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Preface

This Project centres on integral equations of Hammerstein type, abstract Ham-
merstein equations and monotone operators in Banach spaces. Let X be a real
Banach space, X∗ its dual, A a linear map of X into X∗ and N a nonlinear
map of X∗ into X. We study the abstract Hammerstein equation,

w + ANw = 0, w ∈ X∗,

and theorems that establish general results on the existence and uniqueness of
solutions of the Hammerstein equations.

Hammerstein equation covers a large variety of areas and is of much inter-
est to a wide audience due to the fact that it has applications in numerous
areas. Several problems that arise in differential equations (ordinary and par-
tial), for instance, elliptic boundary value problems whose linear parts possess
Green’s function can be transformed into the Hammerstein integral equations.
Equations of the Hammerstein type play a crucial role in the theory of optimal
control systems and in automation and network theory (see e.g., Dolezale [12]).

Problem of existence of solutions arises naturally in different areas of life.
There are methods that help one to ascertain if there exists a solution to a
particular problem. In general fixed point theorems, Banach Contraction Map-
ping Principle and Schauder-Tychonov Fixed Point Theorem are being used.
However none of the these theorems is applicable here because our operator is
not compact or contractive.

The concept of monotone operators, introduced in the 1960s, has proved
to be very effective in obtaining existence results in nonlinear problems. One
of the reasons is certainly lack of compactness among the basic requirements.
Also, compactness is not always easy to check and it does represent a rather
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severe restriction on the operator. Many researchers have successfully applied
monotonicity concepts to the Hammerstein equations.

We study factorization of operators and variational methods as they ap-
ply to solvability of the Hammerstein equation. Chapter one is the general
introduction. We use factorization of operators in chapter two and variational
methods in chapter three to establish the general results on the existence and
uniqueness of solutions of Hammerstein equations.

Assuming suitable growth conditions on N , existence results were obtained
under the following conditions on X, A and N . In chapter two: X is a Banach
space, A is monotone, angle-bounded, continuous and linear, N is hemicon-
tinuous. In chapter three: X is a Banach space, A is linear, monotone and
symmetric, N is a potential.
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Abstract

ABSTRACT

Let X be a real Banach space, X∗ its conjugate dual space. Let A be a
monotone angle-bounded continuous linear mapping of X into X∗ with con-
stant of angle-boundedness c ≥ 0. Let N be a hemicontinuous (possibly non-
linear) mapping of X∗ into X such that for a given constant k ≥ 0,

〈v1 − v2, Nv1 −Nv2〉 ≥ −k‖v1 − v2‖2
X∗

for all v1 and v2 in X∗. Suppose finally that there exists a constant R with
k(1 + c2)R < 1 such that for u ∈ X

〈Au, u〉 ≤ R‖u‖2
X .

Then, there exists exactly one solution w in X∗ of the nonlinear equation

w + ANw = 0.

Existence and uniqueness is also proved using variational methods.
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CHAPTER 1

General Introduction

1.1 Introduction
The contribution of this thesis falls within the general area of nonlinear func-
tional analysis. Within this area, our attention is focused on the topic: "Ex-
istence and Uniqueness of Solutions of Nonlinear Hammerstein Integral Equa-
tions" in Banach spaces. We study theorems that establish existence and
uniqueness of solutions of these equations using factorization of operators and
variational methods.

Several classical problems in the theory of differential equations lead to
integral equations. In many cases, these equations can be dealt with in a
more satisfactory manner using the integral form than directly with differen-
tial equations.

Interest in Hammerstein equations stem mainly from the fact that several
problems that arise in differential equations, for instance, elliptic boundary
value problems whose linear parts possess Green’s function can, as a rule be
transformed into a nonlinear integral equation of Hammerstein type. Elliptic
boundary value problems are a class of problems which do not involve time
variable but only depend on the space variables. That is, they are class of prob-
lems which are typically associated with steady state behaviour. An example
is a Laplace’s equation:

∇2u = 0 e.g
∂2u

∂x2
+
∂2u

∂y2
= 0 in 2D .

Consequently, solvability of such differential equations is equivalent to the
solvability of the corresponding Hammerstein equation.
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1.2 Definition and examples of some basic terms
In this section, definitions of basic terms used are given.

Throughout this chapter, X denotes a real Banach space and X∗ denotes
its corresponding dual. We shall denote by the pairing 〈x∗, x〉 or x∗(x) the
value of the functional x∗ ∈ X∗ at x ∈ X. The norm in X is denoted by ‖.‖,
while the norm in X∗ is denoted by ‖.‖∗. If there is no danger of confusion, we
omit the asterisk and denote both norms in X and X∗ by the symbol ‖.||. We
shall use the symbol→ to indicate strong and⇀ to indicate weak convergence.
We shall also use w∗

→ to indicate the weak-star convergence.

The first term we define is monotone map. The concept of monotonicity
pertains to nonlinear functional analysis, and its use in the theory of func-
tional equations (ordinary differential equations, integral equations, integrod-
ifferential equations, delay equations) is probably the most powerful method
in obtaining existence theorems.

Definition 1.2.1 (Monotone Operator): A map A : D(A) ⊂ X → 2X
∗ is

said to be monotone if ∀ x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay, we have

〈x∗ − y∗, x− y〉 ≥ 0.

From the definition above, a single-valued map A : D(A) ⊂ X → X∗ is mono-
tone if

〈Ax− Ay, x− y〉 ≥ 0, ∀ x, y ∈ D(A).

Remark 1.2.1 For a linear map A, the above definition reduces to

〈Au, u〉 ≥ 0 ∀ u ∈ D(A).

The following are some examples of monotone operators.

Example 1.2.1 Every nondecreasing function on R is monotone.

Proof.
Let f : R→ R be a nondecreasing function. Then for arbitrary x, y ∈ R, both
(f(x)− f(y)) and (x− y) have the same sign. Thus we see that
〈f(x)− f(y), x− y〉 = (f(x) − f(y))(x − y) ≥ 0 ∀ x, y ∈ R. Hence, f is
monotone.

Example 1.2.2 Let h : R2 → R2 be defined as h(x, y) = (2x, 5y),
∀ (x, y) ∈ R2. Then h is montone.

Proof.
For arbitrary (x1, y1), (x2, y2) ∈ R2, we have

〈h(x1, y1)− h(x2, y2), (x1, y1)− (x2, y2)〉 = 2(x1 − x2)2 + 5(y1 − y2)2 ≥ 0.

Thus, h is monotone.
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Example 1.2.3 Let H be a real Hilbert space, I is the identity map of H and
T : H → H be a non-expansive map (i.e ‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x, y ∈ H).
Then the operator I − T is monotone.

Proof.
Let x, y ∈ H, then
〈(I − T )x− (I − T )y, x− y〉 = 〈(x− y)− (Tx− Ty), x− y〉

= ‖x− y‖2 − 〈Tx− Ty, x− y〉
≥ ‖x− y‖2 − ‖Tx− Ty‖.‖x− y‖
≥ ‖x− y‖2 − ‖x− y‖2 = 0 (T is nonexpansive).

Thus we have that I − T is monotone on H.

Example 1.2.4 Let A = (1 0
0 0) and x̄ = (xy). Consider the function

g : R2 → R2 defined by g(x̄) = Ax̄. Then g is monotone.

Proof.
Since g is linear, by remark (1.2.1) it suffices to show that 〈g(x̄), x̄〉 ≥ 0. For
arbitrary x̄ = (xy) ∈ R2, we have Ax̄ = (1 0

0 0)(xy) = (x0).

Thus 〈g(x̄), x̄〉 = 〈Ax̄, x̄〉 = x2 + 0 = x2 ≥ 0. Hence g is monotone.

Example 1.2.5 Let X be a real Banach space. The duality map J : X → 2X
∗

defined by

Jx := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖.‖x∗‖, ‖x‖ = ‖x∗‖, x ∈ X}

is monotone.

Proof.
Let x, y ∈ X and x∗ ∈ Jx, y∗ ∈ Jy. Then
〈x∗ − y∗, x− y〉 = 〈x∗ − y∗, x〉 − 〈x∗ − y∗, y〉

= 〈x∗, x〉 − 〈y∗, x〉 − 〈x∗, y〉+ 〈y∗, y〉
= ‖x‖2 + ‖y‖2 − 〈y∗, x〉 − 〈x∗, y〉
≥ ‖x‖2 + ‖y‖2 − ‖y∗‖.‖x‖ − ‖x∗‖.‖y‖
= ‖x‖2 + ‖y‖2 − 2‖x‖.‖y‖
= (‖x‖ − ‖y‖)2 ≥ 0.

