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ABSTRACT

The high temperature superconducting cuprates show some non Fermi liquid
behaviour in their normal state. Also there is no generally accepted theory
of high temperature superconductivity. The BCS theory has failed to explain
the superconductive state properties of the cuprate superconductors. Gorter-
Casimir two �uid model and London theory has been very useful before the
BCS theory. Varma and his co-workers propounded a `marginal` Fermi liquid
theory which explains the normal state properties of the cuprate superconduc-
tors.
In this thesis, we have calculated some thermodynamic and electrodynamic
properties of the cuprate superconductors. The method involves applying the
result of electronic speci�c heat capacity of cuprates in the normal state ob-
tained by Kuroda and Varma to the Gorter-Casimir two �uid model using
the standard variational method. We also applied the two �uid scheme to the
London theory and obtained an expression for the magnetic �eld penetration
depth. Our result was compared with other peoples' results and experimental
results.
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CHAPTER 1

INTRODUCTION

1.1 General Background

Superconductivity is a phenomenon characterised by the disappearance of elec-
trical resistance in various metals, alloys and compounds when they are cooled
below a certain temperature usually termed the critical temperature, Tc. It is
also characterised by the expulsion of the interior magnetic �eld (called Meiss-
ner e�ect) from the superconductor.

Figure 1.1: Graph of resistance R against temperature
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Figure 1.2: Meissner e�ect

Superconductivity was �rst observed in mercury by Dutch Physicist, Heike
Kamerlingh Onnes of Leiden University in 1911. When he cooled it to the
temperature of liquid helium (4.2K), its resistance suddenly disappeared
(Solymar, 1993).

In 1933, German researchers, Walter Meissner and Robert Ochsenfeld dis-
covered that a superconducting material will repel a magnetic �eld.

The �rst widely accepted microscopic theoretical understanding of super-
conductivity called BCS theory was advanced in 1957 by American Physicists;
john Bardeen, Leon Cooper and Robert Schrie�er.

In 1986, Alex Muller and George Bednorz, researchers at IBM research
laboratory in Ruschlikon, Switzerland discovered a critical temperature of 30K
when performing measurements of conductivity in ceramic (lanthanum, bar-
ium, copper and oxygen) compounds with various concentration of barium.
Higher superconducting transition temperature were reached in January 1987
by the group of C. W Chu at the University of Houston in collaboration with
the group of M. K Wu at the University of Alabama by replacing yttrium
for barium in the Muller and Bednorz molecule. They achieved an incredible
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critical temperature of 90K [Matsumoto (2010)].

High temperature superconductivity has taken the stage of modern con-
densed matter theory since its discovery in 1987. High temperature super-
conducting materials show deviations from the Fermi liquid phenomenology.
The BCS theory has not been able to explain the properties of the high Tc
cuprates. On a phenomenological level, behaviour close to the optimal doping
(ie the regime where the superconducting transition temperature is highest)
seems to display `marginal Fermi liquid' (MFL) behaviour.

Studies of electrodynamic properties provide a clear phenomenological pic-
ture, reveal information regarding the pairing state, the energy gap and density
of state of the superconductor and give important information on the mecha-
nism of high temperature superconductivity. However, there is no clear concen-
sus about the electrodynamics of cuprates from earlier studies of YBCO and
BSCCO [Peil et al (1991)]. This is due in part to their complex microstructural
properties: interruption of the conductive Cu-O chains by twin boundaries in
YBCO, and the short coherence length which gives rise to a plethora of weak-
link phenomena [Halbritter (1990)]. The most important feature observed in
experiments is the linear resistivity, which at optimal doping persists in an
enormous temperature range from a few kelvin to much above room tempera-
ture.

A phenomenological model describing the marginal Fermi liquid behaviour
of cuprates have been put forward by Varma and co-workers but its micro-
scopic origin remains highly controversial. To our knowledge, no microscopic
theory has so far been able to provide a microscopic explanation for the
phenomenon of high temperature superconducting cuprates despite years of
e�orts and hundreds of papers published on the subject [Chaudhury (1995)].

This research work therefore focuses on the application of the marginal
Fermi liquid model to the Gorter-Casimir two �uid model/London theory.

In chapter 2 we look at the general properties of cuprates, the Fermi liquid
theory, the BCS theory and some phenomenological theories including Gorter-
Casimir two �uid model, London-Pippard theory and the phenomenological
marginal Fermi liquid model.

In chapter 3, we apply the expression obtained for the speci�c heat capacity
of a marginal Fermi liquid in the normal phase using a direct approach similar
to the Fermi liquid (FL) and phonon-like treatment(chaudhury 1995) to the
Gorter-Casimir two �uid model and obtain the normalised speci�c heat jump
and the temperature dependence of the critical �eld.
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In chapter 4 we look at the application of the result of the marginal Fermi
liquid calculation to the London-Pippard theory and obtain an expression for
the temperature dependence of the penetration depth.

Chapter 5 is the comparison of the results obtained in this thesis with the
various results of calculations done by other scientists using various methods
and the experimental results. And �nally the conclusion.

1.2 Classi�cation of Superconductors by their

Critical Temperature

A superconductor is classi�ed as either low temperature superconductor or
high temperature superconductor depending on its critical temperature.

1.2.1 Low Temperature Superconductors

They are superconductors whose critical temperature is below 77K. This means
that they cannot be cooled below their critical temperature using liquid helium
at atmospheric pressure. Most low temperature superconductors are conven-
tional superconductors (ie they display superconductivity as described by the
BCS theory or its extensions).

Table 1.1: Some low temperature superconductors and their critical tempera-
ture
Superconductor Critical Temperature (K) Critical Field (Gauss)

Lead (Pb) 7.196 800

Tin (Sn) 3.72 310

Aluminium (Al) 1.175 110

1.2.2 High Temperature Superconductors

These are materials that can be cooled to their critical temperature Tc using
liquid nitrogen. This is because their critical temperature is above the boiling
point of nitrogen at atmospheric pressure.
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An example of high temperature superconductor is the so called 1-2-3 com-
pound which contains one part Yttrium, two parts barium, three parts copper,
and seven parts oxygen (1Y 2Ba 3Cu 7O). The class of materials in which the
proportion of the various elements changes slightly with respect to the 1-2-3
compounds mentioned above is called Y BCO.

