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ABSTRACT 

New sources of energy should be found to relieve the high demand of energy. Even though heavy 

oil and bitumen are difficult to produce due to their high viscosity which can be reduced by heating, 

with increased oil price, the production of these heavy oils are seen viable thus the need for a 

model that would help make predictions for the future and also take into consideration areal and 

vertical sweep of hydrocarbons (3D simulator). The ability to be able to optimize the interaction 

data and decision making during the life cycle of the field is critical. As a result of a heterogeneity 

of reservoirs, numerical simulators are used to obtain consistent and significant solutions.  

For this work, a three-dimensional numerical reservoir simulator is developed for an expansion 

drive with a high viscous oil. A transient state heat system by conduction with an internal heat 

source is considered.  A temperature simulator is first developed then coupled with a viscosity 

correlation after which it is then coupled with a diffusivity equation for a single phase flow of an 

expansion drive reservoir. All the governing equations are discretized using finite difference 

technique; iterative linear solver with the aid of MATLAB code is used to solve the system of 

linear equations.  

This work aims to look at the effect of temperature on pressure drop through viscosity. It is realized 

that an increase in the heat source introduced a rise in temperature which in turn decrease the 

viscosity across the system. The pressure across the system is seen to be sustained even though it 

is declining thus the pressure being maintained.  
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CHAPTER ONE 

INTRODUCTION 

1.1 General Introduction 

Reservoirs act differently due to varying range of both rock and fluid properties and thus must be 

treated uniquely. During production, reservoirs are allowed to naturally produce their 

hydrocarbons until when production rates are mostly not economical viable then other support 

systems are used. Primary recovery is the natural stage of the reservoir to be able to produce 

without support thus depending on reservoir’s internal energy. There are different drive 

mechanisms known as a results of different energy sources. The drive mechanism of a reservoir is 

not known in the earlier life of the production but can be seen from production data with time. The 

knowledge about the reservoir’s drive mechanism can help improve reserves recovery and 

supervision during its middle and later life. The important drive mechanisms include: Rock and 

liquid expansion drive, solution gas/ depletion drive, Gas cap drive, Water drive, Combination 

drive and Gravity drainage drive. 

Rock and liquid expansion drive has its oil existing at a higher pressure than the bubble point 

pressure and with only oil, connate water and the rocks. The rock and fluids expand as a result of 

their different compressibility as the reservoir pressure deplete. Formation compaction and 

expansion of different rock grains are some factors that affect reservoir rock compressibility. These 

factors are due to decrease of fluid pressure within the pore spaces which in turn reduce pore 

volume through porosity reduction. While the pore volume is reducing, the crude oil and water 

will be forced out of the pore space to the wellbore. Due to the compressibility (slightly) of both 

liquids and rocks, the reservoir will experience a rapid pressure decline. A constant gas-oil ratio 
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equal to gas solubility at bubble point pressure is typical of this drive mechanism. A small 

percentage of total oil in place is recovered due to the less efficiency of this drive. 

Other recovery methods like Secondary and tertiary (Enhanced) recovery methods are employed 

to help improve the recovery of the remaining hydrocarbons by providing additional or sustaining 

the energy.  The efficiency of an enhanced recovery method is a measure of its ability to provide 

greater hydrocarbon recovery than by natural depletion at economically attractive production rate 

(Marcel et al. 1980). It depends on reservoir characteristics and nature of displacing and displaced 

fluids. Enhanced recovery methods seeks to improve the sweep and displacement efficiency. It has 

been basically grouped into three types; namely chemical processes, miscible displacement 

processes and thermal processes. Thermal processes seeks to lower the viscosity of the fluid in 

place thus improving displacement and some of the processes are steam flooding and in-situ 

combustion. In order to manage and predict the performance of high viscous oil reservoir which 

is being heated using a heat probe, numerical reservoir simulation is needed thus the need for a 

three-dimensional numerical simulator for high viscous oil reservoir. 

Reservoir simulation is the art of relating mathematics, physics, reservoir engineering, and 

computer encoding to predict hydrocarbon reservoir performance under different operating 

approaches (Aziz, K. and Settari, A. 1979).  

Petroleum reservoir simulation is an approach whereby mathematical equations (model) or 

computable procedure are employed to infer the behavior of the real reservoir.  

It is possible to obtain an exact solution for a few problems by direct integration of the differential 

equation (analytical solution). However, when analytical solutions breakdown, simple 

approximate methods (numerical solutions) are employed. 



13 
 

Today, numerical reservoir simulation is regularly used as a valuable tool to help make investment 

decisions on major exploitation and development projects. These decisions include determining 

commerciality, optimizing field development plans and initiating secondary and enhanced oil 

recovery methods on major oil and gas projects. Proper planning is made possible by use of 

reservoir simulation; it can be used effectively in the early stages of development before the pool 

is placed on production so that unnecessary expenditures can be avoided. 

 

1.2 Problem definition 

Heavy oil reservoirs cannot be easily produced due to their high viscosities which in turn inhibit 

mobility of hydrocarbons therefore enhanced oil recovery like thermal recovery method is 

employed to help decrease the viscosity drag effect of the hydrocarbons. These recovery methods 

are capital intensive and as such need intensive studies and forecast about their outcomes therefore 

the need for a numerical reservoir simulator which can be one-dimensional (1-D), two-dimensional 

(2-D) and three-dimensional (3-D). With the 3-D model, it gives full description of the real 

situation by accounting for both areal and vertical sweep efficiencies which neither 1-D nor 2-D 

models can give thus the need for a 3-D numerical simulator for high viscous oil reservoir. 

 

1.3 Objectives 

Below are the outlined objectives for the work: 

 To derive and solve a heat equation for conduction with a heat source using finite difference 

method. 
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 Using a viscosity correlation, predict the viscosity dependence on temperature for a high 

viscous volumetric oil reservoir. 

 To derive and solve diffusivity equation for single phase flow using finite difference 

method. 

 To develop a 3-D numerical simulator for high viscous oil reservoir combining the heat, 

viscosity and diffusivity equations using MATLAB. 

 To use the developed simulator to predict temperature distribution and pressure decline. 

 

1.4 Scope and limitation of this work 

This work is limited to (the development of a numerical simulator for) heavy oil reservoir with 

expansion drive as it primary drive for recovery. 

 

1.5 Organization of thesis 

The thesis is structured in this manner: 

 Chapter two gives a brief evaluation of drive mechanisms, enhanced oil recovery and 

thermal recovery. Numerical reservoir simulation and numerical methods for discretization 

of the equations governing heat transfer and flow in subsurface reservoirs, including 

benefits and limitations of finite difference method are reviewed. Also in review is simple 

iterative method and use of MATLAB programming in reservoir simulation. 

 Chapter three presents the methodology employed in this study; mathematical, numerical 

and computer models formulations. 

 In Chapter four contains the discussion of the results. 
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 Chapter five draws logical conclusions based on the simulator results, and makes useful 

recommendations for further studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Natural Drive Mechanism 

Each reservoir is composed of a unique combination of geometric form, geological rock properties, 

fluid characteristics, and drive mechanism (primary). The recovery of oil by any of the natural 

drive mechanisms is called primary recovery thus no energy supplement. Although no two 

reservoirs are identical in all aspects, they can be grouped according to the primary recovery 

mechanism by which they produce (Ahmed 2006).  There are basically six driving mechanisms 

that provide the natural energy necessary for oil recovery: 

 Depletion drive (This type of drive has its main source of energy being due to gas liberation 

from the crude oil and expansion of the solution gas as the reservoir pressure is reduced.) 

 Gas cap drive (This drive is identified by the presence of a gas cap with little or no water 

drive. The reservoir pressure decline is slow due to the ability of the gas to expand.) 

 Water drive (Most reservoirs are bounded on a portion or all the edges by water bearing 

rocks called aquifers. These aquifers help provide energy to push the hydrocarbons. There 

are bottom water and edge water occurring in this drive.) 

 Gravity drainage drive (This drive is as result of differences in densities of the reservoir 

fluids) 

 Combination drive (This drive can chain two or more of the above drives) 
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2.1.1 Rock and Liquid Expansion Drive 

Expansion occurs as the reservoir undergoes a pressure depletion. In such conditions when no 

external influx is present, the reservoir fluid essentially displaces itself. For under saturated oil 

reservoirs, the liquid phase expansion contributes only a little to oil recovery, since oil 

compressibility is usually very low, especially in medium to heavy gravity oils. 

In under saturated oil reservoirs producing by rock and fluid expansion, the pressure declines very 

rapidly due to the rock and liquid being slightly compressible while the producing Gas-Oil-Ratio 

(GOR) remains constant. Fluid and rock expansion is naturally the least efficient drive mechanism 

for oil reservoirs especially heavy oil reservoirs and thus the need to supplement with external 

energy sources. 

 

2.2 Enhanced Oil Recovery Methods 

The process of producing hydrocarbons by methods other than the normal methods is called 

enhanced oil recovery (EOR). It also includes re-pressurizing schemes with gas and water. An 

EOR method should generate an incremental oil recovery. Incremental oil is designated as oil 

produced higher than the projected production from the reservoir without the EOR method 

(Ezekwe 2011). Heavy oil and oil sands that cannot be produced by conventional methods. 

Applications of EOR methods such as thermal process, can improve oil recovery from these types 

of reservoirs. Figure 2.2 shows a modified diagram of EOR methods (Arfo 2014). They can be 

classified into the following processes; 
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2.2.1 Miscible Gas Injection Processes  

A fluid/solvent that dissolves the reservoir oil is introduced into the reservoir such as Alcohol, 

Refined hydrocarbons, LPG or exhaust gas. This process improve recovery efficiency by reducing 

viscosity, condensing and vaporizing gas drive and displacing oil from pore spaces. This process 

can further be grouped into CO2 flooding, miscible hydrocarbon displacement and inert gas 

flooding. 

