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Abstract

In this thesis, several concepts from Topology, Measure Theory, Probability Theory and

Functional analysis were combined in the study of the mensurability of set-valued functions

and the Bochner integral. We started with a detailed study of Hausdorff metric, its

properties and topology by exposing separately the case where E is a metric space and

the case where E is a normed linear space. After reviewing the important theorems,

we present the four convergences related to Hausdorff metric: Hausdorff convergence,

Wisjman convergence, Weak convergence and Kuratowski-Mosco convergence; and then

compared them. Further, set-valued random variables and their properties were studied.

We study and compare five types of mensures of set-valued functions and the two forms

of Bochner integral, that is, the Banach-valued and set-valued Bochner integrals.
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Mosco convergence, Set-valued random variable, selections and Bochner integrals.

iv



Dedication

Dedicated to my parents, Mr & Mrs Remigius Eze

v



Acknowledgements

First, I would like to express my untainted appreciation to my supervisor, Professor Gane

Samb Lo, who has the poise and the substance of a genius. During the course of this work,

he continually and convincingly inculcated in me the spirit of adventure in research and

an excitement in studying mathematics. Without his guidance and persistent help, this

thesis would not have been possible.

I am extremely thankful to Professor Charles E. Chidume, Vice- President (Academics)

and Director of mathematics Institute, African University of Science and Technology

(AUST), Abuja for providing me an opportunity and the time necessary to do this thesis.

Also, I thank Miss Amaka Udigwe, Administrative assistant to the Vice-President (Aca-

demics), AUST, Abuja for her consistent availability and readiness to assist me at all times.

To the entire faculty members of the Mathematics Institute, AUST, I owe you a big thanks.

I am equally grateful to my parents and siblings for their love, encouragements and prayers

during the course of this work.

I would like to express my special gratitude to African University of Science and Technol-

ogy (AUST), Abuja and the African Development Bank(ADB) for their financial support.

It was their scholarships that supported my study throughout my masters programme.

Finally, my thanks and appreciations also go to my colleague and friend, Mr Chinedu An-

thony Eleh and Mr Chijioke C. Eze for their understanding and co-operations throughout

the period of this work. To all my classmates who have willingly helped me out with their

abilities, I cherish you all.

vi



Contents

Certification i

Abstract iv

Dedication v

Acknowledgements vi

Chapter 1. Hausdorff Metric and Topology 1

1Introduction and Background Concepts 1

2Hausdorff Metric and its Properties 2

3General case of Normed Linear Space 11

Chapter 2. Hausdorff Convergence Theory 15

1Introduction 15

2Characterization of Hausdorff Metric 15

3Types of Convergences in a Hyperspace 25

4Convergence in the sense of Kuratowski - Mosco 28

Chapter 3. Set-Valued Random Variables 35

1Introduction 35

2Set-Valued Random Variables 37

3Measurable Selection and its Properties 40

Chapter 4. Introduction to the Bochner Integrals 47

1Introduction 47

2The Bochner Integral of Banach valued functions 47

3An Incursion to the Bochner Integral of Set-valued functions (Debreu-Bochner

Integral) 52

Chapter 5. Perspectives and Conclusion 55

1Perspectives 55

i



ii

2Conclusion 55

Bibliography 56



CHAPTER 1

Hausdorff Metric and Topology

1 Introduction and Background Concepts

A set-valued function is a function whose output is a set rather than a point or vector.

In this work, we considered a set-valued function, F defined on a measure space (Ω,A, µ)

taking values as subsets of a metric space (or Banach space), E. Throughout this work,

we will assume that the range of F is a sub-class Po(E) of the power set P(E) of E. To

define a measure and integration concept on a function F , we need to define at least a

σ-algebra Σ on P(E) whose elements are classes of subsets of E.

We also need a metric on P(E), and a class of Borel sets B on P(E). This chapter focuses

on presenting a study on the mensurability of set-valued functions. We start by requiring

that E is a metric space.

Again, in this work, we will follow the development in Li et al. (2002) as the main source

of inspiration. However, we will provide a new structure of the content by exposing sepa-

rately the case where E is a metric space and the case where E is a normed linear space.

We will exploit other materials where necessary.

Furthermore, in this our journey to the study of mensurability of set-valued functions and

Bochner Integrals, we will need some definitions and fundamental tools. These definitions

and tools are basically from Topology, Measure Theory and Integrations, Functional Anal-

ysis and Probability Theory.

We are going to stick to the following notations:

E is a metric space with a metric d and θ is the origin of E.

Po(E) for power set of E.

P(E) for all non-empty closed elements of P0(E).

Pb(E) for all non-empty bounded and closed elements of P0(E)

1



2. HAUSDORFF METRIC AND ITS PROPERTIES 2

Pk(E) for all non-empty compact elements of P0(E).

Pc(E) for all non-empty closed and convex elements of P0(E).

Pkc(E) for all non-empty compact and convex elements of P0(E).

Pbc(E) for all non-empty closed bounded convex elements of P0(E).

Capital letters A,B,C, ... will be reserved for subsets of E.

Calligraphic letters A,B, C, ... denote σ− algebras.

We assume that the elementary concepts in Topology, Measure Theory and Integration,

Functional Analysis and the Probability Theory are known to readers. If otherwise, then

consult Chidume (2014), Chidume (2010), Lo (2017b) and Lo (2017a).

2 Hausdorff Metric and its Properties

2.1 General case of a Metric space E:

In this section, we start by presenting those properties of Hausdorff metric, which is also

called Hausdorff distance that are true if E is just a metric space.

Definition 1.1. (Hausdorff distance) Suppose (E, d) is a metric space and A,B ∈

Po(E). The Hausdorff distance between A and B is defined as

(2.1) H(A,B) = max {ρ(A,B), ρ(B,A)}

where

ρ(A,B) = sup {d(a,B) : a ∈ A} ,

ρ(B,A) = sup {d(b, A) : b ∈ B} ,

d(a,B) = inf {d(a, b) : b ∈ B}

and

d(b, A) = inf {d(b, a) : a ∈ A} .

Remark 1.2. Hausdorff distance measures how far two subsets of a metric space are

from each other. It is the greatest of all the distances from a point in one set to the closest

point in the other set.

The following examples illustrate how to compute the Hausdorff distance between two

sets.

Example 1.3. Let E = R, B = [0, 3], if x = 7. Compute d(x,B)
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Solution 1. d(x,B) = inf {d(x, b) : b ∈ [0, 3]} = inf {|7− b| : b ∈ [0, 3]} = |7− 3| = 4

Example 1.4. Let E = R2, B = Unit ball in R2. If x = (1, 1) ∈ R2. Compute

d(x,B).

Solution 2. d(x,B) = d((1, 1), B) = inf {d((1, 1), (x, y); (x, y) ∈ B} =
√

2− 1

Example 1.5. Let E = R, A = [0, 10], B = [20, 100] and C = [20,∞). Compute the

following, ρ(A,B), ρ(B,A), ρ(C,A), H(A,B) and H(A,C)

Solution 3. For any x ∈ A, we have

d(x,B) = inf {d(x, b) : b ∈ B} = (10− x) + (20− 10) = 20− x

ρ(A,B) = sup {d(x,B) : x ∈ A} = 20− 0 = 20.

For any x ∈ B, we have

d(x,A) = inf {d(x, a) : a ∈ A} = (x− 20) + (20− 10) = x− 10

ρ(B,A) = sup {d(x,A) : x ∈ B} = 100− 10 = 90.

For any x ∈ C, we have

d(x,A) = inf {d(x, a) : a ∈ A} = (x− 20) + (20− 10) = x− 10

ρ(C,A) = sup {d(x,A) : x ∈ C} =∞− 10 =∞.

H(A,B) = max {ρ(A,B), ρ(B,A)} = {20, 90} = 90.

H(C,A) = max {ρ(C,A), ρ(A,C)} = {∞, k} =∞, k ∈ R.

The following facts about Hausdorff distance can be deduced from the above examples.

Fact1: Let A,B ∈ Po(E), then we have

• ρ is not symmetric e.g In example 1.5 above

ρ(A,B) = 20 6= 90 = ρ(B,A)

• If A and B are bounded, then ρ and H(A,B) are bounded.

• If A and B are unbounded, then ρ and H(A,B) may be infinite.

• If A and B are singletons, then

ρ(A,B) = ρ(B,A) = H(A,B)
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• If B = {b}, then H(A,B) = H(A, {b}) = sup {d(x, b) : x ∈ A}.

Fact2: We shall recap some fundamental facts about Metric spaces. The following facts

have been proved in the first course on Topology Chidume (2010)

1. The distance between a point x in E and a subset, A of E is defined by

d(x,A) = inf
a∈A

d(x, a).

When A is non-empty, d(x,A) is finite. Occasionally, we will use the characterization of

the infimum through a minimizing sequence (xn)n≥0 ⊂ A such that

d(x, xn)→ d(x,A) as n→ +∞,

or its alternative version

∀η > 0, ∃y ∈ A, d(x,A) ≤ d(x, y) < d(x,A) + η.

The minimum distance shares with the metric in the following properties :

(2) d(x,A) = 0 if and only if x ∈ cl(A).

(3) For all (x, y) ∈ E2,

d(x,A) ≤ d(x, y) + d(y, A).

Definition 1.6 (ε-dilation of a set). Let A ∈ Pb(E). An ε-dilation of a set A denoted

by Aε or A+ ε is defined as

Aε = {x ∈ X : d(x,A) ≤ ε} .

Definition 1.7. (Diameter of a set) The diameter of a non-empty set A ⊂ E denoted

by diam(A) is defined as

diam (A) = sup {d(y, x) : x, y ∈ A} .

NB: A set A is bounded if it is empty or its diameter is finite.

Definition 1.8. (Convex hull) Let A be a non-empty subset of E. The convex hull

of A denoted by coA is the set of all convex combinations of elements of A. The closed
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convex hull of A is denoted by coA and is defined by

coA = {x ∈ E : ∃ (xn, yn) ∈ A2,∃ {λn}n≥1 ∈ (0, 1) ,

lim
n→∞

(λnxn + (1− λn) yn) = x}

Definition 1.9. (Total Boundedness of a set A). A set A is said to be totally

bounded if there exists {x1, x2, . . . xn} ⊂ A such that ∀ ε > 0

A ⊂
n⋃
i=1

B (xi, ε)

Proposition 1.10. Let (E, d) be a metric space. The Hausdorff distance H is a metric

on Pb(E).

Proof : Let A,B,C ∈ Pb(X) be arbitrary. We show that

(1) H(A,B) ≥ 0

(2) H(A,B) = 0⇔ A = B.

(3) H(A,B) = (B,A)

(4) H(A,B) ≤ H(A,C) +H(C,B).

(1) H(A,B) = max {ρ(A,B), ρ(B,A)} ≥ 0. The supremum of the infimum of positive

numbers is positive.

(2) H(A,B) = 0⇔ max {ρ(A,B), ρ(B,A)} = 0

⇔ ρ(A,B) = 0 and ρ(B,A) = 0

⇔ d(a,B) = 0 ∀ a ∈ A and d(b, A) = 0 ∀ b ∈ B

⇔ A ⊂ B and B ⊂ A. since A, B are closed

⇔ A = B

(3) H(A,B) = max {ρ(A,B), ρ(B,A)} = max {ρ(B,A), ρ(A,B)} = H(B,A)

(4) Let a ∈ A, b ∈ B and c ∈ C. Then,

d(a, b) ≤ d(a, c) + d(c, b) (since d is a metric)

Take infimum over b ∈ B. We have

d(a,B) ≤ d(a, c) + d(c, B)
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Take infimum over c ∈ C. We have

d(a,B) ≤ d(a, C) + inf
c∈C

d(c, B)

≤ d(a, C) + sup
c∈C

d(c, B)

This is true since infc∈C d(c, B) ≤ supc∈C d(c, B). Now, take supremum over a ∈ A. We

have

sup
a∈A

d(c, B) ≤ sup
a∈A

d(a, C) + sup
c∈C

d(c, B)

This give us that ρ(A,B) ≤ ρ(A,C) + ρ(C,B).

