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INTRODUCTION

Variational methods have proved to be very important in the study of optimal shape, time,
velocity, volume or energy. Laws existing in mechanics, physics, astronomy, economics and
other fields of natural sciences and engineering obey variational principles.
The main objective of variational method is to obtain the solutions governed by these prin-
ciples. Fermat postulated that light follows a part of least possible time, this is a subject
in finding minimizers of a given functional. It is important to note that we are in this work
concerned about solution of some Boudary Value Problem of some Partial Differential Equa-
tions.
The Boundary Value Problem is formulated in abstract form as;

A(u) = 0 in Ω, B(u) = 0 on ∂Ω, Ω ⊂ RN open, (1)

where A(u) = 0 denotes a given Partial Differential Equation for unknown u and B(u) = 0
is a given boundary value condition. The problem of interest in the variational method shall
be existence and the regularity of the minimizers of an associated functional.
In chapter three, we discussed Optimization in infinite dimensional spaces, a topic which is
very important in the study of variational methods. We specifically studied the application
of the variational methods in solving the Dirichlet Homogeneous Boundary Value Problem:

−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω is bounded open subset of RN of class C1 and f ∈ L2(Ω).

It is important to understand the meaning of Linear Elliptic Partial Differential Equations,
since our work is targeted towards a method of solving such Partial Differential Equations.

Definition A partial differential equation(PDE) is an equation involving partial derivatives
of an unknown function u : Ω→ R, where Ω is an open subset of Rn, n ≥ 2.

The order of a Partial Differential Equation is the order of the highest order derivative that
appears in the Partial Differential Equation.
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+ Introduction

A linear Partial Differential Equation is an equation in u with all of the terms involving
u and any of its derivatives expressed as a linear combination in which the coefficients are
independent of u and its derivatives. In a linear Partial Differential Equation, the coefficient
depends at most on the independent variables. The following examples gives an illustration
of a linear and nonlinear Partial Differential Equations.

Examples : (i) Let u = u(x, y), a function of two independent variables x and y, we have
that

∂2u

∂x2
+ u

∂2u

∂x∂y
+
∂2u

∂y2
+ u2∂u

∂x
− u3 = cos(xy)

is a second order nonlinear PDE with nonconstant coefficients.

(ii) The Partial Differential Equation given by

∂2u

∂x2
+ 5

∂2u

∂x∂y
+ u = 0

is linear with constant coefficient.

Classification of Linear Partial Differential Equations with
n independent variables
It is important to note that the same way differences exist between linear and nonlinear
Partial Differential Equations. Each of these classes requires different numerical methods of
solution, whether linear or nonlinear. Partial Differential Equations have been classified as
elliptic, parabolic, and hyperbolic.
A general linear Partial Differential Equation of order two in n variables has the form:

n∑
i,j=1

ai,j
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
+ cu = d. (2)

If
∂2u

∂xi∂xj
=

∂2u

∂xj∂xi
,

then the principal part of (2) can always be arranged so that

aij = aji,

thus the n × n matrix A = [aij] can be assumed to be symmetric. In linear algebra, it is
shown that every real, symmetric n×n matrix has n real eigenvalues. These eigenvalues are
the (possibly repeated) zeros of an nth-degree polynomial in λ, det(A− λI), where I is the
n× n identity matrix. Let p denote the number of positive eigeinvalues, and z the number
of zero eigenvalues (i.e the multiplicity of the eigenvalue zero), of the matrix A. Then the
Partial Differential Equation (2) is

• hyperbolic if z = 0 and p = 1 or z = 0 and p = n− 1

2



+ Introduction

• parabolic if z > 0⇔ det(A) = 0.

• elliptic if z = 0 and p = n or z = 0 and p = 0.
If any of the aij is nonconstant, the type of (2) can vary with position.

Example 0.0.0.1 An illustration of the matrix of a PDE.

For the Partial Differential Equation

3
∂2u

∂x2
1

+
∂2u

∂x2
2

+ 4
∂2u

∂x2∂x3

+ 4
∂2u

∂x2
3

= 0,

the matrix A is

A =

 3 0 0
0 1 2
0 2 4

 (3)

We have that this linear Partial Differential Equation is parabolic since det(A) = 0.

Example 0.0.0.2 The Laplace equation

∆u : =
n∑
i=1

∂2u

∂x2
= 0 (∆ is called the Laplacian)

or, more generally, the Poisson equation

∆ = f

for a given function f : Ω→ R. These are elliptic linear Partial Differential Equations.

Example 0.0.0.3 The heat equation:
we distinguish the coordinate t as the "time" coordinate, while the remaining coordinates x1, x2, · · · , xn
represents spatial variables. We consider

u : Ω× R+ → R, Ω open in Rn,R+ := {t ∈ R : t > 0},

and pose the equation
∂u

∂t
= ∆u.

The heat equation models heat and other diffusion processes. This is classified as parabolic linear
Partial Differential Equation.

Example 0.0.0.4 The wave equation:

∂2u

∂t2
= ∆,

where we employed the same notion as in (3) above. The wave equation models wave and
oscillation phenomena. This is classified as hyperbolic linear Partial Differential Equation.
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+ Introduction

In chapter one and two, we studied some function spaces which are paramount to our work.
In chapter two we studied the Sobolev spaces;

Wm,p(Ω) := {u ∈ Ω : Dα ∈ Lp(Ω), ∀|α| ≤ m,Ω ⊂ RN open},

where α ∈ NN is a multi-index,i.e., α = (α1, α2, · · · , αN) and |α| called the length of α is

given by |α| =
N∑
i=1

αi.

However in order to have a profound understanding of the Sobolev spaces, we also studied
Lp-Spaces, and as well studied the Theory of Distribution.

4



CHAPTER 1

SPACES OF FUNCTIONS

In the following, Ω is a nonempty open subset of RN with the Lebesgue measure dx.

1.1 Lp-spaces and some of its properties

1.1.1 Basic Integration Results

Theorem 1.1.1.1 (Monotone Convergence Theorem) Let {fn} be a nondecreasing se-
quence of integrable functions such that:

sup

∫
Ω

fn dx <∞.

Then {fn} converges pointwise to some function f . Futhermore f is integrable and

lim
n→+∞

∫
|fn − f | dx = 0.

Theorem 1.1.1.2 (Lebesgue Dominated Convergence Theorem) Let {fn} be a sequence
of integrable functions such that:
(i) fn(x)→ f(x) a.e on Ω,
(ii) there exists a function g, integrable and |fn(x)| ≤ g(x) a.e on Ω.
Then f is integrable and

lim
n→+∞

∫
|fn − f | dx = 0.

Theorem 1.1.1.3 (Fatou Lemma) Let {fn} be a sequence of integrable functions such that:
(i) ∀ n, fn(x) ≥ 0 a.e on Ω,
(ii) sup

∫
fn dx <∞.

For x ∈ Ω, set f(x) = lim infn fn(x). Then f is integrable and∫
f dx ≤ lim inf

n

∫
fn dx.

5



+ Lp-spaces

1.1.2 Definition and basic properties

Definition Let 1 ≤ p <∞. We define:
(i) Lp(Ω) as the set of measurable functions f : Ω→ R such that:∫

Ω

|f(x)|p dx < +∞

and
(ii) L∞(Ω) as the set of measurable functions f : Ω→ R such that:

ess sup |f | < +∞

where
ess sup |f | = inf {K ≥ 0, |f(x)| ≤ K, a.e x ∈ Ω}

Definition We say that two functions f and g are equivalent if f = g almost everywhere.
Then we define Lp(Ω) spaces as the equivalent classes for this relation.

Remark 1.1.2.1 The space Lp(Ω) can be seen as a space of functions. We do however, need
to be careful sometimes. For example, saying that f ∈ Lp(Ω) is continuous means that f is
equivalent to a continuous function. Now for f ∈ Lp(Ω), we define:

‖f‖p =

[∫
Ω

|f(x)|p dx
] 1
p

, 1 ≤ p < +∞ (1.1)

‖f‖∞ = ess sup |f |. (1.2)

Theorem 1.1.2.1 (Holder’s Inequality) . Let 1 ≤ p < +∞, we define p′ by 1/p+ 1/p′ =
1. If f ∈ Lp(Ω) and g ∈ Lp′(Ω), then fg ∈ L1(Ω) and

‖fg‖1 ≤ ‖f‖p‖g‖p′ . (1.3)

Proof. The cases p = 1 and p′ = +∞ are easy to prove. Now assume 1 < p < +∞. We use
the following Young’s inequality: Let 1 < p < +∞, a, b ≥ 0 then

ab ≤ ap

p
+
bp
′

p′
.

Assume that ‖f‖p 6= 0 and ‖g‖p′ 6= 0 otherwise, nothing to do. Using Young’s inequality,
we have

|f |
‖f‖p

· |g|
‖g‖p′

≤ 1

p

|f |p

‖g‖pp
+

1

p′
|g|p′

‖f‖p′p
.

Thus ∫
Ω

|f |
‖f‖p

· |g|
‖g‖p′

dx ≤ 1

p

∫
Ω

|f |p

‖f‖pp
dx+

1

p′

∫
Ω

|g|p′

‖g‖p′p
dx =

1

p
+

1

p′
= 1.

Hence ∫
Ω

|f | · |g| dx ≤ ‖f‖p · ‖g‖p′ .

6



+ Lp-spaces

Theorem 1.1.2.2 (Minkowski’s Inequality) . If 1 ≤ p ≤ +∞ and f, g ∈ Lp(Ω) then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (1.4)

Proof. If f + g = 0 a.e, then the statement is trivial. Assume that f + g 6= 0 and p > 1
(the case p = 1 is easy to check). We evaluate as follows:

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1.

Integrating over Ω, we get∫
Ω

|f + g|p dx ≤
∫

Ω

(|f |+ |g|)|f + g|p−1 dx

=

∫
Ω

|f ||f + g|p−1 dx+

∫
Ω

|g||f + g|p−1 dx

Using Holder’s inequality in the right hand side, we obtain∫
Ω

|f + g|p dx ≤ (‖f‖p + ‖g‖p)‖f + g‖p/qp ,

from which it follows
‖f + g‖p ≤ ‖f‖p + ‖g‖p.

1.1.3 The Main properties of Lp(Ω)

Lp-Spaces are Banach

Theorem 1.1.3.1 The Lp-spaces are Banach for 1 ≤ p ≤ +∞.

Proof.

Case1. Assume that p = ∞. Let {fn} be a Cauchy sequence in L∞. Let k ≥ 1, there
exists Nk such that

‖fm − fn‖p ≤
1

k
∀ n,m ≥ Nk.

There exists a set of measure zero Ak such that

|fm(x)− fn(x)|p ≤
1

k
∀ x ∈ Ω− Ak, ∀n,m ≥ Nk. (1.5)

Let A = ∪Ak (A is of measure zero) and forall x ∈ Ω−A the sequence {fn(x)} is Cauchy in
R. Let fn(x) = limn fn(x) forall x ∈ Ω− A. Letting m goes to +∞ in (1.5), we obtain

|fn(x)− f(x)|p ≤
1

k
∀ x ∈ Ω− Ak, ∀n ≥ Nk.

Thus f ∈ L∞ and ‖fn − f‖p ≤ 1/k, ∀ n ≥ Nk. So ‖fn − f‖p → 0.

7



+ Lp-spaces

Case2. Assume that 1 ≤ p < +∞. Let (fn)n≥1 be a Cauchy sequence in Lp(Ω), then
there exists a subsequence (fnk)k≥1 of (fn) such that:

‖fnk+1
− fnk‖p ≤

1

2k
, ∀ k ≥ 1. (1.6)

To simplify the notations, let us replace fnk by fk so that:

‖fk+1 − fk‖p ≤
1

2k
, ∀ k ≥ 1. (1.7)

Now set:

gn(x) =
n∑
k=1

|fk+1(x)− fk(x)|.

It follows that:
‖gn‖p ≤ 1, ∀ n ≥ 1.

Thus, from the monotone convergence theorem, gn(x) converge pointwise to some g(x) almost
every where and g ∈ Lp. On the other hand we have: for all n,m ≥ 2

|fm(x)− fn(x)| ≤ |fm(x)− fm−1(x)|+ · · ·+ |fn+1(x)− fn(x)| ≤ g(x)− gn−1(x).

It follows that (fn(x)) is Cauchy in R and converges to some f(x) a.e. Letting m goes to
+∞ leads to:

|f(x)− fn(x)| ≤ g(x), ∀n ≥ 2.

Therefore f ∈ Lp and by using dominate convergence theorem we have

‖fn − f‖p → 0.

We complete the proof by applying the following lemma

Lemma 1.1.3.1 Let E be a metric space and (xn) be a cauchy sequence in E. If (xn) has a
convergence subsequence, then it converges to the same limit.

The preceding proof contains a result which is interesting enough to be stated separetely:

Theorem 1.1.3.2 (Convergence criteria for Lp functions) Let 1 ≤ p < +∞. Let (fn)
and f in Lp(Ω) such that (fn) converges to f in Lp(Ω). Then there exists a subsequence
(fnk) of (fn) and h ∈ Lp(Ω) such that fnk(x) → f(x) for a.e, x ∈ Ω and fnk(x) ≤ h(x), a.e
x ∈ Ω.

Remark 1.1.3.1 It is in general not true that the entire sequence itself converge pointwise to
the limit f , without some futher conditions holding.

Example 1.1.3.1 Let X = [0, 1], and consider the subintervals[
0,

1

2

]
,
[1

2
, 1
]
,
[
0,

1

3

]
,
[1

3
,
2

3

]
,
[2

3
, 1
]
,
[
0,

1

4

]
,
[1

4
,
2

4

]
,
[2

4
,
3

4

]
,
[3

4
, 1
]
,
[
1,

1

5

]
, · · ·

Let fn denote the indicator function of the nth interval of the above sequence. Then ‖fn‖p →
0, but fn(x) does not converge for any x ∈ [0, 1].

8



+ Lp-spaces

Example 1.1.3.2 Let Ω = R, and for n ∈ N, set fn = X[n, n + 1]. Then fn(x) → 0 as
n→∞, but ‖fn‖p = 1 for p ∈ [0,∞). Thus fn converge pointwise but not in norm.

Theorem 1.1.3.3 Let 1 ≤ p < ∞. Let {fn} be a sequence in Lp such that fn(x) → f(x)
a.e. If

lim
n
‖fn‖ = ‖f‖

then {fn} converges to f in norm.

Theorem 1.1.3.4 The Lp spaces are reflexive for 1 < p <∞.

Proof. For 2 ≤ p <∞. We have the follwing first Clarkson inequality:∥∥∥f + g

2

∥∥∥p
p

+
∥∥∥f − g

2

∥∥∥p
p
≤ 1

2

(
‖f‖pp + ‖g‖pp

)
, ∀ f, g ∈ Lp.

For 1 < p ≤ 2, we have the second Clarkson inequality:∥∥∥f + g

2

∥∥∥p′
p

+
∥∥∥f − g

2

∥∥∥p′
p
≤
[1

2
‖f‖pp +

1

2
‖g‖pp

]1/(p−1)

, ∀ f, g ∈ Lp.

Using the Clarkson inequalities, we prove that Lp is uniformly convex for 1 < p <∞. So it
is reflexive by Milman-Pettis Theorem

Theorem 1.1.3.5 Let 1 ≤ p <∞. Then Lp is separable.

Proof. Let (Λi)i∈I be the family of N -cubes of RN of the form Λ =
N∏
k=1

]ak, bk[ where

ak, bk ∈ Q and Λ ⊂ Ω. Let E be the Q-vector space spanned by the functions XΛi .
Claim: E is a countable dense subspace of Lp.

Remark 1.1.3.2 L∞ is not separable. To establish this, we need the following:

Lemma 1.1.3.2 Let E be a banach space. We assume that there exists a familly (Oi)i∈I
such that:

(i) For all i ∈ I Oi is a nonempty open subset of E;

(ii) Oi ∩Oj = ∅ if i 6= j;

(iii) I is uncountable.

Then E is not separable.

Now we apply this lemma for L∞ as follows:

For all a ∈ Ω, let ra such that 0 < ra < d(a,Ωc). Set fa = XB(a,ra) and

Oa = {f ∈ L∞ | ‖f − fa‖∞ <
1

2
}.

One can check that the family (Oa)a∈Ω satisfies (i), (ii) and (iii).

9



+ Lp-spaces

1.1.4 Dual Space

Theorem 1.1.4.1 (Riesz representation theorem.) Let 1 < p < +∞ and let Φ ∈ (Lp)′.
Then there exists a unique g ∈ (Lp)′ such that:

〈Φ, f〉 =

∫
Ω

g · f dx, ∀ f ∈ Lp(Ω).

Futhermore
‖Φ‖(L1)′ = ‖g‖∞.

Proof. Let 1 < p < +∞ and let p′ such that 1/p+ 1/p′ = 1. For g ∈ Lp′(Ω), we define

Tg : Lp(Ω)→ R, 〈Tg, f〉 =

∫
Ω

f · g dx.

Using Holder’s inequality, we observe that Tg is well defined, linear and

|〈Tg, f〉| ≤ ‖g‖p′‖f‖p.

Thus
‖Tg‖(Lp)′ ≤ ‖g‖p′ .

In fact we have ‖Tg‖(Lp)′ = ‖g‖p′ . This follows by choosing f = |g|p′−2g.

Now we define the map

T : Lp
′ → (Lp)′, by T (g) = Tg ∀ g ∈ Lp

′
.

We have to prove that T is onto. For this, let E = T (Lp
′
). We have to show that E is closed

and dense in (Lp). E is closed by using the fact that ‖Tg‖ = ‖g‖p′ and Lp
′ is Banach. For

density we will show that if L ∈ (Lp)′′ and L = 0 on E then L = 0 on (Lp)′. Since Lp is
reflexive, we identify (Lp)′′ to Lp through the canonical embeding. Thus there exists f ∈ Lp
such that 〈L, φ〉 = 〈φ, f〉, for all φ ∈ (Lp)′. So L = 0 on E leads 〈Tg, f〉 = 0 for all g ∈ Lp′

and this implys that f = 0 so L is.

Theorem 1.1.4.2 (Dual space of L1). Let Φ ∈ (L1)′, then there exists a unique g ∈ L∞

such that
〈Φ, f〉 =

∫
Ω

g · f dx, ∀ f ∈ Lp(Ω).

and
‖Φ‖(L1)′ = ‖g‖∞.

Remark 1.1.4.1 The spaces L1(Ω) and L∞(Ω) are not reflexive.

Indeed assume that L1 is reflexive and let Ω open such that assume that 0 ∈ Ω. Let

fn = αnXB(0,1/n), where αn =
∣∣∣B(0, 1/n)

∣∣∣−1

so that ‖fn‖1 = 1. For n large enough, we
have B(0, 1/n) ⊂ Ω. By reflexivity, {fn} has a weakly convergence subsequence fnk to some
function f in L1(Ω). Thus∫

Ω

fnkϕdx→
∫

Ω

fϕ dx, ∀ϕ ∈ L∞(Ω). (1.8)

10



+ Lp-spaces

So for ϕ ∈ Cc(Ω− {0}), we have
∫

Ω

fnkϕdx = 0 for k large enough. By (1.8) it follows that

∫
Ω

fϕ dx = 0, ∀ϕ ∈ Cc(Ω− {0}).

Thus f = 0 a.e on Ω. On the other hand, taking ϕ ≡ 1 in (1.8) leads to
∫

Ω

f dx = 1.

Contradiction. So L1(Ω) is not reflexive.

Since a Banach space is reflexive if and only if its dual E ′ is reflexive, then L∞(Ω) is not
reflexive.

Remark 1.1.4.2 Since (L1)′ = L∞, then from Banach-Alaogulu theorem any bounded sequence
in L∞(Ω) has a w∗-convergence subsequence.

