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Abstract

The use of High Intensity Focused Ultrasound (HIFU) in the medical treatment of cancer has
attracted scientists and engineers with interest in achieving the most financially affordable but
yet curative methods of curing different types of cancers. This present work considers a 2D
modeling of the prostate gland without the environmental (neighbouring) tissues such as bladder,
rectum, urethra and seminal vesicle. This model uses the nonlinear Westervelt equation since
the propagation is in human tissue which is a nonlinear medium.Using a suitable application
software (COMSOL) to solve the resulting equations, we predict the temperature distribution of
the prostate when HIFU is applied. Our results are comparable to a similar work studied the
acoustic streaming and convective cooling due to the use of HIFU.
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CHAPTER 1

Introduction

Much attention has been paid to the uses of High Intensity Focused Ultrasound due to its pro-
found and diverse applications in the medical industry. Among these applications are lithotripsy
and thermotherapy. Lithotripsy involves the use of HIFU wave applied from an external source
to physically destroy hardened tissue masses in the body. Thermoterapy, on the other hand, is
the use of heat to cure diseases. Both thermotherapy and lithotripsy have a common advantage
of being effective non-invasive treatment and enhanced healing process if properly used.
The present work will focus on the cure of prostate cancer with High Intensity Focused Ultrasound
which is a class of thermotherapy. The source of the ultrasound is placed at the affected part and
the propagation through the skin which is a complex media makes the technique not suitably
described by the linear wave equation with integer order derivative[2]. The proper analysis of
sound wave propagation and the attenuation through such complex media is better with the use
of fractional derivative[3]
HIFU as a technique relies on the ability to model properly and accurately with the environmental
boundary conditions, the propagation of sound waves through complex media such as body tissue.
Hence, we shall use a nonlinear model due to the nonlinear material properties of the body tissue.
There are many of such models among which are Kuznetsov–Zabolotskaya–Khokhlov (KZK)[4],
Nonlinear Parabolic Equation (NPE) equation [5], and the Westervelt nonlinear wave equation.
Most of the past study reviewed used the Westervelt equation to model the acoustic field generated
by the HIFU source.
We shall use the fractional derivative form of the Westervelt equation in this study. The justi-
fication being that the fractional modified version according to the work of Fabrice and Sverre
[6] gives us the ability to explain the propagation loss (both dispersion and attenuation) through
complex media such as biological tissue.We shall see later that the Westervelt equation itself is
derived from the Navier-Stokes’ equation with some approximations using the “fractional form”
of Euler’s equation.
HIFU operates on two basic mechanisms. The thermal and mechanical mechanisms. While the
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mechanical mechanism deals with the propagation of the generated wave through both air and
the body tissue, the thermal mechanism governs the propagation of heat and the rapid elevation
of the prostate temperature. The sound waves generated are collected at the focal point situated
near the abdomen (Prostate gland is near this place). This causes the HIFU intensity to rise at
the focal region to about several orders of magnitude 100− 10, 000W/cm2 with peak compression
pressures [7]. Focused ultrasound has its application in the clinical treatment of tumor and this
can be categorized into two: Ultrasound Surgery (US) and hyperthermia. In the latter, the patient
tumor is exposed to the ultrasound for a long period (about 10-60 mins) at low intensities at tem-
perature about 41oC − 45oC during the treatment.[9]. As a rule of thumb, the U.S Government
has set a maximum thermal index as well as mechanical index, a dosage parameter indicating
maximum temperature and time of exposure [10]. For this reason, most ultrasonic systems now
come with displays with thermal index as well as mechnical index. The model in this study shows
the simulation of curing a prostate cancer with HIFU. The result of this study is compared with
studies mentioned in references [20] [12].

1.1 Previous Works on HIFU Application of Tumor ablation

The field of ultrasound surgery has experienced much research recently with the introduction
of the application of clinical surgery. Solovchuk et al [11] found a significant effect of convective
cooling and acoustic streaming in their imaged-based simulation of liver tumor ablation.

Prostate deformation after a clinical surgery was modelled by Simulation Open Framework
Architecture (SOFA) [7] and it was found that the needle insertion simulation leads to displacement
of about 0.14mm of the prostate with a peak error of 0.32mm. A similar work to this present
study was done by Jafarian et al. [12] and revealed that the temperature rises with time during the
first few minutes of the sonication. The findings in this research work agrees with the temperature
elevation and the intensity of the ultrasound.