Following the same procedure , we obtain that

ρ(B,A) ≤ ρ(B,C) + ρ(C,A)

H(A,B) = max {ρ(A,B), ρ(B,A)}

≤ max {ρ(A,C) + ρ(C,B), ρ(B,C) + ρ(C,A)}

≤ max {ρ(A,C), ρ(C,A)}+ max {ρ(B,C), ρ(C,B)}

≤ H(A,C) +H(C,B)

Hence, H is a metric and it is called Hausdorff metric; (Pb(E), H) is a Hausdorff met-

ric space. Observe that by the following argument, we can easily see that (Pbc(E), H),

(Pk(E), H), and (Pkc(E), H) are all metric spaces. These metric spaces are called Hy-

perspaces.

2.2 Completeness of Hausdorff Metric Space

Here, we are going to prove that the Hausdorff metric space (Pb(E), H) is a complete

metric space whenever E is a complete metric space. First, we look at some lemmas

which we shall use in the proof.

Lemma 1.11. A+ ε is closed for all possible choices of A ∈ P(E).

Proof : Let A ∈ P(E) and ε > 0 be given. Let {xn}n≥1 ⊂ A + ε such that xn −→ x as

n −→∞. We show that x ∈ A+ ε. But,

{xn}n≥1 ⊂ A+ ε⇒ xn ∈ A+ ε ∀ n ≥ 1

⇒ d(xn, A) ≤ ε ∀n ≥ 1
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By triangle inequality, we have

d(xn, A) ≤ d(x, xn) + d(xn, A)

Take limit as n −→ ∞. We have d(x,A) ≤ ε which implies that x ∈ A + ε. Hence A + ε

is closed. �

Lemma 1.12. A+ ε is bounded for all A ∈ Pb(E).

Proof : Suppose A ∈ Pb(E). Then, there exists a constant real number α > 0 such that

diam(A) ≤ α. Let x ∈ A+ ε. For any a, b ∈ A

d(x, b) ≤ d(x, a) + d(a, b)

≤ d(x, a) + diam(A)

≤ inf
a∈A

+α

≤ d(x,A) + α

≤ ε+ α

Thus, for any other y ∈ A+ ε,

d(x, y) ≤ d(x, b) + d(b, y)

≤ 2ε+ 2α

Hence, diam(A+ ε) ≤ 2ε+ 2α <∞ , for all x, y ∈ A+ ε �

Lemma 1.13. Let A,B ∈ Pb(E) and ε > 0. Then H(A,B) ≤ ε if and only if A ⊂ B+ε

and B ⊂ A+ ε.

Proof : Suppose A,B ∈ Pb(E) and ε > 0. Then,

H(A,B) ≤ ε⇔ max {ρ(A,B), ρ(B,A)} ≤ ε

⇔ ρ(A,B) ≤ ε and ρ(B,A) ≤ ε

⇔ ∀ a ∈ A, d(a,B) ≤ ε and ∀ b ∈ B, d(b, A) ≤ ε

⇔ A ⊂ B + ε and B ⊂ A+ ε. �

Lemma 1.14. If {xn}n≥1 ⊂ X such that d(xn, xn+1) <
ε

2n
, ε > 0. Then {xn}n≥1 is a

Cauchy sequence.
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Proof : Let n > m and ε > 0 be given.

d(xn, xm) ≤ d(xm, xm+1) + d(xm, xm+2) + · · ·+ d(xn−1, xn)

≤ ε

2m
+

ε

2m+1
+ · · ·+ ε

2n−1

≤
∑
n≥m

ε

2n−1

= ε

This implies that d(xn, xm) ≤ ε. Hence {xn}n≥1 is a Cauchy sequence. �

Theorem 1.15. Let (E, d) be a complete metric space. Then, (Pb(E), H) is a complete

metric space.

Proof : Let {An}n≥1 be an arbitrary Cauchy sequence in Pb(E). We show that An con-

verges to a point A in Pb(E). Let

A =
⋂
j≥1

⋃
n≥j

An where
⋃
n≥j

An = closure of
⋃
n≥j

An

Claim : We claim that A satisfy the following;

(1) A 6= ∅.

(2) A is closed.

(3) A is bounded.

(4) H(An, A) ≤ 2ε.

Proof of claim;

1. We show that A 6= ∅. Now, by the Cauchyness of {An}n≥1, we have that there exists

N ∈ N such that H(An, Am) < ε ∀n,m ≥ N . From this, we obtain that for k ≥ 1

H(Ank , Ank+1
) <

ε

2k+1
∀ nk ≥ N.

From the definition of H, observe that ∀ xnk ∈ Ank there exists xnk+1
∈ Ank+1

such

that d(xnk , xnk+1
) <

ε

2k
. Then by lemma 1.14, {xnk}k≥1 is a Cauchy sequence in E.

Furthermore, by the completeness of E, we have that {xnk : k ∈ N} converges to x ∈ E.

Now, let j ≥ 1. Then, there exists k0 ∈ N such that nk0 ≥ j.

xnko ∈ Anko ⊂
⋃
n≥j

An ⇒ xnko ∈
⋃
n≥j

An
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So, ∀ k ≥ 1 such that nk > nk0 , we have xnk ∈
⋃
n≥j An. This means that x =

limn→∞ xnk ∈
⋃
n≥jAn, ∀ j ≥ 1. Since this happens for all j ≥ 1, we have

x ∈
⋂
j≥1

⋃
n≥j

An = A

Hence, A 6= ∅. �

2. A is closed since A is an arbitrary intersection of closed sets.

3. We show that A is bounded.

{An}n≥1 is Cauchy ⇒ Given ε > 0,∃N ∈ N : ∀ i, j ≥ N, H(Ai, Aj) ≤ ε

⇒ H(Ai, AN) ≤ ε, ∀ i ≥ N

⇒ Ai ⊂ AN + ε (By lemma 1.13)

⇒
⋃
i≥N

Ai ⊂ AN + ε

⇒
⋃
i≥N

Ai ⊂ AN + ε

⇒ A =
⋂
N≥1

⋃
i≥N

Ai ⊂ AN + ε

⇒ A ⊂ AN + ε

Hence, A is bounded.

4. We show that H(AN , A) ≤ 2ε. It suffices to show that A ⊂ An + 2ε and An ⊂ A+ 2ε.

Let x ∈ A =
⋂
j≥1

⋃
n≥j

An. we show that x ∈ An + 2ε.

But

x ∈
⋂
j≥1

⋃
n≥j

An ⇔ x ∈
⋃
n≥j

An ∀ j ≥ 1.

This simply means that

∀ j ≥ 1, ∃ xn ∈
⋃
n≥j

An : xn −→ x as n −→∞.

This implies

∀ j ≥ 1,∃ k ≥ 1,∃ xnk ∈ Ank : xnk −→ x as n −→∞,

which gives us d(x, xnk) < ε.
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By triangle inequality, we have

d(x,An) ≤ d(x, xnk) + d(xnk , An) ≤ 2ε.

Hence A ⊂ An + 2ε.

Again, we show that An ⊂ A + 2ε. Let yn ∈ An. We show that yn ∈ A + 2ε. From the

assumption, H(An, Ank) ≤
ε

2k+20
∀ nk > N . This implies that

∀ yn ∈ An,∃xnk ∈ Ank : d(yn, xnk) ≤
ε

2k+1
≤ ε

2k
< ε

In particular for k = 1, d(yn, xn1) < ε. But, x = lim
n−→∞

xnk and x ∈ A

d(yn, A) ≤ d(yn, x)

≤ d(yn, xn1) + d(xn1 , xn2) + · · ·+ d(xnk+1
, x)

= d(yn, xn1) +
k∑
i=1

d(xnk , xnk+1
) + d(xnk+1

, x)

≤ d(yn, xn1) +
∞∑
i=1

d(xnk , xnk+1
)

< ε+
k∑
i=1

ε

2k
= 2ε

So, from this we have yn ∈ A + 2ε and this actually gives us that An ⊂ A + 2ε. Hence,

{An} converges to A in Hausdorff metric. �

Proposition 1.16. Let A,P ∈ Pb(E) and P compact. If for any ε > 0, A ⊂ P + ε.

Then A is compact.

Proof : P is compact implies that P is totally bounded. This simply means there exists

{xi}ni=1 ⊂ P such that P ⊂
n⋃
i=1

B (xi, ε).

A ⊂ P + ε⇒ A ⊂
n⋃
i=1

B (xi, ε) + ε

But a ∈ A means that there exists b ∈ P such that d(a, b) ≤ ε. By triangle inequality, we

have d(a, xi) ≤ d(a, b) + d(b, xi) which gives us that d(a, xi) ≤ 2ε. So, a ∈ B (xi, 2ε) for

some 1 ≤ i ≤ n. This implies that B (xi, 2ε) ∩ A 6= ∅ for some 1 ≤ i ≤ n. Let r ≤ n be

such that B (xi, 2ε) ∩ A 6= ∅ for 1 ≤ j ≤ p and B (xi, 2ε) ∩ A = ∅ for p ≤ j ≤ n.

Let yi ∈ B (yi, 2ε) ∩ A
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claim 1. A ⊂
p⋃
i=1

B (xi, 4ε)

Proof of claim: Let a ∈ A. Then, d(a, yi) ≤ d(a, xi) + d(xi, yi) ≤ 4ε. This implies that

a ∈ B (yi, 4ε). Thus, A ⊂
p⋃
i=1

B (yi, 4ε). Hence A is totally bounded. Also, A is a closed

subset of a complete metric space X. Therefore A is complete. Hence, A is compact.

Theorem 1.17. Pk(E) is a closed subset of (Pb(E), H)

Proof : Let {An}n≥1 ⊂ Pk(E) such that for ε > 0, ∃ N ∈ N : H(An, A) < ε ∀ n ≥ N . We

show that A ∈ Pk(E). But H(An, A) < ε⇒ A ⊂ An + ε and An ⊂ A+ ε. By proposition

1.16 A ⊂ An + ε⇒ A ∈ Pk(E). Hence, Pk(E) is closed. �

3 General case of Normed Linear Space

Let us suppose that (E, ‖.‖E) is a Normed linear space over a scalar field R, where ‖.‖E
denotes a norm on E. Now, we can enjoy the power of Linear Functional Analysis. Here,

we require that the space (E, ‖.‖E) be a Banach space.

Definition 1.18. Let A,B ∈ Po(E) and λ ∈ R. We define addition and scalar multi-

plication by

A+B = {a+ b : a ∈ A, b ∈ B}

λA = {λa : a ∈ A}

Note. We should not confuse this with the sum of linear sub-spaces (which all contain

the null vector 0), nor with the union of two disjoint subsets A and B, which is usually

denoted by A + B in Probability Theory notations. To avoid such confusions, we will

always precise the meaning of the operation (+) when it is used between two sets.

In the case of a linear space, we put the origin as θ and for any non-empty subset A of E,

we define ‖A‖K as

‖A‖K = H(A, {θ}) = sup {‖ x ‖E: x ∈ A} .

The notion of convexity will play an important role in this work. So, we recall the definition

of the closed convex hull of a non-empty set A ⊂ E given in definition 1.8.

All the theorems and propositions that we have proved for E being metric space also holds

here.

Proposition 1.19. Pbc(E) and Pkc(E) are closed subsets of (Pb(E), H).
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Proof : Closedness of Pbc(E):

Let (An)n≥0 be a sequence of closed, bounded and convex subsets of E converging to A with

respect to the metric H. Hence A is closed. To prove that A is convex, consider (a, b) ∈ A2

and λ ∈ (0, 1) ⊂ R. Let us fix n ≥ 0. For any x, y ∈ An. Since (λx + (1− λ)y) ∈ An, we

have

d(λa+ (1− λ)b, An) ≤ ‖(λa+ (1− λ)b)− (λx+ (1− λ)y)‖

which implies

d(λa+ (1− λ)b, An) ≤ λ‖a− x‖+ (1− λ)‖b− y‖.

