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ABSTRACT 

The proliferation of satellite networks for various critical applications in the space sector has 

heightened the need for robust cybersecurity measures to safeguard these systems from malicious 

intrusions. An intrusion detection system serves as the backbone for providing high-level network 

security. Different network attacks have been discovered and are gradually becoming more 

sophisticated and complicated. Despite the availability of many existing intrusion detection 

systems, intuitive cybersecurity systems are needed due to alarmingly increasing intrusion attacks. 

Furthermore, with new intrusion attacks, the efficacy of existing systems is depleted unless they 

evolve. This study conducts experiments that compare three types of supervised machine learning 

algorithms, including Decision Tree (CART), SVM (Black-box), and KNN (Lazy learner). Thus, 

these different algorithms were compared using various evaluation metrics, which are accuracy, 

recall, false alarm rate, and precision, and manual feature selections were done to select important 

features from the dataset that increase relevance and reduce complexity along with the Training 

time complexity on three intrusion datasets (STIN, UNSW-NB15, and CIC-

IDS2017(Wednesday)). CART DT achieves an accuracy of 93.42% with 31 features of the STIN 

dataset in 63.63 seconds, an accuracy of 93.13% with 8 features in 6.22 seconds, 76.63% with 42 

features of the UNSW-NB15 dataset in 48.5 seconds, 76.63% with 6 features in 3.71 seconds, 

99.87% with 68 features of the CIC-IDS 2017 Wednesday dataset in 59.29 seconds, 95.80% with 

16 features in 4.96 seconds. SVM achieves an accuracy of 87.41% with 31 features of the STIN 

dataset in 559.51 seconds, an accuracy of 87.04% with 8 features in 286.78 seconds, 81.51% with 

194 features of the UNSW-NB15 dataset in 421.06 seconds, 78.90% with 6 features in 176.05 

seconds, 98.48% with 68 features of the CIC-IDS 2017 Wednesday dataset in 505.13 seconds, 

96.92% with 16 features in 209.45 seconds. KNN achieves an accuracy of 86.28% with 194 

features of the UNSW-NB15 dataset in 236.09 seconds.  The results of this experiment give 

valuable insight for machine learning researchers into building a time-efficient and effective IDS 

using supervised machine learning for the Space sector. Although the secondary datasets used in 

this study provided good results, the use of primary datasets is suggested to enhance and improve 

the accuracy, integrity, and real-timeliness of the threat intelligence and resilience of the satellite 

networks in the space industry. 

 

Keywords: Intrusion detection system (IDS), Satellite network, Machine learning, Cyber Security, 

Cyber Attacks, STIN, UNSW-NB15, and CIC-IDS2017 Dataset. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

In today’s interconnected world, a fast-proliferating network of satellites forms the critical 

infrastructure that supports global communication, navigation, weather forecasting, defensive 

operations, and more (Sylvester, 2024). Today’s global space economy is enormous, forecasted to 

total more than $600 billion annually in 2024 (Paul, 2024). Satellites orbiting Earth are pivotal for 

everything from GPS navigation to international banking transactions, making them indispensable 

assets in our daily lives and global infrastructure. The industry has experienced a wave of 

commercialisation, with numerous start-up companies emerging and attracting private 

investments. Public market interest has also enabled leading space start-ups to access large 

amounts of capital (Jora et al., 2023).  

The space industry has been growing rapidly in recent years in terms of revenues and launches. 

According to a report by the Space Foundation, the space economy was worth $469 billion in 

2021, a 9% increase from 2020 (Ellerbeck, 2022). The report says over 1,000 spacecraft were put 

into orbit in the first six months of 2021—more than were launched in the first 52 years of space 

exploration (Ellerbeck, 2022). 

It is crucial to recognise that satellites are more vulnerable than commonly perceived. According 

to the National Institute of Standards and Technology (NIST), a cyber-attack is a serious threat. It 

is defined as an attack conducted via cyberspace that targets an enterprise’s use of cyberspace to 

disrupt, disable, destroy, or maliciously control a computing environment/infrastructure to 

compromise the integrity of the data or steal controlled information (Aerospace Corporation, 
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2022). Cyber-attacks are particularly attractive to adversaries in conflict situations. The boundary 

is often considered the communications link for satellites, i.e., the radio frequency link or the 

ground system. If this boundary is breached, there is little internal protection within the satellite, 

allowing an adversary to operate freely inside the system — reminiscent of the early days of 

traditional cybersecurity when border firewalls were the sole protection from intrusion. 

Cyber-attacks have traditionally been associated with ransomware, wherein hackers attempt to 

breach records, releasing them only after ransom payment. In order to give an idea of the impact 

of these kinds of attacks, an official UK source registered eighty-three data breaches in February 

2022 alone, with over five million records at risk (ITGovernance, 2022). Just before the conflict 

in Ukraine, an increased number of such attacks were registered targeting Ukrainian banks and 

government institutions in the second half of February 2022. Several countries are looking into 

counter-space capabilities that include electronic methods. Compared to anti-satellite (ASAT) 

capabilities, interference with a satellite through a cyber-attack can be conducted in a way that is 

cheaper, faster, and more difficult to trace (Rajagopalan, 2019). Cyber-attacks on satellites often 

relate to accessing the satellite system via ground stations. Several attempts, often considered by 

cyber-experts as experimental tests and preparatory, are known but not widely reported by satellite 

operators for obvious commercial reasons. 

In addition, compromised or by-design malicious satellites can be orchestrated to target benign 

satellites, taking advantage of the limited security measures deployed onboard for inter-satellite 

network communication. With regards to the continued operation of a satellite, (Distributed) 

Denial of Service (DDoS) attacks (Greenberg, 2022) can be caused by increased network 

interactions, exploitation of communication protocol weaknesses, or tampering with the Operating 

System (OS)/Firmware, resulting in a non-functional state known as bricks. Power depletion is 
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another prominent attack that can affect smart satellites, as it is a constrained resource that can be 

affected by unnecessarily increasing the workload of the satellite and its sensors, which can be 

achieved either through dedicated cyber-attacks or as a by-product (consequence) of DoS and 

DDoS attacks. Furthermore, as satellites transmit data between ground stations, eavesdropping 

attacks such as Man-In-The-Middle (MITM) and data manipulation attacks can impact the 

confidentiality and integrity of smart satellites.  

The space sector has increasingly relied on computer systems and networks to operate and control 

their spacecraft and satellites. As a result, cyberattacks on the space industry have become a 

growing concern, as they can cause significant damage to equipment and infrastructure and 

compromise sensitive data and information (Jordan & Mitchell, 2015). Therefore, there is a need 

for effective cybersecurity measures to prevent and mitigate the impact of cyberattacks. 

Cybersecurity threats to the space industry come from various sources, including nation-states, 

criminal organizations, and individual hackers. Cyberattacks can take many forms, such as 

malware, phishing, social engineering, and denial-of-service (DoS) attacks (Jordan & Mitchell, 

2015). Moreover, the consequences of cyberattacks can be severe, ranging from data breaches to 

system shutdowns, physical destruction, and even endangering human life in space.  

Traditional security methods, such as firewalls and intrusion detection systems, are often 

inadequate to address the evolving threats posed by cybercriminals and nation-states. These 

attackers constantly develop new techniques and exploits, making it difficult for traditional 

security measures to keep pace (Awuor, 2023; Muhammad et al., 2022). Also, intrusion detection 

is important to ensure space-based wireless network security. In recent years, with advances in 

artificial intelligence (AI), intrusion detection methods using AI have been gradually proposed. 

Usually, these methods involve significant computing, communications, and storage resources. 
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Machine learning (ML) offers a promising approach for improving cybersecurity. ML algorithms 

can learn from large amounts of data to identify patterns and anomalies that may indicate an 

impending cyberattack. This allows for more proactive and effective security measures (Machine 

learning (ML) in cybersecurity, 2023; Apruzzese et al., 2023). This study addresses this need by 

evaluating the machine-learning model for predicting satellite network cyberattacks. 

Murphy (2012) discussed the probabilistic perspective of machine learning, which involves 

modelling uncertainty in data and making predictions based on statistical inference. This 

perspective benefits cybersecurity, where cyberattacks are highly uncertain and unpredictable. By 

modelling uncertainty and probability, machine learning models can make more accurate 

predictions and improve the overall effectiveness of cybersecurity measures. 

One of the challenges in machine learning is bias and fairness. Mehrabi et al. (2022) discussed the 

issue of bias in machine learning and its potential impact on cybersecurity. Bias can occur when 

machine learning models are trained on biased data, resulting in inaccurate predictions and 

inappropriate decision-making. Therefore, it is crucial to ensure that machine learning models are 

trained on unbiased and representative data to avoid bias and improve the fairness of the prediction. 

1.2 STATEMENT OF THE PROBLEM 

It is well known that the space sector is critical to the national economy, even at the global level; 

therefore, any cyberattacks against the space industry will cause a colossal waste of economic 

resources and potential data breaches to severe disruptions of satellite communications and 

compromise of critical infrastructure which can lead to economic loss, loss of property, and even 

loss of lives. 
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However, efforts have been continuously made to protect the satellite network using traditional 

and artificial intelligence techniques. Due to the prevailing and continuous incidence of attacks, 

there have been limited innovative approaches to combat security, especially in developing 

countries. Therefore, this research seeks to address the gap in current cybersecurity practices 

within the satellite system by evaluating intelligent intrusion detection system models capable of 

predicting and preemptively mitigating cyberattacks. 

1.3 AIM OF THE STUDY 

To evaluate machine learning models for intelligent intrusion detection systems to predict 

cyberattacks on satellite networks. 

1.4 SPECIFIC OBJECTIVES OF THE STUDY 

1. Acquire cyberattack datasets from the STIN, UNSWB15, and CICIDS2017 platforms to train 

and evaluate network intrusion detection. 

2. Analyze feature selection to identify relevant features that capture the characteristics of 

network traffic attacks. 

3. Train the datasets by evaluating and comparing the performance of Decision Trees (CART), 

K-nearest neighbours (KNN), and Support Vector Machines (SVM) to predict cyberattacks on 

satellite network systems. 

4. To compare the time complexity of the full feature set and the reduced feature selection set of 

the Decision Tree (CART), KNN, and SVM models. 

1.5   SCOPE OF THE STUDY 

This project evaluates machine learning models for detecting cyberattacks on satellite networks. It 

will utilize three established network traffic datasets (STIN, UNSWB15, and CICIDS2017) for 

training and testing. The project will encompass the following key areas: 
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 Data acquisition and preprocessing from the chosen datasets. 

 Implement and train three machine learning models (Decision Tree, KNN, SVM) for 

intrusion detection.  

 Evaluation of model performance using relevant metrics. 

 Comparison and analysis of the model's strengths and weaknesses. 

 Discussion of deployment considerations for satellite network. 

This thesis excludes real-world network traffic capture and analysis from satellite systems due to 

potential security concerns and data access limitations. 

1.6 JUSTIFICATION OF THE STUDY 

The space sector is a vital and growing sector of the global economy and a strategic domain for 

national security and scientific exploration. However, the satellite systems enabling these activities 

are increasingly vulnerable to cyberattacks, which can compromise their functionality, integrity, 

and availability. Cyberattacks on satellite systems can have severe consequences, such as 

disrupting critical services, damaging expensive assets, endangering human lives, and escalating 

conflicts. 

Therefore, effective and efficient methods for predicting cyberattacks on satellite networks are 

needed so that appropriate countermeasures can be taken in advance to prevent or mitigate 

potential damage. Machine learning is a promising technique for cyberattack prediction, as it can 

learn from data and detect patterns and anomalies that indicate malicious behaviour. 

The primary significance of this study is that it will provide an effective method for predicting 

cyberattacks in the space industry. Over the years, the space sector has suffered significant losses 

due to cyberattacks. For instance, in 2018, NASA reported a data breach that compromised social 
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security numbers, among other sensitive information. With machine learning, it is possible to 

analyze massive amounts of data to detect and predict cyberattacks before they occur. The work 

of Abaimov and Martellini (2022) highlights the importance of understanding machine learning in 

cybersecurity.  

It will also provide insight into the best machine-learning algorithms for predicting cyberattacks 

in the space industry. The study conducted by Sarker (2021) on machine learning algorithms, real-

world applications, and research directions shows that machine learning algorithms are diverse 

and can be used for different purposes. The appropriate machine learning algorithm selection is 

vital for developing a predictive model for cyberattacks in the space sector.  

1.7   SIGNIFICANCE OF THE STUDY 

However, significant cybersecurity implications must be considered as the space sector expands. 

The increasing reliance on satellites for critical services, such as communication and navigation 

systems, emphasizes the importance of ensuring their security (Hennecken, 2020). Satellites are 

vulnerable to cyber-attacks that can disrupt essential services and compromise their control, 

potentially leading to malfunctions or becoming space debris hazards. Therefore, prioritizing 

cybersecurity measures, including robust protocols and standards, is crucial to protect critical 

infrastructure, maintain service continuity, and prevent cyber-attacks (Bailey, 2020). Intrusion 

detection plays a significant role in space cybersecurity, helping to identify unexpected events or 

behaviours that may indicate equipment failures, malicious attacks, or environmental factors 

(Falco & Boschetti, 2021). 
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1.8   MOTIVATION FOR THE STUDY 

The rapid commercialization of space and increased ease and lower costs associated with 

launching satellites into space have resulted in global supply chains of privatized satellite networks 

for commercial and military purposes. It is an industry that extends to every sector of the economy 

and can contribute to sustainable development in regional areas (Brukardt, 2022). 

The requirement for robust space security is stringent and unique because space (pavor & 

Martinovic, 2019) 1) is a single point of failure for several industry sectors, increasing the number 

and capabilities of attackers 2) involves a complex supply chain and prolonged system lifecycle, 

rising malware backdoors 3) employs commercial off-the-shelf technology, bringing 

vulnerabilities from many platforms and 4) is a resource-constrained environment, seeking 

lightweight solutions more than terrestrial systems. This makes space security a unique challenge 

and an attractive target for cybercriminals.  

Intrusion detection has become increasingly crucial in satellites as cyber-attacks targeting space 

systems and infrastructures have grown in number and sophistication (Pearson, 2022). With the 

growing dependency of critical infrastructures, including communication, navigation, and 

surveillance, on space-based assets, the security of space systems directly impacts national 

security. The understanding and knowledge of space security, particularly in intrusion detection 

systems, are currently limited.  

1.9 OPERATIONAL DEFINITION OF TERMS 

1. Intrusion Detection System (IDS): This security technology detects unauthorized access or 

attacks on a network by monitoring and analyzing network traffic for suspicious activities 

and known attack patterns. 
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2. Machine Learning (ML) is a subset of artificial intelligence that enables systems to learn 

from data, identify patterns, and make decisions with minimal human intervention. This 

study uses ML models to predict cyberattacks on satellite networks. 

3. Cyberattacks: Deliberate attempts by individuals or organizations to breach the information 

systems of another individual or organization. These attacks can aim to steal, alter, or 

destroy data, disrupt operations, or gain unauthorized access to computing resources. 

Examples include malware, phishing, denial-of-service (DoS) attacks, and advanced 

persistent threats (APTs). 

