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Preface

This project is mainly focused on the theory of Monotone (increasing) Op-
erators and its applications. Monotone operators play an important role
in many branches of Mathematics such as Convex Analysis, Optimization
Theory, Evolution Equations Theory, Variational Methods and Variational
Inequalities.
Basic examples of monotone operators are positive semi-definite matrices
A of order n ∈ N (since they define linear operators on Rn and satisfy
〈Ax, x〉 ≥ 0 for all x ∈ Rn), projection operators pC onto closed convex
nonempty subsets C of a Hilbert space (since 〈x− y, pC (x)− pC (y)〉 ≥ 0 for
all x, y ∈ H), the derivative Df of a differentiable convex function f defined
in a Banach space (since 〈x− y, Df(x)−Df(y)〉 ≥ 0 for all x, y ∈ dom(f)),
and the elliptic differential operator −∆ on H2(Rn).
Monotone operators which have no proper monotone extension are called
maximal monotone operators and are of particular interest because they are
crucial in the solvability of evolution equations in Hilbert spaces as they
generate semigroup of bounded linear operators.

In this project, we first study some fundamental geometric properties of
Banach spaces, the topological properties of the duality mapping J : X →
2X
∗

of a Banach space X defined by

J(x) :=
{
f ∈ X∗ : 〈x, f〉 = ‖x‖‖f‖ and ‖f‖ = ‖x‖

}
and after recalling some results from Convex Analysis, we observe that J is

the subdifferential of the convex functional x 7→ ||x||
2

2
.

Secondly we study the general properties of maximal monotone operators.
In the case of a reflexive Banach space X, we have remarkable results such
as:

- The Rockerfella’s characterization of the maximality of a monotone (single
or multi- valued) operator defined on a reflexive Banach space, which
says that an operator A is maximal monotone on X if and only if
R(A+ λJ) = X∗, for some λ > 0.

- Every monotone and hemicontinuous operator is maximal monotone.
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- Every maximal monotone operator which is coercive on X (e.g., J) is
surjective.

Lastly we present another version of the Rockerfella’s characterization with a
shorter proof following C. Simons and C. Zalinescu [7], and we mention some
applications of the surjectivity result for monotone operators to nonlinear
elliptic equations in the line of Lions [10].
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Chapter 1

Preliminaries

The aim of this chapter is to provide some basic results pertaining
to geometric properties of normed linear spaces and convex functions.
Some of these results, which can be easily found in textbooks are given
without proofs or with a sketch of proof only.

1.1 Geometry of Banach Spaces

Throughout this chapter X denotes a real norm space and X∗ denotes
its corresponding dual. We shall denote by the pairing 〈x, x∗〉 the value
of the function x∗ ∈ X∗ at x ∈ X. The norm in X is denoted by ‖ · ‖,
while the norm in X∗ is denoted by ‖ · ‖∗. If there is no danger of
confusion we omit the asterisk from the notation ‖ ·‖∗ and denote both
norm in X and X∗ by the symbol ‖ · ‖.
As usual We shall use the symbol → and ⇀ to indicate strong and
weak convergence in X and X∗ respectively. We shall also use w∗-lim
to indicate the weak-star convergence in X∗. The space X∗ endowed
with the weak-star topology is denoted by X∗w

1.1.1 Uniformly Convex Spaces

Definition 1.1. Let X be a normed linear space. Then X is said to
be uniformly convex if for any ε ∈ (0, 2] there exist a δ = δ(ε) > 0 such
that for each x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ε, we
have ‖1

2
(x+ y)‖ ≤ 1− δ.

Theorem 1.2. Let X be a uniformly convex space. Then for any
d > 0, ε > 0 and x, y ∈ X with ‖x‖ ≤ d, ‖y‖ ≤ d, and ‖x − y‖ ≥ ε,
there exist a δ = δ( ε

d
) > 0 such that ‖1

2
(x+ y)‖ ≤ (1− δ)d.
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Proof. Let x, y ∈ X, set k1 = x
d
, k2 = y

d
and ε = ε

d
. Then obviously we

see that ε > 0. Moreover , ‖k1‖ ≤ 1, ‖k2‖ ≤ 1 and ‖k1 − k2‖ ≥ ε
d

= ε.
Now, by the uniform convexity of X, we have for some δ( ε

d
) > 0,∥∥∥∥1

2
(k1 + k2)

∥∥∥∥ ≤ 1− δ(ε),

that is, ∥∥∥∥ 1

2d
(x+ y)

∥∥∥∥ ≤ 1− ε(δ),

which implies, ∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤ [1− δ(ε
d

)]d.

Hence we have the result.

Proposition 1.3. Let X be a uniformly convex space, let α ∈ (0, 1)
and ε > 0, then for any d > 0, x, y ∈ X such that ‖x‖ ≤ d, ‖y‖ ≤ d,
and ‖x− y‖ ≥ ε there exist δ(ε) > 0 independent of x and y such that

‖αx+ (1− α)y‖ ≤ [1− 2δ(ε) min{α, 1− α}]d.

Proof. Without loss of generality we shall assume that α ∈ (0, 1
2
], we

also observe that

‖αx+(1−α)y‖ = ‖α(x+ y)+(1−2α)y‖ ≤ 2α‖1

2
(x+y)‖+(1−2α)‖y‖

Thus from the uniform convexity of X we have for some δ(ε) > 0

‖αx+ (1− α)y‖ ≤ 2α

∥∥∥∥1

2
(x+ y)

∥∥∥∥+ (1− 2α)‖y‖

≤ 2α(1− δ(ε))d+ (1− 2α)d

= (1− 2αδ(ε))d

≤ [1− 2δ(ε)min{α, 1− α}]d.

Which completes the proof.
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1.1.2 Strictly Convex Spaces

Definition 1.4. A normed linear space X is said to be strictly convex
if for all x, y ∈ X x 6= y, ‖x‖ = ‖y‖ = 1, we have

‖αx+ (1− α)y‖ < 1 for all α ∈ (0, 1).

Theorem 1.5. Every uniformly convex space is strictly convex.

Proof. Suppose X is uniformly convex, since x 6= y, set ε = ‖x−y‖ >
0 and d = 1. Then in view of proposition (1.3) we see that for each
α ∈ (0, 1), ‖αx+ (1− α)y‖ < 1, which gives the desired result.

We now give some examples to illustrate uniformly and strictly convex
spaces.

Example 1. Every inner product space H is uniformly convex. In
particular Rn with the euclidean norm is uniformly convex.

To see this we shall apply parallelogram law which is valid in any inner
product space. That is for all x, y,∈ H, we have

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

Now let ε ∈ (0, 2] be given, let x, y ∈ H such that ‖x‖ ≤ 1, ‖y‖ ≤ 1,
and ‖x− y‖ ≥ ε, then from the above identity we have∥∥∥∥1

2
(x+ y)

∥∥∥∥2

≤ 1

4

[
2(2)− ‖x− y‖2

]
= 1−

∥∥∥∥1

2
(x− y)

∥∥∥∥2

≤ 1− 1

4
ε2

So that ∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≤
√

1− 1

4
ε2

To complete the proof we choose δ =
√

1− 1
4
ε2 > 0.

Example 2. Rn with ‖·‖1 is not strictly convex. To see this we choose
the canonical bases e1, e2 in Rn and take λ = 1

2
. Clearly ‖e1‖ = ‖e2‖ =

1, e1 6= e2 and ∥∥∥∥1

2
e1 +

1

2
e2

∥∥∥∥ =
1

2
‖e1 + e2‖ = 1.

Thus we have Rn with ‖ · ‖1 is not strictly convex.

Example 3. The space C[a, b] of all real valued continuous func-
tions on the compact interval [a, b] endowed with the ”sup norm” is
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not strictly convex. To see this we choose two functions such that

f(t) := 1 for all t ∈ C[a, b], g(t) :=
b− t
b− a

for all t ∈ C[a, b].

Take ε = 1
2
. Clearly, f, g ∈ C[a, b], ‖f‖ = ‖g‖ = 1 and ‖f−g‖ = 1 > ε.

But ‖1
2
(x+ y)‖ = 1. Thus, C[a, b] is not strictly convex.

Theorem 1.6. Let X be a reflexive Banach space with norm ‖ · ‖.
Then there exist an equivalent norm ‖ · ‖0 such that X is strictly con-
vex in this norm and X∗ is strictly convex in the dual norm ‖ · ‖∗0.

1.1.3 Duality Mappings.

Definition 1.7. Define a map J : X −→ 2X
∗

by

Jx :=
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖; ‖x‖ = ‖x∗‖

}
.

By Hahn Banach theorem for each x ∈ X, x 6= 0, there exist y∗ ∈ X∗
such that ‖y∗‖ = 1, and 〈x, y∗〉 = ‖x‖. So if we set x∗ = ‖x‖y∗, then
we see that for each x ∈ X ∃ x∗ ∈ X∗ such that ‖x∗‖ = ‖x‖ and
〈x, x∗〉 = ‖x‖2. So we see that for each x ∈ X, Jx 6= ∅. The mapping
J : X −→ 2X

∗
is called the duality mapping of the space X. In general

J is multivalued.

Remark. More generally, given an increasing continuous function ϕ :
[0, +∞)→ [0, +∞) such that ϕ(0) = 0 and lim

+∞
ϕ = +∞, one defines

the duality map Jϕ corresponding to the (normalization) function ϕ,
by

Jϕx :=
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖; ‖x∗‖ = ϕ(‖x‖)

}
.

Proposition 1.8. Let H be a real Hilbert space and identify H∗ with
H, then

Jx = {x} for all x ∈ H;

i.e The duality map J is the identity map.

Proof. Let a ∈ H. Define

ϕa(x) = 〈a, x〉 ∀x ∈ H.
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Then ϕa ∈ H∗, ‖ϕa‖ = ‖a‖ and ϕa(a) = ‖a‖2. Therefore ϕa ∈ J(a)and
since ϕa is identified with a, via Riesz representation theorem, we can
write a ∈ J(a). Conversely, if y ∈ Ja then 〈a, y〉 = ‖a‖‖y‖ and
‖a‖ = ‖y‖ so that

‖a− y‖2 = 〈a− y, a− y〉 = ‖a‖2 + ‖y‖2− 2〈a, y〉 = 2‖a‖2− 2‖y‖2 = 0.

So we have y = a. Therefore Ja = {a}.

Proposition 1.9. Let X be a real Banach and J be the duality mapping
on X, then

J(λx) = λJ(x) ∀ λ ∈ R ∀ x ∈ X.

Proof. Let y∗ ∈ J(x) and λ ∈ R. For λ = 0 the result follows trivially.
suppose λ 6= 0, then we have

〈λx, λy∗〉 = λ2〈x, y∗〉 = ‖λx‖‖λy∗‖,we also have ‖λx‖ = ‖λy∗‖.

Thus we have λy∗ ∈ J(λx), which implies λJ(x) ⊂ J(λx). From the
preceding inclusion we also obtained that 1

λ
J(λx) ⊂ J(x) which implies

J(λx) ⊂ λJ(x). Therefore J(λx) = λJ(x) ∀λ ∈ R, ∀x ∈ X.

Definition 1.10. Let f : X −→ Y be a map. Then f is said to
be demi-continuous if it is norm to weak-star continuous, i.e f is con-
tinuous from X (endowed with the strong topology) to Y (endowed
with the weak-star topology).

Proposition 1.11. Let X be a real norm space and J be the dual-
ity mapping on X. Then the following are true.

a) For each x ∈ X, Jx is a closed, convex subset of B∗[0, ‖x‖] in X∗.
Where B∗[0, ‖x‖] = {y∗ ∈ X∗ : ‖y∗‖ ≤ ‖x‖.}
b) If X∗ is strictly convex, then for each x ∈ X, Jx is single valued.
Moreover the mapping J is demi-continuous, i.e J is continuous as
a mapping from X with the strong topology to X∗ with the weak-star
topology.

c) If X∗ is uniformly convex, then for each x ∈ X, Jx is single valued
and the mapping x 7−→ Jx is uniformly continuous on bounded subsets
of X.

Proof. (a) Obviously we have Jx ⊂ B∗[0, ‖x‖]. Let {y∗n}n≥1 ⊂ Jx
such that y∗n → y, for each n ≥ 1 we have 〈x, y∗n〉 = ‖x‖‖y∗n‖ and
‖x‖ = ‖y∗n‖. Letting n → +∞ we see that 〈x, y〉 = ‖x‖‖y‖ and

11



‖x‖ = ‖y‖. Hence we have y ∈ Jx, which implies that Jx is closed.

For convexity, let x∗, y∗ ∈ Jx and λ ∈ (0, 1), then

〈x, λx∗ + (1− λ)y∗〉 = λ〈x, x∗〉+ (1− λ)〈x, y∗〉
= λ‖x‖‖x∗‖+ (1− λ)‖y∗‖ = ‖x‖2

We also have from the triangular inequality that ‖λx∗ + (1− λ)y∗‖ ≤
‖x‖, also,

‖x‖2 = 〈x, λx∗ + (1− λ)y∗〉
≤ ‖x‖‖λx∗ + (1− λ)y∗‖,

which implies that ‖x‖ ≤ ‖λx∗ + (1− λ)y∗‖. Hence we have

‖x‖ = ‖λx∗ + (1− λ)y∗‖, which shows that λx∗ + (1− λ)y∗ ∈ Jx.

