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ABSTRACT

Let X be a Banach space and A : D(A) ⊂ X −→ X be an unbounded linear operator on X.

We study the concept of C0−semigroup of contraction on arbitrary Banach space X and give

the two characterizations of A called infinitesimal generator of C0−semigroup on X namely,

Hille-Yosida and Lumer Phillips characterizations. In the later part, we apply the approach

of C0−semigroups to some partial differential equations with boundary conditions.
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Chapter 1

INTRODUCTION

Semigroup theory is an important concept in the study of evolution equations which are of

the form

du(t)

dt
+ Au(t) = 0, t ≥ 0 (1.0.1)

u(0) = u0 ∈ X

where X is a Banach space with A an unbounded linear operator on X and D(A) (domain of

A) dense in X. In solving 1.0.1, we consider a family {T (t)}t≥0 of bounded linear operators

on X called semigroup with the following properties

1. T (0) = I (I :Identity operator on X)

2. T (t+ s) = T (t)T (s) ∀ t, s ≥ 0,

3. lim
t→0+

T (t)x = x for all x ∈ X.

Under proper assumptions on A, we write the solution u(t) = T (t)x0, x0 ∈ X. Since A is a

linear operator, we define

D(A) = {x ∈ X : lim
t→0+

T (t)x− x
t

exists in X},

Ax = lim
t→0+

T (t)x− x
t

=
d+T (t)x

dt
|t=0 for all x ∈ D(A).

A is called the infinitesimal generator of (T (t))t≥0 .

In the first chapter, C0−semigroups are introduced with some properties and examples. The

next two chapters discuss two characterizations of infinitesimal generators of C0−semigroups;

Hille-Yosida first and then Lumer-Phillips. The fourth chapter contains the application
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of C0−semigroups to some partial differential equations on suitable defined spaces with

boundary conditions.
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Chapter 2

C0−SEMIGROUPS

In this chapter we start with the introduction of strongly continuous semigroup called

C0−semigroup on a Banach space. We state some definitions and properties with their

respective proofs.

Definition 2.0.1. A semigroup T (t) , 0 ≤ t ≤ ∞ on X is called a strongly continuous

semigroup if lim
t→0+

T (t)x = x for all x ∈ X. It is called a semigroup of class C0. It is hereby

necessary to give some theorems about this class of semigroup.

Example is T (t) = etA, A ∈ L(X).

Claim: (T (t))t≥0 is a C0 − semigroup , we give the following lemma

Lemma 2.0.2. Let B , C ∈ L(X) such that BC = CB , ⇒ eB+C = eB · eC

� T (0) = Id (Identity)

� By lemma 2.0.2 , T (t+ s) = T (t) ◦ T (s) for all s, t ≥ 0

� For the continuity, etA =
∑
n≥0

tnAn

n!
, the series

∑
n≥0

tnAn

n!
is uniformly convergent on R,

⇒ lim
t→0

etA =
∑
n≥0

lim
t→0

tnAn

n!
= Id

⇒ ‖etA − Id‖ −→
n→∞

0.�

Theorem 2.0.3. Let (T (t))t≥0 be a Co−semigroup then , there exist constants α ≥ 0 and

M ≥ 1 such that

‖T (t)‖ ≤Meαt for all t ∈ R+.

Proof:

We show that there is η ∈ ]0, 1] such that

Sup
t∈[0,η]

||T (t)|| <∞.
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Assume by contradiction, that for all η = 1
n
∈]0, 1] with n ∈ N, there exist tn ∈]0, 1

n
]

such that ||T (tn)|| = +∞. By uniform boundedness principle, there exist x ∈ X such

that Sup
n≥0
||T (tn)x|| = ∞. And t → T (t)x is continuous at 0, then there exist (tnk)k≥1

such that ‖T (tnk)x‖ → 0 as tnk → 0. Hence we have contradiction. Thus there exist

η ∈]0, 1] such that Sup
t∈[0,η]

||T (t)|| <∞.

Let M = Sup
t∈[0,η]

||T (t)||, since T (0) = I,
f
T (0)

f
= 1, M ≥ 1. Let α = η−1logM ≥ 0. t ≥ 0,

we have t = nη + δ where 0 ≤ δ < η.

Then,

‖ T (t) ‖=‖ T (nη + δ) ‖=‖ T (δ)T (η)n ‖≤‖ T (δ) ‖‖ T (η) ‖n

⇒‖ T (t) ‖≤M ·Mn+1.

Since n = t−δ
η ≤

t
η

⇒‖ T (t) ‖≤M ·Mn ≤M ·M
t
η = Meαt.

Corollary 2.0.4. If (T (t))t≥0 is a C0 semigroup, then for all x ∈ X, t → T (t)x is a

continuous function on R+.

Proof:

Let t , h ≥ 0,

‖ T (t+ h)x− T (t)x ‖ ≤ ‖ T (t) ‖‖ T (h)x− x ‖

≤ Meαt ‖ T (h)x− x ‖→ 0 as h→ 0

and also,

‖ T (t− h)x− T (t)x ‖ ≤ ‖ T (t− h) ‖‖ x− T (h)x ‖

≤ Meαt ‖ x− T (h)x ‖→ 0 as h→ 0

this shows that t→ T (t)x is continuous.