4. Satellite: An artificial object placed into orbit around the Earth or another celestial body to 

perform specific functions, such as communication, weather monitoring, navigation, and 

scientific observation. Satellites have various instruments and communication systems to 

gather and transmit data to Earth. 

5. Satellite Networks: Specialized networks that use satellites to establish communication 

links between different geographic locations on Earth. These networks are crucial for 

global communications, broadcasting, navigation, and remote sensing. Satellite networks 

involve ground stations that transmit and receive data to and from the satellites, as well as 

the satellites that relay the data across vast distances. 

6. Feature Selection selects a subset of relevant features for model construction. It helps 

improve model accuracy and reduce overfitting. 

1.10 CHAPTERS PREVIEW 

The rest of this thesis is organized as follows: Chapter 2, which is a literature review, reviews 

existing research on intrusion detection systems, machine learning models, and their applications 

in cybersecurity, particularly in the context of satellite networks. It discusses the strengths and 

limitations of various approaches and identifies gaps that this study aims to address. Chapter 3, the 



10 

 

materials and methods, outlines this study's research design and procedures. It details the data 

collection process, pre-processing techniques, and the machine learning models employed. The 

chapter also describes the evaluation metrics used to assess model performance. Chapter 4, which 

is the results and discussion, presents the findings from evaluating the machine learning models. 

It includes a detailed analysis of each model's performance and a comparative analysis to 

determine the most suitable model for deployment in satellite network IDS. Chapter 5, which is 

the conclusion and recommendation, summarizes the research's key findings and discusses their 

implications for satellite network security. It offers recommendations for practitioners and outlines 

directions for future research, focusing on improving IDS effectiveness and adaptability to 

emerging cyber threats. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 SPACE 

SPACE, a concept that has intrigued humanity for centuries, represents not only the vast unknown 

regions beyond our planet but also the potential for groundbreaking discoveries and advancements 

in science and technology (Wang, 2023). Exploring space has always captured the imagination of 

people worldwide, pushing the boundaries of what we know about the universe and our place 

within it. From exploring distant galaxies to understanding the mysteries of black holes and dark 

matter, the study of space continues to reveal new wonders and challenges that inspire generations 

of scientists and explorers alike (Szolucha, 2022).  

The quest to unravel the secrets of the cosmos drives innovation and collaboration among nations, 

fostering a shared vision of expanding our knowledge and capabilities beyond Earth's borders. As 

we look up at the night sky, contemplating the infinite possibilities that space holds, we are 

reminded of the boundless opportunities for discovery and growth ahead (Dubosq et al., 2022). 

Satellites are one of the leading products and services in this sector, and the terms "space" and 

"satellite" are sometimes used interchangeably (Jora et al., 2023).  
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Figure 1: Space segments (Thangavel et al., 2022) 

2.2   SATELLITE 

A satellite is a self-contained communications device that can receive messages from Earth and 

retransmit them using a transponder, which functions as both a radio transmitter and receiver. 

According to the National Aeronautics and Space Administration (NASA), any natural space body 

or machine that orbits around a planet or a star is a satellite (What Is a Satellite, 2021). Thanks to 

the satellite, large areas of Earth may be seen at once.  As a result, satellites can gather data more 

quickly and efficiently than devices on the ground, as shown in Fig. 2. The ability of satellites to 

transmit signals from one place to numerous destinations is their fundamental benefit. As a result, 

“point-to-multipoint” communications like broadcasting are perfect for satellite technology (Rath 

& Mishra, 2020). Satellite communication is the best option for underserved and remote locations 

with dispersed populations because it does not require significant investments on the ground. A 

satellite node that an attacker has targeted becomes quickly exhausted and is challenging to repair. 
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Therefore, high-level protection for modern networks requires developing effective intrusion 

detection techniques. To address these issues, further classification algorithms are presented. 

Therefore, high-level protection for modern networks necessitates the development of effective 

intrusion detection techniques due to the rise in network intrusion attacks (Li et al., 2020). 

 To form a complete space system, the satellite(s) needs to be paired with a ground component, 

which is “a set of geographically distributed stations with powerful satellite communications 

(SATCOM) equipment that can send command and control telemetry to satellites and receive 

telemetry data from the satellite’s systems and instruments” (Hutchins, 2016). We usually refer 

to instructions sent to the satellite as telecommands and to collected data as telemetry.  

 

Figure 2: Satellite-terrestrial communication networks (Nguyen & Chang, 2019) 
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Depending on the size and equipment present on board, the intended functionality of the satellite 

can include a wide variety of actions: for example, they can be used in communication to relay 

audio or video signals, they can collect information about Earth’s surface (such as pictures or 

meteorological information), or the military can use them to survey areas of interest. Satellites can 

be classified either by their functionality (communication, Earth observation, Global Navigation 

Satellite Systems - GNSS, etc.), their distance from the Earth’s surface (Low Earth Orbit - between 

160 and 1000 km, Middle Earth Orbit - up to 35786 km, High Earth Orbit - above 35786 km and 

Geostationary Orbit - at exactly 35786 km) or by their size (NanoSats – up to 10 kg, SmallSats - 

up to 500 kg etc.) (Types of Satellites and Applications, 2021). 

However, the satellite can be divided into two major parts: the platform and the payload. The 

platform is a mostly standardized part of the satellite that provides the structural foundation and 

equipment necessary for the satellite to endure outer space. The payload is usually mission-specific 

and highly specialized, providing the satellite's logical and functional capabilities to achieve its 

intended goal. 

2.2.1 Architecture of Satellite 

The space segment of a satellite architecture is one of the three main components of a satellite 

system. This segment comprises the satellites and their associated subsystems, such as power, 

propulsion, attitude control, payload, and telemetry. The satellites are launched into specific orbits 

depending on their intended function and coverage area. For example, GEO satellites support 

business in navigation, data, mobile television, and radio broadcasting systems. At the same time, 

MEO satellites are deployed to deliver low-latency and high-bandwidth data connectivity to 

service providers, agencies and industries and to support the network connectivity in the 

avionic/maritime domain. LEO satellite constellations have also been adopted for imaging, low-
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bandwidth telecommunications, and broadband internet applications. Each of these satellites is 

placed in orbit by a launch vehicle. The space segment also includes military and defence 

communication systems and commercial SATCOM transponders and payloads. Note that the 

aforementioned communication links involving satellites use frequencies in the L-band, in the 

range [1 - 2] GHz (Tedeschi et al., 2022). 

The ground segment comprises the terrestrial stations communicating with the satellites and 

providing control, monitoring, and data processing functions. The ground segment includes 

gateways: satellite operators, network operations centres, tracking stations, telemetry stations, and 

command (TT&C) stations. Gateways are the stations that connect the satellite network to other 

networks, such as the Internet, cellular, or terrestrial. Network operations centres are the facilities 

that manage the satellite network's overall performance, configuration, and maintenance. TT&C 

stations send and receive commands and data to and from the satellites to ensure their proper 

functioning and orbit (Tedeschi et al., 2022). 

The user segment includes the user terminals, such as satellite mobile phones, ships, and 

aeroplanes, to name a few. These devices can communicate with satellites by leveraging the link 

between the ground and user segments, such as the forward link (Abe et al., 2018). At the same 

time, their communication with the gateways can take place over any communication technology. 

The forward link consists of an uplink (base station to satellite) and a downlink (satellite to mobile 

user). Conversely, constellations like Iridium, Globalstar, Thuraya and Inmarsat allow a direct 

connection of the user handsets to the satellites, using the User to Satellite (US) link that typically 

uses frequencies in the L-band. 
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Figure 3:  A satellite system architecture (Al-Hraishawi et al., 2023) 

2.2.2 Satellite Security 

Like all engineering systems, satellite systems can be subjected to undesirable scenarios that may 

be brought about intentionally or not. From the very rough conditions of Outer Space to targeted 

attacks conducted by malicious individuals, many risks can cause adverse effects on the well-being 

of a satellite. While some effects can be easily and readily reversible, some can be catastrophic 

and result in a total inability to use the system. To properly assess the risks that are involved in any 

system, it is beneficial to define a set of terms that will help us reliably identify and differentiate 

between different objects; we will use the following terms as defined in (pfleeger, 2015): 

a) Vulnerability - a weakness that is present in a system that could cause harm 
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b) Threat - a specific set of circumstances that could cause harm 

c) Attack - an intentional exploitation of a vulnerability 

Another set of terms that will prove important for understanding security threats in satellite 

systems is the terms that define good security principles. They are described in the ISO7498-

2:1989 standard and have been recognized as important security principles in space systems, being 

present in the CCSDS report “Security Threats Against Space Missions” (CCSDS, 2015); again, 

the definitions provided in (pfleeger, 2015) will serve as our base: 

a) Confidentiality - the ability to be accessed only by authorized parties 

b) Integrity - the ability to be modified only by authorized parties 

c) Availability - the ability to be used by any authorized party 

d) Authentication - the ability to confirm the identity of a person/system that performs an 

action. 

e) Accountability (nonrepudiation) - the ability to confirm that someone/something 

performed a certain action without it being possible for them to deny it in any convincing 

manner  

The above security properties can and, in well-designed systems, should be applied to any valuable 

asset, such as hardware, software, human personnel, communication channels, etc. 

This provides a broad analysis of the various dangers that should be considered when designing 

satellite systems, especially intentional cyberattacks and how they can be identified, prevented, 

and mitigated. 

2.2.3 Vulnerabilities of Satellite Network 

In the current technological environment, satellite communication has become increasingly 

important in various applications and capabilities that enable commercial and military operations. 
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Furthermore, as the number of satellites deployed has increased, space-based assets have become 

a target for hackers attempting to steal critical data, potentially resulting in catastrophic 

repercussions (Brandon et al., 2018). 

Additionally, a legacy satellite communications platform in space is more challenging to maintain 

than a terrestrial communication system (Alvarez & Walls, 2016). A terrestrial communication 

system allows quick upgrading and testing to assure communications, encryption, and increased 

cybersecurity, but the same is not valid for legacy satellite communications platforms in space. As 

a result, satellite networks are more vulnerable to inconsistency in software updating, inadequate 

encryption, and outdated IT equipment installed (Pavur, 2021). 

Another point to note is that using botnets, ransomware, trojans, viruses, and other hacking tools 

can potentially disrupt the satellite network and possibly bring it to a halt (Aslan et al., 2023). Once 

the satellite communication (SATCOM) infrastructure is hacked, the problem may extend 

throughout the whole terrestrial infrastructure network. As a result, after the network has been 

penetrated, hackers may monitor traffic via the terminal, allowing them access to addit ional 

sensitive data such as log-in, traffic flows, photos, voice conversations, and so on (Pavur, 2021). 

2.2.4 Cyber Threats Against Satellite Networks 

In the context of satellite systems, Figure 4 shows four segments of cyber threats classified as 

space, user, link and ground (Brandon et al., 2018). There are two categories of cyber threats and 

attacks for satellite networks: passive and active. 
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Figure 4: Cyber threats identified by NASIC.  

2.2.4.1. Passive Attacks 

Using a satellite terminal with a fundamental understanding of communication protocols, a passive 

adversary scrutinises and monitors communications designated for alternate terminals. The acts of 

eavesdropping and spoofing constitute a distinct subset of passive attacks, wherein unauthorized 

access to information occurs between two interconnected devices within the expansive realm of 

the Internet (Wang, 2018). Nonetheless, these attacks do not directly impact system resources and 

present a challenge in detection, given the absence of discernible alterations or manipulations to 

the intercepted data. 
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2.2.4.2 Active Attacks 

A malicious actor possesses the ability to exploit a network by modifying or altering its content, 

potentially leading to a significant impact on the system's resources and functionalities (Eder-

Neuhauser et al., 2017). Consequently, the integrity and availability of the system are 

compromised, rendering it vulnerable to active attacks. This attack category encompasses many 

possibilities and techniques that can be employed. 

1. Unauthorised Access and Hacking: Unauthorised access and hacking present significant 

challenges to the security of ground stations. Threat actors exploit ground station software, 

hardware, or network infrastructure vulnerabilities to gain unauthorized entry. Upon 

gaining access, they can disrupt operations, exfiltrate sensitive data, or launch additional 

attacks on the system or interconnected systems. Introducing malware into ground stations 

is a common tactic facilitated by infected email attachments, compromised software 

updates, or physical intrusion. Social engineering, which involves manipulating individuals 

to reveal sensitive information or take actions that compromise system integrity, also 

enables unauthorised access. Examples of such techniques include impersonating 

authorised users or technicians to gain access or persuading unwitting users to disclose 

login credentials (Varadharajan, 2023).  

2. Malware: Malware poses a significant threat to satellite systems, particularly given their 

autonomous nature and limited maintenance accessibility. Malicious software can spread 

from one satellite to another, posing complex challenges. Malware can lead to system 

malfunctions or the generation of falsified data, with serious implications for critical 

missions. For example, infecting a weather monitoring satellite with malware could 

transmit inaccurate data, potentially impacting weather forecasting accuracy. Satellites 
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may be infected with malware during production, through tainted software updates, or via 

ground stations overseeing satellite operations. 

3. Jamming and Interference: Jamming and interference pose an additional peril to satellite 

systems. Hackers can disrupt satellite signals, resulting in system failures or data 

misdirection with significant consequences. For instance, the transmission of jamming 

signals can cause a navigation satellite to provide erroneous information to an aircraft, 

endangering lives. The sources of jamming and interference encompass malicious actors 

utilizing jamming equipment, electronic devices near the satellite, or natural phenomena 

such as solar flares (Diro et al., 2024).  

4. Denial of Service (DoS) Attacks: Denial of Service (DoS) attacks aim to render a specific 

system or service inaccessible to its designated users by inundating it with a substantial 

volume of traffic or requests. Within satellite systems, a DoS attack can precipitate system 

shutdown or unavailability, disrupting crucial services like communication, navigation, 

and remote sensing. Perpetrators employ diverse tactics, including overwhelming the 

system with traffic from numerous infected devices (termed a distributed denial of service 

(DDoS) attack), exploiting software vulnerabilities, or targeting the network infrastructure 

underpinning the system (Thangavel et al., 2022).  

5. Spoofing and GPS Signal Manipulation: Spoofing involves transmitting counterfeit signals 

to deceive satellite receivers and modify their functions. Spoofing assaults can concentrate 

on GPS signals within spatial information systems, resulting in imprecise positioning, 

navigation, and timing data (Xiao, 2022). By manipulating GPS signals, malicious entities 

can impede essential transportation, logistics, and communication operations. 
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Implementing anti-spoofing methodologies, such as signal authentication and sophisticated 

receiver technologies, is imperative for mitigating this hazard (Suo et al., 2022). 

6. Physical Attacks and Kinetic Anti-Satellite (ASAT) Weapons: The security of space assets 

is confronted with a substantial threat from physical attacks. Kinetic Anti-Satellite (ASAT) 

weapons are designed to incapacitate satellites through direct collisions or fragmentation. 

These attacks can lead to the degradation of critical functionalities, the generation of space 

debris, and potential harm to other operational satellites (“Anti-satellite weapons and 

international law,” 2023; Bongers & Torres, 2023). The advancement and deployment of 

ASAT weapons underscore the need for enhanced space situational awareness, satellite 

manoeuvrability, and debris mitigation strategies (Bongers & Torres, 2023).  