By taking first the supremum over y ∈ An and next over x ∈ An, we get

d(λa+ (1− λ)b, An) ≤ λ d(a,An) + (1− λ) d(b, An) ≤ ρ(A,An).

Now, as n→ +∞, we get

d(λa+ (1− λ)b, An)→ 0

which implies λa+ (1− λ)b ∈ cl(A) = A. �

Closedness Pkc(E) We obtain this by combining Theorem 1.17 and the convexity of

Pbc(E) above. �

Theorem 1.20. If X is a separable space, so is the Hyperspace (Pk(E), H).

Proof : Suppose that X is separable and let U be a countable dense subset of X. Let

V be the set of all finite subsets of U . Consider the class V of all the non-empty and

finite subsets of U . Obviously the elements of V are closed and bounded (in metric spaces

singletons are closed). We now prove that V is dense in Pk(E). Let P ∈ Pk(E). By

the Heine-Borel property, P is totally bounded. This implies that ∃ n ≥ 1 and a set

{x1, x2, . . . , xn} ⊂ P such that

P ⊂
n⋃
i=1

B
(
xi,

ε

2

)
Since U is dense in X, we have that ∀ ε > 0, U ∩ B

(
xi,

ε
2

)
6= ∅. Let yi ∈ U ∩ B

(
xi,

ε
2

)
.

Clearly, d(xi, yi) <
ε
2
. Set Po = {y1, y2, . . . , yn} ⊂ V . We show that

H(P, Po) < ε
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It suffice to show that P ⊂ Po + ε and Po ⊂ P + ε. First, let x ∈ P and yo be any element

of Po. Then,

d(x, Po) ≤ d(x, yo) ≤ d(x, yi) + d(yi, yo) <
ε

2
+
ε

2
= ε

This implies that x ∈ Po + ε. Thus, P ⊂ Po + ε.

Secondly, let y ∈ Po and xo be any element of P . Then,

d(y, P ) ≤ d(y, xo) ≤ d(y, xi) + d(xi, xo) <
ε

2
+
ε

2
= ε

This implies that y ∈ P + ε. Thus, Po ⊂ P + ε. So, H(P, Po) < ε. Hence, V is dense in

(Pk(E), H). �

At this moment, we proceed to give some other properties of a Banach space E which we

may need in the sequel. For instance, the weak topology on E, that is, the topology of

dual space of E denoted by E∗, generated by the class of all continuous linear functionals

on E. This weak topology is generated by open sets of the form

Wε,f1,...,fp = {x ∈ E : ∀ i ∈ {1, ..., p}, |〈fi, x− xo〉| < ε}.

where ε, p are positive integers and fi ∈ E∗. The convergence in E∗, with respect to the

weak topology in E∗ is operated point-wisely in the following sense

fn ⇀ f ⇔ ∀ x ∈ E, fn(x)→ f(x), as n→ +∞.

where ⇀ means weakly convergent. We also have on E∗ the norm defined by

∀ f ∈ E∗, ‖f‖E∗ = sup
x∈E\{0}

|f(x)|
‖x‖E

.

It may help to know that we also have, for any real number a > 0 and

∀ f ∈ E∗, ‖f‖E∗ = sup
x∈E,‖x‖E=1

|f(x)| = 1

a
sup

x∈E,‖x‖E=a

|f(x)|.

We also have for any real number a > 0,

∀ f ∈ E∗, ‖f‖E∗ =
1

a
sup

x∈E,‖x‖E≤a
|f(x)|.

The topology on E∗ with respect to this norm is called strong.

If the Banach space E is separable, then, there exists a countable family D = {xj : j ≥ 1}

dense everywhere in E, the weak topology is generated by the neighborhoods Wε,f1,...,fp ,
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where (x1, ..., xp) ∈ Dp, fi ∈ E∗, ε > 0, 1 ≤ i ≤ p, p ≥ 1. More than that, the weak

topology is the metric topology of the form

d∗(f, g) =
∑
j≥1

1

2j
|f(xj)− g(xj)|, ∀ f, g ∈ E∗.

Remark. It is important to know that we might only take D as dense in Uc = Bc(0, 1).

Let us introduce spheres and the disks for both E and E∗.

S∗ = {f ∈ E∗ : ‖f‖ = 1}; U∗ = {f ∈ E∗ : ‖f‖ < 1}; U∗c = {f ∈ E∗ : ‖f‖ ≤ 1}

S = {x ∈ E : ‖x‖ = 1}; U = {x ∈ E : ‖x‖ < 1}; and Uc = {x ∈ E : ‖x‖ < 1}

As well, we define the open and closed balls in E, respectively by

B(x, r) = {y ∈ E : ‖x− y‖ < r}, (r > 0);

Bc(x, r) = {y ∈ E : ‖x− y‖ ≤ r}; (r ≥ 0), x ∈ E

and their analogues in E∗ by

B∗(u, r) = {v ∈ E∗ : ‖u− v‖ < r}, (r > 0);

B∗c (u, r) = {v ∈ E∗ : ‖x− y‖ ≤ r}, (r ≥ 0), u ∈ E∗.



CHAPTER 2

Hausdorff Convergence Theory

1 Introduction

In Chapter 1, we have seen the properties of Hausdorff metric in hyperspaces. Here, we

shall deal with the characterizations of Hausdorff metric, convergences emanating from

the characterizations and convergences in the sense of Kuratowski Mosco.

2 Characterization of Hausdorff Metric

The aim of this section is to present two other ways of expressing Hausdorff metric on

hyperspaces. First, we prove the following lemma which we shall use in the sequel.

Lemma 2.1. If A 6= ∅ is a subset of R. Then

sup
x∈A
|x| = max{sup

x∈A
x, sup

x∈A
(−x)}

Proof : Suppose ∅ 6= A ⊂ R. Then ∀ x ∈ A, x ≤ |x|.

Take supremum over x ∈ A, we obtain that

sup
x∈A

x ≤ sup
x∈A
|x| (1)

Also, ∀ x ∈ A − x ≤ |x|

sup
x∈A

(−x) ≤ sup
x∈A
|x| (2)

By (1) and (2) we obtain that

max{sup
x∈A

x, sup
x∈A

(−x)} ≤ sup
x∈A
|x|

For any x ∈ A,

|x| ≤ max{sup
x∈A

x, sup
x∈A

(−x)}

Take supremum over x ∈ A we have

sup
x∈A
|x| ≤ max{sup

x∈A
x, sup

x∈A
(−x)}

Hence,

sup
x∈A
|x| = max{sup

x∈A
x, sup

x∈A
(−x)} �

15
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Lemma 2.2. Let E be a Banach space, f ∈ E∗ be nonzero and α ∈ R.

If Hα,f ≡ f−1 := {x ∈ E : 〈f, x〉 = α} is the hyperplane generated by α and f, then for

any x0 ∈ E,

(2.1) d(x0, Hα,f ) =
|〈f, x0〉 − α|
‖f‖E∗

Proof : Let x0 = 0. If α = 0, then 〈f, x〉 = 0 implies 0 ∈ Hα,f

So that

d(x0, Hα,f ) = d(0, Hα,f ) = 0 =
|〈f, 0〉 − 0|
‖f‖E∗

.

If α 6= 0, take y = αx
〈f,x〉 . Then x = 〈f,x〉y

α

and by linearity of f, 〈f, y〉 = f
(

αx
〈f,x〉

)
= α implies y ∈ Hα,f . Thus, by definition

and for this y ∈ Hα,f ,

‖f‖E∗ = sup
x6=0

|〈f, x〉|
‖x‖

= sup
〈f,x〉y
α
6=0

∣∣∣〈f, 〈f, x〉yα
〉
∣∣∣∥∥∥ 〈f, x〉yα

∥∥∥ = sup
y 6=0

|〈f, y〉|
‖y‖

= sup
y∈Hα,f

|α|
‖y‖

=
|α|

inf
y∈Hα,f

‖y‖

=
|α|

d(0, Hα,f )
(2.2)

Hence for x0 = 0,

d(0, Hα,f ) =
|〈f, 0〉 − α|
‖f‖E∗

.

Let x0 6= 0. To establish 2.1 in this case, we need the following

claim 2. With same notations as in Lemma 2.2,

x0 −Hα,f = f−1 (〈f, x0〉 − α)

Proof of claim 2 a ∈ x0 −Hα,f implies there is x ∈ Hα,f such that a = x0 − x.

Applying f to both sides, we have

〈f, a〉 = 〈f, x0 − x〉 = 〈f, x0〉 − α

So that

a ∈ f−1 (〈f, a〉) = f−1 (〈f, x0〉 − α)
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Implies

(∗) x0 −Hα,f ⊆ f−1 (〈f, x0〉 − α)

Similarly,

a ∈ f−1 (〈f, x0〉 − α) implies 〈f, a〉 = 〈f, x0〉 − α

Thus,

〈f, x0 − a〉 = α and x0 − a ∈ f−1 (〈f, x0 − a〉) = f−1 (α)

Implies

(∗∗) a ∈ x0 −Hα,f and f−1 (〈f, x0〉 − α) ⊆ x0 −Hα,f

Combining (∗) and (∗∗), it follows

x0 −Hα,f = f−1 (〈f, x0〉 − α)

and that ends the proof of claim 2.

Now, using the fact that d(x0, Hα,f ) = d(0, x0 −Hα,f ), the result of claim 2 and 2.2, we

have

d(x0, Hα,f ) = d(0, x0 −Hα,f ) =
|〈f, x0〉 − α|
‖f‖E∗

which completes the proof of 2.1 for all values of x0 ∈ E. �

In what follows, for any c ∈ R, c > 0 let

S∗ := {f ∈ E∗ : ‖f‖E∗ = 1} and K∗ := {f ∈ E∗ : ‖f‖E∗ ≤ c} .

Lemma 2.3. Let A ∈ Pbc(E) and β = d(0, A) > 0. Then there exists f ∈ S∗ such

that

sup
x∈Bβ(0)

〈f, x〉 = β = inf
x∈A
〈f, x〉

Proof : We claim A ∩ Bλ(0) = ∅. Else, we can find x0 ∈ A ∩ Bλ(0) and d(0, A) ≤

‖x0‖ < λ. Consequently, d(0, A) < λ which contradicts λ = d(0, A).

Since A is closed and Bλ(0) is nonempty and open, by Hahn Banach theorem Chidume

(2014), there is f ∈ S∗ and λ ∈ R such that

(2.3) sup
x∈Bβ(0)

〈f, x〉 ≤ λ ≤ inf
x∈A
〈f, x〉.

Let x ∈ Bβ(0). Then y = x
λ
∈ B1(0).

So that
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1 = ‖f‖X∗ = sup
‖y‖≤1

|〈f, y〉|

= sup
‖ x
λ
‖≤1

∣∣∣〈f, x
λ
〉
∣∣∣

=
1

λ
sup
‖x‖≤1

|〈f, x〉|

Hence,

sup
x∈Bβ(0)

|〈f, x〉| = λ

and symmetry of balls centered at the origin, we have

(2.4) λ = sup
x∈Bβ(0)

|〈f, x〉| = sup
x∈Bβ(0)

〈f, x〉

By Lemma 2.2,

d(0, f−1(λ)) =
|〈f, 0〉 − λ|
‖f‖E∗

= λ

and

(2.5) β = d(0, A) ≥ d(0, f−1(λ)) = λ

By boundedness of f, for any x ∈ A, we have that

〈f, x〉 ≤ ‖f‖E∗‖x‖ = ‖x‖

Implies

(2.6) inf
x∈A
〈f, x〉 ≤ inf

x∈A
‖x‖ = d(0, A) = β

Combining equations 2.3, 2.4, 2.5, and 2.6, it follows

(†) sup
x∈Bβ(0)

〈f, x〉 = β = inf
x∈A
〈f, x〉.