1.3 Cuprate Superconductors

1.3.1 General properties

Cuprate superconductors subdivided into several classes:

� The La2−xMxCuO4 (LMCO) type.

� The Y Ba2Cu3O6+x (YBCO) type.

� The Bi, Ti, and Hg-type with the general formula
AmM2Can−1CunOx

where A = Bi, T l,Hg and M = Ba, Sr

The value of Tc strongly depends on the concentration of oxygen and other
doping ions and on various types of disorder such as impurities etc. As struc-
tural studies show, the cuprate superconductors with a general chemical for-
mula A−mM2R− n− 1CunO2n+m+2 we have a layered structure: n(CuO2)-
layers interleaving with n-1 R-layers de�ne the active conducting block, while
[(MO)(AO)m(MO)]-layers form the charge reservoir block. The physical prop-
erties and the superconducting Tc are strongly in�uenced by the concentration
of charge carriers, which is regulated by variation of the charge-reservoir block
composition.

Generally, the superconducting transition temperature, Tc for copper oxide
superconductor has a parabolic dependence on the concentration of the charge
carriers P with a maximum at the optimal doping Popt.

Studies of the thermodynamic properties of copper-oxide superconduc-
tors evidenced in a number of peculiarities of the temperature dependence
of the critical magnetic �elds, the penetration depth λL and a small correla-
tion ε. This results in a very large value of the Ginzburg-Landau parameter
k = λL

ε
>> 1, which means that the cuprates are strong type II superconduc-

ters with an extremely large upper critical magnetic �eld Hc2.

5



1.3.2 Crystal Structure

The structure of a cuprate, that is the relative positions of the atoms in a
periodic arrangement in a crystal, is called a perovskite.

Table 1.2: Crystal system and the lattice parameters of typical high tempera-
ture cuprate superconductors
Superconductor Crystal system a(nm) b(nm) (nm)

La−2BaxCuO4 Tetragonal 0.3790 - 1.323

Nd2−xC2xCuO4 Tetragonal 0.3945 - 1.217

Y Ba2Cu3CuO4 Orthorhombic 0.3823 0.3887 1.168

B12Sr2Cao−8Cu2O8 Orthorhombic 0.5404 0.5415 3.708

(B1, P b)2Sr2Ca2Cu3O10 Orthorhombic 0.5404 0.5415 3.708

HgBa2CaCu2O0+x Tetragonal 0.3858 - 1.266
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Figure 1.3: Crystal structures of (a) La2−xBaxCuO4 and (b) Nd2−xCe −
xCuO4 superconductors

La2−xBaxCuO4, in which some of the La3+ ions are substituted by Ba2+

has a structure referred to as the K2NiF4 structure. This material has a layer
structure in which the (La, Ba) layers and CuO6 octahedrons are stacked al-
ternatively, and the Cu2 layers are formed parallel to the bottom face. The
carriers in this material are holes. Sr2+ ions can be used instead of Ba2+ ions.

As for the Nd2−xCe−xCuO4 in which Nd3+ ions are substituted by Ce4+,
the carriers are electrons. Its structure consists of the planar CuO2 layers in
which the apical oxygen atoms above and below the Cu atoms are eliminated
[Matsumoto (2010)].
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Figure 1.4: Crystal structure of Y Ba2Cu3O7−x superconductor showing two
adjoining pyramid-type CuO2 planes and CuO chains in the unit cell.

Y Ba2Cu3O7−x (YBCO or Y123) with a Tc of upto 93K, has layers of Y
atoms sandwiched between the two adjoining pyramid type CuO2 layers. More-
over, there is a triple periodic structure in which Y and Ba atoms are in line as
Ba-Y-Ba and there are also one-dimensional chains of Cu-O-Cu in the direction
of the b-axis of the crystal. This is shown in �gure (1.4) [Ibid].
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CHAPTER 2

THEORIES OF SUPERCONDUCTIVITY

2.1 Landau Fermi Liquid theory

Figure 2.1: Free Fermi gas at T = 0K. On the left is the momentum states of
the electron in momentum space with all states occupied up to the radius of the
sphere given as kF . On the right is the corresponding momentum occupation
function n(k).

Because of the interaction of the conduction electrons with each other through
their electrostatic interaction, the electrons su�er collisions. Furthermore, a
moving electron causes an inertial reaction in the surrounding electron gas,
thereby increasing the e�ective mass of the electron. The e�ects of the electron-
electron interactions are usually described within the framework of Landau
theory of Fermi liquid. The object of the theory is to give a uni�ed account
of the e�ect of interactions. The landau Fermi liquid theory has been suc-
cessful in explaining systems such as metals, nuclear matter, and liquid He-3
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(Scho�eld 1999).

According to Kittel(1976), a Fermi gas is a system of non interacting
fermions; the same system with interactions is a Fermi liquid.

In metals, conduction electrons although crowded together, travel long dis-
tances between collisions with each other. Two factors are responsible for the
long mean free path:
-The exclusion principle
-the screening of the coulomb interaction between two electrons.
Figure (2.2) is collision 1 + 2 −→ 3 + 4 between an electron in the excited
orbital 1 (lying outside a �lled Fermi sphere) and an electron in the �lled or-
bital 2 in the Fermi sea. All energies are taken with reference to the Fermi
level µ taken as zero of energy. This E1 will be positive and E2 will be negative.

Figure 2.2: The electrons in initial orbitals 1 and 2 collide and occupy orbitals
3 and 4 if they were initially vacant. Energy and momentum are conserved.

10



Figure 2.3: All pairs of orbitals 3 and 4 conserve energy and momentum if
they lie on opposite ends of a diameter of a small sphere. the small sphere was
drawn from the center of mass to pass through 1 and 2 but not all pairs of
point 3,4 are allowed by Pauli exclusion principle for both 3,4 must lie outside
the Fermi sphere.

Because of the exclusion principle, the orbitals 3 and 4 of the electrons
after collision must lie outside the Fermi sphere, all orbitals within the sphere
being already occupied. Conservation of energy requires that |E2| < E1, oth-
erwise E3 + E4 = E1 + E2 would not be positive. This means that collisions
are possible only if the orbital 2 lies within a shell of thickness E1 within the
Fermi surface as shown in �gure (2.2). It is shown in in �gure (2.3) that even
if orbital 3,4 at the opposite ends of a diameter of a circle satisfy the conser-
vation laws, collision can only occur if both orbitals 3,4 lie outside the Fermi
sea.