Proposition 1.1.4.1 There exists a linear continuous forms on L∞(Ω) such that there is no
g ∈ L1(Ω) such that

〈T, f〉 =

∫
Ω

g · f dx, ∀ f ∈ L∞(Ω).

Proof. Let Ω an open subset of Rn such that 0 ∈ Ω. Let

Φ0 : Cc(Ω)→ R, 〈Φ0, ϕ〉 = ϕ(0).

Φ0 is a linear continuous form on (Cc(Ω), ‖ · ‖∞). So by the Hann-Banach extension
theorem, Φ0 can be extended to a continuous linear form on L∞(Ω), say Φ. We summarize
the main properties of the Lp spaces as follows:

Completeness Reflexivity Separability Dual Space
Lp, 1 < p <∞ yes yes yes Lp

′
, 1/p+ 1/p′ = 1

L1 yes no yes L∞

L∞ yes no no Contains strctly L1

1.1.5 Convolutions and Mollifiers

Two usefull theorems
Let Ω1 ⊂ RN , Ω2 ⊂ RN open subsets of RN and F : Ω1×Ω2 → R be a measurable function.

Theorem 1.1.5.1 (Tonelli) Assume that∫
Ω2

|F (x, y)| dy <∞ a.e x ∈ Ω1

and ∫
Ω1

(∫
Ω2

|F (x, y)| dy
)
dx < ∞.

Then F ∈ L1(Ω1 × Ω2).

11
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Theorem 1.1.5.2 (Fubini) Assume that F ∈ L1(Ω1 × Ω2).
Then for a.e x ∈ Ω1

F (x, ·) ∈ L1(Ω2) and
∫

Ω2

F (·, y) dy ∈ L1(Ω1).

Similarly, for a.e y ∈ Ω2

F (·, y) ∈ L1(Ω1) and
∫

Ω1

F (x, ·) dx ∈ L1(Ω2).

Futhermore, we have∫
Ω1

∫
Ω2

F (x, y) dxdy =

∫
Ω2

(∫
Ω1

F (x, y) dx
)
dy =

∫
Ω1

(∫
Ω2

F (x, y) dy
)
dx.

Definition Let f and g be measurable functions on RN . We define the convolution product
f ∗ g of f and g by:

f ∗ g(x) =

∫
RN
f(x− y)g(y) dy

for those x, if any, for which the integral converges.

Theorem 1.1.5.3 (Minkowski’s Inequality) . Let 1 ≤ p < +∞ and let (X,A, dx) and
(Y,B, dy) be σ-finite measure spaces. Let F be a measurable function on the product space
X × Y . Then (∫

X

∣∣∣∣∫
Y

F (x, y) dy

∣∣∣∣p dx) 1
p

≤
∫
Y

(∫
X

|F (x, y)|p dx
) 1

p

dy,

in the sense that the integral on the left hand side exists if the one on the right hand side is
finite, and in this case the inequality holds. Note that the inequality may also be writen as:∥∥∥∥∫

Y

F (·, y) dy

∥∥∥∥
p

≤
∫
Y

‖F (·, y)‖p dy.

Theorem 1.1.5.4 Let 1 ≤ p ≤ +∞. If f ∈ L1(RN) and g ∈ Lp(RN) then

f ∗ g(x) =

∫
RN
f(x− y)g(y) dy

exists for almost all x and defines a function f ∗ g ∈ Lp(RN). Moreover

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Proof.

Case1. If p = +∞, we have∫
RN
|f(x− y)g(y)| dy ≤ ‖g‖∞

∫
RN
|f(x− y)| dy = ‖g‖∞‖f‖1,

12
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by invariance of Lebesgue’s measure under translation. Thus f ∗ g(x) exists a.e and

|f ∗ g(x)| ≤ ‖g‖∞‖f‖1, a.e x ∈ RN .

So f ∗ g ∈ L∞(Ω) and
‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞.

Case2. For p = 1, let
F (x, y) = f(x− y)g(y).

For almost every y ∈ RN , we have∫
RN
|F (x, y)| dx = |g(y)|

∫
RN
|f(x− y)| dx = ‖f‖1|g(y)| <∞

and ∫
RN

(∫
RN
|F (x, y)| dx

)
dy = ‖f‖1‖g‖1 <∞.

Using Tonelli’s Theorem, we have F ∈ L1(RN × RN). By Fubini’s Theorem, we obtain∫
RN
|F (x, y)| dy <∞ a.e x ∈ RN

and ∫
RN

(∫
RN
|F (x, y)| dy

)
dx ≤ ‖f‖1‖g‖1.

So
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Case3. For 1 < p < +∞, let q be the conjugate exponent of p. From Case2., we know that
for a.e x ∈ RN fixed, y 7→ |f(x−y)||g(y)|p is integrable or equivalently y 7→ |f(x−y)|1/p|g(y)|
is in Lp(RN). Since y 7→ |f(x− y)|q is in Lq(RN), we have from Holder’s inequality that

|f(x− y)||g(y)| = |f(x− y)|q · |f(x− y)|1/p|g(y)| ∈ L1(RN)

and
|f(x− y)||g(y)| ≤

(∫
RN
|f(x− y)||g(y)|p dy

)1/p

‖f‖1/q
1

i.e
|f ∗ g(x)|p ≤ (|f | ∗ |g|p)(x) · ‖f‖p/q1 .

Using again case2. we have

f ∗ g ∈ Lp(Ω) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Definition Let φ ∈ L1(RN) such that
∫
RN
φ(x) dx = 1. Let φε(x) =

1

εN
φ(
x

ε
). The family

of functions φε, ε > 0, is called a mollifier with kernel φ. Note that
∫
RN
φε dx = 1.

13
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Definition If f is a function on RN and a ∈ RN , we define the translation of f by a, τaf
as follow:

τaf(x) = f(x− a)

Proposition 1.1.5.1 Let φε be a mollifier, 1 ≤ p < +∞ and f ∈ Lp(RN). Then for each
ε > 0

‖f ∗ φε − f‖p ≤
∫
RN
‖τεyf − f‖p|φ(y)| dy. (1.9)

Proof. Since
∫
RN
φ(x) dx = 1 we have

f ∗ φε(x)− f(x) =

∫
RN

[f(x− εy)− f(x)]φ(y) dy.

by Minkowski’s inequality (1.1.5.3)

‖f ∗ φε − f‖p =

(∫
RN

∣∣∣∣∫
RN

[f(x− εy)− f(x)]φ(y) dy

∣∣∣∣p dx) 1
p

≤
∫
RN

(∫
RN
|f(x− εy)− f(x)|p|φ(y)| dx

) 1
p

dy

=

∫
RN
‖τεyf − f‖p|φ(y)| dy.

Corollary 1.1.5.1 If φ is such that
∫
RN
φ(x) dx = 0 then

‖f ∗ φε‖p ≤
∫
RN
‖τεyf − f‖p|φ(y)| dy.

Theorem 1.1.5.5 Assume that φ ≥ 0. Let f be a bounded continuous function on RN .
Then f ∗ φε is continous on RN for each ε > 0 and for each x ∈ RN we have

lim
ε→0+

f ∗ φε(x) = f(x).

Proof. Let ε > 0, we have

f ∗ φε(x) =

∫
RN
f(x− y)φε(y) dy =

∫
RN
f(x− εy)φ(y) dy.

Let M be the bound on the absolute value of f . Then |f(x − εy)φ(y)| ≤ Mφ(y) a.e. Since
φ ∈ L1(RN) and the function x→ f(x− εy)φ(y) is continuous a.e y ∈ RN then by Lebesgue
dominated convergence theorem f ∗ φε is continuous.
Now, fix x ∈ RN . Since

∫
φε(y) dy = 1 we have:

f ∗ φε(x)− f(x) =

∫
RN

[f(x− y)− f(x)]φε(y) dy.

14
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Let λ > 0. By the continuity of f at x, there is δ > 0, such that

|f(x− y)− f(x)| ≤ λ

2
, for |y| < δ.

Since ∫
|y|≥δ

φε(y) dy =

∫
|y|≥ δ

ε

φ(y) dy → 0, as ε→ 0

then there exists ε0 > 0 such that∫
|y|≥δ

φε(y) dy <
λ

4M
, for ε < ε0

It follows that for all such ε > 0, we can write the integral as a sum over |y| < δ and |y| ≥ δ
and get

|f ∗ φε(x)− f(x)| ≤ λ

2
+
λ

2
= λ.

1.1.6 Density of Cc(Ω) in Lp(Ω)

Proposition 1.1.6.1 Let Ω be an open subset of RN . Let (Uj)j∈J be a collection of open
subsets of Ω with union U . Let E ⊂ U . If E ∩ Uj is a set of Lebesgue measure 0 for each
j ∈ J then E has measure 0.

Proof. Let Q be the countable set consisting of all open balls in RN with rational radius
and rational center coordinates. Then for each j ∈ J

Uj =
⋃
{B | B ∈ Q, B ⊂ Uj}

so E is a countable union of sets of measure 0 of the form E ∩B.
Note that it is important that be Uj to be open.

Now let f ∈ L1(Ω). Then by the proposition above there exists a largest open subset U
of Ω on which f is 0 almost everywhere, just take the union of open sets on which f van-
ishes.

Definition The complement of U is called the support of f in Ω and is denoted by supp(f).

Proposition 1.1.6.2 If f : Ω→ R is continuous then the support of f in Ω is the closure of

{x ∈ Ω | f(x) 6= 0}

Definition If Ω is an open subset of RN , we denote by Cc(Ω) the set of continuous functions
on RN with compact support in Ω. We denote by D(Ω) the set of infinitely continuously
differentiable functions with compact support in Ω
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Let φ : RN → R defined by

φ(x) =


c(1− ‖x‖) if ‖x‖ ≤ 1,

0 if ‖x‖ > 1 .

(1.10)

where the constant c is chosen so that
∫
RN
φ(x) dx = 1. Then φε is a continuous mollifier

and moreover supp (φ) is the ε-Ball B′(0, ε).

Lemma 1.1.6.1 (Uryshon.) Let Ω be an open subset of RN and K ⊂ Ω be a compact set.
Then there exists Ψ ∈ Cc(Ω) such that 0 ≤ Ψ ≤ 1 and Ψ = 1 on some neighborhood of K.

Proof. Let φε be a continuous mollifier as above and let L be the closed δ-neighborhood of
K, that is

L = {x ∈ RN , | dist(x,K) ≤ δ}

where δ =
1

3
dist(K, ∂Ω). Let

Ψ(x) = XL ∗ φε(x) =

∫
RN
XL(x− y)φε(y) dy =

∫
L

φε(x− y) dy

For 0 < ε < δ, we have Ψ ∈ C(Ω), Ψ has it support in the closed 2δ-neighborhood of K and
so has compact support in Ω, 0 ≤ Ψ ≤ 1 and Ψ = 1 on the (δ − ε)-neighborhood of K.

Theorem 1.1.6.1 (Density of Cc(Ω) in Lp(Ω) ) . Let Ω be an open subset of RN and let
1 ≤ p < +∞. Then Cc(Ω) is dense in Lp(Ω).

Proof. We denote the Lebesgue measure of measurable set B by m(B). Since the simple
functions are dense in Lp(Ω) for finite p, it suffices to show that we can approximate the
characteristic function XA of a measurable set A of finite measure by function in Cc(Ω). Let
ε > 0. By the regularity of Lebesgue measure there exits a compact set K ⊂ A and an open
set U , A ⊂ U such that m(U −K) < εp. From Uryshon’s Lemma, there is Ψ ∈ Cc(U) such
that 0 ≤ Ψ ≤ 1 and Ψ = 1 on K. We have |XA −Ψ| ≤ XU −XK and so

‖XA −Ψ‖p ≤ m(U −K)
1
p < ε.

Remark 1.1.6.1 If 1 ≤ p <∞, Theorem 1.1.6.1 says that Cc(Ω) is dense in Lp(Ω), and The-
orem 1.1.3.1 shows that Lp(Ω) is complete. Thus Lp(Ω) is the completion of the metric space
which is obtained by endowing C0(Ω) with the Lp-metric.

Of course, every metric space S has a completion S∗ whose elements may be viewed abstractly
as equivalent classes of Cauchy sequence in S. The important point in the present situation is
that the various Lp-completion of Cc(Ω) again turn out to be spaces of functions on Ω.

The case p = +∞ differs from the cases p < ∞. The L∞-completion of Cc(Ω) is not L∞(Ω),
but is C0(Ω), the spaces of all continuous functions on Ω which vanish at infinity.
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Definition A function f : Ω→ R is said to vanish at infinity if for every ε > 0, there exists
a compact set K ⊂ Ω such that |f(x)| < ε for all x not in K.

We denote by C0(Ω),the class of all continuous functions on Ω which vanish at infinity.
It is clear that Cc(Ω) ⊂ C0(Ω).

Theorem 1.1.6.2 C0(Ω) is the completion of Cc(Ω), relative to the metric defined by the
supremum norm:

‖f‖∞ = sup
x∈Ω
|f(x)|.

Proof. An elementary verification shows that C0(Ω) satisfies the axioms of a metric space
if the distance between f and g is taken to be ‖f − g‖∞. We have to show that (i) Cc(Ω) is
dense in C0(Ω) and (ii) C0 is complete.
To prove (i), let f ∈ C0(Ω) and ε > 0, there exists a compact set K ⊂ Ω such that |f(x)| < ε
outside K. Uryshon’s lemma gives us that there exists a function ϕ ∈ C0(Ω) such that
0 ≤ ϕ ≤ 1 and ϕ(x) = 1 on K. Put h = ϕf . Then h ∈ Cc(Ω) and ‖f − h‖∞ < ε.
To prove (ii), let {fn} be a Cauchy sequence in C0(Ω). Using the definition of Cauchy
sequence and supremum norm, we can assume that {fn} converges uniformly. Then its
pointwise limit function f is continuous. Given ε > 0, there exists an N so that ‖fN−f‖∞ <
ε/2 and there exists a compact set K so that |fN(x)| < ε/2 outside K. Hence |f(x)| < ε
outside K, and we have proved that f vanishes at infinity. Thus C0(Ω) is complete.

Proposition 1.1.6.3 (Continuity of Translation in Lp(Ω)) . Let 1 ≤ p < +∞ and f ∈
Lp(RN). Let θ : RN → Lp(RN) be the map defined by

θ(y) = τyf, ∀ y ∈ RN .

Then θ is uniformly continuous on RN .

Proof. Let ε > 0. By density choose g ∈ Cc such that ‖f − g‖p <
ε

3
. Let y, z ∈ RN and

v = y − z, then

‖θ(y)− θ(z)‖p = ‖τyf − τzf‖p ≤ ‖τyf − τyg‖p + ‖τyg − τzg‖p + ‖τzg − τzf‖p

≤ 2

3
ε+ ‖τyg − τzg‖p

≤ 2

3
ε+ ‖τvg − g‖p

by translation invariance of Lebesgue measure. Since g has compact support, then the
support of τvg stays in a fixed compact set K for ‖v‖ ≤ 1. Since g is bounded we have

|τvg| ≤M · XK .

It follows that
|τvg − g|p ≤ (2M)pXK ∈ L1(RN), for ‖v‖ ≤ 1

17
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since g is continuous we have τvg → g as v → 0 pointwise. By the dominate convergence

theorem
∫
RN
|τvg − g|p dx→ 0 as v → 0. Thus there exists δ > 0 such that 0 < δ < 1 and

‖τvg − g‖p <
1

3
ε, if ‖v‖ < δ.

Hence, the uniform continuity of θ follows.

Theorem 1.1.6.3 Let φ ∈ L1(RN), 1 ≤ p < +∞ and let f ∈ Lp(RN). If
∫
RN
φ dx = 1 then

f ∗ φε → f in Lp(RN) as ε→ 0. If
∫
RN
φ dx = 0 then f ∗ φε → 0 in Lp(RN) as ε→ 0

Proof. for the first case, we know that:

‖f ∗ φε − f‖p ≤
∫
RN
‖τεyf − f‖p|φ(y)| dy.

The integrand is bounded by 2‖f‖p|φ| ∈ L1(RN) and goes to 0 as ε→ 0 by continuity of the
translation. Thus the Lebesgue dominated convergence theorem yields the desired result.

Corollary 1.1.6.1 Let 1 < p < +∞ and q ≥ 1 such that 1/p+ 1/q = 1. If f ∈ Lp(RN) and
g ∈ Lq(RN) then f ∗ g is uniformly continuous.

Proof. We have

f ∗ g(x)− f ∗ g(z) =

∫
RN

(f(x− y)− f(z − y)) g(y)dy =

∫
RN

(τ−xf(−y)− τ−zf(−y)) g(y) dy

therefore by using Holder’s inequality we have

|f ∗ g(x)− f ∗ g(z)| ≤ ‖τ−xf − τ−zf‖p‖g‖q.

We conclude by using the fact that the translation is uniformly continuous.

1.1.7 Density of D(Ω) in Lp(Ω).

One important application of the convolution product is regularization of functions, that is,
the approximation of functions by smooth functions. Let

u(t) =

{
e−1/t if t > 0,

0 if t ≤ 0 .
(1.11)

Since for any integer k, lim
t→0

1

tk
e−

1
t = 0, then u ∈ C∞(R). Let ρ(x) = cu(1− ‖x‖2), x ∈ RN .

Then ρ ∈ C∞(RN) and ρ(x) = 0 if ‖x‖ ≥ 1. Moreover, for a suitable choice of the constant

c we have ρ(x) ≥ 0 and
∫
RN
ρ(x) dx = 1. Let

ρε(x) =
1

εN
ρ(
x

ε
).

Then
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1. ρε ∈ C∞(RN),

2. supp(ρε) = B′(0, ε) = {x ∈ RN | ‖x‖ ≤ ε},

3. ρε(x) ≥ 0,

4.
∫
RN
ρε(x) dx = 1.

Any family (ρε) satisfying these four properties is called Friedrichs’s mollifier.

Theorem 1.1.7.1 Let ρε be a Friedrichs’s mollifier. If f ∈ L1(RN , loc) the convolution

f ∗ ρε(x) =

∫
RN
f(x− y)ρε(y) dy =

∫
RN
f(x− εy)ρ(y) dy

exists for each x ∈ RN . Moreover

1. f ∗ ρε ∈ C∞(RN),

2. supp(f ∗ ρε) ⊂ supp(f) +B′(0, ε),

3. if 1 ≤ p < +∞ and f ∈ Lp(RN), then f ∗ ρε → f in Lp(RN), as ε → 0. In fact we
have ‖f ∗ ρε − f‖p ≤ sup

‖y‖≤ε
‖τyf − f‖p

4. If K, the set of continuity points of f is compact, then f ∗ ρε → f uniformly on K as
ε→ 0

Proof. The convolution exists for each x because the mollifier has compact support. Note

that f ∗ ρε(x) =

∫
RN
ρε(x − y)f(y) dy implies f ∗ ρε ∈ C∞(RN) by standard results on

differentiating under the integral sign (since ρ has compact support). The second is obvious
and the third follows from

‖f ∗ ρε − f‖p ≤
∫
RN
‖fεyf − f‖pρ(y) dy ≤ sup‖y‖≤ε‖τyf − f‖p

Assume that K the set of continuity points of f is compact. Then f is uniformly continuous
on K and this shows a little bit more: let η > 0, then there exists δ > 0 such that if x ∈ K,
z ∈ RN and ‖x− z‖ < δ then it follows that |f(x)− f(z)| < η. Note that we do not require
z to be in K. Now

f ∗ ρε(x)− f(x) =

∫
‖y‖≤ε

(f(x− y)− f(x)) ρε(y) dy.