Thus, J is monotone.

Example 1.2.6 Let f : X → R∪{+∞} be convex and proper. The subdiffer-
ential of f, ∂f : X → 2X

∗ defined as

∂f(x) =

{
{x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x), y ∈ X} , if f(x) 6=∞
∅, if f(x) =∞,

is monotone.
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Proof.
Let x, y ∈ X, x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y).

x∗ ∈ ∂f(x)⇒ 〈y − x, x∗〉 ≤ f(y)− f(x) ∀ y ∈ X. (1.2.1)

y∗ ∈ ∂f(y) ⇒ 〈x− y, y∗〉 ≤ f(x)− f(y) ∀ x ∈ X
⇒ −〈y − x, y∗〉 ≤ f(x)− f(y) ∀ x ∈ X. (1.2.2)

Adding inequalities (1.2.1) and (1.2.2), we have

〈y − x, x∗〉 − 〈y − x, y∗〉 ≤ 0.

This implies that 〈y − x, x∗ − y∗〉 ≤ 0, i.e 〈x− y, x∗ − y∗〉 ≥ 0.

Definition 1.2.2 (Hemicontinuity): A mapping A : D(A) ⊂ X∗ → X is
said to be hemicontinuous if it is continuous from each line segment of X∗ to
the weak topology of X. That is, ∀ u ∈ D(A), ∀ v ∈ X∗ and (tn)n≥1 ⊂ R+

such that tn → 0+ and u + tnv ∈ D(A) for n sufficiently large, we have
A(u+ tnv) ⇀ A(u).

Proposition 1.2.1 Let X denote a Banach space and X∗ its corresponding
dual. Let A : D(A) ⊂ X∗ → X be a continuous mapping . Then A is
hemicontinuous.

Proof
Let u ∈ D(A), v ∈ X∗, (tn)n≥1 be a sequence of positive numbers such that
tn → 0+ as n → ∞ and (u + tnv) ∈ D for n large enough. We observe that
(u + tnv) → u as n → ∞ because tn → 0+ as n → ∞. By the continuity
of A, we have A(u + tnv) → A(u) as n → ∞. Since strong convergence
implies weak convergence we have A(u+ tnv) ⇀ A(u) as n→∞. Hence A is
hemicontinuous.

Remark 1.2.2 The converse of proposition (1.2.1) is false.

Consider the function f : R2 → R2 defined by

f(x, y) =

{
(x

2+xy2

x2+y4
, x), if (x, y) 6= (0, 0)

(1, 0), if (x, y) = (0, 0).

Clearly, f is not continuous at (0, 0). For,

f(x, 0) = (x
2

x2
, x) = (1, x) for all x 6= 0. This implies lim

x→0
f(x, 0) = (1, 0).

f(0, y) = (0, 0), ∀y 6= 0. This implies lim
y→0

f(0, y) = (0, 0). Thus, the

limit does not exist at (0, 0). Hence, f is not continuous at (0,0).
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However, f is hemicontinuous. Indeed, let u = (0, 0), v = (v1, v2) and
{tn}n≥1 be arbitrary such that tn → 0+ as n→∞. Then,

f(u + tnv) = f(tnv1, tnv2)) =
(
v21+tnv1v22
v21+t2nv

4
2
, tnv1

)
→ (1, 0), as n → ∞. There-

fore, lim
n→∞

f(u+ tnv) = (1, 0) = f(0, 0). Thus, f(u+ tnv)→ f(u) as tn → 0+.
Hence, f is hemicontinuous on R2 since strong and weak convergence are the
same on R2.

Definition 1.2.3 (Coercivity): An operator A : X → X∗ is said to be
coercive if for any x ∈ X, 〈x,Ax〉‖x‖ →∞ as ‖x‖ → ∞.

Example 1.2.7 Let H be a real Hilbert space and f : H → H be defined by
f(x) = 1

2
u. Then, f is coercive.

Proof.
Let x ∈ H be arbitrary. Then,

〈f(x), x〉
‖x‖

=
1
2
〈x, x〉
‖x‖

=
1
2
‖x‖2

‖x‖
=

1

2
‖x‖ → +∞ as ‖x‖ → ∞.

Hence f is coercive.

Definition 1.2.4 (Symmetry): Let A : X → X∗ be a bounded linear map-
ping. A is said be symmetric if for all u and v in X, we have 〈Au, v〉 = 〈Av, u〉 .

Example 1.2.8 Let A : l2(R) → l2(R) be a map defined by Au = 1
2
u. Then

A is symmetric.

Proof.
For arbitrary u, v ∈ l2,

〈Au, v〉 =

〈
1

2
u, v

〉
=

1

2
〈(u1, u2, ...), (v1, v2, ...)〉 =

1

2

∞∑
i=1

uivi

=
1

2

∞∑
i=1

viui =
1

2
〈(v1, v2, ...), (u1, u2, ...)〉

=

〈
1

2
v, u

〉
= 〈u,Av〉 .

Hence A is symmetric.

Definition 1.2.5 (Skew-symmetry): Let A : X → X∗ be a bounded lin-
ear mapping. A is said be skew-symmetric if for all u and v in X, we have
〈Au, v〉 = −〈Av, u〉 .

5



Definition 1.2.6 (Angle-boundedness): Let A : X → X∗ be a bounded
monotone linear mapping . A is said be angle-bounded with constant c ≥ 0 if
for all u, v in X, | 〈Au, v〉−〈Av, u〉 | ≤ 2c {〈Au, u〉}

1
2 {〈Av, v〉}

1
2 . (This is well

defined since 〈Au, u〉 ≥ 0 and 〈Av, v〉 ≥ 0 by the linearity and monotonicity of
A).

Example 1.2.9 A symmetric map. It follows that every symmetric mapping
A of X into X∗ is angle-bounded with constant of angle-boundedness c = 0.

Definition 1.2.7 (Adjoint Operators): Let X and Y be normed linear
spaces and A ∈ B(X, Y ). The adjoint of A, denoted by A∗, is the opera-
tor A∗ : Y ∗ → X∗ defined by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for all y∗ ∈ Y ∗ and all
x ∈ X.

We note that A∗ is well-defined. Indeed, ∀ y∗ ∈ Y ∗, x1, x2 ∈ X and α ∈ R,
we have

〈A∗y∗, αx1 + x2〉 = 〈y∗, A(αx1 + x2)〉 = 〈y∗, αAx1〉+ 〈y∗, Ax2〉
= α 〈y∗, Ax1〉+ 〈y∗, Ax1〉

which shows that A∗y∗ is linear.

For boundedness, given y∗ ∈ Y ∗ and x ∈ X,

| 〈A∗y∗, x〉 | = | 〈y∗, Ax〉 |
≤ ‖y∗‖.‖Ax‖ since y∗ ∈ Y ∗.
≤ ‖y∗‖.‖A‖.‖x‖ since A ∈ B(X, Y ).

Therefore, for all y∗ ∈ Y ∗,

| 〈A∗y∗, x〉 | ≤ Ky∗‖x‖ ∀ x ∈ X, where Ky∗ = ‖y∗‖.‖A‖ ≥ 0.

Hence, for all y∗ ∈ Y ∗, A∗y∗ ∈ X∗.

Theorem 1.2.1 Let A : X → Y be a bounded linear maps with adjoint A∗.
Then,

(a) A∗ ∈ B(Y ∗, X∗);

(b) ‖A‖ = ‖A∗‖.

Proof.

(a) Let y∗, z∗ ∈ Y ∗ and α ∈ R. We show that

A∗ (αy∗ + z∗) = αA∗y∗ + A∗z∗,

6



i.e
∀ x ∈ X, 〈A∗ (αy∗ + z∗) , x〉 = α 〈A∗y∗, x〉+ 〈A∗z∗, x〉 .

Let x ∈ X. Then

〈A∗ (αy∗ + z∗) , x〉 = 〈αy∗ + z∗, Ax〉 = α 〈y∗, Ax〉+ 〈z∗, Ax〉
= α 〈A∗y∗, x〉+ 〈A∗z∗, x〉 .

So, A∗ is linear.

Furthermore, for any y∗ ∈ Y ∗ and x ∈ X,

| 〈A∗y∗, x〉 | = | 〈y∗, Ax〉 | ≤ ‖y∗‖.‖A‖.‖x‖, since A ∈ B(X, Y ) .

