82 

Emax 1.51 1.56 1.55 0.25 0.87 

AAPRE 0.54 0.51 0.80 0.14 0.12 

SD 0.47 0.45 0.98 0.25 0.15 

R2_fit 0.92 0.92 0.81 0.99 0.99 

R2_Pred 0.89 0.90  0.78  0.88  0.90  

 

4.3.4 Well 4 

A method similar to those above was used. Five different surrogate models were 

considered. Similarly, Table 4.3 shows the results of the statistical analysis for each 

model. The fitting and prediction performance of each surrogate model was 

compared with that of the simulator, as shown in Figures 4.24a and 4.24b 

respectively. To compare the model, the predicted and simulator responses were 

plotted, as shown in Figures 4.24a and 4.24b. From the plot and performance 

indices, it was observed that both kriging and RBF have the best fitting tendencies 

with the multiplicative being the poorest as kriging is an exact data estimator 

because they tend to replicate the actual response rather than force fitting the 

expected model profile. Similarly, in the prediction graph (Figure 4.24b), it was 

observed that responses from the surrogate models matched the actual value 

accurately with appreciable error. The kriging-based and polynomial-based models 

were observed to perform the best but RBF and kriging outperformed both because 

of their fitting performance. 
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Figure 4.24a: Fitting results of surrogate models for Well 4 with selective initial 

points  

 

Figure 4.24b: Prediction results of surrogate models for Well 4 with selective 

initial points 

 

Table 4.4: Summary of the performance indices of surrogate models for Well 4  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 0.00 552907.54 -626670.11 

AAD 6140056.58 6133884.29 15640656.24 552907.54 626670.11 

RMSE 7980460.24 7968139.30 18786466.72 2886430.00 2618346.19 

Emax 1.58 1.58 2.23 0.00 1.01 

AAPRE 0.46 0.46 1.16 0.04 0.05 

SD 0.37 0.37 2.00 0.05 0.04 

R2_fit 0.96 0.96 0.75 0.99 0.99 

R2_Pred  0.95 0.95 0.70 0.95  0.95 
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4.3.5 Well 5 

Figures 4.25a and 4.25b show the fitting and prediction performance of each 

surrogate model compared with that of the simulator respectively. Also, the statistical 

analysis results for the quadratic, polynomial and multiplicative model constants, are 

as shown in Table 4.5. As shown in both figures, different colours depict the different 

proxy models’ performances with black, blue, red, yellow, brown and green 

representing actual response, kriging, RBF, quadratic, multiplicative and polynomial 

respectively. To compare the model prediction with the actual data, the predicted 

and simulator responses were plotted, as shown in both graphs. From Figure 4.25 

(a,b) and Table 4.5, it was observed that both kriging and RBF have the best fitting 

tendencies with the multiplicative being the poorest, as kriging and RBF are data-

exact regenerators because they tend to replicate the actual response rather than 

force fit. In the prediction graph (Figure 4.25b), it was observed that responses from 

the surrogate models did not matched the actual value accurately but showed 

appreciable error because of the noisy nature of the data characteristic of the 

dataset. The polynomial-based models were observed to perform better during 

prediction because of their ability to smooth out noise inherent in different data as 

data-exact predictors like kriging and RBF have been shown to underperform in 

noisy systems.  

 

Figure 4.25a: Fitting results of surrogate models for Well 5 with selective initial 

points  
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Figure 4.25b: Prediction results of surrogate models for Well 5 with selective 

initial points  

 

Table 4.5: Summary of the performance indices of surrogate models for Well 5  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 198.73 738889.19 1379439.31 

AAD 7397192.65 7201179.25 17177299.85 1360088.71 1915917.11 

RMSE 10226732.87 10167121.68 20980431.50 5750495.54 5203186.23 

Emax 1.63 1.60 1.97 0.64 0.55 

AAPRE 0.55 0.54 1.29 0.10 0.14 

SD 0.60 0.59 2.54 0.19 0.15 

R2_fit 0.93 0.93 0.64 0.99 0.96 

R2_Pred  0.92 0.93 0.60 0.88 0.88 

 

4.3.6 Well 6 

Similarly, Table 4.6 depicts the model performance indices: quadratic, polynomial 

and multiplicative model constants. Figures 4.26a and 4.26b show the performance 

of fitting and prediction of each surrogate model compared to that of the respective 

simulator. In obtaining these models, a method similar to that used above was used. 

Five different surrogate models were considered in modelling this response. The 

regression coefficients of each model were obtained using MATLAB® and JMP. 