(b) Assume X∗ is strictly convex, and suppose that there exit x∗, y∗ ∈
Jx such that x∗ 6= y∗, then ‖x∗‖ = ‖y∗‖ = ‖x‖ and by the strict
convexity of X we have that for any λ ∈ (0, 1), ‖λx∗ + (1 − λ)y∗‖ <
‖x‖. In particular taking λ = 1

2
, we have ‖1

2
(x∗ + y∗)‖ < ‖x‖, which

contradicts the fact that ‖1
2
(x∗ + y∗)‖ = ‖x‖. (Since Jx is convex)

Let {xn}n≥1 ⊂ X such that xn → x. using the fact that ‖Jxn‖ = ‖xn‖,
i.e {Jxn}n≥1 is bounded and the fact that the unit ball is w∗-compact
in X∗ (Banach Alaoglo Theorem) we see that there exist a limit point
y∗ of {Jxn}n≥1. Now let {Jxnk

}k≥1 ⊂ X∗ such that w∗−limJxnk
= y∗,

then we have lim
k→∞
〈xnk

, Jxnk
〉 = 〈x, y∗〉. We also have that

lim
k→∞
〈xnk

, Jxnk
〉 = lim

k→∞
‖xnk
‖2 = ‖x‖2.

So we get 〈x, y∗〉 = ‖x‖2, which implies ‖x‖ ≤ ‖y∗‖. To get the
reverse inequality we use the fact that w∗ − limJxnk

= y∗ implies
‖y∗‖ ≤ lim inf ‖Jxnk

‖ = lim inf ‖xnk
‖ = ‖x‖. Thus we have ‖x‖ = ‖y∗‖

and 〈x, y∗〉 = ‖x‖2. i.e y∗ = Jx. Therefore J is demicontinuous.

(c) Since a uniformly convex space is also strictly, then by part (b)
above we see that J is single valued.

Assume J is not uniformly continuous on bounded subsets of X, then
there exist a constant M > 0, α0 > 0, and subsequences {un}, {vn} ⊂
X such that

‖un‖ ≤M, ‖vn‖ ≤M, n ≥ 1,

‖un − vn‖ → 0 as n→∞,
‖Jun − Jvn‖ ≥ α0, n ≥ 1. (1.1)

12



Let β > 0 such that ‖un‖ ≥ β, ‖vn‖ ≥ β, for n ≥ 1. Such β exist, for
if there exist a subsequence {unk

} ⊂ X such that unk
→ 0 as n→ +∞,

then we see that vnk
→ 0. From the definition of duality map we

obtained that Junk
→ 0 and Jvnk

→ 0, and this contradicts (1.1).

Now set

xn =
un
‖un‖

, yn =
vn
‖vn‖

un, vn 6= 0. Then we have,

‖xn − yn‖ =
1

‖un‖‖vn‖
‖un‖vn‖ − ‖un‖vn‖

≤ 1

β2
(‖vn‖‖un − vn‖+ ‖‖vn‖ − ‖un‖‖‖vn‖)

≤ 2M

β2
‖un − vn‖ → 0 as n→ +∞

We also have 2 ≥ ‖Jxn + Jyn‖ ≥ 〈xn, Jxn + Jyn〉 which together with

〈xn, Jxn + Jyn〉 = ‖xn‖2 + ‖yn‖2 + 〈xn − yn, Jyn〉
= 2 + 〈xn − yn, Jyn〉 ≥ 2− ‖xn − yn‖

implies

lim
n→∞

‖Jxn + Jyn‖ = 2 i.e lim
n→∞

‖1

2
(Jxn + Jyn)‖ = 1. (1.2)

Now suppose there exist ε0 > 0 and a subsequence {xnk
}, {ynk

} ⊂ X
such that ‖Jxnk

− Jynk
‖ ≥ ε0, for n ≥ 1. Observing that ‖Jxnk

‖ =
‖Jynk

‖ = 1 and using the uniform convexity of X∗ we see that there
exist δ(ε0) > 0 such that ‖1

2
(Jxnk

+Jynk
)‖ ≤ 1−δ(ε0) which contradicts

(1.2). Therefore we have lim
n→∞

‖Jxn − Jyn‖ = 0, which implies

‖Jun − Jvn‖ = ‖J(‖un‖xn)− J(‖vn‖yn)‖
= ‖‖un‖Jxn − ‖vn‖Jyn‖
≤ ‖un‖‖Jxn − Jyn‖+ ‖vn‖‖‖un‖ − ‖vn‖‖
≤M‖Jxn − Jyn‖+ ‖un − vn‖ → 0 as n→ +∞.

This contradicts (1.1). Hence we have the result.

1.1.4 Duality maps of Lp Spaces (p > 1)

Proposition 1.12. The duality map on Lp([0, 1]), p > 1 is given by
J(0) = {0} and for f 6= 0

J(f) = {φf∗}
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where φf∗ ∈ (Lp)∗ = Lq is defined by

φf∗(g) =

∫ 1

0

f ∗(t)g(t)dt ∀g ∈ Lp

and

f ∗ =
|f |p−1signf

‖f‖p−2
p

Observe that when p ≥ 2, this f ∗ has the following expression:

f ∗ =
f |f |p−2

||f ||p−2
p

.

Proof. Now set Af = {φf∗}. By definition of the duality map

J(f) = {φ ∈ (Lp)∗ : φ(f) = ‖f‖‖φ‖, ‖f‖ = ‖φ‖}.

Let φ ∈ J(f), since φ ∈ (Lp)∗, then by Riez representation theorem
there exist a unique f ∗ ∈ Lq, 1

p
+ 1

q
= 1 p, q > 1 such that

φ(f) = 〈f, f ∗〉 =

∫ 1

0

f ∗(t)f(t) dt, ‖φ‖ = ‖f ∗‖.

Setting φ = φf∗ , we have

φf∗(f) = 〈f, f ∗〉 =

∫ 1

0

f ∗(t)f(t) dt, ‖φf∗‖ = ‖f ∗‖.

So we have

‖f‖‖f ∗‖ = φ∗f (f) =

∫ 1

0

f ∗(t)f(t) dt, ‖φ∗f‖ = ‖f‖ = ‖f ∗‖.

which implies ∫ 1

0

f ∗(t)f(t) dt = ‖f‖2, ‖f ∗‖q = ‖f‖p. (1.5)

We now show that f ∗(t) := |f(t)|p−1signf(t)

‖f‖p−2
p

satisfies (1.5). But we have

(∫ 1

0

|f ∗(t)|q dt

) 1
q

=

(∫ 1

0

|f(t)|q(p−1)

‖f‖(p−2)q
dt

) 1
q

=
1

‖f‖(p−2)

(∫ 1

0

|f(t)|q dt

) 1
q

=
‖f‖

p
q

‖f‖p−2
=
‖f‖p−1

‖f‖p−2
= ‖f‖p.
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Therefore ‖f ∗‖q = ‖f‖p. Also∫ 1

0

f ∗(t)f(t) dt =

∫ 1

0

|f(t)|p−1signf(t)

‖f‖p−2
p

f(t) dt

=
1

‖f‖p−2

∫ 1

0

|f(t)|p dt

=
‖f‖p

‖f‖p−2
= ‖f‖p‖f‖p = ‖f‖p‖f ∗‖q = ‖f‖‖φf∗‖.

Thus J(f) ⊂ Af . On the other hand for arbitrary h ∈ Lp([0, 1]),

φf∗(h) =

∫ 1

0

f ∗(t)h(t) dt, ‖φf∗‖ = ‖f ∗‖.

In particular

φf∗(f) =

∫ 1

0

g(t)f(t) dt

=

∫ 1

0

f(t)
|f(t)|p−1signf(t)

‖f‖p−2
p

dt

=
1

‖f‖p−2

∫ 1

0

|f(t)|p dt = ‖f‖2
p.

So we have φf∗(f) = ‖f‖p‖f‖p and ‖f‖p = ‖f ∗‖q so that ‖φf ∗‖ = ‖f‖p.
Thus Af ⊂ J(f). Therefore Af = J(f).

1.2 Convex Functions and Subdifferentials

In this section we present the basic properties of convex functions and
subdifferentials as we shall use them in the next chapter.

1.2.1 Basic notions of Convex Analysis

Definition 1.13. Let C be a non empty subset of a real norm linear
space X. The set C is said to be convex if for each x, y ∈ C and for
each t ∈ (0, 1) we have tx+ (1− t)y ∈ C.

Definition 1.14. Let C be a non empty convex subset of X. Then the
convex hull of C denoted by coC is the intersection of all convex sets
containing C. (Equivalently, convex hull of C is the set of all convex
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combinations of finite subsets of points of C).

Definition 1.15. Let C be a non empty convex subset of X. Let
f : C −→ R∪ {+∞}. Then f is said to be convex if for each t ∈ (0, 1)
and for all x, y ∈ C we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Moreover f is said to be proper if f is not identically +∞ (i.e ∃ x0 ∈ C
such that f(x0) ∈ R)

Definition 1.16. Let f : C −→ R ∪ {+∞} be a map. The effective
domain of f is defined by

D(f) = {x ∈ X : f(x) < +∞}.

The set
epi(f) = {(x, α) ∈ X × R : f(x) ≤ α}

is called the epigraph of f , while

Sα = {x ∈ X : f(x) ≤ α}

is called the section of f .

Proposition 1.17. A mapping f : X −→ R∪{+∞} is convex if and
only if its epigraph is convex.

Proposition 1.18. (Slope Inequality) Let I be an interval of R and
f : I −→ R be a convex function. Assume r1 < r2 < r3 with ri ∈ I for
i = 1, 2, 3. and f(r1), f(r2) are finite. Then

f(r2)− f(r1)

r2 − r1

≤ f(r3)− f(r1)

r3 − r1

≤ f(r3)− f(r2)

r3 − r2

.

Proposition 1.19. Suppose f : I −→ R is convex and derivable on I.
Then f ′ is increasing.

Proof. Let r < t we show that f ′(r) ≤ f ′(t). Now

f ′(r) = lim
s→r+

f(s)− f(r)

s− r
≤ f(t)− f(r)

t− r
≤ lim

s→r−

f(s)− f(t)

s− t
= f ′(t)

Definition 1.20. Let f : X −→ R∪ {+∞} be a map. Let x0 ∈ D(f),
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then f is lower semicontinuous at x0 if for each ε > 0 there exist δ > 0
such that f(x0)− ε < f(x) for all x ∈ B(x0, δ).

Proposition 1.21. Let f : X −→ R∪{+∞} be a map. Let x0 ∈ D(f),
then f is lower semicontinuous at x0 if and only if

lim inf f(xn) ≥ f(x0)

for all {xn} ⊂ X such that xn → x0.

Proposition 1.22. Let f : X −→ R ∪ {+∞} be a map. Then the
following are equivalent.

(a) f is lower semicontinuous,

(b) epi(f) is closed,

(c) Sα is closed for each α ∈ R.

Definition 1.23. Let f : X −→ R ∪ {+∞} be a map. Then f is
said to be coercive if

lim
‖x‖→∞

f(x) = +∞.

Proposition 1.24. Let f : X −→ R ∪ {+∞} be a map. Then f is
convex and l.s.c if and only if f is convex and weakly l.s.c.

Proof.

f is convex and l.s.c⇔ epi(f) is convex and closed

⇔ epi(f) is convex and weakly closed

⇔ f is convex and weakly l.s.c.

Theorem 1.25. Assume X is reflexive. Let f : X −→ R ∪ {+∞}
be proper, convex, coercive and l.s.c function on X. Then f has a
minimum on X. That is there exist x0 ∈ X such that

f(x0) = inf
x∈X

f(x).

Proof. Let η = inf
x∈X

f(x). Since f is proper we see that η < +∞.

Let {xn} ⊂ X such that f(xn) → η < +∞, then from the coercivity
condition of f we see that {xn} is bounded. Since X is reflexive, then
there exist x0 ∈ X and a subsequence {xnk

} such that xnk
⇀ x0. In
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view of proposition (1.24) f is weakly lower semi continuous. So we
have

η ≤ f(x0) ≤ lim inf f(xnk
) = lim

k→∞
f(xnk

) = η.

Therefore
f(x0) = η = inf

x∈X
f(x).

Theorem 1.26. Let f be proper, convex, and lower semi-continuous
on X. Then f is bounded from below by an affine function. i.e There
exist x∗ ∈ X∗ and a constant c ∈ R such that

f(x) ≥ 〈x, x∗〉+ c for all x ∈ X.