7. Insider Threats: Individuals within organizations or agencies who abuse their access 

privileges to compromise the security of space information systems are identified as insider 

threats (Bunn, 2023; Idris & Damilola, 2023). This could involve employees with 

malicious intentions, negligent conduct, or inadvertent actions resulting in unauthorized 

access, data breaches, or system disturbances. Robust mechanisms for detecting and 

preventing insider threats, such as stringent access controls, regular audits, and employee 

training programs, are vital for mitigating this risk (Idris & Damilola, 2023).  

8. Supply Chain Attacks: Supply chain attacks target the software, hardware, or firmware 

components of space information systems during their production, distribution, or 

maintenance phases (Hammi & Zeadally, 2023). Adversaries may infiltrate the supply 

chain to introduce compromised or counterfeit components, thereby gaining unauthorized 

access, control, or manipulation of the systems (Berry, 2023). Rigorous security measures 

within the supply chain, including trusted manufacturing processes, component validation, 
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and secure software development practices, are essential for countering this threat (Berry, 

2023).  

9. Cyber Espionage: State-sponsored or industrial cyber espionage endeavours pose a 

significant threat to space information systems. Malicious entities may pursue sensitive 

information regarding space technology, satellite operations, or research and development 

projects. By infiltrating networks and systems, they can acquire valuable insights, 

intellectual property, or strategic advantages. Effective network monitoring, intrusion 

detection systems, and encryption technologies can assist in identifying and mitigating 

cyber espionage attempts (Knez, 2016). These cyber threats underscore the imperative for 

robust security measures to safeguard space information systems. Addressing these risks 

necessitates a multi-faceted approach involving technological innovations, policy 

frameworks, and international collaboration (Li, 2023). Enhanced security measures for 

software and hardware must be implemented in ground stations to detect and counter 

hacking endeavours. Regular assessments of vulnerabilities and protocols for managing 

patches are crucial for addressing potential system weaknesses. 

These active attack techniques underscore the importance of implementing robust security 

measures to safeguard systems and networks from malicious actors seeking to compromise their 

integrity and availability. 

2.3 INTRUSION DETECTION SYSTEM. 

Intrusion detection systems (IDS) are software-based components that act as an "alert" to safeguard 

data management from network intrusions. IDS may prohibit efforts to penetrate the Network by 

identifying misuse and illegal network access. Intrusion detection systems (IDSs) detect attacks 

and abnormal behaviour in satellite systems (Ashraf et al., 2022). IDS is categorized into five 
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categories, as shown in Fig. 4. IDSs can be divided according to their structure: Based on 

centralized IDS or distributed IDS. The centralized IDS analyses data at several locations 

(Eshakagdy et al., 2022). The distributed IDS, which includes multiple IDS through a large 

network, all of which are connected or connected to a central server that provides advanced 

network monitoring and incident analysis, can also be divided according to their deployment 

location into host-based intrusion detection systems (HIDS) and network-based intrusion detection 

systems (NIDS) (Vinayakumar et al., 2022). HIDS in the IDS system uses the system's activities 

in the form of log files running on the local host computer to detect attacks. HIDS analyzes system 

logs, file integrity, and system calls to detect unauthorized access, malware infections, or unusual 

behaviour on a specific host. By monitoring system activities and configurations, HIDS can 

identify deviations from normal behaviour and raise alerts for potential intrusions (Liu et al., 2018). 

 However, NIDS in the IDS system uses network behaviour. NIDS are strategically positioned at 

key points within the network to analyze incoming and outgoing traffic. They can detect anomalies 

such as unusual data packets, unauthorized access attempts, or denial of service attacks. NIDS uses 

signatures and behavioural analysis to identify potential threats (Ho et al., 2021). The network 

behaviours are gathered using network equipment mirroring by networking devices, such as 

routers, switches, and network taps, and analyzed to specify attacks and possible threats hidden 

within network traffic. The log files in NIDS are gathered through local sensors. While HIDS 

depends on the information in log files, which include system logs, sensor logs, file systems, 

software logs, user account information, disc resources, and others for each system, NIDS inspects 

the contents of each packet in network traffic flows. Many organizations utilize a hybrid of both 

HIDS and NIDS (Azar et al., 2023). 
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In addition, IDS can be divided according to the approach used to detect attacks and other hidden 

potential threats within network data into two categories: Anomaly-Based detection and Signature-

Based detection, also known as “misuse detection” or “knowledge-based detection”. Anomaly-

based detection detects deviations from normal behaviour. The role of this technique is to establish 

a baseline for the normal behaviour of network traffic and then compare the incoming traffic with 

this baseline to detect malicious attacks. This IDS type detects unknown and known attacks 

(Ahmed & Hamad, 2021). Signature-based detection has predefined signatures for known attacks 

that are matched with all connection patterns in the network to detect and stop any anomalous 

attacks. The main advantage of this type of IDS is that it detects known attacks. However, unknown 

attacks have not been detected due to the unavailability of attack signatures. According to their 

response, IDSs are classified into passive IDS, which monitor, log, and provide alerts to activity, 

and active IDS, which act based on software design (Eshakagdy et al., 2022). The maximum point 

of this method is the ability to detect an intrusion of a known pattern with a low false alarm rate. 

The setback of SIDS is the inability to detect a new attack of an unknown (dataset) pattern, such 

as a zero-day attack.  
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Figure 5: Categories of intrusion detection systems (IDS) (Eshakagdy et al., 2022) 

2.4 MACHINE LEARNING. 

Machine learning has become a fledged line of research by various researchers in recent 

years because of its ability to learn from vast amounts of data without thorough programming 

(Haque et al., 2023). Numerous researchers concentrate more on using machine learning for 
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anomaly detection in networking systems. Machine learning is a field under Artificial Intelligence 

(AI); the ability to learn from past data records without explicit programming and make accurate 

predictions has drawn much attention to using it as a tool for anomaly detection. ML is divided 

into supervised, unsupervised, and Reinforcement learning (Thoutam et al., 2023). In supervised 

learning, the training classification algorithm uses labelled data (input and output data). Likewise, 

unsupervised learning uses unlabeled (input data) data in the training classification algorithm 

without a predefined output or target class. Conversely, reinforcement comprises supervised and 

unsupervised learning approaches (Gajda et al., 2022). 

2.4.1 Machine Learning for Intrusion Detection. 

As part of Artificial Intelligence, Machine Learning employs an inductive learning 

approach to acquire knowledge through practical examples (Kola, 2022). The learning process can 

be categorised into three main types: Supervised, Unsupervised, and Reinforcement Learning 

(Shaveta, 2023). 

2.4.1.1 Supervised Machine Learning Algorithms. 

In supervised learning, a correct classification is already assigned to train a data sample from the 

data source (conneau et al., 2017). It can also be seen as a formalization of learning from 

examples where an input and desired output rely on data with predefined target classes to 

identify relationships between the data and their respective target classes (Dey, 2016). The 

supervised learning process involves two key phases. Training and evaluation. The training phase 

requires initial preprocessing steps to ensure accurate generalisation, such as feature selection, 

encoding, and normalisation. Commonly utilised algorithms for classification tasks include 

SVM, KNN, DT, and Random Forest. Each classifier excels at detecting specific types of attacks, 

with some being more effective in particular attack categories. Conducting theoretical and 

empirical analyses of Machine Learning algorithms is crucial for understanding their 
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computational complexity when applied to specific problem domains like Intrusion Detection. 

This study investigates the empirical and mathematical aspects of SVM, KNN, and Decision 

Tree to determine the most suitable machine learning model that can be extended as an accurate 

and lightweight intrusion detection system in the space sector for satellite networks. 

There are different algorithms of supervised learning techniques, as discussed below: 

2.4.1.1.1 Logistic Regression. 

Logistic Regression is a statistical method used for binary classification problems [Perlich, C., 

Provost, F., & Simonoff, J. (2003). Tree induction vs. logistic regression: A learning-curve 

analysis.]. Logistic regression is included in the class of generalised linear models, which consists 

of a wide variety of models developed to expand the conventional linear model to include target 

variables with different properties. (McCullagh and Nelder, 1989; Hosmer and Lemeshow, 2000) 

2.4.1.1.2 K-nearest neighbour (KNN) Classifier. 

As an unsupervised machine learning, which is predicted with a labelled dataset, KNN has been 

categorised among the non-parametric ML classifiers since there is an absence of any relationship 

between input and output. Also, a lazy learner algorithm is a result of its inability to carry out the 

learning process, except there is a need to classify the new dataset (Dewan et al., 2022).  KNN has 

been implemented in various studies to predict ML models, such as intrusion detection and 

financial industries. This is because of its easy-to-apply characteristics to problems and the ability 

to tolerate and resist noise during the learning phase (Sindhu et al., 2022). Since the significant 

idea is to compute the distance, KNN poses some problematic issues, such as deciding the suitable 

value of K and high computational complexity. Additionally, during the learning phase of KNN, 

the training dataset might need to be under-sampled as it may result in too many tie problems in 

KNN. 
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Figure 6: KNN (Tahri et al., 2022) 

2.4.1.1.3 DECISION TREE 

A decision tree is a non-parametric inductive learning classifier for classification and regression. 

Decision Trees are intuitive models that make decisions based on a series of rules inferred from 

the training data. They effectively handle numerical and categorical data, providing transparent 

and interpretable results. Decision Trees capture complex relationships in data and are particularly 

useful for feature selection and identifying important variables in intrusion detection (Chi et al., 

2022). DT operates with bottom-down approaches and employs a greedy method for tree splitting; 

various decision trees have been introduced and engaged in the literature. The two splitting rules 

used in multiple versions of the decision tree are Gini and Entropy; Gini measures the probability 

that any element of the dataset will be mislabelled when it is randomly labelled. Entropy measures 

information that indicates the disorder of the feature with the target. The most recently used 

decision trees from the literature are C4.5, CART and C5.0. This study focused on CART since 

C4.5 and C5.0 are based on entropy using information gain; likewise, CART is based on the Gini 

splitting rule. The ability of the decision tree algorithm to adapt to categorical features, multiclass 

classification and missing values makes it unique from both KNN and SVM, as it requires less 

preprocessing of Data. DT is easy to understand, unlike black box SVM. An example of a decision 
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tree is shown below. The common challenge of DT is overfitting, which can be improved by 

Ensemble. Equations 1, 2, 3, and 4 indicate the mathematical notation of CART. 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐵) =
𝐺𝑎𝑖𝑛(𝐵)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐵)
        (1) 

The node N splitting attribute determines which attribute gains the most information during the 

process. When the set V is partitioned based on attribute B, Information gain measures how 

much uncertainty is minimised. 

𝐺𝑖𝑛𝑖(𝐵) = 1 −  ∑ 𝑝𝑖2𝑗
𝑖=1                     (2) 

Where; 

J is the total number of classes in the data set. 

Pi is the ratio that a tuple in data set B. 

The Gini index of B given any binary split on A partitions B into B1 and B2 is; 

𝐺𝑖𝑛𝑖𝐴(𝐵) =  
|𝐵1|

|𝐵|
𝐺𝑖𝑛𝑖 (𝐵1) +  

|𝐵2|

|𝐵|
 𝐺𝑖𝑛𝑖 (𝐵2)       (3) 

Equation 10 is used to find the attribute with the minimum Gini Index 

𝐺𝑖𝑛𝑖(𝐵) =  𝐺𝑖𝑛𝑖 (𝐵) +   𝐺𝑖𝑛𝑖𝐴(𝐵)       (4) 

The minimum Gini index features are used as the splitting features. 
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Figure 7: Decision Trees (Dey, 2016) 

2.4.1.1.4 NAIVE BAYES 

 This algorithm is mostly used and is a target of the text classification industry (Stoudenmire & 

Schwab, 2016). It is also used for clustering and classification purposes. Conditional probability 

is the backbone of the Naive Bayes algorithm, which creates trees based on the probability of 

occurring. These trees can also be regarded as a Bayesian Network. An example is shown below. 

It is constructed on the hypothesis that, for instance, for a given class, the attribute value is 

independent of the values of the attributes. This theory is called Class Conditional Independence. 

P(H/X) =P(X/H).P(H)/P(X)         (5) 
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Figure 8: Naïve Bayes (Tahri et al., 2022) 

2.4.1.1.5 Support Vector Machine (SVM) Classifier. 

SVM is also a non-parametric classifier and unsupervised Machine learning classifier. SVM has 

been widely used in various research domains, such as image, hypertext, and classification 

problems (Amir & Ali, 2022).  Among the significance that SVM is not limited to (1) Possession 

of greater efficiency when it comes to higher dimensional space, unlike KNN, which might require 

under-sampling, (2) SVM also demonstrates significant advantage for its embedded feature 

selection techniques as a robust and helpful feature selection techniques compare to decision tree. 

Lastly, getting optimal results in SVM depends on its kernel function and parameters (Binitta & 

Leema, 2022). However, this value and parameter findings depend on the dataset as there are no 

specific values and parameters for the SVM kernel function and parameter. The diagram below 

shows a working support vector machine. 
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Figure 9: SVM (Tahri et al., 2022) 

2.4.1.2 Unsupervised Machine Learning Algorithms. 

Unsupervised learning is a process in which ML algorithms learn from input space without 

predefined output. The significant difference between unsupervised and supervised is the absence 

of output space in unsupervised learning (David, 2023). Unsupervised learning, another branch of 

machine learning, encompasses techniques such as clustering and anomaly detection that are 

instrumental in various cybersecurity applications, including intrusion detection systems 

(Wahyono & Heryadi, 2019). 

Clustering algorithms, such as Fuzzy-C-Means (FCM), are commonly used in unsupervised 

learning to group data points into clusters based on similarity. In cybersecurity, clustering can help 

identify patterns in network traffic or system behaviour that may indicate potential threats (Fu, 

2022). By grouping similar data points, clustering algorithms can reveal anomalies or outliers that 

deviate from the norm, aiding in detecting suspicious activities within a network (Fu, 2022). 

Anomaly detection, another key aspect of unsupervised learning, focuses on identifying data points 

significantly different from most datasets (Wahyono & Heryadi, 2019). Anomaly detection 

methods, like deep autoencoders, can learn the normal behaviour of a system and flag instances 
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that exhibit unusual patterns (Meidan et al., 2018). This approach is particularly useful for 

detecting unknown threats and zero-day attacks that do not have predefined signatures. By 

leveraging unsupervised anomaly detection techniques, organizations can enhance their intrusion 

detection capabilities and improve the security of their systems (Meidan et al., 2018). 

The advantages of unsupervised learning techniques, such as clustering and anomaly detection, lie 

in their ability to uncover hidden patterns and anomalies in data without needing labelled 

examples. These methods can adapt to evolving threats and detect novel attack vectors that may 

go unnoticed by traditional signature-based systems. Additionally, unsupervised learning 

approaches are valuable for handling imbalanced datasets and detecting rare events that may 

indicate security breaches (Guo et al., 2021). 

However, unsupervised learning methods also have limitations. Clustering algorithms may 

struggle with high-dimensional data or datasets with varying densities, impacting the quality of 

the clusters formed. Anomaly detection techniques may generate false positives if the model fails 

to distinguish between genuine anomalies and benign variations in the data. Moreover, 

unsupervised learning approaches may require careful parameters and feature selection tuning to 

achieve optimal performance (Prasad et al., 2022). 