Theorem 2.4. Let A,B ∈ Pb(E). Then the following hold

1. ρ(A,B) = sup
x∈E
{d(x,B)− d(x,A)}

2. H(A,B) = sup
x∈E
|d(x,A)− d(x,B)|
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Proof

1. Let x ∈ A. Then d(x,A) = 0. By subtracting zero from d(x,B) we obtain

d(x,B) = d(x,B)− d(x,A)

≤ sup
x∈A
{d(x,B)− d(x,A)}

≤ sup
x∈E
{d(x,B)− d(x,A)}

Take supremum over x ∈ A

ρ(A,B) = sup
x∈A

d(x,B) ≤ sup
x∈E
{d(x,B)− d(x,A)}

Hence,

ρ(A,B) ≤ sup
x∈E
{d(x,B)− d(x,A)}

Let a ∈ A, b ∈ B and x ∈ E. By triangle inequality we have

‖x− b‖E ≤ ‖x− a‖E + ‖a− b‖E

Take infimum over b ∈ B and later take the infimum over a ∈ A

d(x,B) ≤ d(x,A) + inf
a∈A

d(a,B)

≤ d(x,A) + sup
a∈A

d(a,B)

This implis that,

d(x,B)− d(x,A) ≤ ρ(A,B)

and

sup
x∈E
{d(x,B)− d(x,A)} ≤ ρ(A,B).

Thus, ρ(A,B) = supx∈E{d(x,B)− d(x,A)} as required.

2. By the symmetry of the role of A and B we have that

ρ(B,A) = supx∈E{d(x,A)− d(x,B)}. By applying 2.1 we have

H(A,B) = sup
x∈E
|d(x,A)− d(x,B)|

Theorem 2.5. Let A,B ∈ Pb(E) and α ≥ 0. Then

1. ρ(A,B) = inf{α > 0 : B ⊂ A+ α}

2. H(A,B) = max{inf{α > 0 : B ⊂ A+ α}, inf{α > 0 : B ⊂ A+ α}}
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Proof

1. Let A,B ∈ Pb(E). We show that

ρ(A,B) ≤ inf{α > 0 : B ⊂ A+ α}

Suppose B ⊂ A + α. We are sure that ρ(A,B) exists since A is closed and bounded.

Since ρ(A,B) = supa∈A d(a,B) it follows from the consequences of supremum that for any

ε > 0 ∃ aε ∈ A such that

ρ(A,B) ≤ d(aε, B) + ε ≤ α + ε

Take infimum over α such that A ⊂ B + α. We have

ρ(A,B) ≤ inf{α : B ⊂ A+ α}

(⇐) We show that inf{α > 0 : A ⊂ B+α} ≤ ρ(A,B) Let ρ(A,B) = λ. Clearly, A ⊂ B+λ.

This implies that

inf{α > 0 : A ⊂ B + α} ≤ λ = ρ(A,B)

This implies that inf{α > 0 : A ⊂ B + α} ≤ ρ(A,B).

Hence,

ρ(A,B) = inf{α > 0 : B ⊂ A+ α}

2. By the definition of the Hausdorff metric we have

H(A,B) = max{ρ(A,B), ρ(B,A)}

= max{inf{α > 0 : B ⊂ A+ α}, inf{α > 0 : B ⊂ A+ α}}

Definition 2.6. (Support Function)

The support function Sf (A) : E −→ R of a closed, convex subset A of E is defined by

Sf (A) = sup
a∈A
〈f, a〉, f ∈ E∗

Remark 2.7. It is very important that we observe the following properties of support

function as we shall use it in the sequel.

1. Sf (A+B) = Sf (A+B)

= sup
a∈A,b∈B

〈f, a+ b〉

= sup
a∈A
〈f, a〉+ sup

b∈B
〈f, b〉

= Sf (A) + Sf (B)
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2. For λ ≥ 0, Sf (λA) = λSf (A).

Theorem 2.8. An element x ∈ coA if and only if

〈f, x〉 ≤ Sf (A)

Proof

(⇒) Assume x ∈ coA. Then by definition of coA, we have that there exists {xn}n≥1, {yn}n≥1 ⊂

A and {λn}n≥1 ⊂ [0, 1] such that

λnxn + (1− λn)yn −→ x as n −→∞

But, for f ∈ E∗

〈f, λnxn + (1− λn)yn〉 = λn〈f, xn〉+ (1− λn)〈f, yn〉

≤ λn sup
x∈A
〈f, x〉+ (1− λn) sup

y∈A
〈f, y〉

= sup
a∈A
〈f, a〉

= Sf (A)

By the continuity of f we obtain that

〈f, x〉 = lim
n→∞
〈f, λnxn + (1− λn)yn〉 ≤ Sf (A)

Hence,

〈f, x〉 ≤ Sf (A)

(⇐) Assume for f ∈ E∗, 〈f, x〉 ≤ Sf (A). We show that x ∈ coA. To achieve this we

proceed by contrapositive. i.e we show that

x ∈ (coA)c ⇒ Sf (A) < 〈f, x〉

Let x ∈ (coA)c. Then (coA)c is open in E since coA is closed. So, the openness of (coA)c

gives us that for any x ∈ (coA)c there exists a positive number r such that the the closed

ball Br(x) centered at x with radius r is completely contained in (coA)c. Clearly,

Br(x) ∩ (coA) = ∅

By Geometric form of Hahn Banach Theorem Chidume (2014), ∃ f ∈ E∗ and β such that

sup
x∈coA

〈f, x〉 ≤ β ≤ sup
y∈Br(x)

〈f, y〉 (1)
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Let us remember that the two members of (1) may be exchanged by replacing f by −f

and β by β.

sup
a∈A
〈f, a〉 ≤ sup

a∈coA
〈f, a〉 ≤ inf

x∈Br(x)
〈f, x〉 ≤ inf

x∈Br(x)
〈f, x〉 ≤ 〈f, x〉 − ε

This implies that

Sf (A) ≤ 〈f, x〉 − ε < 〈f, x〉

Hence, Sf (A) < 〈f, x〉

Theorem 2.9. Let {A,An, n ∈ N} ⊂ Pc(E) and {An}n≥1 converges to A in the

Hausdorff metric. Then,

lim
n→∞

Sf (An) = Sf (A)

Proof : Suppose An, A ∈ Pc(E) such that H(An, A) −→ 0 as n −→ ∞. We show

that the support function of An converges to the support function of A. i.e Sf (An) −→

Sf (A) as n −→∞. It suffices to show that

limSf (An) = Sf (A) = limSf (An)

By definition, we have that limSf (An) ≤ Sf (A) ≤ limSf (An) . So, we are left to show

that

limSf (An) ≤ Sf (A) ≤ limSf (An)

First, we show that limSf (An) ≤ Sf (A). By the consequences of An converging to A in

Hausdorff metric, we obtain that ∀ an ∈ An, ∃ a ∈ A such that

d(an, A) ≤ ‖an − a‖E ≤ d(an, A) +
1

n
, ∀ n ≥ 1

Let f ∈ E∗, Then

〈f, an〉 = 〈f, an − a+ a〉

= 〈f, an − a〉+ 〈f, a〉

≤ ‖f‖E∗‖an − a‖E + 〈f, a〉

≤ ‖f‖E∗(d(an, A) +
1

n
) + sup

a∈A
〈f, a〉

≤ ‖f‖E∗(ρ(An, A) +
1

n
) + Sf (A)
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Take supremum over an ∈ An

sup
an∈An

d(an, A) ≤ ‖f‖E∗(ρ(An, A) +
1

n
) + sup

a∈A
〈f, a〉 ≤ Sf (A)

This implies that

Sf (An) ≤ Sf (A)

Hence,

limSf (An) ≤ Sf (A)

In a similar way, we show that Sf (A) ≤ limSf (An). This is obtained by following the

same argument above; interchanging An and A, we obtain that

Sf (A) ≤ ‖f‖E∗(ρ(A,An) +
1

n
) + sup

an∈An
〈f, an〉

Take the limit inferior of both sides

limSf (A) ≤ limSf (An)

This implies that,

Sf (A) ≤ limSf (An)

Hence, limn→∞ Sf (An) = Sf (A). �

Theorem 2.10. Let A,B ∈ Pbc(E) and f ∈ S∗ = {f ∈ E∗ : ‖f‖E∗ = 1}. Then,

1. ρ(A,B) = sup{Sf (A)− Sf (B) : f ∈ S∗}

2. H(A,B) = sup{|Sf (A)− Sf (B)| : f ∈ S∗}

Proof : 1. Let A,B ∈ Pbc(E) and f ∈ S∗. We show that ρ(A,B) = sup{Sf (A)− Sf (B)}

i.e

ρ(A,B) = sup{sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉 : f ∈ S∗}

First, we show that

ρ(A,B) ≤ sup{sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉 : f ∈ S∗}
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Take a ∈ A. By Lemma 2.2 and 2.3, we have ∃ f ∈ S∗ such that

d(a,B) = d(0, x−B) ≤ inf
x∈a−B

〈f, x〉

= inf
b∈B
〈f, a− b〉

= sup
b∈B
〈f, a− b〉

= 〈f, a〉 − sup
b∈B
〈f, b〉

≤ sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉

≤ sup{sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉 : f ∈ S∗}

Take supremum over a ∈ A, we have that

ρ(A,B) ≤ sup{sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉 : f ∈ S∗}

Next, we show that

sup{sup
a∈A
〈f, a〉 − sup

b∈B
〈f, b〉 : f ∈ S∗} ≤ ρ(A,B)

Now, let f ∈ S∗, β = Sf (B) be fixed and α = Sf (A)− β. We show that α ≤ ρ(A,B). If

α ≤ 0, then the result follows from the definition of ρ. Suppose α > 0. For each 0 < r < α,

there exists a ∈ A such that 0 < α − r < 〈f, a〉 − β. By adding β all through we have

β < α+ β − r ≤ 〈f, a〉. This implies that β < 〈f, a〉 Thus, the hyperplane Hα separates a

and B. i.e

sup
b∈B
〈f, b〉 ≤ β ≤ 〈f, a〉

Observe that the distance from a to B is greater than the distance from a to the hyperplane

Hα. Thus,

d(a,B) ≥ d(a,Hα) =
|〈f, a〉 − β|
‖f‖E∗

= |〈f, a〉 − β|

By the property of absolute value function it follows that

β − 〈f, a〉 ≤ |〈f, a〉 − β| ≤ d(a,B) ≤ ρ(A,B)

By Taking the supremum over a ∈ A, we have

β − sup
a∈A
〈f, a〉 ≤ ρ(A,B)⇒ Sf (B)− Sf (A) ≤ ρ(A,B)

This implies that

sup{Sf (B)− Sf (A)} ≤ ρ(A,B)
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Hence,

ρ(A,B) = sup{Sf (A)− Sf (B)}

�

We also obtain that ρ(B,A) = sup{Sf (B)− Sf (A)} by following the same argument.

2. H(A,B) = sup{ρ(A,B), ρ(B,A)}

= sup{sup{Sf (A)− Sf (B)}, sup{Sf (B)− Sf (A)}}

= sup{|Sf (A)− Sf (B)|}

�

In summary, the Hausdorff metric can be characterized by the following, depending on

the hyperspace:

1. If A,B ∈ Pc(E), By definition 1.1 we have

H(A,B) = max {ρ(A,B), ρ(B,A)}

2. If A,B ∈ Pb(E). By Theorem 2.4 and 2.5, Hausdorff metric is given by

H(A,B) = sup
x∈E
|d(x,A)− d(x,B)|

and

H(A,B) = max{inf{α > 0 : B ⊂ A+ α}, inf{α > 0 : B ⊂ A+ α}}

3. If A,B ∈ Pbc(E), the Hausdorff metric can be represented as in Theorem 2.10 by

H(A,B) = sup{|Sf (A)− Sf (B)| : f ∈ S∗}

3 Types of Convergences in a Hyperspace

In this section, we present four types of convergences in hyperspaces: Hausdorff conver-

gence, Weak convergence, Wijsman convergence and the Kuratowski Mosco convergence.