Proof. Let x0 ∈ D(f) and β ∈ R such that f(x0) > β. This is
possible since f is proper, i.e D(f) 6= ∅. Clearly (x0, β) /∈ X × R, also
in view of proposition (1.22) epi(f) is closed and convex, so by Hahn
Banach theorem there exists a closed hyperplane

H = {(x, λ) ∈ X × R : 〈x, x∗0〉+ γλ = α}

that separates epi(f) and (x0, β) i.e

〈x, x∗0〉+ γλ ≤ α ≤ 〈x0, x
∗
0〉+ γλ

Considering the left hand side of the inequality only, it is easy to see
that γ < 0, otherwise we arrived at contradiction. Therefore we have

λ ≥ α

γ
+ 〈x,−x0

γ
〉 for all (x, λ) ∈ epi(f).

Since for each x in X (x, f(x)) ∈ epi(f), we see that

f(x) ≥ 〈x, x∗〉+ c for all x ∈ X, where x∗ = −x0

γ
and c =

α

γ
.

Definition 1.27. Let X be Banach space. Let f : X −→ R ∪ {+∞}
be a function. Let x ∈ D(f) and v ∈ X, then we say that f has a
directional derivative at x in the direction of v 6= 0 if the limit

lim
t→0+

f(x+ tv)− f(x)

t
exist.

We denote by f
′
(x, v) the directional derivative of f at x in the direction

of v, and we write

f
′
(x, v) = lim

t→0+

f(x+ tv)− f(x)

t
.
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The function f : X −→ R is said to be Gâteaux differentiable at x ∈ X
if for all v ∈ X f

′
(x, v) exists in R and the function v 7→ f

′
(x, v) is

linear and continuous. We denote by DGf(x) the Gâteaux differential
of f at x and

〈DGf(x), v〉 := f
′
(x, v) for all v ∈ X.

1.2.2 Subdifferential of a Convex function

Definition 1.28. Let f : X −→ R ∪ {+∞} be a proper and convex
function. Let x ∈ D(f), then the subdifferential ∂f(x) of f at x is the
set

∂f(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) ∀y ∈ X}.

We remarked that if x is not in D(f) then ∂f(x) = ∅.

Proposition 1.29. Let X be proper and convex function which is
Gâteaux differentiable at x ∈ D(f) then

∂f(x) = {DGf(x)}.

Proof. To see this we pick y ∈ X. Convexity of f implies that

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x), 0 < t < 1.

Since f is Gâteaux differentiable at x we obtained that

〈y − x,DGf(x)〉 = lim
t→0+

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x).

Thus DGf(x) ∈ ∂f(x).
Conversely, let w∗ ∈ ∂f(x), then for any y ∈ X and t > 0

f(x+ ty)− f(x)

t
≥ 〈y, w∗〉.

Using the Gâteaux differentiability of f at x we obtained that

〈y,DGf(x)〉 ≥ 〈y, w∗〉 ∀y ∈ X

which implies DGf(x) = w∗ ∈ ∂f(x). Therefore ∂f(x) = {DGf(x)}.

Example 1. Define a function f : X −→ R ∪ {+∞} by

f(x) =
1

2
‖x‖2 ∀x ∈ X.
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Then f is proper, convex and continuous. Moreover ∂f(x) = J(x) for
each x ∈ X where J is the duality map on X.

Indeed choose first x∗ ∈ Jx. Then for any y ∈ x we have

〈y − x, x∗〉 = 〈y, x〉 − ‖x‖2 ≤ ‖y‖‖x‖ − ‖x‖2

≤ 1

2
‖y‖2 − 1

2
‖x‖2

= f(y)− f(x).

Thus we have x∗ ∈ ∂f(x). Conversely, for x∗ ∈ ∂f(x) we have

〈y − x, x∗〉 ≤ f(y)− f(x) ∀y ∈ X.

So considering x+ ty, t ∈ (0, 1) we get

〈x∗, y〉 ≤ 1

2t
(‖x+ ty‖2 − ‖x‖2) ≤ ‖x‖‖y‖+

t

2
‖y‖.

As t → 0+ we have 〈x∗, y〉 ≤ ‖x‖‖y‖, which implies ‖x∗‖ ≤ ‖x‖. Also
using the fact that x∗ ∈ ∂f(x) and considering x+ tx ∈ X we have

2t〈−x, x∗〉 ≤ ‖x− tx‖2 − ‖x‖2 = (t2 − 2t)‖x‖2, t > 0.

So we have (2− t)‖x‖2 ≤ 2〈x, x∗〉. Now as t→ 0+ we obtained

‖x‖2 ≤ 〈x, x∗〉 ≤ ‖x‖‖x∗‖ which implies ‖x‖ ≤ ‖x∗‖.

Therefore we have ‖x‖ = ‖x∗‖ and 〈x, x∗〉 = ‖x‖2. Thus x∗ ∈ J(x).

Example 2. Let K be a closed, convex subset of X. Define a map Ik
on X by

Ik(x) =

{
0 for x ∈ K,

+∞ for x /∈ K.

It is easy to see that Ik is convex and lower semi-continuous (since K
is convex and closed). Futhermore for any x ∈ K we get

∂Ik(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ 0, ∀y ∈ X}.

1.2.3 Jordan Von Neumann Theorem for the Existence of
Saddle point

We now state and prove Jordan von Neumann Theorem for the exis-
tence of saddle point for an upper semi-continuous function defined on
a compact convex subset of a Banach space. But before that we state
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Kakutani fixed point theorem without proof.

Theorem 1.30. (Kakutani) Let K be a nonempty compact convex
subset of a Banach space and let

T : K −→ 2K

be a mapping having a closed graph (i.e., T is upper semicontinuous)
and such that for every x ∈ K, T (x) ⊂ K is nonempty, closed and
convex. Then there exists at least one x ∈ K such that x ∈ T (x).

Theorem 1.31. (J.Von Neumann) Let X and Y be real Banach
spaces and let U ⊂ X and V ⊂ Y be compact convex subsets of X and
Y , respectively. Let H : U × V −→ R be a continuous, convex-concave
function (i.e H(u, v) is convex as a function of u and concave as a
function of v). Then there exists (u0, v0) ∈ U × V such that

H(u0, v) ≤ H(u0, v0) ≤ H(u, v0) ∀u ∈ U and ∀ v ∈ V.

Such a point (u0, v0) is called the saddle point of the function H.

Proof. Define the mappings T1 : U −→ V , T2 : V −→ U and

T : U × V −→ 2U×V

respectively by

T1(u) =
{
v ∈ V : H(u, v) ≥ H(u,w) ∀ w ∈ U

}
,

T2(v) =
{
u ∈ U : H(u, v) ≤ H(w, v) ∀ w ∈ V

}
,

T (u, v) = T2(v)× T1(u).

Since H is continuous we see that the graph of T ;

Graph(T ) =
{(

(u, v), (x, y)
)
∈ (U × V )2 : (x, y) ∈ T (u, v)

}
,

is closed. Also for each (u, v) ∈ U × V , T (u, v) is convex. To see this it
is enough to show that T1(u) and T2(v) are convex. Let u1, u2 ∈ T2(v)
and λ ∈ (0, 1). Since H is convex as a function of u we see that

H(λu1 + (1− λ)u2, v) ≤ λH(u1, v) + (1− λ)H(u2, v)

≤ λH(w, v) + (1− λ)H(w, v)

= H(w, v) ∀w ∈ V.
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which implies λu1+(1−λ)u2 ∈ T2(v). So we have T2(v) is convex. Sim-
ilarly we have T1(u) is convex, and hence T (u, v) is convex. Therefore
by theorem (1.30) there exists (u0, v0) ∈ U × V such that

(u0, v0) ∈ T (u0, v0) = T2(v0)× T1(u0)

which implies

H(u0, v) ≤ H(u0, v0) ≤ H(u, v0) ∀ u ∈ U and ∀ v ∈ V.

The proof is complete.
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Chapter 2

Monotone operators.
Maximal monotone
operators.

In this chapter we introduce the concept of maximal monotone opera-
tors, alongside with the result concerning this theory and its relation-
ship with convex analysis.

2.1 Maximal monotone operators

2.1.1 Definitions, Examples and properties of Monotone
Operators

Throughout this chapter X will denote real Banach space with dual
X∗. Notations for norms, convergence, and duality pairing will be the
same as introduced in chapter 1, section 1.1. If X is Hilbert space we
shall identify it with its own dual unless otherwise stated.

If X and Y are two linear spaces, we will denote by X×Y the cartesian
product. The elements of X × Y will be written as (x, y) where x ∈ X
and y ∈ X. If A is multivalued operator from X to Y we may identify
it with its graph in X × Y . i.e

{(x, y) ∈ X × Y : y ∈ Ax}.
Conversely, if A ⊂ X × Y then we define

Ax = {y ∈ Y : (x, y) ∈ A},
R(A) = ∪

x∈D(A)
Ax,

D(A) = {x ∈ X : Ax 6= ∅},
A−1 = {(y, x) : (x, y) ∈ A}.

where Ax, D(A), R(A), and A−1 are image of x, domain of A, range
of A and inverse of A respectively. We shall identify operators from X
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to Y with their graphs in X × Y and so we can equivalently speak of
subsets of X × Y instead of operators from X to Y . If A,B ⊂ X × Y
and λ is a real number, we set

λA = {(x, λy) : (x, y) ∈ A},
A+B = {(x, y + z) : (x, y) ∈ A, (x, z) ∈ A}.

Definition 2.1. Let A ⊂ X ×X∗ be multivalued operator. Then A is
said to be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0 ∀ (xi, yi) ∈ A. i = 1, 2.

A monotone set A ⊂ X ×X∗ is said to be maximal monotone if it is
not properly contained in any other monotone subset of X × X∗. We
note that if A is single valued, then A is monotone if

〈x1 − x2, Ax1 − Ax2〉 ≥ 0 ∀ x1, x2 ∈ D(A).

We now give some examples of monotone operators

Example 1. Let X be a real Banach space. Then the duality map as
defined in chapter 1, section 1.1. is monotone.

Indeed for any (xi, yi) ∈ J, i = 1, 2. we have

〈x1 − x2, y1 − y2〉 = ‖x1‖2 + ‖x2‖2 − 〈x1, y2〉 − 〈x2, y1〉
≥ ‖x1‖2 + ‖x2‖2 − ‖x1‖‖y2‖ − ‖x2‖‖y1‖
= ‖x1‖2 + ‖x2‖2 − 2‖x1‖‖x2‖
= (‖x1‖ − ‖x2‖)2 ≥ 0.

Example 2. Every non decreasing function on R is monotone.

To see this, let f : R −→ R be a non decreasing function. Then for
arbitrary x, y ∈ R with x ≤ y we have f(x) ≤ f(y). Thus we see that

〈y − x, f(y)− f(x)〉 ≥ 0 for all x, y ∈ R,

which shows the monotonicity of f .

Example 3. Let A be n × n matrix with real entries. Consider the
function g : Rn −→ Rn defined by g(x) = Ax. Then g is monotone if
and only if A is positive semi definite.

Example 4. Let H be a real Hilbert space, I the identity map of H
and T : H −→ H be a non expansive map (i.e, ‖Tx−Ty‖ ≤ ‖x− y‖).
Then the operator I − T is monotone.
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It follows that every orthogonal projection of a Hilbert space is mono-
tone.

Let x, y ∈ H, then

〈x− y, (I − T )x− (I − T )y〉 = 〈x− y, (x− y)− (Tx− Ty)〉
= ‖x− y‖2 − 〈x− y, Tx− Ty〉
≥ ‖x− y‖2 − ‖x− y‖‖Tx− Ty‖
≥ ‖x− y‖2 − ‖x− y‖2 = 0.

Here we have used Cauchy inequality and the fact that T is non ex-
pansive. Thus we have I − T is monotone on H.

Example 5. Let U be an open convex subset of of a real Banach
space X. Let f : U −→ R be convex and differentiable on U . Then
f ′ : U −→ X∗ is monotone.

Proof. Let x, y ∈ U . Define I = {s ∈ R : x+ s(y − x) ∈ U}.
Claim: I is an interval of R and 0, 1 ∈ I.

To see this let s1, s2 ∈ I, t ∈ (0, 1), then we have

x+ s1(y − x) ∈ U and x+ s2(y − x) ∈ U.

Now, since U is convex we have

ts1 + (1− t)s2 = t(x+ s1(y − x)) + (1− t)(x+ s2(y − x)) ∈ U.

So we see that I is an interval of R. Now define h : I −→ R by

h(s) = f(x+ s(y − x)).

Clearly h is convex and derivable (since f is convex and derivable).
Thus we have from proposition (1.19) that h′ is increasing on I. Thus
h′(1) ≥ h′(0). We also observed that h′(s) = 〈f ′(x+ s(y − x)), y − x〉.
Therefore we have

0 ≤ h′(1)− h′(0) = 〈f ′(y), y − x〉 − 〈f ′(x), y − x〉
= 〈f ′(y)− f ′(x), y − x〉.

Which shows the monotonicity of f ′.

Definition 2.2. Let A be a single valued operator. Then A is said to be
hemi-continuous if it is weakly continuous in every direction, i.e if for all
x1, x2, x ∈ X, the function R −→ R defined by λ 7−→ 〈x,A(x1 + λx2)〉
is continuous on R.
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A is said to be coercive if

lim
n→∞

〈xn − x0, yn〉
‖xn‖

= +∞. (2.0)

for some x0 ∈ X and for all (xn, yn) ∈ A such that lim
n→∞

‖xn‖ = +∞.