 

2.2.2 Chemical Processes 

Chemicals are injected into the reservoir to alter fluid or rock properties. Candidate reservoir 

should have adequate injectivity since the injected fluids have lower mobility. Active water drive 

reservoirs should be avoided as they have potential for low residual oil saturation. Reservoirs with 

gas caps may not be good candidates for this method because mobilized oil might re- saturate the 

gas cap. Reservoir formations rich in clay should be avoided because they increase adsorption of 

the injected chemical. Moderate salinity brine reservoirs are preferable because high salinity 

concentration interact unfavorably with the injected chemicals. Under these process, there are five 

different processes namely; Polymer flooding, Surfactant flooding, Alkaline flooding, Surfactant/ 

Polymer flooding and Alkaline/ Surfactant/ Polymer Flooding (Arfo 2014). 

 

2.2.3 Thermal processes 

Thermal EOR processes are defined to include all processes that supply heat energy to the rocks 

and fluids contained in a reservoir thereby enhancing the ability of oil (including other fluids) to 

flow by primarily reducing its viscosity. The heat cause thermal expansion which affects the 
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relative permeability and also sometimes cause the activation of solution gas drive. The oil caused 

to flow by the supply of thermal energy is produced through nearby wells. There are three 

categories of thermal methods:  

 

2.2.3.1 Cyclic Steam Injection (Steam Stimulation, Steam Soak or Huff and Puff): In this process, 

steam is injected down a producing well to heat up the area around the well bore and increase 

recovery of the oil immediately adjacent to the well. After injection of short period, the well is 

placed back on production. This is essentially a well bore stimulation technique, each well 

responding independently. This process is repeated until production falls below a profitable level. 

 

2.2.3.2 Steam Drive (Steam Flooding, Continuous Steam Injection): Steam is injected through 

injection wells and the oil is displaced to surrounding producing wells as in conventional fluid 

injection operations. Less viscous crude oils can be steam flooded if they don’t respond to water. 

This method reduces viscosity, bring about steam distillation and supplies pressure to drive oil to 

the producing well. 

 

2.2.3.3 In-Situ Combustion (Fire-flood): This process involves in-situ combustion of portions of 

the oil. There are two mechanisms involved namely forward and backward combustion. Air is 

pumped into the reservoir which either self-ignites or is ignited, depending on reservoir 

temperature and composition. This heat produced is used to thin the oil and permit it to flow more 

easily towards the producing wells (Arfo 2014). 

Most of these processes are modelled due to its capital involvement thus the need for reservoir 

simulation to help predict the outcome of such processes. 
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2.2.3.4 Heavy Oil recovery methods 

These methods include: 

 Steam Assisted Gravity Drive (SAGD): It’s an advanced form of steam Stimulation 

involving a pair of horizontal wells, one 4 to 6 metres above the other. The upper one is 

used for injecting high pressure steam, which heats the oil and reduces its viscosity. The 

heated oil drains into the lower wellbore and is produced from there. 

 Toe-to-Heel Air Injection (THAI), is a proposed method of recovery that combines a 

vertical air injection well with a horizontal production well (Arfo, 2014). 

 

Figure 2.2: A Diagram showing EOR Methods. 
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2.3 Numerical Reservoir Simulation 

Simulation is the only way to describe quantitatively the flow of multi phases in heterogeneous 

reservoir having a production schedule determined not only by the properties of the reservoir, but 

also by market demand, investment strategy and government regulations (Mattax & Dalton 1990). 

There are other methods of forecasting reservoir performance which include experimental, 

analogical and mathematical methods. Over the past few years, the interest in the numerical 

modeling of fluid displacement processes in porous media has been rising rapidly. The emergence 

of complex enhanced recovery procedures in the field of hydrocarbon extraction techniques has 

emphasized the need for sophisticated mathematical tools, capable of modeling intricate chemical 

and physical phenomena and sharply changing fluid interfaces. Figure 2.3 shows a schematic 

diagram of a numerical reservoir simulation process (Cheng Y. 2002).  

 

Figure 2.3.1: Schematic diagram of the numerical reservoir simulation process 

Reservoir simulation is needed for there to be accurate performance predictions for a hydrocarbon 

reservoir under different operating conditions. Since hydrocarbon recovery project involves a lot 
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of capital investment, the risk associated with the project must be fully assessed and minimized.  

All these assessment and predictions are based on the software being used and the input data. The 

success of reservoir modelling is based on the ability of the equations being used to represent both 

the physics of the fluid flow and equilibrium in the reservoir and well system; and the ability of 

the grid properties to represent the dimensional descriptions (Archer 1983).  

Ogbe, David (2014) gives reservoir simulators classification based on: 

 Type of reservoir or its fluids to be simulated (Gas, Black oil, naturally fractured). 

 Recovery process to be used (chemical, miscible, thermal, polymer). 

 Geometry or dimensions (Cartesian, radial, 1D, 2D, 3D). 

 Special purpose / function (asphaltene deposition, phase behavior). 

 Phases (single phase, 2 phase, 3 phase) 

From the classification based on dimensions, there are: 

 Figure 2.3.2a shows a one dimensional model that can be used to simulate single well 

operation, sections of the reservoir and reef structures among others.  

 Figure 2.3.2 b & c shows a two dimensional model that can be used to describe the areal 

performance or to stimulate the vertical conformance in a reservoir. This can be used in 

cross sectional analysis of a reservoir and also to check heterogeneity effect on frontal 

displacement. 

 Figure 2.3.2d shows a three dimensional model that can account for both areal and vertical 

conformance all together. It can handle all types of simulation studies.  

 



23 
 

 

 

 

 

 

  

      

Figure 2.3.2: A schematic Diagram of reservoir models based on dimension. 

The need for the selection of a suitable tool is important in order not to choose any tool that would 

make available misrepresentative results if not used successfully. A three dimensional model is 

known to be the best tool to both assess the past performance and forecast the future performance 

of a reservoir due to its combination of areal, vertical conformance and gravity effects , all in one 

model. Under numerous operating conditions, a precise numerical model of a reservoir can be 

developed to forecast aftermaths and performance in order to make quality decisions regarding 

hydrocarbons recovery (Dele et al. 2014). This work seeks to develop a three-dimensional 

numerical simulator for high viscous expansion drive reservoirs. 

 

2.4 Numerical Methods 

Numerical methods use high-speed computers to solve the mathematical equations describing the 

physical behavior of the processes in a reservoir to obtain a numerical solution to the reservoir 

behavior of the field. It is possible to obtain an exact solution for a few problems by direct 

(b) Two-dimensional Areal Model 

(c) Two-dimensional Cross-Sectional Model (d) Three-dimensional Model 

(a) One-dimensional Model 
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integration of the differential equation (analytical solution). However, when analytical solutions 

breakdown, simple approximate methods (numerical solutions) are employed. There are three 

methods available for discretization (process of converting partial differential equation, PDE into 

algebraic equations); the Taylor series method, the integral method and the variational method 

(Abou-Kassem et al, 2006).   

 The solution of linear and non – linear boundary value problems (BVPs) for numerical are shown 

below (Omololu, 2014):  

i. Perturbation  

ii. Power series  

iii. Probability schemes  

iv. Method of weighted residuals (MWR) 

v. Ritz method  

vi. Finite difference method/technique (FDM)  

vii. Finite element method (FEM)  

 

2.4.1 Finite Difference Method (FDM) 

Finite difference approach is the most commonly used numerical method in reservoir simulation. 

It is a numerical technique used to approximate continuous (ordinary and partial) differential 

equations to discretize form. Simplicity and ease of extension from 1D to 2D and 3D are 

advantages listed by Abbas Firoozabadi et al (2000). Grid dependency and numerical dispersion 

are some of the main disadvantages of this method. Heat problems are solved using this method. 

Some applications in the oil industry are solving oil recovery processes and fluid flow problems 

in porous media.  
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In using this method, a grid system is made out of the reservoir to be modeled, which is used to 

make spatial discretization. The approximations made require smaller time step of the total 

simulation time. Point-distributed and block-centered grid are the two basic finite difference grids.  

 

2.5 Linear Solvers in Reservoir Simulators 

The linear solver is an essential component in a reservoir simulator. It is used to solve the 

discretized nonlinear partial differential equations. These equations describe mass balances on the 

individual components treated in the model. For non-isothermal problems, an energy balance is 

added to the system. There are two methods of solving the equations resulting from the finite 

difference approximation for a system: 

 

2.5.1 Direct Solution Methods 

This method theoretically give an exact solution in a finite number of steps. Due to rounding errors, 

this is not mostly true thus an error made in one step spread in the remaining steps. Solving an 

equation system by means of matrix decompositions can be classified as a direct method (Cramer’s 

rule, Gaussian Elimination, Matrix inversion, Matrix factorization). Direct solver has a limitation 

of computer storage capacity due to the storage of both coefficient matrix and right vector 

throughout the solution formulation. Figure 2.5.1 shows a modified diagram representing a direct 

solution method (Ogbe 2014)

 

Figure 2.5.1: Schematic diagram of steps involving direct solution method. 
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2.5.2 Iterative Solution Methods 

Iterative methods construct a series of solution approximations that under some assumptions 

converges to the solution of the system. They are self-correcting but rather slower since they would 

undergo a large number of iterations required. Examples of iterative methods include: Jacobi 

iteration, Gauss-Siedel, Successive Over-Relaxation (SOR), Strongly Implicit Procedure (SIP), 

Matrix Conditioning and Conjugate Gradient Method. Iterative solution methods do not always 

converge to the solution. Figure 2.5.2 shows a schematic representation of the iterative solution 

method (Ogbe, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.2: A Schematic Representation of the iterative solution method. 

 

2.5.2.1 Simple Iterative method 

This is a fairly simple method, which requires the problem to be written in the form 
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x = f(x) for some function f(x). We start with an initial guess to the solution, x1 and then calculate 

a new estimate as x2 = f(x1). This process is continued, at each step generating a new approximation 

xn+1 = f (xn). The iterations are stopped when the difference between successive estimates becomes 

less than some prescribed convergence criterion ε. i.e. when |xn+1 − xn| < ε 

If the process is convergent, then taking a smaller value for ε results in a more accurate solution, 

although more iterations will need to be performed. 