The mechanical deformation of the prostate gland would be difficult to observe if the mechanical
properties are not well understood. Hwang et al in their article indicated that the prostate is
hyperelastic and viscoelastic in nature[18]. In the case of the relationship of attenuation with
angular frequency, the loss was modeled as proportional to ωγ , with ω being the angular frequency
and γ a non-integer. This therefore indicates that the attenuation of sound waves in complex media
such as human tissue could be modeled using fractional derivative [6]

1.2 Acoustics

This is the branch of science that studies sound as it concerns the source, transmission and other
properties of wave such as reflection, refraction, and diffraction. Originally, acoustics was the
study of small pressure waves with frequencies in the range which is audible to human hearing.
The scope of acoustic has since been extended to lower and higher frequencies[13]. Until recently,
the nonlinear effects of acoustics was neglected. Among the literature on acoustics, the book of
Pierce [14] has been very fundamental and useful.

5



1.3 Prostate Cancer

The prostate belongs to a group of exocrine glands of the male reproductive system and it is
situated in the vicinity of the rectum, bladder, and urethra. An exocrine gland is one whose
secretions end up outside the body such as in prostate and sweat glands. The prostate whose size
is approximately that of a wallnut helps the urethra to pass through from the bladder to the end
of the penis. There are thousands of tiny glands in the prostate. These tiny glands produce fluids
which form part of the semen and the fluid protects and nourishes the sperm. Also, the prostate
gland helps in the control of urine flow through the urethra by contraction of the prostate muscle.

The cells in the prostate gland produce a special protein called Prostate Specific Antigen (PSA)
which helps keep the semen in its liquid state. These protein antigens have the tendency of
escaping into the blood stream and, because of this, the PSA level can be measured by checking
the PSA content in the blood. A high PSA level most times indicates cancer or some kind of
prostate condition.[15]
Prostate cancer is the development of abnormal growth of tissue in the prostate gland. This may
lead to serious problems in a man ranging from the reproductive to the excretory system. In the
reproductive system, prostate cancer may lead to infertility while in the ecretory system it may
cause the inability to control the flow of urine flowing through the urethra.
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CHAPTER 2

Governing Equations of Sound Propagation

2.1 Introduction

In this chapter we shall discuss the basic equations of motions for viscous flows. The two most
fundamental equations we shall mention are; i. Newton’s equations of motion and ii. Equation of
conservation of mass. Newton’s equation in addition to the conservation of mass are useful in the
derivation of the Euler equations which are sets of equations governing inviscid flow[22]. We shall
use Euler’s equation with the entropy equation to derive the Westervelt equation which governs
the propagation of fluids in complex media, such as biological tissue putting into consideration
the attenuation induced by this nonlinear medium[20]. The governing equations of computational
fluid dynamics can be applied to both compressible as well as incompressible flow using an appro-
priate equation of state. This gives us the justification to apply the equations in describing the
propagation of propagation of sound waves both in air and in the tissue.

We start by briefly discussing Euler’s equations from Newton’s second equation of motion and
proceed to inroduce the fractional form of Navier-Stoke’s equation. Also the Entropy equation
is derived using Fourier’s law as a constitutive relation. By combining the derived Navier-Stokes
and Entropy equations, we get a wave equation which, by following some approximations leads to
a generalization of the Westervelt equation.

2.2 Euler’s Equation

From Newton’s second law of motion which describes the conservation of linear momentum,

F =
Dp

Dt
(2.1)
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where F is the resultant force acting on the fluid mass and p is the linear momentum defined as

P =

∫
sys

V dm (2.2)

Where V is the control volume and the operator D
Dt is the material derivative defined by

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.3)

In the above, u, v, and w are the velocity components in the x, y, and z directions respectively and
t is the time (see reference [1], for example). We can apply equation 2.1 to a differential system
consisting of a mass δm to give

δF =
D

Dt
vδm (2.4)

For a non viscous fluid, δm can be treated as a constant, so that

δF = δm
Dv

Dt
(2.5)

where Dv
Dt is the acceleration of the body mass. The equation above therefore leads to

δF = aδm (2.6)

In component form, we can write a set of equations as follows.
δFx = axδm, δFy = ayδm, δFz = azδm, and using the equation 2.3 for the acceleration, we obtain

ax =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

ay =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

az =
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
(2.7)

where u, v, and w are the x, y, and z components of the velocity respectively.