Proposition 2.3. Let A ⊂ X ×X∗ be maximal monotone. Then

(a) A is weakly strongly closed. i.e if (xn, yn) ∈ A such that xn ⇀ x
and yn → y, then (x, y) ∈ A.

(b) A−1 is maximal monotone.

(c) For each x ∈ D(A), Ax is a closed, convex subset of X∗.

Proof. (a) Let {xn} ⊂ X such that xn ⇀ x and yn → y. Then
from the inequality

〈xn − u, yn − v〉 ≥ 0 ∀ (u, v) ∈ A,

we have

0 ≤ 〈xn − u, yn − v〉 = 〈xn, yn〉 − 〈xn, v〉 − 〈x, yn〉+ 〈u, v〉.

Now using the weak and weak star convergence in X we see that

0 ≤ lim
n→∞
〈xn − u, yn − v〉 = 〈x− u, y − v〉 ∀ (u, v) ∈ A.

Since A is maximal monotone we see that (x, y) ∈ A.

(b) This follows directly from the duality map and monotonicity of A.

(c) To show that Ax is a closed subset of X∗ we set xn = x ∀ n ≥ 1.
Then we see that the results follows directly from (a) above. Now to
show that Ax is a convex subset X∗. Let x0 ∈ X, y1, y2 ∈ Ax and
λ ∈ [0, 1]. Then from the inequalities

〈u− x0, v − y1〉 ≥ 0, 〈u− x0, v − y2〉 ≥ 0 ∀ (u, v) ∈ A,

we have ∀ (u, v) ∈ A,

〈u− x0, v − (λy1 + (1− λ)y2)〉 = λ〈u− x0, v − y1〉
+ (1− λ)〈u− x0, v − y2〉 ≥ 0.

Now define

Âx =

{
Ax, x 6= x0,

Ax ∪ {λy0 + (1− λ)y1}, x = x0.
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Then we see that Â is monotone, and since A is maximal monotone we
conclude that Â = A, which implies

λy1 + (1− λ)y2 ∈ Ax0.

Hence Ax is a convex subset of X∗ for each x ∈ D(A).

2.1.2 Rockafellar’s Characterization of Maximal Monotone
Operators

Before stating the Rockafellar’s Theorem for the Characterization of
Maximal Monotone Operators we first prove the following results.

Lemma 2.4. Let X be a reflexive Banach space.

(a) Assume that M ⊂ X is bounded and A ⊂ M ×X∗ is monotone.
Then for each x∗ ∈ X∗ there exist x ∈ coM such that

〈u− x, v − x∗〉 ≥ 0 ∀ (u, v) ∈ A.

(b) Let A ⊂ X ×X∗ be monotone and assume that the range of A
denoted by R(A) is bounded. Then for each x ∈ X, there exist x∗ ∈
coR(A) such that

〈u− x, v − x∗〉 ≥ 0 ∀ (u, v) ∈ A.

Proof. Let x∗ ∈ X∗ be fixed. For each (u, v) ∈ A define

X(u, v) = {x ∈ coM : 〈u− x, v − x∗〉 ≥ 0}.

Since u ∈ D(A) ⊂ M ⊂ coM , we easily see that X(u, v) 6= ∅. Also for
each (u, v) ∈ A, X(u, v) is a closed and convex subset of coM . Moreover
coM is a closed, convex and bounded subset of reflexive space, so its
is weakly compact. Thus to show that⋂

(u,v)∈A

X(u, v) 6= ∅

it is enough to show that
n⋂
i=1

X(ui, vi) 6= ∅

for any finite number (ui, vi) ∈ A, i = 1, 2, ...n. Now consider the
compact n-simplex convex subset of Rn Cn defined by

Cn = {α ∈ Rn :
n∑
i=1

αi = 1, αi ≥ 0 ∀ i = 1, 2, ...n}.
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Define a continuous function ψ : Cn × Cn −→ R by

ψ(α, β) =
n∑
i=1

βi〈x(α)− ui, vi − x∗〉, α, β ∈ Cn,

Where x(α) =
∑n

j=1 αjuj. Clearly for fixed β, ψ is convex and for fixed

α, ψ is concave, so by theorem (1.31) there exist α0, β0 ∈ Cn such that

ψ(α0, β) ≤ ψ(α0, β0) ≤ ψ(α, β0), ∀ α, β ∈ Cn.

In particular taking α = β0 we see that

ψ(α0, β) ≤ ψ(β0, β0) for all β ∈ Cn.

Using the monotonicity of A we obtained that

ψ(α, α) =
n∑
i=1

αi〈x(α)− ui, vi − x∗〉

=
n∑
j=1

n∑
i=1

αiαj〈uj − ui, vi − x∗〉

=
1

2

n∑
j=1

n∑
i=1

αiαj〈uj − ui, vi − x∗〉 −
1

2

n∑
j=1

n∑
i=1

αiαj〈uj − ui, vj − x∗〉

= −1

2

n∑
j=1

n∑
i=1

αiαj〈uj − ui, vj − vi〉 ≤ 0.

So we have
ψ(α0, β) ≤ ψ(α, α) ≤ 0 for all β ∈ C.

Taking β with βj = 0 for j 6= i and βi = 1 for i = j we have

〈x(α0)− ui, vi − x∗〉 ≤ 0, i = 1, 2, ...n

which implies x(α0) ∈
⋂n
i=1X(ui, vi).

(b) Since X is reflexive we identify X∗∗ with X. Consider

A−1 : X∗ −→ X.

Then A−1 is monotone and D(A−1) = R(A) which is bounded by as-

sumption, so by (a) above, for each x ∈ X there exist x∗ ∈ CoR(A)
such that

〈u− x, v − x∗〉 ≥ 0 ∀ (u, v) ∈ A.
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Remark: Let us now give an example to illustrate that the boundedness
condition in the above lemma is crucial. Consider the function f :
R −→ R defined by f(x) = c ∀ ∈ R. Clearly f is monotone and
D(A) = R which is not bounded. Moreover if we take y = c− 1, then
we see that there is no x ∈ R such that

〈(u− x), (c− (c− 1))〉 ≥ 0 for all u ∈ R.

i.e there is no x ∈ R such that u ≥ x for all u ∈ R.

Theorem 2.5. Let X be a real reflexive Banach space and K ⊂ X
be non-empty closed and convex. Assume A ⊂ K ×X∗ is monotone
with 0 ∈ D(A) and that B : K −→ X∗ is monotone, hemicontinuous,
bounded on bounded subsets and coercive with x0 = 0, then there exist
x ∈ X such that

〈u− x, v +Bx〉 ≥ 0 for all (u, v) ∈ A.

Proof. We divide the proof into two parts.

(a) Here we assume A is finite. Define P = coD(A) and coR(A). Since
A is monotone in P ×Q, by Zorns lemma we see that A has a maximal
extension Â on P × Q. let x ∈ P , since R(Â) is bounded then by
lemma (2.4) there exist x∗ ∈ Q such that

〈u− x, v − x∗〉 ≥ 0 for all (u, v) ∈ Â.

which implies (x, x∗) ∈ Â, since Â is maximal monotone. So we have

D(Â) = P . Define

A1 = {(x, y +Bx) : (x, y) ∈ Â},

clearly A1 is monotone and D(A1) = P , again by lemma (2.4) for each
x∗ ∈ X∗ there exist x ∈ P such that

〈u− x,w − x∗〉 ≥ 0 for all (u, v) ∈ A1.

In particular for x∗ = 0 there exist x ∈ P such that

〈u− x,w〉 ≥ 0 for all (u, v) ∈ A1.

so we have
〈u− x, v +Bu〉 ≥ 0 for all (u, v) ∈ Â. (2.1)
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Now for fixed (u, v) ∈ Â, define Ut = x + t(u − x), t ∈ (0, 1). Since

D(A1) = P is convex, then we see that there exist vt : (ut, vt) ∈ Â. So
from (2.1) we have

0 ≤ 〈ut − x, vt +But〉 = t〈u− x, vt +But〉, t ∈ [0, 1].

Thus we have
〈u− x, vt +But〉 ≥ 0 t ∈ (0, 1]. (2.2)

Using the monotonicity of Â we have

0 ≤ 〈u− ut, v − vt〉 = (1− t)〈u− x, v − vt〉, t ∈ [0, 1].

which implies
〈u− x, v − vt〉 ≥ 0, t ∈ [0, 1). (2.3)

(2.2) and (2.3) yields

〈u− x, v +B(x+ t(u− x))〉 ≥ 0.

Hemi-continuity of B implies that

〈u− x, v +Bx〉 ≥ 0 for all (u, v) ∈ A.

We note that in this proof we did not use the assumption that 0 ∈
D(A).

(b) Let A satisfies the assumptions of the theorem and A2 be the max-
imal monotone extension of A in K ×X∗. Define

E = {G ∈ A2 : G is finite, monotone and 0 ∈ D(G)},

for each G ∈ H we set

BG = {(x,Bx) : x ∈ K, 〈u− x, v +Bx〉 ≥ 0 ∀ (u, v) ∈ G}.

From part (a) of the proof we see that for each G ∈ H BG 6= ∅. Now
let x ∈ BG then

0 ≤ 〈u− x, v +Bx〉
= 〈u, v〉+ 〈u,Bx〉 − 〈x,Bx〉 − 〈x, v〉 ∀(u, v) ∈ G,

which implies

〈x,Bx〉 ≤ −〈x, v〉 ≤ ‖x‖‖v‖, for v ∈ G0.

Thus we have

〈x,Bx〉
‖x‖

≤ ‖v‖, for all x ∈ D(BG).
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Since B is coercive we see that D(BG) is bounded, which implies that
BG is bounded for each G ∈ H. Since X is reflexive and BG is bounded
then the weak closure BG

w
of BG is weakly compact. Also for each

G1, G2 ∈ H, BG1 ∩ BG2 = BG1∪G2 6= ∅. So for any finite number
G1, G2...Gn

n⋂
i=1

BGi
6= ∅.

Thus we have ⋂
G∈H

BG
w 6= ∅

i.e There exist x0 ∈ X, x∗0 ∈ X∗ such that

[x0, x
∗
0] ∈

⋂
G∈H

BG
w
.

Since K is closed and convex we see that K
w

= K and BG
w ⊂ K ×X∗,

which implies that x0 ∈ K. Our next goal is to show that

〈u− x0, v +Bx0〉 ≥ 0 for all (u, v) ∈ A2.

Before that we first show that (x0,−x∗0) ∈ A2. We remarked that
(x,Bx) ∈ BG if and only if

〈u− x,−v −Bx〉 ≤ 0 for all (u, v) ∈ G. (2.4)

For (xi, Bxi) ∈ H i = 1, 2...n and λi ≥ 0, i = 1, 2, ...n with
∑n

i=1 λi = 1.
We set (x, y) =

∑n
i=1 λi(xi, Bxi). Using the monotonicity of B and

(2.4) we have〈
u−

n∑
i=1

λixi,−v −
n∑
j=1

λjBxj

〉
=

n∑
i=1

n∑
j=1

λiλj〈u− xi,−v −Bxj〉

=
1

2

n∑
i=1

n∑
j=1

λiλj(〈u− xj,−v −Bxj〉+ 〈xj − xi, Bxi −Bxj〉

+ 〈u− xi,−v −Bxi〉) ≤ 0.

Thus we have

〈u− x,−v − y〉 ≤ 0 for all (x, y) ∈ coBG and [u, v] ∈ G.

Obviously we can extend the above inequality to coBG. Since (x0, x
∗
0) ∈

BG
w ⊂ coBG

w
= coBG. We see that

〈u− x0,−v − x∗0〉 ≤ 0 for all (u, v) ∈ G.
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Since A is maximal monotone and x0 ∈ K we have (x0,−x∗0) ∈ A2. We
choose w ∈ A20 and we define for any [u, v] ∈ A2 the set G0 ∈ H by

G0 = {(0, w), (u, v), (x0,−x∗0)}.

For any x ∈ D(BG0) we have in particular that

〈u− x0, v +Bx〉 ≥ 0 and 〈x0 − x,−x∗0 +Bx〉 ≥ 0. (2.5)

Set ut = x0 + t(u− x0), t ∈ (0, 1). Using

ut − x = (1− t)(x0 − x) + t(u− x), t ∈ (0, 1),

and the monotonicity of B we get

0 ≤ 〈ut − x,But−Bx〉 = t〈u− x,But−Bx〉+(1−t)〈x0 − x,But−Bx〉.

This together with (2.5) gives

0 ≤ 〈u− x, v +But〉+ 〈x0 − x,But − x∗0〉.

So for x = x0 we have

0 ≤ 〈u− x0, v +B(x0 + t(u− x0))〉.

Letting t→ 0+ and using the Hemi-continuity of B we get the desired
result. i.e

〈u− x0, v +Bx0〉 ≥ 0 for all (u, v) ∈ A2.

The proof is complete.