When E1 is exactly EF , conservation of energy can only be satis�ed if E1,
E3 and E4 are also all exactly EF and there is no phase space for the process.
Consequently, the life time of an electron at T = 0K is in�nite.

At �nite T, there is now a smearing of the distribution about EF on the
scale of KBT and the choice of E2 will be within the range of KBT . The �nal
scattered E3 will also vary within KBT but E4 will now be �xed by the conser-
vation law and hence the scattering goes as (KBT )2. Likewise, if the energies
of the particles can vary within an energy shell of the Fermi surface, a similar
argument for E1 > EF will lead to frequency dependence of the scattering rate
varying as w2,
where

w = E1 − EF

The scattering rate τ is given as
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1

τ
= aw2 + bT 2 (2.1.1)

In general, because of the coulomb interactions, electrons with momentum
k < kF will spend some time outside the Fermi sea as shown in �gure 2. This
causes a smearing in the momentum occupation distribution with state just
above kF now occupied and some just below kF unoccupied. However, there
will still remain a �nite jump at kF called spectral weight which we will de-
note as zk(w). For the non interacting free Fermi gas, zk(w) = 1 and due to
correlation, zk(w) < 1 and varies as (1 + λ)−1, where λ is a measure of the
strength of the correlations in the system.

Figure 2.4: An interacting sea of electrons at T = 0. On the left is the
momentum states of the electrons in momentum space, where some electrons
occupy some states outside the free Fermi sea leaving holes behind. On the
right is the momentum occupation function n(k) which is smeared around the
Fermi surface at kF .

To describe the complicated interacting many body system is a very di�-
cult problem, but fortunately all that needs to be known for most properties
of interest is information about elementary excitations of the system.

In Landau's theory, the ground state can be very complicated, but if an
extra particle of energy Ek with k > kF is added just above the Fermi surface,
the excitation can be described in terms of the energy measured with respect to
the Fermi surface. Therefore low-lying excited states of a complicated ground
state can be mapped back to the elementary excitations of the non-interacting
system on-one-to one correspondence. The excitations of the real system (full)
system called quasiparticles can be described in terms of the plane wave states
of the non-interacting system with an e�ective mass m∗ = m(1 + λ). These
quasiparticles still have between them a residual interaction. If one decom-
poses this quasiparticle state, one would �nd that it is a superposition of all
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the elementary bare electron-hole pair states of the non interacting system.
The net result is that through this mapping, we can revert back to describing
the system in terms of single particle states but with renormalized quantities
like e�ective mass.

The correlation energies of a metal are of the order of eV, whereas the
condensation energy of the superconducting state is of the order of meV. For
superconductivity to occur in the presence of of such an overwhelming correla-
tion energy, one uses Fermi liquid theory to fold the correlation energy into a
renormalized mass of the quasiparticles so that superconductivity occurs due
to weak interaction between long lived quasiparticles in the presence of a �lled
Fermi sea of quasiparticles.

For a non-interacting sea of electrons, an added particle representing an ex-
citation of momentum k̄ has a well-de�ned energy Ek and an in�nite lifetime.
In the fully interacting system, the interaction can shift the single particle en-
ergies Ek and cause scattering between quasiparticles. This causes the quasi-
particle to have a �nite lifetime for occupation of s state(k̄, σ) [Nicol (1991)].
The shift in energy is given in terms of the many body self energy Σ(Ēk).

Ek = ε+ Σ(Ēk) (2.1.2)

where Ēk is a complex function.
For the quasiparticle picture to remain valid, the damping must be small and
hence the imaginary part must be small with respect to the real part. If

Ēk = ReĒk −
i~

2τ(Ēk)
(2.1.3)

where 1
τ(Ēk)

is the damping rate, then τ can be evaluated at the real value

of Ēk.
Hence, in general, we can write the excitation energy Ek = ReĒk as

Ek = εk +ReΣ(k̄, Ek + iΓk) (2.1.4)

and the lifetime as

~
2τk

= −Γk = ImΣ(k̄, Ek + iΓk) ≈ ImΣ(k̄, Ek + i0+) (2.1.5)

To discuss the smearing in the momentum distribution which indicates the
existence of a Fermi surface, we de�ne the spectral weight zk(w).
To do this,we must examine how the single particle Green's function is changed
in the presence of interactions. In a fully interacting system, the single particle
Green's function is Given by the Dyson's equation as

G(k̄, ω) = Go(k̄, ω) +Go(k̄, ω)Σ(k̄, ω)G(k̄, ω) (2.1.6)
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or

G(k̄, ω) =
1

Go−1(k̄, ω)− Σ(k̄, ω)
(2.1.7)

where the single particle Green's function in the non interacting caseGo(k̄, ω)
is given as

Go(k̄, ω) =
1

ω − εk = i0+
(2.1.8)

where the single particle energies are located at the poles of the Green's
function w = εk.
The fully renormalized single particle Green's function is

G(k̄, ω) =
1

ω − εk − Σ(k̄, ω)
(2.1.9)

where the pole of the Green's function in this case occur at the quasipar-
ticle energies

Ek = Reω = εk +Re[Σ(k̄, Ek + iΓk)] (2.1.10)

and are shifted away from the real axis into the imaginary plane by the
amount of the quasiparticle damping Im[w]

Im[ω] =
~

2τk
= ImΣ(k̄, Ek + iΓk) (2.1.11)

Near the Fermi surface, the damping is small and so we can Taylor expand
the denominator of equation (2.1.9) about w.