Consider a differential element of a fluid. The forces acting on it can be categorized into two:
surface forces and body force, if the only body force acting on the fluid is its weight then the body
force is given by

δFb = gδm (2.8)

where in component form, δFbx = gxδm, δFby = gyδm, and δFbz = gzδm, with gx, gy, and gz
representing x, y, and z components of acceleration due to gravity respectively.
To account for the surface forces, we consider figure ?? which shows an elemental volume of
fluid across the area ABCD as shown, where, σxx is the normal stress in the x-direction with
a corresponding force of δFxx = ∂σxxδyδz, σyx is the shear stress in the x − y plane with a
corresponding force of δFyx = ∂σyxδxδz, and σzx is the shear stress in the x − z plane with its
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corresponding force of δFzx = ∂σzxδxδy
The total surface force in the x-direction δFsx can thus be written as

δFsx =

(
∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

)
δxδyδz (2.9)

and similarly in the x and y directions

δFsy =

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

)
δxδyδz

δFsz =

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
δxδyδz

The total force in the x-direction is the sum of the resultant surface in the x-direction and the
x-component of body force given as

δFx = δFsx + δFbx (2.10)

By using the expression for the body force in equation 2.10

δFx = δFsx + δmgx (2.11)

we can express the elemental mass in terms of the density as δm = ρδxδyδz, so that equation 2.11
becomes

δFx = δFsx + gxρδxδyδz (2.12)

From Newton’s second law, we can write

δFx = axρδxδyδz (2.13)

Using equation 2.7 in equation 2.13, we obtain

δFx = ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
δxδyδz (2.14)

Substituting equation 2.9 and 2.14 into 2.12, gives us the total force in the x-direction as follows

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
+ ρgx (2.15)

and for the corresponding forces in the y and z directions

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σzy
∂z

)
+ ρgy

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=

(
∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

)
+ ρgz

The three expressions in equation 2.15 can be written in short form as

ρ(
∂vi
∂t

+ vk
∂vi
∂xk

) = − ∂p

∂xi
(2.16)

Equation 2.16 is the Euler’s equation.
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2.3 Navier-Stoke’s Equation

The stress in a fluid can be split into two components: the one that acts normal to the surface of
the fluid and the component due to viscosity. For a static or frictionless fluid, the normal stresses
are equal in all directions which indicates that the stress tensor is isotropic or symmetric. Any
isotropic second-order tensor must be proportional to the Kronecker delta [1] as given below

σik = −pδik (2.17)

To determine the stress due to the flow of viscous fluid, we consider the fluid as isotropic and that
the properties of the fluid are described by scalar quantities only such that we can define a stress
tensor which contains the scalar properties of the fluid and linear combinations of the derivatives
( ∂vi∂xk

) as described in [8] for a Newtonian fluid. Therefore we can express the stress tensor as
follows

σ′ik = η

[
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

]
+ ζδik

∂vl
∂xl

(2.18)

where η and ζ are both scalar quantities describing the properties of the fluid and independent of
the fluid velocity. They are called coefficients of viscosity [8]. In the equation above, summation
is taken over repeated indices.
By adding the rate of change of the stress tensor with the position to the right hand side of
equation 2.4 we get

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+
∂σ′ik
∂xk

(2.19)

The derivative of the stress tensor in equation 2.10 with respect to xkis given by

∂σ′

∂xk
= η

∂

∂xk

[
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

]
+ ζδik

∂

∂xk

∂vl
∂xl

(2.20)

∂σ′

∂xk
= η

[
∂2vi

∂xk∂xk
+

∂2vk
∂xk∂xi

− 2

3
δik

∂2vl
∂xk∂xl

]
+ ζδik

∂2vl
∂xk∂xl

(2.21)

By way of simplification, we may add and subtract 1
3δik

∂2vl
∂xk∂xl

to the terms inside the square
bracket and regroup to give

∂σ′

∂xk
= η

[
∂2vi

∂xk∂xk
+

∂2vk
∂xk∂xi

− δik
∂2vl
∂xk∂xl

]
+
(
ζ +

η

3

)
δik

∂2vl
∂xk∂xl

(2.22)

but note that the Einstein Summation Convention is employed in ∂vl
∂xl

. This means that

∂vl
∂xl

=
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

(2.23)

And since the velocity is continuous, the expression after evaluating the kronecker delta δik becomes

∂σ′

∂xk
= η

∂2vi
∂xk∂xk

+
(
ζ +

η

3

) ∂2vl
∂xi∂xl

(2.24)
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where from the Einstein Summation Convention,

∂vl
∂xl

=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 5.v (2.25)

Using equation 2.25 in 2.19, we obtain

ρ

[
∂v

∂t
+ (v.5 )v

]
= −5 P + η52 v +

(
ζ +

η

3

)
5 (5.v) (2.26)

By re-writing equation 2.26 in fractional derivative form, we get

ρ

[
∂v

∂t
+ (v.5 )v

]
= −5 P + τγ−1 52 v + τγ−1

(
ζ +

η

3

)
|1−γ [5(5.v)] (2.27)

where |1−γ is the fractional integral of order 1− γ.