Theorem 2.6. Assume X and X∗ are reflexive and strictly convex.
Let J denote the duality mapping on X and assume that A ⊂ X ×X∗
is monotone, then A is maximal monotone if and only if

R(λJ + A) = X∗ (2.6)

for all λ > 0 (equivalently for some λ > 0 ).

Proof. Suppose (2.6) is satisfied for some λ > 0. Let (x0, y0) ∈ X ×X∗
such that

〈u− x0, v − y0〉 ≥ 0 for all (u, v) ∈ A. (2.7)

From the hypothesis we see that there exist (x1, y1) ∈ A such that

λJx1 + y1 = λJx0 + y0. (2.8)

Replacing (u, v) by (x1, y1) in (2.7) we have

〈x1 − x0, λJx0 − λJx1〉 ≥ 0.
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i.e,
〈x0 − x1, λJx0 − λJx1〉 ≤ 0

Also by the monotonicity of J we get 〈x1 − x0, Jx1 − Jx0〉 = 0. Thus
we have

0 ≥ 〈x1 − x0, Jx1 − Jx0〉 ≥ (‖x1‖ − ‖x0‖)2 ≥ 0.

which implies ‖x1‖ = ‖x0‖ and 〈x1, Jx0〉 = ‖x1‖2, 〈x0, Jx1〉 = ‖x2‖2.
The last two equations implies that Jx0 ∈ Jx1 and since X∗ is strictly
convex we have Jx0 = Jx1. Using the fact that X is reflexive and
X∗ is strictly convex we obtained that x0 = x1. This and (2.8) gives
(x0, x1) = (x1, y1) ∈ A.
Now assume A is maximal monotone, with out loss of generality we may
assume that 0 ∈ D(A), otherwise we shift the domain ofA. Let x∗ ∈ X∗
and take λ = 1, define an operator B̂ :−→ X∗ by B̂x = Jx−x∗, x ∈ X.
We claimed that the operator B̂ is

(a) Monotone

(b) Hemi-continuous

(c) Bounded on bounded sets

(d) Coercive

Monotonicity of B̂ follows directly from that of J . For the hemi-
continuity we first note that J is demi-continuous (see proposition
1.11). Let x1, x2, x ∈ X, Define a function g : R −→ R by

g(α) = 〈x, B̂(x1 + αx2)〉 = 〈x, J(x1 + αx2)− x∗〉, α ∈ R.

We shall show that g is continuous. Let {αn}n≥1 ⊂ R such that αn → α.
Then from the demi-continuity of J we see that

w∗-limJ(x1 + αnx2) = J(x1 + αx2)

Since X is reflexive we see that g(αn) → g(α), which shows that g is

continuous. So we get that B̂ is hemi-continuous.

Also the boundedness of B̂ follows from that of J (see proposition 1.11).
Now

lim
‖xn‖→∞

〈xn, ˆBxn〉
‖xn‖

= lim
‖xn‖→∞

〈xn, Jxn − x∗〉
‖xn‖

≥ lim
‖xn‖→∞

(‖xn‖−‖x∗‖) = +∞.

Which shows that B̂ is coercive. Therefore by Theorem (2.5) there
exist x ∈ X such that

〈u− x, v +Bx〉 ≥ 0, i.e 〈u− x, Jx− x∗ + v〉 ≥ 0 for all (u, v) ∈ A.
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Which implies (x, x∗ − Jx) ∈ A since A is maximal monotone. Thus
we have x∗ − Jx ∈ A i.e x∗ ∈ (A+ J)(x). The proof is complete.

Corollary 2.7.Let X be a reflexive Banach space and A ⊂ X ×X∗
be maximal monotone. Assume B : X −→ X∗ is monotone, hemi-
continuous and bounded. Then A+B is maximal monotone.

Proof. Without loss of generality we assume 0 ∈ D(A), this is achieved
by shifting the domain of A. Also by Theorem (1.6) we can assume
that both X and X∗ are strictly convex. Let x∗ ∈ X∗, define a new
operator B̂ : X −→ X∗ by

B̂x = Bx+ Jx− x∗, for x ∈ X.

To see that B̂ satisfies the conditions of B in theorem (2.5) we follow
the same way as in Theorem (2.6) above. So there exists x ∈ X such
that

〈u− x,Bx+ Jx− x∗ + v〉 ≥ 0 for all (u, v) ∈ A.

Since A is maximal monotone we have x∗ − Bx − Jx ∈ Ax i.e x∗ ∈
(A+B + J)(x), which implies that X∗ ⊂ R(A+B + J). The result
follows from Theorem (2.6).

Theorem 2.8. Let ϕ be a proper, convex and l.s.c function on X.
Then ∂ϕ is maximal monotone.

Proof. We first show that ∂ϕ is monotone. Let x∗i ∈ ∂ϕ(xi), i = 1, 2.
Then we have

ϕ(x1)− ϕ(x2) ≥ 〈x1 − x2, x
∗
2〉 and ϕ(x2)− ϕ(x1) ≥ 〈x2 − x1, x

∗
1〉

which implies
〈x1 − x2, x

∗
1 − x∗2〉 ≥ 0.

So we have ∂ϕ is monotone.

We now show that ∂ϕ is maximal monotone. By Theorem (2.6) it is
enough to show that R(J + ∂ϕ) = X∗. Let x∗0 ∈ X∗ be fixed, define a
function f by

f(x) =
1

2
‖x‖2 + ϕ(x)− 〈x, x∗0〉, x ∈ X.

Clearly f is proper, convex and l.s.c. Moreover by Theorem (1.26)
there exist x∗ ∈ X∗ and c ∈ R such that ϕ(x) ≥ 〈x, x∗〉 + c for all
x ∈ X. With this we easily see that lim

‖x‖→∞
f(x) = +∞. So by Theorem
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(1.25) f has a minimum point, i.e there exists x0 ∈ D(f) such that
f(x)− f(x0) ≥ 0. Equivalently

ϕ(x)− ϕ(x0) ≥ 〈x− x0, x
∗
0〉+

1

2
‖x0‖2 − 1

2
‖x‖2

≥ 〈x− x0, x
∗
0〉 − 〈x− x0, Jx〉, x ∈ X,

where we have used the fact that J is the subdifferential of x 7−→ 1
2
‖x‖2.

For arbitrary u ∈ X set xt = x0 + t(u − x0), t ∈ (0, 1), then from the
above inequality we have

ϕ(u)− ϕ(x0) =
1

t
(ϕ(xt)− ϕ(x0))

≥ 1

t
〈xt − x0, x

∗
0〉 −

1

t
〈xt − x0, Jxt〉

= 〈u− x0, x
∗
0〉 − 〈u− x0, Jxt〉.

Observing that J is demi-continuous (see proposition 1.11) we get for
t→ 0+

ϕ(u)− ϕ(x0) ≥ 〈u− x0, x
∗
0 − Jx0〉 for all u ∈ X,

which proves x∗0− Jx0 ∈ ∂ϕ(x), i.e x∗0 ∈ (J + ∂ϕ)(x0).

2.1.3 Topological Conditions for Maximal Monotone Oper-
ators

The next theorem contains a topological conditions that implies max-
imality of a monotone operator.

Theorem 2.9. Let X be a reflexive Banach space and A : X −→ X∗

be monotone and hemi-continuous, then A is maximal monotone.

Proof. Suppose A is not maximal monotone, then there exist x0 ∈ X
and y0 ∈ X∗ such that y0 6= x0 and

〈x− x0, Ax− y0〉 ≥ 0 for all x ∈ X. (2.9)

Set xt = tx0 + (1 − t)x for t ∈ (0, 1) and x ∈ X. Then xt − x0 =
(1− t)(x− x0). Putting this in (2.9) we have

0 ≤ (1− t)〈x− x0, Axt − y0〉 for ll t ∈ [0, 1].

i.e
0 ≤ 〈x− x0, A(tx0 + (1− t)x)− y0〉 for ll t ∈ [0, 1).
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Hemi-continuous of A implies that

〈x− x0, Ax0 − y0〉 ≥ 0 for ll x ∈ X.

Thus we have y0 = Ax0 which contradicts our assumption. Therefore
A is maximal monotone.

We now give an Surjectivity result result for maximal monotone oper-
ators

Theorem 2.10. If A ⊂ X ×X∗ is maximal monotone and coercive.
Then R(A) = X∗.

Proof. Without loss of generality we assume that X and X∗ are
strictly convex. Let x∗0 ∈ X∗, then by Theorem (2.6) for each λ > 0
there exist xλ ∈ D(A) and yλ ∈ Axλ such that

λJxλ + yλ = x∗0 (2.10)

Let x0 ∈ X such that (2.0) is satisfied then from (2.10) we get

〈xλ − x0, x
∗
0〉 = 〈xλ − x0, yλ〉+ λ‖xλ‖2 − λ〈x0, Jxλ〉.

Which implies

〈xλ − x0, yλ〉
‖xλ‖

+ λ‖xλ‖ =
〈xλ − x0, x

∗
0〉

‖xλ‖
+
λ〈x0, Jxλ〉
‖xλ‖

≤ λ‖xλ‖+ ‖x∗0‖+
‖x0‖‖x∗0‖
‖xλ‖

.

and so
〈xλ − x0, yλ〉
‖xλ‖

≤ ‖x∗0‖ +
‖x0‖‖x∗0‖
‖xλ‖

.

Coercivity of A implies that {xλ}λ>0 is bounded as λ → 0+. So there
exist a subsequence {xλn}n≥1 ∈ X and x̂0 ∈ X such that xλn ⇀ x̂0.
From (2.10) and boundedness {xλ} as λ → 0+ and taking λ = λn
we see that yλn → x∗0. Using the monotonicity of A we have for all
[u, v] ∈ A

〈xλn − u, yλn − v〉 ≥ 0 for all n ≥ 1.

letting n→ +∞ we have

〈x̂0 − u, x∗0 − v〉 ≥ 0 for all (u, v) ∈ A.

Which implies [x̂0, x
∗
0] ∈ A since A is maximal monotone. Therefore we

have x∗0 ∈ R(A).
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Corollary 2.11. Let X be a reflexive space. Then the duality mapping
is maximal monotone and R(J) = X∗

Proof. It is very easy to see because J is demi-continuous (see propo-
sition 1.11.) which implies hemi-continuity, moreover J is monotone,
so by Theorem (2.9) we see that J is maximal monotone. In addition J
is coercive, so by Theorem (2.10) we have R(J) = X∗ i.e J is surjective.

2.2 The sum of two maximal monotone operators

A problem of great interest because of its application to the existence
theory for perturbed partial differential equations is to know whether
the sum of two maximal monotone operators is again maximal mono-
tone. Before answering this question let us first establish some facts
related to Yosida approximation of maximal monotone operators.

2.2.1 Resolvent and Yosida Approximations of Maximal Mono-
tone Operators

Let us assume that X is reflexive, strictly convex Banach space with
strictly convex dual X∗. Let A ⊂ X ×X∗ be maximal monotone, then
for all x ∈ X the inclusion

0 ∈ J(xλ − x) + λAxλ (2.11)

has solution xλ ∈ X. We also observe that xλ is unique. For if there
exist yλ ∈ X such that

0 ∈ J(yλ − x) + λAyλ

then we have

J(xλ − x) + λy1 = J(yλ − x) + λy2 for some y1 ∈ Axλ, y2 ∈ Ayλ.

which implies
J(xλ − yλ) = λ(y2 − y1).

From the monotonicity of A we see that

‖xλ − yλ‖2 = 〈xλ − yλ, J(xλ − yλ) = 0,

which implies xλ = yλ. So xλ is unique. Define

Jλ : X −→ X by Jλx = xλ for all x ∈ X,
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and

Aλ : X −→ X∗ by Aλx =
J(x− xλ)

λ
for all x ∈ X.

Aλ is called the Yosida approximation of the operator A and it plays
an important role in the smooth approximation of A.

2.2.2 Basic Properties of Yosida Approximations

Before we give some basic properties of Aλ and Jλ we first state the
following lemma which we shall use in the next result.

Lemma 2.12. Let X be a reflexive space, and A ⊂ X ×X∗ be max-
imal monotone. Let (un, vn) ∈ A such that un ⇀ u, vn ⇀ v, and
either

lim sup〈un − um, vn − vm〉 ≤ 0 (2.14.)

or
lim sup〈un − u, vn − v〉 ≤ 0.

Then [u, v] ∈ A.

Proof. Assume un ⇀ u, and vn ⇀ v. From the monotonicity of A we
get

lim sup〈un − um, vn − vm〉 ≥ 0,

this together with (2.14) give

lim
n→∞
〈un − um, vn − vm〉 = 0.

Let nk → +∞ be such that 〈unk
, vnk
〉 → β. (This is possible since

〈un, vn〉 is bounded in R). Now,

〈unk
− unp , vnk

− vnp〉 = 〈unk
, vnk
〉 − 〈unk

, vnp〉 − 〈unp , vnk
〉+ 〈unp , vnp〉.

Using the weak convergence in X(which is reflexive) we have as k, p→
+∞ that

2β − 2〈u, v〉 = lim sup〈unk
− umk

, vnk
− vmk

〉 ≤ 0.

i.e β ≤ 〈u, v〉. Using the monotonicity of A we have

〈u− x, v − y〉 ≥ lim sup〈un − x, vn − y〉 ≥ 0 for all [x, y] ∈ A,

which implies (u, v) ∈ A since A is maximal monotone.