ω − εk − Σ(k̄, ω) = ω − εk − Σ1(k̄, ω)− iΣ2(k̄, ω) (2.1.12)

where

Σ1(k̄, ω) = ReΣ(k̄, ω) (2.1.13)

and

Σ2(k̄, ω) = ImΣ(k̄, ω) (2.1.14)

ω − εk − Σ1(k̄, ω)− iΣ2(k̄, ω) ≈ ω − εk −
[
Σ1(k̄, 0) + ω

∂Σ1

∂w

∣∣∣∣
w=0

]
− iΣ2(k̄, w)

(2.1.15)

≈ ω

(
1− ∂Σ1

∂Σω

∣∣∣∣
ω=0

)
− [εk + Σ1(k̄, 0)]− iΣ2(k̄, ω) (2.1.16)
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Then the pole occurs at ωo given by

wo = Ek −
i~
2τk

(2.1.17)

where

Ek =

(
1− ∂Σ1

∂ω

∣∣∣∣
ω=0

)−1

[εk + Σ1(k̄, 0)] (2.1.18)

and

~
2τk

= −
(

1− ∂Σ1

∂ω

∣∣∣∣
ω=0

)−1

Σ2(k̄, Ek) (2.1.19)

For low temperatures in problems the electron-phonon problem, Σ1(k̄, 0)
is small but ∂Σ1

∂ω
can be large (∼ 1). This latter quantity is called the mass

enhancement parameter λk

λk =
∂Σ1

∂ω

∣∣∣∣
ω=0

(2.1.20)

The quasiparticle residue or spectral weight is de�ned to be zk, where

z−1
k (ω = 0) = 1− ∂Σ1

∂ω

∣∣∣∣
w=0

= 1 + λk (2.1.21)

zk(0) is a measure of the size of the discontinuity in the momentum distri-
bution at kF . The fact that it is non zero de�nes a Fermi surface and ensures
that Fermi liquid theory holds.
zk is also a measure of how much plane wave mixtureis left in the single particle
Green's function:

G(k̄, ω) =
1

ω − εk − Σ(k̄, ω)
=

zk
ω − Ek + iΓk

+Gincoh (2.1.22)

where Gincoh is the incoherent part of the Green's function.

2.2 Gorter-Casimir Two Fluid Model

The Gorter-Casimir two �uid model was �rst formulated by Gorter and Casimir
in 1934 [Gorter and Casimir (1934)a,b]. The two �uid model is based on two
fundamental assumptions:

� The ground state of the system is formed by super-electrons. This is the
superconducting state and the most condensate state is at zero
temperature.
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� The order parameter associated to the condensate is related to the
number of super-electrons and is dependent on the temperature.

Gorter- Casimir model is an �ad hoc� model, ie there is no physical basis for
the assumed expression for the free energy but it provides a fairly accurate
representation of the experimental results.
Let x represent the fraction of electrons in the normal �uid and 1−x, the ones
in the super�uid. Gorter and Casimir assumed the following expression for the
free energy of the electrons:

F (x, T ) = x
1
2fn(T ) + (1− x)fs(T ) (2.2.1)

where

fn(T ) = −γ
2
T 2 (2.2.2)

and

fs(T ) = −β (2.2.3)

γ is Sommerfeld constant and it is proportional to single electron density
of states at the Fermi surface. Hence it is proportional to the e�ective mass of
normal electrons. The free energy for the electrons in a normal metal is just
fn(T ) whereas fs(T ) gives the condensation energy associated to the super�uid.

Minimizing the free energy F (x, T ) with respect to x (ie ∂F (x,T )
∂x

= 0), one
�nds the fraction of normal electrons at a temperature T.

∂F (x, T )

∂x
=

1

2
x−

1
2fn(T )− fs(T ) = 0

x =
γ2

16β2
T 4 (2.2.4)

At critical temperature Tc, x = 1. Therefore

T 2
c =

4β

γ
(2.2.5)

Supstituting (2.25) into (2.2.4) gives

x =

(
T

Tc

)4

(2.2.6)
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Substituting (2.2.6) into (2.2.1) and eliminating γ gives

Fs = −β

[
1 +

(
T

Tc

)4
]

(2.2.7)

At T = 0, x = 0 and we have

Fn = −2β

(
T

Tc

)2

(2.2.8)

and

Fn(T )− Fs(T ) = β

(
1−

(
T

Tc

)2
)2

(2.2.9)

From the thermodynamic relation, it can be shown that

H2
c (T )

8π
= FN(T )− Fs(T ) (2.2.10)

where H2
c (T )
8π

is the stabilization energy density of the pure superconducting
state and we have

Hc(T ) = Ho

(
1−

(
T

Tc

)2
)

(2.2.11)

where Hc(T ) is the critical magnetic �eld and Ho is the the critical magnetic
�eld at T = 0K.

The Gorter-Casimir model is important in predicting:

� The form of the variation of the magnetic �eld as a function of
temperature.

� The variation of the penetration depth λL as a function of temperature.

2.3 The London Theory

The brothers H and F London in 1935 [London and London (1935)] gave a phe-
nomenological description of the basic facts of superconductivity by proposing
a scheme based on a two �uid type concept with super �uid and normal �uid
densities ns and nn associated with velocities vs and vn respectively.
The densities satisfy

n = ns + nn
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where n is the average electron number per unit volume.
They pointed out that if the electrons encountered no resistance, an applied
electric �eld E would accelerate them steadily (Shoenberg, 1960).
That is

m
dv̄

dt
= −eE

where m and e are their mass and charge respectively.

J̄s = ensv̄s (2.3.1)

where J̄s is the supercurrent density.

∂J̄s
∂t

= −ens
dv̄s
dt

(2.3.2)

But

dv̄s
dt

= −eE
m

(2.3.3)

Substituting equation (2.3.2) into (2.3.3) gives

∂J̄s
∂t

=
nse

2E

m
(2.3.4)

Equation (2.3.4) is the �rst London equation. Taking the curl of equation
(5) gives

∇× ∂J̄s
∂t

=
nse

2

m
∇× E (2.3.5)

From Faraday's law

∇× E = −1

c

∂B

∂t
(2.3.6)

Applying equation (2.3.6) into equation (2.3.5) gives

∇× ∂J̄s
∂t

= −nse
2

mc

∂B

∂t
(2.3.7)
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and we get

∇× J̄s = −nse
2

mc
B (2.3.8)

Equation (2.3.8) is called the second London equation.
Ampere's law says that

∇×B =
4π

c
J̄ +

1

c

∂E

∂t

Considering only the super�uid part, ie Js and neglecting the displacement
current ∂E

∂t
, we have

∇×B =
4π

c
J̄s

∇×∇×B =
4π

c
∇× J̄s

Using the vector identity

∇× (∇× A) = ∇(∇.A)−∇2A,

we have

∇× (∇×B) = ∇(∇.B)−∇2B

But from Maxwell's laws of electromagnetism,

∇.B = 0

Therefore, we write

−∇2B =
4π

c
∇× J̄s

From London second equation,

∇2B =
4π

c

nse
2

mc
B (2.3.9)

∇2B =
1

λL
B (2.3.10)
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where

λL =

(
mc2

4πnse2

) 1
2

(2.3.11)

λL is the London penetration depth.
The central point of the London theory is that the supercurrent is always
determined by the local magnetic �eld. london theory addresses two main
issues:

� The physical interpretation of transport properties
(electronic properties) such as the Meissner e�ect.