The choice between supervised and unsupervised machine learning approaches for satellite 

network threat classification is contingent upon the availability of labelled training data and the 

specific objectives of the intrusion detection system. Supervised learning approaches are more 

appropriate when labelled normal and malicious network traffic datasets are available for training 

classification models (Nguyen & Armitage, 2008). This scenario is typically encountered when 

there is existing knowledge about the signatures or patterns of different attacks, such as Denial of 

Service (DoS) or probing attacks collected from past incidents or honeypots. In such cases, labelled 
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examples can train models to recognise these known threats. Furthermore, in safety-critical 

satellite applications, the cost of false negatives (missed attacks) is extremely high, and supervised 

models trained on attack samples can provide higher precision in detecting these known threats 

(Nguyen & Armitage, 2008). 

As new attack types emerge, they can be analysed, labelled, and incorporated into retraining the 

supervised model periodically to keep up with the evolving landscape (Ahsan et al., 2022). 

Additionally, if the goal is to detect specific attack categories like DoS, spoofing, or other types, 

labelled examples of each class allow for training tailored supervised classifiers (Ahsan et al., 

2022). 

On the other hand, unsupervised learning techniques are beneficial when labelled data is limited 

or unavailable, making them suitable for unknown attack detection. Unsupervised methods can 

identify anomalies that deviate from normal network behaviour patterns without relying on 

labelled attack examples, thereby allowing for the detection of previously unseen, zero-day attacks 

(Radoglou-Grammatikis et al., 2020). Moreover, obtaining accurate labels requires significant 

human effort, and unsupervised techniques can process unlabeled data and provide an initial 

separation of normal versus anomalous traffic, reducing the labelling needs. 

If normal network traffic patterns evolve frequently, unsupervised techniques can adapt to the new 

normal behaviour without requiring retraining on labelled data (Usama et al., 2019). Furthermore, 

unsupervised methods may be useful for detecting insider threats by modelling normal user or 

system behaviour and flagging deviations that could indicate malicious insider activities (Usama 

et al., 2019). 
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Combining both approaches can be employed in a hybrid or ensemble architecture. This involves 

using unsupervised techniques to detect anomalies and isolate potential threats, analysing the 

detected anomalies and labelling them as known or unknown attacks, retraining supervised models 

on updated labelled data to improve known threat detection, and iteratively refining the system as 

new attacks are discovered (Takyi et al., 2018). This hybrid approach leverages the strengths of 

both methods: unsupervised for novel threat detection and supervised for accurate classification of 

known attacks, providing a comprehensive, evolving intrusion detection capability for satellite 

networks (Naveed et al., 2022). 

2.4.1.3 Reinforcement Machine Learning Algorithms. 

In this technique, the positive outcome of the decisions is determinant or dependent on the actions 

to take (Zoph & Le, 2016). The learner has no idea of the action to take until it is given a particular 

situation. Depending on the actions taken by the learner, the future is affected in terms of the 

situations. Below is a model for reinforcement learning. In the above model, input i is received by 

the agent. The agent also receives current state, s, state transition r, and input function I from the 

environment. With these inputs, the agent generates behaviour B and takes action A, which 

generates an outcome (Dey, 2016). The reinforcement learning technique is applied to natural 

language processing for dialogue creation, where a model simulates dialogues between virtual 

agents using policy gradients for reward to conversational properties (Li et al., 2016). 
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Figure 10: Reinforcement Learning Model (Dey, 2016)  

2.4.2 Challenges in Machine Learning for Intrusion Detection 

Several potential issues need to be addressed when considering using machine learning (ML) in 

cybersecurity, including intrusion detection systems. These issues include the need for labelled 

data, computational complexity, and the risk of adversarial ML attacks. 

1. Need for Labelled Data: Supervised ML algorithms, such as those used in intrusion detection, 

require labelled data for training. Labelling data can be time-consuming and resource-intensive, 

especially in cybersecurity, where accurately labelled datasets are crucial for training effective 

models. Insufficient or inaccurate labelling can lead to biased models and reduced detection 

accuracy, highlighting the importance of high-quality labelled datasets in ML-based intrusion 

detection systems (Orsini et al., 2022). 

2. Computational Complexity: ML algorithms, particularly deep learning models, can be 

computationally intensive, requiring significant processing power and memory resources. In the 

context of real-time intrusion detection, the computational complexity of ML models may pose 

challenges in deploying efficient and responsive systems. Optimising ML algorithms for 
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performance and scalability is essential to ensuring timely threat detection and response in 

cybersecurity applications (Gao et al., 2019). 

3. Risk of Adversarial ML Attacks: Adversarial ML attacks pose a significant threat to 

cybersecurity systems, including intrusion detection. Adversarial attacks involve manipulating 

input data to deceive ML models and cause misclassification. Adversarial examples can exploit 

vulnerabilities in ML algorithms, leading to false positives or negatives in intrusion detection 

systems. Robustness against adversarial attacks is crucial for ensuring the reliability and 

effectiveness of ML-based cybersecurity solutions (Jiang et al., 2020). 

Addressing these issues requires a multi-faceted approach. Strategies such as data augmentation, 

transfer learning, and active learning can help mitigate the need for large labelled datasets and 

improve the efficiency of ML models in intrusion detection. Additionally, optimising algorithms 

for performance and leveraging hardware acceleration can address computational complexity 

challenges. Implementing robustness measures, such as adversarial training and model 

verification, can enhance the resilience of ML-based intrusion detection systems against 

adversarial attacks (McCarthy et al., 2022). 

2.5 FEATURE SELECTION 

Feature selection is the process of selecting a relevant subset of features from the original feature 

set to improve model performance, efficiency, and interpretability. It helps reduce noise, multi-

collinearity, and redundancy in data (Sosa-Cabrera et al., 2023). 

Choosing the right features is crucial for achieving effective machine learning model accuracy and 

efficiency, as the features represent the input data that the model uses to learn patterns and make 

predictions (Hasan et al., 2016). The quality and relevance of the features directly influence the 

model's capability to capture the underlying relationships present in the data and generalise well 
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to unseen instances. Several key reasons underscore the significance of feature selection (Hasan et 

al., 2016). 

Real-world datasets often contain irrelevant or redundant features that can introduce noise and 

mislead the learning algorithm (Cai et al., 2018). By selecting only the most relevant features, the 

signal-to-noise ratio in the data improves, allowing the model to focus on truly predictive patterns 

(Das et al., 2022). As the number of features increases, the dimensionality of the data grows, which 

can lead to the "curse of dimensionality" problem. This phenomenon makes it increasingly difficult 

for the model to accurately learn the decision boundaries, especially when the number of training 

instances is limited compared to the feature space (Das et al., 2022). 

Irrelevant or redundant features can cause the model to overfit the training data by capturing noise 

or spurious correlations that do not generalize to new data. Selecting a minimal set of informative 

features helps prevent overfitting and improves the model's generalization ability (Das et al., 

2022). Training and evaluating machine learning models on high-dimensional datasets can be 

computationally expensive and time-consuming. Reducing the number of features lowers the 

computational complexity, leading to faster training times and more efficient model deployment 

(Ni, 2022). 

When working with high-dimensional data, it becomes challenging to understand the influence 

and importance of each feature on the model's predictions. Feature selection can enhance 

interpretability by focusing on the most relevant features, making explaining the model's behaviour 

easier and gaining insights into the underlying patterns (Chen et al., 2020). In some cases, features 

may be highly correlated, leading to multicollinearity. This can cause instability and redundancy 

in the model's learned parameters. Feature selection techniques can identify and remove these 

redundant features, improving the model's robustness and interpretability (Chen et al., 2020). 
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Effective feature selection techniques, such as filter methods (e.g., chi-squared, information gain), 

wrapper methods (using the model itself to evaluate features), or embedded methods (performing 

selection during model training), can help identify the most discriminative and relevant features 

for the task at hand (López-Dorado et al., 2021). By focusing on these informative features, 

machine learning models can achieve higher accuracy, better generalization, improved efficiency, 

and enhanced interpretability, ultimately leading to more effective and reliable performance in 

real-world applications (Almomani, 2020). 

2.5.1 Methods of Feature Selection 

Feature selection plays a vital role in machine learning by identifying the most relevant and 

informative features from the original feature set (Sosa-Cabrera et al., 2023). Various methods 

have been proposed to address this challenge, each with its strengths and weaknesses. These 

methods can be broadly categorized into filter, wrapper, and embedded methods (Sosa-Cabrera et 

al., 2023). 

2.5.1.1 Filter Methods 

Filter methods are a class of techniques that rely on statistical measures to evaluate the relevance 

of features independently of the machine learning model (Mayet et al., 2022). These methods are 

computationally efficient and can be applied as a preprocessing step before model training. One 

commonly used filter method is correlation analysis, which measures the strength of the 

relationship between each feature and the target variable. Features with high correlation 

coefficients are considered more relevant and selected for model inclusion (Mayet et al., 2022). 

Another popular filter method is information gain, which quantifies the reduction in entropy or 

uncertainty about the target variable when a specific feature is known (Riana & Mangkurat, 2023). 
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2.5.1.2 Wrapper Methods 

Wrapper methods, on the other hand, employ a machine learning model to evaluate feature subsets' 

usefulness. These methods typically employ a search strategy, such as forward selection, backward 

elimination, or recursive feature elimination, to iteratively evaluate different feature combinations. 

The feature subset that yields the best performance on a validation set is then selected for the final 

model. While wrapper methods can be computationally expensive, they often result in better 

feature subsets tailored to the specific model. (Faleiros et al., 2020). 

2.5.1.1 Embedded Methods 

Embedded methods integrate feature selection as part of the model training process. These 

techniques simultaneously perform feature selection and model learning, effectively embedding 

the selection process within the model's objective function (Chen et al., 2020). One prominent 

example of an embedded method is L1 regularization, also known as the Lasso (Least Absolute 

Shrinkage and Selection Operator) technique. L1 regularization introduces a penalty term in the 

objective function that encourages sparse solutions, effectively driving the coefficients of 

irrelevant features to zero, thereby performing feature selection implicitly (Li et al., 2022). 

Each method has its merits and drawbacks, and the choice often depends on the specific problem, 

the available computational resources, and the trade-off between computational complexity and 

model performance. Different feature selection techniques may be employed to leverage their 

complementary strengths and mitigate their weaknesses. Additionally, domain knowledge and 

expert insights can be incorporated into the feature selection process to enhance the quality of the 

selected features further and improve model interpretability (Sosa-Cabrera et al., 2023). 
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2.6 SPACE-SPECIFIC FEATURES TO IDENTIFY CYBER THREATS IN SATELLITE 

NETWORKS 

Identifying cyber threats in satellite networks requires carefully selecting features that capture 

relevant patterns and characteristics of network traffic, communication protocols, and signal 

characteristics. These features are crucial in enabling machine learning models to effectively detect 

and classify various cyber threats targeting satellite systems (Ronald et al., 2023). 

Network traffic patterns are among the most important features to consider for cyber threat 

detection. These patterns can include statistics related to packet sizes, packet arrival rates, packet 

inter-arrival times, and the distribution of source and destination IP addresses and ports (Chen et 

al., 2020). Anomalies in these patterns may indicate the presence of denial-of-service attacks, 

network scans, or other malicious activities. Additionally, features related to the volume and 

frequency of specific types of network traffic, such as ICMP, TCP, or UDP packets, can provide 

valuable insights into potential threats (Chen et al., 2020). 

Communication protocols used in satellite networks are another rich source of features for cyber 

threat detection (Ronald et al., 2023). Analyzing the characteristics of protocols like TCP, UDP, 

and specific application-layer protocols can reveal deviations from expected behaviour, which may 

indicate attacks or unauthorized access attempts. Features such as protocol flags, header fields, 

and payload content can be extracted and used to train machine-learning models for identifying 

potential threats (Jingyi Cai et al., 2023). 

Signal characteristics are particularly relevant for detecting threats related to jamming, spoofing, 

or interference in satellite communications. Features derived from signal properties, such as signal 

strength, frequency, modulation, and signal-to-noise ratio, can be used to identify anomalies 

caused by malicious actors attempting to disrupt or manipulate satellite signals. Additionally, 
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features related to the spatial and temporal patterns of signal propagation can aid in detecting 

potential spoofing attacks or locating the sources of interference (Jingyi Cai et al., 2023). 

In addition to these domain-specific features, general features related to system logs, user 

behaviour patterns, and network configurations can contribute to a comprehensive cyber threat 

detection system for satellite networks (Chen et al., 2020). Combining these diverse feature sets 

using appropriate feature engineering techniques can enhance the ability of machine learning 

models to detect and classify a wide range of cyber threats effectively (Cai et al., 2018). 

It is important to note that selecting appropriate features is critical in building effective machine-

learning models for cyber threat detection in satellite networks (Cai et al., 2018). Domain 

knowledge and expertise in satellite communications and cyber security are essential for 

identifying the most relevant and discriminative features. Furthermore, feature selection 

techniques, such as those discussed earlier, can be employed to identify the optimal subset of 

features, balancing model performance and computational efficiency (Cai et al., 2018). 

2.7 RELATED WORKS 

Recent studies on intrusion detection systems show the improved performance of machine learning 

models. The growing network connection in satellite networks introduces additional risks and 

security challenges. DDoS is one of the most common attacks in satellite-terrestrial integrated 

networks and causes service delays. Many studies have been proposed for DDoS identification in 

satellite and terrestrial networks.  

(Azar et al., 2023) This study proposed four hybrid intrusion detection systems for satellite-

terrestrial communication systems (SAT-IDSs) to optimise the detection performance of malicious 

activities in network traffic. They utilised a sequential forward feature selection (SFS) method 

based on random forest (RF) to optimise detection performance and reduce execution time and 
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combine with Machine learning (ML) models: Random Forest (RF) and Deep learning (DL) 

models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Gated Recurrent 

Unit (GRU). The proposed models are evaluated and verified using the UNSW-NB15 and STIN 

datasets. The experimental results indicate that SFS-RF achieved 90.5% accuracy in the STIN 

dataset, and the RF-SFS-GRU model had the highest accuracy of 79% in the UNSW-NB15 dataset. 

(Panigrahi et al., 2024) They proposed an ensemble-based trust model with the NSL-

KDD+STIN+Exata-CDOS datasets, which implemented Ant Colony Optimization (ACO) to pick 

the shortest path while concurrently utilizing a to Detect DDoS in LEO Satellite-Terrestrial 

networks. The proposed model achieves 98% accuracy in detecting DDoS attacks, which is not 

comparable with existing protocols for performance evaluation. Researchers (Henry et al., 2023) 

proposed an approach that combined both CNN and GRU to optimize the network parameters. In 

this simulation, the authors used the CICIDS- 2017 benchmark dataset and metrics such as 

precision, recall, false-positive rate (FPR), and true-positive rate (TPR). The authors also 

performed a comparative analysis with other existing approaches, and the obtained results indicate 

the efficacy of the proposed IDS scheme in real-world cybersecurity setups.  