Equation 2.27 is the fractional integral generalization of Navier-Stoke’s equation with the bold-
face letters designating vector quatities. Simplifying equation 2.27 for thermoviscous fluid we
obtain the fracional form of Euler’s equation, the mathematical steps are in [22] for verification.
For thermoviscous fluid

ρ0
∂v

∂t
= −5 P ′ +

(
ζ +

η

3

)
|1−γ

[
52v

]
− ρ

2
52 v− ρ′∂v

∂t
(2.28)

where ρ′ = ρ − ρ0 and P ′ = P − P0 represent the dynamic density and pressure which describe
the perturbation of the fluid from equilibrium positions.

2.4 The Entropy Equation

Entropy is commonly understood as a measure of disorder, it is therefore necessary to derive the
entropy expression used in this modeling since it describes the thermodynamics of the system.
The constitutive equation used in deriving the entropy is the Fourier law given by

q = −k5 T

In 1958, Cattaneo and Vernotte [16][17] modified the equation above by adding a term on the
left handside of the existing Fourier law as given below

q + τcv
∂q

∂t
= −k5 T (2.29)

where τcv is a relaxation-time constant, q is the heat flux, k is the thermal conductivity and T is
the absolute temperature.
In 1968, Gurtin and Pipkin [19] introduced a more general time-non-local relationship between
the heat flux transfer and temperature gradient. The Gurtin & Pipkin expression is

q(t) =

∫ ∞
0

k(τ)5 T (t− τ)dτ (2.30)
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Following the work of Fabrice and Sverre [20]

q(t) = −
∫ t

0
k(t− τ)5 T (τ)dτ (2.31)

considering that at initial time t < 0 ,5T = 0 The relaxation function in accordance with Chandra
Sekharaiah [21] can be related to a time-non-local kernel defined as

k(t− τ) =
κ

Γ (α− 1)
(t− τ)α−2 (2.32)

where κ is a positive constant. Substituting equation 2.32 into 2.31

q(t) = −
∫ t

0

κ

Γ (α− 1)
(t− τ)α−2 5 T (τ)dτ (2.33)

but κ
Γ (α−1) is a constant of integration. If we substitute α = α+ 1

q(t) = − κ

Γ (α)

∫ t

0
(t− τ)α−1 5 T (τ)dτ (2.34)

Equation 2.34 can be compared to the definition of the fractional integral as follow [20]

|α [f(t)] =
1

Γ (α)

∫ t

0
(t− τ)α−1 f(τ)dτ (2.35)

Using equation 2.35 in 2.33, we may therefore write equation 2.33 as

q(t) = −κ|α−1 [5T (t)] (2.36)

Equation 2.36 is the modified Fourier constitutive relation in fractional integral form. A rela-
tionship can be established between equation 2.36 above and the thermal energy equation given
below.

5 q(t) = −ρCp
∂T

∂t
(2.37)

By taking the gradient of equation 2.36 in one dimension, we obtain

dq

dx
= −κ d

dx
|α−1 [5T (t)]

and multiplying both sides by dx
dt and using continuity property of q, we get

vx
dq

dx
= −κ d

dt
|α−1 [5T (t)] (2.38)

Using the relationship betweeen integral and derivative fractional operatives given in equation 2.38
below,

d

dtγ
|α =

{ dγ−α
dtγ−α

0<α<γ

|α−γ 0<γ<α
(2.39)
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but
d

dt
|α−1 [5T (t)] = |α−2 [5T (t)] (2.40)

Using equation 2.39 in 2.38

vx
dq

dx
= −κ|α−2 [5T (t)] (2.41)

If we consider equation 2.37 in one dimension, multiply both sides by vx and compare with equation
2.41

− ρCp
∂T

∂t
= −κ|α−2 [5T (t)] (2.42)

Differentiating both sides (α− 1) times considering vx as a constant of time

ρCpvx
dα−1

dtα−1
∂T

∂t
= −κ d

α−1

dtα−1
|α−2

[
dT

dx

]
(2.43)

Applying the definition of fractional integral to equation 2.43

ρCpvx
dαT

dtα
= κ

d

dt

(
dT

dx

)
(2.44)

and using d
dt = dx

dt
d
dx thereby cancelling vx from both sides to give

ρCp
dαT

dtα
= κ

d2T

dx2

1

D

dαT

dtα
=
d2T

dx2
(2.45)

Where D is the diffusivity defined by D = κ
ρCp

Expressing equation 2.45 back in three dimension

1

D

dαT

dtα
= 52T (2.46)