 

2.6 MATLAB Programming 

MATLAB® is a high-level language and interactive environment for numerical computation, 

visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and 

create models and applications. The language, tools, and built-in math functions enable you to 

explore multiple approaches and reach a solution faster than with spreadsheets or traditional 

programming languages, such as C/C++ or Java™. In academia, MATLAB has gradually taken 

over most of the scientific programming work with its interactive easy to use features. Matlab is 

used in solving a wide range of mathematical and engineering problems. According to Matlab 

official product website, some key features of Matlab are listed below: 

 High-level language for numerical computation, visualization, and application 

development 

 Interactive environment for iterative exploration, design, and problem solving 

 Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, 

optimization, numerical integration, and solving ordinary differential equations 

 Built-in graphics for visualizing data and tools for creating custom plots 
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 Development tools for improving code quality and maintainability and maximizing 

performance  

 Tools for building applications with custom graphical interfaces 

 Functions for integrating MATLAB based algorithms with external applications and 

languages such as C, Java, .NET, and Microsoft® Excel® 

MATLAB is being gradually accepted in and used in various industries as well. It is being 

widely recognized for its easy interface and time saving features, and also Reservoir Modeling 

is now being carried out using MATLAB. 
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CHAPTER THREE 

METHOD USED 

3.1 Development of the Simulator 

The following itemized stages were used in developing the three dimensional numerical oil 

reservoir simulator: 

 Derive a heat partial differential equations of the model by conduction based on the rock 

and fluid properties of the reservoir. 

 Discretize the derived heat diffusion equations in both space and time to obtain a system 

of linear equations. 

 Establish the stability of the equations using the Crank Nicolson scheme. 

 Write Codes for the discretized equations using MATLAB Programming. 

 Couple the temperatures from the heat model with a viscosity model using MATLAB 

Programming. 

 Derive a diffusivity partial differential equations for an expansion drive reservoir.  

 Discretize the derived diffusivity equation in both space and time to obtain another system 

of equations.  

 Establish these equations’ stability using Crank Nicolson scheme. 

 Write Codes for the systems of equations using MATLAB Programming. 

 Validate the simulator using Base case results. 

In the development of this reservoir simulator, three main models were used; Mathematical model, 

Numerical model and Computer model (MATLAB code) 
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Figure 3.1: A numerical stencil for a three-dimensional oil reservoir block 

3.2 Heat Model 

Whenever there exist a temperature difference in a medium or between media, heat transfer occurs 

(Incropera et al., 1990). When a temperature gradient exists in a stationary medium, which may be 

a solid or a fluid, the heat transfer is termed as conduction. Figure 3.2 represents how heat is 

transfer from one end to another through a medium till equilibrium. 

 

 

Figure 3.2.1: A diagrammatic representation of conduction. 

3.2.1 Mathematical Model 

The model is developed using heat by conduction with a heat source and inculcating the 

appropriate initial and boundary conditions that represents the performance of the reservoir. The 

model is basically governed by Fourier’s law. 

T1 T2 

𝑖, 𝑗, 𝑘 − 1 

𝑖, 𝑗 + 1, 𝑘 

𝑖, 𝑗, 𝑘 + 1 

𝑖, 𝑗, 𝑘 𝑖 + 1, 𝑗, 𝑘 

𝑖, 𝑗 − 1, 𝑘 

𝑖 − 1, 𝑗, 𝑘 

𝑧 
𝑦 

𝑥 
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Basic Assumptions 

 No-flow reservoir boundary condition 

 Internal Heat Generation 

 Transient State conditions 

 Homogenous Reservoir with constant properties 

 Uniform grid size 

 Constant average thermal conductivity , specific heat capacity and density 

  

 

 

 

 

 

 

 

 

Figure 3.2.2: A diagrammatic representation of the volumetric system. 

3.2.1.1 Derivation of the heat equation. 

∆Q =  ∆mCp∆T (3.0)  

Where m = ρV 

         Δm =ρdV         for a small portion in the bigger portion. (3.1a) 

I = 1 

LINE 2 

LINE 7 

I = 1 

j = 1 

j = 1 

LINE 1 

LINE 3 

LINE 4 

LINE 5 
LINE 6 

LINE 8 

LINE 9 

LINE 10 

LINE 11 

LINE 12 

K= 1 

j = 1 

k =1 

k= Nz 

k = Nz 

j = Ny 

A 

D 

E 

F 

B 

C 

G 

H 

I = Nx 

I = Nx 

j= Ny 

j = Ny 

j = 1 

j = Ny 

i 

k j 
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∆Q =  (ρdV)Cp(T − To)   

Q =  ∫ (ρdV)
v

Cp(T − To) (3.2)  

dQ

dt
= G − R (3.2a)  

R =  ∫ q. dS
s

=  ∫ ∇q. dV
v

 (3.2b)  

G =  ∫ g. dV
v

 (3.2c) 

Where S = surface area 

             V = volume of the system, 

             T is temperature 

             x, y and z are the Cartesian directions, 

             k is thermal conductivity of the system, 

             α is thermal diffusivity of the system, 

             Cp is specific heat at constant pressure, 

             ρ is density of material used, 

             Q is amount of heat in the system, 

             R is heat flowing out of the system, 

             G is heat generated within the system. 

d

dt
 [∫ ρCp(T − To)dV

v
] =  ∫ g. dV

v
− ∫ ∇q. dV

v
 (3.3)  

∫ dVρCp

∂T

∂tv

=  ∫ dV(g − ∇q)
v

 

∫ dV [ρCp

∂T

∂t
− g +  ∇q]

v

= 0 

Since dV is an arbitrary volume, integrand = 0. 

ρCp
∂T

∂t
− g + ∇q = 0 (3.4)  
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 𝑞 =  −𝑘∇𝑇 (3.4a)  

ρCp
∂T

∂t
= g + k∇2T (3.5) 

∇2T =  
∂2T

∂x2
+  

∂2T

∂y2
+  

∂2T

∂z2
 (3.5a) 

∂T

∂t
=  

g

ρCp
+  

k

ρCp
∇2T (3.6) 

α =  
k

ρCp
 (3.6a) 

∂T

∂t
=  α∇2T +  

g

ρCp
 (3.7) 

3.2.2 Numerical Model 

The equation constituting the mathematical model of the reservoir is complex to be solved by 

analytical method. The finite difference method is used to put the equation in a form that can be 

solved digitally by a computer. This process involves spatial and time derivative discretization. 

3.2.2.1 Spatial Discretization 

The general PDE for a single phase written in Cartesian coordinates as: 

∂T

∂t
= α [

∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2] +
g

ρCp
 (3.8) 

In discretizing the right hand side using central difference method (which is mostly accurate)  

∂2T

∂x2
i,j,k

=
∂

∂x
[

∂T

∂x
] (3.8a) 

If 
∂T

∂x
=

Ti+1
2⁄ ,j,k−Ti−1

2⁄ ,j,k

∆x
 (3.8b) 

Thus  
∂2T

∂x2 =  
∂

∂x
[

Ti+1
2⁄ ,j,k−Ti−1

2⁄ ,j,k

∆x
]  

𝜕2𝑇

𝜕𝑥2
𝑖,𝑗,𝑘

=
[
Ti+1,j,k − Ti,j,k

∆x
] − [

Ti,j,k − Ti−1,j,k

∆x
]

∆𝑥
 

𝜕2𝑇

𝜕𝑥2
𝑖,𝑗,𝑘

=  
𝑇𝑖+1,𝑗,𝑘−2𝑇𝑖,𝑗,𝑘+𝑇𝑖−1,𝑗,𝑘

(∆𝑥)2  (3.8c)  
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Therefore   

∂2T

∂y2
i,j,k

=  
Ti,j+1,k−2Ti,j,k+Ti,j−1,k

(∆y)2  (3.8d) 

∂2T

∂z2
i,j,k

=  
Ti,j,k+1−2Ti,j,k+Ti,j,k−1

(∆z)2  (3.8e) 

∂T

∂t
= α [(

Ti+1,j,k−2Ti,j,k+Ti−1,j,k

(∆x)2 ) + (
Ti,j+1,k−2Ti,j,k+Ti,j−1,k

(∆y)2 ) + (
Ti,j,k+1−2Ti,j,k+Ti,j,k−1

(∆z)2 )] +
g

ρCp
 (3.9) 

 

3.2.2.2 Time Discretization 

For the left hand side of the equation, using backward difference approximation with a base time 

level at n+1; 

∂T

∂t
=

Ti,j,k
n+1−Ti,j,k

n

∆t
 (3.10) 

Combining the left hand side and right hand side with crank Nicolson algorithm which is an 

implicit scheme formulation. 

Ti,j,k
n+1−Ti,j,k

n

∆t
= α {((

𝑇𝑖+1,𝑗,𝑘
𝑛+1 −2𝑇𝑖,𝑗,𝑘

𝑛+1+𝑇𝑖−1,𝑗,𝑘
𝑛+1

(∆𝑥)2 ) + (
𝑇𝑖,𝑗+1,𝑘

𝑛+1 −2𝑇𝑖,𝑗,𝑘
𝑛+1+𝑇𝑖,𝑗−1,𝑘

𝑛+1

(∆𝑦)2 ) + (
𝑇𝑖,𝑗,𝑘+1

𝑛+1 −2𝑇𝑖,𝑗,𝑘
𝑛+1+𝑇𝑖,𝑗,𝑘−1

𝑛+1

(∆𝑧)2 )) +

((
𝑇𝑖+1,𝑗,𝑘

𝑛 −2𝑇𝑖,𝑗,𝑘
𝑛 +𝑇𝑖−1,𝑗,𝑘

𝑛

(∆𝑥)2 ) + (
𝑇𝑖,𝑗+1,𝑘

𝑛 −2𝑇𝑖,𝑗,𝑘
𝑛 +𝑇𝑖,𝑗−1,𝑘

𝑛

(∆𝑦)2 ) + (
𝑇𝑖,𝑗,𝑘+1

𝑛 −2𝑇𝑖,𝑗,𝑘
𝑛 +𝑇𝑖,𝑗,𝑘−1

𝑛

(∆𝑧)2 ))} +
g

ρCp
 (3.11) 

Where i, j, k are the coordinate representations in the x, y and z directions respectively. 