Let {An, A} ⊂ Pc(E) we define the four convergences in Pc(E) whenever they make sense

as follow:
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1. Hausdorff Convergence: The sequence {An}n≥1 converges to A in Hausdorff metric

if

H(An, A) −→ 0 as n −→∞

We denote it by An
H−→ A or (H)− limn→∞An = A

2. Weak Convergence: The sequence {An}n≥1 converges weakly to A if for all f ∈ E∗,

Sf (An) −→ Sf (A) as n −→∞

and we denote it by An
We−→ A or (We)− limn→∞An = A.

The Weak Convergence here is an extension of weak convergence in the weak topology

to the hyperspace. We recall that in weak topology, a sequence {xn}n≥1 ⊂ E converges

weakly to x ∈ E if and only if ∀ f ∈ E∗, 〈f, xn〉 converges to 〈f, x〉. Here, instead of

〈f, xn〉 converging to 〈f, x〉 we demand that supxn∈An〈f, xn〉 converges to supx∈A〈f, x〉.

3. Wijsman Convergence: The sequence {An}n≥1 converges to A in Wijsman if for any

x ∈ E,

d(x,An) −→ d(x,A) as n −→∞

and we denote this by An
Wj−→ A or (Wj)− limn→∞An = A.

Proposition 2.11. Let An, A ∈ Pb(E). The sequence {An}n≥1 converges to A in

Hausdorff metric if and only if {An}n≥1 converges in Wijsman to A uniformly on E.

Proof : Let An, A ∈ Pb(E) such that H(An, A) −→ 0 as n −→ ∞. We show that

d(x,An) −→ d(x,A) uniformly on E. That is to say

sup
x∈E
|d(x,An)− d(x,A)| −→ 0 as n −→∞

and vice versa.

But by Theorem 2.4, we have that

H(An, A) = sup
x∈E
|d(x,An)− d(x,A)|

Thus, as n −→∞,



3. TYPES OF CONVERGENCES IN A HYPERSPACE 27

H(An, A) −→ 0⇔ sup
x∈E
|d(x,A)− d(x,B)| −→ 0

⇔ d(x,An) −→ d(x,A) uniformily on E

�

Proposition 2.12. Let An, A ∈ Pb(E) such that {An}n≥1 converges to A in Hausdorff

metric. Then for each f ∈ E∗, {An}n≥1 converges weakly to A.

Proof : The proof of this has been treated in Theorem 2.10

Theorem 2.13. Let {An}n≥1 ∈ Pk(E) be a decreasing sequence and A =
⋂
n≥1

An. Then

limn→∞H(An, A) = 0

Proof : Let ε > 0 be given, we find N ∈ N such that A ⊂ Ân + ε and An ⊂ Â + ε where

Â+ ε = {x ∈ E : d(x,A) < ε}, Ân + ε = {x ∈ E : d(x,An) < ε}.

But A =
∞⋂
n=1

An ⇒ A ⊂ Ân + ε. This happens for all n ∈ N. So we are only required to

show that An ⊂ Â + ε . Note that the choice for Â + ε to be open is very crucial here.

Now,

A =
∞⋂
n=1

An ⇒ Ac =
∞⋃
n=1

Acn. Since E = A ∪ Ac, it is easy to see that E = (Â + ε) ∪ Ac =

(Â+ ε) ∪ (
∞⋃
n=1

Acn). So, it follows that

A1 ⊂ (Â+ ε) ∪ (
∞⋃
n=1

Acn)

This implies that (Â + ε) ∪ (
∞⋃
n=1

Acn) is an open cover for A1. By the compactness of A1

and the fact that An is decreasing, there exists N ∈ N such that A1 ⊂ (Â+ ε) ∪Acn. This

gives us that

A1 ∩ ((Â+ ε) ∪ Acn)c = ∅ ⇒ A1 ∩ (Â+ ε)c ∩ An = ∅

Since, An is a decreasing sequence, we have that An ⊂ A1. Thus, (Â + ε)c ∩ An = ∅.

Hence, An ⊂ Â+ ε. �
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4 Convergence in the sense of Kuratowski - Mosco

The Kuratowski - Mosco convergence is basically characterized by means of the topological

notions of limit inferior and limit superior in strong and weak topologies. Let us begin by

defining the following concepts.

(A) For an Arbitrary Metric Space E

Definition 2.14. Let {An}n≥1 be a sequence of subsets of a metric space E.

1. The Limit inferior of{An}n≥1 is defined as

limAn =
⋃
k≥1

⋂
n≥k

An

2. The Limit superior of{An}n≥1 is defined as

limAn =
⋂
k≥1

⋃
n≥k

An

(A) For Normed Linear Space E

Definition 2.15. Let {An}n≥1 be a sequence of subsets of a Normed space E.

1. The strong limit inferior of {An}n≥1 denoted by s− limAn is defined as

s− limAn = {x ∈ E : ∃ n1 ∈ N, ∀ n ≥ n1,

∃ xn ∈ An, xn
s−→ x as n −→∞}

where xn
s−→ x means that {xn} converges strongly to x.

2. The strong limit superior of {An}n≥1 denoted by s− limAn is defined as

s− limAn = {x ∈ E : ∀ k ∈ N, ∃ nk ∈ N, ∃ xnk ∈ Ank ,

xnk
s−→ x as k −→∞}

3. The weak limit inferior of {An}n≥1 denoted by w − limAn is defined as

s− limAn = {x ∈ E : ∃ n1 ∈ N, ∀ n ≥ n1,

∃ xn ∈ An, xn
w−→ x as n −→∞}
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4. The weak limit superior of {An}n≥1 denoted by w − limAn is defined as

s− limAn = {x ∈ E : ∀ k ∈ N, ∃ nk ∈ N, ∃ xnk ∈ Ank ,

xnk
w−→ x as k −→∞}

where xnk
w−→ x means that xnk converges weakly to x. For the sake of brevity, we shall

use the symbols ’−→’ and ’⇀’ as in Chidume (2014) for strong and weak convergences

respectively. The strong limit inferior and strong limit superior are called Kuratowski

limAn and Kuratowski limAn respectively; the weak limit inferior and weak limit su-

perior are called Mosco limAn and Mosco limAn respectively. The Kuratowski Mosco

convergence occurs where the Mosco limit superior and the Kuratowski limit inferior co-

incide.

Kuratowski - Mosco Convergence: The sequence {An}n≥1 converges to A in the

Kuratowski - Mosco sense if and only if

w − limAn = A = s− limAn

and we denote this by An
K−→ A or k − limAn = A.

At this moment, we can deduce the following facts from the definitions above.

Fact 1: Let {An}n≥1 be a sequence of subsets of a metric space E. Then,

(4.1) s− limAn ⊂ w − limAn.

This suggests to us that to show Kuratowski - Mosco convergence, we are only required

to show that

(4.2) w − limAn ⊂ A ⊂ s− limAn.

Theorem 2.16. Let {An, A : n ∈ N} be closed bounded convex subsets of a Banach

space E. If {An}n≥1 converges to A in Hausdorff metric, then {An}n≥1 converges to A in

Kuratowski - Mosco sense.

Proof : Let {An, A} ⊂ Pbc(E) and H(An, A) −→ 0 as n −→∞. We show that

w − limAn ⊂ A ⊂ s− limAn
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Let x ∈ A. By the consequence of the Hausdorff convergence of {An}n≥1 to A, we have

that there exists {xn ∈ An : n ∈ N} such that

‖x− xn‖E < d(x,An) +
1

n
(BC)

We recall that in Theorem 2.4,

H(An, A) −→ 0 as n −→ ∞ ⇒ d(x,An) −→ d(x,A). But since x ∈ A, d(x,A) = 0.

Thus, d(x,An) −→ 0 as n −→∞. So from (BC) we have that ‖x− xn‖E −→ 0 as n −→

∞⇒ xn −→ x as n −→∞. Hence,

x ∈ s− limAn

Next, we show that x ∈ w − limAn ⇒ x ∈ A. Suppose x ∈ w − limAn. Then there exist

xnk ∈ Ank , k ≥ 1 such that xnk ⇀ x as k −→∞. i.e ∀ f ∈ E∗, 〈f, xnk〉 −→ 〈f, x〉. From

Theorem 2.8

〈f, xnk〉 ≤ Sf (An)

By Theorem 2.9, we recall that Sf (An) −→ Sf (A). We obtain that 〈f, x〉 ≤ Sf (A).

Conclusion ?

Theorem 2.17. Let E be a finite dimensional Banach Space. If for n ∈ N, An and A

are compacts subsets of E and {An} converges to A in the Kuratowski - Mosco sense, then

{An} converges to A in Hausdorff Metric.

Proof : Assume dimE <∞. Then, strong topology and weak topology coincide Chidume

(2014). That is to say for {An, A} ⊂ Pk(E)

s− limAn = w − limAn and s− limAn = w − limAn

Now, suppose An
K−→ A. We show that given ε > 0 ∃ N ∈ N :

H(An, A) < 2ε ∀ n ≥ N

By lemma 1.13, it is sufficient to show that

A ⊂ An + 2ε and An ⊂ A+ 2ε

Now,

An
H−→ A⇒ s− limAn = A = s− limAn
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Since A is compact, A is totally bounded. i.e ∃ {x1, x2, ...xk} ⊂ A and ε > 0 such that

A ⊂
k⋃
i=1

Bε(xi)

where
k⋃
i=1

Bε(xi) = {x ∈ E : ‖x − xi‖E < ε}. Since s − limAn = A and for each

1 ≤ i ≤ k, xi ∈ A, it follows from the definition of s − limAn that there exists a

subsequence {xi,n}n≥1 ⊂ An such that

‖xi,n − xi‖E −→ 0 as n −→∞

⇒ ∃ Ni ∈ N : ‖xi,n − xi‖E < ε ∀ n ≥ Ni and for each i, 1 ≤ i ≤ k

⇒ xi ∈ Bε(xi, n) ⊂ An + ε , ∀ n ≥ Ni.

Now, take N = max{Ni, 1 ≤ i ≤ k}. Then, {x1, x2, . . . xk} ⊂ An + ε whenever n ≥ N .

Thus, A ⊂
k⋃
i=1

Bε(xi) ⊂ An + ε. Hence A ⊂ An + 2ε.

Next, we show that given ε > 0 there exists no ∈ N such that An ⊂ A+ε, for each n > no.

Since An and A are compact for each n and An
H−→ A, we have that both An and A are

bounded. So, there exists n > no and M > 0 such that A ⊂ BM(0) and An ⊂ BM(0) for

each n > no, where BM(0) = {x ∈ E : ‖x‖E ≤M}.

Suppose for contradiction that there exists a subsequence {Ank : k ∈ N} such that Ank ∩

(A + ε)c 6= ∅. Take xnk ∈ Ank ∩ (A + ε)c ⊂ BM(0). By Bolzano Weierstrass Theorem in

Rn, there exists a subsequence say xnk such that xnk
s−→ x. Thus, x ∈ limAn = A. This

implies that x ∈ A. But, xnk ∈ Ank ∩ (A+ ε)c implies that d(xnk , A) ≥ ε. So, Taking limit

as k −→∞, we have

0 = d(x,A) = lim
k→∞

d(xnk , A) ≥ ε

Hence, a contradiction.

Remark 2.18. (1) By Theorem 2.16 and 2.17, we have established that in finite dimen-

sional Banach space E, Hausdorff convergence(H) of a sequence of compact and convex

subsets of E is equivalent to its Kuratowski - Mosco convergence(K).