� How supercurrents is transported in a superconductor.

2.4 The BCS Theory

In 1957, John Bardeen, in collaboration with Leon Cooper and his doctoral
student John Robert Schrie�er, proposed the standard theory of superconduc-
tivity known as the BCS theory (named from their initials).

BCS theory, the �rst widely accepted microscopic theoretical understand-
ing of superconductivity, explains conventional superconductivity. BCS theory
views superconductivity as a macroscopic quantum mechanical e�ect. It pro-
poses that electrons with opposite spin can become paired, forming Cooper
pairs. In many superconductors, the attractive interaction between electrons
(necessary for pairing) is brought about indirectly by the interaction between
the electrons and the vibrating crystal lattice (the phonons). Roughly speaking
the picture is the following:

An electron moving through a conductor will attract nearby positive charges
in the lattice. This deformation of the lattice causes another electron, with
opposite "spin", to move into the region of higher positive charge density. The
two electrons are then held together with a certain binding energy. If this
binding energy is higher than the energy provided by kicks from oscillating
atoms in the conductor (which is true at low temperatures), then the electron
pair will stick together and resist all kicks, thus not experiencing resistance.

Bardeen, Cooper and Schrie�er proposed a wave function for a supercon-
ductor which incorporated the idea of Cooper pairing. Using this wave func-
tion, they were able to successfully describe the features of the superconducting
state. Their theory requires one parameter and once this is speci�ed, one is
able to calculate all the superconducting properties of the material. However,
the theory is not able to describe all materials. In particular, the BCS the-
ory makes prediction for the ratios of various quantities which are completely
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independent of any material parameters. This is due to simplifying approxi-
mations made with respect to the nature of electron-phonon interaction. The
BCS theory treats the e�ective electron-electron interaction as a constant for
energy transfers less than θc and zero for energy transfer greater than θc. In
reality such interaction is not a constant and re�ects various details of the ma-
terial, such as the lattice structure, the electronic structure and the coupling
strength between the electrons and the phonons [Peter J. W (1990)].

The BCS theory has a parameter g de�ned as

g = N(o)Veff (2.4.1)

where Veff is the e�ective attractive interaction between Cooper pair From
BCS equation for Tc one gets

Tc = 1.13θc exp

(
−1

g

)
(2.4.2)

θc is the Debye frequency or a characteristic phonon energy, of the Fermi surface
and it is equivalent to the characteristic frequency in the marginal Fermi liquid
theory. In the weak coupling regime, 0 < g < 0.3

2.5 Marginal Fermi Liquid Theory

In general, the unusual normal state properties of the high temperature super-
conducting copper-oxide compounds seem to point to a scattering rate that is
linear in frequency ω and linear in temperature, T. This indicates that these
materials could not be described by the conventional Fermi liquid picture. Re-
cent data from angle resolved photoemission experiments, which are capable of
measuring the Fermi surface of a material, showed that indeed these materials
have a Fermi surface. This gave support to the idea of a marginal Fermi liquid.
This is a theory that yields a Fermi surface in the weakest possible sense of
the de�nition but otherwise does not make the same predictions as the Fermi
liquid theory [Nicol (1991)].

Recall that the quasiparticle residue or the spectral weight function zk(w)
which characterises a jump at kF and hence indicates the presence of a Fermi
surface when zk(w = 0) is non zero, depends on the real part of the self energy.
If

Σ1(k̄, w) ∼ w ln

∣∣∣∣ wwc
∣∣∣∣

where wc is a high energy cut o�. Then

∂Σ1(k̄, w)

∂w
= ln

∣∣∣∣ wwc
∣∣∣∣+ 1
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or

∂Σ1

∂w

∣∣∣∣
w=Ek

= ln

∣∣∣∣Ekwc
∣∣∣∣+ 1 (2.5.1)

and hence

z−1
k = 1− ∂Σ1

∂w

∣∣∣∣
w=Ek

= − ln

∣∣∣∣Ekwc
∣∣∣∣

z−1
k = ln

∣∣∣∣wcEk
∣∣∣∣

zk =
1

ln
∣∣∣wcEk ∣∣∣ (2.5.2)

Now when the quasiparticle is on the Fermi surface, Ek = 0 and zk → 0.
Hence, the jump in the distribution tends to zero but in a very weak way (ie
logarithmically), and thus a Fermi surface just barely remains in the weakest
sense.
The linear w scattering rate experimentally observed in the high temperature
copper-oxide superconductor will arise if Σ2 is equal to

1

2τk
= Σ2 ∝ x

where x = |w| or T.
Table 2.1 shows the contrast between Fermi liquid theory and marginal Fermi
liquid theory.
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Table 2.1: Contrast between Fermi liquid theory and marginal Fermi liquid
theory
Fermi Liquid Theory Marginal Fermi Liquid Theory

Re
∑
∼ w Re

∑
∼ ln( x

wc
), with x = max (|w|, T )

Im
∑
∼ w2 Im

∑
∼ x , with x = max (|w|, T )

T (w → 0)→∞ T (w → 0)→∞

Zk = 1
(1+λ)≤1

Zk (lnw)−1 → 0 as w → 0

It is important to note that there are still well de�ned quasiparticles with
an in�nite lifetime at the Fermi surface, but that the self energy function is
quite di�erent and will give rise to di�erent physics.