Ti,j,k
n+1−Ti,j,k

n

∆t
= α ((

𝑇𝑖+1,𝑗,𝑘
𝑛+1 −2𝑇𝑖,𝑗,𝑘

𝑛+1+𝑇𝑖−1,𝑗,𝑘
𝑛+1 +𝑇𝑖+1,𝑗,𝑘

𝑛 −2𝑇𝑖,𝑗,𝑘
𝑛 +𝑇𝑖−1,𝑗,𝑘

𝑛

(∆𝑥)2 ) + (
𝑇𝑖,𝑗+1,𝑘

𝑛+1 −2𝑇𝑖,𝑗,𝑘
𝑛+1+𝑇𝑖,𝑗−1,𝑘

𝑛+1 𝑇𝑖,𝑗+1,𝑘
𝑛 −2𝑇𝑖,𝑗,𝑘

𝑛 +𝑇𝑖,𝑗−1,𝑘
𝑛 +

(∆𝑦)2 ) +

(
𝑇𝑖,𝑗,𝑘+1

𝑛+1 −2𝑇𝑖,𝑗,𝑘
𝑛+1+𝑇𝑖,𝑗,𝑘−1

𝑛+1 +𝑇𝑖,𝑗,𝑘+1
𝑛 −2𝑇𝑖,𝑗,𝑘

𝑛 +𝑇𝑖,𝑗,𝑘−1
𝑛

(∆𝑧)2 )) +
g

ρCp
  (3.12) 

Let [(∆𝑥)2. (∆𝑦)2. (∆𝑧)2] = D (3.12a) 

      [(∆𝑦)2. (∆𝑧)2] = Dx (3.12b) 

      [(∆𝑥)2. (∆𝑧)2] = Dy (3.12c) 

      [(∆𝑥)2. (∆𝑦)2] = Dz (3.12d)  
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Multiply Eqn 3.12 through by Eqn 3.12a 

𝐷 (
Ti,j,k

n+1−Ti,j,k
n

∆t
) = α (𝐷𝑥(𝑇𝑖+1,𝑗,𝑘

𝑛+1 − 2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖−1,𝑗,𝑘

𝑛+1 + 𝑇𝑖+1,𝑗,𝑘
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 + 𝑇𝑖−1,𝑗,𝑘
𝑛 ) + Dy(𝑇𝑖,𝑗+1,𝑘

𝑛+1 −

2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖,𝑗−1,𝑘

𝑛+1 +𝑇𝑖,𝑗+1,𝑘
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 + 𝑇𝑖,𝑗−1,𝑘
𝑛 ) + Dz(𝑇𝑖,𝑗,𝑘+1

𝑛+1 − 2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖,𝑗,𝑘−1

𝑛+1 + 𝑇𝑖,𝑗,𝑘+1
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 +

𝑇𝑖,𝑗,𝑘−1
𝑛 )) +

g

ρCp
𝐷   (3.13) 

Simplifying the equation: 

𝐷

𝛼∆𝑡
(Ti,j,k

n+1 − Ti,j,k
n ) = (𝐷𝑥(𝑇𝑖+1,𝑗,𝑘

𝑛+1 − 2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖−1,𝑗,𝑘

𝑛+1 + 𝑇𝑖+1,𝑗,𝑘
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 + 𝑇𝑖−1,𝑗,𝑘
𝑛 ) + Dy(𝑇𝑖,𝑗+1,𝑘

𝑛+1 −

2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖,𝑗−1,𝑘

𝑛+1 +𝑇𝑖,𝑗+1,𝑘
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 + 𝑇𝑖,𝑗−1,𝑘
𝑛 ) + Dz(𝑇𝑖,𝑗,𝑘+1

𝑛+1 − 2𝑇𝑖,𝑗,𝑘
𝑛+1 + 𝑇𝑖,𝑗,𝑘−1

𝑛+1 + 𝑇𝑖,𝑗,𝑘+1
𝑛 − 2𝑇𝑖,𝑗,𝑘

𝑛 +

𝑇𝑖,𝑗,𝑘−1
𝑛 )) +

g

k
𝐷   (3.14) 

 

3.2.3 Computer Model 

In coding the equation,  

Let β =
D

α∆t
 (3.14a) 

         S =
gD

k
  (3.14b) 

Using  M =  (k − 1)NxNy +  (j − 1)Nx + i,  (3.14c) 

        i, j, k = m (3.14d) 

    i ± 1, j, k = m ± 1 (3.14e) 

    i, j ± 1, k = m ± N𝑥 (3.14f) 

    i, j, k ± 1 = m ± N2   (3.14g) 

Where N2 is NxNy (3.14h)  

Applying no flow boundary conditions: 

 
∂T

∂x
= 0 (3.15) 

Tx+∆x − Tx−∆x

2∆x
= 0 →  Tx+∆x = Tx−∆x 
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∂T

∂x
→ Tm+1 = Tm−1 (3.15a) 

∂T

∂y
→ Tm+Nx

= Tm−Nx
                (3.15b) 

∂T

∂z
→ Tm+N2

= Tm−N2
               (3.15c) 

 3.2.3.1 For interior nodes 

β(Tm
n+1 − Tm

n ) = {[𝐷𝑥(Tm+1
n+1 − 2Tm

n+1 + Tm−1
n+1 ) + Dy(Tm+Nx

n+1 − 2Tm
n+1 + Tm−Nx

n+1 ) + Dz(Tm+N2

n+1 − 2Tm
n+1 +

Tm−N2

n+1 )] + [𝐷𝑥(Tm+1
n − 2Tm

n + Tm−1
n ) + Dy(Tm+Nx

n − 2Tm
n + Tm−Nx

n ) + Dz(Tm+N2

n − 2Tm
n + Tm−N2

n )]} + S(m)  

(β + 2Dx + 2Dy + 2Dz)Tm
n+1 =  {[𝐷𝑥(Tm+1

n+1 + Tm−1
n+1 + Tm+1

n + Tm−1
n ) + Dy(Tm+Nx

n+1 + Tm−Nx

n+1 + Tm+Nx

n + Tm−Nx

n ) +

Dz(Tm+N2

n+1 + Tm−N2

n+1 + Tm+N2

n + Tm−N2

n )] + [β − 2Dx − 2Dy − 2Dz]Tm
n } + S(m)     (3.17) 

Rearranging Eqn 3.17; 

Tm
n+1 = {[[𝐷𝑥(Tm+1

n+1 + Tm−1
n+1 + Tm+1

n + Tm−1
n ) + Dy(Tm+Nx

n+1 + Tm−Nx

n+1 + Tm+Nx

n + Tm−Nx

n ) + Dz(Tm+N2

n+1 + Tm−N2

n+1 +

Tm+N2

n + Tm−N2

n )] + [β − 2Dx − 2Dy − 2Dz]Tm
n ] + S(m)} /(β + 2Dx + 2Dy + 2Dz)   (3.18)  

Special Points  

There are 26 special points which are treated differently due to the no flow boundary condition 

and these include 6 faces, 8 corners and 12 lines. 

3.2.3.2 For the corners, 

A      i=1, j=1, k=1 

Tm
n+1 =

{[[2𝐷𝑥(Tm+1
n+1 +Tm+1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm+N2
n+1 +Tm+N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.19) 

E        i=1, j=1, k= Nz 

Tm
n+1 =

{[[2𝐷𝑥(Tm+1
n+1 +Tm+1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm−N2
n+1 +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.20) 
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D       i=1, j=Ny, k=1  

Tm
n+1 =

{[[2𝐷𝑥(Tm+1
n+1 +Tm+1

n )+2Dy(Tm−Nx
n+1 +Tm−Nx

n )+2Dz(Tm+N2
n+1 +Tm+N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.21) 

F       i=1, j=Ny, k=Nz      

Tm
n+1 =

{[[2𝐷𝑥(Tm+1
n+1 +Tm+1

n )+2Dy(Tm−Nx
n+1 +Tm−Nx

n )+2Dz(Tm−N2
n+1 +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.22) 

B        i=Nx, j=1, k=1 

Tm
n+1 =

{[[2𝐷𝑥(Tm−1
n+1 +Tm−1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm+N2
n+1 +Tm+N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.23) 

H         i=Nx, j=1, k=Nz 

Tm
n+1 =

{[[2𝐷𝑥(Tm−1
n+1 +Tm−1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm−N2
n+1 +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.24) 

C           i=Nx, j=Ny, k=1 

Tm
n+1 =

{[[2𝐷𝑥(Tm−1
n+1 +Tm−1

n )+2Dy(Tm−Nx
n+1 +Tm−Nx

n )+2Dz(Tm+N2
n+1 +Tm+N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.25) 

G            i=Nx, j=Ny, k=Nz 

Tm
n+1 =

{[[2𝐷𝑥(Tm−1
n+1 +Tm−1

n )+2Dy(Tm−Nx
n+1 +Tm−Nx

n )+2Dz(Tm−N2
n+1 +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 (3.26) 

3.2.3.3 For the Lines 

Line 1          i=2 :( Nx-1), j=1, k=1 

Tm
n+1 =

{[[𝐷𝑥(Tm+1
n+1 +Tm−1

n+1 +Tm+1
n +Tm−1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm+N2
n+1 +Tm+N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
 

            (3.27) 
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Line 6           i=Nx, j=1, k=2: (Nz-1) 

Tm
n+1 =

{[[2Dx (Tm−1
n+1 +Tm−1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+Dz(Tm+N2
n+1 +Tm−N2

n+1 +Tm+N2
n +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
            

(3.28) 

Line 9           i=2: (Nx-1), j=1, k=Nz 

Tm
n+1 =

{[[𝐷𝑥(Tm+1
n+1 +Tm−1

n+1 +Tm+1
n +Tm−1

n )+2Dy(Tm+Nx
n+1 +Tm+Nx

n )+2Dz(Tm−N2
n+1 +Tm−N2

n )]+[β−2Dx−2Dy−2Dz]Tm
n ]+S(m)}

(β+2Dx+2Dy+2Dz)
   (3.29) 