Hence if 0 < ε < δ then

|f ∗ ρε(x)− f(x)| ≤
∫
‖y‖≤ε

|f(x− y)− f(x)| ρε(y) dy

≤ η

∫
RN
ρε(y) dy = η

for each x ∈ K.

19



+ Lp-spaces

Corollary 1.1.7.1 Let Ω be an open subset of RN and K is a compact subset of RN then
there exits φ ∈ D(Ω) with 0 ≤ φ ≤ 1 and φ = 1 on K.

Proof. Let δ =
1

3
dist(K, ∂Ω). Let L be the closed δ-neighbborhood of K, that is:

L := {x ∈ RN | dist(x,K) ≤ δ}

Let f be the characteristic function of L and let 0 < ε < δ. then φ = f ∗ ρε ∈ C∞(RN) has
its support in the closed 2δ-neighborhood of K and so has compact support in Ω. We have
that 0 ≤ φ ≤ 1 and φ = 1 on the (δ − ε)-neighborhood of K.

Theorem 1.1.7.2 (Density of D(Ω) in Lp(Ω)) . Let Ω be an open subset of RN and let
1 ≤ p < +∞. Then D(Ω) is dense in Lp(Ω)

Proof. Let f ∈ Lp(Ω) and let δ > 0. By theorem (1.1.6.1) there exits g ∈ Cc(Ω) such that

‖f − g‖p <
δ

2
. Let ε > 0 and define gε = g ∗ ρε. Then gε ∈ C∞(Ω) and gε → g in Lp(Ω).

Moreover
supp(gε) ⊂ supp(g) +B′(0, ε)

Since gε → g in Lp(Ω) as ε→ 0, there exists η > 0 such that ‖gε − g‖p <
δ

2
for ε < η. Now

let ε < min(η, dist(supp(g), ∂Ω)). Then gε ∈ D(Ω) and ‖f − gε‖p < δ

Theorem 1.1.7.3 (Partition of unity) . Let Ω be an open subset of RN and let (Uj)j∈J
be a locally finite open cover of Ω such that each Uj has compact closure in Ω. Then there
exsits φj such that

φj ∈ D(Uj), φj ≥ 0 and
∑
j∈J

φj(x) = 1, ∀x ∈ Ω

Proof. There exists an open covering (wj) of Ω such that w̄j ⊂ Uj ⊂ Ūj for all j ∈ Uj.
Choose Ψj ∈ D(Uj) such that 0 ≤ Ψj ≤ 1 and Ψj = 1 on w̄j. The sum

Ψ(x) =
∑
j∈J

Ψj(x)

is locally finite and bounded below by 1. Thus Ψ ∈ C∞(Ω) and 1 ≤ Ψ. take φj =
Ψj

Ψ

The φj are called a smooth partion of unity subordinate to the locally finite open cover
(Uj).

Theorem 1.1.7.4 (Finite partition of unity) . Let K be a compact subset of RN and let
(Uj)j=1,··· ,N be a finite open cover of K. Then there exists functions φj ∈ D(Uj) such that
φj ≥ 0 and

N∑
j=1

φj = 1

in a neighborhood of K.
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Proof. For x ∈ K, let Vx be an open neighborhood of x such that V̄x is a compact subset
of Uj with x ∈ Uj. Since K is compact there exsit a finite set x1, · · · , xm in K such that

K ⊂
m⋃
k=1

Vxk .

For each j let Kj be the union of those V̄xk which are contained in Uj. Then Kj is compact,
Kj ⊂ Uj and

K ⊂ K1 ∪ · · · ∪KN

By corollary1.1.7.1, we may choose Ψj ∈ D(Uj), 0 ≤ Ψj ≤ 1 in a neighborhood of Kj and
Ψj = 1 on Kj. Finally let

φ1 = Ψ1

φ2 = (1−Ψ1)Ψ2

φ3 = (1−Ψ1)(1−Ψ2)Ψ3

· · ·
φN = (1−Ψ1)(1− ψ2) · · · (1−ΨN−1)ΨN

We have, φj ≥ 0 and

φ1 + φ2 + · · ·+ φN = 1− (1−Ψ1)(1− ψ2) · · · (1−ΨN).

For each x ∈ K there is j so that Ψj(x) = 1. Thus φ1 + φ2 + · · ·+ φN = 1 on K To obtain
the equality on a neighborhood of K, we would enlarge K a bit.

Theorem 1.1.7.5 (Dubois-Reymond) . Let Ω be an open subset of RN . If f ∈ L1(Ω, loc)

and
∫

Ω

f(x)φ(x) = 0 for each φ ∈ D(Ω) then f = 0 a.e in Ω.
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1.2 Distribution Theory

1.2.1 Test Functions

Let Ω be a nonempty open subset of RN .

Notations

If m ∈ N, Cm(Ω) denotes the space of real-valued functions on Ω of class Cm and C∞(Ω) the
space of those of class C∞. By convention, C0(Ω) = C(Ω) the space of continuous functions
on Ω.

An element α ∈ Nn is called a multiindex. If α = (α1, · · · , αn) is a multiindex, we define the
length of α to be the sum |α| = α1 + · · ·+ αn, and we put α! = α1! · · ·αn!. We give Nn the
product order: if α, β ∈ Nn , we write α ≤ β if α1 ≤ β1, · · · , αn ≤ βn.

If 1 ≤ i ≤ n, we often use Di to denote
∂

∂xi
. Then if α is a multiindex, we write

Dα = Dα1
1 · · ·Dαn

n =
D|α|

∂xα1
1 · · · ∂xαnn

.

The differential operator Dα is also denoted by
∂|α|

xα
or ∂αx . By convention, D0 (the differ-

ential of order 0 with espect to any index) is the identity map. We see that each operator
Dα, where α ∈ Nn, acts on the space Cm(Ω), for |α| ≤ m.

We recall the following classical result:

Proposition 1.2.1.1 (Leibniz’ formula) . Let u, v ∈ Cm(Ω). For each multiindex α such
that |α| ≤ m,

Dα(uv) =
∑
β≤α

Cβ
αD

α−βuDβv,

where

Cβ
α =

n∏
i=1

αi!

βi!(αi − βi)!
=

α!

β!(α− β)!
.

+ We denote by Dm(Ω) the space of functions of class Cm having compact support in Ω.
In particular, D0(Ω) = Cc(Ω). Clearly, m′ ≥ m implies Dm′(Ω) ⊂ Dm(Ω). Now we set

D(Ω) =
⋂
m∈N

Dm(Ω),

Thus D(Ω) is the space of functions of class C∞(Ω) having compact support in Ω; such
functions are called test functions on Ω.

Finally, if K is a compact subset of Ω, we denote by DK(Ω) the space of functions of
class C∞ having support contained in K.

DK(Ω) =
⋂
m∈N

Dm
K(Ω)
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thus
D(Ω) =

⋃
K∈K(Ω)

DK(Ω)

where K(Ω) is the set of compact subsets of Ω.

Clearly, a function in Dm(Ω) or D(Ω), when extended with the 0 value outside Ω becomes
an element of Dm(RN) or D(RN), respectively. Thus Dm(Ω) and D(Ω) can be considered
as subspaces of Dm(RN) and D(RN). We will often make this identification. Conversely,
an element ϕ ∈ Dm(RN) or D(RN) belong to all the spaces Dm(Ω) or D(Ω) such that
supp(ϕ) ⊂ Ω.

1.2.2 Convergence in Function Spaces

• Convergence in Dm
K(Ω) and DK(Ω). Let K be a compact subset of Ω. We say that

a sequence (ϕn) in Dm
K(Ω) converges to ϕ ∈ Dm

K(Ω), if for every multiindex α such that
|α| ≤ m, the sequence (Dαϕn) converges uniformly to Dαϕ. An analogous definition applies
with the replacement ofDm

K(Ω) byDK(Ω) where now there is no restriction on the multiindex
α ∈ Nn.

The convergence thus defined on Dm
K(Ω) clearly corresponds to the convergence in the norm

‖ · ‖(m) defined on Dm
K(Ω) by:

‖ϕ‖(m) =
∑
|α|≤m

‖Dα ϕ‖∞,

where ‖ · ‖∞ denote the uniform norm. In contrast, no norm on DK(Ω) yields the notion of
convergence we have defined in that space.

• Convergence in Dm(Ω) and D(Ω). We say that a sequence (ϕn) in Dm(Ω) converges to
ϕ in Dm(Ω) if the followings are satisfied:

(i) there exists a compact subset K of Ω such that

supp(ϕ) ⊂ K and supp(ϕn) ⊂ K for all n,

(ii) the sequence (ϕn) converge to ϕ in Dm
K(Ω).

An analogous definition applies with the replacement of Dm(Ω) and Dm
K(Ω) by D(Ω) and

DK(Ω).

• Convergence in Cm(Ω) and C∞(Ω). We say that a sequence (fn) in Cm(Ω) converge to
f ∈ Cm(Ω), if for every multiindex α such that |α| ≤ m and for every compact K in Ω, the
sequence (Dαfn) converges to (Dαf) uniformly on K. An analogous definition applies with
the replacement of Cm(Ω) by C∞(Ω), where now there is no restriction on the multiindex
α. For m = 0, the convergence in C0(Ω) = C(Ω) thus defined coincides with the uniform
convergence on compact subsets.

Remark 1.2.2.1 The definitions of convergence of sequences just made extend immediately to
families (ϕλ), where λ runs over a subset in R and λ→ λ0, λ0 ∈ [−∞,+∞].
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We will see that it is possible to give the spaces DK(Ω), Cm(Ω) and C∞(Ω) complete metric
structures for which convergence of sequences coincides with the notions just defined. In
contrast, one can show that the convergence we have defined in Dm(Ω) and D(Ω) cannot
come from a metric structure.

In fact, the only topological notions that we will use in connection with these function spaces
are continuity and denseness, and these notions, in the case of metric spaces, can always be
expressed in terms of sequences.

1.2.3 Continuity and Denseness on Dm(Ω) and D(Ω)

• A subset C of Dm(Ω) or D(Ω) will be called dense in Dm(Ω) or D(Ω), if for every ϕ in
Dm(Ω) or D(Ω), there exists a sequence (ϕn) in C converging to ϕ in Dm(Ω) or D(Ω).

• A function F on Dm(Ω) or D(Ω) and taking values in a metric space or in one of the
spaces just introduced will be called continuous, if for every sequence (ϕn) in Dm(Ω) or
D(Ω) that converges to ϕ in Dm(Ω) or D(Ω), the sequence (F (ϕn)) converges to F (ϕ) in
the space considered.

For example, the Canonical Injection from Dm(Ω) to Cm(Ω) is continuous. This means
simply that every sequence in Dm(Ω) that converges in Dm(Ω) also converges in Cm(Ω) to
the same limit.

Proposition 1.2.3.1 For every m ∈ N, the space D(Ω) is dense in Dm(Ω). In particular,
D(Ω) is dense in Cc(Ω).

Lemma 1.2.3.1 Let Ω be an open subet of RN . For n ∈ N∗, define

Kn = {x ∈ RN | ‖x‖ ≤ n and d(x,Ωc) ≥ 1

n
}

where d is the usual distance in RN . Then

1. Each Kn is a compact subset of Ω and Kn ⊂ K̊n+1.

2. Ω =
∞⋃
n=1

Kn =
∞⋃
n=2

K̊n.

3. For all compact K in Ω, there exists N ≥ 1 such that K ⊂ K̊N .

Proposition 1.2.3.2 The space D(Ω) is dense in C∞(Ω) and in Cm(Ω) for every m ∈ N

Proof. Let Kn be a sequence of compact subsets of Ω exhausting Ω (as above). Then there
exists for each n, an element ϕn ∈ D(Ω) such that

0 ≤ ϕn ≤ 1, ϕn = 1 on Kn, supp(ϕn) ⊂ K̊n+1.

Now let f ∈ C∞(Ω), we have (fϕn) ∈ D(Ω) for every n ∈ N. If K is a compact subset of
Ω, there is an integer N such that K ⊂ K̊N . Thus for every n ≥ N and for every α ∈ Nn,
we have Dα(fϕn) = Dαf on K. By the definition of convergence in C∞(Ω), we deduce that
(fϕn) converge to f in C∞(Ω).
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1.2.4 Distributions

Definition A distribution on Ω is a continuous linear mapping T from D(Ω) into R. The
set of all distributions is denoted by D′(Ω).

Remark 1.2.4.1 By Linearity, to show that T is continuous, it is enough to show that, if ϕn → 0
in D(Ω) then (T, ϕn) → 0 in R.

Theorem 1.2.4.1 Let T be a linear mapping from D(Ω) into R. Then T is a distribution
if and only if, for any compact set K in Ω, there exists an integer nK ∈ N and a positive
constant CK such that:

|(T, ϕ)| ≤ CK
∑
|α|≤nK

sup
K
|Dαϕ(x)|, ∀ϕ ∈ DK(Ω).

Definition If nK can be chosen independent of K, then the smallest n with this property
is called the order of the distribution T .

Example 1.2.4.1 (Distribution given by a locally integrable function) Let f ∈ L1(Ω, loc),
then f gives a distribution Tf defined by:

(Tf , ϕ) =

∫
Ω

f(x) · ϕ(x) dx, ∀ϕ ∈ D(Ω).

The linearity of Tf follows from the linearity of integral. Now let K be a compact subset of Ω
and let ϕ ∈ D(Ω) with supp(ϕ) ⊂ K then we have

|(Tf , ϕ)| ≤
(∫

K

|f(x)| dx
)
·
(

sup
K
|ϕ(x)|

)
,

so T is a distribution of order 0.

We define the maping f → Tf . It is linear and one to one. In fact let f ∈ L1(Ω, loc) such that
Tf = 0, Then by using Dubois-Reymond ’s lemma, we show that f = 0 a.e in Ω. From now, we
can identify L1(Ω, loc) as a subset of D′(Ω).

Example 1.2.4.2 (Dirac distribution) .

Let x0 ∈ Ω. We denote by δx0 the linear form defined on D(Ω) by

(δx0 , ϕ) = ϕ(x0), ∀ϕ ∈ D(Ω).

Let K be a compact subset of Ω. Since |(δx0 , ϕ)| ≤ sup
K
|ϕ(x)| for all ϕ ∈ D(Ω) with supp(ϕ) ⊂

K, then δx0 is a distribution.

Example 1.2.4.3 (The distribution Principal Value of 1/x) .
Consider the function x 7→ 1/x from R to R. This function is clearly not locally integrable on R
but it is on R∗. We will see how we can extend to R the distribution defined by this function on
R∗.
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Proposition 1.2.4.1 For every ϕ ∈ D(R), the limit

(pv(1/x), ϕ) = lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
dx

exists. The linear form pv(1/x) thus defined a distribution of order 1 on R, and is an
extension to R of the distribution [1/x] ∈ D′(R∗).

We call pv(1/x) the principal value of 1/x.

Example 1.2.4.4 (The distribution Finite part of 1/x2. ) Let ϕ ∈ D(Ω), we call the
distribution Finite part, the distribution denoted by fp(1/x2) and defined by:

(fp(1/x2), ϕ) = lim
ε→0+

(∫
|x|≥ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

)
∀ϕ ∈ D(R).

Proposition 1.2.4.2 Let T be a distribution on Ω such that every point x ∈ Ω has an open
neighborhood Vx such that (T, ϕ) = 0 for all ϕ ∈ D(Vx). Then T = 0.

Proof. Let ϕ ∈ D(Ω), we will show that (T, ϕ) = 0. Let K = supp(ϕ) and let x ∈ K
then by hypothesis, there exists an open neighborhood Vx of x such that (T, ϕ) = 0 for all
ϕ ∈ D(Vx). Since K is compact, there exists x1, · · · , xN ∈ K such that

K ⊂
N⋃
i=1

Vxi

Let α1. · · · , αN be a partition of unity associated to this open cover of K. Then

ϕ =
N∑
i=1

αiϕ

Since supp(αiϕ) ⊂ Vxi then (T, αiϕ) = 0 and so is (T, ϕ).

1.2.5 The Support of a Distribution

Definition Let T be a distribution on Ω, an open of nullity of T is an open subset U of Ω
such that (T, ϕ) = 0 for all ϕ ∈ D(U).

Proposition 1.2.5.1 Any distribution T has a largest open of nullity Ω0. Its complement is
called the support of T and denoted by supp(T ).

Proof. Let U be the collection of opens of nullity of T , and let Ω0 =
⋃
U∈U U be there

union. It suffices to show that Ω0 is it self an open of nullity of T . Take ϕ ∈ D(Ω0). By
compactness of the support of ϕ, their exists a finite collection of opens sets U1, · · · , UN
whose union contains the support of ϕ. Let αi, i = 1 · · · , N be a partion of unity associated
to this open cover of supp(ϕ). It follows that

ϕ =
N∑
i=1

ϕ · αi.
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Since each ϕ · αi is supported in the open of nullity Ui, this implies that

(T, ϕ) =
N∑
i=1

(T, ϕ · α) = 0.

This proves that Ω0 is indeed an open of nullity of T , and by construction it is the largest
of such open sets.

Somes consequences of the definition:

1. x0 /∈ supp(T ) if and only if there exists an open neighborhood Vx0 of x0 such that

(T, ϕ) = 0, ∀ ϕ ∈ D(Vx0),

2. x0 ∈ supp(T ) if and only for all open neighborhood Vx0 of x0, there exists ϕ ∈ D(Vx0)
such that (T, ϕ) 6= 0.

Proposition 1.2.5.2 Let T be a distribution on Ω and ϕ ∈ D(Ω) such that

supp (T ) ∩ supp(ϕ) = ∅.

Then (T, ϕ) = 0.

1.2.6 Distributions with Compact Support

Theorem 1.2.6.1 Let T be a distribution on Ω. A necessary and sufficient condition for
the support of T to be compact is that T has an extension to a continuous linear form on
C∞(Ω). The extension is then unique.

Proof. Suppose first that the support of T is compact. Then there exists a compact K in Ω
whose interior contains the support of T . It follows from corollary 1.1.7.1 that there exists
ρ ∈ D(Ω) such that 0 ≤ ρ ≤ 1 and ρ(x) = 1 on K. We then set, for f ∈ C∞(Ω),

(T̄ , f) = (T, ρf). (1.12)

It is clear that this does define a linear form T̄ on C∞(Ω). On the other hand, if ϕ ∈ D(Ω),
we have

supp (ϕ− ρϕ) ⊂ Ω− K̊ ⊂ Ω − supp (T ),

this implies that
supp (ϕ− ρϕ) ∩ supp (T ) = ∅.

So by proposition 1.2.5.2, it follows that

(T̄ , ϕ) = (T, ϕ).

Thus T̄ is an extension of T to C∞(Ω).

Finally, if (fn) is a sequence in C∞(Ω) that converges to 0 in C∞(Ω), then from the definitions
and Leibniz’s formula the sequence (ρfn) converges to 0 in D(Ω), so that

lim
n→+∞

(T̄ , fn) = lim
n→+∞

(T, ρfn) = 0
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This proves that T̄ is continuous on C∞(Ω). Since D(Ω) is dense in C∞(Ω), the extension
is unique.

For the converse, assume that T can be extended to a continuous linear form T̄ on C∞(Ω).
Let (Kn) be an exhausting sequence of compact subsets of Ω. If the support of T is not
compact, then there exists for each n ∈ N, an element ϕn ∈ D(Ω) such that

supp(ϕn) ⊂ Ω − Kn and (T, ϕn) 6= 0.

Put
Ψn =

ϕn
(T, ϕn)

,

so we have
(T,Ψn) = 1, ∀n ∈ N.