2.6 A Phenomenological Marginal Fermi Liquid

Theory

Varma et al(1989) postulated that in the copper oxide system, there are charge
and spin density �uctuations of the electronic system. These �uctuations lead
to a polarisability of the electronic medium that would renormalize the elec-
tron through the self energy.
Their proposal for this polarisability is as follows:

ImP (q̄, w)

{−N(0)w
T
, for |w|<T

−N(0)signw for |w|>T

(2.6.1)

where N(0) is the single particle density of states at the Fermi energy. The
form of this polarisability is postulated to come from the vertex corrections in
the particle-hole susceptibility shown in �gure (2.5).
The self energy that arises from applying the Feyman rules to �gure (2.5) is
given as

Σ(q̄, w) ∼ g2N2(0)

(
w ln

x

wc
− iπ

2
x

)
where

x = max(|w|, T ).
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The parameter wc is taken to be some high energy cut o� on the polarisability
and g is a coupling constant at the vertex of the electron interaction with the
polarisation bubble. We have

zk ∼
1

ln |wc
Ek
|

and the quasiparticle life time is still in�nite at the Fermi surface ie

1

2τk
=
π

2
Ek

which as Ek → 0, τk →∞.
This form of the scattering rate 1

τ
which has the form

1

τ
= aw + bT

Figure 2.5: The Feyman diagram for the particle hole susceptibility χ(q̄, w)
(a) without vertex corrections (b) with vertex corrections (c) the electron self
energy due to this susceptibility, where the dashed lines represent a coupling
g.

Kuroda and Varma (1990) calculated the speci�c heat of the marginal Fermi
liquid in the normal phase using a Fermi liquid-like formula in the presence of
electron-boson coupling constant. They obtained the electronic speci�c heat
Cv of the marginal Fermi liquid given as

Cv = N(0)

(
3 + 2 ln

θc
T

)
T (2.6.2)

where N(0) is the bare single electron density of states at the Fermi surface
and θc is the characteristic frequency in the marginal Fermi liquid theory.
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CHAPTER 3

SYNTHESIS OF GORTER-CASIMIR TWO FLUID

MODEL WITH MFL MODEL

The free energy of electrons in a material is given by

fn = U − T
∫ T

0

Cv(T )

T
dT where U =

∫ T

0

Cv(T )dT (3.0.1)

U is the internal energy of the electrons in the system.
We then have that the free energy for the electrons in the normal 'marginal'
Fermi liquid is given as

fn = −N(0)

(
3 + ln

θc
T

)
T 2 (3.0.2)

The expression for the free energy of all the electrons in the 'marginal' Fermi
liquid superconductor is now given as

F (x, T ) = −x
1
2N(0)

(
3 + ln

θc
T

)
T 2 + (1− x)(−β) (3.0.3)

Minimizing F (x, T ) with respect to x gives

∂F (x, T )

∂x
= −1

2
x−

1
2N(0)

(
3 + ln

θc
T

)
T 2 + β = 0 (3.0.4)

This gives

x
1
2 =

N(0)

2β

(
3 + ln

θc
T

)
T 2 (3.0.5)
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At critical temperature Tc, x = 1 and we have that

β

N(0)
=

1

2

(
3 + ln

θc
Tc

)
T 2
c (3.0.6)

Substituting equation (3.0.6) into equation (3.0.5), we have

x
1
2 =

(
3 + ln θc

T

)(
3 + ln θc

Tc

) T 2

Tc
2 (3.0.7)

and

x =

(
3 + ln θc

T

3 + ln θc
Tc

)2(
T

Tc

)4

(3.0.8)

where x represents the fraction of electrons in the normal �uid of the 'marginal'
Fermi liquid.
Substituting the expression for x in equation (3.0.8) into (3.0.3) gives

Fs(T ) = −

(
3 + ln θc

T

3 + ln θc
Tc

)
T 4

Tc
2N(0)

(
3 + ln

θc
Tc

)
+

[
1−

(
3 + ln θc

T

3 + ln θc
Tc

)
T 2

Tc
2

]
[−β]

(3.0.9)
Since

β =
1

2
N(0)

(
3 + ln

θc
Tc

)
T 2
c (3.0.10)

We have that

Fs(T ) = −1

2
N(0)

(
3 + ln θc

T

)2(
3 + ln θc

Tc

) T 4

Tc
2 −

1

2
N(0)

(
3 + ln

θc
Tc

)
T 2
c (3.0.11)

Re-arranging equation (3.0.11) gives

Fs(T ) = −1

2
N(0)

(3 + ln θc
T

)2(
3 + ln θc

Tc

) T 4

Tc
2 +

(
3 + ln

θc
Tc

)
T 2
c

 (3.0.12)

FN(T ) is given as

FN(T ) = −N(0)

(
3 + ln

θc
T

)
T 2 (3.0.13)

Recall that

Cs
v = −T ∂

2Fs(T )

∂T 2
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and we get

Cs
v = N(0)

T 3

T 2
c

1(
3 + ln θc

Tc

) [6

(
3 + ln

θc
T

)2

− 7

(
3 + ln

θc
T

)
+ 1

]
(3.0.14)

Figure 3.1: Graph of speci�c heat in the superconducting phase Cv against
temperature T.

Also

CN
v = −T ∂

2FN(T )

∂T 2
= N(0)

(
3 + 2 ln

θc
T

)
T (3.0.15)

The di�erence between the speci�c heat capacity in the superconducting state
Cs
v and the speci�c heat capacity in the normal state CN

v , called the speci�c
heat jump 4Cv is given as

4Cv = Cs
v − CN

v

Substituting for Cs
v and C

N
v gives

4Cv = N(0)
T 3

T 2
c

1(
3 + ln θc

Tc

) [6

(
3 + ln

θc
T

)2

− 7

(
3 + ln

θc
T

)
+ 1

]
−N(0)

(
3 + ln

θc
T

)
T
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At the critical temperature 4Cv is given as

4Cv|T=Tc = N(0)Tc
1(

3 + ln θc
Tc

)
6

(
3 + ln

θc
Tc

)
− 7 +

1(
3 + ln θc

Tc

)
−N(0)

(
3 + ln

θc
Tc

)
Tc

(3.0.16)
The ratio of the two types of speci�c heat is given as

Cs
v

CN
v

=

(
T

Tc

)2
1(

3 + ln θc
Tc

) (
3 + 2 ln θc

T

)
[

6

(
3 + ln

θc
T

)2

− 7

(
3 + ln

θc
T

)
+ 1

]