Theorem 2.0.5. Let (T (t))t≥0 be a C0 semigroup and A its infintesimal generator. Then

i.

for all x ∈ X, lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.

ii.

for all x ∈ X,
∫ t

0

T (s)xds ∈ D(A), A

(∫ t

0

T (s)xds

)
= T (t)x− x.

iii. for all x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax.
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iv. for all x ∈ D(A),

T (t)x− T (s)x =

∫ t

s

T (r)Axdr =

∫ t

s

AT (r)xdr.

Proof:

i. This is trivial from the continuity of t→ T (t)x for all x ∈ X.

ii. Let x ∈ X, h > 0 and
∫ t

0
T (s)xds ∈ D(A),

T (h)− I
h

∫ t

0

T (s)xds =
1

h

∫ t

0

(T (h)T (s)x− T (s)x) ds (limit withheld)

=
1

h

∫ t

0

(T (s+ h)x− T (s)x) ds

=
1

h

∫ t+h

h

T (s)xds− 1

h

∫ t

0

T (s)xds

=
1

h

∫ t+h

t

T (s)xds− 1

h

∫ h

0

T (s)xds −→
h→0

T (t)x− x.

But lim
h→0

T (h)−I
h

∫ t
0
T (s)xds = A

(∫ t
0
T (s)xds

)
, by uniqueness of limits,

A

(∫ t

0

T (s)xds

)
= T (t)x− x.

iii. Let x ∈ D(A), h > 0,

T (h)− I
h

T (t)x = T (x)

(
T (h)− I

h

)
x −→
h→0

T (t)Ax.

Therefore, T (t)x ∈ D(A) and AT (t)x = T (t)Ax

⇒ d+

dt
T (t)x = AT (t)x = T (t)Ax (Right Derivative).

Since t → T (t)x is continuous, then t → T (t)x for all x ∈ X is a C1 function on R+and
d
dt
T (t)x = AT (t)x.

iv. Integrating from s to t for all x ∈ D(A),∫ t

s

T (r)Axdr =

∫ t

s

d

dr
T (r)xdr = [T (r)x]r=tr=s = T (t)x− T (s)x.

Corollary 2.0.6. If A is the infinitesimal generator of a C0 semigroup T (t) , then D(A) is

dense in X and A is a closed linear operator.

Proof:
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Let x ∈ X, set xn = n
∫ 1
n

0
T (s)xds from Theorem 2.0.4 , xn ∈ D(A) ∀ n > 0. Also let

xn −→
n→∞

x ∈ X, therefore D(A) = X,

Let (x, y) ∈ G(A) where G(A) is the graph of A, then there exist (xn)n≥1 ⊂ D(A) such that

(xn, Axn)→ (x, y).

By Theorem 2.0.4, we have

T (t)xn − xn =

∫ t

0

T (s)Axnds.

Claim:
∫ t

0
T (s)Axnds −→

n→∞

∫ t
0
T (s)yds uniformly on bounded interval .

‖
∫ t

0

T (s)Axnds−
∫ t

0

T (s)yds‖ ≤
∫ t

0

‖T (s)(Axn − y)‖ds

≤
∫ t

0

Neαs‖(Axn − y)‖ds

≤ Neαtt‖Axn − y)‖.

Since Axn → y, then ∫ t

0

T (s)Axnds −→
n→∞

∫ t

0

T (s)yds.

Our claim is true. But T (t)xn − xn −→
n→∞

T (t)x− x , from uniqueness of limits,

T (t)x− x =

∫ t

0

T (s)yds. (2.0.1)

Dividing 2.0.1 by t > 0 and letting t→ 0, ⇒ x ∈ D(A) and Ax = y from Theorem 2.0.4�

Theorem 2.0.7. Let (T (t))t≥0 and (S(t))t≥0 be Co semigroups of bounded linear operators

with infinitesimal generators A and B respectively. If A = B, then T (t)x = S(t)x for all

t > 0.

Proof:

(T (t))t≥0 is a semigroup and A its infinitesimal generator

for all x ∈ D(A) = D(B), Ax = lim
t→0+

T (t)x− x
t

=
d+T (t)x

dt
.

(S(t))t≥0 is a semigroup and B its infinitesimal generator

for all x ∈ D(B) = D(A), Bx = lim
t→0+

S(t)x− x
t

=
d+S(t)x

dt
.

If Ax = Bx for x ∈ D(A) = D(B), then

T (t)x− x =

∫ t

0

T (s)Axds =

∫ t

0

T (s)Bxds = S(t)x− x.

10



⇒ d+T (t)x

dt
=
d+S(t)x

dt
for all x ∈ D(A) = D(B).

Since D(A) = X from Corollary 2.0.5 and due to the continuity of (T (t))t≥0 and (S(t))t≥0,we

have T (t)x = S(t)x.

Let A be the infinitesimal generator of the C0 semigroup (T (t))t≥0. Then
⋂
D(An)
n≥1

is dense

in X.

Proof:

Let D be the set of all infintely differentiable compact supported functions on R+.