Line 5             i=1, j=1, k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚+1

𝑛 )+2𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚+𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.30) 

Line 4               i=1, j=2: (Ny-1), k=1 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚+1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚+𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛 ]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.31) 

Line 2                i=Nx, j=2: (Ny-1), k=1 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚−1
𝑛+1 +𝑇𝑚−1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚+𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛 ]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.32) 

Line 10                  i=Nx, j=2: (Ny-1), k=Nz 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚−1
𝑛+1 +𝑇𝑚−1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚−𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛 ]+𝑆(𝑚)}

(𝛽+2𝐷𝑧+2𝐷𝑦+2𝐷𝑧)
 (3.33) 

Line 12                    i=1, j=2: (Ny-1), k=Nz 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚+1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚−𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛 ]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.34) 

Line 3                       i=2: (Nx-1), j=Ny, k=1 

𝑇𝑚
𝑛+1 =

{[[𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+2𝐷𝑦(𝑇𝑚−𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚+𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.35) 
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Line 7                     i=Nx, j=Ny, k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚−1
𝑛+1 +𝑇𝑚−1

𝑛 )+2𝐷𝑦(𝑇𝑚−𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.36) 

Line 11                      i=2: (Nx-1), j=Ny, k=Nz 

𝑇𝑚
𝑛+1 =

{[[𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+2𝐷𝑦(𝑇𝑚−𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚−𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.37) 

Line 8                       i=1, j=Ny, k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚+1

𝑛 )+2𝐷𝑦(𝑇𝑚−𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 (3.38) 

3.2.3.4 For the faces, 

Face 1   i=1, j=2: (Ny-1), k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚+1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
      

(3.39) 

Face 2    i=Nx, j=2: (Ny-1), k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚−1
𝑛+1 +𝑇𝑚−1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 

(3.40) 

Face 5   i= 2: (Nx-1), j=1, k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+2𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚+𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 

(3.41) 
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Face 6   i=2: (Nx-1), j=Ny, k=2: (Nz-1) 

𝑇𝑚
𝑛+1 =

{[[𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+2𝐷𝑦(𝑇𝑚−𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛 )+𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛+1 +𝑇𝑚+𝑁2
𝑛 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 

(3.42) 

Face 3   i=2: (Nx-1), j=2: (Ny-1), k=1 

𝑇𝑚
𝑛+1 =

{[[𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚+𝑁2
𝑛+1 +𝑇𝑚+𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 

(3.43) 

Face 4   i=2: (Nx-1), j=2: (Ny-1), k=Nz 

𝑇𝑚
𝑛+1 =

{[[2𝐷𝑥(𝑇𝑚+1
𝑛+1 +𝑇𝑚−1

𝑛+1 +𝑇𝑚+1
𝑛 +𝑇𝑚−1

𝑛 )+𝐷𝑦(𝑇𝑚+𝑁𝑥
𝑛+1 +𝑇𝑚−𝑁𝑥

𝑛+1 +𝑇𝑚+𝑁𝑥
𝑛 +𝑇𝑚−𝑁𝑥

𝑛 )+2𝐷𝑧(𝑇𝑚−𝑁2
𝑛+1 +𝑇𝑚−𝑁2

𝑛 )]+[𝛽−2𝐷𝑥−2𝐷𝑦−2𝐷𝑧]𝑇𝑚
𝑛]+𝑆(𝑚)}

(𝛽+2𝐷𝑥+2𝐷𝑦+2𝐷𝑧)
 

(3.44) 

 

3.3 Viscosity Correlation 

One of the major mechanisms of oil recovery by thermal processes is viscosity reduction of oil as 

temperature increased. By reducing the oil viscosity, a higher mobility is developed thus the fluid 

flows much easier. 

Using Braden formula for oils (Marcel et al. 1980), 

log(𝑣2 + 𝐶) = [
𝑇1

𝑇2
]

𝐷

𝑙𝑜𝑔(𝑣1 + 𝐶)        (3.45) 

Where C is a constant (equals 0.6 if v > 1.5cst) 
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 D is a constant of the order of 3.5 to 4 

 v is the kinematic viscosity in centistokes. Assuming 1 centistoke = 1 centipoise. 

T is the absolute temperature. 

The temperature known from the heat model are coupled with the viscosity correlation to know 

how temperature affect viscosity. 

 

3.4 Pressure Model 

The pressure model is to be coupled with the generated viscosity values. 

3.4.1 Mathematical Model 

The model is developed using Navier Stokes’ equation with a horizontal well serving as a sink and 

inculcating the appropriate initial and boundary conditions that represents the performance of the 

reservoir. The model is basically governed by  

1. Law of mass conservation, 

2. Darcy’s Law (transport equation), and 

3. Equation of state (phase properties such as density, compressibility and formation volume 

factor). 

Basic Assumptions 

 Homogeneous and Anisotropic reservoir 

 Single-phase and slightly compressible fluid 

 Negligible gravity effect 

 Transient effective viscosity 
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 Uniform grid size 

 Constant compressibility above bubble point pressure 

 No-flow reservoir boundary condition 

 Constant permeability, porosity and compressibility 

 Varying formation volume factor dependent on pressure 

 Horizontal Well  

3.4.1.1 Derivation of the diffusivity Equation 

(𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑉 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡) − (𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝐶𝑉 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡 )

= (𝑁𝑒𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶𝑉𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡) 

i.e. Min − Mout =  ∆Mv        (3.46) 

Min =  (ṁ│x + ṁ│y + ṁ│z)∆t       (3.46a) 

Mout =  (ṁ│x+∆x + ṁ│y+∆y + ṁ│z+∆z + qs)∆t     (3.46b) 

∆Mv =  (Mv∅│t+∆t − Mv∅│t)       (3.46c) 

Combining equations (3.46a), (3.46b) and (3.46c) to get  

(ṁ│x + ṁ│y + ṁ│z)∆t − (ṁ│x+∆x + ṁ│y+∆y + ṁ│z+∆z + qs)∆t = (Mv∅│t+∆t − Mv∅│t) (3.47) 

Where ṁ = mass flow rate, 

 ρ = density,  

Φ = porosity, 

u = velocity, 
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A = cross sectional area 

qs = mass flow rate (sink term) of production 

ṁ = ρuA         (3.47a) 

Mv = ρVb         (3.47b) 

Substituting equations (3.47a) and (3.47b) into (3.47), dividing through Vb and rearranging it to 

get 

− {[
ρux│x+∆x−ρux│x

∆x
] + [

ρuy│y+∆y−ρuy│y

∆y
] + [

ρuz│z+∆z−ρuz│z

∆z
] +

qs

Vb
} = {

ρ∅│t+∆t−ρ∅│t

∆t
}  (3.48) 

Taking limit as Δx→0, Δy→0, Δz→0 and Δt = 0 to give: 

− {
∂(ρux)

∂x
+

∂(ρuy)

∂y
+

∂(ρuz)

∂z
+

qs

Vb
} =

∂(ρ∅)

∂t
      (3.49) 

From Darcy’s Law, 

u = −βc
k

μ
(∇P − γ∇Z)        (3.49a) 

From the equation of state, 

Bo =
Vb

Vsc
=

ρsc

ρ
          (3.49b) 

qs = αcρq          (3.49c) 

Where αc = volume conversion factor (to field unit) = 5.615 

βc =unit conversion factor for permeability coefficient = 1.127 

 k = rock permeability (md) 
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 ρsc = density at surface condition 

 ρ = density at reservoir condition 

 Vsc = volume at surface condition (stb) 

 Vb = volume at reservoir condition (rb) 

 µ = dynamic viscosity of the fluid (cp) 

 P = pressure (psia) 

 Z = elevation (ft) 

 γ = fluid gravity (psi/ft) 

 Bo = oil formation volume factor (rb/stb) 

 q = volumetric flow rate of production (stb/D) 

Using equations (3.49a), (3.49b), (3.49c), dividing through by αcρsc and multiplying through by 

Vb, assuming negligible gravity effect,  

𝜕

𝜕𝑥
(𝛽𝑐

𝐴𝑥𝑘𝑥

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑥
) ∆𝑥 +

𝜕

𝜕𝑦
(𝛽𝑐

𝐴𝑦𝑘𝑦

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑦
) ∆𝑦 +

𝜕

𝜕𝑧
(𝛽𝑐

𝐴𝑧𝑘𝑧

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑧
) ∆𝑧 − 𝑞 =

𝑉𝑏

𝛼𝑐

𝜕

𝜕𝑡
(

∅

𝐵𝑜
)   (3.50 

3.4.2 Numerical model 

The equation for the mathematical model is complex to be solved by analytical method thus the 

finite difference method is used to put the equation in a form that is solvable by digital computer. 