(2) By Proposition 2.11 we have also established that Hausdorff convergence(H) is

equivalent to Wijsman convergence(Wi) for a sequence of closed and bounded subsets of a
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Banach Space E. But in finite dimensional metric spaces, closed and boundedness implies

compactness (Heine Borel Theorem) Chidume (2009).

(3) By Proposition 2.10 we were able to deduce that Hausdorff convergence(H) implies

Weak convergence(W) for a sequence of closed bounded convex subsets of a Banach space

E.

Now, to complete our comparison chain we show that Weak convergence(We) implies

Hausdorff convergence(H) and Wijsman convergence(Wi) implies Kuratowski - Mosco con-

vergence(K).

Theorem 2.19. Let E be a finite dimensional Banach Space. If {An, A} ⊂ Pkc(E) and

{An} converges to A in Wijsman, then {An} converges to A in the sense of Kuratowski-

Mosco.

Proof : Assume An
Wi−→ A. We show that

(4.3) w − limAn ⊂ A ⊂ s− limAn

Suppose a ∈ w − limAn. Then, there exist a subsequence {ank}k≥1 ⊂ Ank such that

{ank} converges weakly to a. Since, dimE < ∞, weak topology implies strong topology.

Thus, {ank} converges strongly to a. That is ‖ank − a‖E −→ 0 as k −→ ∞. Now,

limk→∞ d(a,Ank) = 0. But by the assumption,

(4.4) d(a,A) = lim
n→∞

d(a,An) = lim
k→∞

d(a,Ank) = 0

This gives us that d(a,A) = 0 which implies that a ∈ A.

Next, we show that A ⊂ s − limAn. Suppose a ∈ A. By Wijsman convergence of {An}

we have that d(a,An) −→ d(a,A) = 0. For each n ≥ 1, choose an ∈ An such that

‖an − a‖E ≤ d(a,An) +
1

n

From this, it is obvious that ‖an − a‖E −→ 0 as n −→∞. Thus, {an} converges strongly

to a. Hence, x ∈ s− limAn. �

Theorem 2.20. Let E be a finite dimensional Banach Space. If {An, A} ⊂ Pkc(E)

and {An} converges weakly to A, then {An} converges to A in Hausdorff.
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Proof : Suppose for contradiction that {An}∞n=1 converges weakly to A but fails to converge

in Hausdorff. That is there exist εo > 0 such that for all N ∈ N, there exist n ≥ N such

that

H(An, A) > εo > 0

By Theorem 2.10,

(4.5) H(An, A) = sup
f∈S∗
|Sf (An)− Sf (A)|

This implies, α = supf∈S∗ |Sf (An) − Sf (A)| > 0. By the consequences of supremum, we

have for k ≥ 1 there exists fk ∈ S∗ such that

α− 1

k
< |Sfk(Ank)− Sfk(A)| ≤ α(4.6)

⇒ lim |Sfk(Ank)− Sfk(A)| > 0(4.7)

By weak convergence of {An}∞n=1 to A, we have that the subsequence {Ank}∞k=1 also con-

verges weakly to A. We claim that {Ank}∞k=1 is uniformly bounded for k ≥ 1, since

Ank
w−→ A⇔ ∀ ε > 0,∃ kε ∈ N s.t |Sf (Ank)− Sf (A)| < ε ∀ k ≥ kε

⇒ |Sf (Ank)| − |Sf (A)| < ε ∀ k ≥ kε

⇒ |Sf (Ank)| < ε+ |Sf (A)| ∀ k ≥ kε.

But Sf (A) is bounded for f ∈ S∗ sinceA is compact. LetM = max{Sf (An1), Sf (An2), . . . , Sf (Ankε )}.

Then

(4.8) ‖Ank‖ = sup
f∈S∗
|Sf (Ank)| ≤ ε+ sup

f∈S∗
|Sf (A)|+M

So that supk∈N ‖ANk‖ ≤ c. Now, dimE <∞ implies that S∗ is compact in E∗ (Heine Borel

Theorem). So, there exists a subsequence {fni}∞i=1 ⊂ {fn}∞n=1 such that ‖fni − f‖ −→

0 as i −→ 0.
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Thus

|Sfki (Ank)− Sf (Ank)| = | sup
x∈Ank

〈fki , x〉 − sup
x∈Ank

〈f, x〉|

≤ | sup
x∈Ank

〈fki , x〉 − 〈f, x〉|

≤ | sup
x∈Ank

{|〈fki , x〉 − 〈f, x〉|}

≤ ‖fki − f‖ sup
x∈Ank

‖x‖

= ‖fki − f‖‖Ank‖

≤ ‖fki − f‖ c −→ 0 as i −→∞

From equation 4.6 above we have

0 < lim |Sfki (Anki )− Sfki (A)| = lim |Sfki (Anki )− Sf (Anki ) + Sf (Anki )

− Sf (A) + Sf (A)− Sfki (A)|

≤ lim |Sfki (Anki )− Sf (Anki )|

+ lim |Sf (Anki )− Sf (A)|

+ lim |Sf (A)− Sfki (A)|

= lim |Sf (Anki )− Sf (A)|

Hence, lim |Sf (Anki )− Sf (A)| > 0 which contradicts the hypothesis. �

Proposition 2.21. Let E be a finite dimensional Banach Space. If {An, A} ⊂ Pkc(E).

Then the following are equivalent;

(1) An
H−→ A

(2) An
Wj−→ A

(3) An
K−→ A

(4) An
We−→ A



CHAPTER 3

Set-Valued Random Variables

1 Introduction

So far, we have studied in chaphter 1 and 2 the Hausdorff metric and its properties as well

as the Hausdorff convergence. This chapter focuses on set-valued random variable and its

properties. We begin as usual with definitions and notations we will use in the sequel.

I. Range, Graph and Inverse Image:

Let (E, d) be a metric space, f : Ω −→ E be a single-valued function and F : Ω −→ P(E)

be a set-valued function.

The range of F denoted by R(F ) is defined by

(1.1) R(F ) =
⋃
ω∈Ω

F (ω)

The graph of f denoted by Gf is defined as

(1.2) Gf = {(ω, t) ∈ Ω× E : t = f(ω)}

and the graph of F is defined by

(1.3) GF = {(ω, t) ∈ Ω× E : t ∈ F (ω)}

The general inverse image of f for any ∅ 6= A ⊂ E denoted by f−1(A) is defined by

(1.4) f−1(A) = {ω ∈ Ω : f(ω) ⊂ A}

and that of F is defined by

(1.5) F−1(A) = {ω ∈ Ω : F (ω) ∩ A 6= ∅}.

Let us state some important observations about these definition we have given. Observe

that the generalization of graph from single-valued function to set-valued functions is

35
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direct. Indeed, the two graphs coincide if ∀ ω ∈ Ω, F (ω) = {f(ω)}. But for the inverse

image, direct generalization fails. To see this clearly, we suppose

(1.6) ∀ A ⊂ E,F−1(A) = {ω ∈ Ω : F (ω) ⊂ A}.

Then comparing F (ω)∩A 6= ∅ and F (ω) ⊂ A, we discover that there is a very big difference

between the two. For instance, we do not have that F−1(Ac) = {F−1(A)}c in equation

1.5, since the possibility of obtaining F (ω)∩A 6= ∅ and F (ω)∩Ac 6= ∅ is very high. So, we

have to desist from applying to F−1 the classical properties of f−1. Although, they share

some properties in common. For example. If {Ai}i∈I is a family of non-empty subset of

E, then

(1.7) F−1

(⋃
i∈I

Ai

)
=
⋃
i∈I

F−1(Ai)

(1.8) F−1(∅) = ∅ and F−1(E) = Ω.

Definition 3.1. Let (Ω,B) and (P(E),Σ) be the two Borel spaces. A set-valued func-

tion F : Ω −→ P(E) is said to be a closed, open or compact set-valued function if GF is

closed, open or compact with respect to the product topology B × Σ.

Definition 3.2. A collection A of subsets of Ω, is a σ − algebra if and only if A

contains ∅, Ω and is stable by all countable set operations Lo (2017b). A pair (Ω,A) is

called a measurable space

Let E be a complete metric space. Then, the smallest σ−algebra containing all open sets

in E is called the Borel σ − algebra on E denoted by BE. The measurable space (E,BE)

is also called the Borel measurable space on E. Suppose A ∈ BE, then we say that A is

Borel measurable with respect to E.

Let τo and τc represents the class of open subset of E and closed subset of E respectively.

Definition 3.3. The projection π1 : Ω× E −→ Ω is said to be perfect if and only if

∀A ∈ A⊗ BE, π1(A) ∈ A.
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2 Set-Valued Random Variables

Definition 3.4. Let F : (Ω,A)→ P(E). Let us define five types of measurability of F .

(1) F is Borel-measurable if and only if

∀ B ∈ BE, F−1(B) ∈ A. (01)

(2) F is strongly measurable, or measurable, if and only if

∀ B ∈ τc, F−1(B) ∈ A. (02)

(3) F is weakly measurable if and only if

∀ B ∈ τo, F−1(B) ∈ A. (03)

(4) F is pathwise measurable if and only if for any x ∈ E fixed, the the path

Ω 3 ω 7→ d(x, F (ω))

is A-measurable.

(5) F is graph-measurable if and only GF is (A⊗ BE)-measurable.

We say that, F is a set-valued random variable or F is a random set if and only if

(3) holds.

The relationship between these five types of mesurability of set-valued function are as

follow:

Theorem 3.5. Let (Ω,A) be a measurable space, (E, d) be a metric space endowed

with its Borel σ-algebra BE and F : (Ω,A) → P(E) be a set-valued random variable.

Consider the different types of mesaurability in Definition 3.4. We have :

(a) We have : (1)⇒ (2)⇒ (3)⇒ (4).

(b) If E is separable, we have (4)⇒ (5).
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(c) If π1 is perfect, all the five types are equivalent.

Proof : We proceed the proof by points.

Proof of Point (a).

(1)⇒ (2) This follows from the fact that closed sets are contained in Borel σ− algebra BE.

(2)⇒ (3). Assume (2) holds. Let ∅ 6= A ( E be open. Then, we show that F−1(A) ∈ A.

Let Bn = {x ∈ E : d(x,Ac) ≥ 1
n
}. We observe that Ac is closed since A is open and Bn is

the pre-image of [ 1
n
,∞) with the function d(., Ac). By the continuity of d(., Ac), we have

that Bn is closed. Whence, by equation 1.7 and 1.8 we obtain,

F−1(A) = F−1(
∞⋃
n=1

Bn) =
∞⋃
n=1

F−1Bn ∈ A

and for the case of A = E, F−1(A) = F−1(E) = Ω ∈ A. Hence, (3) proved.

(3)⇒ (4) Using the fact that, for x ∈ E and A ⊂ E, r > 0,

(
∃ t0 ∈ A, d(x, t0) < r

)
⇔ d(x,A) < r,

we have for x ∈ E fixed

F−1(Bc(x, r)) = {ω ∈ Ω, F (ω) ∩Bc(x, r) 6= ∅}

= {ω ∈ Ω, ∃t0 ∈ Bc(x, r), d(x, F (ω)) < r}

= {ω ∈ Ω, d(x, F (ω)) < r}

(d(x, t◦) < r) ∈ A for r > 0. (d(x, t◦) < r) = ∅ for r < 0 and (d(x, t◦) < r) = F (ω) ∈ A

for r = 0. Then (d(x, t◦) < r) ∈ A for all r ∈ R. Hence, (iv) holds.

Proof of point (b)

Suppose E is separable and (4) holds. Let D = {xn, n ≥ 1} dense in E. For r ∈ N, we

have
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E =
⋃
n≥1

B(xn, 1/r) =
∑
n≥1

Cn(r),

where

C1(r) = B(x1, 1/r), C2(r) = (B(x1, 1/r))
cB(x2, 1/r),

Cn(r) = (B(x1, 1/r))
c · · · (B(xn−1, 1/r))

cB(xn, 1/r), n ≥ 3.