Now we will show that the series
n∑
n=1

Ψn converges in C∞(Ω). To this end, let K be a

compact subset of Ω, then there exists N ∈ N such that K ⊂ KN . But for n > N , we have

Ψn = 0 on KN , and so on K, the sum
∞∑
n=0

Ψn reduces to a finite sum on K, and this holds

for every compact subset K on Ω. So the sum converges in C∞(Ω). By the continuity of T̄ ,

it follows that the series
∞∑
n=0

(T,Ψn) converges, contradicting the fact that (T,Ψn) = 1.

Remark 1.2.6.1 The restriction to D(Ω) of a continuous linear form on C∞(Ω) is a distribution
on Ω (since a sequence in D(Ω) that converges in D(Ω) also converges in C∞(Ω)), and by
the preceding theorem this distribution has compact support. Thus we can identify the space
of distributions having compact support with the space of continuous linear forms on C∞(Ω)
denoted by C∞(Ω)′.

Proposition 1.2.6.1 Every distribution T with compact support in Ω has finite order. More
precisely, there exists an integer m ∈ N and a constant C ′ ≥ 0 such that

|(T, ϕ)| ≤ C ′‖ϕ‖(m), ∀ ϕ ∈ D(Ω).

Proof. Let K be the support of T and let K1, K2 be compact subsets of Ω such that

K ⊂ K̊1 ⊂ K1 ⊂ K̊2 ⊂ K2 ⊂ Ω.

Then by theorem 1.2.4.1, there exists an integer m ∈ N and a constant C ≥ 0 such that

|(T, ϕ)| ≤ C‖ϕ‖(m), ∀ ϕ ∈ DK2(Ω).

By corollary 1.1.7.1, there exists Ψ ∈ D(Ω) such that 0 ≤ Ψ ≤ 1, Ψ = 1 on K1 and
supp(Ψ) ⊂ K̊2. If ϕ ∈ D(Ω) then ϕΨ ∈ DK2(Ω) and

supp (ϕ− ϕΨ) ⊂ Ω − K̊1 ⊂ Ω − K.

Since K is the support of T , then

(T, ϕ− ϕΨ) = 0,
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so there exists a positive constant C depending only on C ′, m and Ψ such that

|(T, ϕ)| = |(T, ϕΨ)| ≤ C ′‖ϕΨ‖(m) ≤ C‖ϕ‖(m).

The last inequality being a consequence of Leibniz’ formula.

Remark 1.2.6.2 One can deduce from the preceding result that if, T is a distribution with
compact support, there exists an integer m ∈ N such that T extends to a continuous linear form
on Cm(Ω) and this extension is unique.

1.2.7 Convergence of Distributions

We assume that Ω is an open subset of RN .

Definition Let (Tn)n∈N be a sequence of distributions in Ω. We say that (Tn) converges to
the distribution T if

lim
n→+∞

(Tn, ϕ) = (T, ϕ), for all ϕ ∈ D(Ω).

Theorem 1.2.7.1
1. Let 1 ≤ p ≤ +∞. If fn, f ∈ Lp(Ω) with fn → f in Lp(Ω) then fn → f in D′(Ω).
2. The pointwise convergence does not imply the convergence in D′(Ω).

Proof.
1. Let q such that 1/p+ 1/q = 1. Then by Holder’s inequality we have:

|(fn, ϕ)− (f, ϕ)| = |(fn − f, ϕ)|

≤
∫

Ω

|fn − f | · |ϕ| dx ≤ ‖fn − f‖p‖ϕ‖q → 0.

2. Let (fn) be the sequence of functions defined by

fn(x) =
√
ne−nx

2

, x 6= 0,

then fn(x) → 0 for all x 6= 0 but fn →
√
πδ0 in D′(Ω). In fact let ϕ ∈ D(Ω), by Lebesgue

dominated convergence therorem we have

(fn, ϕ) =
√
n

∫
R
e−nx

2

ϕ(x) dx =

∫
R
e−y

2

ϕ(
y√
n

) dy →
√
πϕ(0) =

√
π(δ0, ϕ)

Examples

Example 1.2.7.1 Let (Tn)n∈N, be a sequence of distributions on R defined by:

Tn(x) = sin(nx).

Let ϕ ∈ D(R), we have

(Tn, ϕ) =

∫
R

sin(nx)ϕ(x) dx =
1

n

∫
R

cos(nx)ϕ′(x) dx → 0.

So Tn converge to 0 in D′(R).
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Example 1.2.7.2 For ε. > 0 define

vε(x) =


1

ε
if x ∈ [0, ε],

0 if x /∈ [0, ε] .

and wε(x) =


1

2ε
if x ∈ [−ε, ε],

0 if x /∈ [−ε, ε] .

Then we have:

vε → δ0 in D′(R) as ε→ 0 and wε → δ0 in D′(R) as ε→ 0.

1.2.8 Multiplication of Distributions

Now, we define the product of distribution by a smooth function. The definition arises from
the following lemma.

Lemma 1.2.8.1 Let α ∈ C∞(Ω). The map ϕ → αϕ from D(Ω) to D(Ω) is linear and
continuous. In other words if (ϕn) is a sequence in D(Ω) converging to ϕ in D(Ω) then the
sequence (αϕn) converges to αϕ in D(Ω).

Definition If T ∈ D′(Ω) and α ∈ C∞(Ω), the product distribution αT on Ω is defined by
setting:

(αT, ϕ) = (T, αϕ), ∀ϕ ∈ D(Ω).

The fact that αT defines a distribution follows from the preceding lemma.

The definition immediately implies that if α ∈ C∞(Ω), the linear map T → αT from D′(Ω)
to D′(Ω) is continuous in the sense that, if (Tn) converge to T in D′(Ω) then (αTn) converge
to (αT ) in D′(Ω).

Proposition 1.2.8.1 Let T ∈ D′(Ω) and α ∈ C∞(Ω), then we have

supp(αT ) ⊂ supp(α) ∩ supp(T ).

Proof. Let ϕ ∈ D(Ω). If supp(ϕ) ⊂ Ω-supp(α), then αϕ = 0, so (αT, ϕ) = 0. It follows
that Ω -supp(α) is contained in Ω -supp(αT ), so supp(αT ) ⊂supp(α).
Now if If supp(ϕ) ⊂ Ω -supp(T ), then supp(αϕ) ⊂ supp(ϕ) ⊂ Ω−supp(T ), which im-
plies that (αT, ϕ) = 0. Therefore Ω−supp(T ) is contained in Ω−supp(αT ) so supp(αT ) ⊂
supp(T ).

The inclusion in the proposition may be strict. For example, if T = δ is the dirac
distribution in RN , and α ∈ C∞(RN) is such that α(0) = 0 and 0 ∈ sup(α) (say α(x) = x),
then αT = α(0)δ = 0 and the support of αT is empty, whereas supp(α)∩supp(T ) = {0}.

Proposition 1.2.8.2 Let S ∈ D′(R), then there exists a distribution T ∈ D′(R) such that
xT = S. If T0 is such that xT0 = S, the set of solutions of the equation xT = S is equal to
{T0 + cδ, c ∈ R}.
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Proof. Fix η ∈ D(R) such that η(0) = 1. To each ϕ ∈ D(R), we associate Aϕ defined by

Aϕ(x) =

∫ 1

0

(ϕ′(tx)− ϕ(0)η′(tx)) dt.

One can easily check that Aϕ ∈ D(R) and the map ϕ→ Aϕ from D(R) to D(R) is contin-
uous. Moreover if x ∈ R∗,

Aϕ(x) =
ϕ(x)− ϕ(0)η(x)

x
.

Now put
(T, ϕ) = (S,Aϕ), ∀ ϕ ∈ D(R).

Since ϕ → Aϕ is continuous then T is a distribution on R. Since A(xϕ) = ϕ, we get
(xT, ϕ) = (T, xϕ) = (S,A(xϕ)) = (S, ϕ), so xT = S.

Now take T ∈ D′(R) with xT = 0. If ϕ ∈ D(R), we have

0 = (xT,Aϕ) = (T, ϕ− ϕ(0)η) = (T, ϕ)− (T, η) · (δ, ϕ)

it follows that T = (T, η)δ

Corollary 1.2.8.1 Let T ∈ D′(R). Then xT = 1 if and only if there exist a constant c ∈ R
such that

T = pv(
1

x
) + cδ.

1.2.9 Differentiation of Distributions

We shall define the derivative of a distribution in such a way that it agrees with the usual
notion of derivative on those distributions which arise from continuously differentiable func-
tions. That is, we want to define

Dα : D′(Ω)→ D′(Ω)

so that
Dα(Tf ) = TDαf , |α| ≤ m, f ∈ Cm(Ω).

But a computation with integration by parts gives

(TDαf , ϕ) = (−1)|α|(Tf , D
αϕ), ϕ ∈ D(Ω)

and this identity suggests the following:

Definition The αth partial derivative of the distribution T is the distribution DαT defined
by

(DαT, ϕ) = (−1)|α|(T,Dαϕ), ϕ ∈ D(Ω).

Since Dα is linear from D(Ω) into D(Ω), then it is clear that DαT is a distribution. Ev-
ery distribution has derivatives of all orders and so also then does every functions, e.g, in
L1(Ω, loc), when it is identified as a distribution. Furthermore, by the usual definition of
derivative, it is clear that the two notions of derivative are compatible with the identification
of C∞(Ω) in D′(Ω).
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Proposition 1.2.9.1 If (Tn) is a sequence of distribution converging to the distribution T ,
then for any α ∈ Nn, DαTn converges to DαT .

Proof. Let α ∈ Nn. We have

(DαTn, ϕ) = (−1)|α|(Tn, D
αϕ)→ (−1)|α|(T,Dαϕ) = (DαT, ϕ).

Proposition 1.2.9.2 (Leibniz’s Formula) Let T ∈ D′(Ω), f ∈ C∞(Ω) and α ∈ Nn. Then
we have

Dα(fT ) =
∑
β≤α

Cβ
αD

α−βfDβT.

Examples
We give some examples of distributions on R. Since we do not distinguish the function
f ∈ L1(R, loc) from the distribution Tf , we have the identity

(f, ϕ) =

∫
R
f(x) · ϕ(x) dx, ϕ ∈ D(Ω).

Example 1.2.9.1 If f ∈ C1(R), then

((Tf )
′, ϕ) = −(Tf , ϕ

′) = −
∫
R
f(x) · ϕ′(x) dx =

∫
R
f ′(x) · ϕ(x) = (f ′, ϕ), ϕ ∈ D(Ω).

where the third equality follows by the integration by parts and all others are definitions. Thus
(Tf )

′ = f ′, which is no surprise since the defintion of derivative of distributions was rigged to
make this so.

Example 1.2.9.2 Let the ramp and Heaviside functions be given respectively by

r(x) =


x if x > 0,

0 if x ≤ 0 .

H(x) =


1 if x > 0,

0 if x < 0 .

We have

((Tr)
′, ϕ) = −(Tr, ϕ

′) = −
∫ +∞

0

xϕ(x) dx =

∫
R
H(x) · ϕ(x) = (H,ϕ), ϕ ∈ D(Ω),

so we have (Tr)
′ = H, although r′(0) does not exit.

Example 1.2.9.3 The derivative of the non-continuous function H is given by

((TH)′, ϕ) = −(TH , ϕ
′) = −

∫ +∞

0

ϕ′(x) dx = ϕ(0) = δ(ϕ), ϕ ∈ D(Ω),

that is (TH)′ = δ, the Dirac ’s distribution. Also, it follows directly from the definition of derivative
that

(Dmδ, ϕ) = (−1)mDmϕ(0), m ≥ 1.

4. Let A(x) = |x| and I(x) = x, x ∈ R. We observe that A = 2r− I and then from above we
obtain by linearity

(TA)′ = 2H − 1, (TA)′′ = 2δ.
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5. Let f defined for x 6= 0 by f(x) = ln(|x|). Show that (Tf )
′ = pv

1

x
.

Theorem 1.2.9.1 Let T ∈ D′(R). Then T ′ = 0 if and only if T = constant, that is there
exists a constant c ∈ R such that T = c.

Theorem 1.2.9.2 Let S ∈ D′(R). Then there exist a distribution T ∈ D′(R) such that

T ′ = S.

Proof. First we remark that T ′ = S if and only if

(T, ϕ′) = −(S, ϕ), ϕ ∈ D(R).

This suggests to consider H = {ϕ′ : ϕ ∈ D(R)}. By above, we have seen that if Ψ ∈ D(R)

then Ψ ∈ H if and only if
∫
R

Ψ(x) dx = 0. Now let ϕ0 ∈ D(R) such that
∫
R
ϕ0(x) dx = 1.

We shall show that D(R) is direct sum of H and R · ϕ0, that is, each ϕ can be written in
exactly one way as the sum of a Ψ ∈ H and a constant multiple of ϕ0.

To check the uniqueness of such sum, let Ψ1 + c1ϕ0 = Ψ2 + c2ϕ0 with Ψ1,Ψ2 ∈ H. In-
tegrating both sides gives c1 = c2 and, hence Ψ1 = Ψ2.

To verify existence of such representation, for each ϕ ∈ D(R), choose c =

∫
R
ϕ(x) dx and

define Ψ = ϕ− cϕ0. Then Ψ ∈ H and we are done.

To finish the proof, it suffices by our remark above to define T in H, so that we can extend
it to all D(R) by linearity after choosing e.g (T, ϕ0) = 0

Corollary 1.2.9.1 If f : R → R is absolutely continuous, then the derivative of f in the
usual sense f ′(x) exits a.e, x ∈ R, the function g(x) = f ′(x) a.e, x ∈ R is in L1(R, loc) and
(Tf )

′ = g in D′(R). Conversely, if T is a distribution on R with T ′ ∈ L1(R, loc) then there
exists an absolutely continuous function f such that T = Tf .
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CHAPTER 2

SOBOLEV SPACES WM,P

2.1 Definitions and main properties
In this chapter we study some of the most important properties of a class of function spaces
known as Sobolev spaces which will provide the proper functional for the study of the
partial differential equations of the following chapters. In what follows, Ω is an open set in
RN and ∂Ω is its boundary.

Definition (Weak Derivative). Let u ∈ L1(Ω, loc). For a given multiindex α ∈ Nn, a
function v ∈ L1(Ω, loc) is called the αth-weak derivative of u if∫

Ω

u ·Dαϕdx = (−1)|α|
∫

Ω

v · ϕdx, ∀ ϕ ∈ D(Ω). (2.1)

v is also refered as the generalized derivative of u and we write v = Dαu. Clearly Dαu is
uniquely determined up to set of Lebesgue measure zero.

Definition Let m be a non-negative integer and 1 ≤ p ≤ ∞. The Sobolev space Wm,p(Ω)
is defined by

Wm,p(Ω) = {u ∈ Lp(Ω), | Dαu ∈ Lp(Ω), for all α ∈ Nn : |α| ≤ m}. (2.2)

In other words, Wm,p(Ω) is the collection of all functions in Lp(Ω) such that all weak deriva-
tives up to order m are also in Lp(Ω). Clearly Wm,p(Ω) is a vector space. (In all that follows
we will consider functions with values in R and the corresponding function spaces as vector
spaces over R). We provide it with the norm:

‖u‖Wm,p(Ω) =
∑
|α|≤m

‖Dαu‖Lp(Ω). (2.3)

for 1 ≤ p <∞, we have

‖u‖Wm,p(Ω) =

∑
|α|≤m

‖Dαu‖pLp(Ω)

 1
p

. (2.4)

34



+ Sobolev Spaces

Finally,we also have
‖u‖Wm,p(Ω) = max{‖Dαu‖Lp(Ω) : |α| ≤ m} (2.5)

Remark 2.1.0.1 We will not distinguish in the future between these three norms though they
are only equivalent and not equal. We will use the same notation for all and take care in any
computation that we consistently use only one of the three formulas.

The case p = 2 will play a special role in the sequel. These spaces will be denoted by Hm(Ω).
Thus

Hm(Ω) = Wm,2(Ω) (2.6)

and for u ∈ Hm(Ω), we denote its norm by

‖u‖Hm(Ω) = ‖u‖Wm,2(Ω). (2.7)

The spaces Hm(Ω) have a natural inner-product defined by

(u, v)Hm =
∑
|α|≤m

∫
Ω

DαuDαv dx, ∀u v ∈ Hm(Ω). (2.8)

This inner-product yields the norm given by formula (2.4).

Finally, we introduce an important subspace of the space Wm,p(Ω). If 1 ≤ p < ∞, we
know that D(Ω) is dense in Lp(Ω). Also, if ϕ ∈ D(Ω), so does every derivative of ϕ and
so D(Ω) ⊂ Wm,p(Ω), for any m and p. If 1 ≤ p < ∞, we define the space Wm,p

0 (Ω) as
the closure of D(Ω) in Wm,p(Ω). Thus Wm,p

0 (Ω) is a closed subspace of Wm,p(Ω) and its
elements can be approximated in theWm,p(Ω)-norm by C∞ functions with compact support.
In general this is a strict subspace of Wm,p(Ω), except when Ω = RN as we will see later.

Let us return to the spaces Wm,p(Ω). The map

u ∈ W 1,p(Ω) →
(
u,

∂u

∂x1

, · · · , ∂u
∂xi

)
∈ (Lp(Ω))N+1 (2.9)

is an isometry of W 1,p(Ω) into (Lp(Ω))N+1 if we provide the later space with the norm

‖u‖ =
N+1∑
i=1

‖ui‖Lp(Ω) or ‖u‖ =

(
N+1∑
i=1

‖ui‖pLp(Ω)

)1/p

for u = (ui) ∈ (Lp(Ω))N+1, depending on whether we use the formula (2.3) or (2.4) on
W 1,p(Ω). This is a useful fact to remember and will be used in the proof of the folowing
result.
Theorem 2.1.0.1
The spaces W 1,p(Ω) are Banach for 1 ≤ p ≤ +∞, separable for 1 ≤ p <∞ and reflexive for
1 < p <∞ . In particular H1(Ω) is a separable Hilbert space.

Proof. Let (un) be a Cauchy sequence in W 1,p(Ω). It follows from the definition of the

norm that (un) and
(
∂un
∂xi

)
, 1 ≤ i ≤ n, are all Cauchy sequences in Lp(Ω) which is com-

plete. Therefore un → u in Lp(Ω) and
∂un
∂xi

→ vi in Lp(Ω), 1 ≤ i ≤ n.
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Using theorem 1.2.7.1, we have

un → u in D′(Ω) and
∂un
∂xi

→ vi in D′(Ω), 1 ≤ i ≤ n (2.10)

But we know that Dα is continuous ∀α ∈ N then,

∂un
∂xi

→ ∂u

∂xi
in D′(Ω). (2.11)

Therefore
∂u

∂xi
= vi, by the uniqueness of limit .

Thus
∂u

∂xi
∈ Lp(Ω), so u ∈ W 1,p(Ω) and un → u in W 1,p(Ω). Hence W 1,p(Ω)

is complete .

We know that (Lp(Ω))n+1 is separable for 1 ≤ p < ∞ and reflexive for 1 < p < ∞. Since
W 1,p(Ω) is complete, its image under the isometry (2.9) is a closed subspace of (Lp(Ω))n+1

which inherits the corresponding properties.

Remark 2.1.0.2 The results of this theorem can be proved by the same way for any integer
m ≥ 2. In Future, unless absolutely necessary, we will establish theorems only for the spaces
W 1,p(Ω). The extension to higher order spaces is often done in anlogous manner.

Proposition 2.1.0.1
For 1 < p ≤ ∞, let (un) be a sequence in W 1,p(Ω) and u ∈ Lp(Ω) such that un → u in Lp(Ω)

and for 1 ≤ i ≤ n,
(
∂un
∂xi

)
is bounded in Lp(Ω) . Then u ∈ W 1,p(Ω). Let us recall that the

space Lp(Ω) is really only made up of equivalence classes of functions (under the equivalence
relation given by equality almost everywhere). Thus by saying that u is a continuous func-
tion in Lp(Ω), we mean that the corresponding equivalence class has a representative which
is a continuous function. In this spirit we prove the following result characterizing the space
W 1,p(I) where I ⊂ R is an open interval.