Different colours depict the different proxy models’ performance with black, blue, red, 

yellow, brown and green representing Eclipse® 100 simulator output, kriging, RBF, 

quadratic, multiplicative and polynomial respectively. To compare the model 

prediction with the actual data, the predicted and simulator responses were plotted 

as shown in both graphs. From the graph, it was observed that both kriging and RBF 
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had the best fitting tendencies because of their lower estimation error and had the 

highest values of correlation coefficients, with the multiplicative being the poorest. In 

the prediction graph (Figure 4.26b), it was observed that responses from the 

surrogate models matched the actual value accurately with appreciable error. The 

RBF-based models were observed to replicate the trend of simulation predictions 

best but the quadratic model outperformed both because of its force-fitting nature. 

 

 

Figure 4.26a: Fitting results of surrogate models for Well 6 with selective initial 

points  

 

Figure 4.26b: Prediction results of surrogate models for Well 6 with selective 

initial points  

 

Table 4.6: Summary of the performance indices of surrogate models for Well 6  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 963.46 -908141.21 -563459.56 

AAD 5736075.95 4592287.14 17747384.56 908141.21 563459.56 
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RMSE 7205829.71 6301800.64 19649618.77 4235276.36 2152340.28 

Emax 1.12 0.87 1.83 1.67 0.68 

AAPRE 0.42 0.34 1.30 0.07 0.04 

SD 0.29 0.22 2.13 0.11 0.03 

R2_fit 0.97 0.98 0.74 0.99 0.99 

R2_Pred 0.96 0.97  0.73  0.93 0.96 

 

4.3.7 Well 7 

Five different surrogate models were also considered in this section. Similarly, Table 

4.7 shows the results of the statistical analysis of each surrogate. The fitting and 

prediction performance of each surrogate model was also compared with that of the 

simulator as shown in Figures 4.27a and 4.27b. Black, blue, red, yellow, brown and 

green colours respectively depict Eclipse® 100 simulator output, kriging, RBF, 

quadratic, multiplicative and polynomial. From the plot and performance indices, it 

was observed that both kriging and RBF have the best fitting tendencies with the 

multiplicative being the poorest. In the prediction crossplot (Figure 4.27b), it was 

observed that responses from the surrogate models matched the actual value 

accurately with appreciable error with kriging and RBF having the lowest estimation 

error with highest values of correlation coefficients. 

 

 

Figure 4.27a: Fitting results of surrogate models for Well 7 with selective initial 

points 
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Figure 4.27b: Prediction results of surrogate models for Well 7 with selective 

initial points  

 

Table 4.7: Summary of the performance indices of surrogate models for Well 7  

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 2232.98 206168.69 -1212982.44 

AAD 8752043.36 8873152.51 16848527.81 773732.93 1974138.81 

RMSE 11934479.26 11900853.98 18727997.74 2804748.17 5881141.05 

Emax 1.99 1.97 2.33 0.35 2.05 

AAPRE 0.65 0.66 1.26 0.06 0.15 

SD 0.83 0.83 2.03 0.04 0.21 

R2_fit 0.95 0.95 0.87 0.99 0.99 

R2_Pred 0.93 0.94 0.85 0.97 0.90 

 

4.3.8 Well 8 

Figure 4.28a and 4.28b show the fitting and prediction performance of each 

surrogate model compared to that of the respective simulator respectively. In 

addition, the statistical analysis indices are shown in Table 4.8. As shown in both 

figures, different colours depict the different models’ performance. From the plot and 

performance indices, it was observed that both kriging and RBF have the best fitting 

tendencies with the multiplicative being the poorest as kriging and RBF are data 

exact regenerators because they tend to replicate the actual response rather than 

force fit. In the prediction plot (Figure 4.28b), it was observed that responses from 

the surrogate models did not match the actual value accurately but had appreciable 
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error because of the noisy nature of the data characteristic of the dataset. The 

kriging- and polynomial-based approaches were observed to have performed best 

but the prior poor fitting performance of the latter makes kriging the better surrogate 

for the well being studied. 