This process involves spatial and time derivative discretization. The general PDE for a single phase 

three dimensional flow through porous medium may be written in Cartesian coordinates as:  

𝜕

𝜕𝑥
(𝛽𝑐

𝐴𝑥𝑘𝑥

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑥
) ∆𝑥 +

𝜕

𝜕𝑦
(𝛽𝑐

𝐴𝑦𝑘𝑦

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑦
) ∆𝑦 +

𝜕

𝜕𝑧
(𝛽𝑐

𝐴𝑧𝑘𝑧

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑧
) ∆𝑧 − 𝑞 =

𝑉𝑏∅𝐶𝑡

𝛼𝑐𝐵𝑜

𝜕𝑃

𝜕𝑡
    (3.51) 
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Where Ct = total compressibility 

3.4.2.1 Spatial Discretization 

Using Central difference scheme, to discretize the left hand side of the equation (3.51) along the 

three orthogonal directions is shown below; 

For the x direction 

Let  a = βc
Ax

μ

kx

Bo
                     (3.51a) 

        P′ =
∂P

∂x
          (3.51b) 

        F(𝑥) = aP′         (3.51c)       

𝜕

𝜕𝑥
(𝛽𝑐

𝐴𝑥𝑘𝑥

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑥
)

𝑖,𝑗,𝑘
≈  

𝜕𝐹

𝜕𝑥
 ≈  

𝐹𝑖+1 2,𝑗,𝑘⁄ −𝐹𝑖−1 2,𝑗,𝑘⁄

∆𝑥
 ≈  

(𝑎𝑃′)
𝑖+1 2,𝑗,𝑘⁄

−(𝑎𝑃′)
𝑖−1 2,𝑗,𝑘⁄

∆𝑥
   (3.52) 

(aP′)i+1 2,j,k⁄ ≈  ai+1 2,j,k⁄ P′
i+1 2,j,k⁄  ≈ ai+1 2,j,k⁄

Pi+1,j,k−Pi,j,k

∆x
  

(aP′)i−1 2,j,k⁄ ≈  ai−1 2,j,k⁄ P′
i−1 2,j,k⁄  ≈ ai−1 2,j,k⁄

Pi,j,k−Pi−1,j,k

∆x
  

Thus equation (3.48) becomes: 

≈
ai+1 2,j,k⁄

Pi+1,j,k−Pi,j,k

∆𝑥
−ai−1 2,j,k⁄

Pi,j,k−Pi−1,j,k

∆𝑥

∆𝑥
 ≈  

ai+1 2,j,k⁄ (Pi+1,j,k−Pi,j,k)−ai−1 2,j,k⁄ (Pi,j,k−Pi−1,j,k)

(∆𝑥)2   (3.53) 

Similarly along the y direction, 

𝜕

𝜕𝑦
(𝛽𝑐

𝐴𝑦𝑘𝑦

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑦
) 𝑖,𝑗,𝑘 ≈  

ai,j+1 2,𝑘⁄ (Pi,j+1,k−Pi,j,k)−ai,j−1 2⁄ ,𝑘(Pi,j,k−Pi,j−1,k)

(∆𝑦)2        (3.54) 

Similarly along the z direction, 
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𝜕

𝜕𝑧
(𝛽𝑐

𝐴𝑧𝑘𝑧

  𝜇 𝐵𝑜

𝜕𝑃

𝜕𝑧
) 𝑖,𝑗,𝑘 ≈  

ai,j,k+1 2⁄ (Pi,j,k+1−Pi,j,k)−ai,j,𝑘−1 2⁄ (Pi,j,k−Pi,j,k−1)

(∆𝑧)2
     (3.55) 

Substituting Equations (3.53), (3.54) and (3.55) into (3.51) to obtain: 

ai+1 2,j,k⁄ (Pi+1,j,k−Pi,j,k)−ai−1 2,j,k⁄ (Pi,j,k−Pi−1,j,k)

(∆x)2 ∆x +
ai,j+1 2,k⁄ (Pi,j+1,k−Pi,j,k)−ai,j−1 2⁄ ,k(Pi,j,k−Pi,j−1,k)

(∆y)2 ∆y +

ai,j,k+1 2⁄ (Pi,j,k+1−Pi,j,k)−ai,j,k−1 2⁄ (Pi,j,k−Pi,j,k−1)

(∆z)2 ∆z − q =
Vb∅Ct

αcBo

∂P

∂t
   

If Ai±1 2⁄ ,j,k =  
ai±1 2⁄ ,j,k

∆x
 

Thus 

Ai+1 2,j,k⁄ (Pi+1,j,k − Pi,j,k) − Ai−1 2,j,k⁄ (Pi,j,k − Pi−1,j,k) + Ai,j+1 2,k⁄ (Pi,j+1,k − Pi,j,k) − Ai,j−1 2⁄ ,k(Pi,j,k − Pi,j−1,k) +

Ai,j,k+1 2⁄ (Pi,j,k+1 − Pi,j,k) − Ai,j,k−1 2⁄ (Pi,j,k − Pi,j,k−1) − qi,j,k = (
Vb∅Ct

αcBo
)

i,j,k
(

∂P

∂t
)

i,j,k
     (3.56) 

3.4.2.2 Time Discretization 

Using the backward difference for discretizing the time derivative with a base time level n+1; 

(
Vb∅Ct

αcBo
)

i,j,k
(

∂P

∂t
)

i,j,k
= (

Vb∅Ct

αcBo∆t
)

i,j,k
(Pi,j,k

n+1 − Pi,j,k
n ) = γi,j,k(Pi,j,k

n+1 − Pi,j,k
n )     (3.57) 

Where γi,j,k = (
Vb∅Ct

αcBo∆t
)

i,j,k
 

In order to obtain an unconditionally stable scheme, Crank Nicolson scheme is employed for 

equation (3.56) while substituting (3.57) into it. 

γi,j,k(Pi,j,k
n+1 − Pi,j,k

n ) =
1

2
{(Ai+1 2,j,k⁄

n+1 (Pi+1,j,k
n+1 − Pi,j,k

n+1) − Ai−1 2,j,k⁄
n+1 (Pi,j,k

n+1 − Pi−1,j,k
n+1 ) + Ai,j+1 2,k⁄

n+1 (Pi,j+1,k
n+1 − Pi,j,k

n+1) −

Ai,j−1 2,k⁄
n+1 (Pi,j,k

n+1 − Pi,j−1,k
n+1 ) + Ai,j,k+1 2⁄

n+1 (Pi,j,k+1
n+1 − Pi,j,k

n+1) − Ai,j,k−1 2⁄
n+1 (Pi,j,k

n+1 − Pi,j,k−1
n+1 )) + (Ai+1 2,j,k⁄

n (Pi+1,j,k
n − Pi,j,k

n ) −

Ai−1 2,j,k⁄
n (Pi,j,k

n − Pi−1,j,k
n ) + Ai,j+1 2,k⁄

n (Pi,j+1,k
n − Pi,j,k

n ) − Ai,j−1 2,k⁄
n (Pi,j,k

n − Pi,j−1,k
n ) + Ai,j,k+1 2⁄

n (Pi,j,k+1
n − Pi,j,k

n ) −

Ai,j,k−1 2⁄
n (Pi,j,k

n − Pi,j,k−1
n ))} − qi,j,k         (3.58) 
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3.4.3 Computer Model (Matlab Programming) 

Using Figure 3.1, the numerical model obtained for the three-dimensional oil reservoir (3.58) 

requires high speed digital computer due to the large amount of calculation. Below are the linear 

equations generated as a result of the boundary condition for the reservoir. 

Using equations (3.14c), (3.14d), (3.14e), (3.14f), (3.14g) and (3.14h), 

Let  Ai+1 2⁄ ,j,k
n+1 =  0.5(Ai,j,k

n+1 + Ai+1,j,k
n+1 ) = 0.5(Am

n+1 + Am+1
n+1 ) = temp1b    (3.58a) 

       Ai−1 2⁄ ,j,k
n+1 =  0.5(Ai,j,k

n+1 + Ai−1,j,k
n+1 ) = 0.5(Am

n+1 + Am−1
n+1 ) = temp2b    (3.58b) 

      Ai,j+1 2⁄ ,k
n+1 =  0.5(Ai,j,k

n+1 + Ai,j+1,k
n+1 ) = 0.5(Am

n+1 + Am+Nx

n+1 ) = temp3b   (3.58c) 

     Ai,j−1 2⁄ ,k
n+1 =  0.5(Ai,j,k

n+1 + Ai,j−1,k
n+1 ) = 0.5(Am

n+1 + Am−Nx

n+1 ) = temp4b    (3.58d) 

     Ai,j,k+1 2⁄
n+1 =  0.5(Ai,j,k

n+1 + Ai,j,k+1
n+1 ) = 0.5(Am

n+1 + Am+N2

n+1 ) = temp5b    (3.58e) 

     Ai,j,k−1 2⁄
n+1 =  0.5(Ai,j,k

n+1 + Ai,j,k−1
n+1 ) = 0.5(Am

n+1 + Am−N2

n+1 ) = temp6b    (3.58f) 

     Ai+1 2⁄ ,j,k
n =  0.5(Ai,j,k

n + Ai+1,j,k
n ) = 0.5(Am

n + Am+1
n ) = temp1    (3.58g) 

     Ai−1 2⁄ ,j,k
n =  0.5(Ai,j,k

n + Ai−1,j,k
n ) = 0.5(Am

n + Am−1
n ) = temp2    (3.58h) 

    Ai,j+1 2⁄ ,k
n =  0.5(Ai,j,k

n + Ai,j+1,k
n ) = 0.5(Am

n + Am+Nx

n ) = temp3    (3.58i) 

     Ai,j−1 2⁄ ,k
n =  0.5(Ai,j,k

n + Ai,j−1,k
n ) = 0.5(Am

n + Am−Nx

n ) = temp4    (3.58j) 

     Ai,j,k+1 2⁄
n =  0.5(Ai,j,k

n + Ai,j,k+1
n ) = 0.5(Am

n + Am+N2

n ) = temp5    (3.58k) 

     Ai,j,k−1 2⁄
n =  0.5(Ai,j,k

n + Ai,j,k−1
n ) = 0.5(Am

n + Am−N2

n ) = temp6    (3.58l) 

     𝛽 = 2𝛾          (3.58m) 

Applying no flow boundary conditions: 
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∂P

∂x
= 0 (3.59) 

Px+∆x − Px−∆x

2∆x
= 0 →  Px+∆x = Px−∆x 

∂P

∂x
→ Pm+1 = Pm−1 (3.60) 

∂P

∂y
→ Pm+Nx

= Pm−Nx
                (3.61) 

∂P

∂z
→ Pm+N2

= Pm−N2
               (3.62) 

3.4.3.1 For interior nodes 

𝛽(Pm
n+1 − Pm

n) = {(𝑡𝑒𝑚𝑝1𝑏(Pm+1
𝑛+1 − 𝑃𝑚

𝑛+1) − 𝑡𝑒𝑚𝑝2𝑏(𝑃𝑚
𝑛+1 − Pm−1

𝑛+1) + temp3b(Pm+𝑁𝑥
𝑛+1 − 𝑃𝑚

𝑛+1) −

temp4b(𝑃𝑚
𝑛+1 − Pm−𝑁𝑥

𝑛+1 ) + temp5b(Pm+𝑁2
𝑛+1 − 𝑃𝑚

𝑛+1) − temp6b(𝑃𝑚
𝑛+1 − Pm−𝑁2

𝑛+1 )) + (𝑡𝑒𝑚𝑝1(Pm+1
𝑛 − 𝑃𝑚

𝑛) −

𝑡𝑒𝑚𝑝2(𝑃𝑚
𝑛 − Pm−1

𝑛 ) + temp3(Pm+𝑁𝑥
𝑛 − 𝑃𝑚

𝑛) − temp4(𝑃𝑚
𝑛 − Pm−𝑁𝑥

𝑛 ) + temp5(Pm+𝑁2
𝑛 − 𝑃𝑚

𝑛) − temp6(𝑃𝑚
𝑛 −

Pm−𝑁2
𝑛 ))} − 2qi,j,k                

(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b)Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 +

temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + temp5bPm+N2

n+1 − temp6bPm−N2

n+1  ) + (temp1Pm+1
n + temp2Pm−1

n +

temp3Pm+Nx

n + temp4Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 + temp3 + temp4 + temp5 +

temp6 − β)Pm
n} − 2qi,j,k                

Rearranging the equation; 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + temp3Pm+Nx

n + temp4Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 +

temp2 + temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)         (3.63) 
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Special Points  

There are 26 special points which are treated differently due to the no flow boundary condition 

and these include 6 faces, 8 corners and 12 lines. 