Theorem 2.1.0.2
Let I ⊂ R be an open interval and let u ∈ W 1,p(I). Then u is absolutely continuous.

Proof. Let x0 ∈ I and define

ū(x) =

∫ x

x0

u′(t) dt, (2.12)

which, by definition, is absolutely continuous. Hence it classical derivative exists almost
everywhere and is equal a.e to u′; this is also its distribution derivative. Hence, in the sence
of distributions, (u− ū)′ = 0 and so u− ū = c, a constant a.e. Thus u = ū + c a.e and the
later function is absolutely continuous.
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We can deduce an important property of W 1,p(I) from the preceeding theorem, when I
is a bounded interval. Let, for instance, I =]0, 1[. Then if u ∈ W 1,p(I), we can write

u(x) = u(0) +

∫ x

0

u′(t) dt. (2.13)

Hence by Holder’s inequality, if q is the Holder conjugate of p, we have

|u(0)| ≤ |u(x)|+ ‖u′‖Lp(I)|x|1/q.

Thus there exists a constant C > 0 (not depending of u) such that

|u(0)| ≤ C‖u‖W 1,p(I) (2.14)

and we also deduce that for any x ∈ I

|u(x)| ≤ C‖u‖W 1,p(I), C > 0 independent of u. (2.15)

Let B be the unit ball in W 1,p(I), that is

B = {u ∈ W 1,p(I) | ‖u‖W 1,p(I) ≤ 1}. (2.16)

It follows that if i : W 1,p(I) → C(Ī) is the inclusion map, B = i(B) is a uniformly bounded
set C(Ī). Again if x, y ∈ I, by (2.13), we have

|u(x)− u(y)| ≤ ‖u′‖Lp(I)|x− y|1/q ≤ ‖u‖W 1,p(I)|x− y|1/q, (2.17)

from which, it follows that B is equicontinuous in C(Ī). It follows from Ascoli-Arzela The-
orem that B is relatively compact in C(Ī). In other words the map i : W 1,p(I) → C(Ī) is
a compact operator. This is an important property of Sobolev spaces and will be studied
later.

2.2 The Main Theorems

2.2.1 Approximation by smooth functions

• If Ω is an open subset in RN , we write ω ⊂⊂ Ω, if ω is open and ω̄ is compact and such
that ω̄ ⊂ Ω.

• If u is a function defined on Ω, we denote by ū, the extension by 0 of u to RN .

Theorem 2.2.1.1 Let ρε be a Friedrichs’s moliffier, let u ∈ W 1,p(Ω) for 1 ≤ p ≤ ∞. Then
we have:

ρε ∗ ū → u in Lp(Ω) as ε→ 0. (2.18)
∂

∂xi
[ρε ∗ ū] → ∂u

∂xi
in Lp(ω), as ε→ 0, ∀ ω ⊂⊂ Ω. (2.19)

For Ω = RN , we have
ρε ∗ u → u in W 1,p(RN), as ε→ 0
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Proof. Note that (2.18) follows from theorem 1.1.7.1. To prove (2.19) we apply the
Fubini theorem, let ω ⊂⊂ Ω and ε such that 0 < ε < dist(ω, ∂Ω) so that ω + B(0, ε) ⊂ Ω.
Now let ϕ ∈ D(ω) we have∫

ω

[ρε ∗ ū(x)]
∂ϕ

∂xi
(x) dx =

∫
ω

(∫
RN
ū(x− y)ρε(y) dy

)
∂ϕ

∂xi
(x) dx

=

∫
RN

∂ϕ

∂xi
(x)

(∫
RN
ū(x− y)ρε(y) dy

)
dx

=

∫
RN

∫
RN
ū(x− y)ρε(y)

∂ϕ

∂xi
(x) dydx

=

∫
RN
ρε(y)

(∫
RN
ū(x− y)

∂ϕ

∂xi
(x) dx

)
dy

=

∫
B(0,ε)

ρε(y)

(∫
ω

u(x− y)
∂ϕ

∂xi
(x) dx

)
dy

= −
∫
B(0,ε)

ρε(y)

(∫
ω

∂u

∂xi
(x− y)ϕ(x) dx

)
dy

= −
∫
B(0,ε)

ρε(y)

(∫
RN

∂u

∂xi
(x− y)ϕ(x) dx

)
dy

= −
∫
RN
ρε(y)

(∫
RN

∂u

∂xi
(x− y)ϕ(x) dx

)
dy

= −
∫
RN

(∫
RN
ρε(y)

∂u

∂xi
(x− y) dy

)
ϕ(x) dx

= −
∫
RN

(
ρε ∗

∂u

∂xi

)
(x)ϕ(x) dx.

So we have
∂

∂xi
[ρε ∗ ū] = ρε ∗

∂u

∂xi
in D′(ω).

Since ρε ∗
∂u

∂xi
∈ Lp(ω) then it is the weak derivative of ρε ∗ u in ω. Finally by theorem 1.1.7

we get (2.19).

Definition There exists a non-negative function b ∈ D(RN) such that b ≡ 1 on the unit
ball B(0, 1) and supp(b) ⊂ B(0, 2). We call b a bump function.

Lemma 2.2.1.1 Let b a bump function. For all R ≥ 1, we put bn(x) = b(
x

n
). Then for all

u ∈ W 1,p(Ω), bnu ∈ W 1,p(Ω), the support of bnu is bounded and moreover.

bnu→ u in W 1,p(Ω) as R→ +∞.

Proof. We know that for all n ≥ 1, supp(bnu) ⊂ supp(bn) ∩ supp(u) ⊂ B̄(0, 2n), therefore
supp(bnu) is compact in RN for each n ≥ 1. By the continuity of b we have

bn(x)u(x) = b(
x

n
)u(x)→ u(x) for a.e x ∈ Ω.
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So |bnu− u|p → 0 for a.e x ∈ Ω.
There exist C ≥ 0 such that

|bnu− u|p ≤ C (|bu|p + |u|p) = K|u|p ∈ L1(Ω); where K = C (1 + |b|) .

Since |bnu− u|p ∈ L1(Ω)∀n ≥ 1, by Lebesgue dominated convergence theorem we have

‖bnu− u‖pp =

∫
Ω

|bnu− u|p dx→ 0.

Hence bnu→ u in Lp(Ω).
Now

∂

∂xi
(bnu) =

∂

∂xi
b(
x

n
)u+ b(

x

n
)
∂u

∂xi
(2.20)

=
1

n

∂bn
∂xi

u+ bn
∂u

∂xi
. (2.21)

Since
∂u

∂xi
∈ Lp(Ω), by similar argument above we have

1

n

∂bn
∂xi

u+ bn
∂u

∂xi
→ 0 +

∂u

∂xi
in Lp(Ω).

Hence
∂

∂xi
(bnu)→ ∂u

∂xi
in Lp(Ω).

We conclude that bnu→ u in W 1,p(Ω).

Theorem 2.2.1.2 Let u ∈ W 1,p(Ω) for 1 ≤ p < ∞. Then there exists a sequence (un) in
D(RN) such that:

un → u in Lp(Ω), (2.22)
∂un
∂xi
|ω →

∂u

∂xi
|ω in Lp(ω), for every 1 ≤ i ≤ n and every ω ⊂⊂ Ω. (2.23)

Proof. Let u ∈ W 1,p(Ω). We put vn = ρεn ∗ ū,∀n ≥ 1, where εn ↓ 0. By theorem 2.2.1.1,

we have that vn → u in Lp(Ω), and
∂vn
∂xi

in Lp(Ω) for ω ⊂⊂ Ω.

Now define un = bnvn, we observe that for each n ≥ 1, un ∈ C∞(RN), and supp(un) ⊂
B̄(0, 2n), hence compact in RN . Therefore (un) is in D(RN) and has the same convergence

properties as (vn), i.e un → u in Lp(Ω) and
∂un
∂xi
−→ ∂u

∂xi
in Lp(ω) for ω ⊂⊂ Ω, 1 ≤

i ≤ N . This completes the proof.

Proposition 2.2.1.1 (Derivation of a product) . Let u, v ∈ W 1,p(Ω)∩L∞(Ω), with 1 ≤
p ≤ ∞. Then uv ∈ W 1,p(Ω) ∩ L∞(Ω) and we have

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, i = 1, . . . , N. (2.24)
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Proof.
Case 1 :1 ≤ p <∞.

Let u, v ∈ W 1,p(Ω) ∩ L∞(Ω). We have that |uv| ≤ |u|‖v‖∞, and |uv| ≤ ‖u‖∞‖v‖∞.So
uv ∈ Lp(Ω) and uv ∈ L∞(Ω).

We need now to show that
∂

∂xi
(uv) ∈ Lp(Ω). We observe that

∂u

∂xi
,
∂v

∂xi
∈ Lp(Ω) and u, v ∈

L∞(Ω) implies
∂u

∂xi
v + u

∂v

∂xi
∈ Lp(Ω), 1 ≤ i ≤ N.

We only need to show that equation 2.2.1.1 holds.
By using theorem 2.2.1.2 and theorem 1.1.3.2 there exist two sequences (un) and (vn) in
D(RN) such that,

un → u, vn → v, in Lp(Ω) and a.e on Ω.

and
∂un
∂xi

→ u,
∂vn
∂xi

→ ∂v

∂xi
in Lp(ω) and a.e on ω, for all ω ⊂⊂ Ω.

Moreover,

|un(x)| = |bn(x) (ρεn ∗ ū) (x)| (2.25)
≤ M | (ρεn ∗ ū) (x)| (2.26)

≤ M

∫
RN
|ρεn(y)||ū(x− y)| dy (2.27)

= M

∫
Ω

|ρεn(y)||u(x− y)| dy (2.28)

≤ M‖u‖∞
∫

Ω

|ρεn(y)| dy (2.29)

≤ M‖u‖∞
∫
RN
|ρεn(y)| dy (2.30)

≤ M‖u‖∞
(
since

∫
RN
|ρεn(y)| dy = 1

)
. (2.31)

The same property is true for the sequence (vn).
Let ω ⊂⊂ Ω and ϕ ∈ D(ω), we have∫

ω

unvn
∂ϕ

∂xi
dx = −

∫
ω

(
∂un
∂xi

vn + un
∂vn
∂xi

)
ϕdx

By Lebesgue dominated convergence theorem and uniqueness of limits, it follows that∫
ω

uv
∂ϕ

∂xi
dx = −

∫
ω

(
∂u

∂xi
v + u

∂v

∂xi

)
ϕdx, ∀ϕ ∈ D(ω).

Thus
∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, in ω. (N)
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Since N is true for all ω ⊂⊂ Ω, we choose ωn ⊂⊂ Ω for all n ≥ 1 s.t Ω =
⋃
n≥1

ωn, so N holds

a.e on Ω, because N holds a.e on ωn,∀n ≥ 1. Thus the proposition is proved for 1 ≤ p <∞.

Case 2: p =∞
Let u, v ∈ W 1,p(Ω) ∩ L∞(Ω).
|uv| ≤ ‖u‖∞‖v‖∞, so uv ∈ L∞(Ω).

We note that since
∂v

∂xi
,
∂u

∂xi
∈ L∞(Ω), then

∂u

∂xi
v + u

∂v

∂xi
∈ L∞(Ω); 1 ≤ i ≤ N .

We need only to show that

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, in ω, 1 ≤ i ≤ N.

Let ω ⊂⊂ Ω, we show that W 1,p(Ω) ⊂ W 1,p(ω) for 1 ≤ p < +∞.
u ∈ W 1,p(Ω), implies that u ∈ L∞(Ω) and Lp(ω) since∫

ω

|u|p dx ≤ ‖u‖p∞meas(ω) < +∞.

Similarly
∫
ω

|v|p dx < +∞.

Therefore uv ∈ W 1,p(ω), 1 ≤ p < +∞ hence the desired result follows by case 1 above.

Proposition 2.2.1.2 (Chain Rule) . Let G ∈ C1(R) such that G(0) = 0 and
|G′(s)| ≤M ∀ s ∈ R. Let u ∈ W 1,p(Ω) with 1 ≤ p ≤ ∞. Then G ◦ u ∈ W 1,p(Ω) and

∂

∂xi
(G ◦ u) = (G′ ◦ u)

∂u

∂xi
for 1 ≤ i ≤ n. (2.32)

Proof. Since the derivative of G is bounded and G(0) = 0, by the Mean Value theorem, we
have

|G(s)| ≤M |s|, s ∈ R.

Thus |G ◦ u(x)| = |G(u(x))| ≤ M |u(x)| for every x ∈ Ω and so G ◦ u ∈ Lp(Ω). Simillary

(G′ ◦ u)
∂u

∂xi
∈ Lp(Ω) for 1 ≤ i ≤ N .

Assume now that 1 ≤ p < ∞. Then by theorem 2.2.1.2, there exists a sequence (un) in

D(RN) such that un → u in Lp(Ω) and
∂un
∂xi

→ ∂u

∂xi
in Lp(ω) for every ω ⊂⊂ Ω. Let

ϕ ∈ D(Ω). Then choose ω ⊂⊂ Ω such that supp(ϕ) ⊂ ω ⊂⊂ Ω. Since un is smooth, we
have by the usual chain rule,∫

Ω

(G ◦ un)
∂ϕ

∂xi
dx =

∫
ω

(G ◦ un)
∂ϕ

∂xi
dx = −

∫
ω

(G′ ◦ un)
∂un
∂xi

ϕdx. (2.33)

Now G ◦ un → G ◦ u in Lp(Ω) since

|G ◦ un(x)−G ◦ u(x)| ≤M |un(x)− u(x)|.
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Also G′ ◦ un is uniformly bounded by M and so (G′ ◦ un)
∂un
∂xi

→ (G′ ◦ u)
∂u

∂xi
in Lp(ω) [up to

a subsequence] and so we can pass to the limit in (2.33) and thus prove (2.32).

If p =∞, fix ϕ ∈ D(Ω) and choose ω such that supp(ϕ) ⊂ ω ⊂⊂ Ω. Then as ω is relatively
compact, u ∈ W 1,∞(Ω) implies that u ∈ W 1,p(ω) for al 1 ≤ p <∞ and so (2.32) is valid by
the preceding method.

This result can be generalized to Lipschitz continuous functions G. We will prove this in the
context of the spaces W 1,p

0 (Ω) shortly.

Lemma 2.2.1.2 Let 1 ≤ p <∞, and let u ∈ W 1,p(Ω) such that u vanishes outside a compact
set contained in Ω. Then u ∈ W 1,p

0 (Ω).

Proof. Let K ⊂ Ω be a compact set such that u = 0 on Ω − K. Let ω be such that
K ⊂ ω ⊂⊂ Ω. Let Φ ∈ D(Ω) be a cut-off function such that Φ = 1 on K. Then we know
that Φu = u. Now by theorem 2.2.1.2, there exists a sequence (un) in D(RN) such that

un → u in Lp(Ω) and
∂un
∂xi
→ ∂u

∂xi
in Lp(ω). Consequently Φun → Φu in W 1,p(Ω) and as

Φun ∈ D(Ω), it follows that Φu, i.e u is in W 1,p
0 (Ω).

Theorem 2.2.1.3 (Stampacchia) Let G be a Lipschitz continuous function of R into itself
such that G(0) = 0. Then if Ω is bounded, 1 < p < ∞, and u ∈ W 1,p

0 (Ω), we have
G ◦ u ∈ W 1,p

0 (Ω).

Proof. Let u ∈ W 1,p
0 (Ω) and let un ∈ D(Ω) such that un → u in W 1,p(Ω). Define

vn = G ◦ un.

Since un has compact support and G(0) = 0, vn has compact support. Also vn is Lipschitz
continuous; for

|vn(x)− vn(y)| ≤ K|un(x)− un(y)| ≤ Kn|x− y|
as un is a smooth function with compact support and G is Lipschitz continuous. Hence
vn ∈ Lp(Ω). Also it follows that ∣∣∣∣∂vn∂xi

∣∣∣∣ ≤ Km, 1 ≤ i ≤ N

and since Ω is bounded,
∂vn
∂xi
∈ Lp(Ω). Thus vn ∈ W 1,p(Ω) and has compact support. Thus

by lemma 2.2.1.2, vn ∈ W 1,p
0 (Ω).

Also from
|vn(x)−G ◦ u(x)| ≤ K|un(x)− u(x)|,

it follows that vn → G◦u in Lp(Ω). Further if ei is the standard basis vector of RN , we have

|vn(x+ hei)− vn(x)|
|h|

≤ K|un(x+ hei)− un(x)|
|h|

and so
lim sup
n→∞

∥∥∥∥∂vn∂xi

∥∥∥∥
Lp(Ω)

≤ K lim sup
n→∞

∥∥∥∥∂un∂xi

∥∥∥∥
Lp(Ω)

(2.34)
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But
(
∂un
∂xi

)
is a convergent sequence in Lp(Ω) and so from (2.34), it follows that

(
∂vn
∂xi

)
is

bounded for each 1 ≤ i ≤ N . Hence by proposition 2.1 it follows that (vn) has a subsequence
that converges in W 1,p(Ω) and that G ◦ u ∈ W 1,p

0 (Ω).

Corollary 2.2.1.1 Let u ∈ H1
0 (Ω), Ω is a bounded open set in RN . Then |u|, u+ and u−

belong to H1
0 (Ω) where

u+(x) = max(u(x), 0),

u−(x) = max(−u(x), 0).

Proof. We apply the preceding theorem with p = 2 and G(t) = |t|. Thus |u| ∈ H1
0 (Ω) for

u ∈ H1
0 (Ω). Now

u+ =
|u|+ u

2
, u− =

|u| − u
2

,

and so u+, u− ∈ H1
0 (Ω).

Proposition 2.2.1.3 (Change of Variable) Let Ω and Ω′ be two open subsets of RN and
let H : Ω′ −→ Ω a bijective mapping, x = H(y) = (H1(y), · · · , Hn(y)) such that

H ∈ C1(Ω′), H−1 ∈ C1(Ω), J(H) ∈ L∞(Ω′), J(H−1) ∈ L∞(Ω)

Let u ∈ W 1,p(Ω), then uoH ∈ W 1,p(Ω′) and we have

∂

∂yj
(u ◦H)(y) =

n∑
i=1

∂u

∂xi
(H(y))

∂Hi

∂yj
(y), j = 1, . . . , n. (2.35)

Moreover, there exists a constant C > 0 such that:

‖u ◦H‖W 1,p(Ω′) ≤ C‖u‖W 1,p(Ω) (2.36)

Proposition 2.2.1.4 Let u ∈ Lp(Ω), with 1 < p ≤ ∞. Then the following properties are
equivalent:

a. u ∈ W 1,p(Ω)

b. There exists a constant C ≥ 0 such that∣∣∣∣∫
Ω

uDiϕdx

∣∣∣∣ ≤ C ‖ϕ‖p′ , ∀ϕ ∈ D(Ω), ∀ i = 1, · · · , N.

c. There exists a constant C ≥ 0 such that for all ω ⊂⊂ Ω and for all h ∈ RN with
‖h‖ < d(ω,Ωc) we have

‖τhu− u‖Lp(ω) ≤ C‖h‖.
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Proof.

+ a. ⇒ b.
Let ϕ ∈ D(Ω), since u ∈ W 1,p(Ω), then Diu ∈ Lp(Ω) and∫

Ω

uDiϕdx = −
∫

Ω

Diuϕ dx

so by Holder’s inequality we have b. with C = ‖Diu‖Lp(Ω).