Proposition 2.13. Let X and Y be strictly convex and reflexive. Then
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(a) Aλ is single valued, monotone, bounded and demi-continuous.

(b) ‖Aλx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax} for x ∈ D(A), λ > 0.

(c) Jλ : X −→ X is bounded on bounded sets and

lim
λ→0

Jλx = x, ∀ x ∈ coD(A).

(d) If λn → 0+, xn → x, Aλnxn ⇀ y and

lim sup〈xn − xm, Aλnxn − Aλmym〉 ≤ 0, (2.15.)

then [x, y] ∈ A and lim
n,m→∞

〈xn − xm, Aλnxn − Aλmym〉 = 0.

(e) For λ → 0+, Aλx ⇀ A0x for all x ∈ D(A), where A0x is the
element of minimum norm in Ax. If X∗ is uniformly convex, then
Aλx→ A0x for all x ∈ D(A).

Proof. (a) Aλ is single valued since J is single valued.

Let x, y ∈ X, observing that Aλx ∈ AJλx and using the fact that A
and J are monotone we have

〈x− y, Aλx− Aλy〉 = 〈Jλx− Jλy, Aλx− Aλy〉
+ 〈(x− Jλx)− (y − Jλy), Aλx− Aλy〉
= 〈Jλx− Jλy, Aλx− Aλy〉
+ 〈(x− xλ)− (y − yλ), J(x− xλ)− J(y − yλ)〉 ≥ 0.

So we have Aλ is monotone.

Let (u, v) ∈ A be fixed from (2.11) we see that

J(x− xλ)
λ

∈ Axλ.

Using the monotonicity of A we obtained that

〈Jλx− u,
1

λ
J(x− xλ)− v〉 ≥ 0,

which implies

〈Jλx− u, J(Jxλ − x)〉 ≤ λ〈u− Jλx, v〉.

Thus we have

‖Jλx− x‖2 ≤ λ‖Jλx− x‖‖v‖+ λ‖u− x‖‖v‖+ ‖u− x‖‖Jλx− x‖.

Which shows that Jλ and Aλ are bounded.
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Let xn → x0, set Jλxn = un, Aλxn = vn. Then from the equation

J(un − xn) + λvn = 0,

it follows that

〈(un − xn)− (um − xm), J(un − xn)− J(um − xm)〉
+ λ〈un − um, vn − vm〉+ λ〈xm − xn, vn − vm〉 = 0.

Since as seen before Jλ is bounded we get

lim sup〈un − um, vn − vm〉 ≤ 0

and

lim sup〈(un − xn)− (um − xm), J(un − xn)− J(um − xm)〉 ≤ 0.

Let nk → +∞ such that unk
⇀ u, vnk

⇀ v, and J(unk
− xnk

) ⇀
w. Then by lemma (2.12) we have (u, v) ∈ A and (u − x0, w) ∈ J .
Therefore

J(u− x0) + λv = 0.

Which implies u = Jλx0, v = Aλx0 and by the uniqueness of limit we
have Jλxn ⇀ u and Aλxn ⇀ v.

(b) Let (x, x∗) ∈ A and λ > 0. Then from the monotonicity of A we
have

0 ≤ 〈x− Jλx, x∗ − Aλx〉
= 〈x− Jλx, x∗〉 − λ−1〈x− Jλx, J(x− Jλx)〉
≤ ‖x− Jλx‖‖x∗‖ − λ−1‖x− Jλx‖2

which implies
λ−1‖x− Jλx‖2 ≤ ‖x− Jλx‖‖x∗‖,

i.e
‖Aλx‖ ≤ ‖x∗‖ for all x∗ ∈ Ax.

Therefore we have

‖Aλx‖ ≤ |Ax| = inf{‖x∗‖ : x∗ ∈ Ax}.

(c) Let x ∈ coD(A) and (u, v) ∈ A. Then by the monotonicity of A we
get

0 ≤ 〈Jλx− u,Aλx− v〉
= 〈Jλx− u,Aλx〉+ 〈u− Jλx, v〉
= 〈Jλx− x,Aλx〉+ 〈x− u,Aλx〉+ 〈u− Jλx, v〉.
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So we have

‖Jλx− x‖2 ≤ 〈x− u, J(x− Jλx)〉+ λ〈u− Jλx, v〉.
Let λn → 0+ such that J(Jλnx− x) ⇀ y. Then we have

lim sup ‖Jλx− x‖2 ≤ 〈x− u, y〉.

The inequality above can be extended to all u ∈ coD(A). In particular
taking u = x we have the result, i.e Jλx→ x as λ→ 0+.

(d) To show that (x, y) ∈ A we shall show that Jλnxn → x and

lim
m,n→∞

〈Jλnxn − Jλmxm, Aλnxn − Aλmxm〉 = 0,

so that we can apply lemma (2.12) since

(Jλnxn, Aλnxn) ∈ A for all n ≥ 1.

Now

〈xn − xm,Aλnxn − Aλmxm〉 = 〈xn − xm, AJλnxn − AJλmxm〉
= 〈Jλnxn − Jλmxm, AJλnxn − AJλmxm〉+ 〈(xn − Jλnxn)

− (xm − Jλmxm), Aλnxn − Aλmxm〉
≥ 〈(xn − Jλnxn)− (xm − Jλmxm), J(xn − Jλnxn)λ−1

n

− J(xm − Jλmxm)λ−1
m 〉.

Since xn and Aλnxn are bounded on bounded sets of X andX∗ respec-
tively we see that

lim
m,n→∞

〈xn − xm, Aλnxn − Aλmxm〉 = 0

and
lim

m,n→∞
〈Jλnxn − Jλmxm, Aλnxn − Aλmxm〉 = 0.

Also we have

lim
n→∞

(Jλnxn − x) = lim
n→∞

λnJ
−1(Aλnxn) = 0.

Thus we have Jλnxn → x and since Aλnxn ⇀ y applying lemma (2.12)
we see that (x, y) ∈ A.

(e) Since Ax is a closed, convex subset of X∗, and X∗ is reflexive and
strictly convex, then the projection A0x of 0 onto Ax is well defined
and unique.

Let x ∈ D(A) and λn → 0 such that Aλnx ⇀ y, we have seen in the
above proof that y ∈ Ax. Now since ‖Aλnx‖ ≤ ‖A0x‖ as seen above
and ‖y‖ ≤ lim inf ‖Aλnx‖ ≤ ‖A0x‖, then we have ‖y‖ ≤ ‖A0x‖. Also
we have that ‖A0x‖ ≤ ‖y‖. Thus ‖A0x‖ = ‖y‖. Since A0x is unique
we see that y = A0x, and therefore ‖Aλnx‖⇀ A0x.
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Proposition 2.14 If X is a Hilbert space, then
(a) Jλ = (I + λA)−1 is non expansive in X, i.e

‖Jλx− Jλy‖ ≤ ‖x− y‖ for all x, y ∈ X.

(b) Aλ is Lipschitz with Lipschitz constant λ−1, i.e

‖Aλx− Aλy‖ ≤ λ−1‖x− y‖ for all x, y ∈ D(A).

Proof. By definition and our assumption that X is a Hilbert space
we have for each x, y ∈ D(A)

λ−1(x− Jλx) = λ−1J(x− Jλx) ∈ AJλx,

and
λ−1(y − Jλy) = λ−1J(y − Jλy) ∈ AJλy.

Using the monotonicity of A we get

0 ≤ 〈Jλx− Jλy, λ−1J(x− Jλx)− λ−1J(y − Jλy)〉
= 〈Jλx− Jλy, λ−1(x− y)− λ−1(Jλx− Jλy),

which implies that

〈Jλx− Jλy, Jλx− Jλy〉 ≤ 〈Jλx− Jλy, x− y〉
≤ ‖Jλx− Jλy‖‖x− y‖.

Therefore we have

‖Jλx− Jλy‖ ≤ ‖x− y‖, for all x, y ∈ D(A).

(b) For each x, y ∈ D(A) we have

Aλx = λ−1J(x− xλ) = λ−1(x− xλ),

and
Aλy = λ−1J(y − yλ) = λ−1(y − yλ).

Now

‖Aλx− Aλy‖2 = 〈Aλx− Aλy, Aλx− Aλy〉
= 〈Aλx− Aλy, λ−1(x− xλ)− λ−1(y − yλ)〉
= 〈Aλx− Aλy, λ−1(x− y)〉 − 〈Aλx− Aλy, λ−1(xλ − yλ)〉
≤ λ−1〈Aλx− Aλy, x− y〉
≤ λ−1‖Aλx− Aλy‖‖x− y‖.
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Thus we have

‖Aλx− Aλy‖ ≤ λ−1‖x− y‖, for all x, y ∈ X.

Corollary 2.15. Let be a reflexive Banach space and let A be a max-
imal monotone in X ×X∗. Then D(A) and R(A) are convex.

Proof. For each x ∈ coD(A) we have Jλx → x as λ → 0+ and

Jλx ∈ D(A) for all λ > 0. Therefore we have D(A) = coD(A). Hence

D(A) is convex since coD(A) is convex.

Also we have A−1 : R(A) −→ X is maximal monotone. So following

the same argument as above we see that R(A) is convex.

Lemma 2.16. Let {xn} ⊂ X, {yn} ⊂ X∗ such that xn → 0 and
‖yn‖ → +∞ as n→∞. Let B(0, r) denote the closed ball with radius
r in X. Then for all r > 0 there exist x0 ∈ B(0, r) and subsequences
{xnk
} ⊂ X, {ynk

} ⊂ X such that

lim
n→∞
〈xnk

− x0, ynk
〉 = −∞.

Theorem 2.17 Let A be monotone subset of X×X∗. Then A is locally
bounded in any interior point of D(A).

Proof. Let x0 ∈ D(A), without loss of generality we may assume that
x0 = 0 ( This can be achieved by shifting the domain of A). Let us
assume that A is not locally bounded at 0, then there exist (xn, yn) ∈ A
such that ‖xn‖ → 0 and ‖yn‖ → +∞. So applying lemma (2.16) we see
that for all r > 0 there exist x1 ∈ B(0, r) and {xnk

} ⊂ X, {ynk
} ⊂ X

such that
lim
n→∞
〈xnk

− x1, ynk
〉 = −∞. (2.16)

For r sufficiently small we see that x1 ∈ D(A). So by the monotonicity
of A we have

〈xnk
− x1, ynk

〉 ≥ 0,

which contradicts (2.16). Hence we have the result.

Theorem 2.18. Let X be a reflexive Banach space. Let A and B
be two monotone subsets of X × X∗ such that intD(A) ∩ D(B) 6= ∅.
Then A+B is maximal monotone.
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Proof. Without loss of generality we may assume that X and X∗ are
strictly convex. Moreover, we also assumed that 0 ∈ intD(A) ∩D(B),
0 ∈ A0 and 0 ∈ B0. ( This can be achieved by shifting the domains
and ranges of A and B respectively).

We shall prove that R(A+B + J) = X∗. Let y ∈ X∗, since the opera-
tor Bλ is monotone, demi-continuous and bounded. Then by corollary
(2.7) and theorem (2.6) we see that for each λ > 0 the inclusion

y ∈ Jxλ + Axλ +Bλxλ (2.17)

has a unique solution xλ ∈ D(A). Now using (2.17) and the fact that

〈xλ, Axλ〉 ≥ 0 and 〈xλ, Bλxλ〉 ≥ 0

(this is true because (0, 0) ∈ A and (0, 0) ∈ B) we get

〈xλ, y〉 = 〈xλ, Jxλ + Axλ +Bλxλ〉
= 〈xλ, Axλ〉+ 〈xλ, Bλxλ〉+ 〈xλ, Jxλ〉
≥ 〈xλ, Jxλ〉.

Thus we have ‖xλ‖ ≤ ‖y‖.
Also since 0 ∈ intD(A) it follows from theorem (2.17) that there exists
M > 0, ρ > 0 such that

‖x∗‖ ≤M for all x∗ ∈ Ax, ‖x‖ ≤ ρ. (2.18)

Now using (2.17) and the monotonicity of A we get for each ω ∈ D(A)
such that ‖ω‖ = 1

〈xλ − ρω, y〉 = 〈xλ − ρω, Jxλ + Axλ +Bλxλ〉
= 〈xλ − ρω,Axλ − A(ρω)〉+ 〈xλ − ρω,A(ρω)〉
+ 〈xλ − ρω, Jxλ +Bλxλ〉
≥ 〈xλ − ρω,A(ρω)〉+ 〈xλ − ρω, Jxλ +Bλxλ〉.

Thus we have

〈xλ − ρω, Jxλ +Bλxλ − y〉+ 〈xλ − ρω,A(ρω)〉 ≤ 0.

Using the inequality in (2.18) we have

‖xλ‖2 − ρ〈ω,Bλxλ〉 ≤M(‖xλ‖+ ρ) + ‖xλ‖(‖y‖+ ρ) + ρ‖y‖.