At critical temperature Tc, the ratio of the two types of speci�c heat is given as

Cs
v

CN
v

∣∣∣∣
T=Tc

=
1(

3 + 2 ln θc
Tc

)
6

(
3 + ln

θc
Tc

)
− 7 +

1(
3 + ln θc

Tc

)
 (3.0.17)

The normalized speci�c heat jump 4Cv
CNv

is

4Cv
CN
v

=

(
T

Tc

)2
1(

3 + ln θc
Tc

) (
3 + 2 ln θc

T

)
[

6

(
3 + ln

θc
T

)2

− 7

(
3 + ln

θc
T

)
+ 1

]
−1

The normalized speci�c heat jump at the transition temperature is given as

R =
4Cv
CN
v

∣∣∣∣
T=Tc

and we have

R =
1(

3 + 2 ln θc
Tc

)
6

(
3 + ln

θc
Tc

)
− 7 +

1(
3 + ln θc

Tc

)
− 1 (3.0.18)
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Figure 3.2: Graph of normalized speci�c heat jump in the superconducting
phase Cv against temperature T

Tc

The slope of the speci�c heat jump at the transition temperature is given as

d(4Cv)
dT

∣∣∣∣
T=Tc

= N(0)

18

(
3 + ln

θc
Tc

)
− 33 +

10(
3 + ln θc

Tc

)
−N(0)

(
1 + 2 ln

θc
Tc

)
(3.0.19)

The normalized slope of the speci�c heat jump is given as

d(4Cv)
dT
dCNv
dT

=

(
T

Tc

)2
1(

3 + ln θc
Tc

) (
1 + 2 ln θc

T

)
[

18

(
3 + ln

θc
T

)2

− 33

(
3 + ln

θc
T

)
+ 10

]
−1

At transition temperature, the normalized slope of the speci�c heat jump is
given as

D =
d(4Cv)
dT
dCNv
dT

∣∣∣∣
T=Tc

D =
1(

1 + 2 ln θc
Tc

)
18

(
3 + ln

θc
Tc

)
− 33 +

10(
3 + ln θc

Tc

)
− 1 (3.0.20)

To show how the critical magnetic �eld Hc depends on the temperature T ,
we recall the thermodynamic relation
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Hc
2(T )

8π
= Fn(T )− Fs(T ) (3.0.21)

where Hc(T )
8π

is the stabilization energy density of the pure superconducting
state. Sustituting the values of Fs and FN into equation (3.0.21) above gives

Hc
2(T )

8π
= −N(0)

(3 + ln
θc
T

)
T 2 − 1

2

(
3 + ln θc

T

)2(
3 + ln θc

Tc

) T 4

Tc
2 −

1

2

(
3 + ln

θc
Tc

)
T 2
c


(3.0.22)

Substituting β for 1
2
N(0)

(
3 + ln θc

Tc

)
T 2
c into equation (3.0.22) above, we have

that

Hc
2(T )

8π
= −β

2

(
3 + ln θc

T

3 + ln θc
Tc

)(
T

Tc

)2

−

(
3 + ln θc

T

3 + ln θc
Tc

)2(
T

Tc

)4

− 1

 (3.0.23)

Factorising equation (3.0.23) gives

Hc
2(T )

8π
= β

[
1−

(
3 + ln θc

T

3 + ln θc
Tc

)(
T

Tc

)2
]2

(3.0.24)

At T = 0, Hc(T ) = H1 and we have

H2
1

8π
= β (3.0.25)

Substituting equation (3.0.25) into (3.0.24) gives

Hc
2(T )

8π
=
H2

1

8π

[
1−

(
3 + ln θc

T

3 + ln θc
Tc

)(
T

Tc

)2
]2

(3.0.26)

and

Hc(T ) = H1

[
1−

(
3 + ln θc

T

3 + ln θc
Tc

)(
T

Tc

)2
]

(3.0.27)

where

H1 = (8πβ)
1
2

Equation (3.0.27) is the expression for the temperature dependence of the
critical magnetic �eld for the marginal Fermi liquids.
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Figure 3.3: Graph Hc
H1

against Tc
T
.
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CHAPTER 4

SYNTHESIS OF LONDON THEORY WITH MFL

MODEL

The zero frequency penetration depth is a measure of the distance scale on
which a static magnetic �eld will penetrate into a superconductor. Although
the superconductor has the property that it excludes all the magnetic �ux,
at the superconducting surface screening current are produced to provide the
diamagnetism and it is in the surface layer that the �eld may still penetrate
[Nicol, (1991)].

From the two �uid model,

ns
n

= 1− x (4.0.1)

Substituting the value of x in equation (3.0.8) into (4.0.1), we have

ns = n

1−

(
3 + ln θc

T

3 + ln θc
Tc

)2(
T

Tc

)4
 (4.0.2)

where ns and n retain their meaning.
From Londons' equations,

λL(T ) =

(
mc2

4πnse2

) 1
2

(4.0.3)

where c is a constant and m and e are the mass and charge of electron
respectively.
At T = 0, ns = n and the penetration depth λL(T ) = λL(0) and we get
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λL(0) =

(
mc2

4πne2

) 1
2

(4.0.4)

Substituting for ns in equation (4.0.2) into equation (4.0.3) gives

λL(T ) =

(
mc2

4πne2

) 1
2

 1

1−
(

3+ln θc
T

3+ln θc
Tc

)2 (
T
Tc

)4


1
2

(4.0.5)

or

λL(T ) =
λL(0)[

1−
(

3+ln θc
T

3+ln θc
Tc

)2 (
T
Tc

)4
] 1

2

(4.0.6)

Figure 4.1: Graph of
[
λL(0)
λL(T )

]2

against T
Tc

Solving London equation for a semi-in�nite plane superconductor whose
doundary coincides with y = 0 in an external magnetic �eld H1 oriented along
the z axis and taking into account the symetry of the system, we can write the
problem as

d2H(y)

dy2
− 1

λ2
L

H(y) = 0 (4.0.7)
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with the boundary conditions

H(0) = H1 and H(∞) = 0

The solution to equation (4.0.7) is

H(y) = H1 exp

(
− y

λL

)
(4.0.8)

where

λL(T ) =

(
mc2

4πne2

) 1
2

 1

1−
(

3+ln θc
T

3+ln θc
Tc

)2 (
T
Tc

)4


1
2

This means that for the semi-in�nite plane, the �eld H(y) would decay expo-
nentially from its free space value H1.