The dimension of D and κ can be derived from equations 2.46 and 2.36 respectively using dimen-
sional analysis as done by Fabrice and Sverre in equation 21 of [6]

52 T =
τα−2th

C2
0

∂αT

∂tα
(2.47)

Comparing equation 2.47 with equation 33 of [22], we obtain

ρ0T0
∂s

∂t
= κ52 T (2.48)

2.48 From the two equations above,
ρ0T0
κ

∂s

∂t
= 52T

and
ρ0T0
κ

∂s

∂t
=
τα−2th

c20

∂αT

∂tα
(2.49)

Where κ is the thermal conductivity, T0 is the equilibrium temperature, ρ0 the equilibrium density,
C0 the speed of sound in the medium and τth is the thermal relaxation time of the medium.
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2.5 General Fractional Wave Equation

With the help of the functional Euler and enthropy equations found in the section above, we shall
obtain a wave equation with fractional derivatives. From the approximation made by Hamilton
and Morfey [22], the fractional Euler equation in section 2.3 above is simplified as follows:

ρ0
∂v

∂t
= −5 P − τγ−1

ρ0C2
0

(
ζ +

4

3
η

)
∂γ

∂tγ
5 P −5L (2.50)

Where L is the second-order Lagrangian Density defined as

L =
1

2
ρ0v

2 − P 2

2ρ0C2
0

(2.51)

The prime notation has been dropped from equation 2.28 but pstill represent the dynamic pressure
from this point[20] and by making an approximation made in Ref [22], we obtain a continuity
equation [22]

∂p′

∂t
+ ρ05.v =

1

ρ0c40

∂p2

∂t
+

1

c20

∂L

∂t
(2.52)

The equation above is one of the contributors of the nonlinear term in the Westervelt equation.
Following the same step as [22] we will also introduce the equation of state as a Taylor series of
the pressure P (ρ, s) about the equilibrium state (ρ0, s0) and neglect other terms of order three
and above:

p = c20ρ
′ +

c20
ρ0

B

2A
ρ′2 +

(
∂P

∂s

)
ρ,0

s′ (2.53)

where B
A is the medium parameter of nonlinearity and s′ = s − s0 is the dynamic entropy. This

equation is also a nonlinear equation and it is the second source nonlinearity in the wave equation.
Introducing T ′ = T − T0 and s = s′ + s0 into equation 2.49:

ρ0T0
κ

∂(s′ + s0)

∂t
=
τα−2th

c20

∂α(T ′ + T0)

∂tα
(2.54)

for a constant T0 and s0,
∂(s′+s0)

∂t = ∂s′

∂t and ∂α(T ′+T0)
∂tα = ∂αT ′

∂tα Using these equations and integrating
equation 2.49

ρ0T0
κ

s′ =
τα−2th

c20

∂α−1T

∂tα−1

so that

s′ =
τα−2th

c20ρ0T0

∂α−1T

∂tα−1
(2.55)

Subtituting equation 2.54 in 2.53 so that we can eliminate s′ in favour of T ′

p = c20ρ
′ +

c20
ρ0

B

2A
ρ′2 +

(
∂P

∂s

)
ρ,0

τα−2th

c20ρ0T0

∂α−1T

∂tα−1
(2.56)
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If we follow the steps described in Hamilton & Morfey (see Ref.[22] for a detailed description), we
arrive at the following equation:

ρ′ =
p

c20
+

1

ρ0c40

B

2A
p2 −

κτα−2th

c40ρ0

(
1

cv
− 1

cp

)
∂α−1p

∂tα−1
(2.57)

where cv and cp are the heat capacity per unit mass at constant volume and constant pressure
respectively. Subtracting the time derivative of equation 2.52 from the divergence of equation 2.50
as described by [20], we get(
52 − 1

c20

∂2

∂t2

)
p+

τγ−1

ρ0c20

(
ζ +

4

3
η

)
∂γ

∂tγ
52p+

κτα−2th

c40ρ0

(
1

cv
− 1

cp

)
∂α+1p

∂tα+1
= − β

ρ0c40

∂2p2

∂t2
−
(
52 +

1

c20

∂2

∂t2

)
L

(2.58)
where β = 1 + B

2A is the coefficient of nonlinearity and other terms have their usual meanings.
Equation 2.58 can be written in a short hand form and is interpreted as Westervelt equation, as
given below (

52 − 1

c20

∂2

∂t2

)
p+ Lv

∂γ

∂tγ
52 p− Lt

c20

∂α+1p

∂tα+1
= − β

ρ0c40

∂2p2

∂t2
(2.59)

where

Lv =
τγ−1

ρ0c20

(
ζ +

4

3
η

)

Lt =
κτα−2th

c20ρ0

(
1

cv
− 1

cp

)
for Lv > Lt

The first term on the left hand side of equation 2.59 characterizes diffraction. The second
and third terms characterize the attenuation coming from the fractional Euler’s equation and the
Entropy equation respectively.[20] The term on the right hand side is the factor of nonlinearity
characterizing the attenuation arising from the complex medium and it comes from the continuity
equation and the equation of state.
For us to get a fractional form of the Westervelt equation with a non-integer frequency power
attenuation law, we set γ = y − 1 where 1 > y ≤ 2.