For all x ∈ X , ψ ∈ D,

y = x(ψ) =

∫ ∞
0

ψ(s)T (s)xds

if h > 0, then

T (h)− I
h

y =
T (h)− I

h

(∫ ∞
0

ψ(s)T (s)xds

)
=

∫ ∞
0

ψ(s)

(
T (s+ h)x− T (s)x

h

)
ds

lim
h→0

T (h)− I
h

y =

∫ ∞
0

ψ(s)lim
h→0

(
T (s+ h)x− T (s)x

h

)
ds

=

∫ ∞
0

ψ(s)T ′(s)xds

=
〈
T ′(t)x, ψ(t)

〉
= −

〈
T (t)x, ψ′(t)

〉
=

∫ ∞
0

ψ′(s)T (s)xds

Therefore

Ay =

∫ ∞
0

ψ′(s)T (s)xds.

ψ ∈ D⇒ ψ(n) ∈ D,

⇒ Any = (−1)n
∫ ∞

0

ψ(n)(s)T (s)xds∀n ≥ 1

⇒ y ∈
⋂
n≥1

D(An).

Let Y = {x(ψ) : x ∈ X,ψ ∈ D} , then Y ⊆
⋂
n≥1

D(An).

We need to prove that Y is dense in X. Assume by contradiction that Y is not densed in

X, by Hann-Banach’s theorem, ∃ a function x∗ ∈ X∗, x∗ 6= 0 such that x∗(y) = 0 ∀ y ∈ Y
and then ∫ ∞

0

ψ(s)x∗T (s)xds = x∗
(∫ ∞

0

ψ(s)T (s)xds

)
= 0 ∀ x ∈ X,ψ ∈ D

11



⇒ s → x∗ (T (s)x) vanish identically on [0,∞[ . Thus, for s = 0, x∗(x) = 0. It holds for

every x ∈ X and x∗ = 0 (Contradition).�

2.1 More Examples of C0−semigroups and their gener-

ators

1. .Let X = C1(R) = {f : R → R continuous such that ∀ M > 0,∃ c > 0 : |f(x)| ≤

M ∀ x ∈ R \ [−c, c],} endowed with the supremum norm

let V : R→ R continuous where V is endowed with the supremum norm.

The operator Mvf = V · f with domain D(Mv) where D(Mv) = {f ∈ C1(R) : V · f ∈

C1(R)} and (Tv(t))t≥0 is a semigroup where Tv(t)f = evtf.

Claim : (Tv(t)) is a C0 − semigroup

� Tv(0)f = e0f = f ⇒ Tv(0) = Id

� for all s, t ≥ 0,

Tv(s+ t)f = ev(s+t)f = evsevtf = Tv(s)Tv(t)f.

Also, lim
t→0+

Tv(t)f = lim
t→0+

evtf = If = f ⇒ lim
t→0+

Tv(t)f = f for all f ∈ C1(R).�

2. X is a Banach space of bounded uniformly continuous function on R+ with supremum

norm. For all f ∈ X define

(T (t))f(s) = f(t+ s) s, t ∈ R+

Then (T (t))t≥0 is a C0−semigroup with

Af =
df

dt
and D(A) = {f ∈ X :

df

dt
∈ X}.
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Proof : X = BUC(R+,R) provided with the supremum norm

Let T (t) :X → X

f → T (t)f

where (T (t)f)(s) = f(t+ s) t, s ≥ 0.

Claim 1: (T (t))t≥0 is a C0 − semigroup on X

i. T (0) = Id

ii. (T (t+ s)f)(τ) = f(t+ s+ τ)

T (t)(T (s)f)(τ) = (T (s)f)(t+ τ)

= f(t+ s+ τ)

Hence T (t+ s) = T (t) ◦ T (s) for all t, s ≥ 0.

iii. For the continuity,

|T (t)f − f | = Sup
s≥0
|f(t+ s)− f(s)|.

Since f is uniformly continuous, then for all ε > 0 ∃ δ > 0 such that |t1 − t2| < δ ⇒

|f(t1)− f(t2)| < ε.

Take t1 = t+ s and t2 = s, then if

0 < t < δ ⇒ for all s ≥ 0, |f(t+ s)− f(s)| < ε

⇒ Sup
s≥0
|f(t+ s)− f(s)| ≤ ε

⇒ |T (t)f(s)− f(s)| −→ 0.
t→0

It is worthnoting that not every (T (t))t≥0 is given by an exponential function.

Claim 2: There does not exist A ∈ L(X) such that T (t) = etA. Assume that there exist

A ∈ L(X) such that T (t) = etA ⇒ d
dt
T (t) = d

dt
etA = AetA. To prove this claim, we give a

lemma that will be used in the process of proving it.

Lemma: Let ρ :]a, b[−→ X be continuous such that D+ρ (right derivative) exists and is

continuous on ]a, b[, then ρ is a C1function on ]a, b[.

13



Let f ∈ X such that

T (t)f − f
t

−→
t→0+

Af on X.

Then for all s ≥ 0,

(T (t)f)(s)− f(s)

t
−→
t→0+

(Af)(s)

⇒ f(t+ s)− f(s)

t
−→
t→0+

(Af)(s).

But

f(t+ s)− f(s)

t
−→
t→0+

D+f(s).