Thus, ‖A∗y∗‖ = sup
‖x‖=1

| 〈A∗y∗, x〉 | ≤ ‖A‖.‖y∗‖. Therefore, ‖A∗y∗‖ ≤

K‖y∗‖, where K = ‖A‖ ≥ 0. Hence A∗ ∈ B(Y ∗, X∗).

(b)

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=1

(
sup
‖y∗‖=1

〈y∗, Ax〉

)

= sup
‖x‖=1

(
sup
‖y∗‖=1

〈A∗y∗, x〉

)

= sup
‖y∗‖=1

(
sup
‖x‖=1

〈A∗y∗, x〉

)
= sup

‖y∗‖=1

‖A∗y∗‖ = ‖A∗‖.

Definition 1.2.8 (Weak Topology): Let (X,ω) denote a Banach space en-
dowed with the weak topology. For an arbitrary sequence {xn}n≥1 ⊂ X and
x ∈ X, we say that {xn} converges weakly to x if f(xn) → f(x) for each
f ∈ X∗. We denote this by xn ⇀ x.

Definition 1.2.9 (Weak Star Topology): Let (X∗, ω∗) denote a Banach
space endowed with the weak star topology. For an arbitrary sequence {fn}n≥1 ⊂
X∗ and f ∈ X∗ we say that {fn} converges to f in weak-star topology, denoted
fn

ω∗
−→ f , if fn(x)→ f(x) for each x ∈ X.

Proposition 1.2.2 Let {xn} be a sequence and x a point in X. Then the
following hold.

(a) xn → x ⇒ xn ⇀ x;

(b) xn ⇀ x ⇒ {xn} is bounded and ‖x‖ ≤ lim inf ‖xn‖;

7



(c) xn ⇀ x (in X), fn → f (in X∗) ⇒ fn(xn)→ f(x) (in R).

Definition 1.2.10 (Reflexive Space): Let X be a Banach space and let
J : X → X∗∗ be the canonical injection from X into X∗∗, that is 〈J(x), f〉 =
〈f, x〉 , ∀ x ∈ X, f ∈ X∗. Then X is said to be reflexive if J is surjective, i.e
J(X) = X∗∗.

Definition 1.2.11 (Uniformly convex Banach spaces): A Banach space
X is called uniformly convex if for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0
such that if x, y ∈ X, with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε, then
‖1

2
(x+ y)‖ ≤ 1− δ.

Hilbert spaces, Lp and lp spaces, 1 < p < ∞ are examples of uniformly
convex spaces.

Definition 1.2.12 (Strictly convex spaces): A normed linear space X is
said to be strictly convex if for all x, y ∈ X, x 6= y, ‖x‖ = ‖y‖ = 1, we
have ‖αx+ (1− α)y‖ < 1 for all α ∈ (0, 1).

Theorem 1.2.2 Milman-Pettis Theorem: Every uniformly convex Ba-
nach space X is reflexive.

For the proof of theorem (1.2.2), see, for instance, Chidume [1].

Definition 1.2.13 (σ−algebra): A collection M of subsets of a nonempty
set Ω is called a σ−algebra if

(a) φ, Ω ∈M,

(b) A∈ M → Ac ∈ M,

(c) ∪∞n=1An ∈ M whenever An ∈ M ∀ n.

Definition 1.2.14 (Measurable Space): If M is a σ−algebra of Ω, then
the pair (Ω, M) is referred to as a measurable space.

Definition 1.2.15 (Measure): A measure on (Ω, M) is a function
µ : M→ [0, ∞] such that

(a) µ(A) ≥ 0 for all A ∈M;

(b) µ(φ) = 0;

(c) if Ai ∈M are pairwise disjoint, then µ (∪∞i Ai) =
∑∞

i=1 µ(Ai).

Definition 1.2.16 (Measure Space): If M is a σ−algebra of subsets of
Ω, and µ is a measure on M, then the tripple (Ω, M, µ) is referred to as a
measure space.

8



Definition 1.2.17 (Measurable Functions): Let (Ω, M) be a measurable
space. A function f : Ω → R is measurable or M−measurable if the set
{x ∈ Ω : f(x) > α} ∈ M for all α ∈ R.

Definition 1.2.18 (σ−finite ) : A measure space (Ω, M, µ) is said to be
σ−finite if there exists a countable family (Ωn)n≥1 inM such that Ω = ∪∞n=1Ωn

and µ(Ωn) <∞, ∀ n.

Definition 1.2.19 (Green’s Function): This is a function associated with
a given boundary value problem, which appears as an integrand for an integral
representation of the solution of the problem.

Let L be a differential operator and assume that

L(y) =
n∑
p=0

aP (t)y(p)(t) = an(t)yn(t) + ...+ a(t)y
(1)(t) + a0(t)y(t).

Suppose that an(t) is not zero on [0, 1] and that each term of the sequence
ap(t), p = 0, ..., n, has at least n continuous derivatives. Also suppose that
B is the given boundary conditions associated with L and denote by M , the
manifold associated with (L, B). (Manifold simply refers to the differential
equation together with the associated boundary conditions.) We present the
algorithm for constructing the Green’s function, G(t, x) for nth order equa-
tions. For x ∈ [0, 1], we denote by x−, the values of t ∈ [0, x) and by x+, the
values of t ∈ (x, 1] .

(a) L (G(., x)) (t) = 0 for 0 < t < x and for x < t < 1;

(b) G(., x) is in M ;

(c) for 0 ≤ p ≤ n− 2, ∂
pG(t,x)
∂tp

/t=x+ = ∂pG(t,x)
∂tp

/t=x− ;

(d) ∂n−1G(t,x)
∂tn−1 /t=x+ − ∂n−1G(t,x)

∂tn−1 /t=x− = 1
an(x)

.

Definition 1.2.20 (Carathéodory Condition): Let m and n be positive
integers, Ω be a nonempty subset of Rm and let f be a function from Ω × Rn

into R. A function f : Ω × Rn → R is said to satisfy the Carathéodory
conditions if

(i) f(x, .) : Rn → R is a continuous function for almost all x ∈ Ω;

(ii) f(., u) : Ω→ R is a measurable function for all u ∈ Rn.

Definition 1.2.21 (Nemystkii Operators): Let f be a function from Ω×
Rn into R. We denote by F(X, Y ), the set of all maps from X to Y . The
Nemystkii operator associated to f is the operator Nf : F(Ω,Rn) → F(Ω,R)
defined by

u 7→ Nf (u)

where (Nfu)(x) = f (x, u(x)) ∀ u ∈ F (Ω, Rn) , ∀ x ∈ Ω. For simplicity, we
shall write Nuf (x) instead of (Nfu)(x).
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Example 1.2.10 Given a map f : R× R→ R defined by

f(x, s) = |s| ∀ (x, s) ∈ R× R,

the Nemystkii operator associated to f is given by the expression Nfu(x) =
|u(x)| for any map u : R→ R and for any x ∈ R.

Example 1.2.11 Given a map g : R× R→ R defined by

g(x, s) = xes ∀ (x, s) ∈ R× R,

the Nemystkii operator associated to g is given by the expression Nfu(x) =
xeu(x) for any map u : R→ R and for any x ∈ R.

Observe that by the continuity of f and g, Nf and Ng map the set of
real-valued continuous function on Ω; C(Ω) into itself. Moreover, they map
the set of real-valued measurable function into itself.

1.3 Hammerstein Equations
A nonlinear integral equation of Hammerstein type on Ω is one of the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = h(x) (1.3.1)

where dy stands for a σ-finite measure on the measure space Ω; the kernel k is
defined on Ω×Ω, f is a real-valued function defined on Ω×R and is in general
nonlinear and h is a given function on Ω. If we define the operator A by

Av(x) =

∫
Ω

k(x, y)v(y)dy, (1.3.2)

and Nf to be the Nemystkii operator associated with f :

Nfu(x) = f(x, u(x)), (1.3.3)

then the integral equation (1.3.1) can be put in functional equation form as
follows:

u+ ANfu = 0, (1.3.4)
where without loss of generality, we have taken h ≡ 0.

For h 6= 0, we have

u+ ANfu = h

⇒ u− h+ ANfu = 0

⇒ w + ANf (w + h) = 0 where w = u− h.

Thus
w + AN̄fw = 0 where N̄fw = Nf (w + h).