Hence,

‖xλ‖2 + ρ‖Bλxλ‖ ≤ ‖xλ‖(ρ+M + ‖y‖) +Mρ, ρ > 0.
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We may therefore conclude that {Bλxλ}, yλ = y − Jxλ − Bλxλ are
bounded. Since X∗ is reflexive, without loss of generality we may
assume that xλ ⇀ x0, Bλxλ ⇀ y1, yλ ⇀ y2 and Jxλ ⇀ y0.

Now for each β, µ > 0 we have

y ∈ Jxλ + Axλ +Bλxλ and y ∈ Jxµ + Axµ +Bµxµ,

which implies

0 ∈ Axλ − Axµ +Bλxλ −Bµxµ + Jxλ − Jxµ.

Since A+ J is monotone we have

〈xλ − xµ, Bλxλ −Bµxµ〉 = 〈xλ − xµ, Axλ − Axµ〉
+ 〈xλ − xµ, Jxλ − Jxµ〉 ≤ 0.

By proposition (2.13)(d) we have

lim
β,µ→0

〈xλ − xµ, Bλxλ −Bµxµ〉 = 0, and [x, y] ∈ B.

Also from (2.17) we have

lim
β,µ→0

〈xλ − xµ, (Jxλ + yλ)− (Jxµ + yµ)〉 = 0, yλ ∈ Axλ, yµ ∈ Axµ.

Therefore by lemma (2.12) we have that [x0, y0 + y2] ∈ A+ J . Now
letting λ→ 0+ we see that

y ∈ Ax0 + Jx0 +Bx0.

The proof is complete.
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Chapter 3

On the Characterization of
Maximal Monotone
Operators

In this chapter we present a short proof for the Rockafellar’s character-
ization of maximal monotone operators (Theorem 2.6) in Banach space
through convex analysis approach following C.Simons snd C.Zalinescu.
As a consequence we get a generalization of Theorem 2.6. Furthermore
some application of the monotone operators theory to the solvability
of nonlinear Partial Differential Equation, will be given.

3.1 Rockafellar’s characterization of maximal mono-
tone operators.

Throughout this section X will denote a real reflexive Banach space
with its dual X∗. Therefore the dual of X × X∗ is canonically iso-
morphic to X∗ × X and as usual we define its duality pairing for
(x, x∗) ∈ X ×X∗ and (u∗, u) ∈ X∗ ×X by

〈(x, x∗), (u∗, u)〉 = 〈x, u∗〉+ 〈u, x∗〉.

Theorem 3.1. Let X be a reflexive Banach space. Let A ⊂ X ×X∗
be monotone. Then A is maximal monotone if and if

grA+ gr(−JX) = X ×X∗. (3.1)

Where JX is the duality mapping on X.
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For a proof of this theorem we need the following lemmas.

Lemma 3.2. Let A ⊂ X ×X∗ be a maximal monotone operator and
(y, y∗) ∈ X ×X∗, then

inf
(a,a∗)∈A

〈a− y, a∗ − y∗〉 ≤ 0 (3.2)

with equality ⇔ (y, y∗) ∈ A. (3.3)

Proof. Let (y, y∗) ∈ X ×X∗. If (y, y∗) ∈ A, then it is not difficult to
see by monotonicity A that

inf
(a,a∗)∈A

〈a− y, a∗ − y∗〉 = 0.

Otherwise if (y, y∗) /∈ A then by maximality of A (see Definition 2.1.)
there exists (u, u∗) ∈ X ×X∗ such that 〈u− y, u∗− y∗〉 < 0. It follows
that the inequality in (3.2.) holds.
For the second part of the Lemma, it remains only to show that given
(y, y∗) ∈ X ×X∗ such that inf

(a,a∗)∈A
〈a− y, a∗−y∗〉 = 0, then (y, y∗) ∈ A.

Indeed if inf
(a,a∗)∈A

〈a− y, a∗ − y∗〉 = 0, then we have

〈a− y, a∗ − y∗〉 = 0 for all (a, a∗) ∈ A

and since A is maximal monotone we have that (y, y∗) ∈ A. The proof
is complete.

Besides for later use let us consider the following function g : X ×
X∗ −→ R defined by

g(y, y∗) = sup
(a,a∗)∈A

[〈a, y∗〉+ 〈y, a∗〉 − 〈a, a∗〉]. (3.4)

Then (3.2) can be written as

∀ (y, y∗) ∈ X ×X∗, 〈y, y∗〉 ≤ g(y, y∗) (3.5)

with equality ⇔ (y, y∗) ∈ A. (3.6)

This is easily seen because from (3.2) we have

0 ≥ inf
(a,a∗)∈A

〈a− y, a∗ − y∗〉 = − sup
(a,a∗)∈A

[〈y − a, a∗ − y∗〉]

= − sup
(a,a∗)∈A

[〈a, y∗〉+ 〈y, a∗〉 − 〈a, a∗〉]− 〈y, y∗〉]

= 〈y, y∗〉 − g(y, y∗).
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Thus we have 〈y, y∗〉 ≤ g(y, y∗).

The function g is a convex function as a point-wise supremum of a fam-
ily of convex functions. Taking (y, y∗) ∈ A we have g(y, y∗) = 〈y, y∗〉,
which shows that g is proper. Also g is lower semicontinuous as a
point-wise supremum of bounded linear maps.

Lemma 3.3. Let A ⊂ X ×X∗ be maximal monotone and (u∗, u) ∈
∂g(v, v∗). Then 〈v − u, v∗ − u∗〉 ≤ 0. Moreover, if

〈v − u, v∗ − u∗〉 = 0, then (u, u∗) ∈ A.

Proof. From (3.4) we have that

〈v − u, v∗ − u∗〉 = 〈v, v∗〉 − 〈v, u∗〉 − 〈u, v∗〉+ 〈u, u∗〉
≤ g(v, v∗)− 〈v, u∗〉 − 〈u, v∗〉+ 〈u, u∗〉

Now let (a, a∗) ∈ A be fixed, using (3.5) and the assumption that
(u, u∗) ∈ ∂g(v, v∗) we have

g(v, v∗) ≤ g(a, a∗)− 〈(a, a∗)− (v, v∗), (u∗, u)〉
≤ 〈a, a∗〉+ 〈v − a, u∗〉+ 〈u, v∗ − a∗〉.

Thus we have

〈v − u, v∗−u∗〉 ≤ 〈a, a∗〉 − 〈a, u∗〉 − 〈u, a∗〉+ 〈u, u∗〉 = 〈a− u, a∗ − u∗〉

Hence
〈v − u, v∗ − u∗〉 ≤ inf

(a,a∗)∈A
〈a− u, a∗ − u∗〉. (3.7)

Using (3.2) we see that 〈v − u, v∗−u∗〉 ≤ 0. Now if 〈v − u, v∗−u∗〉 = 0
then (3.7) gives

inf
(a,a∗)∈A

〈a− u, a∗ − u∗〉 ≥ 0

which implies (u, u∗) ∈ A since A is maximal monotone.

Lemma 3.4. Let X be a reflexive Banach space and X × X∗ be en-
dowed with the euclidean norm. Denote by JX×X∗ the duality mapping
on X ×X∗. Then

JX×X∗(x, x
∗) = JX(x)× JX∗(x∗) for all (x, x∗) ∈ X ×X∗.

Proof. Using the fact that X×X∗ with the euclidean norm is strictly
convex, it is enough to show that

JX(x)× JX∗(x∗) ∈ JX×X∗(x, x∗) for each (x, x∗) ∈ X ×X∗.
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Let (y∗, y∗∗) ∈ JX(x)× JX∗(x∗), then we have

〈x, y∗〉 = ‖x‖2, ‖x‖ = ‖y∗‖2, and 〈x∗, y∗∗〉 = ‖x∗‖2, ‖x∗‖ = ‖y∗∗‖.

Now

〈(x, x∗), (y∗, y∗∗)〉 = 〈x, y∗〉+ 〈x∗, y∗∗〉 = ‖x‖2 + ‖x∗‖2 = ‖(x, x∗)‖2.

Also we have

‖(x, x∗)‖2 = ‖x‖2 + ‖x∗‖2 = ‖y∗‖2 + ‖y∗∗‖2 = ‖(y∗, y∗∗)‖2.

Therefore we have

JX(x)× JX∗(x∗) ∈ JX×X∗(x, x∗),

which implies
JX(x)× JX∗(x∗) = JX×X∗(x, x

∗).

We are now ready to prove Theorem 3.1.

Proof of theorem 3.1. Assume (3.1) holds, let (y, y∗) ∈ X ×X∗
be such that 〈a− y, a∗ − y∗〉 ≥ 0 for all (a, a∗) ∈ grA. By as-
sumption there exists (a, a∗) ∈ grA and (u, u∗) ∈ gr(−JX) such that
(y, y∗) = (a, a∗) + (u, u∗). Then we have

0 ≤ 〈a− y, a∗ − y∗〉 = 〈−u,−u∗〉 = −〈u,−u∗〉 = −‖u‖2 = −‖ − u∗‖2.

Thus we have u = 0 and u∗ = 0. It follows that (y, y∗) = (a, a∗) ∈
grA. Hence A is maximal monotone. Conversely, assume A is maxi-
mal monotone, without loss of generality we shall prove that (0, 0) ∈
grA+ gr(−JX). Consider the function g defined in (3.5). Define a new
function h : X ×X∗ −→ R by

h(x, x∗) =
1

2
‖x‖2 +

1

2
‖x∗‖2 + g(x, x∗).

Clearly g is proper, lower semicontinuous, coercive and convex. Since
X ×X∗ is reflexive, then by Theorem (1.25) there exists a minimizer
(v, v∗) ∈ X ×X∗ of h on X ×X∗. Hence (0, 0) ∈ ∂h(v, v∗). Moreover
using the idea of Example 1 in Section 2 of Chapter 1 we see that

(0, 0) ∈ JX(v)× J−1
X (v∗) + ∂g(v, v∗).

So there exists (u, u∗) ∈ ∂g(v, v∗) such that −u∗ ∈ JX(v) and
−u ∈ J−1

X (v∗) (equivalently −v∗ ∈ JX(u)). Using Lemma (3.2) we have
〈v − u, v∗ − u∗〉 ≤ 0. We also have

〈v,−u∗〉 = ‖v‖2 = ‖u∗‖2, and 〈u, v∗〉 = ‖u‖2 = ‖v∗‖2,
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and so

0 ≥ 〈v − u, v∗ − u∗〉 = 〈v, v∗〉+ 〈v,−u∗〉+ 〈u,−v∗〉+ 〈u, u∗〉
≥ ‖v‖2 − 2‖u‖‖v‖+ ‖u‖2 = (‖v‖ − ‖u‖)2 ≥ 0.

Hence 〈v − u, v∗ − u∗〉 = 0, and ‖v‖ = ‖u‖. Using the second part of
Lemma (1.1) we have (u, u∗) ∈ grA. Now

0 = 〈v − u, v∗ − u∗〉 = 〈−u, u∗〉+ 〈u, v∗〉+ 〈v − v∗〉+ 〈u, u∗〉
= ‖v‖2 + ‖u‖2 − ‖v‖2 + 〈u, u∗〉

which implies that 〈−u, u∗〉 = −‖u‖2 i.e u∗ ∈ JX(−u). Hence (−u,−u∗) ∈
gr(−JX), Since (u, u∗) ∈ grA, we deduce that

(0, 0) = (u, u∗) + (−u,−u∗) ∈ grA+ gr(−JX).

The proof is complete.

Theorem 3.5. Let X be a reflexive Banach space. Let A ⊂ X ×X∗
be monotone. If A is maximal monotone, then A + JX is onto. Con-
versely, if A+ JX is onto and both JX and J−1

X are single valued, then
A is maximal monotone.

Proof. Assume A is maximal monotone. Let y∗ ∈ X∗ then we see
that (0, y) ∈ X ×X∗. According to Theorem (3.4),

(0, y∗) ∈ grA+ gr(−JX).

So there exists (a, a∗) ∈ A, (u, u∗) ∈ −JX such that

(a+ u, a∗ + u∗) = (0, y∗),

which implies that a+u = 0 and a∗+u∗ = y∗. So we have a = −u and
y∗ ∈ A(a) + JX(a) ( here we have used the fact that u∗ ∈ −JX(u)).
Thus we have y∗ ∈ (A+ J)(a) which implies X∗ ⊂ A+ JX . Hence

R(A+ JX) = X∗.

For the converse of the proof, one can follow the same process as in
theorem (2.6).
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Chapter 4

Applications

In this part we present some examples of monotone operators and of
uniformly monotone operators (including the opposite of the Lapla-
cian −∆ with domain contains in H1

0 (Ω), where Ω is an open, bounded
subset of Rn, and it turns out to be maximal monotone and coercive)
which arise in weak formulations of Nonlinear Elliptic problems follow-
ing Adam Besenyei.

4.1 Laplacian

In this section we shall prove that −∆ is maximal monotone and coer-
cive, thus by theorem (2.10) it is surjective. First consider

−∆ : D(∆) ⊂ H1
0 (Ω) −→ L2(Ω)

where Ω is an open bounded subset of Rn and in fact

D(∆) = H1
0 (Ω) ∩H2(Ω) .