From the wave equation, 52p is approximated as 1
c20

∂2p
∂t2

.

Equation 2.59 leads to the Westervelt equation.(
52 − 1

c20

∂2

∂t2

)
p+

δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
(2.60)

2.6 Pennes Bioheat Equation

Among all mathematical models that have been developed over many years to describe heat
transfer within living biological tissue, the most widely used bioheat model was Pennes Bioheat
model, proposed by Pennes in 1948 and has been adopted into analysis of hyperthermia in cancer
treatment. The assumptions made in developing Pennes Bioheat equation are listed below:
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1. All pre-arteriole and post-venule heat transfer between blood and tissue is neglected.

2. The flow of blood in the small capillaries is assumed to be isotropic. This neglects the effect
of blood flow directionality.

3. Larger blood vessels in the vicinity of capillary beds play no role in the energy exchange
between tissue and capillary blood. Thus the Pennes model does not consider the local
vascular geometry.

4. Blood is assumed to reach the arterioles supplying the capillary beds at the body core
temperature. It instantaneously exchanges energy and equilibrates with the local tissue
temperature.

Based on these assumptions, Pennes (1948) modeled blood effect as an isotropic heat source or
sink which is proportional to blood flow rate and the difference between the body core temperature
and local tissue temperature. Therefore, Pennes (1948) proposed a model to describe the effects
of metabolism and blood perfusion on the energy balance within tissue. These two effects were
incorporated into the standard thermal heat equation.

Consider a volume (V) of the prostate with surface area (S). By considering an elemental volume
of mass dm = ρdV , with ρ the density of the tissue, we can apply the conservation of energy to the
inflow and outflow of heat across the control volume. The heat required to raise the temperature
of the prostate from T0 to T is

dQ = ρcdV (T − T0) (2.61)

where c is the heat required to raise the temperature of a unit mass of the prostate by 1K and
T = T (x, y, z, t). It thereby follows from 2.61 that

Q =

∫ ∫ ∫
ρcdV (T0 − T ) (2.62)

From the conservation of energy
dQ

dt
= G−R (2.63)

where G is the heat source given by

G =

∫ ∫ ∫
gdV (2.64)

where g is the heat generated per unit time per unit volume. and R in equation 2.63 is heat
outflow given by

R =

∫ ∫
q.dS (2.65)

with q being the heatflow per unit area per unit time.
Using equations 2.62, 2.64 and 2.65 in equation 2.63, we get

d

dt

∫ ∫ ∫
dV ρc(T − T0) =

∫ ∫ ∫
dV g −

∫ ∫
q.dS (2.66)
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Applying divergence theorem to the surface integral to make it a volume integral∫ ∫
q.dS =

∫
v
5.qdV (2.67)

Substituting equation 2.67 into 2.66, and treating T0 as a constant of time. We get∫
v
dV ρc

∂T

∂t
=

∫
v
gdV −

∫
v
(5.q)dV (2.68)

Re-arranging equation 2.68 and equating the integrands to zero for an arbitrary volume gives

ρc
∂T

∂t
− g +5.q = 0 (2.69)

Since the Pennes equation is valid for isotropic systems, then we can apply the Fourier constitutive
relation for q.

q = −k5 T

Then we can write equation 2.69 as

ρc
∂T

∂t
− g −5.(k5 T ) = 0 (2.70)

Pennes treated the heat source as coming from the blood perfusion and heat due to body metabolism
as given below

g = ρbcbWb(Tti− Tart)−Qm (2.71)

Putting equation 2.71 into 2.70, we get the Pennes Bioheat equation used in this model.