+ b. ⇒ a.
For 1 ≤ i ≤ n, let Ti : D(Ω)→ R defined by:

Ti(ϕ) = −
∫

Ω

uDiϕdx ∀ϕ ∈ D(Ω).

Clearly Ti is linear and by b., it is continuous in D(Ω) with the Lp′-norm. So by density it
can be extended as a continuous linear form to Lp′(Ω). By Riesz representation theorem,
there exists vi ∈ Lp(Ω) such that

Ti(ϕ) = −
∫

Ω

uDiϕdx =

∫
Ω

viϕdx, ∀ϕD(Ω).

Therefore Diu = vi, so u ∈ W 1,p(Ω).

+ a. ⇒ c.
We assume first that u ∈ D(RN). Let h ∈ RN , by the fundamental theorem of calculus

τhu(x)− u(x) =

∫ 1

0

h · ∇u(x+ th) dt.

By Holder’s inequality, it follows

|τhu(x)− u(x)|p ≤ ‖h‖p
∫ 1

0

‖∇u(x+ th)‖p dt

and

‖τhu− u‖pLp(ω) ≤ ‖h‖p
∫
ω

dx

∫ 1

0

h‖∇u(x+ th)‖p dt

= ‖h‖p
∫ 1

0

dt

∫
ω

‖∇u(x+ th)‖p dx = ‖h‖p
∫ 1

0

dt

∫
ω+th

‖∇u(y)‖p dy.

If ‖h‖ < dist(ω,Ωc), there exists ω′ ⊂⊂ Ω such that ω + th ⊂ ω′ forall t ∈ [0, 1]. So

‖τhu− u‖Lp(ω) ≤ ‖h‖‖∇u‖Lp(ω′). (2.37)

Now, for u ∈ W 1,p(Ω) and p 6= ∞, there exists (un) in D(RN) such that un → u in Lp(Ω)
and ∇un → ∇u in Lp(ω), forall ω subset ⊂ Ω. We apply (2.37) to (un) and we pass to the
limit. For p =∞, we use the same process as before for p <∞ and we pass to the limit for p.

44



+ Sobolev Spaces

+ c. ⇒ b.
Let ϕ ∈ D(Ω). Let ω be open sucth that supp(ϕ) ≤ ω ⊂⊂ Ω and h such that ‖h‖ <
dist(ω,Ωc). Then by Holder’s inequality and c., we have∣∣∣∣∫

Ω

(τhu− u)ϕdx

∣∣∣∣ =

∣∣∣∣∫
ω

(τhu− u)ϕdx

∣∣∣∣ ≤ C‖h‖ · ‖ϕ‖Lp′ (Ω)

On the other hand∫
Ω

(τhu(x)− u(x))ϕ(x) dx =

∫
Ω

u(y) (ϕ(y − h)− ϕ(y)) dy,

it follows that ∣∣∣∣∫
Ω

u(y)
ϕ(y − h)− ϕ(y)

‖h‖
dy

∣∣∣∣ ≤ C‖ϕ‖Lp′ (Ω)

We choose, h = tei, t ∈ R and ei is the ith canonical basis element of RN . If t → 0 we get
b. by using the dominated convergence theorem.

2.2.2 Extension Theorems

Most of the important Sobolev inequalities and imbedding theorems that we will derive in
the next section are most easily derived for the space W 1,p

0 (Ω) which can be viewed as being
a subspace of W 1,p(RN) (see proposition 2.2.2.2). In contrast, for the space W 1,p(Ω), direct
derivations of these results are tedious and difficult because of the boundary behavior of
the functions. In this section we investigate the existence of an extension operator that
allows us to extend functions in W 1,p(Ω) to functions in W 1,p(RN). This allows us to deduce
the Sobolev imbedding theorems for the spaces W 1,p(Ω) from the corresponding results for
W 1,p(RN).

Definition Let Ω be an open set in RN . An Extension Operator P forW 1,p(Ω) is a bounded
linear operator

P : W 1,p(Ω) → W 1,p(RN)

such that Pu|Ω = u for every u ∈ W 1,p(Ω). By virtue of the fact that P is a bounded linear
operator, it follows that

‖Pu‖W 1,p(RN ) ≤ ‖u‖W 1,p(Ω) ∀u ∈ W 1,p(Ω) (2.38)

where C > 0 is a constant, which, in general, will only depend on Ω and p. Thus if Ω is such
that an extension operator exists, then we consider W 1,p(Ω) as a subspace of W 1,p(RN). A
sufficient condition for the existence of P is the smoothness of the boundary ∂Ω and these
consideration will be taken up later.

Proposition 2.2.2.1 Let Ω ⊂ RN be an open set and let u ∈ W 1,p(Ω). If K ⊂ Ω is a
closed subset and u vanishes outside K, then the function ū is in W 1,p(RN).
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Proof. Let ϕ ∈ D(RN) and let K1 = K ∩ supp(ϕ). Then K1 ⊂ Ω is compact. Let
Ψ ∈ D(Ω) such that Ψ = 1 on K1. Now,∫

RN
ū
∂ϕ

∂xi
dx =

∫
Ω

u
∂ϕ

∂xi
dx =

∫
K1

u
∂ϕ

∂xi
dx =

∫
Ω

uΨ
∂ϕ

∂xi
dx

=

∫
Ω

u
∂

∂xi
(Ψϕ) dx−

∫
Ω

uϕ
∂Ψ

∂xi
dx.

But ϕΨ ∈ D(Ω) and
∂Ψ

∂xi
= 0 on K1. Thus∫

RN
ū
∂ϕ

∂xi
dx =

∫
Ω

u
∂

∂xi
(Ψϕ) dx

= −
∫

Ω

∂u

∂xi
ϕΨ dx = −

∫
Ω

∂u

∂xi
ϕdx.

Thus it follows that
∂ū

∂xi
=

∂u

∂xi
∈ Lp(RN).

Remark 2.2.2.1 Given an arbitrary element of W 1,p(Ω), the extension by zero does not belong
to W 1,p(RN). For example if Ω =]0, 1[⊂ R and u(x) = 1 on Ω, then ū ∈ Lp(R) but
d ū

dx
= δ1−δ0, which cannot be given by a locally integrable function. We have seen in proposition

2.2.2.1 that if u is supported away from the boundary, then the extension by zero provides an
element of W 1,p(RN). But such functions, if the support is compact, are in W 1,p

0 (Ω). We will
show that the extension by zero is an extension operator for W 1,p

0 (Ω) irrespective of the nature
of Ω. Thus for functions in W 1,p

0 (Ω), we always will have a canonical extension to W 1,p(RN)
which help us to prove several important properties of these functions without supplementary
hypothesis on the smoothness of Ω.

Proposition 2.2.2.2 Let 1 < p < ∞ and u ∈ W 1,p
0 (Ω), Ω an open set in RN . Then

ū ∈ W 1,p(RN). Furthermore for any 1 ≤ i ≤ N ,

∂ū

∂xi
=

∂u

∂xi
. (2.39)

Proof. Let u ∈ W 1,p
0 (Ω), then clearly we have ū ∈ Lp(RN) and

‖ū‖Lp(RN ) = ‖u‖Lp(Ω)

Now let (un) in D(Ω) such that un → u in W 1,p(Ω) . Let ϕ ∈ D(RN), we have∫
RN
ū
∂ϕ

∂xi
dx =

∫
Ω

u
∂ϕ

∂xi
dx = lim

n→+∞

∫
Ω

un
∂ϕ

∂xi
dx

= − lim
n→+∞

∫
Ω

∂un
∂xi

ϕdx = −
∫

Ω

∂u

∂xi
ϕdx (by L.D.C.T.)

= −
∫
RN

∂u

∂xi
ϕdx
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so we have
∂ū

∂xi
=

∂u

∂xi

then ū ∈ W 1,p(RN) and this finish the proof.

One of the fundamental methods of providing extension operator is the method of reflection.
We will now use it to show that half-unit open ball has the extension property.

Notation: Let x ∈ RN , we write

x = (x′, xN), with x′ ∈ RN−1, x′ = (x1, · · · , xN−1)

We denote

RN
+ = {x = (x′, xN) ∈ RN | xN > 0}
B = {x = (x′, xN) ∈ RN | ‖x′‖ < 1 and |xN | < 1}
B+ = {x = (x′, xN) ∈ B | xN > 0}
B− = {x = (x′, xN) ∈ B | xN < 0}

Proposition 2.2.2.3 (Extension by reflection) Let u ∈ W 1,p(B+). Define on B the
function u∗ by

u∗(x′, xN) =


u(x′, xN) if xN > 0,

u(x′,−xN) if xN < 0.

(2.40)

Then u∗ ∈ W 1,p(B) and

‖u∗‖Lp(B) ≤ 2‖u‖Lp(B+), ‖u∗‖W 1,p(B) ≤ 2‖u‖W 1,p(B+)

Proof. We are going to show that

∂u∗

∂xi
=

(
∂u

∂xi

)∗
, 1 ≤ i ≤ N − 1 (2.41)

∂u∗

∂xN
=


∂u

∂xN
(x′, xN) if xN > 0,

− ∂u

∂xN
(x′,−xN) , if xN < 0.

(2.42)

Let η ∈ C∞(R) such that

η(t) =


0 if t < 1/2,

1 if t > 1.
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Define the sequence (ηk) as follow

ηk(t) = η(kt), t ∈ R, k ∈ N.

+Proof of (2.41). Let ϕ ∈ D(B). We have for 1 ≤ i ≤ N − 1∫
B

u∗
∂ϕ

∂xi
dx =

∫
B+

u
∂Ψ

∂xi
dx (2.43)

where Ψ(x′, xN) = ϕ(x′, xN) + ϕ(x′,−xN). Define ϕk(x) = ηk(xN)Ψ(x′, xN). Then ϕk ∈
D(B+) we have ∫

B+

u
∂ϕk
∂xi

dx = −
∫
B+

∂u

∂xi
ϕk dx.

On the other hand
∂ϕk
∂xi

= ηk
∂Ψ

∂xi
, therefore

∫
B+

uηk
∂Ψ

∂xi
dx = −

∫
B+

∂u

∂xi
ηkΨ dx. (2.44)

By dominated convergence theorem, it follows∫
B+

u
∂Ψ

∂xi
dx = −

∫
B+

∂u

∂xi
Ψ dx. (2.45)

If we Combine (2.43) and (2.45), we get∫
B

u∗
∂ϕ

∂xi
dx = −

∫
B+

∂u

∂xi
Ψ dx = −

∫
B

(
∂u

∂xi

)∗
ϕdx.

+Proof of (2.42). Let ϕ ∈ D(B). We have∫
B

u∗
∂ϕ

∂xN
dx =

∫
B+

u
∂φ

∂xN
dx, (2.46)

where φ(x′, xN) = ϕ(x′, xN)− ϕ(x′,−xN). Note that φ(x′, 0) = 0, so there exists a constant
M such that |φ(x′, xN)| ≤M on B. Since ηkφ ∈ D(B+), it follows∫

B+

u
∂

∂xN
(ηkφ) dx = −

∫
B+

∂u

∂xN
ηkφ dx (2.47)

with
∂

∂xN
(ηkφ) = ηk

∂φ

∂xN
+ kη′(kxN)φ (2.48)

We are going to show that ∫
B+

ukη′(kxN)φ dx → 0 as k →∞. (2.49)
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Indeed ∣∣∣∣∫
B

uη′(kxN)φ dx

∣∣∣∣ ≤ kMC

∫
0<xN<1/k

|u|xN dx

≤ MC

∫
0<xN<1/k

|u| dx → 0, as k →∞.

with C = sup
t∈[0,1]

|η′(t)|. From (2.47), (2.48) and (2.49), it follows that

∫
B+

u
∂φ

∂xN
dx = −

∫
B+

∂u

∂xN
φ dx

by using (2.46), we get (2.42).

Definition We say that an open subset Ω ⊂ RN is of class Cm (m integer) if for every
x ∈ ∂Ω, there exists an open neigborhood U of x in RN and a map ϕ : B → U such that:

(i) ϕ is a bijection,

(ii) ϕ ∈ Cm(B̄, U), ϕ−1 ∈ Cm(Ū , B),

(iii) ϕ(B+) = Ω ∩ U, ϕ(B0) = ∂Ω ∩ U .

Lemma 2.2.2.1 (Fundamental) Let Ω be a bounded open subset RN . Assume that Ω is of
class Cm and lies (locally) on one side of its boundary ∂Ω. Then

1. there exists a collection {Ui, 0 ≤ i ≤ N} of open bounded sets in RN and a collection of
bijective maps ϕi : B → Ui, 1 ≤ i ≤ N such that

U0 = Ω, Ω̄ ⊂
N⋃
i=0

Ui, and ∂Ω ⊂
N⋃
i=1

Ui,

For each i, 1 ≤ i ≤ N , ϕi ∈ Cm(B̄, Ui), (i = 1, · · · , N) with positive jacobian J(ϕi) and

ϕi(B+) = Ω ∩ Ui, ϕi(B0) = ∂Ω ∩ Ui;

2. there exists αi ∈ D(RN), (i = 0, · · · , N) such that {αi, 0 ≤ i ≤ N} is a partition of
unity of Ω̄ subordinated to the open cover {Ui, 0 ≤ i ≤ N} and {αi, 1 ≤ i ≤ N} is a
partition of unity of ∂Ω subordinated to the open cover {Ui, 1 ≤ i ≤ N}.

Remark 2.2.2.2 Let u be function in W 1,p(Ω). Then u =
N∑
i=0

αiu on Ω and each term αiu of

the sum is in W 1,p(Ω ∩ Ui) with support in Ui.
Consider the following operator:

W 1,p(Ω)→ W 1,p
0 (Ω)×

N∏
i=1

W 1,p(Ω ∩ Ui) : u 7→ (α0u, α1u, · · · , αNu).
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Clearly, it is linear and injective.

Since αiu ∈ W 1,p(Ω ∩ Ui) with support in Ui, it follows that the composite function (αiu) ◦ ϕi
belongs to W 1,p(B+) with support in B. So we define the following linear injection operator:

Λ : W 1,p(Ω) −→ W 1,p
0 (Ω)×

[
W 1,p(B+)

]N
u 7−→ (α0u, (α1u) ◦ ϕ1, · · · , (αNu) ◦ ϕN) .

Moreover, the product norm on Λu is equivalent to the W 1,p(Ω)-norm. so Λ is a continuous
linear injection operator from W 1,p(Ω) onto a closed subspace of the indicated product, and its
inverse is continuous.

In a similar manner we can localize the discussion of functions on the boundary. In particular, the
space C1(∂Ω), of continously differentiable functions on ∂Ω, is the set of functions f : ∂Ω→ R
such that (αif) ◦ ϕi ∈ C1(B0) for each i, 1 ≤ i ≤ N .

The manifold ∂Ω has an intrinsic measure denoted by ds for which integrals are given by∫
∂Ω

f ds =
N∑
i=1

∫
∂Ω∩Ui

(αif)ds =
N∑
i=1

∫
B0

(αif) ◦ ϕi(y′)J(ϕi)dy
′

where J(ϕi) is the indicated jacobian and dy′ denotes the usual Lebesgue measure on B0 ⊂ RN−1.
Thus, we obtain a norm on C(∂Ω) given by

‖f‖Lp(∂Ω) =

(∫
∂Ω

|f |p ds
) 1

p

.

The completion of C(∂Ω) with respect to this normed is the Banach space Lp(∂Ω). Futhermore,
We have the following linear injection operator

Γ : Lp(∂Ω) −→ [Lp(B0)]N

f 7−→ ((α1f) ◦ ϕ1, · · · , (αNf) ◦ ϕN)

onto a closed subspace of the product [Lp(B0)]N . Both Γ and its inverse are continuous.

Theorem 2.2.2.1 Let Ω be a bounded open subset of RN of class C1 (or Ω = RN
+ ). Then

there exists a unique continuous linear extension operator

P : W 1,p(Ω) −→ W 1,p(RN)

such that for all u ∈ W 1,p(Ω), we have

1. Pu = u in Ω,

2. ‖Pu‖Lp(Rn) ≤ C‖Pu‖Lp(Ω),

3. ‖Pu‖W 1,p(RN ) ≤ C‖Pu‖W 1,p(Ω), where the constant C depends only on Ω and p.

Proof. Let u ∈ W 1,p(Ω) and (Ui, αi, ϕj), 0 ≤ i ≤ N, 1 ≤ j ≤ N as in lemma 2.2.2.1. Then
we can write u as

u =
N∑
i=0

αiu =
N∑
i=0

ui, where ui = αiu.
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Now we will extend each function ui.

• Extension of u0.

Since α0 ∈ D(Ω) and u ∈ Lp(Ω), then

u0 = α0u ∈ Lp(Ω)

and also
∂ū0

∂xi
= α0

∂u

∂xi
+
∂α0

∂xi
ū ∈ Lp(Ω). (2.50)

Hence u0 ∈ W 1,p(Ω)
But we have that

supp(u0) = supp(α0u) ⊆ supp(α0) ∩ supp(u) ⊆ supp(α0) ⊆ Ω

which implies that the supp(u0) is compact in Ω.
Combining the fact that u0 ∈ W 1,p(Ω), lemma 2.2.1.2, proposition 2.2.2.2 and proposition
1.2.9.2, we have

u0 ∈ W 1,p(RN) and
∂ū0

∂xi
= α0

∂u

∂xi
+
∂α0

∂xi
ū.

From (2.39), there exists a constant C ≥ 0 such that

‖ū0‖W 1,p(RN ) ≤ C‖u‖W 1,p(Ω). (2.51)

• Extension of ui for 1 ≤ i ≤ N.

Take the restriction of u on Ω∩Ui, and ϕi : B → Ui the coordinate map, then by proposition
2.2.1.3 the function vi(y) = u(ϕi(y)), y ∈ B+ belong to W 1,p(B+). We define v∗i on B, to
be the extension by reflection of vi. By proposition 2.2.2.3 we have v∗i ∈ W 1,p(B). Now let
wi(x) = v∗i (ϕ

−1
i (x)) for x ∈ Ui, then by proposition 2.2.1.3 we have

wi ∈ W 1,p(Ui), wi = u on Ω ∩ Ui and ‖wi‖W 1,p(Ui) ≤ c‖u‖W 1,p(Ω∩Ui). (2.52)

Finally, we define on RN the function ûi by

ûi(x) =


αi(x)wi(x) if x ∈ Ui,

0 otherwise.
(2.53)

By lemma 2.2.1.2, ûi ∈ W 1,p(RN), ûi = ui on Ω and

‖ûi‖W 1,p(RN ) ≤ C‖u‖W 1,p(Ω∩Ui). (2.54)

Thus we have the desired operator given by

Pu = ū0 +
N∑
i=1

ûi. (2.55)
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Definition Let Ω be an open subset of RN . We call D(Ω̄) the space of all functions v such
that v is the restriction on Ω of a function of D(RN) i.e

D(Ω̄) = {ϕ|Ω : ϕ ∈ D(RN)}

Corollary 2.2.2.1 Let 1 ≤ p < ∞. Then we have W 1,p(RN) = W 1,p
0 (RN) or equivalentely

D(RN) is dense in W 1,p(RN).

Proof. Obviously, W 1,p
0 (RN) ⊆ W 1,p(RN)

So, let u ∈ W 1,p(RN). Define un = bn(ρ 1
n
∗ u). We know already that (un) ⊂ D(RN) and

un → u in W 1,p(RN) by theorem 2.2.1.1 and theorem 2.2.1.2.
Hence u ∈ W 1,p

0 (RN) which complete the proof.

Corollary 2.2.2.2 Let Ω be a bounded open subset of class C1 in RN . Let u ∈ W 1,p(Ω) with
1 ≤ p < ∞. Then there exists a sequence (un) in D(RN) such that un|Ω → u in W 1,p(Ω).
More precisely D(Ω̄) is dense in W 1,p(Ω).