(Ashraf et al., 2022) proposed a new approach-based intrusion detection method using data from 

satellite and terrestrial networks. The model combines random forest (RF) and multilayer 

perceptron (MLP) to increase the accuracy of intrusion detection compared to other machine 

learning models. They also analyse the efficiency of the proposed framework for the satellite and 

then use three datasets for experiments, namely NSL-KDD, KDD-CUP 99, and STIN. In addition, 

a performance comparison with state-of-the-art models is performed, which suggests that the 

RFMLP can detect intrusion attacks with higher accuracy than the existing approaches. Other 

researchers (Maseer et al., 2021) conducted a comprehensive analysis of the important features of 
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large traffic in networks to enhance the accuracy of the intrusion detection model and reduce the 

execution time. They use the Information Gain method as a feature selection method to select 

important features and then implement Bayes Net (BN), Random Forest (RF), Naive Bayes (NB), 

J48, and Random Tree (RT) classifiers. The results of experiments on the CICIDS-2017 dataset 

significantly improved the accuracy and execution time, with the Random Forest model (RF) 

achieving the highest accuracy of 99.86% based on 22 selected features. In comparison, the J48 

model achieved an accuracy of 99.87% based on 52 selected features but with a longer execution 

time. These findings have practical implications for improving the efficiency of intrusion detection 

systems. 

This study discusses machine learning methods using the NSLKDD dataset. Correlation analysis 

was employed as the FS method, which reduced the features into 5; a tree-based ML model was 

implemented on the reduced feature. Random Forst Decision Tree and XGBoost were employed 

in the SDN controllers as NIDS to monitor network traffic and detect malicious behaviour. 

Notably, XGBoost outperforms the other two methods, achieving a high F1-score of 95.95% in a 

multiclass classification task, while Random Forest and Decision Tree achieve slightly lower F1-

scores of 94.6% and 94.5%, respectively. XGBoost also shows better precision and recall rates. 

The study indicates that the decision tree-based method can contribute significantly as an IDS in 

SDN Networking. Kevric et al. (2017) pointed out that combining two tree algorithm models can 

achieve better performance than separate tree classification models; the best combination they 

reported was a random tree and NB tree. The model was tested on the KDD dataset, and an 

accuracy of 89.24% was obtained. Al-Qatf et al. (2018) successfully combined upstream AE and 

downstream SVM, and the model obtained 84.96% binary classification accuracy when tested on 

the KDD dataset. 
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(Chohan et al., 2023) This study discusses solutions for cyber-attacks in intelligent electric vehicles 

and power systems using machine Learning-based IDS for network threat detection. This work 

presents a comparative analysis of various ML algorithms trained over the UNSW-NB15 dataset. 

ADA Boost, Linear Support Vector Machine (LSVM), Auto Encoder Classifier, Quadratic Support 

Vector Machine (QSVM), and Multi-Layer Perceptron algorithms are employed in the Python 

simulation. ADA Boost shows better results than other traditional techniques, with an excellent 

accuracy of 98.3%.  Ingre and Yadav (2015) proposed an artificial neural network (ANN) model 

and a hybrid model that improves detection performance by combining different state-of-the-art 

algorithms. The latter achieved 81.2% accuracy for the NSL-KDD dataset. Sahu et al. (2022) 

proposed LSTM (Long Short-Term Memory) combined with FCN (Fully Connected Network) 

deep learning approaches to classify the normal and anomalous connections on intrusion datasets 

and specify the attack pattern more accurately. The proposed deep learning model achieved better 

classification accuracy using the KDDCup99, NSLKDD, GureKDD, KDDCorrected, Kyoto, and 

NITRIDS datasets. 

(Jiang et al., 2020) proposed a robust UAV and satellite-based 5G network security model based 

on machine learning to bolster network security by effectively detecting vulnerabilities and 

cyberattacks. This approach is divided into two parts: creating the model using different machine 

learning algorithms and implementing the ML-based model using satellite or terrestrial gateways. 

The model achieves maximum accuracy with a 99.99% true negative rate and a 0% false negative 

rate using a decision tree algorithm, underscoring its reliability compared to other ML classifiers. 

Musafer et al. (2020) designed a sparse autoencoder for an intrusion detection system on a reliable 

and updated network attacks dataset, CICIDS2017. The authors proposed a deep learning model, 

namely a memetic algorithm for abnormal traffic detection, and tested it on two well-known 
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datasets: NSLKDD and KDDCUP 99. Feature augmentation has been applied along with SVM to 

provide an effective intrusion detection framework and achieved robust results regarding training 

speed and faulty alarm rate (Gu et al., 2019). This research's reliability and robustness provide a 

solid foundation for further exploration and application in network security. 

The study (Chandrashekar & Sahin, 2014) proposed a new approach-based intrusion detection. To 

classify normal and anomalous traffic, they compared it with different machine learning 

techniques, including SVM, AdaBoost, decision tree, and MLP. It depends on selected features 

based on the correlation between the features, and it is implemented using the UNSW-NB 15 

dataset for network anomaly detection. The proposed approach achieves high accuracy in binary 

classification using Adaboost, which is 99.3%. These studies represent research efforts for devising 

suitable approaches for intrusion detection in satellite networks. A comparative analysis of the 

discussed research works is provided in Table 1. 

Table 1: Comparative analysis of the existing approaches. 

S/N Author/Year Title of paper Contributions Limitation 

1 Panigrahi et 

al., 2024 

A Smart Secure Model for 

Detection of DDoS Malicious 

Traces in Integrated LEO 

Satellite-Terrestrial 

Communications. 

Ensemble-based trust model 

integration for Detection of DDoS 

malicious traces in LEO Satellite-

Terrestrial networks. 

Lack of comparison with 

existing protocols for 

performance evaluation. 

 

 

2 Ashraf et 

al., 2022 

A Deep Learning-Based Smart 

Framework for Cyber-Physical 

and Satellite System Security 

Threats Detection. 

Integrates random forest (RF) and 

multilayer perceptron (MLP) to 

produce an RFMLP model and 

increase intrusion detection 

performance. 

Low performance of the 

‘Syn_DDos’ 

class in the STIN dataset. 

3 Maseer et 

al., 2021 

Benchmarking of machine 

learning for anomaly-based 

intrusion detection systems in 

the CICIDS2017 dataset. 

Information Gain method-based 

Bayes Net (BN), Random Forest 

(RF), Naive Bayes (NB), J48, and 

Random Tree (RT) classifiers 

Improving the accuracy of the 

intrusion detection model and 

minimize the execution time.  

The proposed approach 

addressed a binary 

classification problem to 

detect attacks in the 

network traffic, regardless 

of the attack category. 
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4 Aburomman 

et al., 2016 

A novel SVM-kNN-PSO 

ensemble method for an 

intrusion detection system. 

Ensemble model SVM-KNN-PSO  

using a weighted algorithm for 

high accuracy. 

Multi-class problem is not 

handled. 

 

5 Gu et al. 

(2019) 

Novel approach to intrusion 

detection using SVM 

ensemble with feature 

augmentation. 

Feature augmentation with SVM 

to provide effective intrusion 

detection and achieved robust 

results in faulty alarm rate. 

Configuration for different 

datasets is difficult. 

6 Musafer et 

al., 2020 

An enhanced design of sparse 

autoencoder for latent features 

extraction based on 

trigonometric simplexes for 

network intrusion detection 

systems. 

Uses trigonometric simplexes. Sparsity constraints. 

7 Azar et al., 

2023 

Deep Learning-Based Hybrid 

Intrusion Detection Systems 

to Protect Satellite Networks. 

Proposed four hybrid intrusion 

detection systems for satellite-

terrestrial communication systems.  

And utilized the sequential 

forward feature selection method 

to optimize detection performance.  
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CHAPTER THREE 

 MATERIALS AND METHODS 

This section elaborates on the model's implementation, including the benchmark dataset 

and performance evaluation matrix. 

3.1 BENCHMARKING DATASETS. 

Benchmark datasets are publicly available data over the Cloud. Various researchers have 

created them to improve intrusion detection research. Generally, each benchmark dataset consists 

of many features or attributes contributing to individual attacks, such as DDoS attacks. Also, each 

attack has unique features that contribute to its establishment. This study used publicly available 

datasets STIN, UNSW-NB15, and CICIDS2017. 

3.1.1 STIN Dataset 

The STIN dataset (Li et al., 2020) represents a satellite dataset that includes attacks in modern 

satellite and terrestrial network environments. The authors (Li et al., 2020) simulate a real scenario 

for the terrestrial and satellite networks. This dataset contains two types of traffic, TER20 and 

SAT20, in CSV format. These two files contain 32 features with labels and nine different types of 

attacks. The distribution of the samples for types of attacks in training set for each category is 

mainly one for terrestrial network attacks, which include seven various types of attacks like Botnet 

with 14,622 records, Web Attack with 13,017 records, Backdoor with 12,762 records, 

LDAP_DDos with 15,694 records, MSSQL_DDos with 15,688 records, NetBIOS_DDos with 

11,530 records, and the last type is Portmap_DDos with 14,380 records. Another one is for satellite 

network attacks, which include Syn_DDos with 54,789 records and UDP_DDos with 57,082 
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records. Flow-based features are considered when building the STIN dataset. Table 1 presents the 

characteristics of the dataset. 

Table 2: Details of STIN dataset. 

Domain Attack Type Attack Time 

Terrestrial attacks 

Botnet  15:01          15:10 

Web attack  15:21          15:31 

Backdoor  15:41          15:52 

LDAP DDoS  16:01          16:11 

MSSQL DDoS  16:21          16:30 

NetBIOS DDoS  16:41          16:50 

Portmap DDoS  17:01          17:13 

Syn DDoS  17:21          17:32 

UDP DDoS  17:41          17:52 

Satellite attacks 

Syn DDoS  15:23          15:570 

UDP DDoS  16:52          17:20 

 

3.1.2 UNSW‑NB15 Dataset 

Nour Mustafa and Jill Slay published the UNSW-NB15 dataset in 2015 to improve the NSLKDD 

dataset. This dataset comprises 47 features categorised into flow, basic, content, time, and general-
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purpose features. The UNSW-NB15 dataset represented terrestrial traffic only, including various 

attacks in modern terrestrial network environments. This dataset contains two main files, mainly 

the training set and testing set files in CSV format, and it includes 45 features with labels and nine 

different types of attacks. The distribution of the samples for types of attacks in the training set is 

Analysis with 677 records; Backdoor with 583 records; DoS with 4089 records; Exploits with 

11,132 records; Fuzzers with 6,062 records; Generic with 18,871 records; Reconnaissance with 

3,496 records; Shellcode with 378 records; and Worms with 44 records. However, the distribution 

of the samples for types of attacks in the testing set for UNSWNB15 is: Backdoor with 1,746 

records; Analysis with 2,000 records; DoS with 12,264 records; Exploits with 33,393 records; 

Fuzzers with 18,184 records; Generic with 40,000 records; Worms with 130 records; Shellcode 

with 1,133 records; and Reconnaissance with 10,491 records.  

Table 3: Record distribution of UNSW-NB15 Dataset 

 

 

 

 

3.1.3 CICIDS2017 Dataset 

CICIDS2017 Dataset was provided by the Canadian Institute of Cyber Security, which offers 

detailed real-world attacks. The team prioritised generating realistic network traffic using a benign 

profile system (Sharafaldin et al., 2016) that abstracts the behaviour of human interactions and 

generates naturalistic benign background traffic. This dataset collection, which included five days' 

worth of the Canadian Institute of Cybersecurity's normal and assault traffic statistics, was spread 

Dataset Total sample size  Normal Attacks 

Training set 175,341 56,000 119,341 

Testing set 82,332 37,000 45,332 
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across eight files. DoS/DDoS attacks were captured on Wednesday, July 5, and Friday, July 7, 

2017. The data was created in a test bed infrastructure with two separate networks: victim-network 

and Attacker-Network. The research team included a victim-network router, firewall, switch, and 

equipment with Windows, Linux, and Mac Intosh operating systems. The network consists of a 

router, one switch, and four PCs. The CICIDS2017 Wednesday was used in this study and 

partitioned into training and testing datasets. Table 3 shows the statistical records of this dataset. 

The dataset used in this research contains normal network flows and flows with DDoS attacks.  

Table 4: Record distribution of CICIDS2017 Wednesday Dataset 

3.2 CLASSIFIER COMPLEXITY. 

The computational complexity of various learning algorithms is crucial to investigate. The 

empirical analysis might seem insignificant as it may vary when implemented in different 

environments. Meanwhile, theoretical analysis has been the significant focus of researchers, 

showing the worst case of each learning algorithm since it does not depend on input size and 

implementation environment. 

3.2.1 Theoretical Analysis of Decision Tree. 

The idea behind DT is a top-down approach that follows divide and conquer. The basic 

operation of CART DT is Entropy gain. 

Sample Complexity: 𝑂(𝑛)         (6) 

Dataset  Total sample size  Normal Attacks 

Training set  112,642 48,695 63,947 

Testing set  113,069 48,991 64,078 
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Running – Time complexity: 𝑂(𝑛𝑙𝑜𝑔2𝑛)       (7) 

Time Complexity for Training: 𝑂(𝑉𝑛𝑙𝑜𝑔2𝑛)       (8) 

Where n: The number of points in the Training set and, 

V: The dimension of the data. 

The total running time complexity of the C5.0 decision tree is given by; 

 𝑇 (𝑆, 𝑂, 𝑋) =  𝑂(𝑛) + 𝑂(𝑛𝑙𝑜𝑔2𝑛) +  𝑂(𝑉𝑛𝑙𝑜𝑔2𝑛)    (9) 

S is the training set, O is the features, and X is the target class. 

3.2.2 Theoretical Analysis of KNN 

KNN is a lazy learner algorithm that follows brute-force implementation. Its basic 

operation is the distance function. 

Sample Complexity: 𝑂(𝑛)         (10) 

Running Time complexity: 𝑂(𝐾𝑛)        (11) 

Time Complexity for Training: 𝑂(𝐾𝑛𝑑)        

Where n = number of samples in the Training set, 

 K = number of Neighbours and, 

 d = dimension of dataset 

The total running time complexity of KNN is given by, 

𝐾 (𝑆, 𝑂, 𝑋) =  𝑂(𝑛) + 𝑂(𝑘𝑛) +  𝑂(𝑘𝑛𝑑)       (12) 
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S is the training set, O is the features or sample, and X is the sample target. 

3.2.3 Theoretical Analysis of SVM 

SVM is a black box classifier; the basic operation of SVM is the kernel function.  

Sample Complexity: 𝑂(𝑛)         (13) 

Running Time Complexity: 𝑂(𝑛𝑠𝑣𝑑)        (14) 

The time complexity for Training: 𝑂(𝑛2𝑑 + 𝑛3)       

Where n = number of Training samples, 

 𝑛𝑠𝑣 = number of support vectors and 

 d = dimension of dataset. 