We consider, as an example of these, the forced oscillations of finite amplitude
of a pendulum (see, e.g, Pascali and Sburlan [2], Chapter IV)
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Example 1.3.1 Consider an inhomogeneous differential equation given by{
d2v
dt2

+ a2sin v(t) = z(t), t ∈ [0, 1]
v(0) = v(1) = 0.

(1.3.5)

The amplitude of oscillation v(t) is a solution of the problem, where the driving
force z(t) is periodic and odd. The constant a 6= 0 depends on the length of the
pendulum and on gravity.

We begin the computation by computing the Green’s function for the 2nd
order equation,

v′′(t) = 0, v(0) = v(1) = 0. (1.3.6)

According to the definition (1.2.19), since n = 2, the algorithm for computing
G(t, x) is given as:

(a) L (G(., x)) (t) = 0 for 0 < t < x and for x < t < 1;

(b) G(., x) is in M ;

(c) G(., x) is a continuous function;

(d) ∂G(t,x)
∂t/t=x+

− ∂G(t,x)
∂t

/t=x− = 1
a2(x)

.

The general solution of the homogeneous equation v′′ = 0 is given by

v(t) = a1 + a2t

where a1 and a2 are constants.
Thus, following the step(a), we seek the Green’s function in the form

G(t, x) =

{
A+Bt, 0 ≤ t ≤ x
C +Dt, x ≤ t ≤ 1

(1.3.7)

where A,B,C and D are functions of the parameter x.

Step(b) requires that G(., x) be in M . Therefore, we evaluate G(0, x) = 0
and G(1, x) = 0. The implications of this are that

A = 0 and C +D = 0. (1.3.8)

Step(c) requires that G(., x) be a continuous function, that is
G(x+, x) = G(x−, x)⇒ (C − A) + (D −B)x = 0.
Since A = 0 (from (1.3.8)), we have

C + (D −B)x = 0 (1.3.9)

Step(d) requires that Gt/t=x+ −Gt/t=x− = 1 (since a2(x) = 1). Thus

D −B = 1 (1.3.10)
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Solving ((1.3.8), (1.3.9) and (1.3.10)) for the three three unknowns B,C and
D, we have that B = x− 1, C = −x and D = x.
By substituting for the values of A,B,C and D into (1.3.7), we obtain

G(t, x) =

{
t(1− x), 0 ≤ t ≤ x
−x+ xt, x ≤ t ≤ 1

(1.3.11)

Equivalently, the Green’s function for the given boundary value problem is the
triangular function given by :

G(t, x) =

{
t(1− x), 0 ≤ t ≤ x
x(1− t), x ≤ t ≤ 1

(1.3.12)

Equation (1.3.5) is equivalent to the nonlinear integral equation

v(t) = −
∫ 1

0

G(t, x)
[
z(x)− a2sin v(x)

]
dx (1.3.13)

If
∫ 1

0
G(t, x)z(x)dx = g(t) and v(t) + g(t) = u(t), then equation (1.3.13) can

be written as the integral equation

u(t) +

∫ 1

0

G(t, x)f(x, u(x))dx = 0. (1.3.14)

where f(x, u(x)) = a2sin [u(x)− g(x)].

Equation (1.3.14) is a homogeneous integral equation of Hammerstein type.
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CHAPTER 2

Existence and Uniqueness Results Using
Factorization of Operators

Let N denote the Nemystkii operator associated with f . We recall that the
Hammerstein integral equation (1.3.1) can be written in operator theoretic
form as

u+ ANu = 0, (2.0.1)

where without loss of generality, we have taken h ≡ 0.

2.1 Existence and uniqueness theorem
We present the proof of the following theorem which is the main theorem of
this chapter.

Theorem 2.1.1 (Browder-Gupta [4]): Let X be a real Banach space, X∗
its conjugate dual space. Let A be a monotone angle-bounded continuous linear
mapping of X into X∗ with constant of angle-boundedness c ≥ 0. Let N be
a hemicontinuous (possibly nonlinear) mapping of X∗ into X such that for a
given constant k ≥ 0,

〈v1 − v2, Nv1 −Nv2〉 ≥ −k‖v1 − v2‖2
X∗ (2.1.1)

for all v1 and v2 in X∗. Suppose finally that there exists a constant R with
k(1 + c2)R < 1 such that for u in X

〈Au, u〉 ≤ R‖u‖2
X . (2.1.2)

Then there exists exactly one solution w in X∗ of the nonlinear equation

w + ANw = 0. (2.1.3)

13



We prove theorem (2.1.1), using factorization method that consists of split-
ting the linear operator A via a Hilbert space H. The resulting equation is
then solved by using the results of Minty [5] for monotone operator equations.
The following proposition of Browder-Gupta [4] enables one to transform the
equation (2.1.3) into an equivalent equation in H.

Proposition 2.1.1 (Browder-Gupta [4]): Let X be a real Banach space,
X∗ its dual space, A be a bounded linear mapping of X into X∗ which is mono-
tone and angle-bounded. Then there exists a Hilbert space H, a continuous lin-
ear mapping S of X into H with S∗ injective and a bounded skew-symmetric
linear mapping B of H into H such that

A = S∗(I +B)S,

and the following two inequalities hold:

(i) ‖B‖ ≤ c, with c the constant of angle-boundedness of A;

(ii) ‖S‖2 ≤ R if and only if for all u in X, 〈A(u), u〉 ≤ R‖u‖2
X .

Lemma 2.1.1 (Browder-Gupta [4]): Let H be a given Hilbert space, B a
skew-symmetry bounded linear mapping of H into H. Then the bounded linear
mapping I +B is monotone bijective mapping of H onto H. Further, for any
u in H we have 〈

(I +B)−1(u), u
〉
≥ 1

1 + ‖B‖2
‖u‖2

H .

We also need the following lemmas for the proof of theorem (2.1.1).

Lemma 2.1.2 Let X and Y be Banach spaces and let T : (X, s) → (Y, s)
be a linear continuous map. Then T : (X,ω) → (Y, ω) is continuous, and
conversely, where s denotes strong topology and ω denotes weak topology.

For the proof of lemma (2.1.2), one can see Chidume [1].

Lemma 2.1.3 Let H be a Hilbert space, X denote a Banach space and X∗

its corresponding dual. Suppose that S is a continuous linear mapping of X
into H with S∗ being its adjoint and N is a hemicontinuous (possibly non-
linear) mapping of X∗ into X. Then, the mapping SNS∗ of H into H is
hemicontinuous.

Proof.
Let S : X → H be a linear and continuous map, N : X∗ → X be hemi-
continuous. Then by theorem (1.2.1))(a), S∗ : H → X∗ is continuous. We
show that SNS∗ : H → H is hemicontinuous. To do this, let u, v ∈ H and
let un := (u + tnv) where (tn)n≥1 is a sequence of positive numbers such that
tn → 0+. Then (u+ tnv)→ u as n→∞. By the continuity of S∗, we have

S∗(un) = S∗(u+ tnv)→ S∗(u) ∈ X∗
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as n→∞. LetD := D(N) ⊆ X∗ denotes the domain of N. Since S∗(u), S∗(v) ∈
X∗ and (S∗(u) + tnS

∗(v)) ∈ X∗ ∀ n ≥ 1 with tn → 0+ as n → ∞, by the
hemicontinuity of N, we have N(S∗(u) + tnS

∗(v)) ⇀ N(S∗(u)) as n→∞. By
the linearity of S∗, we have N(S∗(u+ tnv)) ⇀ N(S∗(u)). Thus

NS∗(u+ tnv) ⇀ NS∗(u) ∈ X.

Since S : X → H is linear and continuous from strong topology on X to the
strong topology on H, then by the lemma (2.1.2) it is continuous from weak
topology on X to the weak topology on H. So by the continuity of S with
respect to the weak topology on X, we have, S(NS∗(u+ tnv)) ⇀ S(NS∗(u))
i.e SNS∗(u + tnv) ⇀ SNS∗(u). Therefore, for each u, v ∈ H, (tn)n≥1 ⊆ R :
tn → 0+ we have SNS∗(u+tnv) ⇀ SNS∗(u). Hence, SNS∗ is hemicontinuous.

2.2 Result of Minty [5]
We give a result of Minty [5] which we shall apply in the proof of theorem
(2.1.1).

X is a reflexive Banach space and X∗ its ’conjugate’ or ’adjoint’ space. For
B ⊂ X, the symbol c̄o(B) denotes the closed convex hull of B.