Hence, (Af)(s) = (D+f)(s) (Uniqueness of limit). By Lemma, we get that f is a C1function

and Af = f ′, then D(A) ⊆ {f ∈ C1 ∩X : f ′ ∈ X}.

For the converse, let f ∈ C1 ∩X such that f ′ ∈ X,

|T (t)f − f
t

− f ′| = |f(t+ s)− f(s)

t
− f ′(s)|

= |f(t+ s)− f(s)− tf ′(s)
t

|.

Let ρ(t) = f(t+ s)− tf ′(s), by Mean-Value theorem,

|ρ(t)− ρ(0)| ≤ t Sup
s∈[0,t]

|ρ′(s)|.

And,

|ρ(t)− ρ(0)| = |f(t+ s)− tf ′(s)− f(s)|

≤ t Sup
s∈[0,t]

|f ′(t+ s)− f ′(s)|

Sup
s≥0
|f(t+ s)− f(s)− tf ′(s)

t
| ≤ Sup

s≥0
Sup
s∈[0,t]

|f ′(t+s)−f ′(s)| −→
t→0

0 since f is uniformly continuous.

⇒ D(A) ⊆ {f ∈ C1∩X : f ′ ∈ X} and the equality follows. This cannot be possible because

Af = f ′ is not bounded on X. Therefore there does not exist A ∈ L(X) such that T (t) = etA.

Claim 3: Let A be defined by D(A) ⊆ {f ∈ C1 ∩ X : f ′ ∈ X}, Af = f ′ then, A is the

14



infinitesimal generator of (T (t))t≥0. Infact, let f ∈ D(A), there exist g ∈ X such that

lim
t→0+

T (t)f − f
t

= Af = g

⇒ (T (t)f)(s)− f(s)

t
−→
t→0+

(Af)(s) = g(s).

But, f(t+s)−f(s)
t

−→
t→0+

d+f(s)
ds

, hence d+f(s)
ds

= g(s) for all s ≥ 0, ⇒ f is a C1function and

f ′ = g.�
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Chapter 3

HILLE-YOSIDA THEOREM

The next natural question is to see if an unbounded operator on X is the generator of a

C0−semigroup. The following theorem is central in the semigroup theory hereby provid-

ing a clear answer to this question. This characterizes the infinitesimal generator of a C0

semigroup.

Definition 3.0.1. Let (T (t))t≥0 be a C0−semigroup, since ||T (t)|| ≤Meαt, M ≥ 1, α ≥ 0

i. if α = 0 , T (t) is uniformly bounded.

ii. if α = 0 and M = 1, T (t) is called C0−semigroup of contractions.

If A is a linear (not necessarily bounded) operator in X, the resolvent set of A, denoted by

ρ(A) defined as ρ(A) = {λ ∈ C : λI − A is invertible}. R(λ : A) = (λI − A)−1, λ ∈ ρ(A) is

called the resolvent of A.

Theorem 3.0.2. A linear (unbounded) operator A is the infinitesimal generator of a C0−semigroup

of contractions (T (t))t≥0 , if and only if

i. A is closed and D(A) = X.

ii. ρ(A) ⊇]0,∞[ and ∀ λ > 0, ‖R(λ : A)‖ ≤ 1
λ
.

Proof:

Assume A is the infinitesimal generator of a C0 semigroup ,by Corollary 2.0.4, it is closed

and D(A) = X. For λ > 0 and x ∈ X , let R(λ)x =
∫∞

0
e−λtT (t)xdt.

Since t→ T (t)x is continuous and uniformly bounded, R(λ) defines a bounded linear opera-

tor. That is ,

‖R(λ)x‖ ≤
∫ ∞

0

e−λt‖T (t)x‖dt

≤ ‖x‖
∫ ∞

0

e−λtdt since (‖T (t)x‖ ≤ ‖x‖)

=
1

λ
‖x‖.
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For any h > 0,

T (h)− I
h

R(λ)x =
T (h)− I

h

∫ ∞
0

e−λtT (t)xdt

=
1

h

∫ ∞
0

e−λt (T (t+ h)x− T (t)x) dt

=
1

h

∫ ∞
0

e−λtT (t+ h)xdt− 1

h

∫ ∞
0

e−λtT (t)xdt

=
1

h

∫ ∞
h

e−λ(t−h)T (t)xdt− 1

h

∫ ∞
0

e−λtT (t)xdt

=
1

h

∫ ∞
0

e−λ(t−h)T (t)xdt− 1

h

∫ h

0

e−λ(t−h)T (t)xdt− 1

h

∫ ∞
0

e−λtT (t)xdt

=
1

h

∫ ∞
0

(
e−λ(t−h) − e−λt

)
T (t)xdt− 1

h

∫ h

0

e−λ(t−h)T (t)xdt

=
eλh − 1

h

∫ ∞
0

e−λtT (t)xdt− eλh

h

∫ h

0

e−λtT (t)xdt.

Taking limit h ↓ 0, R.H.S = λR(λ)x− T (0)x = λR(λ)x− x,

⇒ for all x ∈ X and λ > 0, R(λ)x ∈ D(A) and

AR(λ) = λR(λ)− I

⇒ λR(λ)− AR(λ) = I

⇒ (λ− AI)R(λ) = I.