We want to show that GF is (A⊗ B)-measurable. But since F (ω) is closed, we have

GF = {(ω, x) ∈ Ω× E, (ω, x) ∈ Ω× F (ω)}

= {(ω, x) ∈ Ω× E, d(x, F (ω)) = 0}.

So, it is enough to show that

Ω× E 3 (ω, x) 7→ d(x, F (ω))

is (A⊗ BE)-measurable. Since

Ω× E =
∑
n≥1

Ω× Cn(r).

Set dn(x, F (ω)) = d(xn, F (Ω)) whenever (ω, x) ∈ Ω× Cn(r). We have for ε ≥ 0,

{(ω, x) ∈ Ω× E, d(x, F (ω)) < ε} =
∑
n≥1

{(ω, x) ∈ Ω× E, d(x, F (ω)) < ε}

⋂
Ω× Cn(r)

=
∑
n≥1

{(ω, x) ∈ Ω× E, d(xn, F (ω)) < ε}
⋂

Ω× Cn(r)

So, the real-valued random variable

Ω× E 3 (ω, x) 7→ d(x, F (ω))

is measurable. Finally, for any (ω, x) ∈ Ω× E, there exists a unique n(x) ≥ 0 such that
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dr(x, F (ω)) = d(xn(x,r), F (ω)) and d(x, xn(x,r)) < 1/r.

By taking limit as r −→∞ we see that for any (ω, x) ∈ Ω× E, xn(x,r) −→ x. Thus,

dr(x, F (ω))→ d(x, F (ω)).

Hence, GF is (A⊗ BE)-measurable.

Proof of Point (c). Suppose that E is separable, π1 is perfect and (5) holds. To show

that all the five types are equivalent, we only need to prove that (5)→ (1) and the circular

argument will be complete. Suppose that (5) hold and let B ∈ BE, we have

F−1(B) = {ω ∈ Ω, F (ω) ∩B 6= ∅}

= {ω ∈ Ω, ∃x ∈ B, x ∈ F (ω)}

= {ω ∈ Ω, ∃x ∈ B, (ω, x) ∈ GF}

= π1(GF ) ∈ A,

by the perfection of π1. This completes the proof. �

3 Measurable Selection and its Properties

In the next section, we introduce the notion of selections of set-valued mappings and char-

acterize measurable selections for set-valued random variables.

Definition 3.6. Let (Ω,A, µ) be a measure space, E a metric space with its usual Borel

σ− algebra BE. An E-valued function f : Ω −→ E is called a selection for a set-valued

mapping F : Ω −→ P(E) if and only if

∀ ω ∈ Ω, f(ω) ∈ F (ω)

.

A function f is called an almost everywhere selection of F if and only if

∀ ω ∈ Ω, f(ω) ∈ F (ω) − µ− a.e.
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A selection f is said to be measurable if the function f is measurable.

We now proceed to present two important properties of selection f of a set-valued random

variables F . First, we state and describe without proofs the following known results which

we shall use for the proof.

Lemma 3.7. Let (E, d) be a complete metric space and {Fk}k≥1 be a sequence of subsets

of E. Suppose for each k ∈ N, Fk is a non-empty closed set,

Fk+1 ⊂ Fk and lim
k→∞

diam(Fk) = 0

. Then,
∞⋂
k=1

Fk contains only one element.

Lemma 3.8. Let (E, d) be a separable metric space with D = {x1, x2, . . . } being a

countable dense subset of E. Suppose A ⊂ E, A 6= ∅, then for each fixed k ∈ N,

A ∩
⋃
r∈N

BC(xr,
1

k
) 6= ∅

.

Lemma 3.9. Suppose for each α ∈M, Fα : Ω −→ P(E) is a measurable maps. Then,

the intersection map

F (ω) =
⋂
α∈M

Fα(ω), for ω ∈ Ω.

is measurable.

Theorem 3.10. Assume that (Ω,A) is a measurable space, E is separable complete

metric space and F : Ω −→ P(E) is a set-valued random variable. Then F has a measur-

able selection.

Proof : Let D = {x1, x2, . . . } be a countable dense subset of E and Bc(xr,
1

k+1
) be a closed

ball centred at xr and radius 1
k+1

. By lemma 3.8 we have

(3.1) F (ω) ∩
⋃
r∈N

Bc

(
xr,

1

k + 1

)
6= ∅

for each fixed k ∈ N. This implies that there exists some r ∈ N such that

(3.2) F (ω) ∩Bc

(
xr,

1

k + 1

)
6= ∅.



3. MEASURABLE SELECTION AND ITS PROPERTIES 42

Now, set

(3.3) rk(ω) = min{r ∈ N : F (ω) ∩Bc

(
xr,

1

k + 1

)
6= ∅}.

We define a decreasing sequence of set-valued maps as

(3.4) F0 = F and Fk+1(ω) = Fk(ω) ∩Bc

(
xrk(ω),

1

k + 1

)
.

we obtained this by induction. So, for each ω ∈ Ω, we have

Fk+1(ω) ⊂ Fk(ω), diam(Fk(ω)) ≤ 1

k
−→ 0 as n −→∞ and Fk(ω) ∈ P(E)

Then, by lemma 3.7,
∞⋂
k=1

Fk(ω) contains a single element. So, we define {f(ω)} =
∞⋂
k=1

Fk(ω) ⊂

F (ω). Hence, f is a selection of F .

Next, we show that f is measurable. To do this, we need to show that Fk is measurable

for each k ∈ N. Using induction, we prove the measurability of Fk as follows: F0 = F

is measurable by assumption. Assume Fk is measurable for some k ∈ N and A ⊂ P(E).

Then, we show that Fk+1 is measurable. But

{ω ∈ Ω : Fk+1(ω) ∩ A 6= ∅} = {ω ∈ Ω : Fk(ω) ∩Bc(xrk(ω),
1

k + 1
) ∩ A 6= ∅}

=
⋃
k∈N

[{ω ∈ Ω : Fk(ω) ∩Bc(xrk(ω),
1

k + 1
) ∩ A 6= ∅}

∩{ω ∈ Ω : rk(ω) = r}]

Since, Fk is measurable for some k ∈ N by the induction assumption above, we have

{ω ∈ Ω : Fk(ω) ∩Bc(xrk(ω),
1

k + 1
) ∩ A 6= ∅} ∈ A

Furthermore,

{ω ∈ Ω : rk(ω) = r} =
r−1⋂
i=1

{ω ∈ Ω : Fk(ω) ∩Bc(xri(ω),
1

k + 1
) = ∅}∩

{ω ∈ Ω : Fk(ω) ∩Bc(xrk(ω),
1

k + 1
) 6= ∅}

This implies that {ω ∈ Ω : rk(ω) = r} ∈ A. Therefore,

{ω ∈ Ω : Fk+1(ω) ∩ A 6= ∅} ∈ A
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Hence, for each k ∈ N, Fk is measurable.

Now, we show that f is measurable. Define G(ω) = {f(ω)}. By the measurability of

intersection in lemma 3.9, measurability of Fk for each k ∈ N and using the fact that

G(ω) =
⋂
k∈N

Fk(ω) we conclude that G is measurable. Whence, for A ∈ P(E) we have

G−1(A) = {ω ∈ Ω : G(ω) ∩ A 6= ∅}

= {ω ∈ Ω : {f(ω)} ∩ A 6= ∅}

= {ω ∈ Ω : {f(ω)} ∈ A 6= ∅}

= f−1(A) ∈ A

Hence, f is measurable. �

Theorem 3.11. Suppose (Ω,A) is a measurable space, E is a separable complete

metric space and F : Ω −→ P(E) is a set-valued random variable if and only if there

exists a sequence {fn}∞n=1 of measurable selections of F such that

(3.5) F (ω) = cl{fn(ω)}n≥1 ∀ ω ∈ Ω

Proof : Assume F is a set-valued random variables. Let D = {xn : n ∈ N} be a countable

dense subset of E and {Bc(xn, 2
−k) : (n, k) ∈ N2} be a countable family of closed balls of

radius 2−k centred at xn. For each fixed (n, k) ∈ N2, the set

An,k = {ω ∈ Ω : F (ω) ∩Bc(xn, 2
−k) 6= ∅} ∈ A.

Since An,k is the inverse image of a closed ball Bc(xn, 2
−k), it follows from theorem 3.5(a)

that An,k is measurable. Now, we define a collection of closed set-valued mapping as

follows:

(3.6) Fn,k(ω) =

F (ω) ∩Bc(xn, 2
−k), if ω ∈ An,k

F (ω) if ω /∈ An,k.

At this moment, we observe that for each (n, k) ∈ N2, Fn,k is a set-valued random variables,

since for any closed subset B of E, we have
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F−1
n,k(ω) = {ω ∈ Ω : Fn,k(ω) ∩Bc(xn, 2

−k) 6= ∅}

= {ω ∈ Ω : F (ω) ∩ (B ∩Bc(xn, 2
−k)) 6= ∅}

∪{ω ∈ Ω : F (ω) ∩B 6= ∅} ∈ A

Since {ω ∈ Ω : F (ω) ∩ (B ∩ Bc(xn, 2
−k)) 6= ∅} ∈ A and {ω ∈ Ω : F (ω) ∩ B 6= ∅} ∈ A.

Hence, Fn,k is measurable for each (n, k) ∈ N2. Applying theorem 3.10, we obtain for

each (n, k) ∈ N2, there exists a measurable selection fn,k of Fn,k. We now show that

{fn,k(ω) : (n, k) ∈ N2} is dense in F (ω) for each ω ∈ Ω i.e F (ω) = cl{fn,k(ω) : (n, k) ∈ N2}.

Assume x ∈ F (ω). We show that there exist a sequence {fn,k(ω)}n≥1 such that fn,k

converges to x as k −→∞ and n −→∞. But,

x ∈ F (ω)⇒ for each k ≥ 1,∃xn s.t d(xn, x) < 2−k

This implies that ω ∈ An,k. Thus fn,k(ω) ∈ Bc(xn, 2
−k). This follows from (2.8) above.

So, this gives us that d(xn, fn,k(ω)) < 2−k. By the triangle inequality, we obtain

d(x, fn,k(ω)) ≤ d(x, xn) + d(xn, fn,k(ω))

< 2−k + 2−k = 2−k+1

This implies that fn,k(ω) −→ x as k −→ ∞, n −→ ∞. Hence, F (ω) = cl{fn,k(ω) :

(n, k) ∈ N2}.

Conversely, assume there exist a countable family {fn : n ∈ N} of measurable selections

of F such that F (ω) = cl{fn(ω) : n ∈ N} for all ω ∈ Ω. Since for any given x ∈ E,

d(x, fn(ω)) is measurable for each n ∈ N,

d(x, F (ω)) = inf{d(x, fn)(ω) : n ∈ N}

is measurable. Thus, by applying theorem 3.5, we conclude that F is a set-valued random

variables. �

Remark 3.12. These two theorems 3.10 and 3.11 are very important in the study of

set-valued integration. Theorem 3.10 gives the condition for the existence of a measurable
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selection of a set-valued random variable. In theorem 3.11 we obtain a characterization of

F in terms of sequence of selections for each ω ∈ Ω.

(A) Other properties of set-valued random variables.

Having established these two important properties of set-valued random varibles, we are

going to state and fully describe other important properties without proofs.

Before we proceed let us give some definitions. Let F and G be two set-valued functions

and ψ a real-valued random variable. Define :

(a) the addition of F and G by

∀ω ∈ Ω, (F ⊕G = F (ω) +G(ω),

(b) the multiplication of F by ψ by

∀ω ∈ Ω, (ψF )(ω) = ψ(ω)F (ω).

(c) the closed convex hull of F by

∀ω ∈ Ω, (coF )(ω) = coF (ω).