The total running time complexity of SVM is given by; 

(𝑆𝑉𝑀(𝑆, 𝑂, 𝑋) = 𝑂(𝑛) + 𝑂(𝑛𝑠𝑣𝑑) + 𝑂 (𝑛2𝑑 + 𝑛3)      (15) 

3.3 DATA PREPROCESSING 

Preprocessing in machine learning is a critical stage that contributes to producing an efficient 

model in machine learning (ML). This process involves preparing the data for analysis by cleaning, 

transforming, and selecting relevant features. With the advancement of technology, cyberattacks 

have become increasingly sophisticated and challenging to detect. Therefore, it is crucial to 

preprocess the data effectively to ensure the accuracy and reliability of the machine learning 

model. This process helps give an equal preference to a dataset in terms of normalisation and 

dimensionality to aid model improvement. Not only that, but the dimensional reduction process 

also helps reduce the computational complexity of the model. Finally, it is essential to mention the 
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aspect of encoding since it is crucial and necessary for both SVM and KNN, which was used in 

this study. 

One of the critical tasks in data preprocessing is data cleaning, which involves identifying and 

correcting errors and inconsistencies in the data. This process ensures that the model produces 

reliable and accurate predictions. Alrashdi et al. (2019) highlighted that using machine learning 

algorithms to detect cyberattacks in an intelligent city requires data cleaning to remove irrelevant 

data and improve the dataset's quality. Similarly, Snider et al. (2021) emphasised the importance 

of data cleaning in reducing the potential for bias and errors in cybersecurity policy-making. 

Therefore, data cleaning should be performed before any other preprocessing task to ensure the 

quality of the data. 

Another essential task in data preprocessing is feature selection, which involves identifying and 

selecting the most relevant features for the model. Feature selection is crucial in reducing the 

dimensionality of the dataset and improving the performance of the machine learning model. 

Khazaei (2021) demonstrated the effectiveness of feature selection in detecting stealthy 

cyberattacks on smart grids. The study used a random forest algorithm to identify the most critical 

features and reduced the dimensionality of the dataset by 50%. This approach significantly 

improved the accuracy of the model. Therefore, feature selection is essential in data preprocessing 

to enhance the machine learning model's performance. 

Data transformation is also a critical task in data preprocessing, which involves converting the data 

into a suitable format for analysis. This process requires scaling, normalisation, and encoding 

categorical variables. Song et al. (2021) applied data transformation techniques to develop a fuzzy 

control model for PDE systems under cyberattacks. The study used a sampled-data-based event-

triggered approach to reduce the effects of cyberattacks on the control system. Furthermore, 
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Acharya et al. (2022) employed data transformation techniques to improve the accuracy of a 

machine learning model for cyber insurance against cyberattacks on electric vehicle charging 

stations. The study used a one-hot encoding technique to transform categorical variables and a 

logarithmic transformation to normalise the data. These approaches significantly improved the 

performance of the model. Therefore, data transformation is a crucial step in data preprocessing to 

ensure that the data is in a suitable format for analysis. 

3.3.1 Data Cleaning 

Data cleaning is essential in developing machine learning models for predicting cyberattacks in 

the space industry. It involves removing and resolving inconsistencies, errors, and missing data 

from the available dataset to improve the accuracy and reliability of the model. The data collected 

for this research is prone to cyberattacks, and hence, it is crucial to ensure the data is free from any 

cyberattack before feeding it into the model. There are 45, 79, and 32 features in the UNSW-NB15, 

CIC-IDS 2017 (Wednesday), and STIN datasets. In the UNSW-NB15 dataset, two features are the 

attack’s class designations, and 43 are important features. While “label” is a binary class label, 

“attack cat” is a multi-class label. The term “attack cat” was eliminated because the proposed ML 

models are built to conduct binary classification for the UNSW-NB15 dataset and CICIDS2017. 

In the STIN dataset, one feature is class designations, and 31 are important features. While “label” 

is a multi-class label, the ML models are built for multi-classification for STIN. 

3.3.2 Minority Removal 

Extremely unbalanced datasets might negatively impact machine learning performance. In the 

STIN dataset, four minority classes are merged into one DDoS class, and another three minority 

classes are merged into one Botnet class because the minority classes are a subset of the main 
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class, and the main target in this dataset set is satellite attacks as shown in the code in Appendix 

A. Finally, a balanced training dataset for STIN was produced that included Botnet, DDoS, 

Syn_DDoS, and UDP_DDoS with 40,401, 57,292, 54,789, and 57,082 records, respectively. 

3.3.3 Encoding 

Encoding involves converting string or categorical features into numerical values, simplifying the 

data for machine learning. In this process, each category in a feature is represented as binary values 

(1 for the category present, 0 for others). The UNSW-NB15 datasets include categorical features 

that need encoding for KNN and SVM classifiers. However, encoding increases the dataset's 

dimensionality and the computational complexity of the training model. In the case of the UNSW-

NB15 dataset, it initially had 45 features and 1 class label, but after encoding, the dimensionality 

increased to 193 features. The UNSW-NB15 dataset includes three categorical characteristics that 

each contain categorical values: “service”, “proto”, “state” and “attack_cat”. Using a label encoder, 

these features were converted from string values to integers, but the STIN dataset has only one 

categorical characteristic in the “Label” feature. 

3.3.4 Normalization 

Normalisation techniques are essential when dealing with datasets with a significant range of 

values to ensure each element has a uniform range. Normalisation prevents the model from 

favouring any individual data element. In this study, both z-score and log scaling were employed 

for normalisation. Z-score and logscale normalisation are methods to scale the data, and they aim 

to bring the data within specific ranges, typically between 0 and 1 or -1 and +1, as the code shown 

in Appendix A. 
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Z-score normalization: The method is standardised based on the original data's average value 

(mean) and standard deviation. The average data after processing is 0, and the square difference is 

1, which meets the standard normal distribution. The primary purpose is to unify different data 

dimensions into the same order of magnitude and measure the calculated Z-score value uniformly 

to ensure comparability between data. The formula is as follows. 

  𝑋𝑖
′ =

𝑋𝑖−𝑋𝜇

𝑋𝜎
         (13)  

Where 𝑋𝜇 and 𝑋𝜎Are the mean and standard deviation for individual values of x, respectively. 

  

𝑋𝑖=log(𝑋𝑖+1)
′          (14) 

Where i ranges from 1 to n in any n-dimensional feature set. 

Appendix A provides the R scripts for the initial dataset loading and pre-processing steps. These 

scripts facilitate the integration of multiple datasets and ensure that the data is appropriately 

formatted for subsequent processing, and scripts for data normalization, feature selection, and 

resampling outline the procedures for splitting the data into training, validation, and testing sets. 

3.4 TRAINING AND TESTING SET PREPARATION 

The training set is used to fit the model, and the test set is used to verify the model’s performance. 

The UNSW-NB15 dataset has 82,332 records for the training set and 175,341 records for the 

testing set, but the STIN dataset has 209,564 records for the training set and 41,913 records for the 

testing set, as shown in the code in Appendix A.  
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3.5 FEATURE SELECTION 

Feature selection is essential in developing a machine-learning model for predicting cyberattacks 

in satellite networks. Feature selection aims to identify the most relevant features in the data that 

can be used to train the model. This helps to reduce the dimensionality of the data, improve the 

model's accuracy, and reduce the risk of overfitting. Several methods have been proposed for 

feature selection in the context of cyberattacks, including filter, wrapper, and embedded methods. 

In the context of the space industry, feature selection is essential due to the complexity and high 

dimensionality of the data. Oyama et al. (2021) developed a method for handling stealthy 

cyberattacks on evolving nonlinear process systems. They used filter and wrapper methods to 

select the most relevant features and improve the model's performance. Zografopoulos et al. (2021) 

assessed the security of integrated transmission and distribution power systems and analysed the 

impact of cyberattacks on these systems. They used a filter method to select the most relevant 

features and evaluate the model's performance. 

In this study, features are manually selected for each of the datasets. The features relevant to the 

attacks are selected to achieve more accurate results and reduce time complexity. 

For the STIN dataset, seven (7) features that contributed most to the attacks were selected 

manually: "syn_cnt", "pkt_len_min", "pkt_len_max", "down_up_ratio", "fl_dur", "bw_win_byt", 

and "l_bw_pkt". For the UNSWB-15 dataset, six (6) features that contributed most to the attacks 

were selected manually, which are “Sttl,” “ct_state_ttl,” “dload,” “dmean,” “dbytes”, “dpkts”.  

Moreover, for the CIC-IDS 2017 (Wednesday) dataset, Sixteen (16) features that contributed most 

to the attacks were selected manually, which are  "Total.Length.of.Fwd.Packets", 

"Subflow.Fwd.Bytes", "Active. Max", "Flow.IAT.Min", "min_seg_size_forward", 

"Init_Win_bytes_forward", "Destination.Port", "Fwd.Packet.Length.Max", "Flow.IAT.Mean", 
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"Active.Std", "Fwd.Packet.Length.Mean", "Avg.Fwd.Segment.Size", "Active.Mean", 

"Fwd.Packet.Length.Std", "Down.Up.Ratio", "URG.Flag.Count".   

3.6 EXPERIMENTAL PROCEDURE. 

The experiments used R programming (Version 4.2.3) and R Studio on a Desktop AMD 

3400G with 3.70GHz, 8GB RAM, 222GB SSD, and Microsoft Windows 10 Pro x64. Decision 

tree, SVM, and KNN classifiers were implemented using the R programming packages rpart, C5.0, 

e1071, and class. The experiments focused on data normalisation, encoding, and model training 

time evaluation. This research compares the performance and training time complexity for CART, 

SVM, and KNN classifiers. The model implementation was tested on STIN, CIC-IDS2017, and 

UNSW-NB15 intrusion datasets, and each was split into training and evaluation sets. The hold-out 

method was used. Log-Scaling Normalization was applied to STIN and UNSW-NB15 datasets, 

while Z-score Normalization was used for CIC-IDS2017 due to its negative values. However, 

values obtained from the training dataset were used for the testing dataset to prevent normalisation 

bias. UNSW-NB15 contained string features, and encoding was implemented, expanding the 

dimensions of the datasets to 193. 

 It is essential to state that the Decision tree as a supervised ML does not make any 

prediction with an unknown pattern; in this experiment, UNSW-NB15 contains a feature in which 

some levels in the Testing phase were absent in the Training phase. For this reason, the state feature 

was removed during the model evaluation in this experiment since it contains some levels that are 

absent in the training phase. Finally, each model's training and running time complexity were 

measured and recorded by setting the timing. Finally, the performance evaluation metrics were 

calculated to assess the machine learning models. Figure 10 shows the flowchart representation of 

the experiment. 
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Appendix B provides the detailed code for training and evaluating the CART model, including 

hyperparameter tuning and performance assessment. The implementation details for the CART 

model, including code snippets for decision tree construction and evaluation, can be found in 

Appendix C. Appendix D includes the R scripts for training and evaluating the KNN model, 

emphasising distance metric selection and optimization. 

 

 

Figure 11: Experimental Flowchart. 

3.7 MODEL EVALUATION 

Model evaluation is a crucial aspect of machine learning, ensuring that the model developed is 

effective and efficient in predicting cyberattacks in the space industry. A well-developed machine 
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learning model is expected to accurately classify a cyberattack as a genuine or false alarm, with 

high precision and recall rates. The evaluation process involves assessing the model's performance 

using various metrics such as accuracy, precision, recall, and F1-score. Researchers have utilised 

different techniques to evaluate the efficacy of their models in predicting cyberattacks within the 

space industry. 

The study by S. P. P et al. (2020) proposed a machine learning model for predicting cyberattacks 

in industrial control systems using enhanced principal component analysis and hypergraph-based 

convolution neural network (EPCA-HG-CNN). The study evaluated the model's efficacy using 

various metrics such as accuracy, precision, recall, F1-score, and area under the curve (AUC). The 

results showed that the proposed model outperformed existing models in terms of accuracy, 

precision, and recall rates. Additionally, the study showed that EPCA-HG-CNN has a high AUC 

score, indicating a reliable model for predicting cyberattacks in the space industry.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

The research study investigates an intrusion detection system for predicting cyberattacks on space 

systems (Satellite Network). Intrusion, conversely, is the process of getting false privileges over 

the networks. Intrusion detection detects anomaly behaviour over a networking environment. As 

stated earlier, Intrusion detection for Satellite networks is critical because it is vital to global 

connectivity, safety, and reliable services. ML is considered here because it can learn from data 

without thorough programming. It uses three supervised machine learning algorithms: Random 

Forest (CART), KNN, and SVM. These algorithms are tested on UNSWB-15, CICIDS2017, and 

STIN. They will provide high security to satellite and terrestrial networks. The dataset was split 

into a train set and a test set in the ratios of 0.8 and 0.2, respectively. Each model is assessed using 

the accuracy, precision, recall, and F1 score evaluation metrics. 

Feature selection is essential in ML problems as it increases the ML performance while reducing 

the complexity of the model. Investigating the feature selection property is critical as it is crucial 

in identifying features contributing to various attack types, which can also increase the time 

efficiency of the ML model. Categorizing various attacks in an IDS is vital as it enables the broad 

generalization of the ML model without redesigning itself. Decision trees, lazy learners (KNN) 

and Black-box (SVM) were investigated and compared. SVM is a supervised ML classifier with 

an efficient classification method, making it suitable for selecting relevant features with the help 

of its Kernel function. KNN is a lazy learner using the distance method to classify data. Each 

mentioned classifier will be implemented on the STIN dataset, the UNSW-NB dataset, and the 

CIC-IDS 2017 Wednesday. The STIN and UNSW-NB15 datasets were selected due to their broad 

uses for satellite network attacks. Likewise, CIC-IDS 2017 Wednesday was chosen since they both 
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contain DoS and DDoS attached, which are essential for this study as DoS and DDoS are major 

attacks for satellite and space networks.  

4.1 PERFORMANCE METRICS 

Assessing performance is paramount in machine learning when dealing with intrusion detection 

systems. The critical focus is optimizing True Negatives and minimizing False Positives to achieve 

high Accuracy, low false alarms, and high detection rates. Therefore, the evaluation of performance 

metrics involved measuring Accuracy, Recall, False Alarm Rate, and Precision, as the code is 

shown in Appendix E. 

True Positive (TP): Truly classify of normal activities. 

True Negative (TN): Truly classify of intrusion. 

False Positive (FP): false classification of normal activities. 

False Negative (FN): False classification of intrusion 

Accuracy: The number of correct predictions that were correct. 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (15) 

Precision: The amount of correctly predicted intrusion. 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (16) 

       

Recall: The number of relevant instances responsible for intrusion. 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (17) 
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False alarm rate: The number of false predictions of intrusion. 

  𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
       (18) 

4.2   PERFORMANCE ANALYSIS 

To prove the efficiency of the machine learning algorithms, the approaches were tested on three 

datasets: UNSW-NB15, CIC-IDS 2017(Wednesday), and STIN. Classifier performance evaluation 

is commonly computed using evaluation metrics such as accuracy, precision, recall, and the False 

alarm rate. These metrics are measured using a confusion matrix in Eqs. 15, 16, 17, and 18. To test 

the performance of individual attack labels on the STIN dataset, a confusion matrix for the 

Decision Tree (CART) and SVM multiclass classification model was computed with the code in 

Appendix E, as shown in Fig. 11, Fig. 12, Fig. 13, and Fig. 14.  Figure 11 illustrates the confusion 

matrix for the STIN dataset's Decision Tree multiclass classification Model for the full feature set. 