Definition 2.2.1 The set B is said to surround x0 provided ∀ z ∈ X, z 6= 0 ∃
t ∈ (−∞, 0), s ∈ (0,+∞) such that (x0 + tz), (x0 + sz) ∈ B.

Definition 2.2.2 The set B is said to surround x0 densely provided ∀ z ∈ X,
z 6= 0, ∀ n ∈ N ∃ (tn)n≥1 ⊂ (−∞, 0), (sn)n≥1 ⊂ (0,+∞) such that tn →
0, sn → 0 and (x0 + tnz), (x0 + snz) ∈ B.

Example 2.2.1 B = (−x, x) , x ∈ (0,∞) fixed, contains 0 and surrounds 0
densely.

Proof.
Let z ∈ R, z 6= 0. ∀ n ≥ 1, take (tn)n≥1 = −x

‖z‖+n , (sn)n≥1 = x
‖z‖+n .

Clearly tn → 0, sn → 0 as n→ +∞. Let pn := − xz
‖z‖+n and qn := xz

‖z‖+n .

Then pn ∈ B ⇔ |pn| = | − xz
‖z‖+n | < x and qn ∈ B ⇔ |qn| = | xz

‖z‖+n | < x.

Hence B surrounds 0 densely.

Example 2.2.2 B = {x0} contains x0 ∈ X but does not surround x0.
Clearly, ∀ z ∈ X, z 6= 0, ∀ t ∈ (−∞, 0), s ∈ (0, ∞) we have that
(x0 + tz), (x0 + sz) /∈ B because B is singleton. Hence B does not surround
x0.
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Example 2.2.3 B = [1, 5) contains 1 but does not surround 1.
Indeed, take z = 2 and any t < 0. We have 1 + 2t /∈ B as 1 + 2t < 1.

Example 2.2.4 B = [−x, x] , x ∈ (0,∞) fixed, contains 0 and surrounds 0
densely.

Example 2.2.5 R\ {0} does not contain 0 but surrounds 0 densely.

Example 2.2.6 Let dim X≥ 2. A disc DX(x0, r) = {x ∈ X : ‖x− x0‖ < r} ,
x0 ∈ X fixed, r ∈ R+ contains x0 and surrounds x0 densely.

Proof.
Let z ∈ X, z 6= 0. ∀ n ∈ N we show that ∃ (tn)n≥1 ⊂ (−∞, 0),
(sn)n≥1 ⊂ (0,+∞) such that (x0 + tnz), (x0 + snz) ∈ DX . Take tn =
−r
‖z‖+n , sn = r

‖z‖+n . Clearly tn → 0, sn → 0 as n→ +∞.

Let pn := x0 − rz
‖z‖+n and qn := x0 + rz

‖z‖+n .

Then pn ∈ SX ⇔ ‖pn − x0‖ = ‖ −rz‖z‖+n‖ = r‖ −z
‖z‖+n‖ < r

and qn ∈ SX ⇔ ‖qn − x0‖ = ‖ rz
‖z‖+n‖ = r‖ z

‖z‖+n‖ < r.

Hence DX surrounds x0 densely.

Example 2.2.7 Let dim X≥ 2. A sphere SX(x0, r) = {x ∈ X : ‖x− x0‖ = r} ,
x0 ∈ X fixed, r ∈ R+ does not contains x0 but surrounds x0.

Proof.
Let z ∈ X, z 6= 0. We show that there exists t ∈ (−∞, 0), s ∈ (0,+∞) such
that (x0 + tz), (x0 + sz) ∈ SX .
Let t = −r

‖z‖ , s = r
‖z‖ , p := x0 − rz

‖z‖ and q := x0 + rz
‖z‖ .

Then p ∈ SX ⇔ ‖p− x0‖ = ‖−rz‖z‖ ‖ = r and q ∈ SX ⇔ ‖q − x0‖ = ‖ rz‖z‖‖ = r.
Hence SX surrounds x0.

Example 2.2.8 Let dim X≥ 2. and BX(x0, r) = {x ∈ X : ‖x− x0‖ ≤ r},
x0 ∈ X fixed, r ∈ R+. B is a ball with centre x0, radius r and it contains
the boundary but does not surround the boundary.

Theorem 2.2.1 (Minty [5]) Let D ⊂ X be bounded and surrounds 0; let
E ⊂ X contain c̄o(D) and surround every point of c̄o(D) densely. Let

f : E → X∗

be monotone and hemicontinuous at every point of c̄o(D), and suppose

u ∈ D implies 〈u, f(u)〉 ≥ 0. (2.2.1)

Then there exists u ∈ c̄o(D) such that f(u) = 0.
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In a typical application, D would be the boundary of a large ball with centre
0, and E would be an open sphere containing D.

Remark 2.2.1 (I +B)−1 is a continuous linear map of H into H. Indeed,

(i) (I +B) ∈ B(H,H);

(ii) (I +B) is bijective.

Thus, by the open mapping theorem, the map (I +B)−1 is continuous.

2.3 Proof of theorem (2.1.1)
In this section, we give the Proof of Theorem (2.1.1).

Proof.
Suppose w ∈ X∗ is a solution of the equation (2.1.3). By proposition (2.1.1),
A = S(I +B)S∗ and equation (2.1.3) becomes

w + S∗(I +B)SNw = 0. (2.3.1)

By linearity of S∗, we have that

w = −S∗(I +B)SNw = S∗ (−(I +B)SNw)

which implies that w is in the range of S∗. Since S∗ is injective, there is a
unique u in H such that w = S∗(u) and therefore equation (2.3.1) becomes

S∗u+ S∗(I +B)SNS∗u = 0, (2.3.2)

i.e.,
S∗(u+ (I +B)SNS∗u) = 0. (2.3.3)

By linearity of S∗, equation (2.3.3) is equivalent to

S∗(u+ (I +B)SNS∗u) = S∗(0). (2.3.4)

Since S∗ is injective, equation (2.3.4) is equivalent to

u+ (I +B)SNS∗u = 0. (2.3.5)

Thus, solving for a unique w ∈ X∗ that satisfies equation (2.1.3) is equivalent
to solving for a unique u ∈ H that satisfies equation (2.3.5).

Conversely, suppose that there exists a unique u ∈ H that satisfies equation
(2.3.5). Then S∗(u + (I + B)SNS∗u) = S∗(0) which by linearity of S∗ is
equivalent to

S∗u+ S∗(I +B)SNS∗u) = 0.
which is equivalent to

w + ANw = 0;
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since w = S∗(u) and A = S∗(I + B)S. Therefore, solving for a unique u ∈ H
that satisfies equation (2.3.5) is equivalent to solving for a unique w ∈ X∗

that satisfies equation (2.1.3). Hence equation (2.1.3) has exactly one solution
in X∗ if and only if equation (2.3.5) has exactly one solution in H. Now, by
lemma (2.1.1), equation (2.3.5) is equivalent to the equation

(I +B)−1(u) + SNS∗(u) = 0. (2.3.6)

We now apply the result of Minty [5]. Define f = (I + B)−1 + SNS∗. H
is reflexive. Take X = H, and D = SH(0, r) = {u ∈ H : ‖u‖ ≤ r} , r ∈ R+.
Clearly, D is bounded and surrounds 0. c̄o(D) = D since D is closed and
convex. Take E = H and define f : H → H. ∀ u, v ∈ H,

〈f(u)− f(v), u− v〉 =
〈
(I +B)−1(u− v), u− v

〉
+〈SNS∗(u)− SNS∗(v), u− v〉 .

Therefore,〈
(I +B)−1(u− v), u− v

〉
≥ 1

1 + ‖B‖2
‖u− v‖2

H (by lemma (2.1.1))

≥ 1

1 + c2
‖u− v‖2

H (by proposition (2.1.1)(i)).

Thus 〈
(I +B)−1(u− v), u− v

〉
≥ 1

1 + c2
‖u− v‖2

H (2.3.7)

On the other hand,

〈SNS∗(u)− SNS∗(v), u− v〉 = 〈S∗(u)− S∗(v), NS∗(u)−NS∗(v)〉
≥ −k‖S∗(u)− S∗(v)‖2

X∗ (hypothesis of theorem (2.1.1))
≥ −k‖S∗(u− v)‖2

X∗ (by linearity of S∗)
≥ −kR‖u− v‖2

H (by proposition (2.1.1)(ii)).