ρtiCti
∂T

∂t
−5.(k5 T )− ρbcbWb(Tart − Tti)−Qm = 0 (2.72)

where ρti, Cti, Tti and kti are, respectively, the density, specific heat, temperature and thermal
conductivity of tissue. Also, Tart is the temperature of arterial blood, Qm is the metabolic heat
generation and ρb , Cb and Wb are, respectively, the density, specific heat and perfusion rate of
blood.
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CHAPTER 3

Materials and Methods

The geometry used in this work contains both the spherically shaped prostate tissue and a spher-
ically shaped transducer fused together. The focal region has a length of 2mm and a radius of
1mm while the prostate is spherical with a radius 10mm and height of 20mm as shown in fig. 3.1
below

The transducer is driven at a frequency of 1MHz. It is turned on for 1 second and then turned
off to let the prostate tissue cool down under room temperature. The model thus solves for the
heating of the tissue for 1s and then simulates the cooling process after the acoustic source is
turned off.
The meshing used in any simulation alters the accuracy of the result. For a better accuracy, a
finer mesh is required and and as a recipe[23], the maximum mesh size to be used should not be
greater than the wavelength of the sound wave which for the case of this simulation we determined
from the source frequency using the basic sound relation.

c = λf

λ =
c

f
(3.1)

Since in this modelling we have two different physics modules; the Partial Differential Equation
module and the Bioheat Transfer module. Consequently, we shall create two meshes; one for the
PDE and the other for the Bioheat Transfer. For the PDE simulation, the mesh resolve the wave-
length of the source. The two different meshes are presented below
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Figure 3.1: The Geometry; showing the prostate and the focal point both treated as a tissue
domain.

3.1 Methodology

The model in this work uses the general form of Partial Differential Equation to simulate the
transient sound wave as it passes through the tissue to the focal point where it converges. COMSOL
uses Finite Element Analysis to discretize the prostate into 1282 elements as shown in figure 3.2.
For each of this element, COMSOL solves the specified PDE to determine the pressure of each
element. The pressure determined is inserted into equation 3.3 in order to obtain the heat source
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a) b)

Figure 3.2: a)The figure of the mesh used for the PDE equation. b) The figure of the mesh used
for the Bioheat Transfer

(Q) which is the heat generated by the PDE for the sound waves.
The heat source is also simulated by discretizing the prostate into 902 meshing elements and
solving for each element the bioheat equation to find the heat distribution. Since the heat source
which is in the focal region is much smaller than the size of the tissue, performing the simulation
only in the tissue domain is a good approximation.
The partial differential equation is

ea
∂2p

∂t2
+ da

∂p

∂t
+5.Γ = f (3.2)

where

Γ = −∂p
∂x
− ∂p

∂y

and

f = − δ

c40

∂3p

∂t3
− β

ρ0c40

(
2

(
∂p

∂t

)2

+ 2p
∂2p

∂t2

)
Using the material properties given in reference [24] with the geometry described above, the
equation above was solved to generate the pressure which is used to give the heat source Q given
by

Q =
2αp2

ρc0
(3.3)

where α is the acoustic absorption coefficient, ρ is the tissue density and c the speed of sound in
tissue. Using the Pennes’ Bioheat Transfer equation to model heat transfer within the prostate
tissue, the Q generated above is used as the heat source in the Bioheat equation. The parameters
used in the current simulation are listed in the table below.

ρtiCti
∂T

∂t
−5.(k5 T )− ρbcbWb(Tart − Tti)−Qm = 0 (3.4)
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Table 3.1: A table of parameter values.
c0(m/s) ρ0(kg/m

3) B/A α0 y

1500 1070 5 0.6 2

where T is the temperature, ρti, Cti, Tti and kti are, respectively, the density, specific heat,
temperature and thermal conductivity of tissue. Also, Tart is the temperature of arterial blood,
Qm is the metabolic heat generation and ρb , Cb and Wb are, respectively, the density, specific
heat and perfusion rate of blood. In this study, we assume that the properties of the prostate do
not change under temperature rise, and also that the blood perfusion rate is negligible.

3.2 Boundary Condition

Boundary conditions are used to specify the nature of the boundaries of the computational envi-
ronment in a way that best describes the physical problem. Some boundaries conditions define
real physical obstacles like a sound wave bounced off by a rigid wall, or a moving interface. Other
than acoustics, boundary conditions are applied to solve several physical problems. Boundary
values or initial values are used in the solution of a set of differential equations arising from the
physical problem. If the boundary gives a value to the normal derivative, then it is called Von
Neumann boundary conditions while if the boundary gives a value to the problem, it is called
Dirichlet Boundary Condition.
In a way to simulate the perturbation from the equilibrium state of the prostate tissue, a pulse of
pressure source is applied with a step function that defunctionalizes the source after 1s. Since the
prostate is initilly at rest, suitable initial conditions are ∂P

∂t = 0 and P = 0, and at the boundaries
of the prostate tissue, the boundary condition is set to 101.3KPa where 101.3KPa is the atmo-
spheric pressure. For the Bioheat Transfer Physics, at a time t = 0 before the sonication process,
the prostate should be at normal body temperature.