3.4.3.2 For the corners, 

A      i=1, j=1, k=1 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) + ((temp1 +

temp2)Pm+1
n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b)   (3.64) 

E        i=1, j=1, k= Nz 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) + ((temp1 +

temp2)Pm+1
n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b)   (3.65) 

D      i=1, j=Ny, k=1  

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) + ((temp1 +

temp2)Pm+1
n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b)   (3.66) 

F       i=1, j=Ny, k=Nz      

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) + ((temp1 +

temp2)Pm+1
n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b) (3.67) 
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B        i=Nx, j=1, k=1 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) + ((temp1 +

temp2)Pm−1
n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b) (3.68) 

H         i=Nx, j=1, k=Nz 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) + ((temp1 +

temp2)Pm−1
n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b) (3.69) 

C           i=Nx, j=Ny, k=1 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) + ((temp1 +

temp2)Pm−1
n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b) (3.70) 

G            i=Nx, j=Ny, k=Nz 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) + ((temp1 +

temp2)Pm−1
n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 + temp3 + temp4 +

temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b + temp5b + temp6b)  

         (3.71) 
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3.4.3.3 For the Lines 

Line 1          i=2 :( Nx-1), j=1, k=1 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)           (3.72) 

Line 6           i=Nx, j=1, k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm−1
n + (temp3 + temp4)Pm+Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)            (3.73) 

Line 9            i=2: (Nx-1), j=1, k=Nz 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm+Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3 + temp4)Pm+Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)           (3.74) 

Line 5            i=1, j=1, k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm+Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm+1
n + (temp3 + temp4)Pm+Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.75) 
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Line 4               i=1, j=2: (Ny-1), k=1 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) +

((temp1 + temp2)Pm+1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.76) 

Line 2                i=Nx, j=2: (Ny-1), k=1 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) +

((temp1 + temp2)Pm−1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.77) 

Line 10                  i=Nx, j=2: (Ny-1), k=Nz 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) +

((temp1 + temp2)Pm−1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.78) 

Line 12                    i=1, j=2: (Ny-1), k=Nz 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) +

((temp1 + temp2)Pm+1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.79) 
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Line 3                      i=2: (Nx-1), j=Ny, k=1 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm+N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)           (3.80) 

Line 7                     i=Nx, j=Ny, k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm−1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm−1
n + (temp3 + temp4)Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.81) 

Line 11                      i=2: (Nx-1), j=Ny, k=Nz 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3 + temp4)Pm−Nx

n + (temp5 + temp6)Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)           (3.82) 

Line 8                      i=1, j=Ny, k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + (temp3b + temp4b)Pm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm+1
n + (temp3 + temp4)Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.83) 
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3.4.3.4 For the faces 

Face 1   i=1, j=2: (Ny-1), k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm+1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)              (3.84) 

Face 2    i=Nx, j=2: (Ny-1), k=2: (Nz-1) 

Pm
n+1 = {((temp1b + temp2b)Pm+1

n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

((temp1 + temp2)Pm+1
n + temp3Pm+Nx

n + temp4Pm−Nx

n + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)} /(β + temp1b + temp2b + temp3b + temp4b +

temp5b + temp6b)          (3.85) 

Face 5   i= 2: (Nx-1), j=1, k=2: (Nz-1) 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm+Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3b + temp4b)Pm+Nx

n+1 + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)         (3.86) 

Face 6   i=2: (Nx-1), j=Ny, k=2: (Nz-1) 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + (temp3b + temp4b)Pm−Nx

n+1 + temp5bPm+N2

n+1 + temp6bPm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + (temp3b + temp4b)Pm−Nx

n+1 + temp5Pm+N2

n + temp6Pm−N2

n ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)         (3.87) 
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Face 3   i=2: (Nx-1), j=2: (Ny-1), k=1 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm+N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5b + temp6b)Pm+N2

n+1 ) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)         (3.88) 

Face 4   i=2: (Nx-1), j=2: (Ny-1), k=Nz 

Pm
n+1 = {(temp1bPm+1

n+1 + temp2bPm−1
n+1 + temp3bPm+Nx

n+1 + temp4bPm−Nx

n+1 + (temp5b + temp6b)Pm−N2

n+1  ) +

(temp1Pm+1
n + temp2Pm−1

n + temp3Pm+Nx

n + temp4Pm−Nx

n + (temp5b + temp6b)Pm±
n+1) − (temp1 + temp2 +

temp3 + temp4 + temp5 + temp6 − β)Pm
n − S(m)}/(β + temp1b + temp2b + temp3b + temp4b + temp5b +

temp6b)           (3.89) 

The MATLAB programming underwent these summarized under listed steps: 

 Temperature model in which reservoir description such as overall geometry, grid size 

specification and its thermal properties; thermal conductivity, specific heat capacity and 

density were outlined. The location and amount of heat source were specified. 

 Viscosity model for which initial reservoir viscosity has been stated 

 Pressure model which has its rock and fluid properties (permeability, porosity, formation 

volume factor and viscosity) being outlined. The location of the horizontal well is specified 

with the rate at which it is producing. 

 The execution of the program starts with the computation of the new temperatures which 

has been coupled with the viscosity model to give new viscosities in the system which in 

turn helps in the computation of the new pressures. Following these is the computation of 

average reservoir pressure.  
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 The visual output display of the sequence which include 3D surface plots of temperature, 

viscosity and pressure all after each time step. Also there are plots of viscosity, temperature 

and pressure over time. Figure 3.4 shows the outlined steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: MATLAB sequential process algorithm 
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Average reservoir pressure Pav is computed using; 

Pav =
∑ Pn(m) ∗ Np(m)n

i=1,j=1,k=1

𝑁𝑝𝑠

 

Where  

The cumulative production, Np from each cell is computed using the formula; 

𝑁𝑝(𝑚) =
∆𝑉 ∗ ∅ ∗ (1 − 𝑆𝑤) ∗ 𝐶𝑒 ∗ ∆𝑃(𝑚)

𝐵𝑜(𝑚)
 

The cumulative production of entire reservoir Nps is computed using; 

𝑁𝑝𝑠 = ∑ 𝑁𝑝(𝑚)

𝑛

𝑖=1,𝑗=1,𝑘=1

 

The oil formation volume factor, Bo for each cell is computed using the relation; 

𝐵𝑜(𝑚) = 𝐵𝑜𝑏[1 − 𝐶𝑜(𝑃(𝑚) − 𝑃𝑜𝑏)] 

∆P(m) = 𝑃𝑚
𝑛 − 𝑃𝑚

𝑛+1 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter focuses on the plots of temperature, viscosity and pressure both in 2D and 3D and 

their analysis. This model was run using a grid size of 11*11*11 since the computer storage was 

too small to run a higher grid size. 

4.1 Base Case Scenario 

The model is run firstly without any heat source to observe the bottom-hole and average pressure 

in the reservoir that is, no change in temperature and viscosity. Figure 4.1 shows that the average 

reservoir pressure (Pav) is higher than the bottom-hole flowing pressure (Pwf) thus there being 

production. It can also be observed that both pressures decline with time. It is expected that for a 

volumetric reservoir, the pressure decline would be rapid over time. 

 

Figure 4.1: A plot of Pressure (Pav, Pwf) versus Time. 
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4.2 Thermal Process 

The model is then run with a heat source of 250 W/m3. Plots from temperature, viscosity and 

pressure are all analyzed. Figure 4.2.1 shows an initial decrease of the line followed by a rise in 

the line with normalized line till the end. The plot is for the cell at the center of the reservoir where 

both the heat source and the well are located. This initial decrease is due to some of the heat 

produced being lost to the fluid that is being produced through the wellbore while a significant 

amount of that same heat is being radiated out to neighboring cells. Different slopes are observed 

from the graph which can also be attributed to some amount of heat being lost to the fluid produced 

through wellbore while the cooler fluids coming from the neighboring cells mixes with the fluid 

left at the center cell till equilibrium is reached between the two fluids. The temperature rise would 

be minimal till the radiated heat reaches the point of equilibrium with the neighboring cells after 

which the temperature at the wellbore increase. 

 

Figure 4.2.1: A plot of Temperature (Twf)) versus Time. 
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Figure 2.1.2 shows the behavior of temperature over time for some selected cells; a cell at the 

boundary (TAB), in between the boundary and the center (Tin) and just around the center (Tjac). 

It can be seen that their behavior are different. Both Tin and TAB shows almost linear behavior 

which is due to the heat being radiated out to them and no significant heat loss achieved. For Tjac, 

it receives enough heat at the initial stage which is not lost to withdrawal but only to radiating out 

the neighboring cells but a point in time the impact of withdrawal is felt which shows the sudden 

decrease in temperature. 

 

Figure 4.2.2: A plot of Temperature (Twf, TAB, Tin, Tjac) versus Time. 