Thus
〈SNS∗(u)− SNS∗(v), u− v〉 ≥ −kR‖u− v‖2

H (2.3.8)

Combining inequalities ((2.3.7) and (2.3.8)), we have that

〈f(u)− f(v), u− v〉 ≥ (
1

1 + c2
− kR)‖u− v‖2

H = c1‖u− v‖2
H (2.3.9)

where c1 = 1
1+c2
− kR > 0 since k(1 + c2)R < 1 by hypothesis of theorem

(2.1.1).
Thus f is a monotone mapping of H into H.
Suppose that u 6= v. Then by equation (2.3.9) we have

〈f(u)− f(v), u− v〉 > 0⇒ f(u) 6= f(v).

Thus f maps H into H injectively.
Next, we show that f is hemicontinuous. Let u, v ∈ H and (tn) ⊂ R∗ such that
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tn → 0+. We show that f(u + tnv) ⇀ f(u) as n→∞ because H is reflexive.
Let w ∈ H.

〈f(u+ tnv)− f(u), w〉 = 〈((I +B)−1 + SNS∗)(u+ tnv)

−((I +B)−1 + SNS∗)(u), w〉
= 〈(I +B)−1(u+ tnv)− (I +B)−1(u)

+SNS∗(u+ tnv)− SNS∗(u), w〉
=

〈
(I +B)−1(u+ tnv)− (I +B)−1(u), w

〉
+ 〈SNS∗(u+ tnv)− SNS∗(u), w〉

=
〈
(I +B)−1(u+ tnv − u), w

〉
+ 〈SNS∗(u+ tnv)− SNS∗(u), w〉

= tn
〈
(I +B)−1(v), w

〉
+ 〈SNS∗(u+ tnv)− SNS∗(u), w〉 → 0

since tn → 0+ and SNS∗ is hemicontinuous by lemma (2.1.3). Thus, f is
hemicontinuous.

Moreover, ∀ u ∈ D, we have 〈f(u), u〉 ≥ 0.

It then follows from the result of Minty [5] that there exists u ∈ D such
that f(u) = 0. Furthermore, since f is injective, then u is unique. Hence equa-
tion(2.3.5) has exactly one solution in H and so by the preceding discussion,
equation(2.1.3) has exactly one solution in X∗.
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CHAPTER 3

Existence and Uniqueness Results Using
Variational Methods

Let X be a real Banach space with X∗ its corresponding conjugate. The
problem of solving w + ANw = 0 in X∗ is transformed into the problem of
solving a suitable equation

Tu = 0 (u ∈ H) (3.0.1)

in a Hilbert space with T a potential operator in H such that its potential has
a local minimum which is then used as a solution of equation (3.0.1). This is
a consequence of the Euler’s theorem which will be stated shortly.

3.1 Gâteaux derivative and gradient
Let X and Y be two real normed spaces.

Definition 3.1.1 (Interior point): A point u ∈ A is called an interior point
of A provided that there exists ε > 0 such that B(u, ε) ⊆ A. The set of all
interior points of A is called the interior of A, denoted Å.

Definition 3.1.2 (Closure): The closure of A, Ā is the smallest closed set
containing A.

Definition 3.1.3 (Boundary): The boundary of A, ∂A is defined as
∂A := Ā ∩ Āc.

Definition 3.1.4 (Gâteaux Derivative): Let f : U ⊂ X → Y be a map
with U open and nonempty. The function f is said to have a Gâteaux derivative
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at u ∈ U if there exists a bounded linear map of X into Y denoted by DGf(u)
such that for each h in X we have

lim
t→0

f(u+ th)− fu
t

= 〈DGf(u), h〉 . (3.1.1)

We say that f is Gâteaux differentiable if it has a Gâteaux derivative at each
u in U . We shall use f ′(u) to mean DGf(u).

Example 3.1.1 The function f : R2 → R defined by f(x, y) = x2 + y2 is
Gâteaux differentiable at every point (x0, y0) ∈ R2. Indeed, let u0 = (x0, y0)
and h = (h1, h2) ∈ R2\ {0} . Then

f(u0 + th)− f(u0) = (x0 + th1)2 + (y0 + th2)2 − (x2
0 + y2

0)

= x2
0 + 2x0th1 + t2h2

1 + y2
0 + 2ty0h2 + t2h2

2 − (x2
0 + y2

0)

= 2t(x0h1 + y0h2) + t2(h2
1 + h2

2) ∀ t ∈ R.

It follows that lim
t→0

f(u0+th)−f(u0)
t

= 2(x0h1 + y0h2) = 2 〈u0, h〉 .
Since the map h 7→ 2 〈u0, h〉 is linear and continuous from R2 to R, we con-
clude that f is Gâteaux differentiable and f ′(u0)h = 2 〈u0, h〉 ∀ h ∈ R2.

Example 3.1.2 Let f be a functional defined from R2 into R by:

f(x1, x2) =

{
x1x42
x21+x82

, if x1 6= 0

0, otherwise.

The functional f is Gâteaux differentiable at (0, 0).

Indeed, let h = (h1, h2) ∈ R2\ {0} and t 6= 0, we have:

f(th)−f(0)
t

=

{
t2h1h42
h21+t6h82

, if h1 6= 0

0, otherwise.

This implies that lim
t→0

f(tx)−f(0)
t

= 0. Hence f is Gâteaux differentiable at (0, 0)

and f ′(0) ≡ 0.

Definition 3.1.5 (Potential): A mapping G of X into X∗ is said to be
potential (weakly potential) if it is a Gâteaux derivative of some Gâteaux dif-
ferentiable function. That is, a mapping G of X into X∗ is said to be potential
(weakly potential) if there exists a functional f of X into R such that for all u
and v in X we have

lim
t→0

f(u+ tv)− f(u)

t
= 〈Gu, v〉 . (3.1.2)

The functional f is called the potential of G and G is said to be the gradient
of f , written grad(f) = G.
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Example 3.1.3 Define a functional f by f(u) = 1
2
〈u, u〉 for u ∈ H, where H

is a real Hilbert space. For all u, h ∈ H, and t ∈ R we have:

1

2
〈u+ th, u+ th〉 =

1

2
〈u, u〉+

1

2
t 〈u, h〉+

1

2
t 〈h, u〉+

1

2
t2 〈h, h〉

=
1

2
〈u, u〉+ t 〈u, h〉+

1

2
t2 〈h, h〉 .

Therefore 1
2
〈u+ th, u+ th〉 − 1

2
〈u, u〉 = t 〈u, h〉+ 1

2
t2 〈h, h〉 . Thus

lim
t→0

1

2

〈u+ th, u+ th〉 − 〈u, u〉
t

= lim
t→0

(〈u, h〉+
1

2
t 〈h, h〉) = 〈u, h〉 .

Hence, grad(f) = I.

3.2 Maxima and minima of functions
Let X be a real normed linear space. We consider a real functional f : X → R.
For simplicity, it is assumed that f is defined for all values of u in X.

Definition 3.2.1 (Local minimum): A functional f is said to have a local
minimum at u = u0 if for some positive ε, f(u)−f(u0) ≥ 0 for all u ∈ B(u0, ε).

Definition 3.2.2 (Local maximum): A functional f is said to have a local
maximum at u = u0 if for some positive ε, f(u)−f(u0) ≤ 0 for all u ∈ B(u0, ε).

A common name for a maximum or a minimum is an extremum.

Remark 3.2.1 When G is potential, then Gu = 0 whenever u is a local min-
imum or maximum of f , where grad(f) = G.

Definition 3.2.3 (Stationary point): This is the point at which the deriva-
tive of a differentiable function f vanishes and f is said to be stationary at u0

whenever f ′(u0) = 0.

Theorem 3.2.1 Let u0 be a stationary point of f with a continuous second
derivative. Then f(u0) is a maximum for f ′′(u0) < 0 and a minimum for
f ′′(u0) > 0.

For the proof of theorem (3.2.1), see, for instance, Lauwerier [7].

Examples

(a) f(u, v) = u2 + v2 + 1 has minimum at (0, 0).

(b) f(u, v) = u4 + v4 + 1 has minimum at (0, 0).
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Theorem 3.2.2 (Euler’s Theorem): Let X be a real normed linear space
and U a subset of X with nonempty interior. Let f : U → R be a functional
and suppose that u ∈ Ů is a local extremum of f . If f is Gâteaux differentiable
at u, then f ′(u) = 0.