Then for any u ∈ D(∆), using Green’s formula we have

〈−∆u, u〉 =

∫
Ω

|∇u|2 ≥ 0,

so −∆ is monotone.

Now to show that −∆ is maximal monotone, by Theorem (2.6), it
suffices to show that

R(−∆ + I) = L2(Ω).

51



Consider the following Dirichlet boundary value problem.{
−∆u+ u = f in Ω,

u = 0 on ∂Ω.

Using Theorem (1.25) or Lax Milgram Theorem (see [11]) we see that
the above Dirichlet problem has a unique solution. So according to
Theorem (2.6) we have that −∆ is maximal monotone.

Now to conclude indeed that −∆ is surjective we just need to show
that it is coercive, and the result will follow from Theorem (2.10). But
we have

〈−∆u, u〉
‖u‖H1

0

=

∫
Ω
|∇u|2

‖u‖H1
0

=
‖∇u‖2

L2(Ω)

‖u‖H1
0

≥
C‖u‖2

H1
0

‖u‖H1
0

= C‖u‖H1
0

where C is a positive constant (independent from u) by Poincaré in-
equality.

Thus we have

lim
‖u‖

H1
0
→∞

〈−∆u, u〉
‖u‖H1

0

= +∞.

Therefore, by Theorem (2.10) we see that −∆ is surjective (in agree-
ment with the classical result of existence existence of solutions (in
fact unique) to Poisson equations with homogeneous Dirichlet bound-
ary condition on bounded domains.

Remark. Similar results hold for the p-Laplacian (See [13]).

4.2 Uniformly Monotone Operators

Let X be a normed space and X∗ denotes its dual. Then an operator
A : X −→ X∗ is called uniformly monotone if there exist p ≥ 2, γ > 0
such that

〈A(u1)− A(u2), u1 − u2〉 ≥ γ‖u1 − u2‖pX , for all u1, u2 ∈ X. (4.1)

It is obvious that a uniformly monotone operator is a monotone opera-
tor, and an immediate example of uniformly monotone operator is the
duality mapping in Hilbert space with p = 2 and γ = 1.

In what follows we study operators which are obtained by consider-
ing the weak formulation of an Elliptic equation with some boundary
conditions.
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Let X be a linear subspace of W 1,p(Ω) where Ω ⊂ Rn is bounded
(with sufficiently smooth boundary), p ≥ 2. Define an operator A :
X −→ X∗ by

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

ai(x, u,∇u)Div + a0(x, u,∇u)v

)
dx (4.2)

where ai(x, u,∇u) = ai(x, u(x),∇u(x)) and Di denotes the distribu-
tional derivative with respect to the i− th variable.

Consider the abstract Equation

A(u) = f, (4.3)

where f ∈ X∗(which may be obtained as a weak formulation of an
elliptic boundary value problem). Supposing the Uniform monotonicity
of A (and some other properties) of an operator of the form (4.2) one
can prove the existence and uniqueness of solution to the above abstract
equation.
An example is giving by the operator corresponding to

ai(x, ξ) = ξi‖ξ‖p−2 (i = 1, 2, 3...n),

a0(x, ξ) = ξ0‖ξ‖p−2

where ξ = (ξ0, ξ1, ξ2, ...ξn).
For instance Lions [10] proved that the following three conditions are
sufficient for the existence of a solution to (4.3).

(C1) The functions ai : Ω × Rn+1 −→ R, (i = 1, 2, 3...n) are of
Caratheodory type. i.e for all ξ ∈ Rn+1, x 7→ ai(x, ξ) is measurable
and for a.e. x ∈ Ω ξ 7→ ai(x, ξ) is continuous.

(C2) There exists a constant c > 0, and a function k ∈ Lq(Ω) such that
for a.e. x ∈ Ω and for all ξ ∈ Rn+1

|ai(x, ξ)| ≤ c‖ξ‖p−1 + k(x).

(C3) There exists a constant C > 0 such that for a.e x ∈ Ω and for all

ξ̃, ξ ∈ Rn+1

n∑
i=1

(ai(x, ξ)− ai(x, ξ̃))(ξi − ξ̃i) ≥ C‖ξ − ξ̃‖p. (4.4)

Clearly, integrating (4.4) gives (4.1) with γ = C. Therefore (C3) en-
sures the uniform monotonicity of operator A.

The reader interested in this existence type result is referred to the
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paper by Lions [10] and the book by Ziedler [5]. Now we only give
a practical conditions on the functions ai that guaranteed condition
(C3).

Proposition 4.1 Suppose that p ≥ 2 and ai are continuously differ-
entiable in variable ξ for all i = 0, 1, 2, ...n. Further assume that there
exists a constant δ > 0 such that for a.e x ∈ Ω and for all ξ̃, ξ ∈ Rn+1

and (z0, z1, z2, ...zn) ∈ Rn+1

n∑
j=0

n∑
i=0

Djai(x, ξ)zizj ≥ δ
˙n∑

i=0

|ξi|p−2z2
i (4.5)

then (C3) holds.

To prove this proposition we first prove the following Lemma.

Lemma 4.2 Let a, b be arbitrary in R, and s ≥ 0 then∫ 1

0

|a+ bτ |sdτ ≥ |b|s

2s(s+ 1)
(4.6)

Proof. For b = 0 the result follows trivially. Now assume that b 6= 0.
Then the inequality (4.6) is equivalent to∫ 1

0

∣∣∣a
b

+ τ
∣∣∣s dτ ≥ 1

2s(s+ 1)

and so without loss of generality we may suppose that b = 1. Let a ∈ R
be fixed, then∫ 1

0

|a+ τ |sdτ =

∫ a+1

a

|t|s dt where t := a+ τ.

Case 1: For 0 ≤ a ≤ a+ 1, we have∫ a+1

a

|t|sdt =

∫ a+1

a

tsdt =
(a+ 1)s+1 − as+1

(s+ 1)
.

So we need only to show that (a + 1)s+1 − as+1 ≥ 1 for all a ≥ 0 and
s ≥ 0. Now for fixed s consider the function f : [0,+∞) −→ R defined
by

f(a) = (a+ 1)s+1 − as+1 for all a ∈ [0,+∞).

Then we see that

f
′
(a) = (s+ 1)((a+ 1)s − as) ≥ 0 for all a ∈ [0,+∞),
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which implies that f is increasing on [0,+∞), so that f(a) ≥ f(0) = 1
for all a ∈ [0,+∞). Therefore we have

(a+ 1)s+1 − as+1

s+ 1
≥ 1

s+ 1
≥ 1

2s(s+ 1)
. (4.7)

Case 2: For a < a+ 1 ≤ 0, we have∫ a+1

a

|t|sdt =

∫ a+1

a

(−t)sdt = −
∫ −(a+1)

−a
ysdy =

(−a)s+1 − (−a− 1)s+1

s+ 1
.

Let k = −(a + 1), then −a = k + 1 and 0 ≤ k < k + 1. The result
follows from case 1.

Case 3: Otherwise, a ≤ 0 ≤ a+ 1. and then∫ a+1

a

|t|sdt =

∫ 0

a

(−t)sdt +

∫ a+1

0

tsdt

= −
∫ 0

−a
ysdy +

∫ a+1

0

tsdt

=
(−a)s+1 + (a+ 1)s+1

s+ 1
.

Studying the function a 7→ (−a)s+1 + (a+ 1)s+1 on (−1, 0) we see that
the minimum is achieved at a = −1

2
, thus we have

(−a)s+1 − (a+ 1)s+1

s+ 1
≥ 1

s+ 1
≥ 1

2s(s+ 1)
.

Therefore for arbitrary a ∈ R we have∫ 1

0

|a+ τ |sdτ ≥ 1

2s(s+ 1)
. (4.8)

We now give the proof of Proposition (4.1)

Proof of Proposition 4.1. For fixed x ∈ Ω, ξ̃, ξ ∈ Rn+1, define a
function fi : [0, 1] −→ R by

fi(τ) = ai(x, ξ̃ + τ(ξ − ξ̃), i = 0, 1, 2, ...n.
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Then by fundamental theorem of calculus, assumption (4.5) and Lemma
(4.2) we have

n∑
i=0

(ai(x, ξ)− ai(x, ξ̃))(ξi − ξ̃i) =
n∑
i=0

(fi(1)− fi(0))(ξi − ξ̃i)

=
n∑
i=0

∫ 1

0

n∑
j=0

Djai(x, ξ̃ + τ(ξ − ξ̃)(ξj − ξ̃j)(ξi − ξ̃i)dτ

= δ

n∑
i=0

∫ 1

0

‖ξ̃ + τ(ξ − ξ̃)‖p−2(ξi − ξ̃i)2dτ

= δ

∫ 1

0

‖ξ̃ + τ(ξ − ξ̃)‖p−2

n∑
i=0

(ξi − ξ̃i)2dτ

= δ ‖ξ − ξ̃‖2

∫ 1

0

‖ξ̃ + τ(ξ − ξ̃)‖p−2dτ

≥ δ ‖ξ − ξ̃‖2

∫ 1

0

∣∣∣−‖ξ̃‖+ τ‖ξ − ξ̃‖
∣∣∣p−2

dτ

≥ δ

2p−2(p− 1)
‖ξ − ξ̃‖p.

Hence we have

n∑
i=0

(ai(x, ξ)− ai(x, ξ))(ξi − ξ̃i) ≥
δ

2p−2(p− 1)
‖ξ − ξ̃‖p. (4.9)

Integrating (4.9) yields

〈A(u1)− A(u2), u1 − u2〉 ≥
δ

2p−2(p− 1)
‖u1 − u2‖p,

which gives condition (C3) with C = δ
2p−2(p−1)

.

We now give some examples of uniformly monotone operators which
fulfil also condition (C1) and (C2). In the sequel we always suppose
p ≥ 2

Example 1. Let ai(ξ) = ξi|ξi|p−2, i = 0, 1, 2, ...n. Then

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

DiuDiv|Diu|p−2 + uv|u|p−2

)
dx

For fixed ξ ∈ Rn+1, the function x 7→ ai(ξ) is constant in x. So it’s
measurable. Also the function ai is continuous for each i. Thus for
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each i ai is of Caratheodory type. We also have that

|ai(ξ)| = |ξi||ξi|p−2 = |ξi|p−1 ≤
n∑
i=1

(|ξi|2)
p−1
2 = ‖ξ‖p−1.

Thus by taking c = 2 and k ≡ 0 we see that (C2) is satisfied.

Clearly, Diai(ξ) = (p − 1)|ξi|p−2 and Djai(ξ) = 0 for i 6= j. Hence we
have

n∑
j=0

n∑
i=0

Djai(ξ)zizj = (p− 1)
n∑
i=0

|ξi|p−2z2
i .

Therefore by proposition (4.1) we see that (C3) is satisfied.

Example 2. Now let

ai(ξ) = ξi‖ξ‖p−2 (i = 1, 2, ...n),

a0(ξ) = ξ0|ξ0|p−2.

So we have

〈A(u), v〉 =

∫
Ω

(
n∑
i=1

DiuDiv|Du|p−2 + uv|u|p−2

)
dx.

In this case it can be easily seen that A is the weak form of the
operator

u 7→ −∆p + u|u|p−2.

Obviously (C1) is satisfied. Moreover

|ai(ξ)| = |ξi|‖ξ‖p−2 ≤ max
1≤i≤n

{|ξi|}‖ξ‖p−2 ≤ α‖ξ‖‖ξ‖p−2 = α‖ξ‖p−1,

where α > 0. (Here we have used the fact that ‖ · ‖1 and ‖ · ‖2 in Rn+1

are equivalent). So we have (C2) is satisfied. We also have that
Djai(ξ) = (p− 2)ξjξi‖ξ‖p−4, for i, j > 0, i 6= j

Diai(ξ) = ‖ξ‖p−2 + (p− 2)ξ2
i ‖ξ‖p−4, for i > 0

Dja0 = D0ai(ξ) = 0, for i > 0, j > 0

D0a0(ξ) = (p− 1)‖ξ0‖p−2.

57



Now

n∑
j=0

n∑
i=0

Djai(ξ)zizj = D0a0(ξ)z2
0 +

n∑
j=1

n∑
i=1

Djai(ξ)zizj

= (p− 1)‖ξ0‖p−2z2
0 +

n∑
i=1

‖ξ‖p−2z2
i

+ (p− 2)‖ξ‖p−4

n∑
j=1

n∑
i=1

ξiξjzizj

= (p− 1)‖ξ0‖p−2z2
0 +

n∑
i=1

‖ξ‖p−2z2
i

+ (p− 2)‖ξ‖p−4

(
n∑
i=1

ξizi

)2

≥ (p− 1)‖ξ0‖p−2z2
0 +

n∑
i=1

‖ξ‖p−2z2
i

≥ (p− 1)‖ξ0‖p−2z2
0 +

n∑
i=1

|ξi|p−2z2
i =

n∑
i=0

|ξi|p−2z2
i .

Thus, from proposition (4.1) it follows that the operator A is uniformly
monotone.
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