Figure 4.2.3 – 10 shows the surface temperature distribution after several days. At the center, for 

the first 10 days, the heat being emitted from the probe was lost to both the fluid produced through 
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increase was gradual process which can also be attributed to heat loss through the wellbore, heat 
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in the temperature. The outer cells receive heat at a pace based on the thermal conductivity of the 

system. 

 

Figure 4.2.3: Surface plot of reservoir temperature distribution after 1 day. 

 

Figure 4.2.4: Surface plot of reservoir temperature distribution after 10 days. 
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Figure 4.2.5: Surface plot of reservoir temperature distribution after 60 days. 

 

 

Figure 4.2.6: Surface plot of reservoir temperature distribution after 120 days. 
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Figure 4.2.7: Surface plot of reservoir temperature distribution after 180 days. 

 

 

Figure 4.2.8: Surface plot of reservoir temperature distribution after 240 days. 
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Figure 4.2.9: Surface plot of reservoir temperature distribution after 300 days. 

 

 

Figure 4.2.10: Surface plot of reservoir temperature distribution after 365 days. 
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Figure 4.2.11 depicts the behavior of the viscosity for the center cell (Vwf) based on its 

temperature behavior. An increase in temperature tend to increase the molecular energy thus 

decrease the intermolecular force between the molecules of the fluid and making the movement 

of the molecules free. A gradual increase in temperature result in a gradual decrease in the 

viscosity and vice versa. 

 

Figure 4.2.11: A plot of Viscosity (Vwf) versus Time. 

Figure 4.2.12 shows the behavior of the same selected cells (VAB, Vjac, Vin) for the temperature 

plot based on the temperature behavior. An increase in temperature affect the viscosity by reducing 
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Figure 4.2.12: A plot of Viscosity (Vwf, Vjac, Vin, VAB) versus Time. 

From figure 4.2.13 – 20, the behavior of the different cell viscosities are seen after 365 days. These 

viscosities are as result of their temperature behavior; the higher the temperature, the lower the 

viscosity and vice versa.  

 

Figure 4.2.13: Surface plot of viscosity distribution after 1 day. 
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Figure 4.2.14: Surface plot of viscosity distribution after 10 days. 

 

Figure 4.2.15: Surface plot of viscosity distribution after 60 days. 
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Figure 4.2.16: Surface plot of viscosity distribution after 120 days. 

 

Figure 4.2.17: Surface plot of viscosity distribution after 180 days. 
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Figure 4.2.18: Surface plot of viscosity distribution after 240 days. 

 

Figure 4.2.19: Surface plot of viscosity distribution after 300 days. 
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Figure 4.2.20: Surface plot of viscosity distribution after 365 days. 

For there to be production there has to be pressure decline. From figure 4.2.21, it can be seen that 

both bottom hole flowing pressure (Pwf) and average reservoir pressure (Pav) show a sudden 

decrease in pressure after which the pressure decline is gradual. This can be attributed to the 

varying viscosity drag in the cell due to the increase in temperature. In comparison with the base 

case, Figure 4.2.22 shows that the Pwf for the thermal process is higher than the normal volumetric 

system thus pressure being sustained due to the heating process which reduces the viscosity drag 

effect. Figure 4.2.23 combines the data of the selected cells from the system while showing their 

behavior which is dependent on the viscosities thus the temperature variation. 
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Figure 4.2.21: A plot of Pressure (Pwf, Pav) versus Time. 

 

 

Figure 4.2.22: A plot of Pressure (Pwfb, Pwft) versus Time. 
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Figure 4.2.23: A plot of Pressure (Pwf, Pin, PAB, Pav, Pjac) versus Time. 

From figure 4.2.24 – 31, the behavior of the pressure shows a decline but not a rapid decline such 

that the decline is slow even with withdrawal being done thus prolonged production life of the 

reservoir. 

 

Figure 4.2.24: Surface plot of pressure distribution after 1 day. 
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Figure 4.2.25: Surface plot of pressure distribution after 10 days. 

 

Figure 4.2.26: Surface plot of pressure distribution after 60 days. 
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Figure 4.2.27: Surface plot of pressure distribution after 120 days. 

 

 

Figure 4.2.28: Surface plot of pressure distribution after 180 days. 
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Figure 4.2.29: Surface plot of pressure distribution after 240 days. 

 

 

Figure 4.2.30: Surface plot of pressure distribution after 300 days. 
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Figure 4.2.31: Surface plot of pressure distribution after 365 days. 

 

4.3 Sensitivity Analysis 

The impact of certain key performance parameters such as the heat source introduced is 

investigated using the developed model. Heat sources of 1000 W/m3, 500 W/m3 and 250 W/m3 

were used in the developed model keeping all other parameters constant. Figure 4.3.1 displays the 

effect of these different heat sources on temperature. It can be seen that with a higher heat source, 

the heat loss whether to the wellbore or other neighboring cells is not significant and such the 

temperature rise is almost linear. As the heat source is reduced, the heat loss becomes evident thus 

the behavior being a slower increase in temperature. The higher the heat source the more rapid the 

increase in temperature. 
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Figure 4.3.1: The Effect of varying Heat Source on Reservoir Temperature. 

Figure 4.3.2 shows the effects of the varying heat source on viscosity. The decline in viscosity 

becomes rapid with a higher heat source. The lesser the heat source, the slower the decline because 

less energy is obtained by the molecules thus their movement is not faster. 

 

Figure 4.3.2: The Effect of varying Heat Source on Reservoir Viscosity. 
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Figure 4.3.3 depicts the behavior of the reservoir pressure with varying heat source. The higher 

heat source sustains the reservoir pressure which would prolong production life and recovery. As 

the heat source decreases, the pressure decline becomes fast since the viscosity drag effect is still 

high. The higher the heat source, the more rapid an increase in temperature occurs which results a 

rapid decline in viscosity and in turn decrease pressure slowly retaining enough to prolong the life 

of the reservoir. 

 

Figure 4.3.3: The Effect of varying Heat Source on Reservoir Pressure. 
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CHAPTER FIVE 

CONCLUSION AND RECCOMMENDATION 

5.1 Conclusion  

In this work, a three dimensional numerical simulator for high viscous volumetric reservoir is 

developed. Key reservoir parameters such as temperature, viscosity, pressure and average pressure 

were evaluated using the developed simulator. The average reservoir pressure is determined as the 

weighted average. 2D plots of temperature, viscosity and pressure behavior with the introduction 

of a heat source over time were generated. Surface plots of the temperature increase, viscosity 

decrease and pressure depletion were generated considering some selected cells in the reservoir. 

Temperature plots showed a rise which was either rapid or gradual due to the amount of heat source 

introduced. Viscosity plots also showed a rapid or gradual decline depending on the effect from 

temperature which indicates an increase in mobility thus enhancing the hydrocarbons’ sweep 

efficiency. Pressure behavior showed a slower pressure decline than the base case which has no 

heat addition thus pressure being sustained due to decrease in oil viscosity. The pressure behavior 

agrees with what literatures have proposed about enhanced oil recovery being used to maintain 

pressure and extend reservoir production life. 

 

5.2 Recommendations 

In order to make the developed simulator efficient, the following recommendations were made; 

 Further studies should be done to analyze the effect of varying thermal properties with 

temperature such as thermal conductivity, specific heat capacity and density of the system 

since they are not constant. 
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 Change in temperature result in thermal expansion which affect the compressibility of the 

system which in turn affect the formation volume factor, permeability and porosity of the 

reservoir thus further studies can be made in evaluating the effect of varying 

compressibility, formation volume factor, permeability and porosity.  

 Numerical methods such as finite element method, finite volume method, integral volume 

and variation method could be employed instead of the finite difference method used in 

this study for the discretization of the partial differential equation governing the whole 

system. This will accommodate both regular and irregular reservoir geometry. 
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NOMENCLATURE 

A = Cross-sectional area normal in the direction of flow, (ft2) 

∆t = Time step (day) 

∆x =  Length of a grid block (ft) 

∆y = Width  of a grid block (ft) 

∆z = Height of a grid block (ft) 

H = Formation thickness (ft) 

k =  Rock permeability (d) 

kx = Formation permeability in x-direction (d or md) 

ky = Formation permeability in y-direction (d or md) 

kz = Formation permeability in z-direction (d or md) 

Lx = Formation length in x-direction (ft) 

Ly = Formation length in y-direction (ft) 

ɸ = Formation porosity (fraction) 

Ct = Total compressibility 

P = Reservoir pressure (psia) 

qi,j,k = Oil flow rate from well in cell i,j,k (stb/day) 

x = x-direction 

y = y-direction 

z = z-direction 

Nx = Total number of grid cells in the x-direction 

Ny = Total number of grid cells in the y-direction 

Nz = total number of grid cells in the z-direction 
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δ = Partial differential operator 

ρ = Density at reservoir condition 

o = Oil 

n = Previous time step 

n+1 = Next time step 

ṁ = Mass flow rate, 

 ρ = Density,  

Φ = Porosity, 

u = Velocity, 

qs = Mass flow rate (sink term) of production 

αc = Volume conversion factor (to field unit) = 5.615 

βc =Unit conversion factor for permeability coefficient = 1.127 

ρsc = Density at surface condition 

ρ = Density at reservoir condition 

Vsc = Volume at surface condition (stb) 

Vb = Volume at reservoir condition (rb) 

µ = Dynamic viscosity of the fluid (cp) 

P = Pressure (psia) 

Z = Elevation (ft) 
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γ = Fluid gravity (psi/ft) 

Bo = Oil formation volume factor (rb/stb) 

q = Volumetric flow rate of production (stb/D) 

A = Transmissibility, (stb/day-psi) 

S = Surface area 

 V = Volume of the system, 

 T = Temperature 

 k = Thermal conductivity of the system, 

 α = Thermal diffusivity of the system, 

Cp = Specific heat at constant pressure, 

ρ = Density of material used, 

Q = Amount of heat in the system, 

R = Heat flowing out of the system, 

G = Heat generated within the system. 

g = Heat Source 

 

 

 

 

 

 

 