Also , for all x ∈ D(A), we have

R(λ)Ax =

∫ ∞
0

e−λtT (t)Axdt =

∫ ∞
0

e−λtAT (t)xdt

= A

(∫ ∞
0

e−λtT (t)xdt

)
= AR(λ)x.

Therefore , since A is closed , R(λ)(λ− AI)x = x for all x ∈ D(A).

Thus, R(λ) is the inverse of λI − A ∀λ > 0 , hence conditions i. and ii. are sufficient for A

to be the infinitesimal generator.

Lemma 3.0.3. Let A satisfy conditions i. and ii. and R(λ : A) = (λI − A)−1 . Then

lim
λ→∞

λR(λ : A)x = x for all x ∈ X.
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Proof:

Let x ∈ D(A),

‖λR(λ : A)x− x‖ = ‖AR(λ : A)x‖

= ‖R(λ : A)Ax‖

≤ ‖R(λ : A)‖‖Ax‖

≤ 1

λ
‖Ax‖ −→

λ→∞
0.

We have that λR(λ : A)x −→ x for x ∈ D(A),

Let ε > 0, y ∈ X, by density of D(A) , ∃ x ∈ D(A) such that ‖x− y‖ < ε.

Now,

‖λR(λ : A)y − y‖ ≤ ‖λR(λ : A)y − λR(λ : A)x‖+ ‖λR(λ : A)x− x‖+ ‖x− y‖

≤ ‖y − x‖+ ‖λR(λ : A)x− x‖+ ‖x− y‖

≤ 2ε+ ‖λR(λ : A)x− x‖.

But ‖λR(λ : A)x− x‖ < ε for λ > λ0 (x ∈ D(A)), then we have

‖λR(λ : A)y − y‖ ≤ 3ε for λ > λ0

which means that λR(λ : A)y −→
λ→∞

y.�

3.1 Yosida Approximation

Now, define Yosida Approximation of A by

Aλ = λAR(λ : A) = λ2R(λ : A)− λI for all λ > 0.

Also,

lim
λ→∞

Aλx = lim
λ→∞

λAR(λ : A)x = lim
λ→∞

λR(λ : A)Ax = Ax for all x ∈ D(A).

Lemma 3.1.1. If Aλ is the Yosida Approximation of A, then Aλ is the infinitesimal genera-

tor of a uniformly continuous semigroup of contractions etAλ . And, for all x ∈ X λ, µ > 0

, we have

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖.
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Proof:

Aλ is obviously a bounded linear operator and thus is the infinitesimal generator of (etAλ)t≥0

Therefore ‖etAλ‖ = ‖et(λ2R(λ:A)−λI)‖ = ‖e−λtet(λ2R(λ:A))‖

= e−λt‖et(λ2R(λ:A))‖ ≤ e−λtetλ
2‖R(λ:A)‖

≤ e−λtetλ
2( 1
λ

) = e−λteλt = e0 = I.

Therefore etAλ is a semigroup of contractions.

Also, it is clear that etAλ , etAµ , Aλ and Aµ commute with each other. Then,

‖etAλx− etAµx‖ = ‖
∫ 1

0

d

ds

(
etsAλe(1−s)Aµx

)
ds‖

≤
∫ 1

0

t‖ (Aλx− Aµx) etsAλet(1−s)Aµ‖ds

≤ t‖Aλx− Aµx‖
∫ 1

0

‖etsAλet(1−s)Aµ‖ds

≤ t‖Aλx− Aµx‖
∫ 1

0

1ds = t‖Aλx− Aµx‖.�

Continuation of Theorem 3.1 (Sufficiency):

Let x ∈ D(A),

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖ (3.1.1)

≤ t‖Aλx− Ax‖+ t‖Ax− Aµx‖.

Claim1: For x ∈ X, lim
λ→∞

etAλx = T (t)x for all t ≥ .0

Proof : Let x ∈ D(A), by 3.1.1 and Yosida Approximation, we have (etAλx)λ>0 as a Cauchy

sequence for all x ∈ D(A).

Thus, given ε > 0, ∃ δ(ε) > 0 such that

‖etAλx− etAµx‖ < ε

3
, µ > δ, for all x ∈ D(A).

Let lim
λ→∞

etAλx = T (t)x,

Since D(A) is dense in X, for x ∈ X, ε > 0 ∃y ∈ D(A) such that ‖x− y‖ < ε
3
.
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Then, we have

‖etAλx− etAµx‖ ≤ ‖etAλx− etAµy‖+ ‖etAλy − etAµy‖+ ‖etAλy − etAµx‖ for all λ, µ > δ

≤ ‖x− y‖+
ε

3
+ ‖y − x‖

<
ε

3
+
ε

3
+
ε

3
= ε for all λ, µ > δ.

Hence, (etAλx)λ>0 is a Cauchy sequence for all x ∈ X, since x ∈ X is arbitrary chosen.

Also,‖etAλ‖ ≤ 1 for all t > 0, we then get lim
λ→∞

etAλx = T (t)x for all x ∈ X. Obviously,

⇒ etAλx converges as λ→∞ and is uniform on bounded intervals.

Since D(A) is dense in X and ‖etAλ‖ ≤ 1 , then

lim
λ→∞

etAλx = T (t)x ∀ ∈ X.