We have

Proposition 3.13. Let (Ω,A) be a measurable space, (E, d) be a metric space endowed

with its Borel σ-algebra BE, F,G : (Ω,A)→ P(E) be two set-valued random variables, ψ

be a real-valued random variable. Let (Fn)n≥1 be a sequence of set-valued random variables.

The following assertions hold.

(a) The set-valued mapping

Ω 3 ω 7→ cl

( ⋃
n≥1

Fn

)
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is measurable.

(b) If E is a complete metric space, then the graph

G

( ⋂
n≥1

Fn

)
is measurable, in particular

{ω ∈ Ω :
⋂
n≥1

Fn = ∅}.

If A is not empty and if the projection is perfect,
⋂
n≥1 Fn, s− lim inf Fn and s− lim supFn

are measurable set-valued random variables.

(c) If E is a separable Banach space. Then,

(i) the real-valued mapping

ω 7→ H(F (ω), G(ω))

ω 7→ d(x, (F (ω)), x ∈ E fixed

and

ω 7→ Sf (F (ω)), f ∈ E∗fixed

are measurable.

(ii) F ⊕G, ψF and coF are set-valued random variables.

(d) If E is a separable Banach space, if the projection π1 is perfect, if E is reflexive or E∗

is separable, then w − lim supFn is seperable.

We close this section here. we introduce the integration part devoted to Bochner integrals

in the next chapter.



CHAPTER 4

Introduction to the Bochner Integrals

1 Introduction

This chapter focuses on two forms of Bochner Integral namely: the Bochner integral of

Banach-valued functions and the Bochner integral of set-valued random varables.

2 The Bochner Integral of Banach valued functions

This integral extends the Lebesgue integral to functions that take value in a Banach space.

It is a very important concept in the study of set-valued integration for two reasons.

(a) The first kind of integral for set-valued mappings, the Debreu-Bochner integral, is a

direct generalization of it.

(b) The second kind, the Auman integral which is most frequently used, give set-valued

integrals whose elements are Bochner integral.

Based on these two reasons, we feel it is necessary to give a detailed account of these

integrals in this thesis. In the second section, we will only describe the Debreu-Bochner

Integral for set-valued random variable and let future students go deep in it.

Note: Observe that we have spent time in chapter 3 defining the inverse image of both

the point-valued functions and set-valued functions but we have not used it. Here, we

will use the inverse images of point-valued functions in this section and reserve that of

set-valued functions for the next section.

(A) - Construction of the Bochner Integral

47
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We are going to try to extend the construction of the classical integral for real-valued

function with respect to some measure µ to an arbitrary Banach-valued functions. Al-

though, we don’t have all the properties as in R, for instance the stunning property that

any measurable and non-negative function is a limit of a non-decreasing sequence of simple

functions. But we will adopt the whole theory.

Let (Ω,A, µ) be a measure space and E be a real Banach space endowed with its Borel

σ-algebra BE. We are going to deal with measurable functions of the form

(2.1) f : (Ω,A)→ (E,BE).

We say that f is a simple or elementary (measurable) functions if

(2.2) ∀ω ∈ Ω, f(ω) =

p∑
j=1

αj1Aj(ω)

where p is a finite integer, {α1, α2, . . . , αp} ⊂ E are the values of f , and {A1, A2, . . . , Ap}

form a measurable partition of Ω.

We can also write f in its canonical form as

∀1 ≤ j ≤ p,Aj = (f = αj).

whenever αi are distinct. Also, if the union of the Aj is not Ω, we assume that f = 0

outside that union.

Indeed, the simple function f is measurable since for all B ∈ BE,

f−1(B) =

p∑
i=1

f−1(B)
⋂

Ai

=

p∑
i=1

Ai ∩ (f ∈ B)

=
k∑
j=1

Ai ∈ A, where 1 ≤ j ≤ k ≤ p.

Let us denote by S(Ω, E) the class of simple functions defined from Ω to E.
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Let us define the pseudo-absolute function |f | of f by

∀ ω ∈ Ω, |f |(ω) = ‖f(ω)‖.

It is clear from Formula 2.2 that we have

∀ ω ∈ Ω, |f |(ω) =

p∑
j=1

‖αj‖1Aj(ω)

and that |f | is a real-valued random variable. We denote

‖f‖1 =

∫
|f | dµ.

Definition-Theorem. If a simple function admits two expressions

∀ ω ∈ Ω, f(ω) =

p∑
i=1

αh1Ah(ω), (SFA)

and

∀ ω ∈ Ω, f(ω) =

p∑
i=1

bk1Bk(ω),

with the usual precisions, we have

p∑
h=1

αhµ(Ah) =

q∑
k=1

bkµ(Bk).

From Formula (SFA), we define the Bochner integral of the simple function f ,

∫
Ω

f dµ =

p∑
j=1

αjµ(Aj), (BS01) ♦

NOTE: The value of this integral depends on α′js. It coincides with Lebesgue integral

when α′js are real number.

Proposition 4.1. For any positive integer p, for {a1, a2, . . . , ap} ⊂ E, and for {A1, A2, . . . , Ap} ⊂

BE, we have

‖
p∑
j=1

ajµ(Aj)‖ ≤
∫

Ω

∣∣∣∣∣
p∑
j=1

aj1Aj

∣∣∣∣∣ dµ
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Proof : We recall that

p∑
i=1

ai1Ai =
k∑
j=1

bj1Bj

for some {b1, b2, . . . , bk} ⊂ E, and some disjoint {B1, B2, . . . , Bk} ⊂ BE.

‖
p∑
i=1

aiµ(Ai)‖ = ‖
k∑
j=1

bjµ(Bj)‖

≤
k∑
j=1

‖bjµ(Bj)‖

=
k∑
j=1

‖bj‖µ(Bj)

=

∫
Ω

k∑
j=1

‖bj‖1Bjdµ

=

∫
Ω

|
k∑
j=1

bj1Bj |dµ

=

∫
Ω

|
p∑
i=1

ai1Ai |dµ.

Now, we want to contruct the class of Bochner-integrable functions.

Definition - Theorem. A measurable mapping f : Ω→ E is Bochner integrable if and

only if : (a) There exists a sequence of simple functions (fn)n≥1 such that∑
n≥1

‖fn‖1 < +∞ (01)

and, by denoting

Ω0 = {ω ∈ Ω,
∑
n≥1

‖fn(ω)‖ < +∞},

we have

∀ω ∈ Ω0, f(ω) =
∑
n≥1

fn(ω) (02)

(b) If both (01) and (02) hold, we write for short

f '
∑
n≥1

fn,
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the Bochner integral of f as defined by

∫
f dµ = lim

n→+∞

n∑
k=1

(∫
fk dµ

)
.

This definition is not complete unless we prove that it does not depend on the sequence

(fn)n≥1. This will come as a consequence of the properties below.

To help avoid the confusion between real integrals and Banach-valued integrals, we will

write the space of integrable functions as L1(Ω, µ,R) and L1(Ω, µ, E) respectively.

(II) - Immediate properties

Theorem 4.2. Suppose that f '
∑

n≥1 fn, then :

(a) |f | ∈ L1(Ω, µ,R),

(b) we have ∫
|f | dµ = lim

n→+∞

∫ ( n∑
k=1

|fk|
)
dµ.

and

(c) we have

‖
∑
n≥1

∫
fn dµ‖ ≤

∫
|f | dµ.

Proposition 4.3. Suppose that f ∈
∑

n≥1 fn and f ∈
∑

n≥1 gn, then

lim
n→+∞

n∑
k=1

(∫
fk dµ

)
= lim

n→+∞

n∑
k=1

(∫
fg dµ

)
Theorem 4.4. The following assertions hold.

(1) The integral is a linear operator from L1(Ω, µ, E) to E and

∀f ∈ L1(Ω, µ, E),

∫
f dµ ≤

∫
|f | dµ.

If G is a bounded linear function on L1(Ω, µ, E), we have
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∀f ∈ L1(Ω, µ, E), G

∫
f dµ =

∫
Gf dµ.

The Banach Space L1(Ω, µ, E).

As in the real-valued case, we define L1(Ω, µ, E) as the quotient of L1(Ω, µ, E) by the class

of null events. We obtain

Theorem 4.5. L1(Ω, µ, E) is a Banach space.

This integral has many interesting properties we will review later.

3 An Incursion to the Bochner Integral of Set-valued functions

(Debreu-Bochner Integral)

By following the ideas in the first section, we may generalize the construction of integrals

of set-valued random variables.

We suppose we are given a measure space (Ω,A, µ), E a real Banach space endowed with

its Borel σ-algebra B(E), and F : (Ω,A)→ P(E) a set-valued random variable.

The Debreu integral is constructed in two steps.

Step 1. We define a simple measurable real-valued mapping by

(3.1) ∀ω ∈ Ω, F (ω) =

p∑
j=1

Bj1Aj(ω)

where p is a finite integer, {B1, B2, . . . , Bp} ⊂ P(E) and {A1, A2, . . . , Ap} form a measur-

able partition of Ω.

We may still write F in such a way that xi’s are distinct so that we have

∀1 ≤ j ≤ p,Aj = (F ∈ Bj).
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Such a set-valued random variable is measurable since for all B ∈ τo

F−1(B) =

p∑
j=1

F−1(B)
⋂

Aj

=

p∑
j=1

{ω ∈ Ω, F (ω) ∩B 6= ∅}
⋂

Aj

=

p∑
j=1

{ω ∈ Ω, Bj ∩B 6= ∅}
⋂

Aj

=

p∑
j=1

Cj ∈ A.

where Cj = {ω ∈ Ω : Bj ∩B 6= ∅} ∩ Aj}.

Let us remark that in passing, the closedness of B does not play a role in the measurability

of F .

Let us denote by S(Ω,P(E)) the class of simple set-valued mappings.

Definition 4.6. The Debreu-Bochner integral of a simple set-valued function of the

form (SF01) is given and denoted by

(B)−
∫

Ω

Fdµ =

p∑
j=1

µ(Aj)Bj,

which is a closed set and is independent of the representation (SF01).

Step 2. For two set-valued random variables F and G, let us

∆(F,G) =

∫
H(F (ω), G(ω))dµ(ω).

We point out that we have already proved the measurability of the real-valued mapping

Ω 3 ω 7→ H(F (ω), G(ω)),

when E is a separable Banach space. It may be quickly proved that ∆ is a metric on the

class of set-valued random variables.
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Definition 4.7. The Debreu-Bochner integral of a set-valued random variable exists if

and only if there exists a sequence of simple set-valued random variables (F )n≥1 such that

∆(Fn, F )→ 0 as n→ +∞ and it is defined as

(B)−
∫

Ω

Fdµ = lim
n→+∞

(B)−
∫

Ω

Fndµ.



CHAPTER 5

Perspectives and Conclusion

1 Perspectives

So far, we have shown many mathematical results. To mathematicians these results are

their interest and this mathematical interests justify our research. But, if these results

were to remain abstract, far from practical mathematical concepts then our reward will

only be this mathematical interests. However, our results are not only about the abstract

mathematical concepts; these results are about set-valued random variable which is a nat-

ural concept from probability theory. Li et al. (2002) pointed out the several applications

of set-valued random variables in science and engineering. In the future , it is my ultimate

desire to undertake research activities on limit theorems on set-valued random variables

and its applications. Examples of such application includes image processing, artificial

intelligence, optimization, robust controls etc.

2 Conclusion

This thesis provides the fundamental tools required in the study of set-valued random

variables. The Hausdorff metric, its properties and the four convergences related to the

Hausdorff metric were covered. This gives a good background to the study of measura-

bility of set-valued functions and its Bochner integrals. Bochner Integrals, an extension

of the Lebesgue integral to both Banach-valued functions and the set-valued functions

were expounded. Similarly, the role of the two forms of Bochner integrals namely: Ba-

nach valued Bochner integral and the set-valued Bochner integral otherwise known as the

Debreu-Bochner integral in set-valued integrations were emphasised.
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