Proof.
Let uo ∈ Ů be an extremum at which f is Gâteaux differentiable. We assume,
without loss of generality, that u0 is a local minimum. So let ε > 0 such
that B(u0, ε) ⊂ U and f(u0) ≤ f(u) for every u ∈ B(u0, ε). Then for any
h ∈ X \ {0}, setting δh := ε

‖h‖ , we obtain that for any t ∈ R with |t| < δh,

‖u0 + th− u0‖ < ε.

So
f(u0 + th)− f(u0)

t
≥ 0, t ∈ (0, δh) (3.2.1)

and
f(u0 + th)− f(u0)

t
≤ 0, t ∈ (−δh, 0). (3.2.2)

Taking limit as t→ 0, in (3.2.1) and (3.2.2) we get

〈f ′(u0), h〉 ≥ 0 (3.2.3)

and
〈f ′(u0), h〉 ≤ 0. (3.2.4)

Hence 〈f ′(u0), h〉 = 0. Since h was arbitrary, f ′(u0) = 0. The proof is complete.

3.3 Fundamental theorems of optimization
We take the following to be the definition of the terms which are used in this
chapter.

Definition 3.3.1 (Lower semi-continuity): Let X be a real Banach space.
A functional f defined on X is said to be lower semi-continuous provided that
xn → x⇒ f(x) ≤ lim inf

n
f(xn).

Definition 3.3.2 (Weak (sequential) lower semi-continuity): Let X be
a real Banach space. A functional f defined on X is said to be weakly lower
semi-continuous at x ∈ X if ∀ (xn)n≥1 ⊂ X, we have xn ⇀ x ⇒ f(x) ≤
lim inf

n
f(xn).

Definition 3.3.3 The epigraph of f is the set defined by

epi(f) := {(x, α) ∈ X × R : x ∈ D(f) and f(x) ≤ α} ,
where D(f) is the domain of f .
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Proposition 3.3.1 Let f : X → R be any map. Then f is convex and lower
semi-continuous ⇔ f is convex and weakly lower semi-continuous.

Proof.
f is convex and lower semi-continuous

⇔ epi(f) is convex and closed
⇔ epi(f) is convex and weakly closed
⇔ f is convex and weakly lower semi-continuous.

Theorem 3.3.1 Let X be a real reflexive Banach space and let K be a closed
convex bounded and nonempty subset of X. Let f : X → R be lower semi-
continuous and convex. Then there exists u0 ∈ K such that f(u0) ≤ f(u) ∀
u ∈ K, i.e, f(u0) = inf

u∈K
f(u).

Theorem 3.3.2 Let X be a real reflexive Banach space and f : X → R be
a convex lower semi-continuous functional. Suppose lim

‖u‖→∞
f(u) = +∞. Then,

there exists u0 ∈ X such that f(u0) ≤ f(u), u ∈ X, i.e,f(u0) = inf
u∈X

f(u).

For the proof of the above theorems ((3.3.1) and (3.3.2)), see, for instance,
Chidume [1].

Theorem 3.3.3 (Eberlein-Smul’yan:) A Banach space X is reflexive if
and only if every (norm) bounded sequence in X has a subsequence which
converges weakly to an element of X.

For the proof of the theorems (3.3.3), see, for instance, Brezis [8].

3.4 Extension of Vainberg’s result to real
Banach spaces

A special case of Theorem (2.1.1) is the following.

Theorem 3.4.1 (Browder-Gupta [4]): Let X be a real Banach space, X∗
its conjugate space, A a bounded linear mapping of X into X∗ which is mono-
tone and symmetric. Suppose that N is a hemicontinuous (possibly nonlinear)
mapping of X∗ into X such that for a given k ≥ 0 and all v1, v2 in X∗,

〈v1 − v2, Nv1 −Nv2〉 ≥ −k‖v1 − v2‖2
X∗ .

Suppose that k‖A‖ < 1. Then the equation

w + ANw = 0 (3.4.1)

has exactly one solution w in X∗.
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The result of Theorem (3.4.1) was obtained by Golomb [9] for X = L2(Ω)
and by Vainberg [10] for X = Lp(Ω), using variational methods. Using the
result of proposition (2.1.1) and lemma (2.1.1), in this chapter we consider the
extension of Vainberg’s result [10] to real Banach spaces under the assumption
that A : X → X∗ is a linear monotone and symmetric mapping and thus,
angle-bounded with constant of angle-boundedness c = 0 while N : X∗ → X
is a potential mapping satisfying suitable growth conditions [13].

We shall need the following corollary from the proposition (2.1.1) in the
proof of the subsequent theorems.

Corollary 3.4.1 ‖S∗‖2 ≤ ‖A‖.

Proof.
Since A is a bounded linear mapping ofX intoX∗, there exists R ≥ 0 such that

〈Au, u〉 ≤ R‖u‖2
X ∀ u ∈ X.

In particular, take R = ‖A‖. Also, by the symmetry of A, A = S∗S. Therefore
for all u in X we have

‖Su‖2
H = 〈Su, Su〉 = 〈S∗Su, u〉 = 〈Au, u〉 ≤ R‖u‖2

X = ‖A‖.‖u‖2
X .

Thus ‖S‖ ≤
√
‖A‖. Hence ‖S∗‖2 ≤ ‖A‖ since ‖S‖ = ‖S∗‖.

In what follows, B(0, r) denotes an open ball while B̄(0,r) denotes its clo-
sure and ∂B(0,r) denotes its boundary with centre 0 and radius r. Also, we
shall make use of the following known fact.

Proposition 3.4.1 (Petryshyn-Fitzpatrick [13]): Let X be a reflexive Ba-
nach space (in particular, a Hilbert space). Let f : B̄(0, r) ⊆ X → R be a
weakly semi-continuous functional. Then f assumes its infimum on B̄(0, r).
Furthermore, if f(u) > f(0) for all u ∈ ∂B(0, r), then f attains a local mini-
mum at an interior point of B̄(0, r).

Proof.
Let α = inf

u∈B̄(0,r)
f(u). This is implies that α ≤ f(u) ∀ u ∈ B̄(0, r) and there

exists a sequence (un)n≥1 ⊆ B̄(0, r) such that lim
n
f(un) = α. Since (un)n≥1 ⊆

B̄(0, r), (un)n≥1 is bounded. Eberlein-Smul’yan theorem implies that there
exists (unj)j≥1 ⊂ (uu)n≥1 such that unj ⇀ u∗. B̄(0, r) closed and convex
implies that it is weakly closed. Thus u∗ ∈ B̄(0, r). f is weakly lower semi-
continuous implies that

f(u∗) ≤ lim inf
j

f(unj). (3.4.2)

Since {f(un)} converges to α, it follows that

f(u∗) ≤ lim
j
f(unj) = lim

n
f(un) = α. (3.4.3)
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Thus, f assumes its infimum on B̄(0, r).

Furthermore, if f(u) > f(0) for all u ∈ ∂B(0, r), then f(u∗) ≤ f(0) < f(u)
for all u ∈ ∂B(0, r). So u∗ /∈ ∂B(0, r). Thus f attains a local minimum at an
interior point of B̄(0, r).

Theorem 3.4.2 (Petryshyn-Fitzpatrick [13]): Let X be a real reflexive
Banach space and let A be a linear , monotone and symmetric mapping of X
into X∗. Suppose f is a weakly (sequential) lower semicontinuous functional
on X∗ such that

f(u) ≥ −1

2
a1‖u‖2 − a2‖u‖δ − a3 (3.4.4)

where a1‖A‖ < 1, a2 > 0, a3 > 0 and 0 < δ < 2. Suppose also that N : X∗ → X
is such that grad(f) = N. Then the equation (3.4.1) has a solution in X∗.

Proof.
From proposition (2.1.1)(i), when A is symmetric, B = 0. Therefore, in terms
of proposition (2.1.1), it suffices to find a solution of the equation

u+ SNS∗u = 0, u ∈ H. (3.4.5)

Define a functional by q(u) = 1
2
〈u, u〉+ f(S∗u) for u ∈ H.

We note that q is weakly lower semicontinuous. Indeed, suppose un ⇀ u in H.
Then

1
2
〈u, u〉 = 1

2
‖u‖2 ≤ lim inf

n

1
2
‖un‖2 by continuity and convexity of ‖.‖2.

and S∗(un) ⇀ S∗(u) in X∗ by continuity of S∗ and lemma (2.1.2).