Obviously , (T (t))t≥0 satisfies the semigroup property and ‖T (t)‖ ≤ 1. Also, t → T (t)x is

continuous ∀ t ≥ 0 as the uniform limit of the continuous functions t→ etAλx.

Therefore, (T (t))t≥0 is a semigroup of contractions on X.

Claim: A is the infinitesimal generator of (T (t))t≥0.

∀ x ∈ D(A),

T (t)x− x = lim
λ→∞

(
etAλx− x

)
= lim

λ→∞

∫ t

0

etAλxAλxds =

∫ t

0

T (s)Axds.

Therefore,

lim
t→0+

T (t)x− x
t

= lim
t→0+

1

t

∫ t

0

T (s)Axds ∀ x ∈ D(A).

Hence, A is the infintesimal generator of (T (t))t≥0.�

From the preceding proof, if A is an infinitesimal generator of C0 semigroup of contractions

T (t) and Aλ is the Yosida Approximation of A, then

T (t)x = lim
λ→∞

etAλx ∀ x ∈ X.

Also, the resolvent set of A , ρ(A) ⊇ {λ : λ > 0} and for such λ

‖R(λ : A)‖ ≤ 1

λ
.

Claim: A is unique.

Let C be the infinitesimal generator of (T (t))t≥0. We claim that C = A. Let x ∈ D(A),

etAλx− x =

∫ t

0

esAλAλxds.
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As λ→∞,

⇒ T (t)x− x
t

=
1

t

∫ t

0

T (s)Axds

⇒ Cx = Ax.

Hence, D(A) ⊆ D(C). Now. we show that D(C) ⊆ D(A), since C is the generator of

(T (t))t≥0, then 1 ∈ ρ(C).

(I − C)D(A) = (I − C)D(C) = X

(I − C)−1X = D(A) = D(C)

then A ≡ C.
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Chapter 4

LUMER-PHILLIPS THEOREM

In the previous chapter, we show the Hille-Yosida characterization of the infinitesimal gen-

erator of a C0 semigroup of contractions. Now in this chapter, we discuss another charac-

terization of infinitesimal generators. hence, the need to define some preliminaries.

4.1 Dissipativeness

We state and prove an important theorem that is crucial in this chapter.

Definition 4.1.1. A linear operator A is dissipative if ‖(λI−A)x‖ ≥ λ‖x‖ for all x ∈ D(A).

Examples of Dissipative operator

1. X = l2 = {x = (xn)n≥0 ⊂ R :
∞∑
n=0

|xn|2 <∞}. Let (an)n≥0 ⊂ R− and define

A : D(A) ⊂ l2 −→ l2

let x = (xn)n, Ax = (anxn)n and D(A) = {(xn)n ∈ l2 : (anxn)n ∈ l2}.

Then, A is dissipative.

Proof

Let λ > 0, then

‖(λI − A)x‖2 = λ2‖x‖2 − 2〈λx,Ax〉+ ‖Ax‖2.

Since 〈λx,Ax〉 =
∑
anλnx

2
n ≤ 0 if an ≤ 0. Therefore ‖(λI−A)x‖2 ≥ λ2‖x‖2 which implies ‖(λI−

A)x‖ ≥ λ‖x‖ for all x ∈ D(A).

2. Ω is smooth and open in R, m : Ω −→ R− a measurable function. L2(Ω) = {f : Ω →

Rn measurable :
∫

Ω
f 2 < ∞}. A : D(A) ⊂ L2(Ω) → L2(Ω) be defined by Af = mf

and D(A) = {f ∈ L2(Ω) : mf ∈ L2(Ω)} then A is dissipative.
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Proof

For λ > 0, then

‖(λI − A)f‖2 = λ2‖f‖2 − 2〈λf,Af〉+ ‖Af‖2 ≥ λ2‖f‖2.

Hence ‖(λI − A)f‖2 ≥ λ2‖f‖2 =⇒ ‖(λI − A)f‖ ≥ λ‖f‖.�

Theorem 4.1.2. (Lumer-Phillips): Let A be a linear operator with dense domain D(A),

if A is dissipative and ∃ λ0 > 0 such that the range R(λ0I −A) of λ0I −A is X, then A is

the infinitesimal generator of a C0 semigroup of contractions on X.

Proof:

i. Let λ > 0,by Definition 4.1.1 ,‖(λI−A)x‖ ≥ λ‖x‖ ∀ x ∈ D(A). Since R(λ0I−A) =

X, it follows that with λ = λ0, (λ0I − A)−1 is a bounded linear operator and hence closed.

Also, λ0I − A is closed and therefore A is closed. If R(λI − A) = X ∀ λ > 0, then

ρ(A) ⊇ R+and ‖R(λ : A)‖ ≤ 1
λ
. Consequently, A is the infinitesimal generator of a C0

semigroup of contractions on X by Hille-Yosida Theorem.

To complete the proof, it remains to show that R(λI − A) = X ∀ λ > 0, consider the set

Θ = {λ : λ ∈ R+ and R(λI − A) = X}. Let λ ∈ Θ, λ ∈ ρ(A) (obviously). Since ρ(A) is

open, ∃ a neighbourhood O of λ such that O ⊆ ρ(A) and O ∩ R+ ⊆ Θ. Hence, Θ is open.