Proof. By theorem 2.2.2.1, there exists a unique continuous linear extension operator, P.
Let u ∈ W 1,p(Ω). Then the sequence wn = bn(ρ1/n ∗ Pu) ∈ D(RN) converges to Pu in
W 1,p(RN). and so has the desired properties.

2.2.3 Trace Theory.

We shall describe the sense in which functions inW 1,p(Ω) have boundary values on ∂Ω. Note
that this is impossible in Lp(Ω) since ∂Ω is a set of measure zero in RN .

First, we consider the situation where Ω is the half-space RN
+ = {(x′, xN) | xN > 0}, so then

∂Ω = {(x′, xN) | xN = 0} is the simplest possible. The general case can be deduced to this
case by using the fundamental lemma.

2.2.3.1 Trace operator γ0

We shall define the trace operator γ0 when Ω = RN
+ = {(x′, xN) | xN > 0}, where we let x′

denote the (N − 1)−tuple (x1, · · · , xN−1).

Lemma 2.2.3.1 (Trace Inequality) Let 1 ≤ p < +∞, then there exists a constant C > 0
such that for all ϕ ∈ D(Ω), we have the following estimation:(∫

RN−1

|ϕ(x′, 0)|p dx′
) 1

p

≤ C‖ϕ‖W 1,p(Ω). (2.56)

Proof. Let G(t) = |t|p−1t and ϕ ∈ D(RN). We choose xN = A ∈ R such that (x′, xN) =
(x′, A) /∈ supp (ϕ). By the fundamental theorem of calculus, we have

G(ϕ(x′, A))−G(ϕ(x′0)) =

∫ A

0

DnG(ϕ(x′, xN)) dxN ,
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so

G(ϕ(x′, 0)) = −
∫ +∞

0

DnG(ϕ(x′, xN)) dxN = −
∫ +∞

0

G′(ϕ(x′, xN))Dnϕ(x′, xN) dxN ,

so

|ϕ(x′, 0)|p ≤ p

∫ +∞

0

|ϕ(x′, xN)|p−1|Dnϕ(x′, xN)| dxN .

If 1 < p <∞, by using Fubini theorem and Holder’s inequality we get∫
RN−1

|u(x′, 0)|p dx′ ≤ p

(∫
Ω

|ϕ(x)|p dx
)1− 1

p
(∫

Ω

|Dnϕ(x′, xN)|p dx
) 1

p

= p‖ϕ‖p−1
Lp(Ω)‖Dnϕ‖Lp(Ω)

≤ C‖ϕ‖pW 1,p(Ω).

Since D(Ω̄) is dense in W 1,p(Ω), we have proved the essential part of the following result.

Theorem 2.2.3.1 The trace operator γ0 : D(Ω̄)→ Lp(∂Ω) defined by

γ0(ϕ)(x′) = ϕ(x′, 0) (2.57)

where Ω = RN
+ has a unique extension to a continuous linear operator γ0 from W 1,p(Ω) to

Lp(∂Ω) whose range is dense in Lp(∂Ω), and it satisfies

γ0(α · u) = γ0(α) · γ0(u), α ∈ D(Ω̄), u ∈ W 1,p(Ω).

Proof. The first part follows from the preceding lemma 2.2.3.1 and lemma 2.2.2.2.

Now let b be a bump function on R and Ψ ∈ D(RN−1), then

ϕ(x) = Ψ(x′)b(xN), x = (x′, xN) ∈ RN
+

defines a function in D(Ω̄) and γ0(ϕ) = Ψ. Thus the range of γ0 contains D(RN−1). So it is
dense in Lp(∂Ω). The last identity follows by the continuity of γ0 and the observation that
it holds for u ∈ D(Ω̄).

Proposition 2.2.3.1 (Integration by parts) . Let 1 ≤ p < ∞. If u ∈ W 1,p(RN
+ ) and

v ∈ D(RN
+ ) then ∫

RN+
v
∂u

∂xN
dx = −

∫
RN+

∂v

∂xN
u dx−

∫
RN−1

γ0vγ0u dx
′, (2.58)∫

RN+
v
∂u

∂xi
dx = −

∫
RN+

∂v

∂xi
u dx, 1 ≤ i ≤ N − 1. (2.59)
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Proof. Suppose that u ∈ D(RN
+ ), integrate by part, we get, for x′ ∈ RN−1,∫ +∞

0

v(x′, xN)
∂u

∂xN
(x′, xN) dxN = −

∫ +∞

0

∂v

∂xN
(x′, xN)u(x′, xN) dxN − v(x′, 0)u(x′, 0)

The Fubini theorem gives∫
RN+
v
∂u

∂xN
dx = −

∫
RN+

∂v

∂xN
u dx−

∫
RN−1

v(x′, 0)u(x′, 0) dx′

For 1 ≤ i ≤ N − 1∫ +∞

−∞
v(x′, xN)

∂u

∂xi
(x′, xN) dxi = −

∫ +∞

−∞

∂v

∂xi
u(x′, xN) dxi + u(x′, xN)v(x′, xN)|+∞−∞

= −
∫ +∞

−∞

∂v

∂xi
u(x′, xN) dxi.

The Fubini theorem gives∫
RN+
v
∂u

∂xi
dx = −

∫
RN+

∂v

∂xi
u dx, 1 ≤ i ≤ N − 1.

If u ∈ W 1,p(RN
+ ), we conclude by using the density of D(RN

+ ) in W 1,p(RN) and the
continuity of γ0.

Theorem 2.2.3.2 Let 1 ≤ p < ∞ and u ∈ W 1,p(RN
+ ). Then the following assertions are

equivalent:

1. u ∈ W 1,p
0 (RN

+ )

2. γ0u = 0

3. ū ∈ W 1,p(RN) and
∂ū

∂xi
=

∂u

∂xi
, 1 ≤ i ≤ N.

Proof.

1. ⇒ 2.

If u ∈ W 1,p
0 (RN

+ ), there exists a sequence (un) in D(RN
+ ) such that un → u in W 1,p(RN

+ ).
Since γ0un = 0 and γ0un → γ0u, it follows that γ0u = 0.

2. ⇒ 3.
If γ0u = 0, by proposition above we have, for all v ∈ D(RN)∫

RN
v
∂u

∂xk
dx = −

∫
RN

∂v

∂xk
ū dx, 1 ≤ k ≤ N

and this gives 3.

3. ⇒ 1.
Consider (bn) the sequence associated to the bump function b. The sequence un = bnū
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converges to ū in W 1,p(RN) and the support of un is contained in B(0, 2n) ∩ RN
+ . Thus

we can assume that the support of u is compact in RN
+ . Setting yn = (0, · · · , 0, 1/n) and

vn = τynū. Since
∂vn
∂xk

= τyn
∂ū

∂xk
, by using the continuity of the translation, we have vn → u

in W 1,p(RN
+ ). We can now assume that the support u is compact in RN

+ .

There exist a compact K in RN
+ such that for n large enought, we have the support of

wn = ρn ∗ u is include in K. Since wn ∈ C∞(RN
+ ), then wn ∈ D(RN

+ ). By theorem 1.1.7, it
follows that wn converges to u in W 1,p(RN

+ ), so u ∈ W 1,p
0 (RN

+ ).

We can extend the preceding results to the case where Ω is sufficiently smooth region in RN .
Suppose Ω given as in lemma 2.2.2.1 and denote by {Ui, 0 ≤ i ≤ N}, {ϕi, 1 ≤ i ≤ N}
and {αi, 0 ≤ i ≤ N} the open cover, corresponding local maps and the partition of unity,
respectively. Recalling the linear injections Λ and λ constructed above, we are let to consider
γ0 : W 1,p(Ω)→ Lp(∂Ω) defined by

γ0(u) =
N∑
i=1

[
γ0

(
(αiu) ◦ ϕi

)]
◦ ϕ−1

i (2.60)

=
N∑
i=1

γ0(αi) ·
(
γ0(u ◦ ϕi) ◦ ϕ−1

i

)
(2.61)

where the equality follows from theorem 2.2.3.1.

Theorem 2.2.3.3 Let Ω be a bounded open set in RN with C1-boundary and such that Ω
lies on one side of its boundary ∂Ω. Then there exists a unique continuous linear operator
γ0 : W 1,p(Ω) → Lp(∂Ω) such that for each u ∈ D(Ω̄), γ0(u) is the restriction of u to ∂Ω.
The kernel of γ0 is W 1,p

0 (Ω) and its range is dense in Lp(Ω).

This result is a special case of the trace theorem which we brief discuss. For a function
u ∈ D(Ω̄), we define the various traces of normal derivatives given by

γj(u) =
∂ju

∂n j
|∂Ω , 0 ≤ j ≤ m− 1. (2.62)

where n = (n1, · · · ,nN) denote the unit outward normal on the boundary ∂Ω of Ω. When

Ω = RN
+ (or Ω is localized as above), these are given by

∂u

∂n
= − ∂u

∂xN
|xN=0 . Each γj can be

extended by continuity to all Wm,p(Ω) and we obtain the following result.

Theorem 2.2.3.4 Let Ω be an open bounded open subset of RN which lies on one side of its
boundary, ∂Ω, which we assume to be of class Cm. Then there is a unique continuous linear

function γ from Wm,p(Ω) into
m−1∏
j=0

Wm−1−j,p(∂Ω) such that

γ(u) = (γ0(u), γ1(u), · · · , γm−1(u)), u ∈ D(Ω̄). (2.63)

The kernel of γ is Wm,p
0 (Ω) and its range is dense in the indicated product.
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Proposition 2.2.3.2 Let γ0 be the trace operator from W 1,p(Ω) to Lp(∂Ω). Then for all u, v
in H1(Ω), we have∫

Ω

v(x)
∂u

∂xi
dx = −

∫
Ω

u(x)
∂v

∂xi
dx+

∫
∂Ω

γ0(v)(x′)γ0(u)(x′)ni dσ(x′). (2.64)

Theorem 2.2.3.5 (Divergence Theorem) . Let Ω be a bounded open set in RN with C1

boundary. If u ∈ H1(Ω,RN) then∫
Ω

divu dx =

∫
∂Ω

γ0u · n dx′. (2.65)

Proof.
Let u ∈ H1(Ω,RN). We have,

divu(x) =
N∑
i=1

Di(ui)(x).

So, ∫
Ω

div (u) dx =

∫
Ω

N∑
i=1

Di(ui) dx

=
N∑
i=1

∫
Ω

Di(ui) dx

=
N∑
i=1

∫
∂Ω

γ0(ui).1.ni(σ) dσ (by 2.64)

=

∫
∂Ω

(
N∑
i=1

γ0(ui).1.ni(σ)

)
dσ

=

∫
∂Ω

γ0u.n(σ) dσ.

Example 2.2.3.1 Take u(x) = w(x)v(x) where v(x) = vector field and w(x) = scalar. Then
we have ∫

Ω

div (wv) dx =

∫
Ω

N∑
i=1

Di(wvi) dx =

∫
Ω

N∑
i=1

[(Diw)vi + w(Divi)] dx

=

∫
Ω

[∇w · v + wdiv v] dx

On the other hand ∫
Ω

div(wv) dx =

∫
∂Ω

wv · n dx′

Thus we have ∫
Ω

wdiv v dx = −
∫

Ω

∇w · v dx+

∫
∂Ω

w(v · n) dx′
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Application. Take u = ∇v and w = φ= scalar. We get from above∫
Ω

φdiv (∇v) dx = −
∫

Ω

∇φ · ∇v dx+

∫
∂Ω

φ(∇v · n) dx′

So we get Green Formula∫
Ω

φ∆ v dx = −
∫

Ω

∇φ · ∇v dx+

∫
∂Ω

φ
∂v

∂n
dx′ (2.66)

Theorem 2.2.3.6 Assume that Ω is an open set in RN with C1 bounded boundary. Let
1 ≤ p <∞ and u ∈ W 1,p(Ω). Then the following assertions are equivalent:

1. u ∈ W 1,p
0 (Ω)

2. γ0u = 0

3. ū ∈ W 1,p(RN) and
∂ū

∂xi
=

∂u

∂xi
, 1 ≤ i ≤ N.
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CHAPTER 3

VARIATIONAL METHOD

This chapter is devoted to the application of variational method in solving the Dirichlet
Homogeneous boundary value problem.
As mentioned earlier in the introduction, when the abstract formulation of the boundary
value problem:

A(u) = 0 in Ω, B(u) = 0 on ∂Ω, Ω ⊂ RN open and bounded, (3.1)

where A(u) = 0 denotes a given partial differential equation for unknown u and B(u) = 0 is a
given boundary condition. The variational Method could be employed where the operator
A can be formulated as the first variation("derivative") of an appropriate functional J on
a Banach space X,i.e.,A(u) = J ′(u) ∀u ∈ X.Therefore the equation A(u) = 0 can be
formulated weakly as

〈J ′(u), v〉 = 0 ∀v ∈ X. (3.2)
The advantage of this new formulation is that, solving problem (3.2) is equivalent to finding
the critical points of J on X. The minimization method for variational problems is to
solve the problem by finding the minimizers of a related functional.
We start by discussing important concepts needed from the theory of Optimization.

3.1 Optimization in Infinite Dimensional Spaces
Let X be a real normed linear space F : X → R ∪ {+∞} an extended real valued function.
Consider the following optimization problems:

inf
x∈X

F (x), (3.3)

or
sup
x∈X

F (x), (3.4)

Remark 3.1.0.1 Observing that:

sup
x∈X

F (x) = − inf
x∈X

(−F )(x),

in what follows, we shall restrict our discussion to problem like ( (3.3))
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Definition We say that a point x̄ ∈ K is a local minimizer of F in K if there exists r > 0
such that

F (x̄) ≤ F (x) ∀x ∈ K ∩B(x̄, r). (3.5)

It is a global minimizer if (3.5) holds for all points x in K.

To solve an optimization problem like ((3.3)) is to find a global or a local minimizers of F
in K. If x̄ is a global minimum of F in K, we just write:

F (x̄) = min
x∈K

F (x)

Definition The domain of F is the subset of X denoted by Dom (F ) and defined by:

Dom(F ) = {x ∈ X : F (x) < +∞}.

We say that F is proper if its domain is nonempty.

3.1.1 Notation

If x̄ is a global minimum of F in X, we just write

F (x̄) = min
x∈K

F (x)

3.1.2 Lower Semi Continuous Functions(lsc)

Definition Let X be a real vector space. The epigraph of F : X −→ R ∪ {+∞} is the
subset of X × R defined by:

epi(F) = {(x, a) ∈ X × R : F (x) ≤ a}

We say that F is lower semi continuous if epi(F) is closed in X × R.

Proposition 3.1.2.1 Let F : X −→ R ∪ {+∞}. Then F is lower semi continuous if and
only if for every sequence (xn) in X that convergence to x ∈ X, we have

F (x) ≤ lim inf
n

F (xn)

.

Proof. Assume that F is lsc.. Let xn → x inX. Let us pick a subsequence (xnk) of (xn) such
that limk F (xnk) = lim infn F (xn). Then it follows that (xnk , F (xnk)) is a sequence of epi(F)
that converges to (x, lim infn F (xn)). Since epi(F) is closed , we have (x, lim inf F (xn)) ∈
epi(F) and then

F (x) ≤ lim inf
n

F (xn).

Conversely assume that (xn → x in X) ⇒ F (x) ≤ lim infn F (xn). Let (xn, an) be a
sequence in epi(F) that converges to (x, a) in X × R. Then xn → x and an → a. Therefore
by hypothesis, we have :

F (x) ≤ lim inf
n
F (xn) ≤ lim inf

n
an = lim

n
an = a

so (x, a) ∈ epi(F) and then epi(F) is closed which implies that F is lsc.
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Proposition 3.1.2.2 A function F : X −→ R ∪ {+∞} is lsc if and only if for all a ∈ R,
Ca = {x ∈ X : F (x) ≤ a} is closed in X.

Proof. Assume that F is lsc. Let a ∈ R and let (xn) be a sequence in Ca that converges to
x ∈ X. Since F (xn) ≤ a ∀n we have lim infn F (xn) ≤ a. By proposition 3.1.2.1,

F (x) ≤ lim inf
n

F (xn) ≤ a,

So x ∈ Ca. Therefore Ca is closed.

Conversely assume that Ca is closed for all a ∈ R. Let (xn) be a sequence in X that
converges to x ∈ X. There exists a subsequence (xnk) of (xn) such that:

lim
k
F (xnk) = lim inf

n
F (xn).

Assume that F (x) > lim infn F (xn). Then there exists a ∈ R such that

lim inf
n

F (xn) < a < F (x) (3.6)

So there exists N ∈ N such that F (xnk) < a for all k ≥ N . Therefore xnk ∈ Ca ∀k ≥ N .
Since xnk → x for k ≥ N and Ca closed we have x ∈ Ca and then F (x) ≤ a. Using (3.6) we
get a contradiction. So F (x) ≤ lim infn F (xn).

3.1.3 Convex sets.

Definition Let X be a real linear space and K ⊂ X. The set K is called convex if for each
x1, x2 ∈ K and for each t ∈ [0, 1], we have tx1 + (1− t)x2 ∈ K.

Notation. Let x, y ∈ K. We write [x, y] for the geometric segment from x to y, i.e.,

[x, y] := {z ∈ X : ∃ t ∈ [0, 1] such that z = tx+ (1− t)y}.

Hence, z = tx+ (1− t)y = y + t(x− y). We also have that [x, y] = [y, x].

Remark 3.1.3.1 K is convex if and only if ∀ x, y ∈ K, [x, y] ⊂ K.

Notation Let n ∈ N. Define

Λn := {(α1, α2, · · · , αn) ∈ Rn
+ :

n∑
i=1

αi = 1}.

Proposition 3.1.3.1 K ⊂ X is convex if and only if for each n ∈ N, for each (α1, α2, · · · , αn) ∈
Λn and for each (x1, x2, · · · , xn) ∈ Kn, we have

∑n
i=1 αixi ∈ K

Proof. (⇒) Suppose that K is convex.We prove by induction. For n = 2, let (α1, α2) ∈

Λ, and (x1, x2) ∈ K2. Then
2∑
i=1

αixi = α1x1 + α2x2 and α1 + α2 = 1 (so that α2 = 1− α1),
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i.e.,
2∑
i=1

αixi = α1x1 + (1− α1)x2 ∈ K2. So the result holds for n = 2.

Assume now it holds for n=k for some k > 2. Let (α1, α2, · · · , αn) ∈ Λk+1 (so that
k+1∑
i=1

αi = 1),

and (x1, x2, · · · , xk, xk+1) ∈ Kk+1. Then,

yk : =
k+1∑
i=1

αixi =
k+1∑
i=1

αixi + αk+1xk+1.

Since
k+1∑
i=1

αi = 1, we have αk+1 = 1−
k∑
i=1

αi.

Case 1. If αk+1, then α1 = α2 = αk = 0, and so yk = Xk+1 ∈ K (by our hypothesis.)

Case 2. If αk+1 ≤ 1, then
k∑
i=1

αi = 1− αk+1 ≥ 0. Hence,

yk = (1− αk+1)
1

(1− αk+1)

k∑
i=1

αixi + αk+1xk+1

= (1− αk+1)
k∑
i=1

αi
(1− αk+1)

xi + αk+1xk+1.

Observe that ( α1

(1−αk+1)
, · · · , αk

(1−αk+1)
) ∈ Λk. Thus, x :=

k∑
i=1

αi
(1− αk+1)

xi ∈ K (by induction

hypothesis).
Now, yk = (1− αk+1)x+ αk+1xk+1 and αk+1 ∈ [0, 1]. Hence, yk ∈ K.