Thus f(S∗u) ≤ lim inf
n

f(S∗un) by the weakly lower semicontinuity of f .
Consequently,

q(u) =
1

2
〈u, u〉+ f(S∗u) ≤ lim inf

n

1

2
〈un, un〉+ lim inf

n
f(S∗un)

≤ lim inf
n

{
1

2
〈un, un〉+ f(S∗un)

}
( by subadditivity of lim inf)

= lim inf
n

q(un).
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Also, using proposition (3.4.1) and corollary (3.4.1), for each u in H, we have

q(u) =
1

2
‖u‖2 + f(S∗u)

≥ 1

2
‖u‖2 − 1

2
a1‖S∗u‖2 − a2‖S∗u‖δ − a3 (by the equation (3.4.4))

≥ 1

2
‖u‖2 − 1

2
a1‖S∗‖2.‖u‖2 − a2‖S∗‖δ.‖u‖δ − a3 (S∗ bounded )

≥ 1

2
‖u‖2 − 1

2
a1‖A‖.‖u‖2 − a2‖A‖

δ
2 .‖u‖δ − a3 (by corollary (3.4.1))

=
1

2
(1− a1‖A‖)‖u‖2 − a2‖A‖

δ
2 .‖u‖δ − a3

≥ c1‖u‖2 − c1

2
‖u‖2 − a3 provided ‖u‖ >

(
2c2

c1

) 1
2−δ

=
c1

2
‖u‖2 − a3

where c1 = 1
2
(1− a1‖A‖) and c2 = a2‖A‖

δ
2 . Hence, we see from our conditions

on a1, a2, a3 and δ that q(u)→∞ as ‖u‖ → ∞.

Consequently, there exists r > 0 such that q(u) > q(0) for all u ∈ ∂B(0, r) ⊂
H. Thus, by proposition (3.4.1), q attains a local minimum at an interior point
of B̄(0, r).

Next, we want to evaluate grad(q).
Observe that for all u, h ∈ H

q(u) = 1
2
〈u, u〉+ f(S∗u) and;

q(u+ th) = 1
2
〈u+ th, u+ th〉+ f(S∗(u+ th)), ∀ t ∈ R

= 1
2
〈u+ th, u+ th〉+ f(S∗u+ tS∗h): by linearity of S∗.

Since grad(1
2
〈u, u〉) = I (see example (3.1.3)) and grad(f)=N, we have

Dq(u, h) = lim
t→0

q(u+th)−q(u)
t

= lim
t→0

1
2
〈u+th, u+th〉−〈u,u〉

t
+ lim

t→0

f(S∗u+tS∗h)−f(S∗u)
t

= 〈Iu, h〉+ (NS∗u, S∗h)

= 〈Iu, h〉+ 〈SNS∗u, h〉
= 〈Iu+ SNS∗u, h〉
= 〈(I + SNS∗)u, h〉 .

Therefore grad(q) = I + SNS∗.
Thus, the mapping I + SNS∗ : H −→ H has a zero, i.e, equation (3.4.5) is
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solvable. Hence equation (3.4.1) is solvable. Moreover, ∀ u, v ∈ H,

〈(I + SNS∗)(u)− (I + SNS∗)(v), u− v〉 = 〈I(u− v), u− v〉
+ 〈SNS∗(u)− SNS∗(v), u− v〉 .

〈I(u− v), u− v〉 = 〈u− v, u− v〉 = ‖u− v‖2
H . (3.4.6)

For any u, v ∈ H we have

〈SNS∗(u)− SNS∗(v), u− v〉 = 〈S∗(u)− S∗(v), NS∗(u)−NS∗(v)〉
≥ −k‖S∗(u)− S∗(v)‖2

X∗ ( by hypothesis of theorem (3.4.1))
≥ −k‖S∗(u− v)‖2

X∗ (by linearity of S∗)
≥ −k‖S∗‖2.‖u− v‖2

H (by boundedness of S∗)
= −k‖A‖.‖u− v‖2

H (by corollary (3.4.1)).

Thus
〈SNS∗(u)− SNS∗(v), u− v〉 ≥ −k‖A‖.‖u− v‖2

H . (3.4.7)

Combining inequalities ((3.4.6) and (3.4.7)), we have that

〈(I + SNS∗)(u)− (I + SNS∗)(v), u− v〉 ≥ (1−k‖A‖)‖u−v‖2
H = c1‖u−v‖2

H

(3.4.8)
where c1 = 1− k‖A‖ > 0 since k‖A‖ < 1 by hypothesis of theorem(3.4.1).

Suppose that u 6= v. From equation(3.4.8) we obtain that

〈(I + SNS∗)(u)− (I + SNS∗)(v), u− v〉 > 0.

This implies
(I + SNS∗)(u) 6= (I + SNS∗)(v).

Thus it follows that (I + SNS∗) maps H into H injectively. Therefore equa-
tion (3.4.5) has exactly one solution in H and so by the preceding discussion,
equation (3.4.1) has exactly one solution in X∗.

While in Theorem(3.4.2) we assumed a growth condition on the potential
of N to obtain the existence of a solution, in the next theorem we will assume,
in addition to the potentialness of N, that it has a Gâteaux derivative N ′ and
place a growth condition on N ′. The following proposition will be needed.

Proposition 3.4.2 Vainberg [11] Let X be a reflexive Banach space (in par-
ticular, a Hilbert space). Suppose f : X → R is such that it has first and
second Gâteaux derivatives on all of X, with the latter satisfying the inequality

D2f(u, h, h) ≥ ‖h‖γ(‖h‖)

and D2f(tu, h, h) being continuous in t ∈ [0, 1] for u and h fixed, where γ(t) is
a nonnegative continuous function defined for t ≥ 0 and such that lim

t→∞
γ(t) =

∞. Then there exists u0 ∈ X such that f has a local minimum at u0.
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Theorem 3.4.3 (Petryshyn-Fitzpatrick [13]): Let X be a reflexive Ba-
nach space with A : X → X∗ linear, monotone and symmetric. Let N : X∗ →
X be potential and have a Gateaux derivative which satisfies the inequality

DN(u, v, v) ≥ −a‖v‖2 (v, u ∈ X∗)

and DN(tu, v, v) is continuous in t ∈ [0, 1] for u and v fixed, where a‖A‖ < 1.
Then the equation w + ANw = 0 has a solution in X∗.

Proof.
Using proposition(2.1.1), it suffices to find a solution in H to

u+ SNS∗u = 0.

Define q(u) = 1
2
〈u, u〉+ f(S∗u) for u ∈ H, where grad(f) = N . We have

Dq(u, h) = lim
t→0

q(u+ th)− q(u)

t
= 〈u, h〉+ (NS∗u, S∗h) (3.4.9)

and

D2q(u, k, h) = lim
t→0

1

t
{Dq(u+ tk, h)−Dq(u, h)}

= lim
t→0

1

t
{〈u+ tk, h〉+ 〈NS∗(u+ tk), S∗h〉 − 〈u, h〉 − 〈NS∗u, S∗h〉}

= lim
t→0

1

t
{〈tk, h〉+ 〈NS∗(u+ tk)−NS∗u, S∗h〉}

= 〈k, h〉+ lim
t→0

1

t
〈N (S∗u+ tS∗k)−NS∗u) , S∗h〉

= 〈k, h〉+DN(S∗(u), S∗(k), S∗(h)).

Hence by the hypothesis of theorem (3.4.3), we have the inequality

D2q(u, h, h) = 〈h, h〉+DN(S∗(u), S∗(h), S∗(h))

≥ ‖h‖2 − a‖S∗‖2.‖h‖2 by the hypothesis of theorem (3.4.3)
≥ ‖h‖2 − a‖A‖‖h‖2 by corollary (3.4.1)
= (1− a‖A‖)‖h‖2

= ‖h‖γ(‖h‖)

where γ(‖h‖) = (1 − a‖A‖)‖h‖ and clearly γ(‖h‖) → ∞ as ‖h‖ → ∞ (since
a‖A‖ < 1). We now invoke proposition(3.4.2) to conclude that q has a local
minimum. Hence grad(q) has a zero. Thus, there exists u0 ∈ H such that
u0 + SNS∗u0 = 0. Thus, there exists w ∈ X∗ such that w + ANw = 0. Also,
(I + SNS∗) maps H into H injectively. Thus, there exists a unique u0 ∈ H
such that u0 + SNS∗u0 = 0. Hence there exists a unique w ∈ X∗ such that
w + ANw = 0.
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