Also, let λn ∈ Θ, λn → λ > 0. For every y ∈ X ∃xn ∈ D(A) such that λnxn − Axn = y.

λn‖xn‖ ≤ ‖(λnI − A)xn‖

= ‖y‖

⇒ ‖xn‖ ≤ λ−1
n ‖y‖

≤ c (c > 0).

Now

λm‖xn − xm‖ ≤ ‖λm(xn − xm)− A(xn − xm)‖.
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Since, λnxn − Axn = y and λmxm − Axm = y,

⇒ λnxn − Axn = λmxm − Axm

⇒ λnxn − λmxm = A(xn − xm)

Therefore λm‖xn − xm‖ ≤ ‖λm(xn − xm)− (λnxn − λmxm)‖

= ‖λmxn − λnxn‖

= ‖λn − λm‖‖xn‖

≤ c‖λn − λm‖.

Hence, (xn) is Cauchy. Let xn −→ x, then

Axn −→ λx− y.

Since A is closed, x ∈ D(A) and λx−Ax = y, then R(λI −A) = X and λ ∈ Θ. Θ is closed

and open in ]0,∞[ , Θ 6= φ since λ ∈ Θ and ]0,∞[ is connected, then Θ =]0,∞[.

4.2 Maximal monotone operators on Hilbert spaces

Definition 4.2.1. A linear unbounded operator A on Hilbert space H is said to be mono-

tone if for all x ∈ D(A), 〈Ax, x〉 ≥ 0. A linear unbounded operator A on X is said to be

maximal monotone if it is monotone and ∃ λ0 > 0 such that R(λ0I + A) = H that is

∀ f ∈ H, ∃ x ∈ D(A) : x+ Ax = f.

Theorem 4.2.2. In Hilbert spaces, a linear operator −A is dissipative if and only if A is

monotone.

Proof: Let A be an operator on Hilbert space H. If A is monotone then,

‖(λI + A)x‖2 = λ2‖x‖2 + 2λ〈x,Ax〉+ ‖Ax‖2

⇒ ‖(λI + A)x‖2 ≥ λ2‖x‖2 (〈x,Ax〉 ≥ 0)

⇒ ‖(λI + A)x‖ ≥ λ‖x‖ for all λ > 0 and x ∈ D(A).

This implies that −A is dissipative.
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Now for the converse, A is maximal monotone ⇒ −A is the generator of a Co semigroup of

contractions. Infact, A is maximal ⇒ D(A) = H. By Lumer-Philipps’theorem, we get that

−A is the generator of a Co semigroup of contractions on H. Therefore −A is dissipative.

This motivates the next definition.

Before we give examples of maximal monotone operators, it is necessary to state two theorems

that will be used in proving the examples.

Theorem 4.2.3. (Green’s formula): Let Ω be smooth , u ∈ H2(Ω) and v ∈ H1(Ω) where

H2(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for α ∈ Nn : |α| ≤ 2} ,Then

−
∫

Ω

v∆u dx =

∫
Ω

∇u· ∇v −
∫
∂Ω

∂u

∂n
· v dσ,

∂u

∂n
= ∇u · n̂ where n̂ is the unit normal vector over ∂Ω.

Theorem 4.2.4. (Lax-Milgram’s Theorem): Let H be a real Hilbert space and a :

H × H −→ R be bilinear, continuous and coercive. let f ∈ H ′
(topological dual set of H),

Then ∃! u ∈ H such that

a(u, v) = 〈f, v〉 for all v ∈ H.

Remark: a is coercive if ∃α > 0 such that a(u, v) ≥ α|u|2H for all u ∈ H.

4.3 Examples of Maximal Monotone Operators

1. Laplacian Operator with Dirichlet boundary condition

Let Ω be smooth and open in Rn. −∆ : H2(Ω) ∩H1
0 (Ω) −→ L2(Ω) defined by

−∆u = −
n∑
i=1

∂2u

∂x2
i

H1
0 (Ω) = {u ∈ H1(Ω) : u |∂Ω= 0}

then −∆ is maximal monotone.

Proof: L2(Ω) = {g : Ω −→ Rn measurable :
∫

Ω
g2 < ∞} and H2(Ω) = {g ∈ L2(Ω) :

∂f
∂xi
, ∂2f
∂xi∂xj

∈ L2(Ω) ∀ i, j = 1, ....., n}.
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Hence A = −∆, D(A) = H2(Ω) ∩H1
0 (Ω),

〈u,Au〉 =

∫
Ω

u(−∆u)

=

∫
Ω

∇u· ∇u−
∫
∂Ω

∂u

∂n
·u dσ (Green′s formula)

=

∫
Ω

‖∇u‖2 (u |∂Ω= 0)

≥ 0.

Therefore A is monotone.

Now, we show that R(I−∆) = L2(Ω), that is for all f ∈ L2(Ω) there exists u ∈ H2(Ω)

such that u−∆u = f. Since u |∂Ω= 0, u ∈ H1
0 (Ω) where H1

0 (Ω) = {u ∈ H1(Ω) : u |∂Ω=

0}.

Claim: H1
0 (Ω) is a Hilbert space.