 

 

Figure 4.28a: Fitting results of surrogate models for Well 8 with selective initial 

points  

 

Figure 4.28b: Prediction results of surrogate models for Well 8 with selective 

initial points  

 

Table 4.8: Summary of the performance indices of surrogate models for Well 8 

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 1019.52 -642857.14 -733981.04 

AAD 8532859.62 7833269.16 14623075.31 642857.14 1747306.06 

RMSE 10788480.13 10489188.82 17807102.05 2236067.98 4049616.72 

Emax 1.98 1.90 1.76 0.73 0.73 
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AAPRE 0.62 0.57 1.06 0.05 0.13 

SD 0.63 0.59 1.70 0.03 0.09 

R2_fit 0.90 0.92 0.75 0.99 0.98 

R2_Pred 0.90 0.91 0.73 0.98 0.85 

 

4.3.9 Well 9 

Similarly, Table 4.9 presents the error analysis of the quadratic, polynomial and 

multiplicative models. Figures 4.29a and 4.29b show the performance of fitting and 

the prediction of each surrogate model compared to that of the simulator. In 

obtaining these models, methods similar to the above were used. Five different 

surrogate models were also considered. The regression coefficients of each model 

were obtained using MATLAB® and JMP. Colours black, blue, red, yellow, brown and 

green represent simulator output, kriging, RBF, quadratic, multiplicative and 

polynomial respectively. The models were compared, as can be seen in both Figures 

4.29a and 4.29b, and Table 4.9. A similar trend to other wells’ surrogate models was 

observed, with both kriging and RBF approaches being the best while multiplicative 

was the poorest. In the prediction graph (Figure 4.29b), it was observed that the 

kriging response had the best prediction trend with appreciable error compared to 

others. The polynomial-based models were observed to replicate the trend of 

simulation predictions but were marred by prior poor fitting ability. 

 

Figure 4.29a: Fitting results of surrogate models for Well 9 with selective initial 

points  
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Figure 4.29b: Prediction results of surrogate models for Well 9 with selective 

initial points  

 

Table 4.9: Summary of the performance indices of surrogate models for Well 9 

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 2283.87 -665682.01 -916146.33 

AAD 8837698.59 8933753.66 16692781.87 665682.01 916146.34 

RMSE 13235880.81 13215344.73 21569954.97 3197741.44 3604895.27 

Emax 3.07 3.03 3.86 1.24 1.25 

AAPRE 0.66 0.67 1.24 0.05 0.07 

SD 1.03 1.03 2.70 0.06 0.07 

R2_fit 0.93 0.93 0.79 0.99 0.98 

R2_Pred 0.93  0.93  0.78 0.98 0.88 

 

4.3.10 Well 10 

The result of the error analysis and the regression coefficients of quadratic, polynomial and 

multiplicative model are shown in Table 4.10. Figures 4.30a and 4.30b show the extent of the 

fitting and prediction of the aforementioned surrogates. In obtaining these models, methods 

similar to those above were used. Five different surrogate models were also considered. The 

regression coefficients of each model were obtained using MATLAB
®
 and JMP. Colours 

black, blue, red, yellow, brown and green represent simulator output, kriging, RBF, quadratic, 

multiplicative and polynomial respectively. The models were compared, as shown in both 

Figures 4.30a and 4.30b, and Table 4.9, and a similar trend to other wells’ surrogate models 
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was observed; both the kriging and RBF approaches were the best while the multiplicative 

approach was the poorest. In the prediction graph (Figure 4.30b), it was observed that the 

kriging response had the best prediction trend with appreciable error, in other words, the least 

estimation error and highest values of correlation coefficients compared to others. The 

polynomial-based models were observed to replicate the trend of simulation predictions but 

were marred by prior poor fitting ability. 

 

 

Figure 4.30a: Fitting results of surrogate models for Well 10 with selective 

initial points  

 

Figure 4.30b: Prediction results of surrogate models for Well 10 with selective 

initial points  
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Table 4.10: Summary of the performance indices of surrogate models for Well 

10 

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.01 0.00 -186.67 131669.64 -219963.90 

AAD 5695615.86 5639227.10 8569221.32 1002188.41 1220673.73 

RMSE 7494688.73 7396738.65 10910440.29 3188626.99 3519185.12 

Emax 1.48 1.42 1.97 0.90 1.07 

AAPRE 0.42 0.42 0.63 0.07 0.09 

SD 0.32 0.31 0.68 0.06 0.07 

R2_fit 0.91 0.92 0.75 0.99 0.99 

R2_Pred 0.90 0.90 0.72 0.93 0.90 

 

4.3.11 Well 11 

The results of the error analysis for the quadratic, polynomial and multiplicative 

model regression are shown in Table 4.11. Figures 4.31a and 4.31b show the 

performance of fitting and prediction of each surrogate model compared with that of 

the simulator respectively. In obtaining these models, a method similar to that of the 

above was used. From the fitting and statistical analysis results, it was observed that 

the kriging, RBF and quadratic approaches have the best fitting tendencies with the 

multiplicative being the poorest. In the prediction plot (Figure 4.31b), it was observed 

that responses from the surrogate models matched the actual value accurately with 

acceptable error. The kriging- and RBF-based models were observed to replicate the 

trend of simulation predictions but kriging outperformed all because of its ability to 

recreate the input-output distribution. 
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Figure 4.31a: Fitting results of surrogate models for Well 11 with selective 

initial points  

 