The Decision Tree classifier performs well for terrestrial attacks, which include Botnet and DDoS 

categories. Still, it performs better for the UDP_DDoS class than the syn_DDoS class in satellite 

attacks, which include Syn_DDoS and UDP_DDoS attacks. Figure 12 illustrates the confusion 

matrix for the STIN dataset's Decision Tree multiclass classification Model for the reduced feature 

set. The Decision Tree classifier performs well for terrestrial attacks, which include Botnet and 

DDos categories. Still, it performs better for the UDP_DDos class than the syn_DDos class in 

satellite attacks, which include Syn_DDos and UDP_DDos attacks. Figure 13 illustrates the 

confusion matrix for the STIN dataset's SVM multiclass classification Model for the full feature 

set. Based on the darker squares in the confusion matrix, the Decision Tree classifier performs well 

for terrestrial attacks, which include Botnet and DDos categories. Still, it performs better for the 

UDP_DDos class than the syn_DDos class in satellite attacks, which include Syn_DDos and 
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UDP_DDos attacks. Figure 14 illustrates the confusion matrix for the STIN dataset's SVM 

multiclass classification Model for the reduced feature sets. 

 
Figure 12: Confusion matrix of a full feature set for Decision Trees (STIN) 
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Figure 13: Confusion matrix of a Reduced feature set for Decision Trees (STIN) 

 
Figure 14: Confusion matrix of a Full feature set for SVM (STIN) 

 
Figure 15: Confusion matrix of a Reduced feature set for SVM (STIN) 
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To test the performance of the UNSWB-15 dataset, This dataset has nine types of attacks: Fuzzers, 

Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,  Shellcode, and Worms, which are 

grouped into two individual attack labels named normal and abnormal attacks which the attack 

that is relevant to attack satellite network are classified as abnormal and others as normal,  a 

confusion matrix for the Decision Tree (CART), SVM, and KNN classification model was 

computed, as shown in Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 19.  Figure 15 illustrates the 

confusion matrix for the UNSWB-15 dataset's Decision Tree classification Model for the full 

feature set. Figure 16 illustrates the confusion matrix for the UNSWB-15 dataset's Decision Tree 

classification Model for the reduced feature set. Figure 17 illustrates the confusion matrix for the 

UNSWB-15 dataset's SVM classification Model for the full feature set. Figure 18 illustrates the 

confusion matrix for the UNSWB-15 dataset's SVM classification Model for the reduced feature 

set by manually selecting the features for the decision tree. Figure 19 illustrates the confusion 

matrix for the UNSWB-15 dataset's KNN classification Model for the full feature set. 

 
Figure 16: Confusion matrix of a Full feature set for Decision Tree (CART) for UNSWB-15 
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Figure 17: Confusion matrix of a Reduced feature set for Decision Tree (CART) for UNSWB-15 

 
Figure 18: Confusion matrix of a Full feature set for SVM for UNSWB-15 
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Figure 19: Confusion matrix of a Reduced feature set for SVM for UNSWB-15 

 
Figure 20: Confusion matrix of a Full feature set for KNN for UNSWB-15 
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To test the performance of the CIC-IDS2017 (Wednesday) dataset, the attack labels, which are like 

Five (5), are grouped into two individual attack labels, which are normal and abnormal attacks, a 

confusion matrix for the Decision Tree (CART) and SVM classification model was computed, as 

shown in Fig. 20, Fig. 21, Fig. 22, and Fig. 23.  Figure 20 illustrates the confusion matrix for the 

CIC-IDS2017 (Wednesday) dataset's Decision Tree classification Model for the full feature set. 

Figure 21 illustrates the confusion matrix for the CIC-IDS2017 (Wednesday) dataset's Decision 

Tree multiclass classification Model for the reduced feature set. Figure 22 illustrates the confusion 

matrix for the CIC-IDS2017 (Wednesday) dataset's SVM classification Model for the full feature 

set. Figure 23 illustrates the confusion matrix for the CIC-IDS2017 (Wednesday) dataset's SVM 

classification Model for the reduced feature set.  

 
Figure 21: Confusion matrix of a Full feature set for Decision Tree (CART) for CICIDS2017-

Wednesday 
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Figure 22: Confusion matrix of a Reduced feature set for Decision Tree (CART) for 

CICIDS2017-Wednesday 

 

Figure 23: Confusion matrix of a Full feature set for SVM for CICIDS2017-Wednesday 
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Figure 24: Confusion matrix of a Reduced feature set for SVM for CICIDS2017-Wednesday 

4.3 COMPARISON OF CART DT WITH OTHER CLASSIFIERS. 

This section investigates and compares the classifier performance of Different ML categories on 

the STIN, UNSW-NB15, and CIC-IDS 2017 Wednesday datasets. The Black Box (SVM) and the 

lazy learner KNN were compared with the CART decision tree classifier. Due to the distance 

approach in Lazy learner KNN, the classifier caused too many tie issues on the STIN and CIC-

IDS 2017 Wednesday datasets. This limitation was encountered because of the experimental 

procedure, a Hold-out for this study. As a result, KNN was eliminated along the lines of this 

section. The K value used for KNN implementation in this study was the square root of the feature 

list, and the parameter used for SVM implementation was (kernel = radial and cost = 1/feature 

list). 

This result demonstrates that SVM and CART are classification efficient on the Intrusion 

dataset used in this study. However, due to too many tie problems in KNN, the following 

experiment will not consider implementing KNN. 
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On the STIN dataset, CART achieved the highest accuracy of 93.42% compared with 

SVM, having 87.41% accuracy as shown in Table 5 and Table 7, and performed well for the 

reduced set, having 93.13% and 87.04% as the CART and SVM, respectively, as shown in Table 

6 and Table 8. CART achieves the best precision and false alarm rate (FAR) on UNSWB-15, 

having 99.87% and 0.34%, respectively. Compared with SVM, it achieved 99.50%, 1.02% 

precision, and FAR, respectively, as shown in Table 5. Furthermore, on the CIC-IDS 2017 

Wednesday full feature dataset, CART achieved the best performance across all evaluated metrics. 

CART achieved 99.87% accuracy, SVM achieved 98.48% accuracy, and for the 16 reduced feature 

lists of the CIC-IDS 2017 Wednesday dataset, as shown in Table 9 and Table 10, respectively, the 

SVM achieved the best performance across all evaluated metrics. Likewise, the time complexity 

of CART is more efficient than that of SVMs. 

These results show that CART is time-efficient compared to SVM. These findings also 

reveal the reliability of the CART decision tree classifier’s time efficiency compared to other 

categories of supervised ML classifiers (Black Box, lazy learner, and Decision trees) Tables 11 & 

12. As a result of the above experimental results, CART has demonstrated an excellent candidacy 

in developing a time-efficient ML model as an IDS for Satellite networking. 

Table 5: Accuracy of Decision Tree classifier on STIN full feature set dataset. 

 

Feature 

subset size 

Decision Tree performance of the Satellite full feature set 

Attack type Accuracy  Precision  Recall False Alarm Rate 

31 Botnet 94.18% 84.49% 85.21% 3.70% 

31 DDoS 86.93% 76.77% 90.22% 14.87% 

31 Syn_DDoS 93.27% 99.95% 73.49% 0.01% 

31 UDP_DDoS 99.30% 97.40% 99.20% 0.67% 
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Table 6: Accuracy of Decision Tree classifier on STIN reduced feature set dataset. 

Feature 

subset size 

Decision Tree performance of Satellite Reduced feature set 

Attack Type Accuracy  Precision  Recall False Alarm Rate 

8 Botnet 93.60% 76.66% 88.63% 5.40% 

8 DDoS 86.35% 79.02% 86.84% 13.96% 

8 Syn_DDoS 93.27% 99.95% 73.49% 0.01% 

8 UDP_DDoS 99.30% 97.40% 99.20% 0.67% 

Table 7: Accuracy of SVM classifier on STIN full feature set dataset. 

Feature 

subset size 

SVM performance of the Satellite full feature set 

Attack type Accuracy  Precision  Recall False Alarm Rate 

31 Botnet 88.49% 50.74% 82.93% 10.77% 

31 DDoS 75.11% 62.90% 73.26% 23.87% 

31 UDP_DDoS 90.12% 99.74% 65.41% 0.07% 

31 Syn_DDoS 95.91% 98.68% 84.20% 0.36% 

Table 8: Accuracy of SVM classifier on STIN reduced feature set dataset. 

Feature 

subset size 

SVM performance of Satellite Reduced feature set 

Attack Type Accuracy  Precision  Recall False Alarm Rate 

8 Botnet 87.10% 74.01% 64.39% 6.44% 

8 DDoS 74.21% 50.27% 80.07% 27.86% 

8 Syn_DDoS 90.14% 99.78% 65.45% 0.06% 

8 UDP_DDoS 96.71% 98.72% 87.05% 0.35% 
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Table 9: Accuracy of classifiers on CIC-IDS 2017 Wednesday full feature set dataset. 

Feature 

subset size 

Model performance of CIC-IDS 2017 Wednesday full feature set 

Algorithm Accuracy  Precision  Recall False Alarm Rate 

68 KNN — — — — 

68 SVM 98.48% 98.58% 97.27% 0.81% 

68 CART 99.87% 99.84% 99.79% 0.09% 

 

Table 10: Accuracy of classifiers on CIC-IDS 2017 Wednesday reduced feature set dataset.  

Feature 

subset size 

Model performance of CIC-IDS 2017 Wednesday Reduced set  

Algorithm Accuracy  Precision  Recall False Alarm Rate 

16 KNN — — — — 

16 SVM 96.92% 96.69% 94.92% 1.91% 

16 CART 95.80% 89.37% 98.96% 5.74% 

Table 11: Accuracy of classifiers on UNSW-NB15 full feature set dataset. 

Feature 

subset size 

Model performance of UNSW-NB15 full feature set 

Algorithm Accuracy  Precision  Recall False Alarm Rate 

194 KNN 86.28% 96.71% 81.72% 5.20% 

194 SVM 81.51% 99.50% 75.05% 1.02% 

42 CART 76.63% 99.87% 70.24% 0.34% 

 

Table 12: Accuracy of classifiers on UNSW-NB15 reduced feature set dataset. 

Feature 

subset size 

Model performance of UNSW-NB15 Reduced feature set 

Algorithm Accuracy  Precision  Recall False Alarm Rate 

6 KNN — — — — 

6 SVM 78.90% 99.73% 72.38% 0.62% 
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6 CART 76.63% 99.87% 70.24% 0.34% 

 

 
Figure 25: Performance comparison of all models on the STIN Full feature dataset 

 
Figure 26: Performance comparison of all models on the STIN Reduced feature dataset 
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Figure 27: Performance comparison of all models on the CIC-IDS 2017 (Wednesday) Full 

feature dataset 

 

 
Figure 28: Performance comparison of all models on the CIC-IDS 2017 (Wednesday) Reduced 

feature dataset 
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Figure 29: Performance comparison of all models on the UNSWB-15 Full feature dataset 

 

 
Figure 30: Performance comparison of all models on the UNSWB-15 Reduced feature dataset 

4.4. COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS 

The computational complexity of the SVM model is estimated using the execution time on all 

three datasets, and results are given in Table 13 and Table 14. The execution time of the SVM is 

higher than that of the Decision Tree and KNN. Given that the model takes a slightly longer time 
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for training and testing, the performance of the SVM is significantly higher than that of the 

machine learning models. 

Table 13: Estimated execution time of all classifiers on all full features of the three datasets. 

Model  Dataset Estimated Time 

Decision Tree (CART) 

STIN  68.31 secs 

CIC-IDS 2017 Wednesday   59.29 secs 

UNSWB-15  48.5 secs 

SVM 

STIN  559.51 secs 

CIC-IDS 2017 Wednesday   505.13 secs 

UNSWB-15  421.06 secs 

KNN 

STIN  — 

CIC-IDS 2017 Wednesday   — 

UNSWB-15  236.09 secs 

 

Table 14: Estimated execution time of all classifiers on the reduced features set of the three 

datasets. 

Model  Dataset Estimated Time 

Decision Tree (CART) 

STIN  6.22 secs 

CIC-IDS 2017 Wednesday   4.96 secs 

UNSWB-15  3.71 secs 

SVM 

STIN  286.78 secs 

CIC-IDS 2017 Wednesday   209.45 secs 

UNSWB-15 176.05 secs 

KNN STIN  — 
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CIC-IDS 2017 Wednesday   — 

UNSWB-15  — 

 

4.5 DISCUSSION OF RESULTS 

This research experiment presented a performance analysis, comparison, and time complexity of 

the three ML algorithm techniques. The CART decision tree, KNN, and SVM techniques are 

exploited to significantly reduce the execution time of training and testing data by minimising the 

number of selected features with a manual selection of relevant features for the attack while 

enhancing the accuracy of intrusion detection. It selects 8, 6, and 16 features among 31 features, 

194 features, and 68 features from the STIN, UNSWNB15, and CIC-IDS 2017 Wednesday 

datasets, respectively. 

When applying to the STIN dataset, the accuracy of the Decision Tree classifier maintained the 

same accuracy with the reduced feature sets at 99.30%, as shown in table 5 and 6, and the accuracy 

of the SVM classifier increased from 95.91% to 96.71% as shown in table 7 and 8. The 

experimental results demonstrate that the CART Decision Tree classifier achieved a higher 

accuracy score in the UDP_DDoS attack than the SVM classifier, as shown in Table 5. In addition, 

SVM classification recorded higher detection accuracy for Syn_DDoS than Decision Tree, as 

shown in Table 7. When applied to the UNSW-NB15 dataset, the KNN achieved the best result for 

the full feature set, as shown in Table 11, but it did not work for the reduced feature set because of 

the number of ties. The accuracy of the Decision Tree classifier achieved the same result as the 

reduced feature sets with 76.63% accuracy, as shown in Tables 5 and 6, and the accuracy of the 

SVM classifier Reduced from 81.51% to 78.90%, as shown in Tables 7 and 8. Also, when applied 

to the CIC-IDS 2017 Wednesday dataset, the CART Decision Tree achieved the best result with 
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99.87% and almost the same accuracy as the Reduced feature sets, as shown in Table 9. The 

accuracy of the Decision Tree classifier achieved the same result as the reduced feature sets with 

76.63% accuracy, as shown in Table 11, and the accuracy of the SVM classifier Reduced from 

98.48% to 96.92%, as shown in Table 12. However, CART is this experiment's most time-efficient 

DT model, demonstrating the best overall results across all datasets. The support of the categorical 

features of the DT model contributes significantly to its lower complexity (Training time).  

Finally, comparing the performance of KNN, SVM, and CART, the results show that SVM and 

CART Decision Trees demonstrate good classification performance across all evaluated matrices 

used in this study, as shown in Figure 25-30. As a result, CART achieved the best results in a short 

period compared with SVM, as shown in Tables 13 and 14.  

4.6 OPERATIONAL PROCEDURE OF THE CODES 

This section provides a step-by-step guide on how to set up and run the R codes used for data 

collection, pre-processing, and model evaluation. The objective is to ensure that future readers can 

reproduce the results and conduct further experiments without additional assistance. 