H1
0 (Ω) is closed since H1

0 (Ω) = D(A)|H1(Ω),and H1
o (Ω) is provided with a norm defined

as

‖u‖H1
0 (Ω) =

(∫
Ω

|∇u|2
) 1

2

.

It is complete.

The inner product is given as

〈u, v〉H1
0 (Ω) =

∫
Ω

∇u · ∇vdx.

Let a(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R be defined as

(u, v) −→ a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

uv for all u, v ∈ H1
0 (Ω).

Then a is continuous, bilinear and coercive (because a is exactly the inner product in

H1(Ω)).

Claim: L ∈ (H1(Ω))′ where

L : H1
0 (Ω) −→ R

v −→ L(v) =

∫
Ω

vf
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∫
Ω

vf ≤ ‖v‖L2(Ω)‖f‖L2(Ω) ≤ ‖v‖H1(Ω)‖f‖L2(Ω) ⇒ f ∈ (H1(Ω))′.

Hence, L ∈ (H1(Ω))′, by Lax-Miligram’s theorem, ∃! u ∈ H1
0 (Ω) such that a(u, v) =

〈f, v〉 ∀ v ∈ H1
0 (Ω), f ∈ L2(Ω). Therefore, ∀ f ∈ L2(Ω) ∃! u ∈ H2(Ω) ∩ H1

0 (Ω) such

that u − ∆u = f and then R(I − ∆) = L2(Ω). Therefore A is a maximal monotone

operator.�

2. Laplacian Operator with Neumann boundary condition

Let Ω be a smooth and open set in Rn. −∆ : D(∆) −→ L2(Ω) defined by

−∆u = −
n∑
i=1

∂2u

∂x2
i

D(∆) = {u ∈ H2(Ω) :
∂u

∂n
= 0}.

Then −∆ is maximal monotone.

Proof:

〈u,Au〉 =

∫
Ω

u(−∆u)

=

∫
Ω

∇u· ∇u−
∫
∂Ω

∂u

∂n
·u dσ (Green′s formula)

=

∫
Ω

‖∇u‖2 (
∂u

∂n
= 0 on ∂Ω)

≥ 0.

Therefore A is monotone.

Define a(·, ·) : H1(Ω)×H1(Ω)→ R be defined as

a(u, v) =

∫
Ω

∇u · ∇v +

∫
∂Ω

uv for all u, v ∈ H1(Ω).

a(u, v) is continuous, bilinear and coercive (from the previous example), hence by Lax-

Miligram’s theorem, ∃! u ∈ H2(Ω) such that a(u, v) = 〈f, v〉 ∀ v ∈ H2(Ω), f ∈ L2(Ω).

Then, R(I −∆) = L2(Ω). Therefore A is a maximum monotone operator.
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4.4 APPLICATIONS

Now, we discuss how the C0−semigroups solve some partial differential equations.

Theorem 4.4.1. Let A be a linear unbounded operator on a real Hilbert space. A generates

a C0−semigroup of contraction if and if only −A is maximal monotone.

Heat Equation

1. Consider an heat equation on Ω an open bounded set of Rn with smooth boundary

and with Dirichlet’s condition given as follows:

∂u

∂t
−∆u = 0 on Ω× [0,∞[ (4.4.1)

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω

u(x, 0) = u0(x) on Ω, u0 ∈ L2(Ω).

Rewriting equation 4.4.1 in evolution form,

du(t)

dt
+ Au(t) = 0, t ≥ 0

u(0) = u0 ∈ X.

For u0 ∈ H2(Ω) ∩ H1
0 (Ω), there exists a solution u(x, t) = [T (t)u0](x) that satisfies

equation 4.4.1

We have the form du
dt

+Au = 0 where A = −∆. The suitable defined space is X = L2(Ω)

with ‖ · ‖L2(Ω) and D(A) = H2(Ω) ∩H1
0 (Ω). From example 1, it has been proved that

A = −∆ is maximal monotone, hence by Theorem 4.4.1 , ∆ generates a C0−semigroup

of contractions on L2(Ω).

2. Consider a heat equation on Ω an open bounded set with smooth boundary and with
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Neumann’s condition given as

∂u

∂t
−∆u = 0 on Ω×]0,∞[ (4.4.2)

∂

∂n
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω (4.4.3)

u(x, 0) = u0(x) on Ω, u0 ∈ L2(Ω)

Also, the suitable defined space is X = L2(Ω) with ‖ · ‖L2(Ω) and D(A) = {u ∈ H2(Ω) :

∂u
∂n

= 0 on ∂Ω}. Then, equation 4.4.2 takes the following form

du

dt
+ Au = 0 where A = −∆.

−∆ is maximal monotone on example 2, hence ∆ is the generator of a C0−semigroup

of contractions that satisfies equation 4.4.2. The solution of equation 4.4.2 is given by

u(x, t) = [T (t)u0](x) for u0 ∈ D(Ω) = {u ∈ H2(Ω) : ∂u
∂n

= 0 on ∂Ω}.

4.5 CONCLUSION

It has been shown with proofs that continuous semigroups of contractions serve as solutions

to some partial differential equations with the necessary conditions satified. Hence, their

importances in the theory of partial differential equations cannot be overemphasized.
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