3.3 PDE

There are two ways of using the mathematics module in COMSOL; either we use a readymade
mathematics equation or we specify the equation that describes the physical problem under con-
sideration. In this modelling, we did not use a readymade solution, rather we specified the exact
equation from which was solved by COMSOL using Finite Element Analysis to give the pres-
sure. There are three ways of specifying equations in COMSOL namely coefficient form, general
form, and the weak form. In the the coefficient form, the problem is specified through the setting
of individual coefficients in a quite general system of partial differential equations and associ-
ated boundary conditions. The weak form is the most general and precise way of specifying the
equations in a finite element context. In the general form, the equation is specified through the
definition of a so called flux function in a conservation law formulation of the equation and it is
this form that we use in this study.

21



CHAPTER 4

Results and Discussion

The surface plot was made for both the pressure and temperature with and without the nonlinear
term in the Westervelt wave equation at time t = 1s (see figure4.1 and figure4.3). The temperature
surface plot indicates the concentration of the heat at the point of interest and it reduces radially
outward which is as expected. The line graph which shows the increase in temperature with time
is as shown below in figure4.2

It shows that the temperature rises within the first few seconds which is in accordance with
literature [12] [25] [26]. Relating this with the surface plot, we may conclude that the tumor
on the prostate tissue receives the maximum amount of heat and therefore may be destroyed if
applied intermitently. The curve shows that after 1s, the temperature begins to equilibrate and
consequently making the temperature rise reduce to zero. The surface plots of the pressure (fig-
ure4.3) and temperature (figure4.1)do not have much observable difference for both the Westervelt
equation with and without the nonlinear term. They both indicate the concentration of energy at
the location of the tumor.

The surface plot of the temperature after 10s as shown in figure4.1 shows that the temperature
of the prostate has reduced significantly. This result is expected since the sonication is just for 1s
and then allowed to cool down.

The pressure variation with time was taken at a point x = 8mm, y = 0 away from the focal
point (see figure 4.7) using the Westervelt equation for both cases when the nonlinear term is
included and when it is not. The resulting graphs are presented in figure4.4. Both graphs indicate
reduction in amplitude (attenuation) though one is more profound than the other. With the
exclusion of the nonlinear term, the amplitude reduces from -1e-7Pa to about -8e-7Pa; causing an
attenuation of about -7e-7Pa while the attenuation increases to about -3.3e-7Pa when the nonlinear
term is included.
This conclusively means that an additional attenuation of about -4e-7Pa is caused by the nonlinear
term. On the time scale used in this modelling, this is a significant difference.
With the omission of both the third order derivative and the nonlinear term the amplitude of the
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attenuated node is about -2.5e-6Pa as shown in figure4.5, which is the least attenuated among
them all.

This study agrees with the work of jafarian et al [12] and the in-vivo experiment in that the
rate of temperature rise is very sharp at the begining of the sonication and starts to decline after
the source is turned off making the curve approach equilibrium as indicated in figure4.2.

Curiel et al [25] perfomed an experiment on the evaluation of lesions prediction modeling in
the presence of ultrasound waves. In the experiment, they observed that the temperature rises
steeply during the first few seconds of sonication. This agrees with the graph above.
In another work done by Souchon et al [26], it was predicted that a steep temperature gradient
may occur during the sonication of a liver sample.

4.1 Conclusion

Due to the high energy transfer of ultrasound wave, HIFU is becoming a popular method of
cancer treatment. However, in some specific cases such as the cancer of the liver [11], the method
is obdurately applied. In this study, since the attenuation due to the nonlinear term is negligible
(order of 10−7Pa), then it is safe to treat the Westervelt equation without the consideration of
the nonlinearity of the medium. Also from the temperature rise against time which is same for the
three processes, it is safe to conclude that acoustic streaming and convective cooling are negligible
since the prostate has no significantly large blood vessel.
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a)

b)

Figure 4.1: a)Surface Plot of Temperature at time t=1s. b)Surface Plot of Temperature at time
t=10s

24



Figure 4.2: a)A line plot of the temperature variation with time.

25



a)

b)

Figure 4.3: a) Surface Plot of pressure at time t=1s. b) Surface Plot of pressure at time t=10s
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a)

b)

Figure 4.4: a)A line graph of the pressure variation with time when the nonlinear term is in-
cluded. b)Line plot for the pressure variation with time using the Westervelt up to the third order
and neglecting the nonlinear term
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Figure 4.5:
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Figure 4.6: The point indicate the position whose pressure is plot against time
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Figure 4.7: A figure showing the action of both shear and normal stresses acting on a body of fluid
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