4.6.1 Prerequisites 

Before running the codes, ensure you have the following prerequisites installed on your system: 

R, RStudio, and Install the necessary R packages by running the following commands in the R 

console. 

a) Download and install R from CRAN. 

b) Download and install RStudio, an integrated development environment (IDE) for R, from 

RStudio's website. 

c) install.packages(c("dplyr", "ggplot2", "caret", "e1071", "rpart", "class", "reshape2")) 
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4.6.2 Setting Up the Project 

Created the project files, including the datasets and R scripts 

Create a new directory on your computer and organize the files as follows: 

MSC/ 

├── data/ 

│   ├── UNSWB15.csv 

│   ├── STIN.csv 

│   └── CICIDS2017(Wednesday).csv 

├── scripts/ 

│   ├── data_preprocessing.R 

│   ├── svm_model.R 

│   ├── cart_model.R 

│   └── knn_model.R 

│   └── eval_metrics.R 

├── results/ 

│   └── (empty, to store output files) 

4.6.3 Running the Codes 

Follow these steps to run each script and perform the tasks outlined in the thesis: 
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For data pre-processing, open data_preprocessing.R located in the scripts/ directory. Run the script 

to clean, normalize, and preprocess the data. The preprocessed data will be saved for use in model 

training with this command “source(scripts/data_preprocessing.R)” 

For training and evaluating the three models for each dataset, open svm_model.R, cart_model.R, 

and knn_model.R are located in the scripts/ directory. Run the script to train and evaluate all three 

models with these scripts: “source("scripts/svm_model.R")”, “source("scripts/cart_model.R")”, 

and “source("scripts/knn_model.R")”. The script outputs performance metrics and saves the model 

to the results/ directory. 

4.6.4 Interpreting the Results 

After running each model script, navigate to the results/ directory to review the output files, which 

include performance metrics and model summaries. Use these outputs to compare model 

performance and draw conclusions, as the thesis discusses. 
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CHAPTER FIVE 

SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATIONS 

5.1 SUMMARY OF FINDINGS 

This study employed three datasets, UNSWB15, STIN, and CIC-IDS2017 (Wednesday), for 

intrusion detection systems (IDS) to predict cyberattacks on satellite networks. It also compared 

the classification performance of three categories of ML classifiers: Support Vector Machine 

(SVM), Decision Tree (CART), and K-nearest neighbours (KNN) and manual selection of feature 

importance to reduce the time complexity and performance. Support Vector Machine (SVM) 

demonstrated high accuracy and robustness in distinguishing between benign and malicious 

activities, especially in scenarios with complex decision boundaries. SVM showed superior 

precision and recall, making it highly effective in minimizing false positives and false negatives, 

which show 99.87% and 70.24%, respectively, for UNSWB-15 as shown in Table 11 and 99.84% 

and 99.79%, respectively, for CIC-IDS 2017 (Wednesday) as shown in table 9. The decision tree 

(CART) showed a good accuracy performance of 99.87% for CIC-IDS 2017 (Wednesday) and 

93.42% for STIN, as shown in Tables 9 and 5, respectively, because of its internal feature selection 

features. KNN achieved commendable detection accuracy. It performed well in recognizing 

patterns in the data, but its high computational cost, causing too many ties, and slower prediction 

time were noted as significant drawbacks. The study employed manual feature selection techniques 

to reduce dimensionality and improve computational efficiency, leading to more accurate and 

reliable predictions. The models achieved higher accuracy and better overall performance by 

identifying and utilising the most relevant features. 

Each dataset presented unique challenges and opportunities for the models. The UNSWB15 dataset 

was instrumental in testing the models' ability to handle diverse types of cyberattacks. The STIN 
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and CICIDS2017 (Wednesday) datasets, which contain accurate network data, provided valuable 

insights into the models' performance in different network environments and attack scenarios.  

5.2   RESEARCH LIMITATIONS 

The datasets (UNSWB15, STIN, and CICIDS2017) do not represent all possible types of 

cyberattacks or the diversity of satellite network configurations. Real-world satellite networks can 

have unique characteristics and threat landscapes not fully captured in these datasets. The models 

were trained and tested on specific datasets, and their performance may vary when applied to 

different satellite networks or newer types of cyberattacks not present in the datasets. So, a real-

time satellite dataset is necessary. Satellite networks are highly specialized and can vary widely in 

architecture and usage. The models developed in this study may need further customization and 

adaptation to be effectively deployed in various real-world satellite network environments. 

The study did not extensively address potential security and privacy concerns related to deploying 

machine learning models in satellite networks. Ensuring the models themselves are secure from 

adversarial attacks and protecting the privacy of the data used are critical aspects that require 

further investigation. In conclusion, while this research provides an understanding of the 

application of machine learning models for IDS in satellite networks, addressing these limitations 

in future work is essential to enhancing the solutions' practical applicability and robustness. 

5.3   CONCLUSION 

The requirement for cybersecurity solutions to prevent attacks in the modern network 

environment has increased along with the number of network intrusion attacks on satellites because 

of the importance of weather forecasting and communication. The increase in network intrusion 

attacks has also increased the need for an intuitive cybersecurity system to cope with the attacks 

in the modern network environment. Three ML-based IDSs are used in this research to provide a 
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high level of security for both satellite and terrestrial networks. The experiment of this study 

provides insight into the comparison of the three categories of ML Classifiers in which Decision 

tree performance is more accurate than the others due to its Multiclass classification, internal 

feature selection, various optimised versions and support of categorical features. Knowing that 

feature selection is significant when implementing an ML model for IDS; this study compared the 

accuracy and time complexity by manually selecting the important features for the attacks. The 

machine learning algorithm is evaluated and verified using the UNSW-NB15, CIC-IDS 2017 

Wednesday, and STIN datasets. The feature selection technique improves the classification results 

and reduces the execution time.  

      In conclusion, this experiment provides valuable insight into how ML researchers can visualise 

the theoretical properties mentioned above in the scope of intrusion detection systems.  

5.4   RECOMMENDATIONS 

By demonstrating the effectiveness of models like Support Vector Machine (SVM), Decision Tree 

(CART), and K-Nearest Neighbors (KNN), the research provides a foundation for further 

exploration and development of advanced IDS technologies. The findings' practical 

implementation can lead to deploying more sophisticated IDS solutions in real-world satellite 

networks, thereby improving their resilience against cyber threats and reducing the risk of service 

disruptions. Investing in hardware and software infrastructure that supports real-time data 

processing and analysis is critical. Optimizing the computational efficiency of models, particularly 

for algorithms like KNN, can help achieve timely threat detection. The simplicity and low resource 

requirements of this study's three supervised machine learning algorithms make them highly 

suitable for satellite networks. 
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Promoting collaboration and knowledge exchange between government, business, and academia 

can lead to more creative and reliable IDS solutions. Establishing forums and working groups 

devoted to satellite network security can facilitate this communication. Engaging in cybersecurity 

contests and challenges can spur innovation in IDS technologies and yield insightful information. 

5.5 SUGGESTIONS FOR FUTURE RESEARCH 

One future work of this study can be to implement a well-feature selection technique such as 

wrappers and embedded, which can improve the generalization of this model by optimizing the 

classifiers as there is still room for improvement across all the datasets used in this work. Another 

future work of this study is an empirical analysis of deep learning such as Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), and their variants, which have shown 

promise in other cybersecurity domains. These models can capture more complex patterns and 

temporal dependencies in network traffic data. 

Conduct extensive testing and validation of IDS models in realistic satellite network environments 

using simulated and real-world data. Collaboration with satellite network operators can provide 

valuable insights and data for more accurate evaluation. By pursuing these research directions, 

future studies can address the current limitations and push the boundaries of what is possible in 

protecting satellite networks from cyber threats.  
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APPENDIX A: DATA PREPROCESSING 

 

# Combine four minority classes into one 'DDoS' class 

combined_data$Label[combined_data$Label %in% c("Syn_DDoS", "UDP_DDoS", 

"LDAP_DDoS", "MSSQL_DDoS")] <- "DDoS" 

 

# Combine another three minority classes into one 'Botnet' class 

combined_data$Label[combined_data$Label %in% c("Web Attack", "Backdoor", 

"NetBIOS_DDoS")] <- "Botnet" 

combined_data <- rbind(TestDatasetNEG, Train) 

combined_data <- na.omit(combined_data) 

 

library(caret) 

 

# Set seed for reproducibility 

set.seed(123) 

 

# Create an index for splitting the data (80% training, 20% testing) 

splitIndex <- createDataPartition(combined_data$Label, p = 0.8, list = FALSE) 

 

# Create training and testing sets 

training_data <- combined_data[splitIndex, ] 

testing_data <- combined_data[-splitIndex, ] 

 

# Check the dimensions of the datasets 

dim(training_data) 

dim(testing_data) 

 

Testdataset = Testdataset[,c(-15)] 

Traindataset = Traindataset[,c(-15)] 
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save(TestDatasetNorm, file = "SateliteTestzscore.Rda") 

 

save(TrainDatasetNorm, file = "SateliteTrainzscore.Rda") 

 

#------------------------------------------zscore 

TrainDatasetNorm <- Traindataset 

TrainDatasetNoNorm <- Traindataset 

TestDatasetNorm <- Testdataset 

TrainDatasetMeanList <- vector(length = (ncol(Traindataset)-1)) 

TrainDatasetSdList <- vector(length = (ncol(Traindataset)-1)) 

 

for(j in 1:ncol(Traindataset)) 

{ 

  TrainDatasetMeanList[j] <- mean(TrainDatasetNoNorm[,j]) 

  TrainDatasetSdList[j] <- sd(TrainDatasetNoNorm[,j]) 

   

  for(i in 1:nrow(Traindataset)) 

  { 

    TrainDatasetNorm[i,j] <- ((Traindataset[i,j] - TrainDatasetMeanList[i]) / 

(TrainDatasetSdList[i])) 

  } 

} 

Logscalling: 

 

columns_to_log2 <- c( "dur", "spkts", 

"dpkts","sbytes","dbytes","rate","sttl","dttl","sload","dload","sloss", 

                     "dloss" , "sinpkt","dinpkt","sjit","djit","swin","stcpb", 
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                     "dtcpb","dwin","tcprtt","synack","ackdat","smean", "dmean", 

                     "trans_depth", "response_body_len", 

"ct_srv_src","ct_state_ttl","ct_dst_ltm","ct_src_dport_ltm","ct_dst_sport_ltm", 

                     

"ct_dst_src_ltm","is_ftp_login","ct_ftp_cmd","ct_flw_http_mthd","ct_src_ltm","ct_srv_dst" 

) 

 

for (column in columns_to_log2) { 

  TestDataset[[column]] <- log(TestDataset[[column]] + 1) 

} 

 

 

columns_to_log1 <- c( 

"dur","spkts","dpkts","sbytes","dbytes","rate","sttl","dttl","sload","dload","sloss", 

                     "dloss" , "sinpkt","dinpkt","sjit","djit","swin","stcpb", 

                     "dtcpb","dwin","tcprtt","synack","ackdat","smean", "dmean", 

                     "trans_depth", "response_body_len", 

"ct_srv_src","ct_state_ttl","ct_dst_ltm","ct_src_dport_ltm","ct_dst_sport_ltm", 

                     

"ct_dst_src_ltm","is_ftp_login","ct_ftp_cmd","ct_flw_http_mthd","ct_src_ltm","ct_srv_dst" 

) 

 

for (column in columns_to_log1) { 

  TrainDataset[[column]] <- log(TrainDataset[[column]] + 1) 

} 
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APPENDIX B: DECISION TREE (CART) MODEL IMPLEMENTATION 

library(rpart) 

FsTrain$Label   = as.factor(FsTrain$Label   ) 

start.time <- Sys.time() 

Train_Cart = rpart( Label  ~ ., data=FsTrain, method = "class" ) 

 

end.time <- Sys.time() 

time.taken <- round(end.time - start.time,2) 

time.taken 

start.time <- Sys.time() 

 

predicted.classes <- Train_Cart %>% 

  predict(FsTest, type = "class") 

 

end.time <- Sys.time() 

time.taken <- round(end.time - start.time,2) 

time.taken 

 

table(pred = predicted.classes,FsTest$Label   ) 
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APPENDIX C: SVM MODEL IMPLEMENTATION 

library(e1071) 

start.time <- Sys.time() 

svm_model <- svm(x = FsTrain[,-7], y = FsTrain[,7], type = "C-classification", kernel = "radial", 

cost = 1, gamma = 1/6) 

 

end.time <- Sys.time() 

time.taken <- round(end.time - start.time,2) 

time.taken 

 

#-----------------------------------------------------------svm Prediction on Train 

start.time <- Sys.time() 

 

pred_train <- predict(svm_model,FsTest[,-7]) 

 

end.time <- Sys.time() 

time.taken <- round(end.time - start.time,2) 

time. taken 

 

table(pred = pred_train , FsTest[,7]) 
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APPENDIX D: KNN MODEL IMPLEMENTATION 

library(class) 

FsTrain$label   = as.factor(FsTrain$label) 

 

start.time <- Sys.time() 

 

pred <- knn(FsTrain[, -26],FsTest[,-26],FsTrain$label , k=13) 

 

end.time <- Sys.time() 

time.taken <- round(end.time - start.time,2) 

time.taken 

 

table(pred = pred,FsTest$label) 
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APPENDIX E: EVALUATION METRICS IMPLEMENTATION 

# Load necessary libraries 

library(ggplot2) 

library(reshape2) 

 

# Define the confusion matrix  

conf_matrix <- matrix(c(TN, FP, FN, TP), nrow=2, byrow=TRUE) 

 

# Assign names to the rows and columns for readability 

rownames(conf_matrix) <- c("Actual Normal", "Actual Abnormal") 

colnames(conf_matrix) <- c("Predicted Normal", "Predicted Abnormal") 

 

# Calculate metrics 

TN <- conf_matrix[1, 1] 

FP <- conf_matrix[1, 2] 

FN <- conf_matrix[2, 1] 

TP <- conf_matrix[2, 2] 

 

# Calculate accuracy 

accuracy <- round((TP + TN) / (TP + TN + FP + FN) * 100, 2) 

 

# Calculate precision 

precision <- round(TP / (TP + FP) * 100, 2) 

 

# Calculate recall 

recall <- round(TP / (TP + FN) * 100, 2) 

 

# Calculate false alarm rate 

false_alarm_rate <- round(FP / (FP + TN) * 100, 2) 
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# Print metrics 

cat("Accuracy:", accuracy, "%\n") 

cat("Precision:", precision, "%\n") 

cat("Recall:", recall, "%\n") 

cat("False Alarm Rate:", false_alarm_rate, "%\n") 

 

# Plot heatmap 

conf_matrix_melt <- melt(conf_matrix) 

colnames(conf_matrix_melt) <- c("Actual", "Predicted", "Count") 

 

ggplot(data = conf_matrix_melt, aes(x = Predicted, y = Actual, fill = Count)) + 

  geom_tile(color = "white") + 

  geom_text(aes(label = Count), vjust = 1) + 

  scale_fill_gradient(low = "white", high = "blue") + 

  labs(title = "Confusion Matrix", x = "Predicted", y = "Actual") + 

  theme_minimal() + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) 
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