Figure 4.31b: Prediction results of surrogate models for Well 11 with selective 

initial points 
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 Table 4.11: Summary of the performance indices of surrogate models for Well 

11 

Performance Quadratic Polynomial Multiplicative Kriging RBF 

AD 0.00 0.00 -214.15 

-

115076.34 -155265.46 

AAD 7183164.12 7120532.97 17226823.67 149526.34 450037.53 

RMSE 8992831.33 8557934.85 19744458.79 514855.31 1700138.26 

Emax 1.05 0.88 2.29 0.17 0.64 

AAPRE 0.53 0.52 1.27 0.01 0.03 

SD 0.45 0.41 2.18 0.00 0.02 

R2_fit 0.91 0.92 0.38 0.99 0.99 

R2_Pred 0.88 0.89  0.40 0.93 0.91 

 

In this research work, it was observed that each surrogate model performed 

differently during the fitting and prediction phase as occasioned by the ability of each 

model to correctly mimic the noisy, nonlinearities distribution inherent in the process. 

The accuracy of each model is dependent on the extent of fit between the surrogate 

and simulation results and the ability to recreate the response distribution as the 

input varies. From all surrogates’ estimation, it was observed that kriging and RBFs 

have the best fitting performance as this is dependent on the nature of kriging 

models, type of basis function and shape parameter used as there is no universal 

model for every study. Kriging and RBF are exact interpolation techniques because 

they require every data point in the n-dimensional input vector to be mapped onto 

the corresponding target output, therefore, both models perform poorly within a noisy 

dataset and are not mathematically computationally efficient. However, they perform 

excellently as a black box model due to their generalization and cost efficiency. 

 

4.4 Optimization 

In this section, optimization of the desired objective function, in other words, 

discounted net cash flow (NPV at 0% and 20%), was carried out. The objective 

function is to maximize the net present value of the investment as given by the 

selected surrogate model, namely, kriging and RBF models. The maximization was 

aimed at determining optimal placement of each horizontal well. Design variables 
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include the heel, length and direction of the horizontal well. In this optimization task, 

the number and location of wells were fixed as they had been optimized using the 

TPLHD approach, as earlier explained, and therefore could not be varied.  

 

The optimization is a constrained integer-based genetic algorithm optimization 

technique as its parameter variation is bounded. Inequality constraint was used as 

shown in Equation 4.1. As it was the objective to perform a surrogate-based 

optimization problem, the results are given below. Based on the observation, as 

suggested by Figures 4.32 – 4.34, it was observed that using the approach as 

outlined will result in 2MMSTB and 8% incremental in cumulative oil production and 

investment cash flow respectively.  The significant change in the two most important 

objective functions shows the successful nature of the whole process if implemented 

in well placement problems. 

 

Figure 4.32: Field oil production rate of the two scenarios 
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Figure 4.33: Field cumulative oil production of the two scenarios 

 

 

Figure 4.34: Comparison of investment cash flow of the two scenarios 
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CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions  

In this study, an integrated framework was proposed to achieve this aim. The 

proposed model implemented a framework using numerical simulation software. The 

economic parameter, namely, net present value (NPV) was used as the desired 

optimizable objective function. From the results obtained it was shown that: 

 

1. Space filling design is a useful tool in determining and optimizing the number and 

location of wells in a well placement optimization task and useful in obtaining initial 

points for a surrogate model as it accounts for the distance between selected points 

while ensuring balance between the sample locations.  

 

2. Various surrogates exist but that a geometric-based model has the best prediction 

performance while polynomial-based models performed reasonably well because of 

their noise smoothing property. Polynomial-based models such as quadratic and 

polynomial are useful for the quick estimation of any desired function whereas 

geometric-based models should be used when near-accurate estimates are 

required. For the geometric model, radial basis function shows a better prospect than 

kriging but its performance hinges on the shape parameter and type of radial basis 

function but it underperforms with fewer datasets with noise.  

 

3. The best surrogates obtained using the numerical tool are validated and optimized 

using genetic algorithm and it was observed that genetic algorithm as a popular 

optimization is an important tool in any optimization problem and NPV is a better 

indicator of investment return compared with cumulative oil production.  

 

4. Approximately 8% return on investment was achieved. 
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5.2 Recommendations 

The following set of recommendations is suggested for future studies: 

 

a. The complete automation of the methodology as outlined is recommended for 

future study. 

b. The validation of the framework using real life reservoir data and assessment of 

associated uncertainty. 
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