In the application of Drude model to the ac-electrical conductivity of
metals, we get a frequency dependent complex dielectric constant ε(ω) given as

ε(ω) = 1 + 4πi
σ(ω)

ω
(4.0.9)

where σ(ω) is a frequency dependent conductivity given as

σ(ω) =
σo

1− iωt
(4.0.10)

and σo is given as

σo =
ne2τ

m
(4.0.11)

τ is the relaxation time or time between collision of an electron [Ashkroft and
Mermin (1976)].
We have from equations (4.0.10) and (4.0.11) that

ε(ω) =
1− 4πne2

mω2
(4.0.12)

or

ε(ω) = 1−
(
ω2
p

ω2

)
(4.0.13)

where

ω2
p =

4πne2

m
(4.0.14)
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ω2
p is the plasma frequency.

But from equation (4.0.4) we know that λL(0) is given as

λL(0) =

(
mc2

4πne2

) 1
2

and we have that

ω2
p =

(
c

λL(0)

)2

(4.0.15)

c is the speed of light. The London penetration depth λL(T ) can be related to
the free electron plasma frequency w2

p as follows:

λL(T ) =
c

(w2
p)

1
2

1[
1−

(
3+ln θc

T

3+ln θc
Tc

)2 (
T
Tc

)4
] 1

2

(4.0.16)
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CHAPTER 5

DISCUSSION OF RESULTS

5.1 Speci�c heat jump

In our model, we have incorporated the marginal Fermi liquid theory into the
Gorter-Casimir two �uid model. Due to the polarizability of the electronic
medium coming from the charge and spin density �uctuation of the electronic
system, there is an extra term to the bare electron density of state. So one
should expect that the speci�c heat jump would be enhanced over the value
that one would observe in a material where there is no such �uctuations.
Speci�c heat measurements give information on the electron-phonon coupling
strength. BCS theory and its subsequent re�nements based on the Eliashberg
equations show that high critical temperatures in phonon mediated supercon-
ductor are favoured by high phonon frequencies and by large density of states
at the Fermi level.

The quantity of interest is the di�erence between the speci�c heats of the
normal and superconducting states. The normalized speci�c heat jump varies
from 1.43 in the BCS weak coupling limit.

At low temperatures, the lattice contribution to the total speci�c heat is
small and can be accurately subtracted. The normal speci�c heat can be ob-
tained by applying a magnetic �eld of su�cent strength to cause the sample
to be normal.

In the oxide superconductors, there are di�culties associated with these
measurements. Because the critical temperatures of these oxide materials are
relatively high, the lattice contribution to the total speci�c heat is quite large
compared to the electronic contribution. An additional complication is that it
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is only possible to get normal state data close to critical temperature as the
critical �elds are quite large and di�cult to obtain in the laboratory.

Figure (5.1) is the experimental results for YBCO. Comparing with �gure
3.1, observe that at low temperatures, there is an upturn in the speci�c heat
rather than the expected exponential decay. However, there is still a linear
term but there is no concensus yet on its origin. Analysis of the experimental
data is usually done by assuming that the BCS relation 4C

γTc
= 1.43 holds.

However it is pointed out by Beckman et al that γ extracted by this analysis
is not in good agreement with values from high Tc magnetization experiments
and band structure calculations.

Figure 5.1: Experimental result for the speci�c heat of Y Ba2Cu3O7.

Loram and Mirza have used di�erential calorimetry on YBCO samples and
report a normalized speci�c heat jump of 4.1. Philips at al have reported a
value of 4.8.

From various observations, it would seem that there is a strong evidence
for the speci�c heat jump to be large in the high Tc materials. This large value
of the normalized speci�c heat jump is consistent with the result of ∼ 3.02 in
the model of synthesizing the Gorter-Casimir two �uid model with marginal
Fermi liquid theory as done in the BCS weak coupling regime this thesis.
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5.2 London Penetration Depth

In the second part of this thesis, we calculated the magnetic �eld penetration
depth by applying the two �uid scheme to London theory. The main aim
was to investigate the e�ect of the charge and spin density �uctuations of the
electronic system in the copper oxide materials. This we have done within the
scope of the BCS weak coupling theory.

Figure 5.2: Comparism of the results of penetration depth from the BCS,
TFM, MFL, and our calculation (MFL-TFM)

In �gure (5.2) we have compared various results of the London penetration
depth for the cuprate superconductor. The BCS weak coupling, the Gorter-
Casimir two �uid model (TFM), the marginal Fermi liquid model (MFL) as
done in the strong coupling regime by Nicol et al (1990) and the synthesis
of the MFL theory with London theory within the Two Fluid scheme (MFT-
TFM) calculated in this thesis.
Note, however, that there is currently no consensus on the precise shape of
λ2L(0)

λ2L(T )
in YBCO [Mao et al (1995)]

The London penetration depth from our result is close to the result of other
results. If we extend our calculation to the BCS strong coupling regime, we
hope to get a result closer to the experimental result.

We also calculated the electrodynamic property in particular magnetic �eld
penetration depth and related the london penetration depth λL(T ) to the free
elecron plasma frequency w2

p.It is seen that the London penetration depth

varies inversely with (w2
p)

1
2 .

38



5.3 Conclusion

In this thesis, we have applied the result of the marginal Fermi liquid theory
to the Gorter-Casimir two �uid model and London theory and used our result
to calculate some thermodynamic properties like the speci�c heat jump and
the temperature dependence of the critical magnetic �eld. The results of our
calculation is closer to the experimental result than that of each of the theory
independently.
From our calculations, it is clear that increase in the free electron plasma fre-
quency will lead to a derease in the London penetration depth. This is seen in
equation (4.0.16).

In this thesis, we have only modi�ed the normal �uid part of the Gorter-
Casimir two �uid model. A more accurate result can be obtained by modifying
the super �uid part. One method of doing this is a scheme based on many body
formalism which can lead to the free energy of the full superconducting phase
for a marginal Fermi liquid superconductor. From this one can in principle
subtract the normal �uid and extract the super�uid contribution.
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