(⇐) Let n = 2, t ∈ [0, 1], (x1, x2) ∈ K2. Put α1 = t ≥ 0, α2 = 1−t ≥ 0, α1+α2 = 1, (α1, α2) ∈
Λ2. But α1x1 +α2x2 ∈ K. Thus, tx1 +(1−t)x2 ∈ K. // Since α1x1 +α2x2 = tx1 = (1−t)x2.

Hence,
2∑
i=1

αixi ∈ K and this implies that K is convex. Hence, the proposition holds.

Example 3.1.3.1 a. Every affine space is convex.

Recall that an affine space is simply a translation of a linear space by a point, e.g., if X is
a linear space, then V := X + x0 := {v + x0 : v ∈ X} is an affine space.

b. Every hyperplane is convex
Given that X is a real normed linear space. Recall X∗ = {f : X → R : fislinearandbounded(continuous)}.
For α ∈ R, define

Hf,α := {x ∈ X : f(x) = α, f ∈ X∗} = {x ∈ X : 〈x, f〉 = α}

where 〈x, f〉 ≡ f(x). Then Hf,α is called a hyperplane of X.
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c. Every half space is convex.

Given X a real linear space, define the following half-spaces.

D+
f,α := {x ∈ X : 〈x, f〉 ≥ α}

D+∗
f,α := {x ∈ X : 〈x, f〉 > α}

D−f,α := {x ∈ X : 〈x, f〉 ≤ α}

D−∗f,α := {x ∈ X : 〈x, f〉 < α}.

d. If x̄ ∈ X − a real linear space and r > 0 then the ball centered at x̄ with radius r

B′(x̄, r) = {x ∈ X : ‖x− x̄‖ ≤ r}

is a convex set in X.

3.1.4 Convex Functions

Definition Let F : X → R ∪ {+∞} a real-value function. Then
a.the function F is convex if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for all x, y ∈ X and all λ with 0 ≤ λ ≤ 1.
b.The function F is strictly convex if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)

for all x, y ∈ X with x 6= y and all λ with 0 < λ < 1. If the inequalities in the above
definitions are reversed, we obtain the definitions of concave functions.

Remark 3.1.4.1 Note that F is convex (resp. strictly convex) on a convex set X if and only
if −F is is concave (resp. strictly concave) on X. Because of this close connection, we will
formulate all results in terms of convex functions only. Corresponding results for concave
functions will be clear.

Proposition 3.1.4.1 F is convex if and only if epi(F) is convex in V × R. where

epi(F) = {(x, a) ∈ V × R : F (x) ≤ a}

Proposition 3.1.4.2 Let F1, F2 be convex functions on X. Let λ > 0, and ϕ a increasing
convex function on R. Then F1 + F2, max(F1, F2), λF1 and F1oF2 are convex functions.

Theorem 3.1.4.1 (Link to Optimization Problems)
1. If F is strictly convex on X, then F has at most one minimizer, that is if the minimizer
exists, then it must be unique.
2. Any local minimizer of a convex function is also a global minimizer.
3. If F is convex, then the set of minimizers is a convex subset of X.

62



+ Variational Method

Proof.
1. Let x1 and x2 two different minimizers of F and let λ with 0 < λ < 1. Because of the
strict convexity of F and the fact that

F (x1) = F (x2) = min
x∈X

F (x)

we have
F (x1) ≤ F (λx1 + (1− λ)x2) < λF (x1) + (1− λ)F (x2) = F (x1)

which is a contradiction, therefore, x1 = x2.
2.Suppose that x̄ is a local minimizer of F in X. Then there is a positive number r such
that

F (x̄) ≤ F (x), ∀x ∈ B(x̄, r).

Given any x ∈ X, we want to show that F (x̄) ≤ F (x). To this end select λ, with 0 < λ < 1
and so small that

x̄+ λ(x− x̄) = λx+ (1− λ)x̄ ∈ B(x̄, r)

Then
F (x̄) ≤ F (x̄+ λ(x− x̄)) = F (λx+ (1− λ)x̄) ≤ λF (x) + (1− λ)F (x̄)

because F is convex. Now subtract F (x̄) from both sides of the preceding inequality and
divide the result by λ to obtain 0 ≤ F (x)− F (x̄). This establishes the desired results.

Proposition 3.1.4.3 Let F : X → R ∪ {+∞} be convex and lower semi continuous. Then
F is weakly lower semi continuous, that is epi(F) is weakly closed in X × R.

Proof. Assume that F : X −→ R∪{+∞} lower semi continuous and convex. Then epi(F)
is closed and convex in X×R, therefore epi(F) is weakly closed and then F is weakly lower
semi continuous.

3.1.5 Gateaux Differentiability

Definition Let X and Y be Banach spaces, and f : U ⊂ X → Y , where U is an open
subset of X. The directional derivative of f at x ∈ U in the direction h ∈ X is given by

δf(x, h) = lim
t→0

f(x+ th)− f(x)

t
, if this limit exists.

If all directional derivatives at x exists for every h ∈ X, and the function f ′G(x) : X →
Y defined by f ′G(x)h = δf(x, h) is a linear and continuous map, then we say that f is
Gateaux differentiable at x, and we call f ′G(x) the Gateaux derivative of f at x.
The directional derivative may also be written as

δf(x, h) =
d

dt
f(x+ th)|t=0.
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3.1.6 Existence Results

Theorem 3.1.6.1 Let X be a real reflexive Banach space and let K be a closed convex
bounded and nonempty subset of X. Let f : X → R ∪ {+∞} be lower semi-continuous and
convex. Then, ∃ x̄ ∈ K such that f(x̄) ≤ f(x)∀x ∈ K, i.e.,

f(x̄) = inf
x∈k

f(x) = min
x∈k

f(x).

Proof. f is lower semi-continuous and convex ⇒ f is weakly lower semi-continuous.
Put m := inf

x∈K
f(x).

First suppose m = −∞. Then for n ∈ N,∃xn ∈ K such that

f(xn) < −n (3.7)

Boundedness of K implies {xn} is bounded and Eberlein − Smul′yan Theorem implies
∃ {xnk} subsequence of {xn} such that xnk ⇀ x ∈ X. But K is convex and closed which
implies that K is weakly closed. Hence x ∈ K. By weak lower semi-continuity of f , we have

f(x) ≤ lim inf
k→+∞

f(xnk) < −∞

by (3.7), and this is impossible. Hence m ∈ R.

We now use the definition of inf. Let n ∈ N and take εn = 1
n
. Then ∃xn ∈ K such that

m ≤ f(xn) < m+ 1
n
. {xn} in K implies {xn} is bounded and so ∃{xnk}k∈N, subsequence of

{xn} such that xnk ⇀ x̄. Since f is weakly lower semi-continuous, we have

f(x̄) ≤ lim inf
k→+∞

f(xnk)

≤ lim inf
k→+∞

(m+
1

nk
)

= lim
k→+∞

(m+
1

nk
) = m.

Thus, f(x̄) ≤ m = inf
x∈K

f(x). But m = f(x̄). Hence,

f(x̄) = m = inf
x∈K

f(x).

Next, we prove the second important existence theorem.

Theorem 3.1.6.2 Let X be a real reflexive Banach space and f : X → R ∪ {+∞} be a
convex proper lower semi-continuous function. Suppose

lim
‖x‖→∞

f(x) = +∞

Then, ∃ x̄ ∈ x such that f(x̄) ≤ f(x)∀x ∈ X, i.e.,

f(x̄) = inf
x∈X

f(x).
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Proof. We shall apply Theorem 3.1.6.1. Since f is proper, ∃x0 ∈ X such that f(x0) ∈ R.
Let

K := {x ∈ X : f(x) ≤ f(x0)}.

We now show that K is closed convex nonempty and bounded, so that we can apply Theo-
rem 3.3.0.2. But K is convex and closed since f is convex and lower semi-continuous. This
implies K is a section with f(x0) = α

Claim K is bounded.
Suppose this is not the case. Then for each n ∈ N, ∃xn ∈ K such that ‖xn‖ > n. Thus,

f(xn) ≤ f(x0), ‖xn‖ > n. (3.8)

This implies that lim
n→+∞

‖xn‖ = +∞ and so (by hypothesis),

lim
n→+∞

f(xn) = +∞ (3.9)

contradicting inequality (3.8). Hence K is boundeded. Theorem 3.3.0.2 then implies ∃x̄ ∈
K ⊂ X such that ∀x ∈ K,

f(x̄) ≤ f(x), ∀x ∈ X.

Now, let x ∈ X\K. Then f(x) > f(x0). But x0 ∈ K. So, f(x̄) ≤ f(x0). Hence, f(x) >
f(x̄), ∀x ∈ X, i.e.,

f(x̄) ≤ f(x), ∀x ∈ X.

Remark 3.1.6.1 If lim
‖x‖→+∞

f(x) = +∞, we say that f is coercive.

3.1.7 Optimality Conditions

Theorem 3.1.7.1 (First Optimality Condition.) Let X a real Banach space, U ⊂ X open
and f : U ⊂ X → R. Let x0 ∈ U a local minimum of f on U .
(i). If f is Gateaux differentiable at x0, then

δf(x0, h) =
d

dt
f(x0 + th)|t=0 = 0 ∀h ∈ X. (3.10)

(ii). If in addition f is convex, then (3.10) becomes a sufficient condition for x0 to be a
minimizer of f on U .

Proof. (i) Let x0 ∈ U be a local minimizer of f on U . This implies that ∃ r > 0 such that
f(x0) ≤ f(x) ∀x ∈ B(x0, r) ⊂ U .

Let h ∈ X. We have that x0 + th ∈ B(x0, r) if and only if |t| < r
‖h‖ . Define δ := r

‖h‖ ,
then x0 + th ∈ B(x0, r)∀t ∈ (−δ, δ).

So, f(x0 + th) ≥ f(x0).
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Let t ∈ (0, δ), then f(x0+th)−f(x0)
t

≥ 0, letting t→ 0+, we obtain that

δf(x0, h) ≥ 0. (3.11)

Let t ∈ (−δ, 0), then f(x0+th)−f(x0)
t

≤ 0, letting t→ 0−, we obtain that

δf(x0, h) ≤ 0. (3.12)

Combining (3.11) and (3.12), we have that

δf(x0, h) = 0 ∀h ∈ X

(ii) Assume that δf(x0, h) = 0 ∀h ∈ X.
We have to prove that f(x0) ≤ f(x)∀x ∈ U ,i.e., x0 ∈ U is a minimizer of f on U .
Let x ∈ U , using the convex inequality, we have

f(x) ≥ f(x0) + δf(x0, x− x0).

From our assumption, we have δf(x0, x− x0) = 0
So, f(x) ≥ f(x0)

Theorem 3.1.7.2 Let X a real Banach space, U ⊂ X open and f : U ⊂ X → R, be a C2

function. Let x0 ∈ U such that f ′(x0) = 0. If x0 is a local minimizer of f on U , then

f ′′(x0)(h, h) ≥ 0 ∀h ∈ X.

Proof. Let h ∈ X. Let t ∈ R. Using Taylor’s Theorem, we have

f(x0+th) = f(x0)+tf ′(x0)h+
t2

2
f(x0)(h, h)+t2‖h‖2ε(x0+θth), for θ ∈ (0, 1) where lim

x→x0

ε(x) = 0

(3.13)
Since x0 is a local minimizer,∃ r > 0 such that

f(x) ≥ f(x0)∀x ∈ B(x0, r).

Define δ := r
‖h‖ . ∀t ∈ (0, δ) we have x0 + th ∈ B(x0, r), therefore f(x0 + th) ≥ f(x0)∀t ∈

(0, δ).
Using (3.13) and the fact that f ′(x0) = 0, we have

0 ≤ f(x0 + th)− f(x0) =
t2

2
f ′′(x0)(h, h) + t2‖h‖2ε(x0 + θth)

So,

t2(
1

2
f ′′(x0)(h, h) + ‖h‖2ε(x0 + θth)) ≥ 0

This implies that 1
2
f ′′(x0)(h, h) + ‖h‖2ε(x0 + θth) ≥ 0, letting t→ 0 and using the fact that

ε(x)→ 0 as x→ x0, we obtain
1

2
f ′′(x0)(h, h) ≥ 0.

So, f ′′(x0)(h, h) ≥ 0.
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3.2 Application to Elliptic Partial Differential Equation
In this section we shall consider a method of solving PDE problems by taking into account
an optimization problem. We shall show that to solve the PDE problem it is enough to solve
an optimization problem and more precisely, the solution of the optimization problem turns
out to be a solution to the PDE under consideration.

We consider the following Partial Differential Equation;

(P )


−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω is bounded open subset of RN of class C1 and f ∈ L2(Ω).

We define the functional J for each u ∈ H1
0 (Ω) by

J(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx.

Now we consider the following optimization problem;

(P ′)


min J(u)

u ∈ H1
0 (Ω).

In H1
0 (Ω), we use the norm defined by

‖u‖H1
0 (Ω) =

(∫
Ω

|∇u|2 dx
)2

= ‖∇u‖L2(Ω).

We shall solve problem P ′ and show that the solution of problem (P ′) is a solution of problem
(P ).

Theorem 3.2.0.3 (P ′) has a unique solution, characterized by δJ(u; v) = 0, ∀v ∈ H1
0 (Ω).

Proof. We shall show that;
(1) J has a unique minimizer u in H1

0 (Ω).

(2) J is Gâteaux differentiable at u in H1
0 (Ω), and that δJ(u; v) = 0 for all v ∈ H1

0 (Ω).

We have that for each u ∈ H1
0 (Ω),

J(u) =
1

2

∫
Ω

|∇|2 dx−
∫

Ω

fu dx

=
1

2
‖∇u‖2

L2(Ω) −
∫

Ω

fu dx

=
1

2
‖u‖2

H1
0 (Ω) −

∫
Ω

fu dx.
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1.

(a) We show that J is continuous on H1
0 (Ω).

We have that u 7→ −
∫

Ω

fu dx is linear and
∣∣∣∣−∫

Ω

fu dx

∣∣∣∣ ≤ ∫
Ω

|f ||u| dx ≤ ‖f‖L2(Ω)‖u‖H10(Ω)

(by Holder’s and Poincaré Inequality), therefore continuous. Also u 7→ 1
2
‖u‖2

H1
0 (Ω)

is contin-
uous using the continuity of the norm function. Therefore, it follows that J is continuous on
H1

0 (Ω).

(b) We show that J is strictly convex.

Let u, v ∈ H1
0 (Ω) and λ ∈ (0, 1), u 6= v.

u, v ∈ H1
0 (Ω) implies that u, v ∈ H1(Ω).

J(λu+ (1− λ)v) =
1

2
‖λu+ (1− λ)v‖2

H1
0 (Ω) −

∫
Ω

f � (λu+ (1− λ)v) dx

=
λ

2
‖u‖2

H1
0 (Ω) +

(1− λ)

2
‖v‖2

H1
0 (Ω) −

λ(1− λ)

2
‖u− v‖2

H1
0 (Ω)

− λ

∫
Ω

fu dx− (1− λ)

∫
Ω

fv dx

= λJ(u) + (1− λ)J(v)− λ(1− λ)‖u− v‖2
H1

0 (Ω)

< λJ(u) + (1− λ)J(v).

Therefore J is strictly convex.

(c) We show that J is coercive.

J(u) =
1

2
‖u‖2

H1
0 (Ω) −

∫
Ω

fu dx

≥ 1

2
‖u‖2

H1
0 (Ω) − C‖f‖L2(Ω)‖u‖H1

0 (Ω) (by Hölder’s and Poincaré Inequality)

= ‖u‖H1
0 (Ω)

(
1

2
‖u‖H1

0 (Ω) − C‖f‖L2(Ω)

)
.

So that as ‖u‖ → +∞, we have that J(u)→ +∞. Therefore J is coercive.

Hence, by (a) J is lower semi continuous on H1
0 (Ω), H1

0 (Ω) is a real reflexive Banach space
as a closed subspace of a real reflexive Banach space H1(Ω), by (b) J is convex, by (c) J is
coercive, J(0) = 0 ∈ R, i.e., J is proper.
Therefore by Theorem 3.1.7.2, and the fact that J is strictly convex, there exists a unique
u ∈ H1

0 (Ω) such that
u = min

w∈H1
0 (Ω)

J(w).
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(2) Let v ∈ H1
0 (Ω), let t 6= 0 ∈ R

J(u+ tv)− J(u)

t
=

1

2

∫
Ω

|∇(u+ tv)(x)|2 − |∇u(x)|2

t
dx−

∫
Ω

fv dx

=
1

2

∫
Ω

|∇v(x)|2 dx+

∫
Ω

∇u(x)∇v(x) dx−
∫

Ω

fv dx.

Therefore as t→ 0, we have

δJ(u; v) = lim
t→0

J(u+ tv)− J(u)

t
=

∫
Ω

∇u(x)∇v(x) dx−
∫

Ω

fv dx

i.e., the directional derivatives of J at u exists for all v ∈ H1
0 (Ω). The function v 7→ δJ(u; v)

is linear, by the linearity of integral and the gradient function ∇, hence we have

|δJ(u; v)| =

∣∣∣∣∫
Ω

∇u∇v dx−
∫

Ω

fv dx

∣∣∣∣
≤

∫
Ω

|∇u||∇v| dx−
∫

Ω

|f ||v| dx

= C1‖u‖H1
0 (Ω)‖v‖H1

0 (Ω) + C2‖f‖L2(Ω)‖v‖H1
0 (Ω) (by Hölder’s and Poincaré Inequality)

≤ K‖v‖H1
0 (Ω)

(
K = C1‖u‖H1

0 (Ω) + C2‖f‖L2(Ω)

)
,

which implies that v 7→ δJ(u; v) is continuous on H1
0 (Ω). Therefore J is Gateaux differen-

tiable on H1
0 (Ω), hence J is Gateaux differentiable at u.

Let u the solution of problem (P′).
By Theorem 3.1.7.1 and (2) above, δJ(u; v) = 0 ∀v ∈ H1

0 (Ω), i.e.,∫
Ω

∇u∇v dx−
∫

Ω

fv dx = 0 ∀v ∈ H1
0 (Ω). (3.14)

This completes the proof.

Now, from (3.14) if u is of class C2, then u solves problem (P ).
Using the fact that D(Ω) ⊂ H1

0 (Ω) we obtain that∫
Ω

∇u∇v dx−
∫

Ω

fv dx = 0 ∀v ∈ D(Ω).

Hence −∆u = f in the sense of distribution, since u is of class C2, it then follows that
−∆u = f in Ω. Since u ∈ H1

0 (Ω), u = 0 on ∂Ω, i.e.,
−∆u = f in Ω

u = 0 on ∂Ω

Therefore u solves problem (P).

Theorem 3.2.0.4 Any classical solution of problem (P ) is the solution of problem (P ′)
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Proof. Let u a classical solution of problem (P ).
Therefore u satisfies −∆u = f in Ω. Let v ∈ H1

0 (Ω), multiplying both sides of −∆u = f by
v and integrating by part, we obtain∫

Ω

∇u∇v dx =

∫
Ω

fv dx, (3.15)

which implies that

δJ(u; v) =

∫
Ω

∇u∇v dx−
∫

Ω

fv dx = 0. (3.16)

Hence, since J is convex, by (ii) of Theorem 3.1.7.1, u is a minimizer of the functional J on
H1

0 (Ω) or equivalently u solves problem (P ′).
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CONCLUSION

We have seen that, given any Boundary Value Problem for some Partial Differential Equa-
tions, we can formulate variational problems which will assist us in solving these Partial
Differential Equations.
It is important to note that, although how powerful the variational method may be, not all
Partial Differential Equations could be formulated as variational problems.There are lots of
other(nonvariational) important methods for studying Partial Differential Equations.
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